1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/CodeGen/Analysis.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/KnownBits.h" 63 #include "llvm/Support/MachineValueType.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().trunc(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (const auto &Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (const auto &Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 switch (V.getOpcode()) { 2473 default: 2474 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, *this); 2475 case ISD::Constant: { 2476 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2477 APInt NewVal = CVal & DemandedBits; 2478 if (NewVal != CVal) 2479 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2480 break; 2481 } 2482 case ISD::SRL: 2483 // Only look at single-use SRLs. 2484 if (!V.getNode()->hasOneUse()) 2485 break; 2486 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2487 // See if we can recursively simplify the LHS. 2488 unsigned Amt = RHSC->getZExtValue(); 2489 2490 // Watch out for shift count overflow though. 2491 if (Amt >= DemandedBits.getBitWidth()) 2492 break; 2493 APInt SrcDemandedBits = DemandedBits << Amt; 2494 if (SDValue SimplifyLHS = TLI->SimplifyMultipleUseDemandedBits( 2495 V.getOperand(0), SrcDemandedBits, *this)) 2496 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2497 V.getOperand(1)); 2498 } 2499 break; 2500 } 2501 return SDValue(); 2502 } 2503 2504 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2505 /// use this predicate to simplify operations downstream. 2506 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2507 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2508 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2509 } 2510 2511 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2512 /// this predicate to simplify operations downstream. Mask is known to be zero 2513 /// for bits that V cannot have. 2514 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2515 unsigned Depth) const { 2516 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2517 } 2518 2519 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2520 /// DemandedElts. We use this predicate to simplify operations downstream. 2521 /// Mask is known to be zero for bits that V cannot have. 2522 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2523 const APInt &DemandedElts, 2524 unsigned Depth) const { 2525 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2526 } 2527 2528 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in 2529 /// DemandedElts. We use this predicate to simplify operations downstream. 2530 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts, 2531 unsigned Depth /* = 0 */) const { 2532 APInt Mask = APInt::getAllOnes(V.getScalarValueSizeInBits()); 2533 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2534 } 2535 2536 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2537 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2540 } 2541 2542 /// isSplatValue - Return true if the vector V has the same value 2543 /// across all DemandedElts. For scalable vectors it does not make 2544 /// sense to specify which elements are demanded or undefined, therefore 2545 /// they are simply ignored. 2546 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2547 APInt &UndefElts, unsigned Depth) const { 2548 unsigned Opcode = V.getOpcode(); 2549 EVT VT = V.getValueType(); 2550 assert(VT.isVector() && "Vector type expected"); 2551 2552 if (!VT.isScalableVector() && !DemandedElts) 2553 return false; // No demanded elts, better to assume we don't know anything. 2554 2555 if (Depth >= MaxRecursionDepth) 2556 return false; // Limit search depth. 2557 2558 // Deal with some common cases here that work for both fixed and scalable 2559 // vector types. 2560 switch (Opcode) { 2561 case ISD::SPLAT_VECTOR: 2562 UndefElts = V.getOperand(0).isUndef() 2563 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2564 : APInt(DemandedElts.getBitWidth(), 0); 2565 return true; 2566 case ISD::ADD: 2567 case ISD::SUB: 2568 case ISD::AND: 2569 case ISD::XOR: 2570 case ISD::OR: { 2571 APInt UndefLHS, UndefRHS; 2572 SDValue LHS = V.getOperand(0); 2573 SDValue RHS = V.getOperand(1); 2574 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2575 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2576 UndefElts = UndefLHS | UndefRHS; 2577 return true; 2578 } 2579 return false; 2580 } 2581 case ISD::ABS: 2582 case ISD::TRUNCATE: 2583 case ISD::SIGN_EXTEND: 2584 case ISD::ZERO_EXTEND: 2585 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2586 default: 2587 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2588 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2589 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2590 break; 2591 } 2592 2593 // We don't support other cases than those above for scalable vectors at 2594 // the moment. 2595 if (VT.isScalableVector()) 2596 return false; 2597 2598 unsigned NumElts = VT.getVectorNumElements(); 2599 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2600 UndefElts = APInt::getZero(NumElts); 2601 2602 switch (Opcode) { 2603 case ISD::BUILD_VECTOR: { 2604 SDValue Scl; 2605 for (unsigned i = 0; i != NumElts; ++i) { 2606 SDValue Op = V.getOperand(i); 2607 if (Op.isUndef()) { 2608 UndefElts.setBit(i); 2609 continue; 2610 } 2611 if (!DemandedElts[i]) 2612 continue; 2613 if (Scl && Scl != Op) 2614 return false; 2615 Scl = Op; 2616 } 2617 return true; 2618 } 2619 case ISD::VECTOR_SHUFFLE: { 2620 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2621 APInt DemandedLHS = APInt::getNullValue(NumElts); 2622 APInt DemandedRHS = APInt::getNullValue(NumElts); 2623 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2624 for (int i = 0; i != (int)NumElts; ++i) { 2625 int M = Mask[i]; 2626 if (M < 0) { 2627 UndefElts.setBit(i); 2628 continue; 2629 } 2630 if (!DemandedElts[i]) 2631 continue; 2632 if (M < (int)NumElts) 2633 DemandedLHS.setBit(M); 2634 else 2635 DemandedRHS.setBit(M - NumElts); 2636 } 2637 2638 // If we aren't demanding either op, assume there's no splat. 2639 // If we are demanding both ops, assume there's no splat. 2640 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2641 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2642 return false; 2643 2644 // See if the demanded elts of the source op is a splat or we only demand 2645 // one element, which should always be a splat. 2646 // TODO: Handle source ops splats with undefs. 2647 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2648 APInt SrcUndefs; 2649 return (SrcElts.countPopulation() == 1) || 2650 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2651 (SrcElts & SrcUndefs).isZero()); 2652 }; 2653 if (!DemandedLHS.isZero()) 2654 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2655 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2656 } 2657 case ISD::EXTRACT_SUBVECTOR: { 2658 // Offset the demanded elts by the subvector index. 2659 SDValue Src = V.getOperand(0); 2660 // We don't support scalable vectors at the moment. 2661 if (Src.getValueType().isScalableVector()) 2662 return false; 2663 uint64_t Idx = V.getConstantOperandVal(1); 2664 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2665 APInt UndefSrcElts; 2666 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2667 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2668 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2669 return true; 2670 } 2671 break; 2672 } 2673 case ISD::ANY_EXTEND_VECTOR_INREG: 2674 case ISD::SIGN_EXTEND_VECTOR_INREG: 2675 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2676 // Widen the demanded elts by the src element count. 2677 SDValue Src = V.getOperand(0); 2678 // We don't support scalable vectors at the moment. 2679 if (Src.getValueType().isScalableVector()) 2680 return false; 2681 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2682 APInt UndefSrcElts; 2683 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2684 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2685 UndefElts = UndefSrcElts.trunc(NumElts); 2686 return true; 2687 } 2688 break; 2689 } 2690 case ISD::BITCAST: { 2691 SDValue Src = V.getOperand(0); 2692 EVT SrcVT = Src.getValueType(); 2693 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2694 unsigned BitWidth = VT.getScalarSizeInBits(); 2695 2696 // Ignore bitcasts from unsupported types. 2697 // TODO: Add fp support? 2698 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2699 break; 2700 2701 // Bitcast 'small element' vector to 'large element' vector. 2702 if ((BitWidth % SrcBitWidth) == 0) { 2703 // See if each sub element is a splat. 2704 unsigned Scale = BitWidth / SrcBitWidth; 2705 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2706 APInt ScaledDemandedElts = 2707 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2708 for (unsigned I = 0; I != Scale; ++I) { 2709 APInt SubUndefElts; 2710 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2711 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2712 SubDemandedElts &= ScaledDemandedElts; 2713 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2714 return false; 2715 2716 // Here we can't do "MatchAnyBits" operation merge for undef bits. 2717 // Because some operation only use part value of the source. 2718 // Take llvm.fshl.* for example: 2719 // t1: v4i32 = Constant:i32<12>, undef:i32, Constant:i32<12>, undef:i32 2720 // t2: v2i64 = bitcast t1 2721 // t5: v2i64 = fshl t3, t4, t2 2722 // We can not convert t2 to {i64 undef, i64 undef} 2723 UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts, 2724 /*MatchAllBits=*/true); 2725 } 2726 return true; 2727 } 2728 break; 2729 } 2730 } 2731 2732 return false; 2733 } 2734 2735 /// Helper wrapper to main isSplatValue function. 2736 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2737 EVT VT = V.getValueType(); 2738 assert(VT.isVector() && "Vector type expected"); 2739 2740 APInt UndefElts; 2741 APInt DemandedElts; 2742 2743 // For now we don't support this with scalable vectors. 2744 if (!VT.isScalableVector()) 2745 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2746 return isSplatValue(V, DemandedElts, UndefElts) && 2747 (AllowUndefs || !UndefElts); 2748 } 2749 2750 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2751 V = peekThroughExtractSubvectors(V); 2752 2753 EVT VT = V.getValueType(); 2754 unsigned Opcode = V.getOpcode(); 2755 switch (Opcode) { 2756 default: { 2757 APInt UndefElts; 2758 APInt DemandedElts; 2759 2760 if (!VT.isScalableVector()) 2761 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2762 2763 if (isSplatValue(V, DemandedElts, UndefElts)) { 2764 if (VT.isScalableVector()) { 2765 // DemandedElts and UndefElts are ignored for scalable vectors, since 2766 // the only supported cases are SPLAT_VECTOR nodes. 2767 SplatIdx = 0; 2768 } else { 2769 // Handle case where all demanded elements are UNDEF. 2770 if (DemandedElts.isSubsetOf(UndefElts)) { 2771 SplatIdx = 0; 2772 return getUNDEF(VT); 2773 } 2774 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2775 } 2776 return V; 2777 } 2778 break; 2779 } 2780 case ISD::SPLAT_VECTOR: 2781 SplatIdx = 0; 2782 return V; 2783 case ISD::VECTOR_SHUFFLE: { 2784 if (VT.isScalableVector()) 2785 return SDValue(); 2786 2787 // Check if this is a shuffle node doing a splat. 2788 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2789 // getTargetVShiftNode currently struggles without the splat source. 2790 auto *SVN = cast<ShuffleVectorSDNode>(V); 2791 if (!SVN->isSplat()) 2792 break; 2793 int Idx = SVN->getSplatIndex(); 2794 int NumElts = V.getValueType().getVectorNumElements(); 2795 SplatIdx = Idx % NumElts; 2796 return V.getOperand(Idx / NumElts); 2797 } 2798 } 2799 2800 return SDValue(); 2801 } 2802 2803 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2804 int SplatIdx; 2805 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2806 EVT SVT = SrcVector.getValueType().getScalarType(); 2807 EVT LegalSVT = SVT; 2808 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2809 if (!SVT.isInteger()) 2810 return SDValue(); 2811 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2812 if (LegalSVT.bitsLT(SVT)) 2813 return SDValue(); 2814 } 2815 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2816 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2817 } 2818 return SDValue(); 2819 } 2820 2821 const APInt * 2822 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2823 const APInt &DemandedElts) const { 2824 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2825 V.getOpcode() == ISD::SRA) && 2826 "Unknown shift node"); 2827 unsigned BitWidth = V.getScalarValueSizeInBits(); 2828 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2829 // Shifting more than the bitwidth is not valid. 2830 const APInt &ShAmt = SA->getAPIntValue(); 2831 if (ShAmt.ult(BitWidth)) 2832 return &ShAmt; 2833 } 2834 return nullptr; 2835 } 2836 2837 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2838 SDValue V, const APInt &DemandedElts) const { 2839 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2840 V.getOpcode() == ISD::SRA) && 2841 "Unknown shift node"); 2842 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2843 return ValidAmt; 2844 unsigned BitWidth = V.getScalarValueSizeInBits(); 2845 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2846 if (!BV) 2847 return nullptr; 2848 const APInt *MinShAmt = nullptr; 2849 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2850 if (!DemandedElts[i]) 2851 continue; 2852 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2853 if (!SA) 2854 return nullptr; 2855 // Shifting more than the bitwidth is not valid. 2856 const APInt &ShAmt = SA->getAPIntValue(); 2857 if (ShAmt.uge(BitWidth)) 2858 return nullptr; 2859 if (MinShAmt && MinShAmt->ule(ShAmt)) 2860 continue; 2861 MinShAmt = &ShAmt; 2862 } 2863 return MinShAmt; 2864 } 2865 2866 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2867 SDValue V, const APInt &DemandedElts) const { 2868 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2869 V.getOpcode() == ISD::SRA) && 2870 "Unknown shift node"); 2871 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2872 return ValidAmt; 2873 unsigned BitWidth = V.getScalarValueSizeInBits(); 2874 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2875 if (!BV) 2876 return nullptr; 2877 const APInt *MaxShAmt = nullptr; 2878 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2879 if (!DemandedElts[i]) 2880 continue; 2881 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2882 if (!SA) 2883 return nullptr; 2884 // Shifting more than the bitwidth is not valid. 2885 const APInt &ShAmt = SA->getAPIntValue(); 2886 if (ShAmt.uge(BitWidth)) 2887 return nullptr; 2888 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2889 continue; 2890 MaxShAmt = &ShAmt; 2891 } 2892 return MaxShAmt; 2893 } 2894 2895 /// Determine which bits of Op are known to be either zero or one and return 2896 /// them in Known. For vectors, the known bits are those that are shared by 2897 /// every vector element. 2898 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2899 EVT VT = Op.getValueType(); 2900 2901 // TOOD: Until we have a plan for how to represent demanded elements for 2902 // scalable vectors, we can just bail out for now. 2903 if (Op.getValueType().isScalableVector()) { 2904 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2905 return KnownBits(BitWidth); 2906 } 2907 2908 APInt DemandedElts = VT.isVector() 2909 ? APInt::getAllOnes(VT.getVectorNumElements()) 2910 : APInt(1, 1); 2911 return computeKnownBits(Op, DemandedElts, Depth); 2912 } 2913 2914 /// Determine which bits of Op are known to be either zero or one and return 2915 /// them in Known. The DemandedElts argument allows us to only collect the known 2916 /// bits that are shared by the requested vector elements. 2917 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2918 unsigned Depth) const { 2919 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2920 2921 KnownBits Known(BitWidth); // Don't know anything. 2922 2923 // TOOD: Until we have a plan for how to represent demanded elements for 2924 // scalable vectors, we can just bail out for now. 2925 if (Op.getValueType().isScalableVector()) 2926 return Known; 2927 2928 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2929 // We know all of the bits for a constant! 2930 return KnownBits::makeConstant(C->getAPIntValue()); 2931 } 2932 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2933 // We know all of the bits for a constant fp! 2934 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2935 } 2936 2937 if (Depth >= MaxRecursionDepth) 2938 return Known; // Limit search depth. 2939 2940 KnownBits Known2; 2941 unsigned NumElts = DemandedElts.getBitWidth(); 2942 assert((!Op.getValueType().isVector() || 2943 NumElts == Op.getValueType().getVectorNumElements()) && 2944 "Unexpected vector size"); 2945 2946 if (!DemandedElts) 2947 return Known; // No demanded elts, better to assume we don't know anything. 2948 2949 unsigned Opcode = Op.getOpcode(); 2950 switch (Opcode) { 2951 case ISD::MERGE_VALUES: 2952 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts, 2953 Depth + 1); 2954 case ISD::BUILD_VECTOR: 2955 // Collect the known bits that are shared by every demanded vector element. 2956 Known.Zero.setAllBits(); Known.One.setAllBits(); 2957 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2958 if (!DemandedElts[i]) 2959 continue; 2960 2961 SDValue SrcOp = Op.getOperand(i); 2962 Known2 = computeKnownBits(SrcOp, Depth + 1); 2963 2964 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2965 if (SrcOp.getValueSizeInBits() != BitWidth) { 2966 assert(SrcOp.getValueSizeInBits() > BitWidth && 2967 "Expected BUILD_VECTOR implicit truncation"); 2968 Known2 = Known2.trunc(BitWidth); 2969 } 2970 2971 // Known bits are the values that are shared by every demanded element. 2972 Known = KnownBits::commonBits(Known, Known2); 2973 2974 // If we don't know any bits, early out. 2975 if (Known.isUnknown()) 2976 break; 2977 } 2978 break; 2979 case ISD::VECTOR_SHUFFLE: { 2980 // Collect the known bits that are shared by every vector element referenced 2981 // by the shuffle. 2982 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2983 Known.Zero.setAllBits(); Known.One.setAllBits(); 2984 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2985 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2986 for (unsigned i = 0; i != NumElts; ++i) { 2987 if (!DemandedElts[i]) 2988 continue; 2989 2990 int M = SVN->getMaskElt(i); 2991 if (M < 0) { 2992 // For UNDEF elements, we don't know anything about the common state of 2993 // the shuffle result. 2994 Known.resetAll(); 2995 DemandedLHS.clearAllBits(); 2996 DemandedRHS.clearAllBits(); 2997 break; 2998 } 2999 3000 if ((unsigned)M < NumElts) 3001 DemandedLHS.setBit((unsigned)M % NumElts); 3002 else 3003 DemandedRHS.setBit((unsigned)M % NumElts); 3004 } 3005 // Known bits are the values that are shared by every demanded element. 3006 if (!!DemandedLHS) { 3007 SDValue LHS = Op.getOperand(0); 3008 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3009 Known = KnownBits::commonBits(Known, Known2); 3010 } 3011 // If we don't know any bits, early out. 3012 if (Known.isUnknown()) 3013 break; 3014 if (!!DemandedRHS) { 3015 SDValue RHS = Op.getOperand(1); 3016 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3017 Known = KnownBits::commonBits(Known, Known2); 3018 } 3019 break; 3020 } 3021 case ISD::CONCAT_VECTORS: { 3022 // Split DemandedElts and test each of the demanded subvectors. 3023 Known.Zero.setAllBits(); Known.One.setAllBits(); 3024 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3025 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3026 unsigned NumSubVectors = Op.getNumOperands(); 3027 for (unsigned i = 0; i != NumSubVectors; ++i) { 3028 APInt DemandedSub = 3029 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3030 if (!!DemandedSub) { 3031 SDValue Sub = Op.getOperand(i); 3032 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3033 Known = KnownBits::commonBits(Known, Known2); 3034 } 3035 // If we don't know any bits, early out. 3036 if (Known.isUnknown()) 3037 break; 3038 } 3039 break; 3040 } 3041 case ISD::INSERT_SUBVECTOR: { 3042 // Demand any elements from the subvector and the remainder from the src its 3043 // inserted into. 3044 SDValue Src = Op.getOperand(0); 3045 SDValue Sub = Op.getOperand(1); 3046 uint64_t Idx = Op.getConstantOperandVal(2); 3047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3049 APInt DemandedSrcElts = DemandedElts; 3050 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3051 3052 Known.One.setAllBits(); 3053 Known.Zero.setAllBits(); 3054 if (!!DemandedSubElts) { 3055 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3056 if (Known.isUnknown()) 3057 break; // early-out. 3058 } 3059 if (!!DemandedSrcElts) { 3060 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3061 Known = KnownBits::commonBits(Known, Known2); 3062 } 3063 break; 3064 } 3065 case ISD::EXTRACT_SUBVECTOR: { 3066 // Offset the demanded elts by the subvector index. 3067 SDValue Src = Op.getOperand(0); 3068 // Bail until we can represent demanded elements for scalable vectors. 3069 if (Src.getValueType().isScalableVector()) 3070 break; 3071 uint64_t Idx = Op.getConstantOperandVal(1); 3072 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3073 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3074 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3075 break; 3076 } 3077 case ISD::SCALAR_TO_VECTOR: { 3078 // We know about scalar_to_vector as much as we know about it source, 3079 // which becomes the first element of otherwise unknown vector. 3080 if (DemandedElts != 1) 3081 break; 3082 3083 SDValue N0 = Op.getOperand(0); 3084 Known = computeKnownBits(N0, Depth + 1); 3085 if (N0.getValueSizeInBits() != BitWidth) 3086 Known = Known.trunc(BitWidth); 3087 3088 break; 3089 } 3090 case ISD::BITCAST: { 3091 SDValue N0 = Op.getOperand(0); 3092 EVT SubVT = N0.getValueType(); 3093 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3094 3095 // Ignore bitcasts from unsupported types. 3096 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3097 break; 3098 3099 // Fast handling of 'identity' bitcasts. 3100 if (BitWidth == SubBitWidth) { 3101 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3102 break; 3103 } 3104 3105 bool IsLE = getDataLayout().isLittleEndian(); 3106 3107 // Bitcast 'small element' vector to 'large element' scalar/vector. 3108 if ((BitWidth % SubBitWidth) == 0) { 3109 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3110 3111 // Collect known bits for the (larger) output by collecting the known 3112 // bits from each set of sub elements and shift these into place. 3113 // We need to separately call computeKnownBits for each set of 3114 // sub elements as the knownbits for each is likely to be different. 3115 unsigned SubScale = BitWidth / SubBitWidth; 3116 APInt SubDemandedElts(NumElts * SubScale, 0); 3117 for (unsigned i = 0; i != NumElts; ++i) 3118 if (DemandedElts[i]) 3119 SubDemandedElts.setBit(i * SubScale); 3120 3121 for (unsigned i = 0; i != SubScale; ++i) { 3122 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3123 Depth + 1); 3124 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3125 Known.insertBits(Known2, SubBitWidth * Shifts); 3126 } 3127 } 3128 3129 // Bitcast 'large element' scalar/vector to 'small element' vector. 3130 if ((SubBitWidth % BitWidth) == 0) { 3131 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3132 3133 // Collect known bits for the (smaller) output by collecting the known 3134 // bits from the overlapping larger input elements and extracting the 3135 // sub sections we actually care about. 3136 unsigned SubScale = SubBitWidth / BitWidth; 3137 APInt SubDemandedElts = 3138 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3139 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3140 3141 Known.Zero.setAllBits(); Known.One.setAllBits(); 3142 for (unsigned i = 0; i != NumElts; ++i) 3143 if (DemandedElts[i]) { 3144 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3145 unsigned Offset = (Shifts % SubScale) * BitWidth; 3146 Known = KnownBits::commonBits(Known, 3147 Known2.extractBits(BitWidth, Offset)); 3148 // If we don't know any bits, early out. 3149 if (Known.isUnknown()) 3150 break; 3151 } 3152 } 3153 break; 3154 } 3155 case ISD::AND: 3156 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 3159 Known &= Known2; 3160 break; 3161 case ISD::OR: 3162 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3163 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3164 3165 Known |= Known2; 3166 break; 3167 case ISD::XOR: 3168 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3169 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3170 3171 Known ^= Known2; 3172 break; 3173 case ISD::MUL: { 3174 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3175 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3176 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3177 // TODO: SelfMultiply can be poison, but not undef. 3178 if (SelfMultiply) 3179 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3180 Op.getOperand(0), DemandedElts, false, Depth + 1); 3181 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3182 3183 // If the multiplication is known not to overflow, the product of a number 3184 // with itself is non-negative. Only do this if we didn't already computed 3185 // the opposite value for the sign bit. 3186 if (Op->getFlags().hasNoSignedWrap() && 3187 Op.getOperand(0) == Op.getOperand(1) && 3188 !Known.isNegative()) 3189 Known.makeNonNegative(); 3190 break; 3191 } 3192 case ISD::MULHU: { 3193 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3194 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3195 Known = KnownBits::mulhu(Known, Known2); 3196 break; 3197 } 3198 case ISD::MULHS: { 3199 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3200 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3201 Known = KnownBits::mulhs(Known, Known2); 3202 break; 3203 } 3204 case ISD::UMUL_LOHI: { 3205 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3206 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3207 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3208 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3209 if (Op.getResNo() == 0) 3210 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3211 else 3212 Known = KnownBits::mulhu(Known, Known2); 3213 break; 3214 } 3215 case ISD::SMUL_LOHI: { 3216 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3217 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3218 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3219 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3220 if (Op.getResNo() == 0) 3221 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3222 else 3223 Known = KnownBits::mulhs(Known, Known2); 3224 break; 3225 } 3226 case ISD::AVGCEILU: { 3227 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3228 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3229 Known = Known.zext(BitWidth + 1); 3230 Known2 = Known2.zext(BitWidth + 1); 3231 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3232 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3233 Known = Known.extractBits(BitWidth, 1); 3234 break; 3235 } 3236 case ISD::SELECT: 3237 case ISD::VSELECT: 3238 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3239 // If we don't know any bits, early out. 3240 if (Known.isUnknown()) 3241 break; 3242 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3243 3244 // Only known if known in both the LHS and RHS. 3245 Known = KnownBits::commonBits(Known, Known2); 3246 break; 3247 case ISD::SELECT_CC: 3248 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3249 // If we don't know any bits, early out. 3250 if (Known.isUnknown()) 3251 break; 3252 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3253 3254 // Only known if known in both the LHS and RHS. 3255 Known = KnownBits::commonBits(Known, Known2); 3256 break; 3257 case ISD::SMULO: 3258 case ISD::UMULO: 3259 if (Op.getResNo() != 1) 3260 break; 3261 // The boolean result conforms to getBooleanContents. 3262 // If we know the result of a setcc has the top bits zero, use this info. 3263 // We know that we have an integer-based boolean since these operations 3264 // are only available for integer. 3265 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3266 TargetLowering::ZeroOrOneBooleanContent && 3267 BitWidth > 1) 3268 Known.Zero.setBitsFrom(1); 3269 break; 3270 case ISD::SETCC: 3271 case ISD::SETCCCARRY: 3272 case ISD::STRICT_FSETCC: 3273 case ISD::STRICT_FSETCCS: { 3274 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3275 // If we know the result of a setcc has the top bits zero, use this info. 3276 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3277 TargetLowering::ZeroOrOneBooleanContent && 3278 BitWidth > 1) 3279 Known.Zero.setBitsFrom(1); 3280 break; 3281 } 3282 case ISD::SHL: 3283 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3284 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3285 Known = KnownBits::shl(Known, Known2); 3286 3287 // Minimum shift low bits are known zero. 3288 if (const APInt *ShMinAmt = 3289 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3290 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3291 break; 3292 case ISD::SRL: 3293 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3294 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3295 Known = KnownBits::lshr(Known, Known2); 3296 3297 // Minimum shift high bits are known zero. 3298 if (const APInt *ShMinAmt = 3299 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3300 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3301 break; 3302 case ISD::SRA: 3303 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3304 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3305 Known = KnownBits::ashr(Known, Known2); 3306 // TODO: Add minimum shift high known sign bits. 3307 break; 3308 case ISD::FSHL: 3309 case ISD::FSHR: 3310 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3311 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3312 3313 // For fshl, 0-shift returns the 1st arg. 3314 // For fshr, 0-shift returns the 2nd arg. 3315 if (Amt == 0) { 3316 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3317 DemandedElts, Depth + 1); 3318 break; 3319 } 3320 3321 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3322 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3323 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3324 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3325 if (Opcode == ISD::FSHL) { 3326 Known.One <<= Amt; 3327 Known.Zero <<= Amt; 3328 Known2.One.lshrInPlace(BitWidth - Amt); 3329 Known2.Zero.lshrInPlace(BitWidth - Amt); 3330 } else { 3331 Known.One <<= BitWidth - Amt; 3332 Known.Zero <<= BitWidth - Amt; 3333 Known2.One.lshrInPlace(Amt); 3334 Known2.Zero.lshrInPlace(Amt); 3335 } 3336 Known.One |= Known2.One; 3337 Known.Zero |= Known2.Zero; 3338 } 3339 break; 3340 case ISD::SIGN_EXTEND_INREG: { 3341 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3342 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3343 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3344 break; 3345 } 3346 case ISD::CTTZ: 3347 case ISD::CTTZ_ZERO_UNDEF: { 3348 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3349 // If we have a known 1, its position is our upper bound. 3350 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3351 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3352 Known.Zero.setBitsFrom(LowBits); 3353 break; 3354 } 3355 case ISD::CTLZ: 3356 case ISD::CTLZ_ZERO_UNDEF: { 3357 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3358 // If we have a known 1, its position is our upper bound. 3359 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3360 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3361 Known.Zero.setBitsFrom(LowBits); 3362 break; 3363 } 3364 case ISD::CTPOP: { 3365 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3366 // If we know some of the bits are zero, they can't be one. 3367 unsigned PossibleOnes = Known2.countMaxPopulation(); 3368 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3369 break; 3370 } 3371 case ISD::PARITY: { 3372 // Parity returns 0 everywhere but the LSB. 3373 Known.Zero.setBitsFrom(1); 3374 break; 3375 } 3376 case ISD::LOAD: { 3377 LoadSDNode *LD = cast<LoadSDNode>(Op); 3378 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3379 if (ISD::isNON_EXTLoad(LD) && Cst) { 3380 // Determine any common known bits from the loaded constant pool value. 3381 Type *CstTy = Cst->getType(); 3382 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3383 // If its a vector splat, then we can (quickly) reuse the scalar path. 3384 // NOTE: We assume all elements match and none are UNDEF. 3385 if (CstTy->isVectorTy()) { 3386 if (const Constant *Splat = Cst->getSplatValue()) { 3387 Cst = Splat; 3388 CstTy = Cst->getType(); 3389 } 3390 } 3391 // TODO - do we need to handle different bitwidths? 3392 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3393 // Iterate across all vector elements finding common known bits. 3394 Known.One.setAllBits(); 3395 Known.Zero.setAllBits(); 3396 for (unsigned i = 0; i != NumElts; ++i) { 3397 if (!DemandedElts[i]) 3398 continue; 3399 if (Constant *Elt = Cst->getAggregateElement(i)) { 3400 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3401 const APInt &Value = CInt->getValue(); 3402 Known.One &= Value; 3403 Known.Zero &= ~Value; 3404 continue; 3405 } 3406 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3407 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3408 Known.One &= Value; 3409 Known.Zero &= ~Value; 3410 continue; 3411 } 3412 } 3413 Known.One.clearAllBits(); 3414 Known.Zero.clearAllBits(); 3415 break; 3416 } 3417 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3418 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3419 Known = KnownBits::makeConstant(CInt->getValue()); 3420 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3421 Known = 3422 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3423 } 3424 } 3425 } 3426 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3427 // If this is a ZEXTLoad and we are looking at the loaded value. 3428 EVT VT = LD->getMemoryVT(); 3429 unsigned MemBits = VT.getScalarSizeInBits(); 3430 Known.Zero.setBitsFrom(MemBits); 3431 } else if (const MDNode *Ranges = LD->getRanges()) { 3432 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3433 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3434 } 3435 break; 3436 } 3437 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3438 EVT InVT = Op.getOperand(0).getValueType(); 3439 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3440 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3441 Known = Known.zext(BitWidth); 3442 break; 3443 } 3444 case ISD::ZERO_EXTEND: { 3445 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3446 Known = Known.zext(BitWidth); 3447 break; 3448 } 3449 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3450 EVT InVT = Op.getOperand(0).getValueType(); 3451 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3452 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3453 // If the sign bit is known to be zero or one, then sext will extend 3454 // it to the top bits, else it will just zext. 3455 Known = Known.sext(BitWidth); 3456 break; 3457 } 3458 case ISD::SIGN_EXTEND: { 3459 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3460 // If the sign bit is known to be zero or one, then sext will extend 3461 // it to the top bits, else it will just zext. 3462 Known = Known.sext(BitWidth); 3463 break; 3464 } 3465 case ISD::ANY_EXTEND_VECTOR_INREG: { 3466 EVT InVT = Op.getOperand(0).getValueType(); 3467 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3468 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3469 Known = Known.anyext(BitWidth); 3470 break; 3471 } 3472 case ISD::ANY_EXTEND: { 3473 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3474 Known = Known.anyext(BitWidth); 3475 break; 3476 } 3477 case ISD::TRUNCATE: { 3478 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3479 Known = Known.trunc(BitWidth); 3480 break; 3481 } 3482 case ISD::AssertZext: { 3483 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3484 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3485 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3486 Known.Zero |= (~InMask); 3487 Known.One &= (~Known.Zero); 3488 break; 3489 } 3490 case ISD::AssertAlign: { 3491 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3492 assert(LogOfAlign != 0); 3493 3494 // TODO: Should use maximum with source 3495 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3496 // well as clearing one bits. 3497 Known.Zero.setLowBits(LogOfAlign); 3498 Known.One.clearLowBits(LogOfAlign); 3499 break; 3500 } 3501 case ISD::FGETSIGN: 3502 // All bits are zero except the low bit. 3503 Known.Zero.setBitsFrom(1); 3504 break; 3505 case ISD::USUBO: 3506 case ISD::SSUBO: 3507 case ISD::SUBCARRY: 3508 case ISD::SSUBO_CARRY: 3509 if (Op.getResNo() == 1) { 3510 // If we know the result of a setcc has the top bits zero, use this info. 3511 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3512 TargetLowering::ZeroOrOneBooleanContent && 3513 BitWidth > 1) 3514 Known.Zero.setBitsFrom(1); 3515 break; 3516 } 3517 LLVM_FALLTHROUGH; 3518 case ISD::SUB: 3519 case ISD::SUBC: { 3520 assert(Op.getResNo() == 0 && 3521 "We only compute knownbits for the difference here."); 3522 3523 // TODO: Compute influence of the carry operand. 3524 if (Opcode == ISD::SUBCARRY || Opcode == ISD::SSUBO_CARRY) 3525 break; 3526 3527 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3528 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3529 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3530 Known, Known2); 3531 break; 3532 } 3533 case ISD::UADDO: 3534 case ISD::SADDO: 3535 case ISD::ADDCARRY: 3536 case ISD::SADDO_CARRY: 3537 if (Op.getResNo() == 1) { 3538 // If we know the result of a setcc has the top bits zero, use this info. 3539 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3540 TargetLowering::ZeroOrOneBooleanContent && 3541 BitWidth > 1) 3542 Known.Zero.setBitsFrom(1); 3543 break; 3544 } 3545 LLVM_FALLTHROUGH; 3546 case ISD::ADD: 3547 case ISD::ADDC: 3548 case ISD::ADDE: { 3549 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3550 3551 // With ADDE and ADDCARRY, a carry bit may be added in. 3552 KnownBits Carry(1); 3553 if (Opcode == ISD::ADDE) 3554 // Can't track carry from glue, set carry to unknown. 3555 Carry.resetAll(); 3556 else if (Opcode == ISD::ADDCARRY || Opcode == ISD::SADDO_CARRY) 3557 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3558 // the trouble (how often will we find a known carry bit). And I haven't 3559 // tested this very much yet, but something like this might work: 3560 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3561 // Carry = Carry.zextOrTrunc(1, false); 3562 Carry.resetAll(); 3563 else 3564 Carry.setAllZero(); 3565 3566 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3567 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3568 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3569 break; 3570 } 3571 case ISD::UDIV: { 3572 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3573 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3574 Known = KnownBits::udiv(Known, Known2); 3575 break; 3576 } 3577 case ISD::SREM: { 3578 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3579 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3580 Known = KnownBits::srem(Known, Known2); 3581 break; 3582 } 3583 case ISD::UREM: { 3584 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3585 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3586 Known = KnownBits::urem(Known, Known2); 3587 break; 3588 } 3589 case ISD::EXTRACT_ELEMENT: { 3590 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3591 const unsigned Index = Op.getConstantOperandVal(1); 3592 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3593 3594 // Remove low part of known bits mask 3595 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3596 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3597 3598 // Remove high part of known bit mask 3599 Known = Known.trunc(EltBitWidth); 3600 break; 3601 } 3602 case ISD::EXTRACT_VECTOR_ELT: { 3603 SDValue InVec = Op.getOperand(0); 3604 SDValue EltNo = Op.getOperand(1); 3605 EVT VecVT = InVec.getValueType(); 3606 // computeKnownBits not yet implemented for scalable vectors. 3607 if (VecVT.isScalableVector()) 3608 break; 3609 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3610 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3611 3612 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3613 // anything about the extended bits. 3614 if (BitWidth > EltBitWidth) 3615 Known = Known.trunc(EltBitWidth); 3616 3617 // If we know the element index, just demand that vector element, else for 3618 // an unknown element index, ignore DemandedElts and demand them all. 3619 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3620 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3621 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3622 DemandedSrcElts = 3623 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3624 3625 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3626 if (BitWidth > EltBitWidth) 3627 Known = Known.anyext(BitWidth); 3628 break; 3629 } 3630 case ISD::INSERT_VECTOR_ELT: { 3631 // If we know the element index, split the demand between the 3632 // source vector and the inserted element, otherwise assume we need 3633 // the original demanded vector elements and the value. 3634 SDValue InVec = Op.getOperand(0); 3635 SDValue InVal = Op.getOperand(1); 3636 SDValue EltNo = Op.getOperand(2); 3637 bool DemandedVal = true; 3638 APInt DemandedVecElts = DemandedElts; 3639 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3640 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3641 unsigned EltIdx = CEltNo->getZExtValue(); 3642 DemandedVal = !!DemandedElts[EltIdx]; 3643 DemandedVecElts.clearBit(EltIdx); 3644 } 3645 Known.One.setAllBits(); 3646 Known.Zero.setAllBits(); 3647 if (DemandedVal) { 3648 Known2 = computeKnownBits(InVal, Depth + 1); 3649 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3650 } 3651 if (!!DemandedVecElts) { 3652 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3653 Known = KnownBits::commonBits(Known, Known2); 3654 } 3655 break; 3656 } 3657 case ISD::BITREVERSE: { 3658 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3659 Known = Known2.reverseBits(); 3660 break; 3661 } 3662 case ISD::BSWAP: { 3663 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3664 Known = Known2.byteSwap(); 3665 break; 3666 } 3667 case ISD::ABS: { 3668 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3669 Known = Known2.abs(); 3670 break; 3671 } 3672 case ISD::USUBSAT: { 3673 // The result of usubsat will never be larger than the LHS. 3674 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3675 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3676 break; 3677 } 3678 case ISD::UMIN: { 3679 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3680 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3681 Known = KnownBits::umin(Known, Known2); 3682 break; 3683 } 3684 case ISD::UMAX: { 3685 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3686 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3687 Known = KnownBits::umax(Known, Known2); 3688 break; 3689 } 3690 case ISD::SMIN: 3691 case ISD::SMAX: { 3692 // If we have a clamp pattern, we know that the number of sign bits will be 3693 // the minimum of the clamp min/max range. 3694 bool IsMax = (Opcode == ISD::SMAX); 3695 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3696 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3697 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3698 CstHigh = 3699 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3700 if (CstLow && CstHigh) { 3701 if (!IsMax) 3702 std::swap(CstLow, CstHigh); 3703 3704 const APInt &ValueLow = CstLow->getAPIntValue(); 3705 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3706 if (ValueLow.sle(ValueHigh)) { 3707 unsigned LowSignBits = ValueLow.getNumSignBits(); 3708 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3709 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3710 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3711 Known.One.setHighBits(MinSignBits); 3712 break; 3713 } 3714 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3715 Known.Zero.setHighBits(MinSignBits); 3716 break; 3717 } 3718 } 3719 } 3720 3721 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3722 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3723 if (IsMax) 3724 Known = KnownBits::smax(Known, Known2); 3725 else 3726 Known = KnownBits::smin(Known, Known2); 3727 3728 // For SMAX, if CstLow is non-negative we know the result will be 3729 // non-negative and thus all sign bits are 0. 3730 // TODO: There's an equivalent of this for smin with negative constant for 3731 // known ones. 3732 if (IsMax && CstLow) { 3733 const APInt &ValueLow = CstLow->getAPIntValue(); 3734 if (ValueLow.isNonNegative()) { 3735 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3736 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3737 } 3738 } 3739 3740 break; 3741 } 3742 case ISD::FP_TO_UINT_SAT: { 3743 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3744 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3745 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3746 break; 3747 } 3748 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3749 if (Op.getResNo() == 1) { 3750 // The boolean result conforms to getBooleanContents. 3751 // If we know the result of a setcc has the top bits zero, use this info. 3752 // We know that we have an integer-based boolean since these operations 3753 // are only available for integer. 3754 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3755 TargetLowering::ZeroOrOneBooleanContent && 3756 BitWidth > 1) 3757 Known.Zero.setBitsFrom(1); 3758 break; 3759 } 3760 LLVM_FALLTHROUGH; 3761 case ISD::ATOMIC_CMP_SWAP: 3762 case ISD::ATOMIC_SWAP: 3763 case ISD::ATOMIC_LOAD_ADD: 3764 case ISD::ATOMIC_LOAD_SUB: 3765 case ISD::ATOMIC_LOAD_AND: 3766 case ISD::ATOMIC_LOAD_CLR: 3767 case ISD::ATOMIC_LOAD_OR: 3768 case ISD::ATOMIC_LOAD_XOR: 3769 case ISD::ATOMIC_LOAD_NAND: 3770 case ISD::ATOMIC_LOAD_MIN: 3771 case ISD::ATOMIC_LOAD_MAX: 3772 case ISD::ATOMIC_LOAD_UMIN: 3773 case ISD::ATOMIC_LOAD_UMAX: 3774 case ISD::ATOMIC_LOAD: { 3775 unsigned MemBits = 3776 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3777 // If we are looking at the loaded value. 3778 if (Op.getResNo() == 0) { 3779 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3780 Known.Zero.setBitsFrom(MemBits); 3781 } 3782 break; 3783 } 3784 case ISD::FrameIndex: 3785 case ISD::TargetFrameIndex: 3786 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3787 Known, getMachineFunction()); 3788 break; 3789 3790 default: 3791 if (Opcode < ISD::BUILTIN_OP_END) 3792 break; 3793 LLVM_FALLTHROUGH; 3794 case ISD::INTRINSIC_WO_CHAIN: 3795 case ISD::INTRINSIC_W_CHAIN: 3796 case ISD::INTRINSIC_VOID: 3797 // Allow the target to implement this method for its nodes. 3798 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3799 break; 3800 } 3801 3802 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3803 return Known; 3804 } 3805 3806 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3807 SDValue N1) const { 3808 // X + 0 never overflow 3809 if (isNullConstant(N1)) 3810 return OFK_Never; 3811 3812 KnownBits N1Known = computeKnownBits(N1); 3813 if (N1Known.Zero.getBoolValue()) { 3814 KnownBits N0Known = computeKnownBits(N0); 3815 3816 bool overflow; 3817 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3818 if (!overflow) 3819 return OFK_Never; 3820 } 3821 3822 // mulhi + 1 never overflow 3823 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3824 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3825 return OFK_Never; 3826 3827 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3828 KnownBits N0Known = computeKnownBits(N0); 3829 3830 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3831 return OFK_Never; 3832 } 3833 3834 return OFK_Sometime; 3835 } 3836 3837 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3838 EVT OpVT = Val.getValueType(); 3839 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3840 3841 // Is the constant a known power of 2? 3842 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3843 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3844 3845 // A left-shift of a constant one will have exactly one bit set because 3846 // shifting the bit off the end is undefined. 3847 if (Val.getOpcode() == ISD::SHL) { 3848 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3849 if (C && C->getAPIntValue() == 1) 3850 return true; 3851 } 3852 3853 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3854 // one bit set. 3855 if (Val.getOpcode() == ISD::SRL) { 3856 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3857 if (C && C->getAPIntValue().isSignMask()) 3858 return true; 3859 } 3860 3861 // Are all operands of a build vector constant powers of two? 3862 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3863 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3864 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3865 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3866 return false; 3867 })) 3868 return true; 3869 3870 // Is the operand of a splat vector a constant power of two? 3871 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3872 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3873 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3874 return true; 3875 3876 // vscale(power-of-two) is a power-of-two for some targets 3877 if (Val.getOpcode() == ISD::VSCALE && 3878 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() && 3879 isKnownToBeAPowerOfTwo(Val.getOperand(0))) 3880 return true; 3881 3882 // More could be done here, though the above checks are enough 3883 // to handle some common cases. 3884 3885 // Fall back to computeKnownBits to catch other known cases. 3886 KnownBits Known = computeKnownBits(Val); 3887 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3888 } 3889 3890 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3891 EVT VT = Op.getValueType(); 3892 3893 // TODO: Assume we don't know anything for now. 3894 if (VT.isScalableVector()) 3895 return 1; 3896 3897 APInt DemandedElts = VT.isVector() 3898 ? APInt::getAllOnes(VT.getVectorNumElements()) 3899 : APInt(1, 1); 3900 return ComputeNumSignBits(Op, DemandedElts, Depth); 3901 } 3902 3903 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3904 unsigned Depth) const { 3905 EVT VT = Op.getValueType(); 3906 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3907 unsigned VTBits = VT.getScalarSizeInBits(); 3908 unsigned NumElts = DemandedElts.getBitWidth(); 3909 unsigned Tmp, Tmp2; 3910 unsigned FirstAnswer = 1; 3911 3912 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3913 const APInt &Val = C->getAPIntValue(); 3914 return Val.getNumSignBits(); 3915 } 3916 3917 if (Depth >= MaxRecursionDepth) 3918 return 1; // Limit search depth. 3919 3920 if (!DemandedElts || VT.isScalableVector()) 3921 return 1; // No demanded elts, better to assume we don't know anything. 3922 3923 unsigned Opcode = Op.getOpcode(); 3924 switch (Opcode) { 3925 default: break; 3926 case ISD::AssertSext: 3927 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3928 return VTBits-Tmp+1; 3929 case ISD::AssertZext: 3930 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3931 return VTBits-Tmp; 3932 case ISD::MERGE_VALUES: 3933 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts, 3934 Depth + 1); 3935 case ISD::BUILD_VECTOR: 3936 Tmp = VTBits; 3937 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3938 if (!DemandedElts[i]) 3939 continue; 3940 3941 SDValue SrcOp = Op.getOperand(i); 3942 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3943 3944 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3945 if (SrcOp.getValueSizeInBits() != VTBits) { 3946 assert(SrcOp.getValueSizeInBits() > VTBits && 3947 "Expected BUILD_VECTOR implicit truncation"); 3948 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3949 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3950 } 3951 Tmp = std::min(Tmp, Tmp2); 3952 } 3953 return Tmp; 3954 3955 case ISD::VECTOR_SHUFFLE: { 3956 // Collect the minimum number of sign bits that are shared by every vector 3957 // element referenced by the shuffle. 3958 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3959 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3960 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3961 for (unsigned i = 0; i != NumElts; ++i) { 3962 int M = SVN->getMaskElt(i); 3963 if (!DemandedElts[i]) 3964 continue; 3965 // For UNDEF elements, we don't know anything about the common state of 3966 // the shuffle result. 3967 if (M < 0) 3968 return 1; 3969 if ((unsigned)M < NumElts) 3970 DemandedLHS.setBit((unsigned)M % NumElts); 3971 else 3972 DemandedRHS.setBit((unsigned)M % NumElts); 3973 } 3974 Tmp = std::numeric_limits<unsigned>::max(); 3975 if (!!DemandedLHS) 3976 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3977 if (!!DemandedRHS) { 3978 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3979 Tmp = std::min(Tmp, Tmp2); 3980 } 3981 // If we don't know anything, early out and try computeKnownBits fall-back. 3982 if (Tmp == 1) 3983 break; 3984 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3985 return Tmp; 3986 } 3987 3988 case ISD::BITCAST: { 3989 SDValue N0 = Op.getOperand(0); 3990 EVT SrcVT = N0.getValueType(); 3991 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3992 3993 // Ignore bitcasts from unsupported types.. 3994 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3995 break; 3996 3997 // Fast handling of 'identity' bitcasts. 3998 if (VTBits == SrcBits) 3999 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 4000 4001 bool IsLE = getDataLayout().isLittleEndian(); 4002 4003 // Bitcast 'large element' scalar/vector to 'small element' vector. 4004 if ((SrcBits % VTBits) == 0) { 4005 assert(VT.isVector() && "Expected bitcast to vector"); 4006 4007 unsigned Scale = SrcBits / VTBits; 4008 APInt SrcDemandedElts = 4009 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 4010 4011 // Fast case - sign splat can be simply split across the small elements. 4012 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 4013 if (Tmp == SrcBits) 4014 return VTBits; 4015 4016 // Slow case - determine how far the sign extends into each sub-element. 4017 Tmp2 = VTBits; 4018 for (unsigned i = 0; i != NumElts; ++i) 4019 if (DemandedElts[i]) { 4020 unsigned SubOffset = i % Scale; 4021 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 4022 SubOffset = SubOffset * VTBits; 4023 if (Tmp <= SubOffset) 4024 return 1; 4025 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 4026 } 4027 return Tmp2; 4028 } 4029 break; 4030 } 4031 4032 case ISD::FP_TO_SINT_SAT: 4033 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4034 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4035 return VTBits - Tmp + 1; 4036 case ISD::SIGN_EXTEND: 4037 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4038 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4039 case ISD::SIGN_EXTEND_INREG: 4040 // Max of the input and what this extends. 4041 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4042 Tmp = VTBits-Tmp+1; 4043 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4044 return std::max(Tmp, Tmp2); 4045 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4046 SDValue Src = Op.getOperand(0); 4047 EVT SrcVT = Src.getValueType(); 4048 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4049 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4050 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4051 } 4052 case ISD::SRA: 4053 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4054 // SRA X, C -> adds C sign bits. 4055 if (const APInt *ShAmt = 4056 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4057 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4058 return Tmp; 4059 case ISD::SHL: 4060 if (const APInt *ShAmt = 4061 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4062 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4063 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4064 if (ShAmt->ult(Tmp)) 4065 return Tmp - ShAmt->getZExtValue(); 4066 } 4067 break; 4068 case ISD::AND: 4069 case ISD::OR: 4070 case ISD::XOR: // NOT is handled here. 4071 // Logical binary ops preserve the number of sign bits at the worst. 4072 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4073 if (Tmp != 1) { 4074 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4075 FirstAnswer = std::min(Tmp, Tmp2); 4076 // We computed what we know about the sign bits as our first 4077 // answer. Now proceed to the generic code that uses 4078 // computeKnownBits, and pick whichever answer is better. 4079 } 4080 break; 4081 4082 case ISD::SELECT: 4083 case ISD::VSELECT: 4084 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4085 if (Tmp == 1) return 1; // Early out. 4086 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4087 return std::min(Tmp, Tmp2); 4088 case ISD::SELECT_CC: 4089 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4090 if (Tmp == 1) return 1; // Early out. 4091 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4092 return std::min(Tmp, Tmp2); 4093 4094 case ISD::SMIN: 4095 case ISD::SMAX: { 4096 // If we have a clamp pattern, we know that the number of sign bits will be 4097 // the minimum of the clamp min/max range. 4098 bool IsMax = (Opcode == ISD::SMAX); 4099 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4100 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4101 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4102 CstHigh = 4103 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4104 if (CstLow && CstHigh) { 4105 if (!IsMax) 4106 std::swap(CstLow, CstHigh); 4107 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4108 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4109 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4110 return std::min(Tmp, Tmp2); 4111 } 4112 } 4113 4114 // Fallback - just get the minimum number of sign bits of the operands. 4115 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4116 if (Tmp == 1) 4117 return 1; // Early out. 4118 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4119 return std::min(Tmp, Tmp2); 4120 } 4121 case ISD::UMIN: 4122 case ISD::UMAX: 4123 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4124 if (Tmp == 1) 4125 return 1; // Early out. 4126 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4127 return std::min(Tmp, Tmp2); 4128 case ISD::SADDO: 4129 case ISD::UADDO: 4130 case ISD::SADDO_CARRY: 4131 case ISD::ADDCARRY: 4132 case ISD::SSUBO: 4133 case ISD::USUBO: 4134 case ISD::SSUBO_CARRY: 4135 case ISD::SUBCARRY: 4136 case ISD::SMULO: 4137 case ISD::UMULO: 4138 if (Op.getResNo() != 1) 4139 break; 4140 // The boolean result conforms to getBooleanContents. Fall through. 4141 // If setcc returns 0/-1, all bits are sign bits. 4142 // We know that we have an integer-based boolean since these operations 4143 // are only available for integer. 4144 if (TLI->getBooleanContents(VT.isVector(), false) == 4145 TargetLowering::ZeroOrNegativeOneBooleanContent) 4146 return VTBits; 4147 break; 4148 case ISD::SETCC: 4149 case ISD::SETCCCARRY: 4150 case ISD::STRICT_FSETCC: 4151 case ISD::STRICT_FSETCCS: { 4152 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4153 // If setcc returns 0/-1, all bits are sign bits. 4154 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4155 TargetLowering::ZeroOrNegativeOneBooleanContent) 4156 return VTBits; 4157 break; 4158 } 4159 case ISD::ROTL: 4160 case ISD::ROTR: 4161 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4162 4163 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4164 if (Tmp == VTBits) 4165 return VTBits; 4166 4167 if (ConstantSDNode *C = 4168 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4169 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4170 4171 // Handle rotate right by N like a rotate left by 32-N. 4172 if (Opcode == ISD::ROTR) 4173 RotAmt = (VTBits - RotAmt) % VTBits; 4174 4175 // If we aren't rotating out all of the known-in sign bits, return the 4176 // number that are left. This handles rotl(sext(x), 1) for example. 4177 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4178 } 4179 break; 4180 case ISD::ADD: 4181 case ISD::ADDC: 4182 // Add can have at most one carry bit. Thus we know that the output 4183 // is, at worst, one more bit than the inputs. 4184 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4185 if (Tmp == 1) return 1; // Early out. 4186 4187 // Special case decrementing a value (ADD X, -1): 4188 if (ConstantSDNode *CRHS = 4189 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4190 if (CRHS->isAllOnes()) { 4191 KnownBits Known = 4192 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4193 4194 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4195 // sign bits set. 4196 if ((Known.Zero | 1).isAllOnes()) 4197 return VTBits; 4198 4199 // If we are subtracting one from a positive number, there is no carry 4200 // out of the result. 4201 if (Known.isNonNegative()) 4202 return Tmp; 4203 } 4204 4205 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4206 if (Tmp2 == 1) return 1; // Early out. 4207 return std::min(Tmp, Tmp2) - 1; 4208 case ISD::SUB: 4209 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4210 if (Tmp2 == 1) return 1; // Early out. 4211 4212 // Handle NEG. 4213 if (ConstantSDNode *CLHS = 4214 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4215 if (CLHS->isZero()) { 4216 KnownBits Known = 4217 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4218 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4219 // sign bits set. 4220 if ((Known.Zero | 1).isAllOnes()) 4221 return VTBits; 4222 4223 // If the input is known to be positive (the sign bit is known clear), 4224 // the output of the NEG has the same number of sign bits as the input. 4225 if (Known.isNonNegative()) 4226 return Tmp2; 4227 4228 // Otherwise, we treat this like a SUB. 4229 } 4230 4231 // Sub can have at most one carry bit. Thus we know that the output 4232 // is, at worst, one more bit than the inputs. 4233 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4234 if (Tmp == 1) return 1; // Early out. 4235 return std::min(Tmp, Tmp2) - 1; 4236 case ISD::MUL: { 4237 // The output of the Mul can be at most twice the valid bits in the inputs. 4238 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4239 if (SignBitsOp0 == 1) 4240 break; 4241 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4242 if (SignBitsOp1 == 1) 4243 break; 4244 unsigned OutValidBits = 4245 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4246 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4247 } 4248 case ISD::SREM: 4249 // The sign bit is the LHS's sign bit, except when the result of the 4250 // remainder is zero. The magnitude of the result should be less than or 4251 // equal to the magnitude of the LHS. Therefore, the result should have 4252 // at least as many sign bits as the left hand side. 4253 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4254 case ISD::TRUNCATE: { 4255 // Check if the sign bits of source go down as far as the truncated value. 4256 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4257 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4258 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4259 return NumSrcSignBits - (NumSrcBits - VTBits); 4260 break; 4261 } 4262 case ISD::EXTRACT_ELEMENT: { 4263 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4264 const int BitWidth = Op.getValueSizeInBits(); 4265 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4266 4267 // Get reverse index (starting from 1), Op1 value indexes elements from 4268 // little end. Sign starts at big end. 4269 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4270 4271 // If the sign portion ends in our element the subtraction gives correct 4272 // result. Otherwise it gives either negative or > bitwidth result 4273 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4274 } 4275 case ISD::INSERT_VECTOR_ELT: { 4276 // If we know the element index, split the demand between the 4277 // source vector and the inserted element, otherwise assume we need 4278 // the original demanded vector elements and the value. 4279 SDValue InVec = Op.getOperand(0); 4280 SDValue InVal = Op.getOperand(1); 4281 SDValue EltNo = Op.getOperand(2); 4282 bool DemandedVal = true; 4283 APInt DemandedVecElts = DemandedElts; 4284 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4285 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4286 unsigned EltIdx = CEltNo->getZExtValue(); 4287 DemandedVal = !!DemandedElts[EltIdx]; 4288 DemandedVecElts.clearBit(EltIdx); 4289 } 4290 Tmp = std::numeric_limits<unsigned>::max(); 4291 if (DemandedVal) { 4292 // TODO - handle implicit truncation of inserted elements. 4293 if (InVal.getScalarValueSizeInBits() != VTBits) 4294 break; 4295 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4296 Tmp = std::min(Tmp, Tmp2); 4297 } 4298 if (!!DemandedVecElts) { 4299 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4300 Tmp = std::min(Tmp, Tmp2); 4301 } 4302 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4303 return Tmp; 4304 } 4305 case ISD::EXTRACT_VECTOR_ELT: { 4306 SDValue InVec = Op.getOperand(0); 4307 SDValue EltNo = Op.getOperand(1); 4308 EVT VecVT = InVec.getValueType(); 4309 // ComputeNumSignBits not yet implemented for scalable vectors. 4310 if (VecVT.isScalableVector()) 4311 break; 4312 const unsigned BitWidth = Op.getValueSizeInBits(); 4313 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4314 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4315 4316 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4317 // anything about sign bits. But if the sizes match we can derive knowledge 4318 // about sign bits from the vector operand. 4319 if (BitWidth != EltBitWidth) 4320 break; 4321 4322 // If we know the element index, just demand that vector element, else for 4323 // an unknown element index, ignore DemandedElts and demand them all. 4324 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4325 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4326 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4327 DemandedSrcElts = 4328 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4329 4330 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4331 } 4332 case ISD::EXTRACT_SUBVECTOR: { 4333 // Offset the demanded elts by the subvector index. 4334 SDValue Src = Op.getOperand(0); 4335 // Bail until we can represent demanded elements for scalable vectors. 4336 if (Src.getValueType().isScalableVector()) 4337 break; 4338 uint64_t Idx = Op.getConstantOperandVal(1); 4339 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4340 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4341 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4342 } 4343 case ISD::CONCAT_VECTORS: { 4344 // Determine the minimum number of sign bits across all demanded 4345 // elts of the input vectors. Early out if the result is already 1. 4346 Tmp = std::numeric_limits<unsigned>::max(); 4347 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4348 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4349 unsigned NumSubVectors = Op.getNumOperands(); 4350 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4351 APInt DemandedSub = 4352 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4353 if (!DemandedSub) 4354 continue; 4355 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4356 Tmp = std::min(Tmp, Tmp2); 4357 } 4358 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4359 return Tmp; 4360 } 4361 case ISD::INSERT_SUBVECTOR: { 4362 // Demand any elements from the subvector and the remainder from the src its 4363 // inserted into. 4364 SDValue Src = Op.getOperand(0); 4365 SDValue Sub = Op.getOperand(1); 4366 uint64_t Idx = Op.getConstantOperandVal(2); 4367 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4368 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4369 APInt DemandedSrcElts = DemandedElts; 4370 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4371 4372 Tmp = std::numeric_limits<unsigned>::max(); 4373 if (!!DemandedSubElts) { 4374 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4375 if (Tmp == 1) 4376 return 1; // early-out 4377 } 4378 if (!!DemandedSrcElts) { 4379 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4380 Tmp = std::min(Tmp, Tmp2); 4381 } 4382 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4383 return Tmp; 4384 } 4385 case ISD::ATOMIC_CMP_SWAP: 4386 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4387 case ISD::ATOMIC_SWAP: 4388 case ISD::ATOMIC_LOAD_ADD: 4389 case ISD::ATOMIC_LOAD_SUB: 4390 case ISD::ATOMIC_LOAD_AND: 4391 case ISD::ATOMIC_LOAD_CLR: 4392 case ISD::ATOMIC_LOAD_OR: 4393 case ISD::ATOMIC_LOAD_XOR: 4394 case ISD::ATOMIC_LOAD_NAND: 4395 case ISD::ATOMIC_LOAD_MIN: 4396 case ISD::ATOMIC_LOAD_MAX: 4397 case ISD::ATOMIC_LOAD_UMIN: 4398 case ISD::ATOMIC_LOAD_UMAX: 4399 case ISD::ATOMIC_LOAD: { 4400 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4401 // If we are looking at the loaded value. 4402 if (Op.getResNo() == 0) { 4403 if (Tmp == VTBits) 4404 return 1; // early-out 4405 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4406 return VTBits - Tmp + 1; 4407 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4408 return VTBits - Tmp; 4409 } 4410 break; 4411 } 4412 } 4413 4414 // If we are looking at the loaded value of the SDNode. 4415 if (Op.getResNo() == 0) { 4416 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4417 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4418 unsigned ExtType = LD->getExtensionType(); 4419 switch (ExtType) { 4420 default: break; 4421 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4422 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4423 return VTBits - Tmp + 1; 4424 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4425 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4426 return VTBits - Tmp; 4427 case ISD::NON_EXTLOAD: 4428 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4429 // We only need to handle vectors - computeKnownBits should handle 4430 // scalar cases. 4431 Type *CstTy = Cst->getType(); 4432 if (CstTy->isVectorTy() && 4433 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4434 VTBits == CstTy->getScalarSizeInBits()) { 4435 Tmp = VTBits; 4436 for (unsigned i = 0; i != NumElts; ++i) { 4437 if (!DemandedElts[i]) 4438 continue; 4439 if (Constant *Elt = Cst->getAggregateElement(i)) { 4440 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4441 const APInt &Value = CInt->getValue(); 4442 Tmp = std::min(Tmp, Value.getNumSignBits()); 4443 continue; 4444 } 4445 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4446 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4447 Tmp = std::min(Tmp, Value.getNumSignBits()); 4448 continue; 4449 } 4450 } 4451 // Unknown type. Conservatively assume no bits match sign bit. 4452 return 1; 4453 } 4454 return Tmp; 4455 } 4456 } 4457 break; 4458 } 4459 } 4460 } 4461 4462 // Allow the target to implement this method for its nodes. 4463 if (Opcode >= ISD::BUILTIN_OP_END || 4464 Opcode == ISD::INTRINSIC_WO_CHAIN || 4465 Opcode == ISD::INTRINSIC_W_CHAIN || 4466 Opcode == ISD::INTRINSIC_VOID) { 4467 unsigned NumBits = 4468 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4469 if (NumBits > 1) 4470 FirstAnswer = std::max(FirstAnswer, NumBits); 4471 } 4472 4473 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4474 // use this information. 4475 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4476 return std::max(FirstAnswer, Known.countMinSignBits()); 4477 } 4478 4479 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4480 unsigned Depth) const { 4481 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4482 return Op.getScalarValueSizeInBits() - SignBits + 1; 4483 } 4484 4485 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4486 const APInt &DemandedElts, 4487 unsigned Depth) const { 4488 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4489 return Op.getScalarValueSizeInBits() - SignBits + 1; 4490 } 4491 4492 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4493 unsigned Depth) const { 4494 // Early out for FREEZE. 4495 if (Op.getOpcode() == ISD::FREEZE) 4496 return true; 4497 4498 // TODO: Assume we don't know anything for now. 4499 EVT VT = Op.getValueType(); 4500 if (VT.isScalableVector()) 4501 return false; 4502 4503 APInt DemandedElts = VT.isVector() 4504 ? APInt::getAllOnes(VT.getVectorNumElements()) 4505 : APInt(1, 1); 4506 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4507 } 4508 4509 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4510 const APInt &DemandedElts, 4511 bool PoisonOnly, 4512 unsigned Depth) const { 4513 unsigned Opcode = Op.getOpcode(); 4514 4515 // Early out for FREEZE. 4516 if (Opcode == ISD::FREEZE) 4517 return true; 4518 4519 if (Depth >= MaxRecursionDepth) 4520 return false; // Limit search depth. 4521 4522 if (isIntOrFPConstant(Op)) 4523 return true; 4524 4525 switch (Opcode) { 4526 case ISD::UNDEF: 4527 return PoisonOnly; 4528 4529 case ISD::BUILD_VECTOR: 4530 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4531 // this shouldn't affect the result. 4532 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4533 if (!DemandedElts[i]) 4534 continue; 4535 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4536 Depth + 1)) 4537 return false; 4538 } 4539 return true; 4540 4541 // TODO: Search for noundef attributes from library functions. 4542 4543 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4544 4545 default: 4546 // Allow the target to implement this method for its nodes. 4547 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4548 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4549 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4550 Op, DemandedElts, *this, PoisonOnly, Depth); 4551 break; 4552 } 4553 4554 return false; 4555 } 4556 4557 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4558 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4559 !isa<ConstantSDNode>(Op.getOperand(1))) 4560 return false; 4561 4562 if (Op.getOpcode() == ISD::OR && 4563 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4564 return false; 4565 4566 return true; 4567 } 4568 4569 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4570 // If we're told that NaNs won't happen, assume they won't. 4571 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4572 return true; 4573 4574 if (Depth >= MaxRecursionDepth) 4575 return false; // Limit search depth. 4576 4577 // TODO: Handle vectors. 4578 // If the value is a constant, we can obviously see if it is a NaN or not. 4579 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4580 return !C->getValueAPF().isNaN() || 4581 (SNaN && !C->getValueAPF().isSignaling()); 4582 } 4583 4584 unsigned Opcode = Op.getOpcode(); 4585 switch (Opcode) { 4586 case ISD::FADD: 4587 case ISD::FSUB: 4588 case ISD::FMUL: 4589 case ISD::FDIV: 4590 case ISD::FREM: 4591 case ISD::FSIN: 4592 case ISD::FCOS: { 4593 if (SNaN) 4594 return true; 4595 // TODO: Need isKnownNeverInfinity 4596 return false; 4597 } 4598 case ISD::FCANONICALIZE: 4599 case ISD::FEXP: 4600 case ISD::FEXP2: 4601 case ISD::FTRUNC: 4602 case ISD::FFLOOR: 4603 case ISD::FCEIL: 4604 case ISD::FROUND: 4605 case ISD::FROUNDEVEN: 4606 case ISD::FRINT: 4607 case ISD::FNEARBYINT: { 4608 if (SNaN) 4609 return true; 4610 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4611 } 4612 case ISD::FABS: 4613 case ISD::FNEG: 4614 case ISD::FCOPYSIGN: { 4615 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4616 } 4617 case ISD::SELECT: 4618 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4619 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4620 case ISD::FP_EXTEND: 4621 case ISD::FP_ROUND: { 4622 if (SNaN) 4623 return true; 4624 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4625 } 4626 case ISD::SINT_TO_FP: 4627 case ISD::UINT_TO_FP: 4628 return true; 4629 case ISD::FMA: 4630 case ISD::FMAD: { 4631 if (SNaN) 4632 return true; 4633 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4634 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4635 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4636 } 4637 case ISD::FSQRT: // Need is known positive 4638 case ISD::FLOG: 4639 case ISD::FLOG2: 4640 case ISD::FLOG10: 4641 case ISD::FPOWI: 4642 case ISD::FPOW: { 4643 if (SNaN) 4644 return true; 4645 // TODO: Refine on operand 4646 return false; 4647 } 4648 case ISD::FMINNUM: 4649 case ISD::FMAXNUM: { 4650 // Only one needs to be known not-nan, since it will be returned if the 4651 // other ends up being one. 4652 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4653 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4654 } 4655 case ISD::FMINNUM_IEEE: 4656 case ISD::FMAXNUM_IEEE: { 4657 if (SNaN) 4658 return true; 4659 // This can return a NaN if either operand is an sNaN, or if both operands 4660 // are NaN. 4661 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4662 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4663 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4664 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4665 } 4666 case ISD::FMINIMUM: 4667 case ISD::FMAXIMUM: { 4668 // TODO: Does this quiet or return the origina NaN as-is? 4669 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4670 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4671 } 4672 case ISD::EXTRACT_VECTOR_ELT: { 4673 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4674 } 4675 default: 4676 if (Opcode >= ISD::BUILTIN_OP_END || 4677 Opcode == ISD::INTRINSIC_WO_CHAIN || 4678 Opcode == ISD::INTRINSIC_W_CHAIN || 4679 Opcode == ISD::INTRINSIC_VOID) { 4680 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4681 } 4682 4683 return false; 4684 } 4685 } 4686 4687 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4688 assert(Op.getValueType().isFloatingPoint() && 4689 "Floating point type expected"); 4690 4691 // If the value is a constant, we can obviously see if it is a zero or not. 4692 // TODO: Add BuildVector support. 4693 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4694 return !C->isZero(); 4695 return false; 4696 } 4697 4698 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4699 assert(!Op.getValueType().isFloatingPoint() && 4700 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4701 4702 // If the value is a constant, we can obviously see if it is a zero or not. 4703 if (ISD::matchUnaryPredicate(Op, 4704 [](ConstantSDNode *C) { return !C->isZero(); })) 4705 return true; 4706 4707 // TODO: Recognize more cases here. 4708 switch (Op.getOpcode()) { 4709 default: break; 4710 case ISD::OR: 4711 if (isKnownNeverZero(Op.getOperand(1)) || 4712 isKnownNeverZero(Op.getOperand(0))) 4713 return true; 4714 break; 4715 } 4716 4717 return false; 4718 } 4719 4720 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4721 // Check the obvious case. 4722 if (A == B) return true; 4723 4724 // For for negative and positive zero. 4725 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4726 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4727 if (CA->isZero() && CB->isZero()) return true; 4728 4729 // Otherwise they may not be equal. 4730 return false; 4731 } 4732 4733 // Only bits set in Mask must be negated, other bits may be arbitrary. 4734 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4735 if (isBitwiseNot(V, AllowUndefs)) 4736 return V.getOperand(0); 4737 4738 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4739 // bits in the non-extended part. 4740 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4741 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4742 return SDValue(); 4743 SDValue ExtArg = V.getOperand(0); 4744 if (ExtArg.getScalarValueSizeInBits() >= 4745 MaskC->getAPIntValue().getActiveBits() && 4746 isBitwiseNot(ExtArg, AllowUndefs) && 4747 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4748 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4749 return ExtArg.getOperand(0).getOperand(0); 4750 return SDValue(); 4751 } 4752 4753 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4754 // Match masked merge pattern (X & ~M) op (Y & M) 4755 // Including degenerate case (X & ~M) op M 4756 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4757 SDValue Other) { 4758 if (SDValue NotOperand = 4759 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4760 if (Other == NotOperand) 4761 return true; 4762 if (Other->getOpcode() == ISD::AND) 4763 return NotOperand == Other->getOperand(0) || 4764 NotOperand == Other->getOperand(1); 4765 } 4766 return false; 4767 }; 4768 if (A->getOpcode() == ISD::AND) 4769 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4770 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4771 return false; 4772 } 4773 4774 // FIXME: unify with llvm::haveNoCommonBitsSet. 4775 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4776 assert(A.getValueType() == B.getValueType() && 4777 "Values must have the same type"); 4778 if (haveNoCommonBitsSetCommutative(A, B) || 4779 haveNoCommonBitsSetCommutative(B, A)) 4780 return true; 4781 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4782 computeKnownBits(B)); 4783 } 4784 4785 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4786 SelectionDAG &DAG) { 4787 if (cast<ConstantSDNode>(Step)->isZero()) 4788 return DAG.getConstant(0, DL, VT); 4789 4790 return SDValue(); 4791 } 4792 4793 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4794 ArrayRef<SDValue> Ops, 4795 SelectionDAG &DAG) { 4796 int NumOps = Ops.size(); 4797 assert(NumOps != 0 && "Can't build an empty vector!"); 4798 assert(!VT.isScalableVector() && 4799 "BUILD_VECTOR cannot be used with scalable types"); 4800 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4801 "Incorrect element count in BUILD_VECTOR!"); 4802 4803 // BUILD_VECTOR of UNDEFs is UNDEF. 4804 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4805 return DAG.getUNDEF(VT); 4806 4807 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4808 SDValue IdentitySrc; 4809 bool IsIdentity = true; 4810 for (int i = 0; i != NumOps; ++i) { 4811 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4812 Ops[i].getOperand(0).getValueType() != VT || 4813 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4814 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4815 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4816 IsIdentity = false; 4817 break; 4818 } 4819 IdentitySrc = Ops[i].getOperand(0); 4820 } 4821 if (IsIdentity) 4822 return IdentitySrc; 4823 4824 return SDValue(); 4825 } 4826 4827 /// Try to simplify vector concatenation to an input value, undef, or build 4828 /// vector. 4829 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4830 ArrayRef<SDValue> Ops, 4831 SelectionDAG &DAG) { 4832 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4833 assert(llvm::all_of(Ops, 4834 [Ops](SDValue Op) { 4835 return Ops[0].getValueType() == Op.getValueType(); 4836 }) && 4837 "Concatenation of vectors with inconsistent value types!"); 4838 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4839 VT.getVectorElementCount() && 4840 "Incorrect element count in vector concatenation!"); 4841 4842 if (Ops.size() == 1) 4843 return Ops[0]; 4844 4845 // Concat of UNDEFs is UNDEF. 4846 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4847 return DAG.getUNDEF(VT); 4848 4849 // Scan the operands and look for extract operations from a single source 4850 // that correspond to insertion at the same location via this concatenation: 4851 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4852 SDValue IdentitySrc; 4853 bool IsIdentity = true; 4854 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4855 SDValue Op = Ops[i]; 4856 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4857 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4858 Op.getOperand(0).getValueType() != VT || 4859 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4860 Op.getConstantOperandVal(1) != IdentityIndex) { 4861 IsIdentity = false; 4862 break; 4863 } 4864 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4865 "Unexpected identity source vector for concat of extracts"); 4866 IdentitySrc = Op.getOperand(0); 4867 } 4868 if (IsIdentity) { 4869 assert(IdentitySrc && "Failed to set source vector of extracts"); 4870 return IdentitySrc; 4871 } 4872 4873 // The code below this point is only designed to work for fixed width 4874 // vectors, so we bail out for now. 4875 if (VT.isScalableVector()) 4876 return SDValue(); 4877 4878 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4879 // simplified to one big BUILD_VECTOR. 4880 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4881 EVT SVT = VT.getScalarType(); 4882 SmallVector<SDValue, 16> Elts; 4883 for (SDValue Op : Ops) { 4884 EVT OpVT = Op.getValueType(); 4885 if (Op.isUndef()) 4886 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4887 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4888 Elts.append(Op->op_begin(), Op->op_end()); 4889 else 4890 return SDValue(); 4891 } 4892 4893 // BUILD_VECTOR requires all inputs to be of the same type, find the 4894 // maximum type and extend them all. 4895 for (SDValue Op : Elts) 4896 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4897 4898 if (SVT.bitsGT(VT.getScalarType())) { 4899 for (SDValue &Op : Elts) { 4900 if (Op.isUndef()) 4901 Op = DAG.getUNDEF(SVT); 4902 else 4903 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4904 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4905 : DAG.getSExtOrTrunc(Op, DL, SVT); 4906 } 4907 } 4908 4909 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4910 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4911 return V; 4912 } 4913 4914 /// Gets or creates the specified node. 4915 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4916 FoldingSetNodeID ID; 4917 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4918 void *IP = nullptr; 4919 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4920 return SDValue(E, 0); 4921 4922 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4923 getVTList(VT)); 4924 CSEMap.InsertNode(N, IP); 4925 4926 InsertNode(N); 4927 SDValue V = SDValue(N, 0); 4928 NewSDValueDbgMsg(V, "Creating new node: ", this); 4929 return V; 4930 } 4931 4932 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4933 SDValue Operand) { 4934 SDNodeFlags Flags; 4935 if (Inserter) 4936 Flags = Inserter->getFlags(); 4937 return getNode(Opcode, DL, VT, Operand, Flags); 4938 } 4939 4940 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4941 SDValue Operand, const SDNodeFlags Flags) { 4942 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4943 "Operand is DELETED_NODE!"); 4944 // Constant fold unary operations with an integer constant operand. Even 4945 // opaque constant will be folded, because the folding of unary operations 4946 // doesn't create new constants with different values. Nevertheless, the 4947 // opaque flag is preserved during folding to prevent future folding with 4948 // other constants. 4949 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4950 const APInt &Val = C->getAPIntValue(); 4951 switch (Opcode) { 4952 default: break; 4953 case ISD::SIGN_EXTEND: 4954 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4955 C->isTargetOpcode(), C->isOpaque()); 4956 case ISD::TRUNCATE: 4957 if (C->isOpaque()) 4958 break; 4959 LLVM_FALLTHROUGH; 4960 case ISD::ZERO_EXTEND: 4961 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4962 C->isTargetOpcode(), C->isOpaque()); 4963 case ISD::ANY_EXTEND: 4964 // Some targets like RISCV prefer to sign extend some types. 4965 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4966 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4967 C->isTargetOpcode(), C->isOpaque()); 4968 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4969 C->isTargetOpcode(), C->isOpaque()); 4970 case ISD::UINT_TO_FP: 4971 case ISD::SINT_TO_FP: { 4972 APFloat apf(EVTToAPFloatSemantics(VT), 4973 APInt::getZero(VT.getSizeInBits())); 4974 (void)apf.convertFromAPInt(Val, 4975 Opcode==ISD::SINT_TO_FP, 4976 APFloat::rmNearestTiesToEven); 4977 return getConstantFP(apf, DL, VT); 4978 } 4979 case ISD::BITCAST: 4980 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4981 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4982 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4983 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4984 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4985 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4986 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4987 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4988 break; 4989 case ISD::ABS: 4990 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4991 C->isOpaque()); 4992 case ISD::BITREVERSE: 4993 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4994 C->isOpaque()); 4995 case ISD::BSWAP: 4996 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4997 C->isOpaque()); 4998 case ISD::CTPOP: 4999 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 5000 C->isOpaque()); 5001 case ISD::CTLZ: 5002 case ISD::CTLZ_ZERO_UNDEF: 5003 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 5004 C->isOpaque()); 5005 case ISD::CTTZ: 5006 case ISD::CTTZ_ZERO_UNDEF: 5007 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 5008 C->isOpaque()); 5009 case ISD::FP16_TO_FP: 5010 case ISD::BF16_TO_FP: { 5011 bool Ignored; 5012 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf() 5013 : APFloat::BFloat(), 5014 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 5015 5016 // This can return overflow, underflow, or inexact; we don't care. 5017 // FIXME need to be more flexible about rounding mode. 5018 (void)FPV.convert(EVTToAPFloatSemantics(VT), 5019 APFloat::rmNearestTiesToEven, &Ignored); 5020 return getConstantFP(FPV, DL, VT); 5021 } 5022 case ISD::STEP_VECTOR: { 5023 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 5024 return V; 5025 break; 5026 } 5027 } 5028 } 5029 5030 // Constant fold unary operations with a floating point constant operand. 5031 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 5032 APFloat V = C->getValueAPF(); // make copy 5033 switch (Opcode) { 5034 case ISD::FNEG: 5035 V.changeSign(); 5036 return getConstantFP(V, DL, VT); 5037 case ISD::FABS: 5038 V.clearSign(); 5039 return getConstantFP(V, DL, VT); 5040 case ISD::FCEIL: { 5041 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5042 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5043 return getConstantFP(V, DL, VT); 5044 break; 5045 } 5046 case ISD::FTRUNC: { 5047 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5048 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5049 return getConstantFP(V, DL, VT); 5050 break; 5051 } 5052 case ISD::FFLOOR: { 5053 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5054 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5055 return getConstantFP(V, DL, VT); 5056 break; 5057 } 5058 case ISD::FP_EXTEND: { 5059 bool ignored; 5060 // This can return overflow, underflow, or inexact; we don't care. 5061 // FIXME need to be more flexible about rounding mode. 5062 (void)V.convert(EVTToAPFloatSemantics(VT), 5063 APFloat::rmNearestTiesToEven, &ignored); 5064 return getConstantFP(V, DL, VT); 5065 } 5066 case ISD::FP_TO_SINT: 5067 case ISD::FP_TO_UINT: { 5068 bool ignored; 5069 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5070 // FIXME need to be more flexible about rounding mode. 5071 APFloat::opStatus s = 5072 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5073 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5074 break; 5075 return getConstant(IntVal, DL, VT); 5076 } 5077 case ISD::BITCAST: 5078 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5079 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5080 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5081 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5082 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5083 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5084 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5085 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5086 break; 5087 case ISD::FP_TO_FP16: 5088 case ISD::FP_TO_BF16: { 5089 bool Ignored; 5090 // This can return overflow, underflow, or inexact; we don't care. 5091 // FIXME need to be more flexible about rounding mode. 5092 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf() 5093 : APFloat::BFloat(), 5094 APFloat::rmNearestTiesToEven, &Ignored); 5095 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5096 } 5097 } 5098 } 5099 5100 // Constant fold unary operations with a vector integer or float operand. 5101 switch (Opcode) { 5102 default: 5103 // FIXME: Entirely reasonable to perform folding of other unary 5104 // operations here as the need arises. 5105 break; 5106 case ISD::FNEG: 5107 case ISD::FABS: 5108 case ISD::FCEIL: 5109 case ISD::FTRUNC: 5110 case ISD::FFLOOR: 5111 case ISD::FP_EXTEND: 5112 case ISD::FP_TO_SINT: 5113 case ISD::FP_TO_UINT: 5114 case ISD::TRUNCATE: 5115 case ISD::ANY_EXTEND: 5116 case ISD::ZERO_EXTEND: 5117 case ISD::SIGN_EXTEND: 5118 case ISD::UINT_TO_FP: 5119 case ISD::SINT_TO_FP: 5120 case ISD::ABS: 5121 case ISD::BITREVERSE: 5122 case ISD::BSWAP: 5123 case ISD::CTLZ: 5124 case ISD::CTLZ_ZERO_UNDEF: 5125 case ISD::CTTZ: 5126 case ISD::CTTZ_ZERO_UNDEF: 5127 case ISD::CTPOP: { 5128 SDValue Ops = {Operand}; 5129 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5130 return Fold; 5131 } 5132 } 5133 5134 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5135 switch (Opcode) { 5136 case ISD::STEP_VECTOR: 5137 assert(VT.isScalableVector() && 5138 "STEP_VECTOR can only be used with scalable types"); 5139 assert(OpOpcode == ISD::TargetConstant && 5140 VT.getVectorElementType() == Operand.getValueType() && 5141 "Unexpected step operand"); 5142 break; 5143 case ISD::FREEZE: 5144 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5145 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5146 return Operand; 5147 break; 5148 case ISD::TokenFactor: 5149 case ISD::MERGE_VALUES: 5150 case ISD::CONCAT_VECTORS: 5151 return Operand; // Factor, merge or concat of one node? No need. 5152 case ISD::BUILD_VECTOR: { 5153 // Attempt to simplify BUILD_VECTOR. 5154 SDValue Ops[] = {Operand}; 5155 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5156 return V; 5157 break; 5158 } 5159 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5160 case ISD::FP_EXTEND: 5161 assert(VT.isFloatingPoint() && 5162 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5163 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5164 assert((!VT.isVector() || 5165 VT.getVectorElementCount() == 5166 Operand.getValueType().getVectorElementCount()) && 5167 "Vector element count mismatch!"); 5168 assert(Operand.getValueType().bitsLT(VT) && 5169 "Invalid fpext node, dst < src!"); 5170 if (Operand.isUndef()) 5171 return getUNDEF(VT); 5172 break; 5173 case ISD::FP_TO_SINT: 5174 case ISD::FP_TO_UINT: 5175 if (Operand.isUndef()) 5176 return getUNDEF(VT); 5177 break; 5178 case ISD::SINT_TO_FP: 5179 case ISD::UINT_TO_FP: 5180 // [us]itofp(undef) = 0, because the result value is bounded. 5181 if (Operand.isUndef()) 5182 return getConstantFP(0.0, DL, VT); 5183 break; 5184 case ISD::SIGN_EXTEND: 5185 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5186 "Invalid SIGN_EXTEND!"); 5187 assert(VT.isVector() == Operand.getValueType().isVector() && 5188 "SIGN_EXTEND result type type should be vector iff the operand " 5189 "type is vector!"); 5190 if (Operand.getValueType() == VT) return Operand; // noop extension 5191 assert((!VT.isVector() || 5192 VT.getVectorElementCount() == 5193 Operand.getValueType().getVectorElementCount()) && 5194 "Vector element count mismatch!"); 5195 assert(Operand.getValueType().bitsLT(VT) && 5196 "Invalid sext node, dst < src!"); 5197 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5198 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5199 if (OpOpcode == ISD::UNDEF) 5200 // sext(undef) = 0, because the top bits will all be the same. 5201 return getConstant(0, DL, VT); 5202 break; 5203 case ISD::ZERO_EXTEND: 5204 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5205 "Invalid ZERO_EXTEND!"); 5206 assert(VT.isVector() == Operand.getValueType().isVector() && 5207 "ZERO_EXTEND result type type should be vector iff the operand " 5208 "type is vector!"); 5209 if (Operand.getValueType() == VT) return Operand; // noop extension 5210 assert((!VT.isVector() || 5211 VT.getVectorElementCount() == 5212 Operand.getValueType().getVectorElementCount()) && 5213 "Vector element count mismatch!"); 5214 assert(Operand.getValueType().bitsLT(VT) && 5215 "Invalid zext node, dst < src!"); 5216 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5217 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5218 if (OpOpcode == ISD::UNDEF) 5219 // zext(undef) = 0, because the top bits will be zero. 5220 return getConstant(0, DL, VT); 5221 break; 5222 case ISD::ANY_EXTEND: 5223 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5224 "Invalid ANY_EXTEND!"); 5225 assert(VT.isVector() == Operand.getValueType().isVector() && 5226 "ANY_EXTEND result type type should be vector iff the operand " 5227 "type is vector!"); 5228 if (Operand.getValueType() == VT) return Operand; // noop extension 5229 assert((!VT.isVector() || 5230 VT.getVectorElementCount() == 5231 Operand.getValueType().getVectorElementCount()) && 5232 "Vector element count mismatch!"); 5233 assert(Operand.getValueType().bitsLT(VT) && 5234 "Invalid anyext node, dst < src!"); 5235 5236 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5237 OpOpcode == ISD::ANY_EXTEND) 5238 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5239 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5240 if (OpOpcode == ISD::UNDEF) 5241 return getUNDEF(VT); 5242 5243 // (ext (trunc x)) -> x 5244 if (OpOpcode == ISD::TRUNCATE) { 5245 SDValue OpOp = Operand.getOperand(0); 5246 if (OpOp.getValueType() == VT) { 5247 transferDbgValues(Operand, OpOp); 5248 return OpOp; 5249 } 5250 } 5251 break; 5252 case ISD::TRUNCATE: 5253 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5254 "Invalid TRUNCATE!"); 5255 assert(VT.isVector() == Operand.getValueType().isVector() && 5256 "TRUNCATE result type type should be vector iff the operand " 5257 "type is vector!"); 5258 if (Operand.getValueType() == VT) return Operand; // noop truncate 5259 assert((!VT.isVector() || 5260 VT.getVectorElementCount() == 5261 Operand.getValueType().getVectorElementCount()) && 5262 "Vector element count mismatch!"); 5263 assert(Operand.getValueType().bitsGT(VT) && 5264 "Invalid truncate node, src < dst!"); 5265 if (OpOpcode == ISD::TRUNCATE) 5266 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5267 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5268 OpOpcode == ISD::ANY_EXTEND) { 5269 // If the source is smaller than the dest, we still need an extend. 5270 if (Operand.getOperand(0).getValueType().getScalarType() 5271 .bitsLT(VT.getScalarType())) 5272 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5273 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5274 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5275 return Operand.getOperand(0); 5276 } 5277 if (OpOpcode == ISD::UNDEF) 5278 return getUNDEF(VT); 5279 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5280 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5281 break; 5282 case ISD::ANY_EXTEND_VECTOR_INREG: 5283 case ISD::ZERO_EXTEND_VECTOR_INREG: 5284 case ISD::SIGN_EXTEND_VECTOR_INREG: 5285 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5286 assert(Operand.getValueType().bitsLE(VT) && 5287 "The input must be the same size or smaller than the result."); 5288 assert(VT.getVectorMinNumElements() < 5289 Operand.getValueType().getVectorMinNumElements() && 5290 "The destination vector type must have fewer lanes than the input."); 5291 break; 5292 case ISD::ABS: 5293 assert(VT.isInteger() && VT == Operand.getValueType() && 5294 "Invalid ABS!"); 5295 if (OpOpcode == ISD::UNDEF) 5296 return getConstant(0, DL, VT); 5297 break; 5298 case ISD::BSWAP: 5299 assert(VT.isInteger() && VT == Operand.getValueType() && 5300 "Invalid BSWAP!"); 5301 assert((VT.getScalarSizeInBits() % 16 == 0) && 5302 "BSWAP types must be a multiple of 16 bits!"); 5303 if (OpOpcode == ISD::UNDEF) 5304 return getUNDEF(VT); 5305 // bswap(bswap(X)) -> X. 5306 if (OpOpcode == ISD::BSWAP) 5307 return Operand.getOperand(0); 5308 break; 5309 case ISD::BITREVERSE: 5310 assert(VT.isInteger() && VT == Operand.getValueType() && 5311 "Invalid BITREVERSE!"); 5312 if (OpOpcode == ISD::UNDEF) 5313 return getUNDEF(VT); 5314 break; 5315 case ISD::BITCAST: 5316 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5317 "Cannot BITCAST between types of different sizes!"); 5318 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5319 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5320 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5321 if (OpOpcode == ISD::UNDEF) 5322 return getUNDEF(VT); 5323 break; 5324 case ISD::SCALAR_TO_VECTOR: 5325 assert(VT.isVector() && !Operand.getValueType().isVector() && 5326 (VT.getVectorElementType() == Operand.getValueType() || 5327 (VT.getVectorElementType().isInteger() && 5328 Operand.getValueType().isInteger() && 5329 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5330 "Illegal SCALAR_TO_VECTOR node!"); 5331 if (OpOpcode == ISD::UNDEF) 5332 return getUNDEF(VT); 5333 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5334 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5335 isa<ConstantSDNode>(Operand.getOperand(1)) && 5336 Operand.getConstantOperandVal(1) == 0 && 5337 Operand.getOperand(0).getValueType() == VT) 5338 return Operand.getOperand(0); 5339 break; 5340 case ISD::FNEG: 5341 // Negation of an unknown bag of bits is still completely undefined. 5342 if (OpOpcode == ISD::UNDEF) 5343 return getUNDEF(VT); 5344 5345 if (OpOpcode == ISD::FNEG) // --X -> X 5346 return Operand.getOperand(0); 5347 break; 5348 case ISD::FABS: 5349 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5350 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5351 break; 5352 case ISD::VSCALE: 5353 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5354 break; 5355 case ISD::CTPOP: 5356 if (Operand.getValueType().getScalarType() == MVT::i1) 5357 return Operand; 5358 break; 5359 case ISD::CTLZ: 5360 case ISD::CTTZ: 5361 if (Operand.getValueType().getScalarType() == MVT::i1) 5362 return getNOT(DL, Operand, Operand.getValueType()); 5363 break; 5364 case ISD::VECREDUCE_ADD: 5365 if (Operand.getValueType().getScalarType() == MVT::i1) 5366 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5367 break; 5368 case ISD::VECREDUCE_SMIN: 5369 case ISD::VECREDUCE_UMAX: 5370 if (Operand.getValueType().getScalarType() == MVT::i1) 5371 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5372 break; 5373 case ISD::VECREDUCE_SMAX: 5374 case ISD::VECREDUCE_UMIN: 5375 if (Operand.getValueType().getScalarType() == MVT::i1) 5376 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5377 break; 5378 } 5379 5380 SDNode *N; 5381 SDVTList VTs = getVTList(VT); 5382 SDValue Ops[] = {Operand}; 5383 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5384 FoldingSetNodeID ID; 5385 AddNodeIDNode(ID, Opcode, VTs, Ops); 5386 void *IP = nullptr; 5387 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5388 E->intersectFlagsWith(Flags); 5389 return SDValue(E, 0); 5390 } 5391 5392 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5393 N->setFlags(Flags); 5394 createOperands(N, Ops); 5395 CSEMap.InsertNode(N, IP); 5396 } else { 5397 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5398 createOperands(N, Ops); 5399 } 5400 5401 InsertNode(N); 5402 SDValue V = SDValue(N, 0); 5403 NewSDValueDbgMsg(V, "Creating new node: ", this); 5404 return V; 5405 } 5406 5407 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5408 const APInt &C2) { 5409 switch (Opcode) { 5410 case ISD::ADD: return C1 + C2; 5411 case ISD::SUB: return C1 - C2; 5412 case ISD::MUL: return C1 * C2; 5413 case ISD::AND: return C1 & C2; 5414 case ISD::OR: return C1 | C2; 5415 case ISD::XOR: return C1 ^ C2; 5416 case ISD::SHL: return C1 << C2; 5417 case ISD::SRL: return C1.lshr(C2); 5418 case ISD::SRA: return C1.ashr(C2); 5419 case ISD::ROTL: return C1.rotl(C2); 5420 case ISD::ROTR: return C1.rotr(C2); 5421 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5422 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5423 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5424 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5425 case ISD::SADDSAT: return C1.sadd_sat(C2); 5426 case ISD::UADDSAT: return C1.uadd_sat(C2); 5427 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5428 case ISD::USUBSAT: return C1.usub_sat(C2); 5429 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5430 case ISD::USHLSAT: return C1.ushl_sat(C2); 5431 case ISD::UDIV: 5432 if (!C2.getBoolValue()) 5433 break; 5434 return C1.udiv(C2); 5435 case ISD::UREM: 5436 if (!C2.getBoolValue()) 5437 break; 5438 return C1.urem(C2); 5439 case ISD::SDIV: 5440 if (!C2.getBoolValue()) 5441 break; 5442 return C1.sdiv(C2); 5443 case ISD::SREM: 5444 if (!C2.getBoolValue()) 5445 break; 5446 return C1.srem(C2); 5447 case ISD::MULHS: { 5448 unsigned FullWidth = C1.getBitWidth() * 2; 5449 APInt C1Ext = C1.sext(FullWidth); 5450 APInt C2Ext = C2.sext(FullWidth); 5451 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5452 } 5453 case ISD::MULHU: { 5454 unsigned FullWidth = C1.getBitWidth() * 2; 5455 APInt C1Ext = C1.zext(FullWidth); 5456 APInt C2Ext = C2.zext(FullWidth); 5457 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5458 } 5459 case ISD::AVGFLOORS: { 5460 unsigned FullWidth = C1.getBitWidth() + 1; 5461 APInt C1Ext = C1.sext(FullWidth); 5462 APInt C2Ext = C2.sext(FullWidth); 5463 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5464 } 5465 case ISD::AVGFLOORU: { 5466 unsigned FullWidth = C1.getBitWidth() + 1; 5467 APInt C1Ext = C1.zext(FullWidth); 5468 APInt C2Ext = C2.zext(FullWidth); 5469 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5470 } 5471 case ISD::AVGCEILS: { 5472 unsigned FullWidth = C1.getBitWidth() + 1; 5473 APInt C1Ext = C1.sext(FullWidth); 5474 APInt C2Ext = C2.sext(FullWidth); 5475 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5476 } 5477 case ISD::AVGCEILU: { 5478 unsigned FullWidth = C1.getBitWidth() + 1; 5479 APInt C1Ext = C1.zext(FullWidth); 5480 APInt C2Ext = C2.zext(FullWidth); 5481 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5482 } 5483 } 5484 return llvm::None; 5485 } 5486 5487 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5488 const GlobalAddressSDNode *GA, 5489 const SDNode *N2) { 5490 if (GA->getOpcode() != ISD::GlobalAddress) 5491 return SDValue(); 5492 if (!TLI->isOffsetFoldingLegal(GA)) 5493 return SDValue(); 5494 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5495 if (!C2) 5496 return SDValue(); 5497 int64_t Offset = C2->getSExtValue(); 5498 switch (Opcode) { 5499 case ISD::ADD: break; 5500 case ISD::SUB: Offset = -uint64_t(Offset); break; 5501 default: return SDValue(); 5502 } 5503 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5504 GA->getOffset() + uint64_t(Offset)); 5505 } 5506 5507 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5508 switch (Opcode) { 5509 case ISD::SDIV: 5510 case ISD::UDIV: 5511 case ISD::SREM: 5512 case ISD::UREM: { 5513 // If a divisor is zero/undef or any element of a divisor vector is 5514 // zero/undef, the whole op is undef. 5515 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5516 SDValue Divisor = Ops[1]; 5517 if (Divisor.isUndef() || isNullConstant(Divisor)) 5518 return true; 5519 5520 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5521 llvm::any_of(Divisor->op_values(), 5522 [](SDValue V) { return V.isUndef() || 5523 isNullConstant(V); }); 5524 // TODO: Handle signed overflow. 5525 } 5526 // TODO: Handle oversized shifts. 5527 default: 5528 return false; 5529 } 5530 } 5531 5532 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5533 EVT VT, ArrayRef<SDValue> Ops) { 5534 // If the opcode is a target-specific ISD node, there's nothing we can 5535 // do here and the operand rules may not line up with the below, so 5536 // bail early. 5537 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5538 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5539 // foldCONCAT_VECTORS in getNode before this is called. 5540 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5541 return SDValue(); 5542 5543 unsigned NumOps = Ops.size(); 5544 if (NumOps == 0) 5545 return SDValue(); 5546 5547 if (isUndef(Opcode, Ops)) 5548 return getUNDEF(VT); 5549 5550 // Handle binops special cases. 5551 if (NumOps == 2) { 5552 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5553 return CFP; 5554 5555 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5556 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5557 if (C1->isOpaque() || C2->isOpaque()) 5558 return SDValue(); 5559 5560 Optional<APInt> FoldAttempt = 5561 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5562 if (!FoldAttempt) 5563 return SDValue(); 5564 5565 SDValue Folded = getConstant(*FoldAttempt, DL, VT); 5566 assert((!Folded || !VT.isVector()) && 5567 "Can't fold vectors ops with scalar operands"); 5568 return Folded; 5569 } 5570 } 5571 5572 // fold (add Sym, c) -> Sym+c 5573 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5574 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5575 if (TLI->isCommutativeBinOp(Opcode)) 5576 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5577 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5578 } 5579 5580 // This is for vector folding only from here on. 5581 if (!VT.isVector()) 5582 return SDValue(); 5583 5584 ElementCount NumElts = VT.getVectorElementCount(); 5585 5586 // See if we can fold through bitcasted integer ops. 5587 // TODO: Can we handle undef elements? 5588 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5589 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5590 Ops[0].getOpcode() == ISD::BITCAST && 5591 Ops[1].getOpcode() == ISD::BITCAST) { 5592 SDValue N1 = peekThroughBitcasts(Ops[0]); 5593 SDValue N2 = peekThroughBitcasts(Ops[1]); 5594 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5595 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5596 EVT BVVT = N1.getValueType(); 5597 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5598 bool IsLE = getDataLayout().isLittleEndian(); 5599 unsigned EltBits = VT.getScalarSizeInBits(); 5600 SmallVector<APInt> RawBits1, RawBits2; 5601 BitVector UndefElts1, UndefElts2; 5602 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5603 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5604 UndefElts1.none() && UndefElts2.none()) { 5605 SmallVector<APInt> RawBits; 5606 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5607 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5608 if (!Fold) 5609 break; 5610 RawBits.push_back(*Fold); 5611 } 5612 if (RawBits.size() == NumElts.getFixedValue()) { 5613 // We have constant folded, but we need to cast this again back to 5614 // the original (possibly legalized) type. 5615 SmallVector<APInt> DstBits; 5616 BitVector DstUndefs; 5617 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5618 DstBits, RawBits, DstUndefs, 5619 BitVector(RawBits.size(), false)); 5620 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5621 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5622 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5623 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5624 if (DstUndefs[I]) 5625 continue; 5626 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5627 } 5628 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5629 } 5630 } 5631 } 5632 } 5633 5634 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5635 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5636 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5637 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5638 APInt RHSVal; 5639 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5640 APInt NewStep = Opcode == ISD::MUL 5641 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5642 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5643 return getStepVector(DL, VT, NewStep); 5644 } 5645 } 5646 5647 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5648 return !Op.getValueType().isVector() || 5649 Op.getValueType().getVectorElementCount() == NumElts; 5650 }; 5651 5652 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5653 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5654 Op.getOpcode() == ISD::BUILD_VECTOR || 5655 Op.getOpcode() == ISD::SPLAT_VECTOR; 5656 }; 5657 5658 // All operands must be vector types with the same number of elements as 5659 // the result type and must be either UNDEF or a build/splat vector 5660 // or UNDEF scalars. 5661 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5662 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5663 return SDValue(); 5664 5665 // If we are comparing vectors, then the result needs to be a i1 boolean that 5666 // is then extended back to the legal result type depending on how booleans 5667 // are represented. 5668 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5669 ISD::NodeType ExtendCode = 5670 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5671 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5672 : ISD::SIGN_EXTEND; 5673 5674 // Find legal integer scalar type for constant promotion and 5675 // ensure that its scalar size is at least as large as source. 5676 EVT LegalSVT = VT.getScalarType(); 5677 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5678 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5679 if (LegalSVT.bitsLT(VT.getScalarType())) 5680 return SDValue(); 5681 } 5682 5683 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5684 // only have one operand to check. For fixed-length vector types we may have 5685 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5686 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5687 5688 // Constant fold each scalar lane separately. 5689 SmallVector<SDValue, 4> ScalarResults; 5690 for (unsigned I = 0; I != NumVectorElts; I++) { 5691 SmallVector<SDValue, 4> ScalarOps; 5692 for (SDValue Op : Ops) { 5693 EVT InSVT = Op.getValueType().getScalarType(); 5694 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5695 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5696 if (Op.isUndef()) 5697 ScalarOps.push_back(getUNDEF(InSVT)); 5698 else 5699 ScalarOps.push_back(Op); 5700 continue; 5701 } 5702 5703 SDValue ScalarOp = 5704 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5705 EVT ScalarVT = ScalarOp.getValueType(); 5706 5707 // Build vector (integer) scalar operands may need implicit 5708 // truncation - do this before constant folding. 5709 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5710 // Don't create illegally-typed nodes unless they're constants or undef 5711 // - if we fail to constant fold we can't guarantee the (dead) nodes 5712 // we're creating will be cleaned up before being visited for 5713 // legalization. 5714 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5715 !isa<ConstantSDNode>(ScalarOp) && 5716 TLI->getTypeAction(*getContext(), InSVT) != 5717 TargetLowering::TypeLegal) 5718 return SDValue(); 5719 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5720 } 5721 5722 ScalarOps.push_back(ScalarOp); 5723 } 5724 5725 // Constant fold the scalar operands. 5726 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5727 5728 // Legalize the (integer) scalar constant if necessary. 5729 if (LegalSVT != SVT) 5730 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5731 5732 // Scalar folding only succeeded if the result is a constant or UNDEF. 5733 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5734 ScalarResult.getOpcode() != ISD::ConstantFP) 5735 return SDValue(); 5736 ScalarResults.push_back(ScalarResult); 5737 } 5738 5739 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5740 : getBuildVector(VT, DL, ScalarResults); 5741 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5742 return V; 5743 } 5744 5745 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5746 EVT VT, SDValue N1, SDValue N2) { 5747 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5748 // should. That will require dealing with a potentially non-default 5749 // rounding mode, checking the "opStatus" return value from the APFloat 5750 // math calculations, and possibly other variations. 5751 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5752 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5753 if (N1CFP && N2CFP) { 5754 APFloat C1 = N1CFP->getValueAPF(); // make copy 5755 const APFloat &C2 = N2CFP->getValueAPF(); 5756 switch (Opcode) { 5757 case ISD::FADD: 5758 C1.add(C2, APFloat::rmNearestTiesToEven); 5759 return getConstantFP(C1, DL, VT); 5760 case ISD::FSUB: 5761 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5762 return getConstantFP(C1, DL, VT); 5763 case ISD::FMUL: 5764 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5765 return getConstantFP(C1, DL, VT); 5766 case ISD::FDIV: 5767 C1.divide(C2, APFloat::rmNearestTiesToEven); 5768 return getConstantFP(C1, DL, VT); 5769 case ISD::FREM: 5770 C1.mod(C2); 5771 return getConstantFP(C1, DL, VT); 5772 case ISD::FCOPYSIGN: 5773 C1.copySign(C2); 5774 return getConstantFP(C1, DL, VT); 5775 case ISD::FMINNUM: 5776 return getConstantFP(minnum(C1, C2), DL, VT); 5777 case ISD::FMAXNUM: 5778 return getConstantFP(maxnum(C1, C2), DL, VT); 5779 case ISD::FMINIMUM: 5780 return getConstantFP(minimum(C1, C2), DL, VT); 5781 case ISD::FMAXIMUM: 5782 return getConstantFP(maximum(C1, C2), DL, VT); 5783 default: break; 5784 } 5785 } 5786 if (N1CFP && Opcode == ISD::FP_ROUND) { 5787 APFloat C1 = N1CFP->getValueAPF(); // make copy 5788 bool Unused; 5789 // This can return overflow, underflow, or inexact; we don't care. 5790 // FIXME need to be more flexible about rounding mode. 5791 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5792 &Unused); 5793 return getConstantFP(C1, DL, VT); 5794 } 5795 5796 switch (Opcode) { 5797 case ISD::FSUB: 5798 // -0.0 - undef --> undef (consistent with "fneg undef") 5799 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5800 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5801 return getUNDEF(VT); 5802 LLVM_FALLTHROUGH; 5803 5804 case ISD::FADD: 5805 case ISD::FMUL: 5806 case ISD::FDIV: 5807 case ISD::FREM: 5808 // If both operands are undef, the result is undef. If 1 operand is undef, 5809 // the result is NaN. This should match the behavior of the IR optimizer. 5810 if (N1.isUndef() && N2.isUndef()) 5811 return getUNDEF(VT); 5812 if (N1.isUndef() || N2.isUndef()) 5813 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5814 } 5815 return SDValue(); 5816 } 5817 5818 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5819 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5820 5821 // There's no need to assert on a byte-aligned pointer. All pointers are at 5822 // least byte aligned. 5823 if (A == Align(1)) 5824 return Val; 5825 5826 FoldingSetNodeID ID; 5827 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5828 ID.AddInteger(A.value()); 5829 5830 void *IP = nullptr; 5831 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5832 return SDValue(E, 0); 5833 5834 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5835 Val.getValueType(), A); 5836 createOperands(N, {Val}); 5837 5838 CSEMap.InsertNode(N, IP); 5839 InsertNode(N); 5840 5841 SDValue V(N, 0); 5842 NewSDValueDbgMsg(V, "Creating new node: ", this); 5843 return V; 5844 } 5845 5846 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5847 SDValue N1, SDValue N2) { 5848 SDNodeFlags Flags; 5849 if (Inserter) 5850 Flags = Inserter->getFlags(); 5851 return getNode(Opcode, DL, VT, N1, N2, Flags); 5852 } 5853 5854 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5855 SDValue &N2) const { 5856 if (!TLI->isCommutativeBinOp(Opcode)) 5857 return; 5858 5859 // Canonicalize: 5860 // binop(const, nonconst) -> binop(nonconst, const) 5861 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5862 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5863 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5864 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5865 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5866 std::swap(N1, N2); 5867 5868 // Canonicalize: 5869 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5870 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5871 N2.getOpcode() == ISD::STEP_VECTOR) 5872 std::swap(N1, N2); 5873 } 5874 5875 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5876 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5877 assert(N1.getOpcode() != ISD::DELETED_NODE && 5878 N2.getOpcode() != ISD::DELETED_NODE && 5879 "Operand is DELETED_NODE!"); 5880 5881 canonicalizeCommutativeBinop(Opcode, N1, N2); 5882 5883 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5884 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5885 5886 // Don't allow undefs in vector splats - we might be returning N2 when folding 5887 // to zero etc. 5888 ConstantSDNode *N2CV = 5889 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5890 5891 switch (Opcode) { 5892 default: break; 5893 case ISD::TokenFactor: 5894 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5895 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5896 // Fold trivial token factors. 5897 if (N1.getOpcode() == ISD::EntryToken) return N2; 5898 if (N2.getOpcode() == ISD::EntryToken) return N1; 5899 if (N1 == N2) return N1; 5900 break; 5901 case ISD::BUILD_VECTOR: { 5902 // Attempt to simplify BUILD_VECTOR. 5903 SDValue Ops[] = {N1, N2}; 5904 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5905 return V; 5906 break; 5907 } 5908 case ISD::CONCAT_VECTORS: { 5909 SDValue Ops[] = {N1, N2}; 5910 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5911 return V; 5912 break; 5913 } 5914 case ISD::AND: 5915 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5916 assert(N1.getValueType() == N2.getValueType() && 5917 N1.getValueType() == VT && "Binary operator types must match!"); 5918 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5919 // worth handling here. 5920 if (N2CV && N2CV->isZero()) 5921 return N2; 5922 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5923 return N1; 5924 break; 5925 case ISD::OR: 5926 case ISD::XOR: 5927 case ISD::ADD: 5928 case ISD::SUB: 5929 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5930 assert(N1.getValueType() == N2.getValueType() && 5931 N1.getValueType() == VT && "Binary operator types must match!"); 5932 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5933 // it's worth handling here. 5934 if (N2CV && N2CV->isZero()) 5935 return N1; 5936 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5937 VT.getVectorElementType() == MVT::i1) 5938 return getNode(ISD::XOR, DL, VT, N1, N2); 5939 break; 5940 case ISD::MUL: 5941 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5942 assert(N1.getValueType() == N2.getValueType() && 5943 N1.getValueType() == VT && "Binary operator types must match!"); 5944 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5945 return getNode(ISD::AND, DL, VT, N1, N2); 5946 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5947 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5948 const APInt &N2CImm = N2C->getAPIntValue(); 5949 return getVScale(DL, VT, MulImm * N2CImm); 5950 } 5951 break; 5952 case ISD::UDIV: 5953 case ISD::UREM: 5954 case ISD::MULHU: 5955 case ISD::MULHS: 5956 case ISD::SDIV: 5957 case ISD::SREM: 5958 case ISD::SADDSAT: 5959 case ISD::SSUBSAT: 5960 case ISD::UADDSAT: 5961 case ISD::USUBSAT: 5962 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5963 assert(N1.getValueType() == N2.getValueType() && 5964 N1.getValueType() == VT && "Binary operator types must match!"); 5965 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5966 // fold (add_sat x, y) -> (or x, y) for bool types. 5967 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5968 return getNode(ISD::OR, DL, VT, N1, N2); 5969 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5970 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5971 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5972 } 5973 break; 5974 case ISD::SMIN: 5975 case ISD::UMAX: 5976 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5977 assert(N1.getValueType() == N2.getValueType() && 5978 N1.getValueType() == VT && "Binary operator types must match!"); 5979 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5980 return getNode(ISD::OR, DL, VT, N1, N2); 5981 break; 5982 case ISD::SMAX: 5983 case ISD::UMIN: 5984 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5985 assert(N1.getValueType() == N2.getValueType() && 5986 N1.getValueType() == VT && "Binary operator types must match!"); 5987 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5988 return getNode(ISD::AND, DL, VT, N1, N2); 5989 break; 5990 case ISD::FADD: 5991 case ISD::FSUB: 5992 case ISD::FMUL: 5993 case ISD::FDIV: 5994 case ISD::FREM: 5995 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5996 assert(N1.getValueType() == N2.getValueType() && 5997 N1.getValueType() == VT && "Binary operator types must match!"); 5998 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5999 return V; 6000 break; 6001 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 6002 assert(N1.getValueType() == VT && 6003 N1.getValueType().isFloatingPoint() && 6004 N2.getValueType().isFloatingPoint() && 6005 "Invalid FCOPYSIGN!"); 6006 break; 6007 case ISD::SHL: 6008 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 6009 const APInt &MulImm = N1->getConstantOperandAPInt(0); 6010 const APInt &ShiftImm = N2C->getAPIntValue(); 6011 return getVScale(DL, VT, MulImm << ShiftImm); 6012 } 6013 LLVM_FALLTHROUGH; 6014 case ISD::SRA: 6015 case ISD::SRL: 6016 if (SDValue V = simplifyShift(N1, N2)) 6017 return V; 6018 LLVM_FALLTHROUGH; 6019 case ISD::ROTL: 6020 case ISD::ROTR: 6021 assert(VT == N1.getValueType() && 6022 "Shift operators return type must be the same as their first arg"); 6023 assert(VT.isInteger() && N2.getValueType().isInteger() && 6024 "Shifts only work on integers"); 6025 assert((!VT.isVector() || VT == N2.getValueType()) && 6026 "Vector shift amounts must be in the same as their first arg"); 6027 // Verify that the shift amount VT is big enough to hold valid shift 6028 // amounts. This catches things like trying to shift an i1024 value by an 6029 // i8, which is easy to fall into in generic code that uses 6030 // TLI.getShiftAmount(). 6031 assert(N2.getValueType().getScalarSizeInBits() >= 6032 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6033 "Invalid use of small shift amount with oversized value!"); 6034 6035 // Always fold shifts of i1 values so the code generator doesn't need to 6036 // handle them. Since we know the size of the shift has to be less than the 6037 // size of the value, the shift/rotate count is guaranteed to be zero. 6038 if (VT == MVT::i1) 6039 return N1; 6040 if (N2CV && N2CV->isZero()) 6041 return N1; 6042 break; 6043 case ISD::FP_ROUND: 6044 assert(VT.isFloatingPoint() && 6045 N1.getValueType().isFloatingPoint() && 6046 VT.bitsLE(N1.getValueType()) && 6047 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6048 "Invalid FP_ROUND!"); 6049 if (N1.getValueType() == VT) return N1; // noop conversion. 6050 break; 6051 case ISD::AssertSext: 6052 case ISD::AssertZext: { 6053 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6054 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6055 assert(VT.isInteger() && EVT.isInteger() && 6056 "Cannot *_EXTEND_INREG FP types"); 6057 assert(!EVT.isVector() && 6058 "AssertSExt/AssertZExt type should be the vector element type " 6059 "rather than the vector type!"); 6060 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6061 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6062 break; 6063 } 6064 case ISD::SIGN_EXTEND_INREG: { 6065 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6066 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6067 assert(VT.isInteger() && EVT.isInteger() && 6068 "Cannot *_EXTEND_INREG FP types"); 6069 assert(EVT.isVector() == VT.isVector() && 6070 "SIGN_EXTEND_INREG type should be vector iff the operand " 6071 "type is vector!"); 6072 assert((!EVT.isVector() || 6073 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6074 "Vector element counts must match in SIGN_EXTEND_INREG"); 6075 assert(EVT.bitsLE(VT) && "Not extending!"); 6076 if (EVT == VT) return N1; // Not actually extending 6077 6078 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6079 unsigned FromBits = EVT.getScalarSizeInBits(); 6080 Val <<= Val.getBitWidth() - FromBits; 6081 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6082 return getConstant(Val, DL, ConstantVT); 6083 }; 6084 6085 if (N1C) { 6086 const APInt &Val = N1C->getAPIntValue(); 6087 return SignExtendInReg(Val, VT); 6088 } 6089 6090 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6091 SmallVector<SDValue, 8> Ops; 6092 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6093 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6094 SDValue Op = N1.getOperand(i); 6095 if (Op.isUndef()) { 6096 Ops.push_back(getUNDEF(OpVT)); 6097 continue; 6098 } 6099 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6100 APInt Val = C->getAPIntValue(); 6101 Ops.push_back(SignExtendInReg(Val, OpVT)); 6102 } 6103 return getBuildVector(VT, DL, Ops); 6104 } 6105 break; 6106 } 6107 case ISD::FP_TO_SINT_SAT: 6108 case ISD::FP_TO_UINT_SAT: { 6109 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6110 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6111 assert(N1.getValueType().isVector() == VT.isVector() && 6112 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6113 "vector!"); 6114 assert((!VT.isVector() || VT.getVectorNumElements() == 6115 N1.getValueType().getVectorNumElements()) && 6116 "Vector element counts must match in FP_TO_*INT_SAT"); 6117 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6118 "Type to saturate to must be a scalar."); 6119 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6120 "Not extending!"); 6121 break; 6122 } 6123 case ISD::EXTRACT_VECTOR_ELT: 6124 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6125 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6126 element type of the vector."); 6127 6128 // Extract from an undefined value or using an undefined index is undefined. 6129 if (N1.isUndef() || N2.isUndef()) 6130 return getUNDEF(VT); 6131 6132 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6133 // vectors. For scalable vectors we will provide appropriate support for 6134 // dealing with arbitrary indices. 6135 if (N2C && N1.getValueType().isFixedLengthVector() && 6136 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6137 return getUNDEF(VT); 6138 6139 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6140 // expanding copies of large vectors from registers. This only works for 6141 // fixed length vectors, since we need to know the exact number of 6142 // elements. 6143 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6144 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6145 unsigned Factor = 6146 N1.getOperand(0).getValueType().getVectorNumElements(); 6147 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6148 N1.getOperand(N2C->getZExtValue() / Factor), 6149 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6150 } 6151 6152 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6153 // lowering is expanding large vector constants. 6154 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6155 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6156 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6157 N1.getValueType().isFixedLengthVector()) && 6158 "BUILD_VECTOR used for scalable vectors"); 6159 unsigned Index = 6160 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6161 SDValue Elt = N1.getOperand(Index); 6162 6163 if (VT != Elt.getValueType()) 6164 // If the vector element type is not legal, the BUILD_VECTOR operands 6165 // are promoted and implicitly truncated, and the result implicitly 6166 // extended. Make that explicit here. 6167 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6168 6169 return Elt; 6170 } 6171 6172 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6173 // operations are lowered to scalars. 6174 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6175 // If the indices are the same, return the inserted element else 6176 // if the indices are known different, extract the element from 6177 // the original vector. 6178 SDValue N1Op2 = N1.getOperand(2); 6179 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6180 6181 if (N1Op2C && N2C) { 6182 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6183 if (VT == N1.getOperand(1).getValueType()) 6184 return N1.getOperand(1); 6185 if (VT.isFloatingPoint()) { 6186 assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits()); 6187 return getFPExtendOrRound(N1.getOperand(1), DL, VT); 6188 } 6189 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6190 } 6191 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6192 } 6193 } 6194 6195 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6196 // when vector types are scalarized and v1iX is legal. 6197 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6198 // Here we are completely ignoring the extract element index (N2), 6199 // which is fine for fixed width vectors, since any index other than 0 6200 // is undefined anyway. However, this cannot be ignored for scalable 6201 // vectors - in theory we could support this, but we don't want to do this 6202 // without a profitability check. 6203 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6204 N1.getValueType().isFixedLengthVector() && 6205 N1.getValueType().getVectorNumElements() == 1) { 6206 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6207 N1.getOperand(1)); 6208 } 6209 break; 6210 case ISD::EXTRACT_ELEMENT: 6211 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6212 assert(!N1.getValueType().isVector() && !VT.isVector() && 6213 (N1.getValueType().isInteger() == VT.isInteger()) && 6214 N1.getValueType() != VT && 6215 "Wrong types for EXTRACT_ELEMENT!"); 6216 6217 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6218 // 64-bit integers into 32-bit parts. Instead of building the extract of 6219 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6220 if (N1.getOpcode() == ISD::BUILD_PAIR) 6221 return N1.getOperand(N2C->getZExtValue()); 6222 6223 // EXTRACT_ELEMENT of a constant int is also very common. 6224 if (N1C) { 6225 unsigned ElementSize = VT.getSizeInBits(); 6226 unsigned Shift = ElementSize * N2C->getZExtValue(); 6227 const APInt &Val = N1C->getAPIntValue(); 6228 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6229 } 6230 break; 6231 case ISD::EXTRACT_SUBVECTOR: { 6232 EVT N1VT = N1.getValueType(); 6233 assert(VT.isVector() && N1VT.isVector() && 6234 "Extract subvector VTs must be vectors!"); 6235 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6236 "Extract subvector VTs must have the same element type!"); 6237 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6238 "Cannot extract a scalable vector from a fixed length vector!"); 6239 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6240 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6241 "Extract subvector must be from larger vector to smaller vector!"); 6242 assert(N2C && "Extract subvector index must be a constant"); 6243 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6244 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6245 N1VT.getVectorMinNumElements()) && 6246 "Extract subvector overflow!"); 6247 assert(N2C->getAPIntValue().getBitWidth() == 6248 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6249 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6250 6251 // Trivial extraction. 6252 if (VT == N1VT) 6253 return N1; 6254 6255 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6256 if (N1.isUndef()) 6257 return getUNDEF(VT); 6258 6259 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6260 // the concat have the same type as the extract. 6261 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6262 VT == N1.getOperand(0).getValueType()) { 6263 unsigned Factor = VT.getVectorMinNumElements(); 6264 return N1.getOperand(N2C->getZExtValue() / Factor); 6265 } 6266 6267 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6268 // during shuffle legalization. 6269 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6270 VT == N1.getOperand(1).getValueType()) 6271 return N1.getOperand(1); 6272 break; 6273 } 6274 } 6275 6276 // Perform trivial constant folding. 6277 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6278 return SV; 6279 6280 // Canonicalize an UNDEF to the RHS, even over a constant. 6281 if (N1.isUndef()) { 6282 if (TLI->isCommutativeBinOp(Opcode)) { 6283 std::swap(N1, N2); 6284 } else { 6285 switch (Opcode) { 6286 case ISD::SUB: 6287 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6288 case ISD::SIGN_EXTEND_INREG: 6289 case ISD::UDIV: 6290 case ISD::SDIV: 6291 case ISD::UREM: 6292 case ISD::SREM: 6293 case ISD::SSUBSAT: 6294 case ISD::USUBSAT: 6295 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6296 } 6297 } 6298 } 6299 6300 // Fold a bunch of operators when the RHS is undef. 6301 if (N2.isUndef()) { 6302 switch (Opcode) { 6303 case ISD::XOR: 6304 if (N1.isUndef()) 6305 // Handle undef ^ undef -> 0 special case. This is a common 6306 // idiom (misuse). 6307 return getConstant(0, DL, VT); 6308 LLVM_FALLTHROUGH; 6309 case ISD::ADD: 6310 case ISD::SUB: 6311 case ISD::UDIV: 6312 case ISD::SDIV: 6313 case ISD::UREM: 6314 case ISD::SREM: 6315 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6316 case ISD::MUL: 6317 case ISD::AND: 6318 case ISD::SSUBSAT: 6319 case ISD::USUBSAT: 6320 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6321 case ISD::OR: 6322 case ISD::SADDSAT: 6323 case ISD::UADDSAT: 6324 return getAllOnesConstant(DL, VT); 6325 } 6326 } 6327 6328 // Memoize this node if possible. 6329 SDNode *N; 6330 SDVTList VTs = getVTList(VT); 6331 SDValue Ops[] = {N1, N2}; 6332 if (VT != MVT::Glue) { 6333 FoldingSetNodeID ID; 6334 AddNodeIDNode(ID, Opcode, VTs, Ops); 6335 void *IP = nullptr; 6336 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6337 E->intersectFlagsWith(Flags); 6338 return SDValue(E, 0); 6339 } 6340 6341 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6342 N->setFlags(Flags); 6343 createOperands(N, Ops); 6344 CSEMap.InsertNode(N, IP); 6345 } else { 6346 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6347 createOperands(N, Ops); 6348 } 6349 6350 InsertNode(N); 6351 SDValue V = SDValue(N, 0); 6352 NewSDValueDbgMsg(V, "Creating new node: ", this); 6353 return V; 6354 } 6355 6356 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6357 SDValue N1, SDValue N2, SDValue N3) { 6358 SDNodeFlags Flags; 6359 if (Inserter) 6360 Flags = Inserter->getFlags(); 6361 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6362 } 6363 6364 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6365 SDValue N1, SDValue N2, SDValue N3, 6366 const SDNodeFlags Flags) { 6367 assert(N1.getOpcode() != ISD::DELETED_NODE && 6368 N2.getOpcode() != ISD::DELETED_NODE && 6369 N3.getOpcode() != ISD::DELETED_NODE && 6370 "Operand is DELETED_NODE!"); 6371 // Perform various simplifications. 6372 switch (Opcode) { 6373 case ISD::FMA: { 6374 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6375 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6376 N3.getValueType() == VT && "FMA types must match!"); 6377 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6378 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6379 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6380 if (N1CFP && N2CFP && N3CFP) { 6381 APFloat V1 = N1CFP->getValueAPF(); 6382 const APFloat &V2 = N2CFP->getValueAPF(); 6383 const APFloat &V3 = N3CFP->getValueAPF(); 6384 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6385 return getConstantFP(V1, DL, VT); 6386 } 6387 break; 6388 } 6389 case ISD::BUILD_VECTOR: { 6390 // Attempt to simplify BUILD_VECTOR. 6391 SDValue Ops[] = {N1, N2, N3}; 6392 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6393 return V; 6394 break; 6395 } 6396 case ISD::CONCAT_VECTORS: { 6397 SDValue Ops[] = {N1, N2, N3}; 6398 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6399 return V; 6400 break; 6401 } 6402 case ISD::SETCC: { 6403 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6404 assert(N1.getValueType() == N2.getValueType() && 6405 "SETCC operands must have the same type!"); 6406 assert(VT.isVector() == N1.getValueType().isVector() && 6407 "SETCC type should be vector iff the operand type is vector!"); 6408 assert((!VT.isVector() || VT.getVectorElementCount() == 6409 N1.getValueType().getVectorElementCount()) && 6410 "SETCC vector element counts must match!"); 6411 // Use FoldSetCC to simplify SETCC's. 6412 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6413 return V; 6414 // Vector constant folding. 6415 SDValue Ops[] = {N1, N2, N3}; 6416 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6417 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6418 return V; 6419 } 6420 break; 6421 } 6422 case ISD::SELECT: 6423 case ISD::VSELECT: 6424 if (SDValue V = simplifySelect(N1, N2, N3)) 6425 return V; 6426 break; 6427 case ISD::VECTOR_SHUFFLE: 6428 llvm_unreachable("should use getVectorShuffle constructor!"); 6429 case ISD::VECTOR_SPLICE: { 6430 if (cast<ConstantSDNode>(N3)->isNullValue()) 6431 return N1; 6432 break; 6433 } 6434 case ISD::INSERT_VECTOR_ELT: { 6435 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6436 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6437 // for scalable vectors where we will generate appropriate code to 6438 // deal with out-of-bounds cases correctly. 6439 if (N3C && N1.getValueType().isFixedLengthVector() && 6440 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6441 return getUNDEF(VT); 6442 6443 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6444 if (N3.isUndef()) 6445 return getUNDEF(VT); 6446 6447 // If the inserted element is an UNDEF, just use the input vector. 6448 if (N2.isUndef()) 6449 return N1; 6450 6451 break; 6452 } 6453 case ISD::INSERT_SUBVECTOR: { 6454 // Inserting undef into undef is still undef. 6455 if (N1.isUndef() && N2.isUndef()) 6456 return getUNDEF(VT); 6457 6458 EVT N2VT = N2.getValueType(); 6459 assert(VT == N1.getValueType() && 6460 "Dest and insert subvector source types must match!"); 6461 assert(VT.isVector() && N2VT.isVector() && 6462 "Insert subvector VTs must be vectors!"); 6463 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6464 "Cannot insert a scalable vector into a fixed length vector!"); 6465 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6466 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6467 "Insert subvector must be from smaller vector to larger vector!"); 6468 assert(isa<ConstantSDNode>(N3) && 6469 "Insert subvector index must be constant"); 6470 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6471 (N2VT.getVectorMinNumElements() + 6472 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6473 VT.getVectorMinNumElements()) && 6474 "Insert subvector overflow!"); 6475 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6476 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6477 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6478 6479 // Trivial insertion. 6480 if (VT == N2VT) 6481 return N2; 6482 6483 // If this is an insert of an extracted vector into an undef vector, we 6484 // can just use the input to the extract. 6485 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6486 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6487 return N2.getOperand(0); 6488 break; 6489 } 6490 case ISD::BITCAST: 6491 // Fold bit_convert nodes from a type to themselves. 6492 if (N1.getValueType() == VT) 6493 return N1; 6494 break; 6495 } 6496 6497 // Memoize node if it doesn't produce a flag. 6498 SDNode *N; 6499 SDVTList VTs = getVTList(VT); 6500 SDValue Ops[] = {N1, N2, N3}; 6501 if (VT != MVT::Glue) { 6502 FoldingSetNodeID ID; 6503 AddNodeIDNode(ID, Opcode, VTs, Ops); 6504 void *IP = nullptr; 6505 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6506 E->intersectFlagsWith(Flags); 6507 return SDValue(E, 0); 6508 } 6509 6510 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6511 N->setFlags(Flags); 6512 createOperands(N, Ops); 6513 CSEMap.InsertNode(N, IP); 6514 } else { 6515 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6516 createOperands(N, Ops); 6517 } 6518 6519 InsertNode(N); 6520 SDValue V = SDValue(N, 0); 6521 NewSDValueDbgMsg(V, "Creating new node: ", this); 6522 return V; 6523 } 6524 6525 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6526 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6527 SDValue Ops[] = { N1, N2, N3, N4 }; 6528 return getNode(Opcode, DL, VT, Ops); 6529 } 6530 6531 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6532 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6533 SDValue N5) { 6534 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6535 return getNode(Opcode, DL, VT, Ops); 6536 } 6537 6538 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6539 /// the incoming stack arguments to be loaded from the stack. 6540 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6541 SmallVector<SDValue, 8> ArgChains; 6542 6543 // Include the original chain at the beginning of the list. When this is 6544 // used by target LowerCall hooks, this helps legalize find the 6545 // CALLSEQ_BEGIN node. 6546 ArgChains.push_back(Chain); 6547 6548 // Add a chain value for each stack argument. 6549 for (SDNode *U : getEntryNode().getNode()->uses()) 6550 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6551 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6552 if (FI->getIndex() < 0) 6553 ArgChains.push_back(SDValue(L, 1)); 6554 6555 // Build a tokenfactor for all the chains. 6556 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6557 } 6558 6559 /// getMemsetValue - Vectorized representation of the memset value 6560 /// operand. 6561 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6562 const SDLoc &dl) { 6563 assert(!Value.isUndef()); 6564 6565 unsigned NumBits = VT.getScalarSizeInBits(); 6566 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6567 assert(C->getAPIntValue().getBitWidth() == 8); 6568 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6569 if (VT.isInteger()) { 6570 bool IsOpaque = VT.getSizeInBits() > 64 || 6571 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6572 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6573 } 6574 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6575 VT); 6576 } 6577 6578 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6579 EVT IntVT = VT.getScalarType(); 6580 if (!IntVT.isInteger()) 6581 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6582 6583 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6584 if (NumBits > 8) { 6585 // Use a multiplication with 0x010101... to extend the input to the 6586 // required length. 6587 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6588 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6589 DAG.getConstant(Magic, dl, IntVT)); 6590 } 6591 6592 if (VT != Value.getValueType() && !VT.isInteger()) 6593 Value = DAG.getBitcast(VT.getScalarType(), Value); 6594 if (VT != Value.getValueType()) 6595 Value = DAG.getSplatBuildVector(VT, dl, Value); 6596 6597 return Value; 6598 } 6599 6600 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6601 /// used when a memcpy is turned into a memset when the source is a constant 6602 /// string ptr. 6603 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6604 const TargetLowering &TLI, 6605 const ConstantDataArraySlice &Slice) { 6606 // Handle vector with all elements zero. 6607 if (Slice.Array == nullptr) { 6608 if (VT.isInteger()) 6609 return DAG.getConstant(0, dl, VT); 6610 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6611 return DAG.getConstantFP(0.0, dl, VT); 6612 if (VT.isVector()) { 6613 unsigned NumElts = VT.getVectorNumElements(); 6614 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6615 return DAG.getNode(ISD::BITCAST, dl, VT, 6616 DAG.getConstant(0, dl, 6617 EVT::getVectorVT(*DAG.getContext(), 6618 EltVT, NumElts))); 6619 } 6620 llvm_unreachable("Expected type!"); 6621 } 6622 6623 assert(!VT.isVector() && "Can't handle vector type here!"); 6624 unsigned NumVTBits = VT.getSizeInBits(); 6625 unsigned NumVTBytes = NumVTBits / 8; 6626 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6627 6628 APInt Val(NumVTBits, 0); 6629 if (DAG.getDataLayout().isLittleEndian()) { 6630 for (unsigned i = 0; i != NumBytes; ++i) 6631 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6632 } else { 6633 for (unsigned i = 0; i != NumBytes; ++i) 6634 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6635 } 6636 6637 // If the "cost" of materializing the integer immediate is less than the cost 6638 // of a load, then it is cost effective to turn the load into the immediate. 6639 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6640 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6641 return DAG.getConstant(Val, dl, VT); 6642 return SDValue(); 6643 } 6644 6645 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6646 const SDLoc &DL, 6647 const SDNodeFlags Flags) { 6648 EVT VT = Base.getValueType(); 6649 SDValue Index; 6650 6651 if (Offset.isScalable()) 6652 Index = getVScale(DL, Base.getValueType(), 6653 APInt(Base.getValueSizeInBits().getFixedSize(), 6654 Offset.getKnownMinSize())); 6655 else 6656 Index = getConstant(Offset.getFixedSize(), DL, VT); 6657 6658 return getMemBasePlusOffset(Base, Index, DL, Flags); 6659 } 6660 6661 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6662 const SDLoc &DL, 6663 const SDNodeFlags Flags) { 6664 assert(Offset.getValueType().isInteger()); 6665 EVT BasePtrVT = Ptr.getValueType(); 6666 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6667 } 6668 6669 /// Returns true if memcpy source is constant data. 6670 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6671 uint64_t SrcDelta = 0; 6672 GlobalAddressSDNode *G = nullptr; 6673 if (Src.getOpcode() == ISD::GlobalAddress) 6674 G = cast<GlobalAddressSDNode>(Src); 6675 else if (Src.getOpcode() == ISD::ADD && 6676 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6677 Src.getOperand(1).getOpcode() == ISD::Constant) { 6678 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6679 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6680 } 6681 if (!G) 6682 return false; 6683 6684 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6685 SrcDelta + G->getOffset()); 6686 } 6687 6688 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6689 SelectionDAG &DAG) { 6690 // On Darwin, -Os means optimize for size without hurting performance, so 6691 // only really optimize for size when -Oz (MinSize) is used. 6692 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6693 return MF.getFunction().hasMinSize(); 6694 return DAG.shouldOptForSize(); 6695 } 6696 6697 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6698 SmallVector<SDValue, 32> &OutChains, unsigned From, 6699 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6700 SmallVector<SDValue, 16> &OutStoreChains) { 6701 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6702 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6703 SmallVector<SDValue, 16> GluedLoadChains; 6704 for (unsigned i = From; i < To; ++i) { 6705 OutChains.push_back(OutLoadChains[i]); 6706 GluedLoadChains.push_back(OutLoadChains[i]); 6707 } 6708 6709 // Chain for all loads. 6710 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6711 GluedLoadChains); 6712 6713 for (unsigned i = From; i < To; ++i) { 6714 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6715 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6716 ST->getBasePtr(), ST->getMemoryVT(), 6717 ST->getMemOperand()); 6718 OutChains.push_back(NewStore); 6719 } 6720 } 6721 6722 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6723 SDValue Chain, SDValue Dst, SDValue Src, 6724 uint64_t Size, Align Alignment, 6725 bool isVol, bool AlwaysInline, 6726 MachinePointerInfo DstPtrInfo, 6727 MachinePointerInfo SrcPtrInfo, 6728 const AAMDNodes &AAInfo, AAResults *AA) { 6729 // Turn a memcpy of undef to nop. 6730 // FIXME: We need to honor volatile even is Src is undef. 6731 if (Src.isUndef()) 6732 return Chain; 6733 6734 // Expand memcpy to a series of load and store ops if the size operand falls 6735 // below a certain threshold. 6736 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6737 // rather than maybe a humongous number of loads and stores. 6738 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6739 const DataLayout &DL = DAG.getDataLayout(); 6740 LLVMContext &C = *DAG.getContext(); 6741 std::vector<EVT> MemOps; 6742 bool DstAlignCanChange = false; 6743 MachineFunction &MF = DAG.getMachineFunction(); 6744 MachineFrameInfo &MFI = MF.getFrameInfo(); 6745 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6746 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6747 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6748 DstAlignCanChange = true; 6749 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6750 if (!SrcAlign || Alignment > *SrcAlign) 6751 SrcAlign = Alignment; 6752 assert(SrcAlign && "SrcAlign must be set"); 6753 ConstantDataArraySlice Slice; 6754 // If marked as volatile, perform a copy even when marked as constant. 6755 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6756 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6757 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6758 const MemOp Op = isZeroConstant 6759 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6760 /*IsZeroMemset*/ true, isVol) 6761 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6762 *SrcAlign, isVol, CopyFromConstant); 6763 if (!TLI.findOptimalMemOpLowering( 6764 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6765 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6766 return SDValue(); 6767 6768 if (DstAlignCanChange) { 6769 Type *Ty = MemOps[0].getTypeForEVT(C); 6770 Align NewAlign = DL.getABITypeAlign(Ty); 6771 6772 // Don't promote to an alignment that would require dynamic stack 6773 // realignment. 6774 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6775 if (!TRI->hasStackRealignment(MF)) 6776 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6777 NewAlign = NewAlign.previous(); 6778 6779 if (NewAlign > Alignment) { 6780 // Give the stack frame object a larger alignment if needed. 6781 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6782 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6783 Alignment = NewAlign; 6784 } 6785 } 6786 6787 // Prepare AAInfo for loads/stores after lowering this memcpy. 6788 AAMDNodes NewAAInfo = AAInfo; 6789 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6790 6791 const Value *SrcVal = SrcPtrInfo.V.dyn_cast<const Value *>(); 6792 bool isConstant = 6793 AA && SrcVal && 6794 AA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo)); 6795 6796 MachineMemOperand::Flags MMOFlags = 6797 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6798 SmallVector<SDValue, 16> OutLoadChains; 6799 SmallVector<SDValue, 16> OutStoreChains; 6800 SmallVector<SDValue, 32> OutChains; 6801 unsigned NumMemOps = MemOps.size(); 6802 uint64_t SrcOff = 0, DstOff = 0; 6803 for (unsigned i = 0; i != NumMemOps; ++i) { 6804 EVT VT = MemOps[i]; 6805 unsigned VTSize = VT.getSizeInBits() / 8; 6806 SDValue Value, Store; 6807 6808 if (VTSize > Size) { 6809 // Issuing an unaligned load / store pair that overlaps with the previous 6810 // pair. Adjust the offset accordingly. 6811 assert(i == NumMemOps-1 && i != 0); 6812 SrcOff -= VTSize - Size; 6813 DstOff -= VTSize - Size; 6814 } 6815 6816 if (CopyFromConstant && 6817 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6818 // It's unlikely a store of a vector immediate can be done in a single 6819 // instruction. It would require a load from a constantpool first. 6820 // We only handle zero vectors here. 6821 // FIXME: Handle other cases where store of vector immediate is done in 6822 // a single instruction. 6823 ConstantDataArraySlice SubSlice; 6824 if (SrcOff < Slice.Length) { 6825 SubSlice = Slice; 6826 SubSlice.move(SrcOff); 6827 } else { 6828 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6829 SubSlice.Array = nullptr; 6830 SubSlice.Offset = 0; 6831 SubSlice.Length = VTSize; 6832 } 6833 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6834 if (Value.getNode()) { 6835 Store = DAG.getStore( 6836 Chain, dl, Value, 6837 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6838 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6839 OutChains.push_back(Store); 6840 } 6841 } 6842 6843 if (!Store.getNode()) { 6844 // The type might not be legal for the target. This should only happen 6845 // if the type is smaller than a legal type, as on PPC, so the right 6846 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6847 // to Load/Store if NVT==VT. 6848 // FIXME does the case above also need this? 6849 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6850 assert(NVT.bitsGE(VT)); 6851 6852 bool isDereferenceable = 6853 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6854 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6855 if (isDereferenceable) 6856 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6857 if (isConstant) 6858 SrcMMOFlags |= MachineMemOperand::MOInvariant; 6859 6860 Value = DAG.getExtLoad( 6861 ISD::EXTLOAD, dl, NVT, Chain, 6862 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6863 SrcPtrInfo.getWithOffset(SrcOff), VT, 6864 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6865 OutLoadChains.push_back(Value.getValue(1)); 6866 6867 Store = DAG.getTruncStore( 6868 Chain, dl, Value, 6869 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6870 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6871 OutStoreChains.push_back(Store); 6872 } 6873 SrcOff += VTSize; 6874 DstOff += VTSize; 6875 Size -= VTSize; 6876 } 6877 6878 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6879 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6880 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6881 6882 if (NumLdStInMemcpy) { 6883 // It may be that memcpy might be converted to memset if it's memcpy 6884 // of constants. In such a case, we won't have loads and stores, but 6885 // just stores. In the absence of loads, there is nothing to gang up. 6886 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6887 // If target does not care, just leave as it. 6888 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6889 OutChains.push_back(OutLoadChains[i]); 6890 OutChains.push_back(OutStoreChains[i]); 6891 } 6892 } else { 6893 // Ld/St less than/equal limit set by target. 6894 if (NumLdStInMemcpy <= GluedLdStLimit) { 6895 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6896 NumLdStInMemcpy, OutLoadChains, 6897 OutStoreChains); 6898 } else { 6899 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6900 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6901 unsigned GlueIter = 0; 6902 6903 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6904 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6905 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6906 6907 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6908 OutLoadChains, OutStoreChains); 6909 GlueIter += GluedLdStLimit; 6910 } 6911 6912 // Residual ld/st. 6913 if (RemainingLdStInMemcpy) { 6914 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6915 RemainingLdStInMemcpy, OutLoadChains, 6916 OutStoreChains); 6917 } 6918 } 6919 } 6920 } 6921 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6922 } 6923 6924 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6925 SDValue Chain, SDValue Dst, SDValue Src, 6926 uint64_t Size, Align Alignment, 6927 bool isVol, bool AlwaysInline, 6928 MachinePointerInfo DstPtrInfo, 6929 MachinePointerInfo SrcPtrInfo, 6930 const AAMDNodes &AAInfo) { 6931 // Turn a memmove of undef to nop. 6932 // FIXME: We need to honor volatile even is Src is undef. 6933 if (Src.isUndef()) 6934 return Chain; 6935 6936 // Expand memmove to a series of load and store ops if the size operand falls 6937 // below a certain threshold. 6938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6939 const DataLayout &DL = DAG.getDataLayout(); 6940 LLVMContext &C = *DAG.getContext(); 6941 std::vector<EVT> MemOps; 6942 bool DstAlignCanChange = false; 6943 MachineFunction &MF = DAG.getMachineFunction(); 6944 MachineFrameInfo &MFI = MF.getFrameInfo(); 6945 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6946 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6947 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6948 DstAlignCanChange = true; 6949 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6950 if (!SrcAlign || Alignment > *SrcAlign) 6951 SrcAlign = Alignment; 6952 assert(SrcAlign && "SrcAlign must be set"); 6953 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6954 if (!TLI.findOptimalMemOpLowering( 6955 MemOps, Limit, 6956 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6957 /*IsVolatile*/ true), 6958 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6959 MF.getFunction().getAttributes())) 6960 return SDValue(); 6961 6962 if (DstAlignCanChange) { 6963 Type *Ty = MemOps[0].getTypeForEVT(C); 6964 Align NewAlign = DL.getABITypeAlign(Ty); 6965 if (NewAlign > Alignment) { 6966 // Give the stack frame object a larger alignment if needed. 6967 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6968 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6969 Alignment = NewAlign; 6970 } 6971 } 6972 6973 // Prepare AAInfo for loads/stores after lowering this memmove. 6974 AAMDNodes NewAAInfo = AAInfo; 6975 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6976 6977 MachineMemOperand::Flags MMOFlags = 6978 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6979 uint64_t SrcOff = 0, DstOff = 0; 6980 SmallVector<SDValue, 8> LoadValues; 6981 SmallVector<SDValue, 8> LoadChains; 6982 SmallVector<SDValue, 8> OutChains; 6983 unsigned NumMemOps = MemOps.size(); 6984 for (unsigned i = 0; i < NumMemOps; i++) { 6985 EVT VT = MemOps[i]; 6986 unsigned VTSize = VT.getSizeInBits() / 8; 6987 SDValue Value; 6988 6989 bool isDereferenceable = 6990 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6991 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6992 if (isDereferenceable) 6993 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6994 6995 Value = DAG.getLoad( 6996 VT, dl, Chain, 6997 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6998 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6999 LoadValues.push_back(Value); 7000 LoadChains.push_back(Value.getValue(1)); 7001 SrcOff += VTSize; 7002 } 7003 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7004 OutChains.clear(); 7005 for (unsigned i = 0; i < NumMemOps; i++) { 7006 EVT VT = MemOps[i]; 7007 unsigned VTSize = VT.getSizeInBits() / 8; 7008 SDValue Store; 7009 7010 Store = DAG.getStore( 7011 Chain, dl, LoadValues[i], 7012 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7013 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 7014 OutChains.push_back(Store); 7015 DstOff += VTSize; 7016 } 7017 7018 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7019 } 7020 7021 /// Lower the call to 'memset' intrinsic function into a series of store 7022 /// operations. 7023 /// 7024 /// \param DAG Selection DAG where lowered code is placed. 7025 /// \param dl Link to corresponding IR location. 7026 /// \param Chain Control flow dependency. 7027 /// \param Dst Pointer to destination memory location. 7028 /// \param Src Value of byte to write into the memory. 7029 /// \param Size Number of bytes to write. 7030 /// \param Alignment Alignment of the destination in bytes. 7031 /// \param isVol True if destination is volatile. 7032 /// \param AlwaysInline Makes sure no function call is generated. 7033 /// \param DstPtrInfo IR information on the memory pointer. 7034 /// \returns New head in the control flow, if lowering was successful, empty 7035 /// SDValue otherwise. 7036 /// 7037 /// The function tries to replace 'llvm.memset' intrinsic with several store 7038 /// operations and value calculation code. This is usually profitable for small 7039 /// memory size or when the semantic requires inlining. 7040 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 7041 SDValue Chain, SDValue Dst, SDValue Src, 7042 uint64_t Size, Align Alignment, bool isVol, 7043 bool AlwaysInline, MachinePointerInfo DstPtrInfo, 7044 const AAMDNodes &AAInfo) { 7045 // Turn a memset of undef to nop. 7046 // FIXME: We need to honor volatile even is Src is undef. 7047 if (Src.isUndef()) 7048 return Chain; 7049 7050 // Expand memset to a series of load/store ops if the size operand 7051 // falls below a certain threshold. 7052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7053 std::vector<EVT> MemOps; 7054 bool DstAlignCanChange = false; 7055 MachineFunction &MF = DAG.getMachineFunction(); 7056 MachineFrameInfo &MFI = MF.getFrameInfo(); 7057 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7058 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7059 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7060 DstAlignCanChange = true; 7061 bool IsZeroVal = 7062 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7063 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize); 7064 7065 if (!TLI.findOptimalMemOpLowering( 7066 MemOps, Limit, 7067 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7068 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7069 return SDValue(); 7070 7071 if (DstAlignCanChange) { 7072 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7073 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7074 if (NewAlign > Alignment) { 7075 // Give the stack frame object a larger alignment if needed. 7076 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7077 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7078 Alignment = NewAlign; 7079 } 7080 } 7081 7082 SmallVector<SDValue, 8> OutChains; 7083 uint64_t DstOff = 0; 7084 unsigned NumMemOps = MemOps.size(); 7085 7086 // Find the largest store and generate the bit pattern for it. 7087 EVT LargestVT = MemOps[0]; 7088 for (unsigned i = 1; i < NumMemOps; i++) 7089 if (MemOps[i].bitsGT(LargestVT)) 7090 LargestVT = MemOps[i]; 7091 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7092 7093 // Prepare AAInfo for loads/stores after lowering this memset. 7094 AAMDNodes NewAAInfo = AAInfo; 7095 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7096 7097 for (unsigned i = 0; i < NumMemOps; i++) { 7098 EVT VT = MemOps[i]; 7099 unsigned VTSize = VT.getSizeInBits() / 8; 7100 if (VTSize > Size) { 7101 // Issuing an unaligned load / store pair that overlaps with the previous 7102 // pair. Adjust the offset accordingly. 7103 assert(i == NumMemOps-1 && i != 0); 7104 DstOff -= VTSize - Size; 7105 } 7106 7107 // If this store is smaller than the largest store see whether we can get 7108 // the smaller value for free with a truncate. 7109 SDValue Value = MemSetValue; 7110 if (VT.bitsLT(LargestVT)) { 7111 if (!LargestVT.isVector() && !VT.isVector() && 7112 TLI.isTruncateFree(LargestVT, VT)) 7113 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7114 else 7115 Value = getMemsetValue(Src, VT, DAG, dl); 7116 } 7117 assert(Value.getValueType() == VT && "Value with wrong type."); 7118 SDValue Store = DAG.getStore( 7119 Chain, dl, Value, 7120 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7121 DstPtrInfo.getWithOffset(DstOff), Alignment, 7122 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7123 NewAAInfo); 7124 OutChains.push_back(Store); 7125 DstOff += VT.getSizeInBits() / 8; 7126 Size -= VTSize; 7127 } 7128 7129 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7130 } 7131 7132 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7133 unsigned AS) { 7134 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7135 // pointer operands can be losslessly bitcasted to pointers of address space 0 7136 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7137 report_fatal_error("cannot lower memory intrinsic in address space " + 7138 Twine(AS)); 7139 } 7140 } 7141 7142 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7143 SDValue Src, SDValue Size, Align Alignment, 7144 bool isVol, bool AlwaysInline, bool isTailCall, 7145 MachinePointerInfo DstPtrInfo, 7146 MachinePointerInfo SrcPtrInfo, 7147 const AAMDNodes &AAInfo, AAResults *AA) { 7148 // Check to see if we should lower the memcpy to loads and stores first. 7149 // For cases within the target-specified limits, this is the best choice. 7150 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7151 if (ConstantSize) { 7152 // Memcpy with size zero? Just return the original chain. 7153 if (ConstantSize->isZero()) 7154 return Chain; 7155 7156 SDValue Result = getMemcpyLoadsAndStores( 7157 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7158 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, AA); 7159 if (Result.getNode()) 7160 return Result; 7161 } 7162 7163 // Then check to see if we should lower the memcpy with target-specific 7164 // code. If the target chooses to do this, this is the next best. 7165 if (TSI) { 7166 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7167 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7168 DstPtrInfo, SrcPtrInfo); 7169 if (Result.getNode()) 7170 return Result; 7171 } 7172 7173 // If we really need inline code and the target declined to provide it, 7174 // use a (potentially long) sequence of loads and stores. 7175 if (AlwaysInline) { 7176 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7177 return getMemcpyLoadsAndStores( 7178 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7179 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, AA); 7180 } 7181 7182 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7183 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7184 7185 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7186 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7187 // respect volatile, so they may do things like read or write memory 7188 // beyond the given memory regions. But fixing this isn't easy, and most 7189 // people don't care. 7190 7191 // Emit a library call. 7192 TargetLowering::ArgListTy Args; 7193 TargetLowering::ArgListEntry Entry; 7194 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7195 Entry.Node = Dst; Args.push_back(Entry); 7196 Entry.Node = Src; Args.push_back(Entry); 7197 7198 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7199 Entry.Node = Size; Args.push_back(Entry); 7200 // FIXME: pass in SDLoc 7201 TargetLowering::CallLoweringInfo CLI(*this); 7202 CLI.setDebugLoc(dl) 7203 .setChain(Chain) 7204 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7205 Dst.getValueType().getTypeForEVT(*getContext()), 7206 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7207 TLI->getPointerTy(getDataLayout())), 7208 std::move(Args)) 7209 .setDiscardResult() 7210 .setTailCall(isTailCall); 7211 7212 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7213 return CallResult.second; 7214 } 7215 7216 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7217 SDValue Dst, SDValue Src, SDValue Size, 7218 Type *SizeTy, unsigned ElemSz, 7219 bool isTailCall, 7220 MachinePointerInfo DstPtrInfo, 7221 MachinePointerInfo SrcPtrInfo) { 7222 // Emit a library call. 7223 TargetLowering::ArgListTy Args; 7224 TargetLowering::ArgListEntry Entry; 7225 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7226 Entry.Node = Dst; 7227 Args.push_back(Entry); 7228 7229 Entry.Node = Src; 7230 Args.push_back(Entry); 7231 7232 Entry.Ty = SizeTy; 7233 Entry.Node = Size; 7234 Args.push_back(Entry); 7235 7236 RTLIB::Libcall LibraryCall = 7237 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7238 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7239 report_fatal_error("Unsupported element size"); 7240 7241 TargetLowering::CallLoweringInfo CLI(*this); 7242 CLI.setDebugLoc(dl) 7243 .setChain(Chain) 7244 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7245 Type::getVoidTy(*getContext()), 7246 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7247 TLI->getPointerTy(getDataLayout())), 7248 std::move(Args)) 7249 .setDiscardResult() 7250 .setTailCall(isTailCall); 7251 7252 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7253 return CallResult.second; 7254 } 7255 7256 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7257 SDValue Src, SDValue Size, Align Alignment, 7258 bool isVol, bool isTailCall, 7259 MachinePointerInfo DstPtrInfo, 7260 MachinePointerInfo SrcPtrInfo, 7261 const AAMDNodes &AAInfo, AAResults *AA) { 7262 // Check to see if we should lower the memmove to loads and stores first. 7263 // For cases within the target-specified limits, this is the best choice. 7264 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7265 if (ConstantSize) { 7266 // Memmove with size zero? Just return the original chain. 7267 if (ConstantSize->isZero()) 7268 return Chain; 7269 7270 SDValue Result = getMemmoveLoadsAndStores( 7271 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7272 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7273 if (Result.getNode()) 7274 return Result; 7275 } 7276 7277 // Then check to see if we should lower the memmove with target-specific 7278 // code. If the target chooses to do this, this is the next best. 7279 if (TSI) { 7280 SDValue Result = 7281 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7282 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7283 if (Result.getNode()) 7284 return Result; 7285 } 7286 7287 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7288 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7289 7290 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7291 // not be safe. See memcpy above for more details. 7292 7293 // Emit a library call. 7294 TargetLowering::ArgListTy Args; 7295 TargetLowering::ArgListEntry Entry; 7296 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7297 Entry.Node = Dst; Args.push_back(Entry); 7298 Entry.Node = Src; Args.push_back(Entry); 7299 7300 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7301 Entry.Node = Size; Args.push_back(Entry); 7302 // FIXME: pass in SDLoc 7303 TargetLowering::CallLoweringInfo CLI(*this); 7304 CLI.setDebugLoc(dl) 7305 .setChain(Chain) 7306 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7307 Dst.getValueType().getTypeForEVT(*getContext()), 7308 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7309 TLI->getPointerTy(getDataLayout())), 7310 std::move(Args)) 7311 .setDiscardResult() 7312 .setTailCall(isTailCall); 7313 7314 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7315 return CallResult.second; 7316 } 7317 7318 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7319 SDValue Dst, SDValue Src, SDValue Size, 7320 Type *SizeTy, unsigned ElemSz, 7321 bool isTailCall, 7322 MachinePointerInfo DstPtrInfo, 7323 MachinePointerInfo SrcPtrInfo) { 7324 // Emit a library call. 7325 TargetLowering::ArgListTy Args; 7326 TargetLowering::ArgListEntry Entry; 7327 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7328 Entry.Node = Dst; 7329 Args.push_back(Entry); 7330 7331 Entry.Node = Src; 7332 Args.push_back(Entry); 7333 7334 Entry.Ty = SizeTy; 7335 Entry.Node = Size; 7336 Args.push_back(Entry); 7337 7338 RTLIB::Libcall LibraryCall = 7339 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7340 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7341 report_fatal_error("Unsupported element size"); 7342 7343 TargetLowering::CallLoweringInfo CLI(*this); 7344 CLI.setDebugLoc(dl) 7345 .setChain(Chain) 7346 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7347 Type::getVoidTy(*getContext()), 7348 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7349 TLI->getPointerTy(getDataLayout())), 7350 std::move(Args)) 7351 .setDiscardResult() 7352 .setTailCall(isTailCall); 7353 7354 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7355 return CallResult.second; 7356 } 7357 7358 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7359 SDValue Src, SDValue Size, Align Alignment, 7360 bool isVol, bool AlwaysInline, bool isTailCall, 7361 MachinePointerInfo DstPtrInfo, 7362 const AAMDNodes &AAInfo) { 7363 // Check to see if we should lower the memset to stores first. 7364 // For cases within the target-specified limits, this is the best choice. 7365 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7366 if (ConstantSize) { 7367 // Memset with size zero? Just return the original chain. 7368 if (ConstantSize->isZero()) 7369 return Chain; 7370 7371 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7372 ConstantSize->getZExtValue(), Alignment, 7373 isVol, false, DstPtrInfo, AAInfo); 7374 7375 if (Result.getNode()) 7376 return Result; 7377 } 7378 7379 // Then check to see if we should lower the memset with target-specific 7380 // code. If the target chooses to do this, this is the next best. 7381 if (TSI) { 7382 SDValue Result = TSI->EmitTargetCodeForMemset( 7383 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo); 7384 if (Result.getNode()) 7385 return Result; 7386 } 7387 7388 // If we really need inline code and the target declined to provide it, 7389 // use a (potentially long) sequence of loads and stores. 7390 if (AlwaysInline) { 7391 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7392 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7393 ConstantSize->getZExtValue(), Alignment, 7394 isVol, true, DstPtrInfo, AAInfo); 7395 assert(Result && 7396 "getMemsetStores must return a valid sequence when AlwaysInline"); 7397 return Result; 7398 } 7399 7400 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7401 7402 // Emit a library call. 7403 auto &Ctx = *getContext(); 7404 const auto& DL = getDataLayout(); 7405 7406 TargetLowering::CallLoweringInfo CLI(*this); 7407 // FIXME: pass in SDLoc 7408 CLI.setDebugLoc(dl).setChain(Chain); 7409 7410 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src); 7411 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero(); 7412 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 7413 7414 // Helper function to create an Entry from Node and Type. 7415 const auto CreateEntry = [](SDValue Node, Type *Ty) { 7416 TargetLowering::ArgListEntry Entry; 7417 Entry.Node = Node; 7418 Entry.Ty = Ty; 7419 return Entry; 7420 }; 7421 7422 // If zeroing out and bzero is present, use it. 7423 if (SrcIsZero && BzeroName) { 7424 TargetLowering::ArgListTy Args; 7425 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7426 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7427 CLI.setLibCallee( 7428 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 7429 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 7430 } else { 7431 TargetLowering::ArgListTy Args; 7432 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7433 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 7434 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7435 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7436 Dst.getValueType().getTypeForEVT(Ctx), 7437 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7438 TLI->getPointerTy(DL)), 7439 std::move(Args)); 7440 } 7441 7442 CLI.setDiscardResult().setTailCall(isTailCall); 7443 7444 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7445 return CallResult.second; 7446 } 7447 7448 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7449 SDValue Dst, SDValue Value, SDValue Size, 7450 Type *SizeTy, unsigned ElemSz, 7451 bool isTailCall, 7452 MachinePointerInfo DstPtrInfo) { 7453 // Emit a library call. 7454 TargetLowering::ArgListTy Args; 7455 TargetLowering::ArgListEntry Entry; 7456 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7457 Entry.Node = Dst; 7458 Args.push_back(Entry); 7459 7460 Entry.Ty = Type::getInt8Ty(*getContext()); 7461 Entry.Node = Value; 7462 Args.push_back(Entry); 7463 7464 Entry.Ty = SizeTy; 7465 Entry.Node = Size; 7466 Args.push_back(Entry); 7467 7468 RTLIB::Libcall LibraryCall = 7469 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7470 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7471 report_fatal_error("Unsupported element size"); 7472 7473 TargetLowering::CallLoweringInfo CLI(*this); 7474 CLI.setDebugLoc(dl) 7475 .setChain(Chain) 7476 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7477 Type::getVoidTy(*getContext()), 7478 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7479 TLI->getPointerTy(getDataLayout())), 7480 std::move(Args)) 7481 .setDiscardResult() 7482 .setTailCall(isTailCall); 7483 7484 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7485 return CallResult.second; 7486 } 7487 7488 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7489 SDVTList VTList, ArrayRef<SDValue> Ops, 7490 MachineMemOperand *MMO) { 7491 FoldingSetNodeID ID; 7492 ID.AddInteger(MemVT.getRawBits()); 7493 AddNodeIDNode(ID, Opcode, VTList, Ops); 7494 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7495 ID.AddInteger(MMO->getFlags()); 7496 void* IP = nullptr; 7497 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7498 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7499 return SDValue(E, 0); 7500 } 7501 7502 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7503 VTList, MemVT, MMO); 7504 createOperands(N, Ops); 7505 7506 CSEMap.InsertNode(N, IP); 7507 InsertNode(N); 7508 return SDValue(N, 0); 7509 } 7510 7511 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7512 EVT MemVT, SDVTList VTs, SDValue Chain, 7513 SDValue Ptr, SDValue Cmp, SDValue Swp, 7514 MachineMemOperand *MMO) { 7515 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7516 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7517 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7518 7519 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7520 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7521 } 7522 7523 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7524 SDValue Chain, SDValue Ptr, SDValue Val, 7525 MachineMemOperand *MMO) { 7526 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7527 Opcode == ISD::ATOMIC_LOAD_SUB || 7528 Opcode == ISD::ATOMIC_LOAD_AND || 7529 Opcode == ISD::ATOMIC_LOAD_CLR || 7530 Opcode == ISD::ATOMIC_LOAD_OR || 7531 Opcode == ISD::ATOMIC_LOAD_XOR || 7532 Opcode == ISD::ATOMIC_LOAD_NAND || 7533 Opcode == ISD::ATOMIC_LOAD_MIN || 7534 Opcode == ISD::ATOMIC_LOAD_MAX || 7535 Opcode == ISD::ATOMIC_LOAD_UMIN || 7536 Opcode == ISD::ATOMIC_LOAD_UMAX || 7537 Opcode == ISD::ATOMIC_LOAD_FADD || 7538 Opcode == ISD::ATOMIC_LOAD_FSUB || 7539 Opcode == ISD::ATOMIC_LOAD_FMAX || 7540 Opcode == ISD::ATOMIC_LOAD_FMIN || 7541 Opcode == ISD::ATOMIC_SWAP || 7542 Opcode == ISD::ATOMIC_STORE) && 7543 "Invalid Atomic Op"); 7544 7545 EVT VT = Val.getValueType(); 7546 7547 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7548 getVTList(VT, MVT::Other); 7549 SDValue Ops[] = {Chain, Ptr, Val}; 7550 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7551 } 7552 7553 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7554 EVT VT, SDValue Chain, SDValue Ptr, 7555 MachineMemOperand *MMO) { 7556 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7557 7558 SDVTList VTs = getVTList(VT, MVT::Other); 7559 SDValue Ops[] = {Chain, Ptr}; 7560 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7561 } 7562 7563 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7564 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7565 if (Ops.size() == 1) 7566 return Ops[0]; 7567 7568 SmallVector<EVT, 4> VTs; 7569 VTs.reserve(Ops.size()); 7570 for (const SDValue &Op : Ops) 7571 VTs.push_back(Op.getValueType()); 7572 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7573 } 7574 7575 SDValue SelectionDAG::getMemIntrinsicNode( 7576 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7577 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7578 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7579 if (!Size && MemVT.isScalableVector()) 7580 Size = MemoryLocation::UnknownSize; 7581 else if (!Size) 7582 Size = MemVT.getStoreSize(); 7583 7584 MachineFunction &MF = getMachineFunction(); 7585 MachineMemOperand *MMO = 7586 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7587 7588 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7589 } 7590 7591 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7592 SDVTList VTList, 7593 ArrayRef<SDValue> Ops, EVT MemVT, 7594 MachineMemOperand *MMO) { 7595 assert((Opcode == ISD::INTRINSIC_VOID || 7596 Opcode == ISD::INTRINSIC_W_CHAIN || 7597 Opcode == ISD::PREFETCH || 7598 ((int)Opcode <= std::numeric_limits<int>::max() && 7599 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7600 "Opcode is not a memory-accessing opcode!"); 7601 7602 // Memoize the node unless it returns a flag. 7603 MemIntrinsicSDNode *N; 7604 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7605 FoldingSetNodeID ID; 7606 AddNodeIDNode(ID, Opcode, VTList, Ops); 7607 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7608 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7609 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7610 ID.AddInteger(MMO->getFlags()); 7611 void *IP = nullptr; 7612 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7613 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7614 return SDValue(E, 0); 7615 } 7616 7617 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7618 VTList, MemVT, MMO); 7619 createOperands(N, Ops); 7620 7621 CSEMap.InsertNode(N, IP); 7622 } else { 7623 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7624 VTList, MemVT, MMO); 7625 createOperands(N, Ops); 7626 } 7627 InsertNode(N); 7628 SDValue V(N, 0); 7629 NewSDValueDbgMsg(V, "Creating new node: ", this); 7630 return V; 7631 } 7632 7633 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7634 SDValue Chain, int FrameIndex, 7635 int64_t Size, int64_t Offset) { 7636 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7637 const auto VTs = getVTList(MVT::Other); 7638 SDValue Ops[2] = { 7639 Chain, 7640 getFrameIndex(FrameIndex, 7641 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7642 true)}; 7643 7644 FoldingSetNodeID ID; 7645 AddNodeIDNode(ID, Opcode, VTs, Ops); 7646 ID.AddInteger(FrameIndex); 7647 ID.AddInteger(Size); 7648 ID.AddInteger(Offset); 7649 void *IP = nullptr; 7650 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7651 return SDValue(E, 0); 7652 7653 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7654 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7655 createOperands(N, Ops); 7656 CSEMap.InsertNode(N, IP); 7657 InsertNode(N); 7658 SDValue V(N, 0); 7659 NewSDValueDbgMsg(V, "Creating new node: ", this); 7660 return V; 7661 } 7662 7663 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7664 uint64_t Guid, uint64_t Index, 7665 uint32_t Attr) { 7666 const unsigned Opcode = ISD::PSEUDO_PROBE; 7667 const auto VTs = getVTList(MVT::Other); 7668 SDValue Ops[] = {Chain}; 7669 FoldingSetNodeID ID; 7670 AddNodeIDNode(ID, Opcode, VTs, Ops); 7671 ID.AddInteger(Guid); 7672 ID.AddInteger(Index); 7673 void *IP = nullptr; 7674 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7675 return SDValue(E, 0); 7676 7677 auto *N = newSDNode<PseudoProbeSDNode>( 7678 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7679 createOperands(N, Ops); 7680 CSEMap.InsertNode(N, IP); 7681 InsertNode(N); 7682 SDValue V(N, 0); 7683 NewSDValueDbgMsg(V, "Creating new node: ", this); 7684 return V; 7685 } 7686 7687 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7688 /// MachinePointerInfo record from it. This is particularly useful because the 7689 /// code generator has many cases where it doesn't bother passing in a 7690 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7691 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7692 SelectionDAG &DAG, SDValue Ptr, 7693 int64_t Offset = 0) { 7694 // If this is FI+Offset, we can model it. 7695 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7696 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7697 FI->getIndex(), Offset); 7698 7699 // If this is (FI+Offset1)+Offset2, we can model it. 7700 if (Ptr.getOpcode() != ISD::ADD || 7701 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7702 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7703 return Info; 7704 7705 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7706 return MachinePointerInfo::getFixedStack( 7707 DAG.getMachineFunction(), FI, 7708 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7709 } 7710 7711 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7712 /// MachinePointerInfo record from it. This is particularly useful because the 7713 /// code generator has many cases where it doesn't bother passing in a 7714 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7715 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7716 SelectionDAG &DAG, SDValue Ptr, 7717 SDValue OffsetOp) { 7718 // If the 'Offset' value isn't a constant, we can't handle this. 7719 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7720 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7721 if (OffsetOp.isUndef()) 7722 return InferPointerInfo(Info, DAG, Ptr); 7723 return Info; 7724 } 7725 7726 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7727 EVT VT, const SDLoc &dl, SDValue Chain, 7728 SDValue Ptr, SDValue Offset, 7729 MachinePointerInfo PtrInfo, EVT MemVT, 7730 Align Alignment, 7731 MachineMemOperand::Flags MMOFlags, 7732 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7733 assert(Chain.getValueType() == MVT::Other && 7734 "Invalid chain type"); 7735 7736 MMOFlags |= MachineMemOperand::MOLoad; 7737 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7738 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7739 // clients. 7740 if (PtrInfo.V.isNull()) 7741 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7742 7743 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7744 MachineFunction &MF = getMachineFunction(); 7745 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7746 Alignment, AAInfo, Ranges); 7747 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7748 } 7749 7750 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7751 EVT VT, const SDLoc &dl, SDValue Chain, 7752 SDValue Ptr, SDValue Offset, EVT MemVT, 7753 MachineMemOperand *MMO) { 7754 if (VT == MemVT) { 7755 ExtType = ISD::NON_EXTLOAD; 7756 } else if (ExtType == ISD::NON_EXTLOAD) { 7757 assert(VT == MemVT && "Non-extending load from different memory type!"); 7758 } else { 7759 // Extending load. 7760 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7761 "Should only be an extending load, not truncating!"); 7762 assert(VT.isInteger() == MemVT.isInteger() && 7763 "Cannot convert from FP to Int or Int -> FP!"); 7764 assert(VT.isVector() == MemVT.isVector() && 7765 "Cannot use an ext load to convert to or from a vector!"); 7766 assert((!VT.isVector() || 7767 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7768 "Cannot use an ext load to change the number of vector elements!"); 7769 } 7770 7771 bool Indexed = AM != ISD::UNINDEXED; 7772 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7773 7774 SDVTList VTs = Indexed ? 7775 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7776 SDValue Ops[] = { Chain, Ptr, Offset }; 7777 FoldingSetNodeID ID; 7778 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7779 ID.AddInteger(MemVT.getRawBits()); 7780 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7781 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7782 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7783 ID.AddInteger(MMO->getFlags()); 7784 void *IP = nullptr; 7785 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7786 cast<LoadSDNode>(E)->refineAlignment(MMO); 7787 return SDValue(E, 0); 7788 } 7789 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7790 ExtType, MemVT, MMO); 7791 createOperands(N, Ops); 7792 7793 CSEMap.InsertNode(N, IP); 7794 InsertNode(N); 7795 SDValue V(N, 0); 7796 NewSDValueDbgMsg(V, "Creating new node: ", this); 7797 return V; 7798 } 7799 7800 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7801 SDValue Ptr, MachinePointerInfo PtrInfo, 7802 MaybeAlign Alignment, 7803 MachineMemOperand::Flags MMOFlags, 7804 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7805 SDValue Undef = getUNDEF(Ptr.getValueType()); 7806 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7807 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7808 } 7809 7810 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7811 SDValue Ptr, MachineMemOperand *MMO) { 7812 SDValue Undef = getUNDEF(Ptr.getValueType()); 7813 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7814 VT, MMO); 7815 } 7816 7817 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7818 EVT VT, SDValue Chain, SDValue Ptr, 7819 MachinePointerInfo PtrInfo, EVT MemVT, 7820 MaybeAlign Alignment, 7821 MachineMemOperand::Flags MMOFlags, 7822 const AAMDNodes &AAInfo) { 7823 SDValue Undef = getUNDEF(Ptr.getValueType()); 7824 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7825 MemVT, Alignment, MMOFlags, AAInfo); 7826 } 7827 7828 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7829 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7830 MachineMemOperand *MMO) { 7831 SDValue Undef = getUNDEF(Ptr.getValueType()); 7832 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7833 MemVT, MMO); 7834 } 7835 7836 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7837 SDValue Base, SDValue Offset, 7838 ISD::MemIndexedMode AM) { 7839 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7840 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7841 // Don't propagate the invariant or dereferenceable flags. 7842 auto MMOFlags = 7843 LD->getMemOperand()->getFlags() & 7844 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7845 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7846 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7847 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7848 } 7849 7850 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7851 SDValue Ptr, MachinePointerInfo PtrInfo, 7852 Align Alignment, 7853 MachineMemOperand::Flags MMOFlags, 7854 const AAMDNodes &AAInfo) { 7855 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7856 7857 MMOFlags |= MachineMemOperand::MOStore; 7858 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7859 7860 if (PtrInfo.V.isNull()) 7861 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7862 7863 MachineFunction &MF = getMachineFunction(); 7864 uint64_t Size = 7865 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7866 MachineMemOperand *MMO = 7867 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7868 return getStore(Chain, dl, Val, Ptr, MMO); 7869 } 7870 7871 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7872 SDValue Ptr, MachineMemOperand *MMO) { 7873 assert(Chain.getValueType() == MVT::Other && 7874 "Invalid chain type"); 7875 EVT VT = Val.getValueType(); 7876 SDVTList VTs = getVTList(MVT::Other); 7877 SDValue Undef = getUNDEF(Ptr.getValueType()); 7878 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7879 FoldingSetNodeID ID; 7880 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7881 ID.AddInteger(VT.getRawBits()); 7882 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7883 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7884 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7885 ID.AddInteger(MMO->getFlags()); 7886 void *IP = nullptr; 7887 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7888 cast<StoreSDNode>(E)->refineAlignment(MMO); 7889 return SDValue(E, 0); 7890 } 7891 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7892 ISD::UNINDEXED, false, VT, MMO); 7893 createOperands(N, Ops); 7894 7895 CSEMap.InsertNode(N, IP); 7896 InsertNode(N); 7897 SDValue V(N, 0); 7898 NewSDValueDbgMsg(V, "Creating new node: ", this); 7899 return V; 7900 } 7901 7902 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7903 SDValue Ptr, MachinePointerInfo PtrInfo, 7904 EVT SVT, Align Alignment, 7905 MachineMemOperand::Flags MMOFlags, 7906 const AAMDNodes &AAInfo) { 7907 assert(Chain.getValueType() == MVT::Other && 7908 "Invalid chain type"); 7909 7910 MMOFlags |= MachineMemOperand::MOStore; 7911 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7912 7913 if (PtrInfo.V.isNull()) 7914 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7915 7916 MachineFunction &MF = getMachineFunction(); 7917 MachineMemOperand *MMO = MF.getMachineMemOperand( 7918 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7919 Alignment, AAInfo); 7920 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7921 } 7922 7923 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7924 SDValue Ptr, EVT SVT, 7925 MachineMemOperand *MMO) { 7926 EVT VT = Val.getValueType(); 7927 7928 assert(Chain.getValueType() == MVT::Other && 7929 "Invalid chain type"); 7930 if (VT == SVT) 7931 return getStore(Chain, dl, Val, Ptr, MMO); 7932 7933 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7934 "Should only be a truncating store, not extending!"); 7935 assert(VT.isInteger() == SVT.isInteger() && 7936 "Can't do FP-INT conversion!"); 7937 assert(VT.isVector() == SVT.isVector() && 7938 "Cannot use trunc store to convert to or from a vector!"); 7939 assert((!VT.isVector() || 7940 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7941 "Cannot use trunc store to change the number of vector elements!"); 7942 7943 SDVTList VTs = getVTList(MVT::Other); 7944 SDValue Undef = getUNDEF(Ptr.getValueType()); 7945 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7946 FoldingSetNodeID ID; 7947 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7948 ID.AddInteger(SVT.getRawBits()); 7949 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7950 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7951 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7952 ID.AddInteger(MMO->getFlags()); 7953 void *IP = nullptr; 7954 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7955 cast<StoreSDNode>(E)->refineAlignment(MMO); 7956 return SDValue(E, 0); 7957 } 7958 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7959 ISD::UNINDEXED, true, SVT, MMO); 7960 createOperands(N, Ops); 7961 7962 CSEMap.InsertNode(N, IP); 7963 InsertNode(N); 7964 SDValue V(N, 0); 7965 NewSDValueDbgMsg(V, "Creating new node: ", this); 7966 return V; 7967 } 7968 7969 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7970 SDValue Base, SDValue Offset, 7971 ISD::MemIndexedMode AM) { 7972 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7973 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7974 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7975 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7976 FoldingSetNodeID ID; 7977 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7978 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7979 ID.AddInteger(ST->getRawSubclassData()); 7980 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7981 ID.AddInteger(ST->getMemOperand()->getFlags()); 7982 void *IP = nullptr; 7983 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7984 return SDValue(E, 0); 7985 7986 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7987 ST->isTruncatingStore(), ST->getMemoryVT(), 7988 ST->getMemOperand()); 7989 createOperands(N, Ops); 7990 7991 CSEMap.InsertNode(N, IP); 7992 InsertNode(N); 7993 SDValue V(N, 0); 7994 NewSDValueDbgMsg(V, "Creating new node: ", this); 7995 return V; 7996 } 7997 7998 SDValue SelectionDAG::getLoadVP( 7999 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 8000 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 8001 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8002 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8003 const MDNode *Ranges, bool IsExpanding) { 8004 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8005 8006 MMOFlags |= MachineMemOperand::MOLoad; 8007 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8008 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8009 // clients. 8010 if (PtrInfo.V.isNull()) 8011 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8012 8013 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 8014 MachineFunction &MF = getMachineFunction(); 8015 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8016 Alignment, AAInfo, Ranges); 8017 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 8018 MMO, IsExpanding); 8019 } 8020 8021 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 8022 ISD::LoadExtType ExtType, EVT VT, 8023 const SDLoc &dl, SDValue Chain, SDValue Ptr, 8024 SDValue Offset, SDValue Mask, SDValue EVL, 8025 EVT MemVT, MachineMemOperand *MMO, 8026 bool IsExpanding) { 8027 bool Indexed = AM != ISD::UNINDEXED; 8028 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8029 8030 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8031 : getVTList(VT, MVT::Other); 8032 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 8033 FoldingSetNodeID ID; 8034 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 8035 ID.AddInteger(VT.getRawBits()); 8036 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 8037 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8038 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8039 ID.AddInteger(MMO->getFlags()); 8040 void *IP = nullptr; 8041 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8042 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 8043 return SDValue(E, 0); 8044 } 8045 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8046 ExtType, IsExpanding, MemVT, MMO); 8047 createOperands(N, Ops); 8048 8049 CSEMap.InsertNode(N, IP); 8050 InsertNode(N); 8051 SDValue V(N, 0); 8052 NewSDValueDbgMsg(V, "Creating new node: ", this); 8053 return V; 8054 } 8055 8056 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8057 SDValue Ptr, SDValue Mask, SDValue EVL, 8058 MachinePointerInfo PtrInfo, 8059 MaybeAlign Alignment, 8060 MachineMemOperand::Flags MMOFlags, 8061 const AAMDNodes &AAInfo, const MDNode *Ranges, 8062 bool IsExpanding) { 8063 SDValue Undef = getUNDEF(Ptr.getValueType()); 8064 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8065 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8066 IsExpanding); 8067 } 8068 8069 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8070 SDValue Ptr, SDValue Mask, SDValue EVL, 8071 MachineMemOperand *MMO, bool IsExpanding) { 8072 SDValue Undef = getUNDEF(Ptr.getValueType()); 8073 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8074 Mask, EVL, VT, MMO, IsExpanding); 8075 } 8076 8077 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8078 EVT VT, SDValue Chain, SDValue Ptr, 8079 SDValue Mask, SDValue EVL, 8080 MachinePointerInfo PtrInfo, EVT MemVT, 8081 MaybeAlign Alignment, 8082 MachineMemOperand::Flags MMOFlags, 8083 const AAMDNodes &AAInfo, bool IsExpanding) { 8084 SDValue Undef = getUNDEF(Ptr.getValueType()); 8085 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8086 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8087 IsExpanding); 8088 } 8089 8090 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8091 EVT VT, SDValue Chain, SDValue Ptr, 8092 SDValue Mask, SDValue EVL, EVT MemVT, 8093 MachineMemOperand *MMO, bool IsExpanding) { 8094 SDValue Undef = getUNDEF(Ptr.getValueType()); 8095 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8096 EVL, MemVT, MMO, IsExpanding); 8097 } 8098 8099 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8100 SDValue Base, SDValue Offset, 8101 ISD::MemIndexedMode AM) { 8102 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8103 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8104 // Don't propagate the invariant or dereferenceable flags. 8105 auto MMOFlags = 8106 LD->getMemOperand()->getFlags() & 8107 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8108 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8109 LD->getChain(), Base, Offset, LD->getMask(), 8110 LD->getVectorLength(), LD->getPointerInfo(), 8111 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8112 nullptr, LD->isExpandingLoad()); 8113 } 8114 8115 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8116 SDValue Ptr, SDValue Offset, SDValue Mask, 8117 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8118 ISD::MemIndexedMode AM, bool IsTruncating, 8119 bool IsCompressing) { 8120 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8121 bool Indexed = AM != ISD::UNINDEXED; 8122 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8123 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8124 : getVTList(MVT::Other); 8125 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8126 FoldingSetNodeID ID; 8127 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8128 ID.AddInteger(MemVT.getRawBits()); 8129 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8130 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8131 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8132 ID.AddInteger(MMO->getFlags()); 8133 void *IP = nullptr; 8134 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8135 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8136 return SDValue(E, 0); 8137 } 8138 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8139 IsTruncating, IsCompressing, MemVT, MMO); 8140 createOperands(N, Ops); 8141 8142 CSEMap.InsertNode(N, IP); 8143 InsertNode(N); 8144 SDValue V(N, 0); 8145 NewSDValueDbgMsg(V, "Creating new node: ", this); 8146 return V; 8147 } 8148 8149 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8150 SDValue Val, SDValue Ptr, SDValue Mask, 8151 SDValue EVL, MachinePointerInfo PtrInfo, 8152 EVT SVT, Align Alignment, 8153 MachineMemOperand::Flags MMOFlags, 8154 const AAMDNodes &AAInfo, 8155 bool IsCompressing) { 8156 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8157 8158 MMOFlags |= MachineMemOperand::MOStore; 8159 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8160 8161 if (PtrInfo.V.isNull()) 8162 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8163 8164 MachineFunction &MF = getMachineFunction(); 8165 MachineMemOperand *MMO = MF.getMachineMemOperand( 8166 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8167 Alignment, AAInfo); 8168 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8169 IsCompressing); 8170 } 8171 8172 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8173 SDValue Val, SDValue Ptr, SDValue Mask, 8174 SDValue EVL, EVT SVT, 8175 MachineMemOperand *MMO, 8176 bool IsCompressing) { 8177 EVT VT = Val.getValueType(); 8178 8179 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8180 if (VT == SVT) 8181 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8182 EVL, VT, MMO, ISD::UNINDEXED, 8183 /*IsTruncating*/ false, IsCompressing); 8184 8185 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8186 "Should only be a truncating store, not extending!"); 8187 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8188 assert(VT.isVector() == SVT.isVector() && 8189 "Cannot use trunc store to convert to or from a vector!"); 8190 assert((!VT.isVector() || 8191 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8192 "Cannot use trunc store to change the number of vector elements!"); 8193 8194 SDVTList VTs = getVTList(MVT::Other); 8195 SDValue Undef = getUNDEF(Ptr.getValueType()); 8196 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8197 FoldingSetNodeID ID; 8198 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8199 ID.AddInteger(SVT.getRawBits()); 8200 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8201 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8202 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8203 ID.AddInteger(MMO->getFlags()); 8204 void *IP = nullptr; 8205 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8206 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8207 return SDValue(E, 0); 8208 } 8209 auto *N = 8210 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8211 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8212 createOperands(N, Ops); 8213 8214 CSEMap.InsertNode(N, IP); 8215 InsertNode(N); 8216 SDValue V(N, 0); 8217 NewSDValueDbgMsg(V, "Creating new node: ", this); 8218 return V; 8219 } 8220 8221 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8222 SDValue Base, SDValue Offset, 8223 ISD::MemIndexedMode AM) { 8224 auto *ST = cast<VPStoreSDNode>(OrigStore); 8225 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8226 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8227 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8228 Offset, ST->getMask(), ST->getVectorLength()}; 8229 FoldingSetNodeID ID; 8230 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8231 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8232 ID.AddInteger(ST->getRawSubclassData()); 8233 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8234 ID.AddInteger(ST->getMemOperand()->getFlags()); 8235 void *IP = nullptr; 8236 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8237 return SDValue(E, 0); 8238 8239 auto *N = newSDNode<VPStoreSDNode>( 8240 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8241 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8242 createOperands(N, Ops); 8243 8244 CSEMap.InsertNode(N, IP); 8245 InsertNode(N); 8246 SDValue V(N, 0); 8247 NewSDValueDbgMsg(V, "Creating new node: ", this); 8248 return V; 8249 } 8250 8251 SDValue SelectionDAG::getStridedLoadVP( 8252 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8253 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8254 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8255 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8256 const MDNode *Ranges, bool IsExpanding) { 8257 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8258 8259 MMOFlags |= MachineMemOperand::MOLoad; 8260 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8261 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8262 // clients. 8263 if (PtrInfo.V.isNull()) 8264 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8265 8266 uint64_t Size = MemoryLocation::UnknownSize; 8267 MachineFunction &MF = getMachineFunction(); 8268 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8269 Alignment, AAInfo, Ranges); 8270 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8271 EVL, MemVT, MMO, IsExpanding); 8272 } 8273 8274 SDValue SelectionDAG::getStridedLoadVP( 8275 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8276 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8277 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8278 bool Indexed = AM != ISD::UNINDEXED; 8279 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8280 8281 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8282 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8283 : getVTList(VT, MVT::Other); 8284 FoldingSetNodeID ID; 8285 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8286 ID.AddInteger(VT.getRawBits()); 8287 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8288 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8289 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8290 8291 void *IP = nullptr; 8292 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8293 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8294 return SDValue(E, 0); 8295 } 8296 8297 auto *N = 8298 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8299 ExtType, IsExpanding, MemVT, MMO); 8300 createOperands(N, Ops); 8301 CSEMap.InsertNode(N, IP); 8302 InsertNode(N); 8303 SDValue V(N, 0); 8304 NewSDValueDbgMsg(V, "Creating new node: ", this); 8305 return V; 8306 } 8307 8308 SDValue SelectionDAG::getStridedLoadVP( 8309 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8310 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8311 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8312 const MDNode *Ranges, bool IsExpanding) { 8313 SDValue Undef = getUNDEF(Ptr.getValueType()); 8314 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8315 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8316 MMOFlags, AAInfo, Ranges, IsExpanding); 8317 } 8318 8319 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8320 SDValue Ptr, SDValue Stride, 8321 SDValue Mask, SDValue EVL, 8322 MachineMemOperand *MMO, 8323 bool IsExpanding) { 8324 SDValue Undef = getUNDEF(Ptr.getValueType()); 8325 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8326 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8327 } 8328 8329 SDValue SelectionDAG::getExtStridedLoadVP( 8330 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8331 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8332 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8333 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8334 bool IsExpanding) { 8335 SDValue Undef = getUNDEF(Ptr.getValueType()); 8336 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8337 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8338 MMOFlags, AAInfo, nullptr, IsExpanding); 8339 } 8340 8341 SDValue SelectionDAG::getExtStridedLoadVP( 8342 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8343 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8344 MachineMemOperand *MMO, bool IsExpanding) { 8345 SDValue Undef = getUNDEF(Ptr.getValueType()); 8346 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8347 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8348 } 8349 8350 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8351 SDValue Base, SDValue Offset, 8352 ISD::MemIndexedMode AM) { 8353 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8354 assert(SLD->getOffset().isUndef() && 8355 "Strided load is already a indexed load!"); 8356 // Don't propagate the invariant or dereferenceable flags. 8357 auto MMOFlags = 8358 SLD->getMemOperand()->getFlags() & 8359 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8360 return getStridedLoadVP( 8361 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8362 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8363 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8364 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8365 } 8366 8367 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8368 SDValue Val, SDValue Ptr, 8369 SDValue Offset, SDValue Stride, 8370 SDValue Mask, SDValue EVL, EVT MemVT, 8371 MachineMemOperand *MMO, 8372 ISD::MemIndexedMode AM, 8373 bool IsTruncating, bool IsCompressing) { 8374 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8375 bool Indexed = AM != ISD::UNINDEXED; 8376 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8377 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8378 : getVTList(MVT::Other); 8379 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8380 FoldingSetNodeID ID; 8381 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8382 ID.AddInteger(MemVT.getRawBits()); 8383 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8384 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8385 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8386 void *IP = nullptr; 8387 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8388 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8389 return SDValue(E, 0); 8390 } 8391 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8392 VTs, AM, IsTruncating, 8393 IsCompressing, MemVT, MMO); 8394 createOperands(N, Ops); 8395 8396 CSEMap.InsertNode(N, IP); 8397 InsertNode(N); 8398 SDValue V(N, 0); 8399 NewSDValueDbgMsg(V, "Creating new node: ", this); 8400 return V; 8401 } 8402 8403 SDValue SelectionDAG::getTruncStridedStoreVP( 8404 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8405 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8406 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8407 bool IsCompressing) { 8408 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8409 8410 MMOFlags |= MachineMemOperand::MOStore; 8411 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8412 8413 if (PtrInfo.V.isNull()) 8414 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8415 8416 MachineFunction &MF = getMachineFunction(); 8417 MachineMemOperand *MMO = MF.getMachineMemOperand( 8418 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8419 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8420 MMO, IsCompressing); 8421 } 8422 8423 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8424 SDValue Val, SDValue Ptr, 8425 SDValue Stride, SDValue Mask, 8426 SDValue EVL, EVT SVT, 8427 MachineMemOperand *MMO, 8428 bool IsCompressing) { 8429 EVT VT = Val.getValueType(); 8430 8431 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8432 if (VT == SVT) 8433 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8434 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8435 /*IsTruncating*/ false, IsCompressing); 8436 8437 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8438 "Should only be a truncating store, not extending!"); 8439 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8440 assert(VT.isVector() == SVT.isVector() && 8441 "Cannot use trunc store to convert to or from a vector!"); 8442 assert((!VT.isVector() || 8443 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8444 "Cannot use trunc store to change the number of vector elements!"); 8445 8446 SDVTList VTs = getVTList(MVT::Other); 8447 SDValue Undef = getUNDEF(Ptr.getValueType()); 8448 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8449 FoldingSetNodeID ID; 8450 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8451 ID.AddInteger(SVT.getRawBits()); 8452 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8453 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8454 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8455 void *IP = nullptr; 8456 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8457 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8458 return SDValue(E, 0); 8459 } 8460 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8461 VTs, ISD::UNINDEXED, true, 8462 IsCompressing, SVT, MMO); 8463 createOperands(N, Ops); 8464 8465 CSEMap.InsertNode(N, IP); 8466 InsertNode(N); 8467 SDValue V(N, 0); 8468 NewSDValueDbgMsg(V, "Creating new node: ", this); 8469 return V; 8470 } 8471 8472 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8473 const SDLoc &DL, SDValue Base, 8474 SDValue Offset, 8475 ISD::MemIndexedMode AM) { 8476 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8477 assert(SST->getOffset().isUndef() && 8478 "Strided store is already an indexed store!"); 8479 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8480 SDValue Ops[] = { 8481 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8482 SST->getMask(), SST->getVectorLength()}; 8483 FoldingSetNodeID ID; 8484 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8485 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8486 ID.AddInteger(SST->getRawSubclassData()); 8487 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8488 void *IP = nullptr; 8489 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8490 return SDValue(E, 0); 8491 8492 auto *N = newSDNode<VPStridedStoreSDNode>( 8493 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8494 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8495 createOperands(N, Ops); 8496 8497 CSEMap.InsertNode(N, IP); 8498 InsertNode(N); 8499 SDValue V(N, 0); 8500 NewSDValueDbgMsg(V, "Creating new node: ", this); 8501 return V; 8502 } 8503 8504 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8505 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8506 ISD::MemIndexType IndexType) { 8507 assert(Ops.size() == 6 && "Incompatible number of operands"); 8508 8509 FoldingSetNodeID ID; 8510 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8511 ID.AddInteger(VT.getRawBits()); 8512 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8513 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8514 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8515 ID.AddInteger(MMO->getFlags()); 8516 void *IP = nullptr; 8517 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8518 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8519 return SDValue(E, 0); 8520 } 8521 8522 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8523 VT, MMO, IndexType); 8524 createOperands(N, Ops); 8525 8526 assert(N->getMask().getValueType().getVectorElementCount() == 8527 N->getValueType(0).getVectorElementCount() && 8528 "Vector width mismatch between mask and data"); 8529 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8530 N->getValueType(0).getVectorElementCount().isScalable() && 8531 "Scalable flags of index and data do not match"); 8532 assert(ElementCount::isKnownGE( 8533 N->getIndex().getValueType().getVectorElementCount(), 8534 N->getValueType(0).getVectorElementCount()) && 8535 "Vector width mismatch between index and data"); 8536 assert(isa<ConstantSDNode>(N->getScale()) && 8537 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8538 "Scale should be a constant power of 2"); 8539 8540 CSEMap.InsertNode(N, IP); 8541 InsertNode(N); 8542 SDValue V(N, 0); 8543 NewSDValueDbgMsg(V, "Creating new node: ", this); 8544 return V; 8545 } 8546 8547 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8548 ArrayRef<SDValue> Ops, 8549 MachineMemOperand *MMO, 8550 ISD::MemIndexType IndexType) { 8551 assert(Ops.size() == 7 && "Incompatible number of operands"); 8552 8553 FoldingSetNodeID ID; 8554 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8555 ID.AddInteger(VT.getRawBits()); 8556 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8557 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8558 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8559 ID.AddInteger(MMO->getFlags()); 8560 void *IP = nullptr; 8561 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8562 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8563 return SDValue(E, 0); 8564 } 8565 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8566 VT, MMO, IndexType); 8567 createOperands(N, Ops); 8568 8569 assert(N->getMask().getValueType().getVectorElementCount() == 8570 N->getValue().getValueType().getVectorElementCount() && 8571 "Vector width mismatch between mask and data"); 8572 assert( 8573 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8574 N->getValue().getValueType().getVectorElementCount().isScalable() && 8575 "Scalable flags of index and data do not match"); 8576 assert(ElementCount::isKnownGE( 8577 N->getIndex().getValueType().getVectorElementCount(), 8578 N->getValue().getValueType().getVectorElementCount()) && 8579 "Vector width mismatch between index and data"); 8580 assert(isa<ConstantSDNode>(N->getScale()) && 8581 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8582 "Scale should be a constant power of 2"); 8583 8584 CSEMap.InsertNode(N, IP); 8585 InsertNode(N); 8586 SDValue V(N, 0); 8587 NewSDValueDbgMsg(V, "Creating new node: ", this); 8588 return V; 8589 } 8590 8591 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8592 SDValue Base, SDValue Offset, SDValue Mask, 8593 SDValue PassThru, EVT MemVT, 8594 MachineMemOperand *MMO, 8595 ISD::MemIndexedMode AM, 8596 ISD::LoadExtType ExtTy, bool isExpanding) { 8597 bool Indexed = AM != ISD::UNINDEXED; 8598 assert((Indexed || Offset.isUndef()) && 8599 "Unindexed masked load with an offset!"); 8600 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8601 : getVTList(VT, MVT::Other); 8602 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8603 FoldingSetNodeID ID; 8604 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8605 ID.AddInteger(MemVT.getRawBits()); 8606 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8607 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8608 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8609 ID.AddInteger(MMO->getFlags()); 8610 void *IP = nullptr; 8611 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8612 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8613 return SDValue(E, 0); 8614 } 8615 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8616 AM, ExtTy, isExpanding, MemVT, MMO); 8617 createOperands(N, Ops); 8618 8619 CSEMap.InsertNode(N, IP); 8620 InsertNode(N); 8621 SDValue V(N, 0); 8622 NewSDValueDbgMsg(V, "Creating new node: ", this); 8623 return V; 8624 } 8625 8626 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8627 SDValue Base, SDValue Offset, 8628 ISD::MemIndexedMode AM) { 8629 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8630 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8631 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8632 Offset, LD->getMask(), LD->getPassThru(), 8633 LD->getMemoryVT(), LD->getMemOperand(), AM, 8634 LD->getExtensionType(), LD->isExpandingLoad()); 8635 } 8636 8637 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8638 SDValue Val, SDValue Base, SDValue Offset, 8639 SDValue Mask, EVT MemVT, 8640 MachineMemOperand *MMO, 8641 ISD::MemIndexedMode AM, bool IsTruncating, 8642 bool IsCompressing) { 8643 assert(Chain.getValueType() == MVT::Other && 8644 "Invalid chain type"); 8645 bool Indexed = AM != ISD::UNINDEXED; 8646 assert((Indexed || Offset.isUndef()) && 8647 "Unindexed masked store with an offset!"); 8648 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8649 : getVTList(MVT::Other); 8650 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8651 FoldingSetNodeID ID; 8652 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8653 ID.AddInteger(MemVT.getRawBits()); 8654 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8655 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8656 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8657 ID.AddInteger(MMO->getFlags()); 8658 void *IP = nullptr; 8659 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8660 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8661 return SDValue(E, 0); 8662 } 8663 auto *N = 8664 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8665 IsTruncating, IsCompressing, MemVT, MMO); 8666 createOperands(N, Ops); 8667 8668 CSEMap.InsertNode(N, IP); 8669 InsertNode(N); 8670 SDValue V(N, 0); 8671 NewSDValueDbgMsg(V, "Creating new node: ", this); 8672 return V; 8673 } 8674 8675 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8676 SDValue Base, SDValue Offset, 8677 ISD::MemIndexedMode AM) { 8678 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8679 assert(ST->getOffset().isUndef() && 8680 "Masked store is already a indexed store!"); 8681 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8682 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8683 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8684 } 8685 8686 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8687 ArrayRef<SDValue> Ops, 8688 MachineMemOperand *MMO, 8689 ISD::MemIndexType IndexType, 8690 ISD::LoadExtType ExtTy) { 8691 assert(Ops.size() == 6 && "Incompatible number of operands"); 8692 8693 FoldingSetNodeID ID; 8694 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8695 ID.AddInteger(MemVT.getRawBits()); 8696 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8697 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8698 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8699 ID.AddInteger(MMO->getFlags()); 8700 void *IP = nullptr; 8701 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8702 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8703 return SDValue(E, 0); 8704 } 8705 8706 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8707 VTs, MemVT, MMO, IndexType, ExtTy); 8708 createOperands(N, Ops); 8709 8710 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8711 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8712 assert(N->getMask().getValueType().getVectorElementCount() == 8713 N->getValueType(0).getVectorElementCount() && 8714 "Vector width mismatch between mask and data"); 8715 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8716 N->getValueType(0).getVectorElementCount().isScalable() && 8717 "Scalable flags of index and data do not match"); 8718 assert(ElementCount::isKnownGE( 8719 N->getIndex().getValueType().getVectorElementCount(), 8720 N->getValueType(0).getVectorElementCount()) && 8721 "Vector width mismatch between index and data"); 8722 assert(isa<ConstantSDNode>(N->getScale()) && 8723 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8724 "Scale should be a constant power of 2"); 8725 8726 CSEMap.InsertNode(N, IP); 8727 InsertNode(N); 8728 SDValue V(N, 0); 8729 NewSDValueDbgMsg(V, "Creating new node: ", this); 8730 return V; 8731 } 8732 8733 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8734 ArrayRef<SDValue> Ops, 8735 MachineMemOperand *MMO, 8736 ISD::MemIndexType IndexType, 8737 bool IsTrunc) { 8738 assert(Ops.size() == 6 && "Incompatible number of operands"); 8739 8740 FoldingSetNodeID ID; 8741 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8742 ID.AddInteger(MemVT.getRawBits()); 8743 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8744 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8745 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8746 ID.AddInteger(MMO->getFlags()); 8747 void *IP = nullptr; 8748 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8749 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8750 return SDValue(E, 0); 8751 } 8752 8753 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8754 VTs, MemVT, MMO, IndexType, IsTrunc); 8755 createOperands(N, Ops); 8756 8757 assert(N->getMask().getValueType().getVectorElementCount() == 8758 N->getValue().getValueType().getVectorElementCount() && 8759 "Vector width mismatch between mask and data"); 8760 assert( 8761 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8762 N->getValue().getValueType().getVectorElementCount().isScalable() && 8763 "Scalable flags of index and data do not match"); 8764 assert(ElementCount::isKnownGE( 8765 N->getIndex().getValueType().getVectorElementCount(), 8766 N->getValue().getValueType().getVectorElementCount()) && 8767 "Vector width mismatch between index and data"); 8768 assert(isa<ConstantSDNode>(N->getScale()) && 8769 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8770 "Scale should be a constant power of 2"); 8771 8772 CSEMap.InsertNode(N, IP); 8773 InsertNode(N); 8774 SDValue V(N, 0); 8775 NewSDValueDbgMsg(V, "Creating new node: ", this); 8776 return V; 8777 } 8778 8779 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8780 // select undef, T, F --> T (if T is a constant), otherwise F 8781 // select, ?, undef, F --> F 8782 // select, ?, T, undef --> T 8783 if (Cond.isUndef()) 8784 return isConstantValueOfAnyType(T) ? T : F; 8785 if (T.isUndef()) 8786 return F; 8787 if (F.isUndef()) 8788 return T; 8789 8790 // select true, T, F --> T 8791 // select false, T, F --> F 8792 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8793 return CondC->isZero() ? F : T; 8794 8795 // TODO: This should simplify VSELECT with constant condition using something 8796 // like this (but check boolean contents to be complete?): 8797 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8798 // return T; 8799 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8800 // return F; 8801 8802 // select ?, T, T --> T 8803 if (T == F) 8804 return T; 8805 8806 return SDValue(); 8807 } 8808 8809 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8810 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8811 if (X.isUndef()) 8812 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8813 // shift X, undef --> undef (because it may shift by the bitwidth) 8814 if (Y.isUndef()) 8815 return getUNDEF(X.getValueType()); 8816 8817 // shift 0, Y --> 0 8818 // shift X, 0 --> X 8819 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8820 return X; 8821 8822 // shift X, C >= bitwidth(X) --> undef 8823 // All vector elements must be too big (or undef) to avoid partial undefs. 8824 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8825 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8826 }; 8827 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8828 return getUNDEF(X.getValueType()); 8829 8830 return SDValue(); 8831 } 8832 8833 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8834 SDNodeFlags Flags) { 8835 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8836 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8837 // operation is poison. That result can be relaxed to undef. 8838 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8839 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8840 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8841 (YC && YC->getValueAPF().isNaN()); 8842 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8843 (YC && YC->getValueAPF().isInfinity()); 8844 8845 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8846 return getUNDEF(X.getValueType()); 8847 8848 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8849 return getUNDEF(X.getValueType()); 8850 8851 if (!YC) 8852 return SDValue(); 8853 8854 // X + -0.0 --> X 8855 if (Opcode == ISD::FADD) 8856 if (YC->getValueAPF().isNegZero()) 8857 return X; 8858 8859 // X - +0.0 --> X 8860 if (Opcode == ISD::FSUB) 8861 if (YC->getValueAPF().isPosZero()) 8862 return X; 8863 8864 // X * 1.0 --> X 8865 // X / 1.0 --> X 8866 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8867 if (YC->getValueAPF().isExactlyValue(1.0)) 8868 return X; 8869 8870 // X * 0.0 --> 0.0 8871 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8872 if (YC->getValueAPF().isZero()) 8873 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8874 8875 return SDValue(); 8876 } 8877 8878 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8879 SDValue Ptr, SDValue SV, unsigned Align) { 8880 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8881 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8882 } 8883 8884 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8885 ArrayRef<SDUse> Ops) { 8886 switch (Ops.size()) { 8887 case 0: return getNode(Opcode, DL, VT); 8888 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8889 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8890 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8891 default: break; 8892 } 8893 8894 // Copy from an SDUse array into an SDValue array for use with 8895 // the regular getNode logic. 8896 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8897 return getNode(Opcode, DL, VT, NewOps); 8898 } 8899 8900 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8901 ArrayRef<SDValue> Ops) { 8902 SDNodeFlags Flags; 8903 if (Inserter) 8904 Flags = Inserter->getFlags(); 8905 return getNode(Opcode, DL, VT, Ops, Flags); 8906 } 8907 8908 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8909 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8910 unsigned NumOps = Ops.size(); 8911 switch (NumOps) { 8912 case 0: return getNode(Opcode, DL, VT); 8913 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8914 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8915 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8916 default: break; 8917 } 8918 8919 #ifndef NDEBUG 8920 for (const auto &Op : Ops) 8921 assert(Op.getOpcode() != ISD::DELETED_NODE && 8922 "Operand is DELETED_NODE!"); 8923 #endif 8924 8925 switch (Opcode) { 8926 default: break; 8927 case ISD::BUILD_VECTOR: 8928 // Attempt to simplify BUILD_VECTOR. 8929 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8930 return V; 8931 break; 8932 case ISD::CONCAT_VECTORS: 8933 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8934 return V; 8935 break; 8936 case ISD::SELECT_CC: 8937 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8938 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8939 "LHS and RHS of condition must have same type!"); 8940 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8941 "True and False arms of SelectCC must have same type!"); 8942 assert(Ops[2].getValueType() == VT && 8943 "select_cc node must be of same type as true and false value!"); 8944 break; 8945 case ISD::BR_CC: 8946 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8947 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8948 "LHS/RHS of comparison should match types!"); 8949 break; 8950 case ISD::VP_ADD: 8951 case ISD::VP_SUB: 8952 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8953 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8954 Opcode = ISD::VP_XOR; 8955 break; 8956 case ISD::VP_MUL: 8957 // If it is VP_MUL mask operation then turn it to VP_AND 8958 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8959 Opcode = ISD::VP_AND; 8960 break; 8961 case ISD::VP_REDUCE_MUL: 8962 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8963 if (VT == MVT::i1) 8964 Opcode = ISD::VP_REDUCE_AND; 8965 break; 8966 case ISD::VP_REDUCE_ADD: 8967 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8968 if (VT == MVT::i1) 8969 Opcode = ISD::VP_REDUCE_XOR; 8970 break; 8971 case ISD::VP_REDUCE_SMAX: 8972 case ISD::VP_REDUCE_UMIN: 8973 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8974 // VP_REDUCE_AND. 8975 if (VT == MVT::i1) 8976 Opcode = ISD::VP_REDUCE_AND; 8977 break; 8978 case ISD::VP_REDUCE_SMIN: 8979 case ISD::VP_REDUCE_UMAX: 8980 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8981 // VP_REDUCE_OR. 8982 if (VT == MVT::i1) 8983 Opcode = ISD::VP_REDUCE_OR; 8984 break; 8985 } 8986 8987 // Memoize nodes. 8988 SDNode *N; 8989 SDVTList VTs = getVTList(VT); 8990 8991 if (VT != MVT::Glue) { 8992 FoldingSetNodeID ID; 8993 AddNodeIDNode(ID, Opcode, VTs, Ops); 8994 void *IP = nullptr; 8995 8996 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8997 return SDValue(E, 0); 8998 8999 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9000 createOperands(N, Ops); 9001 9002 CSEMap.InsertNode(N, IP); 9003 } else { 9004 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9005 createOperands(N, Ops); 9006 } 9007 9008 N->setFlags(Flags); 9009 InsertNode(N); 9010 SDValue V(N, 0); 9011 NewSDValueDbgMsg(V, "Creating new node: ", this); 9012 return V; 9013 } 9014 9015 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9016 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 9017 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 9018 } 9019 9020 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9021 ArrayRef<SDValue> Ops) { 9022 SDNodeFlags Flags; 9023 if (Inserter) 9024 Flags = Inserter->getFlags(); 9025 return getNode(Opcode, DL, VTList, Ops, Flags); 9026 } 9027 9028 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9029 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 9030 if (VTList.NumVTs == 1) 9031 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 9032 9033 #ifndef NDEBUG 9034 for (const auto &Op : Ops) 9035 assert(Op.getOpcode() != ISD::DELETED_NODE && 9036 "Operand is DELETED_NODE!"); 9037 #endif 9038 9039 switch (Opcode) { 9040 case ISD::STRICT_FP_EXTEND: 9041 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9042 "Invalid STRICT_FP_EXTEND!"); 9043 assert(VTList.VTs[0].isFloatingPoint() && 9044 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 9045 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9046 "STRICT_FP_EXTEND result type should be vector iff the operand " 9047 "type is vector!"); 9048 assert((!VTList.VTs[0].isVector() || 9049 VTList.VTs[0].getVectorNumElements() == 9050 Ops[1].getValueType().getVectorNumElements()) && 9051 "Vector element count mismatch!"); 9052 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 9053 "Invalid fpext node, dst <= src!"); 9054 break; 9055 case ISD::STRICT_FP_ROUND: 9056 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9057 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9058 "STRICT_FP_ROUND result type should be vector iff the operand " 9059 "type is vector!"); 9060 assert((!VTList.VTs[0].isVector() || 9061 VTList.VTs[0].getVectorNumElements() == 9062 Ops[1].getValueType().getVectorNumElements()) && 9063 "Vector element count mismatch!"); 9064 assert(VTList.VTs[0].isFloatingPoint() && 9065 Ops[1].getValueType().isFloatingPoint() && 9066 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9067 isa<ConstantSDNode>(Ops[2]) && 9068 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 9069 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 9070 "Invalid STRICT_FP_ROUND!"); 9071 break; 9072 #if 0 9073 // FIXME: figure out how to safely handle things like 9074 // int foo(int x) { return 1 << (x & 255); } 9075 // int bar() { return foo(256); } 9076 case ISD::SRA_PARTS: 9077 case ISD::SRL_PARTS: 9078 case ISD::SHL_PARTS: 9079 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9080 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9081 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9082 else if (N3.getOpcode() == ISD::AND) 9083 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9084 // If the and is only masking out bits that cannot effect the shift, 9085 // eliminate the and. 9086 unsigned NumBits = VT.getScalarSizeInBits()*2; 9087 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9088 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9089 } 9090 break; 9091 #endif 9092 } 9093 9094 // Memoize the node unless it returns a flag. 9095 SDNode *N; 9096 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9097 FoldingSetNodeID ID; 9098 AddNodeIDNode(ID, Opcode, VTList, Ops); 9099 void *IP = nullptr; 9100 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9101 return SDValue(E, 0); 9102 9103 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9104 createOperands(N, Ops); 9105 CSEMap.InsertNode(N, IP); 9106 } else { 9107 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9108 createOperands(N, Ops); 9109 } 9110 9111 N->setFlags(Flags); 9112 InsertNode(N); 9113 SDValue V(N, 0); 9114 NewSDValueDbgMsg(V, "Creating new node: ", this); 9115 return V; 9116 } 9117 9118 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9119 SDVTList VTList) { 9120 return getNode(Opcode, DL, VTList, None); 9121 } 9122 9123 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9124 SDValue N1) { 9125 SDValue Ops[] = { N1 }; 9126 return getNode(Opcode, DL, VTList, Ops); 9127 } 9128 9129 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9130 SDValue N1, SDValue N2) { 9131 SDValue Ops[] = { N1, N2 }; 9132 return getNode(Opcode, DL, VTList, Ops); 9133 } 9134 9135 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9136 SDValue N1, SDValue N2, SDValue N3) { 9137 SDValue Ops[] = { N1, N2, N3 }; 9138 return getNode(Opcode, DL, VTList, Ops); 9139 } 9140 9141 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9142 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9143 SDValue Ops[] = { N1, N2, N3, N4 }; 9144 return getNode(Opcode, DL, VTList, Ops); 9145 } 9146 9147 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9148 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9149 SDValue N5) { 9150 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9151 return getNode(Opcode, DL, VTList, Ops); 9152 } 9153 9154 SDVTList SelectionDAG::getVTList(EVT VT) { 9155 return makeVTList(SDNode::getValueTypeList(VT), 1); 9156 } 9157 9158 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9159 FoldingSetNodeID ID; 9160 ID.AddInteger(2U); 9161 ID.AddInteger(VT1.getRawBits()); 9162 ID.AddInteger(VT2.getRawBits()); 9163 9164 void *IP = nullptr; 9165 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9166 if (!Result) { 9167 EVT *Array = Allocator.Allocate<EVT>(2); 9168 Array[0] = VT1; 9169 Array[1] = VT2; 9170 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9171 VTListMap.InsertNode(Result, IP); 9172 } 9173 return Result->getSDVTList(); 9174 } 9175 9176 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9177 FoldingSetNodeID ID; 9178 ID.AddInteger(3U); 9179 ID.AddInteger(VT1.getRawBits()); 9180 ID.AddInteger(VT2.getRawBits()); 9181 ID.AddInteger(VT3.getRawBits()); 9182 9183 void *IP = nullptr; 9184 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9185 if (!Result) { 9186 EVT *Array = Allocator.Allocate<EVT>(3); 9187 Array[0] = VT1; 9188 Array[1] = VT2; 9189 Array[2] = VT3; 9190 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9191 VTListMap.InsertNode(Result, IP); 9192 } 9193 return Result->getSDVTList(); 9194 } 9195 9196 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9197 FoldingSetNodeID ID; 9198 ID.AddInteger(4U); 9199 ID.AddInteger(VT1.getRawBits()); 9200 ID.AddInteger(VT2.getRawBits()); 9201 ID.AddInteger(VT3.getRawBits()); 9202 ID.AddInteger(VT4.getRawBits()); 9203 9204 void *IP = nullptr; 9205 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9206 if (!Result) { 9207 EVT *Array = Allocator.Allocate<EVT>(4); 9208 Array[0] = VT1; 9209 Array[1] = VT2; 9210 Array[2] = VT3; 9211 Array[3] = VT4; 9212 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9213 VTListMap.InsertNode(Result, IP); 9214 } 9215 return Result->getSDVTList(); 9216 } 9217 9218 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9219 unsigned NumVTs = VTs.size(); 9220 FoldingSetNodeID ID; 9221 ID.AddInteger(NumVTs); 9222 for (unsigned index = 0; index < NumVTs; index++) { 9223 ID.AddInteger(VTs[index].getRawBits()); 9224 } 9225 9226 void *IP = nullptr; 9227 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9228 if (!Result) { 9229 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9230 llvm::copy(VTs, Array); 9231 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9232 VTListMap.InsertNode(Result, IP); 9233 } 9234 return Result->getSDVTList(); 9235 } 9236 9237 9238 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9239 /// specified operands. If the resultant node already exists in the DAG, 9240 /// this does not modify the specified node, instead it returns the node that 9241 /// already exists. If the resultant node does not exist in the DAG, the 9242 /// input node is returned. As a degenerate case, if you specify the same 9243 /// input operands as the node already has, the input node is returned. 9244 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9245 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9246 9247 // Check to see if there is no change. 9248 if (Op == N->getOperand(0)) return N; 9249 9250 // See if the modified node already exists. 9251 void *InsertPos = nullptr; 9252 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9253 return Existing; 9254 9255 // Nope it doesn't. Remove the node from its current place in the maps. 9256 if (InsertPos) 9257 if (!RemoveNodeFromCSEMaps(N)) 9258 InsertPos = nullptr; 9259 9260 // Now we update the operands. 9261 N->OperandList[0].set(Op); 9262 9263 updateDivergence(N); 9264 // If this gets put into a CSE map, add it. 9265 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9266 return N; 9267 } 9268 9269 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9270 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9271 9272 // Check to see if there is no change. 9273 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9274 return N; // No operands changed, just return the input node. 9275 9276 // See if the modified node already exists. 9277 void *InsertPos = nullptr; 9278 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9279 return Existing; 9280 9281 // Nope it doesn't. Remove the node from its current place in the maps. 9282 if (InsertPos) 9283 if (!RemoveNodeFromCSEMaps(N)) 9284 InsertPos = nullptr; 9285 9286 // Now we update the operands. 9287 if (N->OperandList[0] != Op1) 9288 N->OperandList[0].set(Op1); 9289 if (N->OperandList[1] != Op2) 9290 N->OperandList[1].set(Op2); 9291 9292 updateDivergence(N); 9293 // If this gets put into a CSE map, add it. 9294 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9295 return N; 9296 } 9297 9298 SDNode *SelectionDAG:: 9299 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9300 SDValue Ops[] = { Op1, Op2, Op3 }; 9301 return UpdateNodeOperands(N, Ops); 9302 } 9303 9304 SDNode *SelectionDAG:: 9305 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9306 SDValue Op3, SDValue Op4) { 9307 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9308 return UpdateNodeOperands(N, Ops); 9309 } 9310 9311 SDNode *SelectionDAG:: 9312 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9313 SDValue Op3, SDValue Op4, SDValue Op5) { 9314 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9315 return UpdateNodeOperands(N, Ops); 9316 } 9317 9318 SDNode *SelectionDAG:: 9319 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9320 unsigned NumOps = Ops.size(); 9321 assert(N->getNumOperands() == NumOps && 9322 "Update with wrong number of operands"); 9323 9324 // If no operands changed just return the input node. 9325 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9326 return N; 9327 9328 // See if the modified node already exists. 9329 void *InsertPos = nullptr; 9330 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9331 return Existing; 9332 9333 // Nope it doesn't. Remove the node from its current place in the maps. 9334 if (InsertPos) 9335 if (!RemoveNodeFromCSEMaps(N)) 9336 InsertPos = nullptr; 9337 9338 // Now we update the operands. 9339 for (unsigned i = 0; i != NumOps; ++i) 9340 if (N->OperandList[i] != Ops[i]) 9341 N->OperandList[i].set(Ops[i]); 9342 9343 updateDivergence(N); 9344 // If this gets put into a CSE map, add it. 9345 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9346 return N; 9347 } 9348 9349 /// DropOperands - Release the operands and set this node to have 9350 /// zero operands. 9351 void SDNode::DropOperands() { 9352 // Unlike the code in MorphNodeTo that does this, we don't need to 9353 // watch for dead nodes here. 9354 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9355 SDUse &Use = *I++; 9356 Use.set(SDValue()); 9357 } 9358 } 9359 9360 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9361 ArrayRef<MachineMemOperand *> NewMemRefs) { 9362 if (NewMemRefs.empty()) { 9363 N->clearMemRefs(); 9364 return; 9365 } 9366 9367 // Check if we can avoid allocating by storing a single reference directly. 9368 if (NewMemRefs.size() == 1) { 9369 N->MemRefs = NewMemRefs[0]; 9370 N->NumMemRefs = 1; 9371 return; 9372 } 9373 9374 MachineMemOperand **MemRefsBuffer = 9375 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9376 llvm::copy(NewMemRefs, MemRefsBuffer); 9377 N->MemRefs = MemRefsBuffer; 9378 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9379 } 9380 9381 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9382 /// machine opcode. 9383 /// 9384 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9385 EVT VT) { 9386 SDVTList VTs = getVTList(VT); 9387 return SelectNodeTo(N, MachineOpc, VTs, None); 9388 } 9389 9390 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9391 EVT VT, SDValue Op1) { 9392 SDVTList VTs = getVTList(VT); 9393 SDValue Ops[] = { Op1 }; 9394 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9395 } 9396 9397 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9398 EVT VT, SDValue Op1, 9399 SDValue Op2) { 9400 SDVTList VTs = getVTList(VT); 9401 SDValue Ops[] = { Op1, Op2 }; 9402 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9403 } 9404 9405 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9406 EVT VT, SDValue Op1, 9407 SDValue Op2, SDValue Op3) { 9408 SDVTList VTs = getVTList(VT); 9409 SDValue Ops[] = { Op1, Op2, Op3 }; 9410 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9411 } 9412 9413 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9414 EVT VT, ArrayRef<SDValue> Ops) { 9415 SDVTList VTs = getVTList(VT); 9416 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9417 } 9418 9419 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9420 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9421 SDVTList VTs = getVTList(VT1, VT2); 9422 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9423 } 9424 9425 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9426 EVT VT1, EVT VT2) { 9427 SDVTList VTs = getVTList(VT1, VT2); 9428 return SelectNodeTo(N, MachineOpc, VTs, None); 9429 } 9430 9431 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9432 EVT VT1, EVT VT2, EVT VT3, 9433 ArrayRef<SDValue> Ops) { 9434 SDVTList VTs = getVTList(VT1, VT2, VT3); 9435 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9436 } 9437 9438 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9439 EVT VT1, EVT VT2, 9440 SDValue Op1, SDValue Op2) { 9441 SDVTList VTs = getVTList(VT1, VT2); 9442 SDValue Ops[] = { Op1, Op2 }; 9443 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9444 } 9445 9446 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9447 SDVTList VTs,ArrayRef<SDValue> Ops) { 9448 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9449 // Reset the NodeID to -1. 9450 New->setNodeId(-1); 9451 if (New != N) { 9452 ReplaceAllUsesWith(N, New); 9453 RemoveDeadNode(N); 9454 } 9455 return New; 9456 } 9457 9458 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9459 /// the line number information on the merged node since it is not possible to 9460 /// preserve the information that operation is associated with multiple lines. 9461 /// This will make the debugger working better at -O0, were there is a higher 9462 /// probability having other instructions associated with that line. 9463 /// 9464 /// For IROrder, we keep the smaller of the two 9465 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9466 DebugLoc NLoc = N->getDebugLoc(); 9467 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9468 N->setDebugLoc(DebugLoc()); 9469 } 9470 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9471 N->setIROrder(Order); 9472 return N; 9473 } 9474 9475 /// MorphNodeTo - This *mutates* the specified node to have the specified 9476 /// return type, opcode, and operands. 9477 /// 9478 /// Note that MorphNodeTo returns the resultant node. If there is already a 9479 /// node of the specified opcode and operands, it returns that node instead of 9480 /// the current one. Note that the SDLoc need not be the same. 9481 /// 9482 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9483 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9484 /// node, and because it doesn't require CSE recalculation for any of 9485 /// the node's users. 9486 /// 9487 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9488 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9489 /// the legalizer which maintain worklists that would need to be updated when 9490 /// deleting things. 9491 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9492 SDVTList VTs, ArrayRef<SDValue> Ops) { 9493 // If an identical node already exists, use it. 9494 void *IP = nullptr; 9495 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9496 FoldingSetNodeID ID; 9497 AddNodeIDNode(ID, Opc, VTs, Ops); 9498 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9499 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9500 } 9501 9502 if (!RemoveNodeFromCSEMaps(N)) 9503 IP = nullptr; 9504 9505 // Start the morphing. 9506 N->NodeType = Opc; 9507 N->ValueList = VTs.VTs; 9508 N->NumValues = VTs.NumVTs; 9509 9510 // Clear the operands list, updating used nodes to remove this from their 9511 // use list. Keep track of any operands that become dead as a result. 9512 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9513 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9514 SDUse &Use = *I++; 9515 SDNode *Used = Use.getNode(); 9516 Use.set(SDValue()); 9517 if (Used->use_empty()) 9518 DeadNodeSet.insert(Used); 9519 } 9520 9521 // For MachineNode, initialize the memory references information. 9522 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9523 MN->clearMemRefs(); 9524 9525 // Swap for an appropriately sized array from the recycler. 9526 removeOperands(N); 9527 createOperands(N, Ops); 9528 9529 // Delete any nodes that are still dead after adding the uses for the 9530 // new operands. 9531 if (!DeadNodeSet.empty()) { 9532 SmallVector<SDNode *, 16> DeadNodes; 9533 for (SDNode *N : DeadNodeSet) 9534 if (N->use_empty()) 9535 DeadNodes.push_back(N); 9536 RemoveDeadNodes(DeadNodes); 9537 } 9538 9539 if (IP) 9540 CSEMap.InsertNode(N, IP); // Memoize the new node. 9541 return N; 9542 } 9543 9544 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9545 unsigned OrigOpc = Node->getOpcode(); 9546 unsigned NewOpc; 9547 switch (OrigOpc) { 9548 default: 9549 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9550 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9551 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9552 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9553 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9554 #include "llvm/IR/ConstrainedOps.def" 9555 } 9556 9557 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9558 9559 // We're taking this node out of the chain, so we need to re-link things. 9560 SDValue InputChain = Node->getOperand(0); 9561 SDValue OutputChain = SDValue(Node, 1); 9562 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9563 9564 SmallVector<SDValue, 3> Ops; 9565 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9566 Ops.push_back(Node->getOperand(i)); 9567 9568 SDVTList VTs = getVTList(Node->getValueType(0)); 9569 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9570 9571 // MorphNodeTo can operate in two ways: if an existing node with the 9572 // specified operands exists, it can just return it. Otherwise, it 9573 // updates the node in place to have the requested operands. 9574 if (Res == Node) { 9575 // If we updated the node in place, reset the node ID. To the isel, 9576 // this should be just like a newly allocated machine node. 9577 Res->setNodeId(-1); 9578 } else { 9579 ReplaceAllUsesWith(Node, Res); 9580 RemoveDeadNode(Node); 9581 } 9582 9583 return Res; 9584 } 9585 9586 /// getMachineNode - These are used for target selectors to create a new node 9587 /// with specified return type(s), MachineInstr opcode, and operands. 9588 /// 9589 /// Note that getMachineNode returns the resultant node. If there is already a 9590 /// node of the specified opcode and operands, it returns that node instead of 9591 /// the current one. 9592 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9593 EVT VT) { 9594 SDVTList VTs = getVTList(VT); 9595 return getMachineNode(Opcode, dl, VTs, None); 9596 } 9597 9598 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9599 EVT VT, SDValue Op1) { 9600 SDVTList VTs = getVTList(VT); 9601 SDValue Ops[] = { Op1 }; 9602 return getMachineNode(Opcode, dl, VTs, Ops); 9603 } 9604 9605 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9606 EVT VT, SDValue Op1, SDValue Op2) { 9607 SDVTList VTs = getVTList(VT); 9608 SDValue Ops[] = { Op1, Op2 }; 9609 return getMachineNode(Opcode, dl, VTs, Ops); 9610 } 9611 9612 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9613 EVT VT, SDValue Op1, SDValue Op2, 9614 SDValue Op3) { 9615 SDVTList VTs = getVTList(VT); 9616 SDValue Ops[] = { Op1, Op2, Op3 }; 9617 return getMachineNode(Opcode, dl, VTs, Ops); 9618 } 9619 9620 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9621 EVT VT, ArrayRef<SDValue> Ops) { 9622 SDVTList VTs = getVTList(VT); 9623 return getMachineNode(Opcode, dl, VTs, Ops); 9624 } 9625 9626 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9627 EVT VT1, EVT VT2, SDValue Op1, 9628 SDValue Op2) { 9629 SDVTList VTs = getVTList(VT1, VT2); 9630 SDValue Ops[] = { Op1, Op2 }; 9631 return getMachineNode(Opcode, dl, VTs, Ops); 9632 } 9633 9634 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9635 EVT VT1, EVT VT2, SDValue Op1, 9636 SDValue Op2, SDValue Op3) { 9637 SDVTList VTs = getVTList(VT1, VT2); 9638 SDValue Ops[] = { Op1, Op2, Op3 }; 9639 return getMachineNode(Opcode, dl, VTs, Ops); 9640 } 9641 9642 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9643 EVT VT1, EVT VT2, 9644 ArrayRef<SDValue> Ops) { 9645 SDVTList VTs = getVTList(VT1, VT2); 9646 return getMachineNode(Opcode, dl, VTs, Ops); 9647 } 9648 9649 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9650 EVT VT1, EVT VT2, EVT VT3, 9651 SDValue Op1, SDValue Op2) { 9652 SDVTList VTs = getVTList(VT1, VT2, VT3); 9653 SDValue Ops[] = { Op1, Op2 }; 9654 return getMachineNode(Opcode, dl, VTs, Ops); 9655 } 9656 9657 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9658 EVT VT1, EVT VT2, EVT VT3, 9659 SDValue Op1, SDValue Op2, 9660 SDValue Op3) { 9661 SDVTList VTs = getVTList(VT1, VT2, VT3); 9662 SDValue Ops[] = { Op1, Op2, Op3 }; 9663 return getMachineNode(Opcode, dl, VTs, Ops); 9664 } 9665 9666 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9667 EVT VT1, EVT VT2, EVT VT3, 9668 ArrayRef<SDValue> Ops) { 9669 SDVTList VTs = getVTList(VT1, VT2, VT3); 9670 return getMachineNode(Opcode, dl, VTs, Ops); 9671 } 9672 9673 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9674 ArrayRef<EVT> ResultTys, 9675 ArrayRef<SDValue> Ops) { 9676 SDVTList VTs = getVTList(ResultTys); 9677 return getMachineNode(Opcode, dl, VTs, Ops); 9678 } 9679 9680 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9681 SDVTList VTs, 9682 ArrayRef<SDValue> Ops) { 9683 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9684 MachineSDNode *N; 9685 void *IP = nullptr; 9686 9687 if (DoCSE) { 9688 FoldingSetNodeID ID; 9689 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9690 IP = nullptr; 9691 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9692 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9693 } 9694 } 9695 9696 // Allocate a new MachineSDNode. 9697 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9698 createOperands(N, Ops); 9699 9700 if (DoCSE) 9701 CSEMap.InsertNode(N, IP); 9702 9703 InsertNode(N); 9704 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9705 return N; 9706 } 9707 9708 /// getTargetExtractSubreg - A convenience function for creating 9709 /// TargetOpcode::EXTRACT_SUBREG nodes. 9710 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9711 SDValue Operand) { 9712 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9713 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9714 VT, Operand, SRIdxVal); 9715 return SDValue(Subreg, 0); 9716 } 9717 9718 /// getTargetInsertSubreg - A convenience function for creating 9719 /// TargetOpcode::INSERT_SUBREG nodes. 9720 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9721 SDValue Operand, SDValue Subreg) { 9722 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9723 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9724 VT, Operand, Subreg, SRIdxVal); 9725 return SDValue(Result, 0); 9726 } 9727 9728 /// getNodeIfExists - Get the specified node if it's already available, or 9729 /// else return NULL. 9730 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9731 ArrayRef<SDValue> Ops) { 9732 SDNodeFlags Flags; 9733 if (Inserter) 9734 Flags = Inserter->getFlags(); 9735 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9736 } 9737 9738 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9739 ArrayRef<SDValue> Ops, 9740 const SDNodeFlags Flags) { 9741 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9742 FoldingSetNodeID ID; 9743 AddNodeIDNode(ID, Opcode, VTList, Ops); 9744 void *IP = nullptr; 9745 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9746 E->intersectFlagsWith(Flags); 9747 return E; 9748 } 9749 } 9750 return nullptr; 9751 } 9752 9753 /// doesNodeExist - Check if a node exists without modifying its flags. 9754 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9755 ArrayRef<SDValue> Ops) { 9756 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9757 FoldingSetNodeID ID; 9758 AddNodeIDNode(ID, Opcode, VTList, Ops); 9759 void *IP = nullptr; 9760 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9761 return true; 9762 } 9763 return false; 9764 } 9765 9766 /// getDbgValue - Creates a SDDbgValue node. 9767 /// 9768 /// SDNode 9769 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9770 SDNode *N, unsigned R, bool IsIndirect, 9771 const DebugLoc &DL, unsigned O) { 9772 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9773 "Expected inlined-at fields to agree"); 9774 return new (DbgInfo->getAlloc()) 9775 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9776 {}, IsIndirect, DL, O, 9777 /*IsVariadic=*/false); 9778 } 9779 9780 /// Constant 9781 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9782 DIExpression *Expr, 9783 const Value *C, 9784 const DebugLoc &DL, unsigned O) { 9785 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9786 "Expected inlined-at fields to agree"); 9787 return new (DbgInfo->getAlloc()) 9788 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9789 /*IsIndirect=*/false, DL, O, 9790 /*IsVariadic=*/false); 9791 } 9792 9793 /// FrameIndex 9794 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9795 DIExpression *Expr, unsigned FI, 9796 bool IsIndirect, 9797 const DebugLoc &DL, 9798 unsigned O) { 9799 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9800 "Expected inlined-at fields to agree"); 9801 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9802 } 9803 9804 /// FrameIndex with dependencies 9805 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9806 DIExpression *Expr, unsigned FI, 9807 ArrayRef<SDNode *> Dependencies, 9808 bool IsIndirect, 9809 const DebugLoc &DL, 9810 unsigned O) { 9811 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9812 "Expected inlined-at fields to agree"); 9813 return new (DbgInfo->getAlloc()) 9814 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9815 Dependencies, IsIndirect, DL, O, 9816 /*IsVariadic=*/false); 9817 } 9818 9819 /// VReg 9820 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9821 unsigned VReg, bool IsIndirect, 9822 const DebugLoc &DL, unsigned O) { 9823 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9824 "Expected inlined-at fields to agree"); 9825 return new (DbgInfo->getAlloc()) 9826 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9827 {}, IsIndirect, DL, O, 9828 /*IsVariadic=*/false); 9829 } 9830 9831 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9832 ArrayRef<SDDbgOperand> Locs, 9833 ArrayRef<SDNode *> Dependencies, 9834 bool IsIndirect, const DebugLoc &DL, 9835 unsigned O, bool IsVariadic) { 9836 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9837 "Expected inlined-at fields to agree"); 9838 return new (DbgInfo->getAlloc()) 9839 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9840 DL, O, IsVariadic); 9841 } 9842 9843 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9844 unsigned OffsetInBits, unsigned SizeInBits, 9845 bool InvalidateDbg) { 9846 SDNode *FromNode = From.getNode(); 9847 SDNode *ToNode = To.getNode(); 9848 assert(FromNode && ToNode && "Can't modify dbg values"); 9849 9850 // PR35338 9851 // TODO: assert(From != To && "Redundant dbg value transfer"); 9852 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9853 if (From == To || FromNode == ToNode) 9854 return; 9855 9856 if (!FromNode->getHasDebugValue()) 9857 return; 9858 9859 SDDbgOperand FromLocOp = 9860 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9861 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9862 9863 SmallVector<SDDbgValue *, 2> ClonedDVs; 9864 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9865 if (Dbg->isInvalidated()) 9866 continue; 9867 9868 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9869 9870 // Create a new location ops vector that is equal to the old vector, but 9871 // with each instance of FromLocOp replaced with ToLocOp. 9872 bool Changed = false; 9873 auto NewLocOps = Dbg->copyLocationOps(); 9874 std::replace_if( 9875 NewLocOps.begin(), NewLocOps.end(), 9876 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9877 bool Match = Op == FromLocOp; 9878 Changed |= Match; 9879 return Match; 9880 }, 9881 ToLocOp); 9882 // Ignore this SDDbgValue if we didn't find a matching location. 9883 if (!Changed) 9884 continue; 9885 9886 DIVariable *Var = Dbg->getVariable(); 9887 auto *Expr = Dbg->getExpression(); 9888 // If a fragment is requested, update the expression. 9889 if (SizeInBits) { 9890 // When splitting a larger (e.g., sign-extended) value whose 9891 // lower bits are described with an SDDbgValue, do not attempt 9892 // to transfer the SDDbgValue to the upper bits. 9893 if (auto FI = Expr->getFragmentInfo()) 9894 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9895 continue; 9896 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9897 SizeInBits); 9898 if (!Fragment) 9899 continue; 9900 Expr = *Fragment; 9901 } 9902 9903 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9904 // Clone the SDDbgValue and move it to To. 9905 SDDbgValue *Clone = getDbgValueList( 9906 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9907 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9908 Dbg->isVariadic()); 9909 ClonedDVs.push_back(Clone); 9910 9911 if (InvalidateDbg) { 9912 // Invalidate value and indicate the SDDbgValue should not be emitted. 9913 Dbg->setIsInvalidated(); 9914 Dbg->setIsEmitted(); 9915 } 9916 } 9917 9918 for (SDDbgValue *Dbg : ClonedDVs) { 9919 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9920 "Transferred DbgValues should depend on the new SDNode"); 9921 AddDbgValue(Dbg, false); 9922 } 9923 } 9924 9925 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9926 if (!N.getHasDebugValue()) 9927 return; 9928 9929 SmallVector<SDDbgValue *, 2> ClonedDVs; 9930 for (auto *DV : GetDbgValues(&N)) { 9931 if (DV->isInvalidated()) 9932 continue; 9933 switch (N.getOpcode()) { 9934 default: 9935 break; 9936 case ISD::ADD: 9937 SDValue N0 = N.getOperand(0); 9938 SDValue N1 = N.getOperand(1); 9939 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9940 isConstantIntBuildVectorOrConstantInt(N1)) { 9941 uint64_t Offset = N.getConstantOperandVal(1); 9942 9943 // Rewrite an ADD constant node into a DIExpression. Since we are 9944 // performing arithmetic to compute the variable's *value* in the 9945 // DIExpression, we need to mark the expression with a 9946 // DW_OP_stack_value. 9947 auto *DIExpr = DV->getExpression(); 9948 auto NewLocOps = DV->copyLocationOps(); 9949 bool Changed = false; 9950 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9951 // We're not given a ResNo to compare against because the whole 9952 // node is going away. We know that any ISD::ADD only has one 9953 // result, so we can assume any node match is using the result. 9954 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9955 NewLocOps[i].getSDNode() != &N) 9956 continue; 9957 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9958 SmallVector<uint64_t, 3> ExprOps; 9959 DIExpression::appendOffset(ExprOps, Offset); 9960 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9961 Changed = true; 9962 } 9963 (void)Changed; 9964 assert(Changed && "Salvage target doesn't use N"); 9965 9966 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9967 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9968 NewLocOps, AdditionalDependencies, 9969 DV->isIndirect(), DV->getDebugLoc(), 9970 DV->getOrder(), DV->isVariadic()); 9971 ClonedDVs.push_back(Clone); 9972 DV->setIsInvalidated(); 9973 DV->setIsEmitted(); 9974 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9975 N0.getNode()->dumprFull(this); 9976 dbgs() << " into " << *DIExpr << '\n'); 9977 } 9978 } 9979 } 9980 9981 for (SDDbgValue *Dbg : ClonedDVs) { 9982 assert(!Dbg->getSDNodes().empty() && 9983 "Salvaged DbgValue should depend on a new SDNode"); 9984 AddDbgValue(Dbg, false); 9985 } 9986 } 9987 9988 /// Creates a SDDbgLabel node. 9989 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9990 const DebugLoc &DL, unsigned O) { 9991 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9992 "Expected inlined-at fields to agree"); 9993 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9994 } 9995 9996 namespace { 9997 9998 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9999 /// pointed to by a use iterator is deleted, increment the use iterator 10000 /// so that it doesn't dangle. 10001 /// 10002 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 10003 SDNode::use_iterator &UI; 10004 SDNode::use_iterator &UE; 10005 10006 void NodeDeleted(SDNode *N, SDNode *E) override { 10007 // Increment the iterator as needed. 10008 while (UI != UE && N == *UI) 10009 ++UI; 10010 } 10011 10012 public: 10013 RAUWUpdateListener(SelectionDAG &d, 10014 SDNode::use_iterator &ui, 10015 SDNode::use_iterator &ue) 10016 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 10017 }; 10018 10019 } // end anonymous namespace 10020 10021 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10022 /// This can cause recursive merging of nodes in the DAG. 10023 /// 10024 /// This version assumes From has a single result value. 10025 /// 10026 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 10027 SDNode *From = FromN.getNode(); 10028 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 10029 "Cannot replace with this method!"); 10030 assert(From != To.getNode() && "Cannot replace uses of with self"); 10031 10032 // Preserve Debug Values 10033 transferDbgValues(FromN, To); 10034 10035 // Iterate over all the existing uses of From. New uses will be added 10036 // to the beginning of the use list, which we avoid visiting. 10037 // This specifically avoids visiting uses of From that arise while the 10038 // replacement is happening, because any such uses would be the result 10039 // of CSE: If an existing node looks like From after one of its operands 10040 // is replaced by To, we don't want to replace of all its users with To 10041 // too. See PR3018 for more info. 10042 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10043 RAUWUpdateListener Listener(*this, UI, UE); 10044 while (UI != UE) { 10045 SDNode *User = *UI; 10046 10047 // This node is about to morph, remove its old self from the CSE maps. 10048 RemoveNodeFromCSEMaps(User); 10049 10050 // A user can appear in a use list multiple times, and when this 10051 // happens the uses are usually next to each other in the list. 10052 // To help reduce the number of CSE recomputations, process all 10053 // the uses of this user that we can find this way. 10054 do { 10055 SDUse &Use = UI.getUse(); 10056 ++UI; 10057 Use.set(To); 10058 if (To->isDivergent() != From->isDivergent()) 10059 updateDivergence(User); 10060 } while (UI != UE && *UI == User); 10061 // Now that we have modified User, add it back to the CSE maps. If it 10062 // already exists there, recursively merge the results together. 10063 AddModifiedNodeToCSEMaps(User); 10064 } 10065 10066 // If we just RAUW'd the root, take note. 10067 if (FromN == getRoot()) 10068 setRoot(To); 10069 } 10070 10071 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10072 /// This can cause recursive merging of nodes in the DAG. 10073 /// 10074 /// This version assumes that for each value of From, there is a 10075 /// corresponding value in To in the same position with the same type. 10076 /// 10077 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 10078 #ifndef NDEBUG 10079 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10080 assert((!From->hasAnyUseOfValue(i) || 10081 From->getValueType(i) == To->getValueType(i)) && 10082 "Cannot use this version of ReplaceAllUsesWith!"); 10083 #endif 10084 10085 // Handle the trivial case. 10086 if (From == To) 10087 return; 10088 10089 // Preserve Debug Info. Only do this if there's a use. 10090 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10091 if (From->hasAnyUseOfValue(i)) { 10092 assert((i < To->getNumValues()) && "Invalid To location"); 10093 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10094 } 10095 10096 // Iterate over just the existing users of From. See the comments in 10097 // the ReplaceAllUsesWith above. 10098 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10099 RAUWUpdateListener Listener(*this, UI, UE); 10100 while (UI != UE) { 10101 SDNode *User = *UI; 10102 10103 // This node is about to morph, remove its old self from the CSE maps. 10104 RemoveNodeFromCSEMaps(User); 10105 10106 // A user can appear in a use list multiple times, and when this 10107 // happens the uses are usually next to each other in the list. 10108 // To help reduce the number of CSE recomputations, process all 10109 // the uses of this user that we can find this way. 10110 do { 10111 SDUse &Use = UI.getUse(); 10112 ++UI; 10113 Use.setNode(To); 10114 if (To->isDivergent() != From->isDivergent()) 10115 updateDivergence(User); 10116 } while (UI != UE && *UI == User); 10117 10118 // Now that we have modified User, add it back to the CSE maps. If it 10119 // already exists there, recursively merge the results together. 10120 AddModifiedNodeToCSEMaps(User); 10121 } 10122 10123 // If we just RAUW'd the root, take note. 10124 if (From == getRoot().getNode()) 10125 setRoot(SDValue(To, getRoot().getResNo())); 10126 } 10127 10128 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10129 /// This can cause recursive merging of nodes in the DAG. 10130 /// 10131 /// This version can replace From with any result values. To must match the 10132 /// number and types of values returned by From. 10133 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10134 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10135 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10136 10137 // Preserve Debug Info. 10138 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10139 transferDbgValues(SDValue(From, i), To[i]); 10140 10141 // Iterate over just the existing users of From. See the comments in 10142 // the ReplaceAllUsesWith above. 10143 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10144 RAUWUpdateListener Listener(*this, UI, UE); 10145 while (UI != UE) { 10146 SDNode *User = *UI; 10147 10148 // This node is about to morph, remove its old self from the CSE maps. 10149 RemoveNodeFromCSEMaps(User); 10150 10151 // A user can appear in a use list multiple times, and when this happens the 10152 // uses are usually next to each other in the list. To help reduce the 10153 // number of CSE and divergence recomputations, process all the uses of this 10154 // user that we can find this way. 10155 bool To_IsDivergent = false; 10156 do { 10157 SDUse &Use = UI.getUse(); 10158 const SDValue &ToOp = To[Use.getResNo()]; 10159 ++UI; 10160 Use.set(ToOp); 10161 To_IsDivergent |= ToOp->isDivergent(); 10162 } while (UI != UE && *UI == User); 10163 10164 if (To_IsDivergent != From->isDivergent()) 10165 updateDivergence(User); 10166 10167 // Now that we have modified User, add it back to the CSE maps. If it 10168 // already exists there, recursively merge the results together. 10169 AddModifiedNodeToCSEMaps(User); 10170 } 10171 10172 // If we just RAUW'd the root, take note. 10173 if (From == getRoot().getNode()) 10174 setRoot(SDValue(To[getRoot().getResNo()])); 10175 } 10176 10177 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10178 /// uses of other values produced by From.getNode() alone. The Deleted 10179 /// vector is handled the same way as for ReplaceAllUsesWith. 10180 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10181 // Handle the really simple, really trivial case efficiently. 10182 if (From == To) return; 10183 10184 // Handle the simple, trivial, case efficiently. 10185 if (From.getNode()->getNumValues() == 1) { 10186 ReplaceAllUsesWith(From, To); 10187 return; 10188 } 10189 10190 // Preserve Debug Info. 10191 transferDbgValues(From, To); 10192 10193 // Iterate over just the existing users of From. See the comments in 10194 // the ReplaceAllUsesWith above. 10195 SDNode::use_iterator UI = From.getNode()->use_begin(), 10196 UE = From.getNode()->use_end(); 10197 RAUWUpdateListener Listener(*this, UI, UE); 10198 while (UI != UE) { 10199 SDNode *User = *UI; 10200 bool UserRemovedFromCSEMaps = false; 10201 10202 // A user can appear in a use list multiple times, and when this 10203 // happens the uses are usually next to each other in the list. 10204 // To help reduce the number of CSE recomputations, process all 10205 // the uses of this user that we can find this way. 10206 do { 10207 SDUse &Use = UI.getUse(); 10208 10209 // Skip uses of different values from the same node. 10210 if (Use.getResNo() != From.getResNo()) { 10211 ++UI; 10212 continue; 10213 } 10214 10215 // If this node hasn't been modified yet, it's still in the CSE maps, 10216 // so remove its old self from the CSE maps. 10217 if (!UserRemovedFromCSEMaps) { 10218 RemoveNodeFromCSEMaps(User); 10219 UserRemovedFromCSEMaps = true; 10220 } 10221 10222 ++UI; 10223 Use.set(To); 10224 if (To->isDivergent() != From->isDivergent()) 10225 updateDivergence(User); 10226 } while (UI != UE && *UI == User); 10227 // We are iterating over all uses of the From node, so if a use 10228 // doesn't use the specific value, no changes are made. 10229 if (!UserRemovedFromCSEMaps) 10230 continue; 10231 10232 // Now that we have modified User, add it back to the CSE maps. If it 10233 // already exists there, recursively merge the results together. 10234 AddModifiedNodeToCSEMaps(User); 10235 } 10236 10237 // If we just RAUW'd the root, take note. 10238 if (From == getRoot()) 10239 setRoot(To); 10240 } 10241 10242 namespace { 10243 10244 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10245 /// to record information about a use. 10246 struct UseMemo { 10247 SDNode *User; 10248 unsigned Index; 10249 SDUse *Use; 10250 }; 10251 10252 /// operator< - Sort Memos by User. 10253 bool operator<(const UseMemo &L, const UseMemo &R) { 10254 return (intptr_t)L.User < (intptr_t)R.User; 10255 } 10256 10257 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10258 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10259 /// the node already has been taken care of recursively. 10260 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10261 SmallVector<UseMemo, 4> &Uses; 10262 10263 void NodeDeleted(SDNode *N, SDNode *E) override { 10264 for (UseMemo &Memo : Uses) 10265 if (Memo.User == N) 10266 Memo.User = nullptr; 10267 } 10268 10269 public: 10270 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10271 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10272 }; 10273 10274 } // end anonymous namespace 10275 10276 bool SelectionDAG::calculateDivergence(SDNode *N) { 10277 if (TLI->isSDNodeAlwaysUniform(N)) { 10278 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10279 "Conflicting divergence information!"); 10280 return false; 10281 } 10282 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10283 return true; 10284 for (const auto &Op : N->ops()) { 10285 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10286 return true; 10287 } 10288 return false; 10289 } 10290 10291 void SelectionDAG::updateDivergence(SDNode *N) { 10292 SmallVector<SDNode *, 16> Worklist(1, N); 10293 do { 10294 N = Worklist.pop_back_val(); 10295 bool IsDivergent = calculateDivergence(N); 10296 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10297 N->SDNodeBits.IsDivergent = IsDivergent; 10298 llvm::append_range(Worklist, N->uses()); 10299 } 10300 } while (!Worklist.empty()); 10301 } 10302 10303 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10304 DenseMap<SDNode *, unsigned> Degree; 10305 Order.reserve(AllNodes.size()); 10306 for (auto &N : allnodes()) { 10307 unsigned NOps = N.getNumOperands(); 10308 Degree[&N] = NOps; 10309 if (0 == NOps) 10310 Order.push_back(&N); 10311 } 10312 for (size_t I = 0; I != Order.size(); ++I) { 10313 SDNode *N = Order[I]; 10314 for (auto *U : N->uses()) { 10315 unsigned &UnsortedOps = Degree[U]; 10316 if (0 == --UnsortedOps) 10317 Order.push_back(U); 10318 } 10319 } 10320 } 10321 10322 #ifndef NDEBUG 10323 void SelectionDAG::VerifyDAGDivergence() { 10324 std::vector<SDNode *> TopoOrder; 10325 CreateTopologicalOrder(TopoOrder); 10326 for (auto *N : TopoOrder) { 10327 assert(calculateDivergence(N) == N->isDivergent() && 10328 "Divergence bit inconsistency detected"); 10329 } 10330 } 10331 #endif 10332 10333 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10334 /// uses of other values produced by From.getNode() alone. The same value 10335 /// may appear in both the From and To list. The Deleted vector is 10336 /// handled the same way as for ReplaceAllUsesWith. 10337 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10338 const SDValue *To, 10339 unsigned Num){ 10340 // Handle the simple, trivial case efficiently. 10341 if (Num == 1) 10342 return ReplaceAllUsesOfValueWith(*From, *To); 10343 10344 transferDbgValues(*From, *To); 10345 10346 // Read up all the uses and make records of them. This helps 10347 // processing new uses that are introduced during the 10348 // replacement process. 10349 SmallVector<UseMemo, 4> Uses; 10350 for (unsigned i = 0; i != Num; ++i) { 10351 unsigned FromResNo = From[i].getResNo(); 10352 SDNode *FromNode = From[i].getNode(); 10353 for (SDNode::use_iterator UI = FromNode->use_begin(), 10354 E = FromNode->use_end(); UI != E; ++UI) { 10355 SDUse &Use = UI.getUse(); 10356 if (Use.getResNo() == FromResNo) { 10357 UseMemo Memo = { *UI, i, &Use }; 10358 Uses.push_back(Memo); 10359 } 10360 } 10361 } 10362 10363 // Sort the uses, so that all the uses from a given User are together. 10364 llvm::sort(Uses); 10365 RAUOVWUpdateListener Listener(*this, Uses); 10366 10367 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10368 UseIndex != UseIndexEnd; ) { 10369 // We know that this user uses some value of From. If it is the right 10370 // value, update it. 10371 SDNode *User = Uses[UseIndex].User; 10372 // If the node has been deleted by recursive CSE updates when updating 10373 // another node, then just skip this entry. 10374 if (User == nullptr) { 10375 ++UseIndex; 10376 continue; 10377 } 10378 10379 // This node is about to morph, remove its old self from the CSE maps. 10380 RemoveNodeFromCSEMaps(User); 10381 10382 // The Uses array is sorted, so all the uses for a given User 10383 // are next to each other in the list. 10384 // To help reduce the number of CSE recomputations, process all 10385 // the uses of this user that we can find this way. 10386 do { 10387 unsigned i = Uses[UseIndex].Index; 10388 SDUse &Use = *Uses[UseIndex].Use; 10389 ++UseIndex; 10390 10391 Use.set(To[i]); 10392 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10393 10394 // Now that we have modified User, add it back to the CSE maps. If it 10395 // already exists there, recursively merge the results together. 10396 AddModifiedNodeToCSEMaps(User); 10397 } 10398 } 10399 10400 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10401 /// based on their topological order. It returns the maximum id and a vector 10402 /// of the SDNodes* in assigned order by reference. 10403 unsigned SelectionDAG::AssignTopologicalOrder() { 10404 unsigned DAGSize = 0; 10405 10406 // SortedPos tracks the progress of the algorithm. Nodes before it are 10407 // sorted, nodes after it are unsorted. When the algorithm completes 10408 // it is at the end of the list. 10409 allnodes_iterator SortedPos = allnodes_begin(); 10410 10411 // Visit all the nodes. Move nodes with no operands to the front of 10412 // the list immediately. Annotate nodes that do have operands with their 10413 // operand count. Before we do this, the Node Id fields of the nodes 10414 // may contain arbitrary values. After, the Node Id fields for nodes 10415 // before SortedPos will contain the topological sort index, and the 10416 // Node Id fields for nodes At SortedPos and after will contain the 10417 // count of outstanding operands. 10418 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10419 checkForCycles(&N, this); 10420 unsigned Degree = N.getNumOperands(); 10421 if (Degree == 0) { 10422 // A node with no uses, add it to the result array immediately. 10423 N.setNodeId(DAGSize++); 10424 allnodes_iterator Q(&N); 10425 if (Q != SortedPos) 10426 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10427 assert(SortedPos != AllNodes.end() && "Overran node list"); 10428 ++SortedPos; 10429 } else { 10430 // Temporarily use the Node Id as scratch space for the degree count. 10431 N.setNodeId(Degree); 10432 } 10433 } 10434 10435 // Visit all the nodes. As we iterate, move nodes into sorted order, 10436 // such that by the time the end is reached all nodes will be sorted. 10437 for (SDNode &Node : allnodes()) { 10438 SDNode *N = &Node; 10439 checkForCycles(N, this); 10440 // N is in sorted position, so all its uses have one less operand 10441 // that needs to be sorted. 10442 for (SDNode *P : N->uses()) { 10443 unsigned Degree = P->getNodeId(); 10444 assert(Degree != 0 && "Invalid node degree"); 10445 --Degree; 10446 if (Degree == 0) { 10447 // All of P's operands are sorted, so P may sorted now. 10448 P->setNodeId(DAGSize++); 10449 if (P->getIterator() != SortedPos) 10450 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10451 assert(SortedPos != AllNodes.end() && "Overran node list"); 10452 ++SortedPos; 10453 } else { 10454 // Update P's outstanding operand count. 10455 P->setNodeId(Degree); 10456 } 10457 } 10458 if (Node.getIterator() == SortedPos) { 10459 #ifndef NDEBUG 10460 allnodes_iterator I(N); 10461 SDNode *S = &*++I; 10462 dbgs() << "Overran sorted position:\n"; 10463 S->dumprFull(this); dbgs() << "\n"; 10464 dbgs() << "Checking if this is due to cycles\n"; 10465 checkForCycles(this, true); 10466 #endif 10467 llvm_unreachable(nullptr); 10468 } 10469 } 10470 10471 assert(SortedPos == AllNodes.end() && 10472 "Topological sort incomplete!"); 10473 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10474 "First node in topological sort is not the entry token!"); 10475 assert(AllNodes.front().getNodeId() == 0 && 10476 "First node in topological sort has non-zero id!"); 10477 assert(AllNodes.front().getNumOperands() == 0 && 10478 "First node in topological sort has operands!"); 10479 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10480 "Last node in topologic sort has unexpected id!"); 10481 assert(AllNodes.back().use_empty() && 10482 "Last node in topologic sort has users!"); 10483 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10484 return DAGSize; 10485 } 10486 10487 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10488 /// value is produced by SD. 10489 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10490 for (SDNode *SD : DB->getSDNodes()) { 10491 if (!SD) 10492 continue; 10493 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10494 SD->setHasDebugValue(true); 10495 } 10496 DbgInfo->add(DB, isParameter); 10497 } 10498 10499 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10500 10501 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10502 SDValue NewMemOpChain) { 10503 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10504 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10505 // The new memory operation must have the same position as the old load in 10506 // terms of memory dependency. Create a TokenFactor for the old load and new 10507 // memory operation and update uses of the old load's output chain to use that 10508 // TokenFactor. 10509 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10510 return NewMemOpChain; 10511 10512 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10513 OldChain, NewMemOpChain); 10514 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10515 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10516 return TokenFactor; 10517 } 10518 10519 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10520 SDValue NewMemOp) { 10521 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10522 SDValue OldChain = SDValue(OldLoad, 1); 10523 SDValue NewMemOpChain = NewMemOp.getValue(1); 10524 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10525 } 10526 10527 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10528 Function **OutFunction) { 10529 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10530 10531 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10532 auto *Module = MF->getFunction().getParent(); 10533 auto *Function = Module->getFunction(Symbol); 10534 10535 if (OutFunction != nullptr) 10536 *OutFunction = Function; 10537 10538 if (Function != nullptr) { 10539 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10540 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10541 } 10542 10543 std::string ErrorStr; 10544 raw_string_ostream ErrorFormatter(ErrorStr); 10545 ErrorFormatter << "Undefined external symbol "; 10546 ErrorFormatter << '"' << Symbol << '"'; 10547 report_fatal_error(Twine(ErrorFormatter.str())); 10548 } 10549 10550 //===----------------------------------------------------------------------===// 10551 // SDNode Class 10552 //===----------------------------------------------------------------------===// 10553 10554 bool llvm::isNullConstant(SDValue V) { 10555 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10556 return Const != nullptr && Const->isZero(); 10557 } 10558 10559 bool llvm::isNullFPConstant(SDValue V) { 10560 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10561 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10562 } 10563 10564 bool llvm::isAllOnesConstant(SDValue V) { 10565 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10566 return Const != nullptr && Const->isAllOnes(); 10567 } 10568 10569 bool llvm::isOneConstant(SDValue V) { 10570 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10571 return Const != nullptr && Const->isOne(); 10572 } 10573 10574 bool llvm::isMinSignedConstant(SDValue V) { 10575 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10576 return Const != nullptr && Const->isMinSignedValue(); 10577 } 10578 10579 SDValue llvm::peekThroughBitcasts(SDValue V) { 10580 while (V.getOpcode() == ISD::BITCAST) 10581 V = V.getOperand(0); 10582 return V; 10583 } 10584 10585 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10586 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10587 V = V.getOperand(0); 10588 return V; 10589 } 10590 10591 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10592 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10593 V = V.getOperand(0); 10594 return V; 10595 } 10596 10597 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10598 if (V.getOpcode() != ISD::XOR) 10599 return false; 10600 V = peekThroughBitcasts(V.getOperand(1)); 10601 unsigned NumBits = V.getScalarValueSizeInBits(); 10602 ConstantSDNode *C = 10603 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10604 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10605 } 10606 10607 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10608 bool AllowTruncation) { 10609 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10610 return CN; 10611 10612 // SplatVectors can truncate their operands. Ignore that case here unless 10613 // AllowTruncation is set. 10614 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10615 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10616 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10617 EVT CVT = CN->getValueType(0); 10618 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10619 if (AllowTruncation || CVT == VecEltVT) 10620 return CN; 10621 } 10622 } 10623 10624 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10625 BitVector UndefElements; 10626 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10627 10628 // BuildVectors can truncate their operands. Ignore that case here unless 10629 // AllowTruncation is set. 10630 if (CN && (UndefElements.none() || AllowUndefs)) { 10631 EVT CVT = CN->getValueType(0); 10632 EVT NSVT = N.getValueType().getScalarType(); 10633 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10634 if (AllowTruncation || (CVT == NSVT)) 10635 return CN; 10636 } 10637 } 10638 10639 return nullptr; 10640 } 10641 10642 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10643 bool AllowUndefs, 10644 bool AllowTruncation) { 10645 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10646 return CN; 10647 10648 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10649 BitVector UndefElements; 10650 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10651 10652 // BuildVectors can truncate their operands. Ignore that case here unless 10653 // AllowTruncation is set. 10654 if (CN && (UndefElements.none() || AllowUndefs)) { 10655 EVT CVT = CN->getValueType(0); 10656 EVT NSVT = N.getValueType().getScalarType(); 10657 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10658 if (AllowTruncation || (CVT == NSVT)) 10659 return CN; 10660 } 10661 } 10662 10663 return nullptr; 10664 } 10665 10666 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10667 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10668 return CN; 10669 10670 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10671 BitVector UndefElements; 10672 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10673 if (CN && (UndefElements.none() || AllowUndefs)) 10674 return CN; 10675 } 10676 10677 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10678 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10679 return CN; 10680 10681 return nullptr; 10682 } 10683 10684 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10685 const APInt &DemandedElts, 10686 bool AllowUndefs) { 10687 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10688 return CN; 10689 10690 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10691 BitVector UndefElements; 10692 ConstantFPSDNode *CN = 10693 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10694 if (CN && (UndefElements.none() || AllowUndefs)) 10695 return CN; 10696 } 10697 10698 return nullptr; 10699 } 10700 10701 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10702 // TODO: may want to use peekThroughBitcast() here. 10703 ConstantSDNode *C = 10704 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10705 return C && C->isZero(); 10706 } 10707 10708 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10709 ConstantSDNode *C = 10710 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true); 10711 return C && C->isOne(); 10712 } 10713 10714 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10715 N = peekThroughBitcasts(N); 10716 unsigned BitWidth = N.getScalarValueSizeInBits(); 10717 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10718 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10719 } 10720 10721 HandleSDNode::~HandleSDNode() { 10722 DropOperands(); 10723 } 10724 10725 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10726 const DebugLoc &DL, 10727 const GlobalValue *GA, EVT VT, 10728 int64_t o, unsigned TF) 10729 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10730 TheGlobal = GA; 10731 } 10732 10733 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10734 EVT VT, unsigned SrcAS, 10735 unsigned DestAS) 10736 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10737 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10738 10739 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10740 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10741 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10742 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10743 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10744 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10745 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10746 10747 // We check here that the size of the memory operand fits within the size of 10748 // the MMO. This is because the MMO might indicate only a possible address 10749 // range instead of specifying the affected memory addresses precisely. 10750 // TODO: Make MachineMemOperands aware of scalable vectors. 10751 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10752 "Size mismatch!"); 10753 } 10754 10755 /// Profile - Gather unique data for the node. 10756 /// 10757 void SDNode::Profile(FoldingSetNodeID &ID) const { 10758 AddNodeIDNode(ID, this); 10759 } 10760 10761 namespace { 10762 10763 struct EVTArray { 10764 std::vector<EVT> VTs; 10765 10766 EVTArray() { 10767 VTs.reserve(MVT::VALUETYPE_SIZE); 10768 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10769 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10770 } 10771 }; 10772 10773 } // end anonymous namespace 10774 10775 /// getValueTypeList - Return a pointer to the specified value type. 10776 /// 10777 const EVT *SDNode::getValueTypeList(EVT VT) { 10778 static std::set<EVT, EVT::compareRawBits> EVTs; 10779 static EVTArray SimpleVTArray; 10780 static sys::SmartMutex<true> VTMutex; 10781 10782 if (VT.isExtended()) { 10783 sys::SmartScopedLock<true> Lock(VTMutex); 10784 return &(*EVTs.insert(VT).first); 10785 } 10786 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10787 return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy]; 10788 } 10789 10790 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10791 /// indicated value. This method ignores uses of other values defined by this 10792 /// operation. 10793 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10794 assert(Value < getNumValues() && "Bad value!"); 10795 10796 // TODO: Only iterate over uses of a given value of the node 10797 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10798 if (UI.getUse().getResNo() == Value) { 10799 if (NUses == 0) 10800 return false; 10801 --NUses; 10802 } 10803 } 10804 10805 // Found exactly the right number of uses? 10806 return NUses == 0; 10807 } 10808 10809 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10810 /// value. This method ignores uses of other values defined by this operation. 10811 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10812 assert(Value < getNumValues() && "Bad value!"); 10813 10814 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10815 if (UI.getUse().getResNo() == Value) 10816 return true; 10817 10818 return false; 10819 } 10820 10821 /// isOnlyUserOf - Return true if this node is the only use of N. 10822 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10823 bool Seen = false; 10824 for (const SDNode *User : N->uses()) { 10825 if (User == this) 10826 Seen = true; 10827 else 10828 return false; 10829 } 10830 10831 return Seen; 10832 } 10833 10834 /// Return true if the only users of N are contained in Nodes. 10835 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10836 bool Seen = false; 10837 for (const SDNode *User : N->uses()) { 10838 if (llvm::is_contained(Nodes, User)) 10839 Seen = true; 10840 else 10841 return false; 10842 } 10843 10844 return Seen; 10845 } 10846 10847 /// isOperand - Return true if this node is an operand of N. 10848 bool SDValue::isOperandOf(const SDNode *N) const { 10849 return is_contained(N->op_values(), *this); 10850 } 10851 10852 bool SDNode::isOperandOf(const SDNode *N) const { 10853 return any_of(N->op_values(), 10854 [this](SDValue Op) { return this == Op.getNode(); }); 10855 } 10856 10857 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10858 /// be a chain) reaches the specified operand without crossing any 10859 /// side-effecting instructions on any chain path. In practice, this looks 10860 /// through token factors and non-volatile loads. In order to remain efficient, 10861 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10862 /// 10863 /// Note that we only need to examine chains when we're searching for 10864 /// side-effects; SelectionDAG requires that all side-effects are represented 10865 /// by chains, even if another operand would force a specific ordering. This 10866 /// constraint is necessary to allow transformations like splitting loads. 10867 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10868 unsigned Depth) const { 10869 if (*this == Dest) return true; 10870 10871 // Don't search too deeply, we just want to be able to see through 10872 // TokenFactor's etc. 10873 if (Depth == 0) return false; 10874 10875 // If this is a token factor, all inputs to the TF happen in parallel. 10876 if (getOpcode() == ISD::TokenFactor) { 10877 // First, try a shallow search. 10878 if (is_contained((*this)->ops(), Dest)) { 10879 // We found the chain we want as an operand of this TokenFactor. 10880 // Essentially, we reach the chain without side-effects if we could 10881 // serialize the TokenFactor into a simple chain of operations with 10882 // Dest as the last operation. This is automatically true if the 10883 // chain has one use: there are no other ordering constraints. 10884 // If the chain has more than one use, we give up: some other 10885 // use of Dest might force a side-effect between Dest and the current 10886 // node. 10887 if (Dest.hasOneUse()) 10888 return true; 10889 } 10890 // Next, try a deep search: check whether every operand of the TokenFactor 10891 // reaches Dest. 10892 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10893 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10894 }); 10895 } 10896 10897 // Loads don't have side effects, look through them. 10898 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10899 if (Ld->isUnordered()) 10900 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10901 } 10902 return false; 10903 } 10904 10905 bool SDNode::hasPredecessor(const SDNode *N) const { 10906 SmallPtrSet<const SDNode *, 32> Visited; 10907 SmallVector<const SDNode *, 16> Worklist; 10908 Worklist.push_back(this); 10909 return hasPredecessorHelper(N, Visited, Worklist); 10910 } 10911 10912 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10913 this->Flags.intersectWith(Flags); 10914 } 10915 10916 SDValue 10917 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10918 ArrayRef<ISD::NodeType> CandidateBinOps, 10919 bool AllowPartials) { 10920 // The pattern must end in an extract from index 0. 10921 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10922 !isNullConstant(Extract->getOperand(1))) 10923 return SDValue(); 10924 10925 // Match against one of the candidate binary ops. 10926 SDValue Op = Extract->getOperand(0); 10927 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10928 return Op.getOpcode() == unsigned(BinOp); 10929 })) 10930 return SDValue(); 10931 10932 // Floating-point reductions may require relaxed constraints on the final step 10933 // of the reduction because they may reorder intermediate operations. 10934 unsigned CandidateBinOp = Op.getOpcode(); 10935 if (Op.getValueType().isFloatingPoint()) { 10936 SDNodeFlags Flags = Op->getFlags(); 10937 switch (CandidateBinOp) { 10938 case ISD::FADD: 10939 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10940 return SDValue(); 10941 break; 10942 default: 10943 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10944 } 10945 } 10946 10947 // Matching failed - attempt to see if we did enough stages that a partial 10948 // reduction from a subvector is possible. 10949 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10950 if (!AllowPartials || !Op) 10951 return SDValue(); 10952 EVT OpVT = Op.getValueType(); 10953 EVT OpSVT = OpVT.getScalarType(); 10954 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10955 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10956 return SDValue(); 10957 BinOp = (ISD::NodeType)CandidateBinOp; 10958 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10959 getVectorIdxConstant(0, SDLoc(Op))); 10960 }; 10961 10962 // At each stage, we're looking for something that looks like: 10963 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10964 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10965 // i32 undef, i32 undef, i32 undef, i32 undef> 10966 // %a = binop <8 x i32> %op, %s 10967 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10968 // we expect something like: 10969 // <4,5,6,7,u,u,u,u> 10970 // <2,3,u,u,u,u,u,u> 10971 // <1,u,u,u,u,u,u,u> 10972 // While a partial reduction match would be: 10973 // <2,3,u,u,u,u,u,u> 10974 // <1,u,u,u,u,u,u,u> 10975 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10976 SDValue PrevOp; 10977 for (unsigned i = 0; i < Stages; ++i) { 10978 unsigned MaskEnd = (1 << i); 10979 10980 if (Op.getOpcode() != CandidateBinOp) 10981 return PartialReduction(PrevOp, MaskEnd); 10982 10983 SDValue Op0 = Op.getOperand(0); 10984 SDValue Op1 = Op.getOperand(1); 10985 10986 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10987 if (Shuffle) { 10988 Op = Op1; 10989 } else { 10990 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10991 Op = Op0; 10992 } 10993 10994 // The first operand of the shuffle should be the same as the other operand 10995 // of the binop. 10996 if (!Shuffle || Shuffle->getOperand(0) != Op) 10997 return PartialReduction(PrevOp, MaskEnd); 10998 10999 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 11000 for (int Index = 0; Index < (int)MaskEnd; ++Index) 11001 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 11002 return PartialReduction(PrevOp, MaskEnd); 11003 11004 PrevOp = Op; 11005 } 11006 11007 // Handle subvector reductions, which tend to appear after the shuffle 11008 // reduction stages. 11009 while (Op.getOpcode() == CandidateBinOp) { 11010 unsigned NumElts = Op.getValueType().getVectorNumElements(); 11011 SDValue Op0 = Op.getOperand(0); 11012 SDValue Op1 = Op.getOperand(1); 11013 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 11014 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 11015 Op0.getOperand(0) != Op1.getOperand(0)) 11016 break; 11017 SDValue Src = Op0.getOperand(0); 11018 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 11019 if (NumSrcElts != (2 * NumElts)) 11020 break; 11021 if (!(Op0.getConstantOperandAPInt(1) == 0 && 11022 Op1.getConstantOperandAPInt(1) == NumElts) && 11023 !(Op1.getConstantOperandAPInt(1) == 0 && 11024 Op0.getConstantOperandAPInt(1) == NumElts)) 11025 break; 11026 Op = Src; 11027 } 11028 11029 BinOp = (ISD::NodeType)CandidateBinOp; 11030 return Op; 11031 } 11032 11033 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 11034 assert(N->getNumValues() == 1 && 11035 "Can't unroll a vector with multiple results!"); 11036 11037 EVT VT = N->getValueType(0); 11038 unsigned NE = VT.getVectorNumElements(); 11039 EVT EltVT = VT.getVectorElementType(); 11040 SDLoc dl(N); 11041 11042 SmallVector<SDValue, 8> Scalars; 11043 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 11044 11045 // If ResNE is 0, fully unroll the vector op. 11046 if (ResNE == 0) 11047 ResNE = NE; 11048 else if (NE > ResNE) 11049 NE = ResNE; 11050 11051 unsigned i; 11052 for (i= 0; i != NE; ++i) { 11053 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 11054 SDValue Operand = N->getOperand(j); 11055 EVT OperandVT = Operand.getValueType(); 11056 if (OperandVT.isVector()) { 11057 // A vector operand; extract a single element. 11058 EVT OperandEltVT = OperandVT.getVectorElementType(); 11059 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11060 Operand, getVectorIdxConstant(i, dl)); 11061 } else { 11062 // A scalar operand; just use it as is. 11063 Operands[j] = Operand; 11064 } 11065 } 11066 11067 switch (N->getOpcode()) { 11068 default: { 11069 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 11070 N->getFlags())); 11071 break; 11072 } 11073 case ISD::VSELECT: 11074 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 11075 break; 11076 case ISD::SHL: 11077 case ISD::SRA: 11078 case ISD::SRL: 11079 case ISD::ROTL: 11080 case ISD::ROTR: 11081 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11082 getShiftAmountOperand(Operands[0].getValueType(), 11083 Operands[1]))); 11084 break; 11085 case ISD::SIGN_EXTEND_INREG: { 11086 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11087 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11088 Operands[0], 11089 getValueType(ExtVT))); 11090 } 11091 } 11092 } 11093 11094 for (; i < ResNE; ++i) 11095 Scalars.push_back(getUNDEF(EltVT)); 11096 11097 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11098 return getBuildVector(VecVT, dl, Scalars); 11099 } 11100 11101 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11102 SDNode *N, unsigned ResNE) { 11103 unsigned Opcode = N->getOpcode(); 11104 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11105 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11106 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11107 "Expected an overflow opcode"); 11108 11109 EVT ResVT = N->getValueType(0); 11110 EVT OvVT = N->getValueType(1); 11111 EVT ResEltVT = ResVT.getVectorElementType(); 11112 EVT OvEltVT = OvVT.getVectorElementType(); 11113 SDLoc dl(N); 11114 11115 // If ResNE is 0, fully unroll the vector op. 11116 unsigned NE = ResVT.getVectorNumElements(); 11117 if (ResNE == 0) 11118 ResNE = NE; 11119 else if (NE > ResNE) 11120 NE = ResNE; 11121 11122 SmallVector<SDValue, 8> LHSScalars; 11123 SmallVector<SDValue, 8> RHSScalars; 11124 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11125 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11126 11127 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11128 SDVTList VTs = getVTList(ResEltVT, SVT); 11129 SmallVector<SDValue, 8> ResScalars; 11130 SmallVector<SDValue, 8> OvScalars; 11131 for (unsigned i = 0; i < NE; ++i) { 11132 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11133 SDValue Ov = 11134 getSelect(dl, OvEltVT, Res.getValue(1), 11135 getBoolConstant(true, dl, OvEltVT, ResVT), 11136 getConstant(0, dl, OvEltVT)); 11137 11138 ResScalars.push_back(Res); 11139 OvScalars.push_back(Ov); 11140 } 11141 11142 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11143 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11144 11145 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11146 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11147 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11148 getBuildVector(NewOvVT, dl, OvScalars)); 11149 } 11150 11151 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11152 LoadSDNode *Base, 11153 unsigned Bytes, 11154 int Dist) const { 11155 if (LD->isVolatile() || Base->isVolatile()) 11156 return false; 11157 // TODO: probably too restrictive for atomics, revisit 11158 if (!LD->isSimple()) 11159 return false; 11160 if (LD->isIndexed() || Base->isIndexed()) 11161 return false; 11162 if (LD->getChain() != Base->getChain()) 11163 return false; 11164 EVT VT = LD->getValueType(0); 11165 if (VT.getSizeInBits() / 8 != Bytes) 11166 return false; 11167 11168 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11169 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11170 11171 int64_t Offset = 0; 11172 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11173 return (Dist * Bytes == Offset); 11174 return false; 11175 } 11176 11177 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11178 /// if it cannot be inferred. 11179 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11180 // If this is a GlobalAddress + cst, return the alignment. 11181 const GlobalValue *GV = nullptr; 11182 int64_t GVOffset = 0; 11183 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11184 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11185 KnownBits Known(PtrWidth); 11186 llvm::computeKnownBits(GV, Known, getDataLayout()); 11187 unsigned AlignBits = Known.countMinTrailingZeros(); 11188 if (AlignBits) 11189 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11190 } 11191 11192 // If this is a direct reference to a stack slot, use information about the 11193 // stack slot's alignment. 11194 int FrameIdx = INT_MIN; 11195 int64_t FrameOffset = 0; 11196 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11197 FrameIdx = FI->getIndex(); 11198 } else if (isBaseWithConstantOffset(Ptr) && 11199 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11200 // Handle FI+Cst 11201 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11202 FrameOffset = Ptr.getConstantOperandVal(1); 11203 } 11204 11205 if (FrameIdx != INT_MIN) { 11206 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11207 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11208 } 11209 11210 return None; 11211 } 11212 11213 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11214 /// which is split (or expanded) into two not necessarily identical pieces. 11215 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11216 // Currently all types are split in half. 11217 EVT LoVT, HiVT; 11218 if (!VT.isVector()) 11219 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11220 else 11221 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11222 11223 return std::make_pair(LoVT, HiVT); 11224 } 11225 11226 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11227 /// type, dependent on an enveloping VT that has been split into two identical 11228 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11229 std::pair<EVT, EVT> 11230 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11231 bool *HiIsEmpty) const { 11232 EVT EltTp = VT.getVectorElementType(); 11233 // Examples: 11234 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11235 // custom VL=9 with enveloping VL=8/8 yields 8/1 11236 // custom VL=10 with enveloping VL=8/8 yields 8/2 11237 // etc. 11238 ElementCount VTNumElts = VT.getVectorElementCount(); 11239 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11240 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11241 "Mixing fixed width and scalable vectors when enveloping a type"); 11242 EVT LoVT, HiVT; 11243 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11244 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11245 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11246 *HiIsEmpty = false; 11247 } else { 11248 // Flag that hi type has zero storage size, but return split envelop type 11249 // (this would be easier if vector types with zero elements were allowed). 11250 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11251 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11252 *HiIsEmpty = true; 11253 } 11254 return std::make_pair(LoVT, HiVT); 11255 } 11256 11257 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11258 /// low/high part. 11259 std::pair<SDValue, SDValue> 11260 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11261 const EVT &HiVT) { 11262 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11263 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11264 "Splitting vector with an invalid mixture of fixed and scalable " 11265 "vector types"); 11266 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11267 N.getValueType().getVectorMinNumElements() && 11268 "More vector elements requested than available!"); 11269 SDValue Lo, Hi; 11270 Lo = 11271 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11272 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11273 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11274 // IDX with the runtime scaling factor of the result vector type. For 11275 // fixed-width result vectors, that runtime scaling factor is 1. 11276 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11277 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11278 return std::make_pair(Lo, Hi); 11279 } 11280 11281 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11282 const SDLoc &DL) { 11283 // Split the vector length parameter. 11284 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11285 EVT VT = N.getValueType(); 11286 assert(VecVT.getVectorElementCount().isKnownEven() && 11287 "Expecting the mask to be an evenly-sized vector"); 11288 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11289 SDValue HalfNumElts = 11290 VecVT.isFixedLengthVector() 11291 ? getConstant(HalfMinNumElts, DL, VT) 11292 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11293 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11294 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11295 return std::make_pair(Lo, Hi); 11296 } 11297 11298 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11299 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11300 EVT VT = N.getValueType(); 11301 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11302 NextPowerOf2(VT.getVectorNumElements())); 11303 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11304 getVectorIdxConstant(0, DL)); 11305 } 11306 11307 void SelectionDAG::ExtractVectorElements(SDValue Op, 11308 SmallVectorImpl<SDValue> &Args, 11309 unsigned Start, unsigned Count, 11310 EVT EltVT) { 11311 EVT VT = Op.getValueType(); 11312 if (Count == 0) 11313 Count = VT.getVectorNumElements(); 11314 if (EltVT == EVT()) 11315 EltVT = VT.getVectorElementType(); 11316 SDLoc SL(Op); 11317 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11318 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11319 getVectorIdxConstant(i, SL))); 11320 } 11321 } 11322 11323 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11324 unsigned GlobalAddressSDNode::getAddressSpace() const { 11325 return getGlobal()->getType()->getAddressSpace(); 11326 } 11327 11328 Type *ConstantPoolSDNode::getType() const { 11329 if (isMachineConstantPoolEntry()) 11330 return Val.MachineCPVal->getType(); 11331 return Val.ConstVal->getType(); 11332 } 11333 11334 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11335 unsigned &SplatBitSize, 11336 bool &HasAnyUndefs, 11337 unsigned MinSplatBits, 11338 bool IsBigEndian) const { 11339 EVT VT = getValueType(0); 11340 assert(VT.isVector() && "Expected a vector type"); 11341 unsigned VecWidth = VT.getSizeInBits(); 11342 if (MinSplatBits > VecWidth) 11343 return false; 11344 11345 // FIXME: The widths are based on this node's type, but build vectors can 11346 // truncate their operands. 11347 SplatValue = APInt(VecWidth, 0); 11348 SplatUndef = APInt(VecWidth, 0); 11349 11350 // Get the bits. Bits with undefined values (when the corresponding element 11351 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11352 // in SplatValue. If any of the values are not constant, give up and return 11353 // false. 11354 unsigned int NumOps = getNumOperands(); 11355 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11356 unsigned EltWidth = VT.getScalarSizeInBits(); 11357 11358 for (unsigned j = 0; j < NumOps; ++j) { 11359 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11360 SDValue OpVal = getOperand(i); 11361 unsigned BitPos = j * EltWidth; 11362 11363 if (OpVal.isUndef()) 11364 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11365 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11366 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11367 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11368 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11369 else 11370 return false; 11371 } 11372 11373 // The build_vector is all constants or undefs. Find the smallest element 11374 // size that splats the vector. 11375 HasAnyUndefs = (SplatUndef != 0); 11376 11377 // FIXME: This does not work for vectors with elements less than 8 bits. 11378 while (VecWidth > 8) { 11379 unsigned HalfSize = VecWidth / 2; 11380 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11381 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11382 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11383 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11384 11385 // If the two halves do not match (ignoring undef bits), stop here. 11386 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11387 MinSplatBits > HalfSize) 11388 break; 11389 11390 SplatValue = HighValue | LowValue; 11391 SplatUndef = HighUndef & LowUndef; 11392 11393 VecWidth = HalfSize; 11394 } 11395 11396 SplatBitSize = VecWidth; 11397 return true; 11398 } 11399 11400 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11401 BitVector *UndefElements) const { 11402 unsigned NumOps = getNumOperands(); 11403 if (UndefElements) { 11404 UndefElements->clear(); 11405 UndefElements->resize(NumOps); 11406 } 11407 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11408 if (!DemandedElts) 11409 return SDValue(); 11410 SDValue Splatted; 11411 for (unsigned i = 0; i != NumOps; ++i) { 11412 if (!DemandedElts[i]) 11413 continue; 11414 SDValue Op = getOperand(i); 11415 if (Op.isUndef()) { 11416 if (UndefElements) 11417 (*UndefElements)[i] = true; 11418 } else if (!Splatted) { 11419 Splatted = Op; 11420 } else if (Splatted != Op) { 11421 return SDValue(); 11422 } 11423 } 11424 11425 if (!Splatted) { 11426 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11427 assert(getOperand(FirstDemandedIdx).isUndef() && 11428 "Can only have a splat without a constant for all undefs."); 11429 return getOperand(FirstDemandedIdx); 11430 } 11431 11432 return Splatted; 11433 } 11434 11435 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11436 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11437 return getSplatValue(DemandedElts, UndefElements); 11438 } 11439 11440 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11441 SmallVectorImpl<SDValue> &Sequence, 11442 BitVector *UndefElements) const { 11443 unsigned NumOps = getNumOperands(); 11444 Sequence.clear(); 11445 if (UndefElements) { 11446 UndefElements->clear(); 11447 UndefElements->resize(NumOps); 11448 } 11449 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11450 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11451 return false; 11452 11453 // Set the undefs even if we don't find a sequence (like getSplatValue). 11454 if (UndefElements) 11455 for (unsigned I = 0; I != NumOps; ++I) 11456 if (DemandedElts[I] && getOperand(I).isUndef()) 11457 (*UndefElements)[I] = true; 11458 11459 // Iteratively widen the sequence length looking for repetitions. 11460 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11461 Sequence.append(SeqLen, SDValue()); 11462 for (unsigned I = 0; I != NumOps; ++I) { 11463 if (!DemandedElts[I]) 11464 continue; 11465 SDValue &SeqOp = Sequence[I % SeqLen]; 11466 SDValue Op = getOperand(I); 11467 if (Op.isUndef()) { 11468 if (!SeqOp) 11469 SeqOp = Op; 11470 continue; 11471 } 11472 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11473 Sequence.clear(); 11474 break; 11475 } 11476 SeqOp = Op; 11477 } 11478 if (!Sequence.empty()) 11479 return true; 11480 } 11481 11482 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11483 return false; 11484 } 11485 11486 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11487 BitVector *UndefElements) const { 11488 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11489 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11490 } 11491 11492 ConstantSDNode * 11493 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11494 BitVector *UndefElements) const { 11495 return dyn_cast_or_null<ConstantSDNode>( 11496 getSplatValue(DemandedElts, UndefElements)); 11497 } 11498 11499 ConstantSDNode * 11500 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11501 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11502 } 11503 11504 ConstantFPSDNode * 11505 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11506 BitVector *UndefElements) const { 11507 return dyn_cast_or_null<ConstantFPSDNode>( 11508 getSplatValue(DemandedElts, UndefElements)); 11509 } 11510 11511 ConstantFPSDNode * 11512 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11513 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11514 } 11515 11516 int32_t 11517 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11518 uint32_t BitWidth) const { 11519 if (ConstantFPSDNode *CN = 11520 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11521 bool IsExact; 11522 APSInt IntVal(BitWidth); 11523 const APFloat &APF = CN->getValueAPF(); 11524 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11525 APFloat::opOK || 11526 !IsExact) 11527 return -1; 11528 11529 return IntVal.exactLogBase2(); 11530 } 11531 return -1; 11532 } 11533 11534 bool BuildVectorSDNode::getConstantRawBits( 11535 bool IsLittleEndian, unsigned DstEltSizeInBits, 11536 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11537 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11538 if (!isConstant()) 11539 return false; 11540 11541 unsigned NumSrcOps = getNumOperands(); 11542 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11543 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11544 "Invalid bitcast scale"); 11545 11546 // Extract raw src bits. 11547 SmallVector<APInt> SrcBitElements(NumSrcOps, 11548 APInt::getNullValue(SrcEltSizeInBits)); 11549 BitVector SrcUndeElements(NumSrcOps, false); 11550 11551 for (unsigned I = 0; I != NumSrcOps; ++I) { 11552 SDValue Op = getOperand(I); 11553 if (Op.isUndef()) { 11554 SrcUndeElements.set(I); 11555 continue; 11556 } 11557 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11558 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11559 assert((CInt || CFP) && "Unknown constant"); 11560 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11561 : CFP->getValueAPF().bitcastToAPInt(); 11562 } 11563 11564 // Recast to dst width. 11565 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11566 SrcBitElements, UndefElements, SrcUndeElements); 11567 return true; 11568 } 11569 11570 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11571 unsigned DstEltSizeInBits, 11572 SmallVectorImpl<APInt> &DstBitElements, 11573 ArrayRef<APInt> SrcBitElements, 11574 BitVector &DstUndefElements, 11575 const BitVector &SrcUndefElements) { 11576 unsigned NumSrcOps = SrcBitElements.size(); 11577 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11578 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11579 "Invalid bitcast scale"); 11580 assert(NumSrcOps == SrcUndefElements.size() && 11581 "Vector size mismatch"); 11582 11583 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11584 DstUndefElements.clear(); 11585 DstUndefElements.resize(NumDstOps, false); 11586 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11587 11588 // Concatenate src elements constant bits together into dst element. 11589 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11590 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11591 for (unsigned I = 0; I != NumDstOps; ++I) { 11592 DstUndefElements.set(I); 11593 APInt &DstBits = DstBitElements[I]; 11594 for (unsigned J = 0; J != Scale; ++J) { 11595 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11596 if (SrcUndefElements[Idx]) 11597 continue; 11598 DstUndefElements.reset(I); 11599 const APInt &SrcBits = SrcBitElements[Idx]; 11600 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11601 "Illegal constant bitwidths"); 11602 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11603 } 11604 } 11605 return; 11606 } 11607 11608 // Split src element constant bits into dst elements. 11609 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11610 for (unsigned I = 0; I != NumSrcOps; ++I) { 11611 if (SrcUndefElements[I]) { 11612 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11613 continue; 11614 } 11615 const APInt &SrcBits = SrcBitElements[I]; 11616 for (unsigned J = 0; J != Scale; ++J) { 11617 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11618 APInt &DstBits = DstBitElements[Idx]; 11619 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11620 } 11621 } 11622 } 11623 11624 bool BuildVectorSDNode::isConstant() const { 11625 for (const SDValue &Op : op_values()) { 11626 unsigned Opc = Op.getOpcode(); 11627 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11628 return false; 11629 } 11630 return true; 11631 } 11632 11633 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11634 // Find the first non-undef value in the shuffle mask. 11635 unsigned i, e; 11636 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11637 /* search */; 11638 11639 // If all elements are undefined, this shuffle can be considered a splat 11640 // (although it should eventually get simplified away completely). 11641 if (i == e) 11642 return true; 11643 11644 // Make sure all remaining elements are either undef or the same as the first 11645 // non-undef value. 11646 for (int Idx = Mask[i]; i != e; ++i) 11647 if (Mask[i] >= 0 && Mask[i] != Idx) 11648 return false; 11649 return true; 11650 } 11651 11652 // Returns the SDNode if it is a constant integer BuildVector 11653 // or constant integer. 11654 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11655 if (isa<ConstantSDNode>(N)) 11656 return N.getNode(); 11657 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11658 return N.getNode(); 11659 // Treat a GlobalAddress supporting constant offset folding as a 11660 // constant integer. 11661 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11662 if (GA->getOpcode() == ISD::GlobalAddress && 11663 TLI->isOffsetFoldingLegal(GA)) 11664 return GA; 11665 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11666 isa<ConstantSDNode>(N.getOperand(0))) 11667 return N.getNode(); 11668 return nullptr; 11669 } 11670 11671 // Returns the SDNode if it is a constant float BuildVector 11672 // or constant float. 11673 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11674 if (isa<ConstantFPSDNode>(N)) 11675 return N.getNode(); 11676 11677 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11678 return N.getNode(); 11679 11680 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11681 isa<ConstantFPSDNode>(N.getOperand(0))) 11682 return N.getNode(); 11683 11684 return nullptr; 11685 } 11686 11687 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11688 assert(!Node->OperandList && "Node already has operands"); 11689 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11690 "too many operands to fit into SDNode"); 11691 SDUse *Ops = OperandRecycler.allocate( 11692 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11693 11694 bool IsDivergent = false; 11695 for (unsigned I = 0; I != Vals.size(); ++I) { 11696 Ops[I].setUser(Node); 11697 Ops[I].setInitial(Vals[I]); 11698 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11699 IsDivergent |= Ops[I].getNode()->isDivergent(); 11700 } 11701 Node->NumOperands = Vals.size(); 11702 Node->OperandList = Ops; 11703 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11704 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11705 Node->SDNodeBits.IsDivergent = IsDivergent; 11706 } 11707 checkForCycles(Node); 11708 } 11709 11710 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11711 SmallVectorImpl<SDValue> &Vals) { 11712 size_t Limit = SDNode::getMaxNumOperands(); 11713 while (Vals.size() > Limit) { 11714 unsigned SliceIdx = Vals.size() - Limit; 11715 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11716 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11717 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11718 Vals.emplace_back(NewTF); 11719 } 11720 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11721 } 11722 11723 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11724 EVT VT, SDNodeFlags Flags) { 11725 switch (Opcode) { 11726 default: 11727 return SDValue(); 11728 case ISD::ADD: 11729 case ISD::OR: 11730 case ISD::XOR: 11731 case ISD::UMAX: 11732 return getConstant(0, DL, VT); 11733 case ISD::MUL: 11734 return getConstant(1, DL, VT); 11735 case ISD::AND: 11736 case ISD::UMIN: 11737 return getAllOnesConstant(DL, VT); 11738 case ISD::SMAX: 11739 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11740 case ISD::SMIN: 11741 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11742 case ISD::FADD: 11743 return getConstantFP(-0.0, DL, VT); 11744 case ISD::FMUL: 11745 return getConstantFP(1.0, DL, VT); 11746 case ISD::FMINNUM: 11747 case ISD::FMAXNUM: { 11748 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11749 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11750 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11751 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11752 APFloat::getLargest(Semantics); 11753 if (Opcode == ISD::FMAXNUM) 11754 NeutralAF.changeSign(); 11755 11756 return getConstantFP(NeutralAF, DL, VT); 11757 } 11758 } 11759 } 11760 11761 #ifndef NDEBUG 11762 static void checkForCyclesHelper(const SDNode *N, 11763 SmallPtrSetImpl<const SDNode*> &Visited, 11764 SmallPtrSetImpl<const SDNode*> &Checked, 11765 const llvm::SelectionDAG *DAG) { 11766 // If this node has already been checked, don't check it again. 11767 if (Checked.count(N)) 11768 return; 11769 11770 // If a node has already been visited on this depth-first walk, reject it as 11771 // a cycle. 11772 if (!Visited.insert(N).second) { 11773 errs() << "Detected cycle in SelectionDAG\n"; 11774 dbgs() << "Offending node:\n"; 11775 N->dumprFull(DAG); dbgs() << "\n"; 11776 abort(); 11777 } 11778 11779 for (const SDValue &Op : N->op_values()) 11780 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11781 11782 Checked.insert(N); 11783 Visited.erase(N); 11784 } 11785 #endif 11786 11787 void llvm::checkForCycles(const llvm::SDNode *N, 11788 const llvm::SelectionDAG *DAG, 11789 bool force) { 11790 #ifndef NDEBUG 11791 bool check = force; 11792 #ifdef EXPENSIVE_CHECKS 11793 check = true; 11794 #endif // EXPENSIVE_CHECKS 11795 if (check) { 11796 assert(N && "Checking nonexistent SDNode"); 11797 SmallPtrSet<const SDNode*, 32> visited; 11798 SmallPtrSet<const SDNode*, 32> checked; 11799 checkForCyclesHelper(N, visited, checked, DAG); 11800 } 11801 #endif // !NDEBUG 11802 } 11803 11804 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11805 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11806 } 11807