1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 } 150 151 auto *BV = dyn_cast<BuildVectorSDNode>(N); 152 if (!BV) 153 return false; 154 155 APInt SplatUndef; 156 unsigned SplatBitSize; 157 bool HasUndefs; 158 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 159 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 160 EltSize) && 161 EltSize == SplatBitSize; 162 } 163 164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 165 // specializations of the more general isConstantSplatVector()? 166 167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 168 // Look through a bit convert. 169 while (N->getOpcode() == ISD::BITCAST) 170 N = N->getOperand(0).getNode(); 171 172 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 173 APInt SplatVal; 174 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 175 } 176 177 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 178 179 unsigned i = 0, e = N->getNumOperands(); 180 181 // Skip over all of the undef values. 182 while (i != e && N->getOperand(i).isUndef()) 183 ++i; 184 185 // Do not accept an all-undef vector. 186 if (i == e) return false; 187 188 // Do not accept build_vectors that aren't all constants or which have non-~0 189 // elements. We have to be a bit careful here, as the type of the constant 190 // may not be the same as the type of the vector elements due to type 191 // legalization (the elements are promoted to a legal type for the target and 192 // a vector of a type may be legal when the base element type is not). 193 // We only want to check enough bits to cover the vector elements, because 194 // we care if the resultant vector is all ones, not whether the individual 195 // constants are. 196 SDValue NotZero = N->getOperand(i); 197 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 198 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 199 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 200 return false; 201 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 202 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 203 return false; 204 } else 205 return false; 206 207 // Okay, we have at least one ~0 value, check to see if the rest match or are 208 // undefs. Even with the above element type twiddling, this should be OK, as 209 // the same type legalization should have applied to all the elements. 210 for (++i; i != e; ++i) 211 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 212 return false; 213 return true; 214 } 215 216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 217 // Look through a bit convert. 218 while (N->getOpcode() == ISD::BITCAST) 219 N = N->getOperand(0).getNode(); 220 221 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 222 APInt SplatVal; 223 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 224 } 225 226 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 227 228 bool IsAllUndef = true; 229 for (const SDValue &Op : N->op_values()) { 230 if (Op.isUndef()) 231 continue; 232 IsAllUndef = false; 233 // Do not accept build_vectors that aren't all constants or which have non-0 234 // elements. We have to be a bit careful here, as the type of the constant 235 // may not be the same as the type of the vector elements due to type 236 // legalization (the elements are promoted to a legal type for the target 237 // and a vector of a type may be legal when the base element type is not). 238 // We only want to check enough bits to cover the vector elements, because 239 // we care if the resultant vector is all zeros, not whether the individual 240 // constants are. 241 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 242 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 243 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 244 return false; 245 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 246 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 247 return false; 248 } else 249 return false; 250 } 251 252 // Do not accept an all-undef vector. 253 if (IsAllUndef) 254 return false; 255 return true; 256 } 257 258 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 259 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 260 } 261 262 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 263 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 267 if (N->getOpcode() != ISD::BUILD_VECTOR) 268 return false; 269 270 for (const SDValue &Op : N->op_values()) { 271 if (Op.isUndef()) 272 continue; 273 if (!isa<ConstantSDNode>(Op)) 274 return false; 275 } 276 return true; 277 } 278 279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 280 if (N->getOpcode() != ISD::BUILD_VECTOR) 281 return false; 282 283 for (const SDValue &Op : N->op_values()) { 284 if (Op.isUndef()) 285 continue; 286 if (!isa<ConstantFPSDNode>(Op)) 287 return false; 288 } 289 return true; 290 } 291 292 bool ISD::allOperandsUndef(const SDNode *N) { 293 // Return false if the node has no operands. 294 // This is "logically inconsistent" with the definition of "all" but 295 // is probably the desired behavior. 296 if (N->getNumOperands() == 0) 297 return false; 298 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 299 } 300 301 bool ISD::matchUnaryPredicate(SDValue Op, 302 std::function<bool(ConstantSDNode *)> Match, 303 bool AllowUndefs) { 304 // FIXME: Add support for scalar UNDEF cases? 305 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 306 return Match(Cst); 307 308 // FIXME: Add support for vector UNDEF cases? 309 if (ISD::BUILD_VECTOR != Op.getOpcode() && 310 ISD::SPLAT_VECTOR != Op.getOpcode()) 311 return false; 312 313 EVT SVT = Op.getValueType().getScalarType(); 314 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 315 if (AllowUndefs && Op.getOperand(i).isUndef()) { 316 if (!Match(nullptr)) 317 return false; 318 continue; 319 } 320 321 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 322 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 323 return false; 324 } 325 return true; 326 } 327 328 bool ISD::matchBinaryPredicate( 329 SDValue LHS, SDValue RHS, 330 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 331 bool AllowUndefs, bool AllowTypeMismatch) { 332 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 333 return false; 334 335 // TODO: Add support for scalar UNDEF cases? 336 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 337 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 338 return Match(LHSCst, RHSCst); 339 340 // TODO: Add support for vector UNDEF cases? 341 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 342 ISD::BUILD_VECTOR != RHS.getOpcode()) 343 return false; 344 345 EVT SVT = LHS.getValueType().getScalarType(); 346 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 347 SDValue LHSOp = LHS.getOperand(i); 348 SDValue RHSOp = RHS.getOperand(i); 349 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 350 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 351 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 352 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 353 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 354 return false; 355 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 356 LHSOp.getValueType() != RHSOp.getValueType())) 357 return false; 358 if (!Match(LHSCst, RHSCst)) 359 return false; 360 } 361 return true; 362 } 363 364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 365 switch (VecReduceOpcode) { 366 default: 367 llvm_unreachable("Expected VECREDUCE opcode"); 368 case ISD::VECREDUCE_FADD: 369 case ISD::VECREDUCE_SEQ_FADD: 370 return ISD::FADD; 371 case ISD::VECREDUCE_FMUL: 372 case ISD::VECREDUCE_SEQ_FMUL: 373 return ISD::FMUL; 374 case ISD::VECREDUCE_ADD: 375 return ISD::ADD; 376 case ISD::VECREDUCE_MUL: 377 return ISD::MUL; 378 case ISD::VECREDUCE_AND: 379 return ISD::AND; 380 case ISD::VECREDUCE_OR: 381 return ISD::OR; 382 case ISD::VECREDUCE_XOR: 383 return ISD::XOR; 384 case ISD::VECREDUCE_SMAX: 385 return ISD::SMAX; 386 case ISD::VECREDUCE_SMIN: 387 return ISD::SMIN; 388 case ISD::VECREDUCE_UMAX: 389 return ISD::UMAX; 390 case ISD::VECREDUCE_UMIN: 391 return ISD::UMIN; 392 case ISD::VECREDUCE_FMAX: 393 return ISD::FMAXNUM; 394 case ISD::VECREDUCE_FMIN: 395 return ISD::FMINNUM; 396 } 397 } 398 399 bool ISD::isVPOpcode(unsigned Opcode) { 400 switch (Opcode) { 401 default: 402 return false; 403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 404 case ISD::SDOPC: \ 405 return true; 406 #include "llvm/IR/VPIntrinsics.def" 407 } 408 } 409 410 /// The operand position of the vector mask. 411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 412 switch (Opcode) { 413 default: 414 return None; 415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 416 case ISD::SDOPC: \ 417 return MASKPOS; 418 #include "llvm/IR/VPIntrinsics.def" 419 } 420 } 421 422 /// The operand position of the explicit vector length parameter. 423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 424 switch (Opcode) { 425 default: 426 return None; 427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 428 case ISD::SDOPC: \ 429 return EVLPOS; 430 #include "llvm/IR/VPIntrinsics.def" 431 } 432 } 433 434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 435 switch (ExtType) { 436 case ISD::EXTLOAD: 437 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 438 case ISD::SEXTLOAD: 439 return ISD::SIGN_EXTEND; 440 case ISD::ZEXTLOAD: 441 return ISD::ZERO_EXTEND; 442 default: 443 break; 444 } 445 446 llvm_unreachable("Invalid LoadExtType"); 447 } 448 449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 450 // To perform this operation, we just need to swap the L and G bits of the 451 // operation. 452 unsigned OldL = (Operation >> 2) & 1; 453 unsigned OldG = (Operation >> 1) & 1; 454 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 455 (OldL << 1) | // New G bit 456 (OldG << 2)); // New L bit. 457 } 458 459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 460 unsigned Operation = Op; 461 if (isIntegerLike) 462 Operation ^= 7; // Flip L, G, E bits, but not U. 463 else 464 Operation ^= 15; // Flip all of the condition bits. 465 466 if (Operation > ISD::SETTRUE2) 467 Operation &= ~8; // Don't let N and U bits get set. 468 469 return ISD::CondCode(Operation); 470 } 471 472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 473 return getSetCCInverseImpl(Op, Type.isInteger()); 474 } 475 476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 477 bool isIntegerLike) { 478 return getSetCCInverseImpl(Op, isIntegerLike); 479 } 480 481 /// For an integer comparison, return 1 if the comparison is a signed operation 482 /// and 2 if the result is an unsigned comparison. Return zero if the operation 483 /// does not depend on the sign of the input (setne and seteq). 484 static int isSignedOp(ISD::CondCode Opcode) { 485 switch (Opcode) { 486 default: llvm_unreachable("Illegal integer setcc operation!"); 487 case ISD::SETEQ: 488 case ISD::SETNE: return 0; 489 case ISD::SETLT: 490 case ISD::SETLE: 491 case ISD::SETGT: 492 case ISD::SETGE: return 1; 493 case ISD::SETULT: 494 case ISD::SETULE: 495 case ISD::SETUGT: 496 case ISD::SETUGE: return 2; 497 } 498 } 499 500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 501 EVT Type) { 502 bool IsInteger = Type.isInteger(); 503 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 504 // Cannot fold a signed integer setcc with an unsigned integer setcc. 505 return ISD::SETCC_INVALID; 506 507 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 508 509 // If the N and U bits get set, then the resultant comparison DOES suddenly 510 // care about orderedness, and it is true when ordered. 511 if (Op > ISD::SETTRUE2) 512 Op &= ~16; // Clear the U bit if the N bit is set. 513 514 // Canonicalize illegal integer setcc's. 515 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 516 Op = ISD::SETNE; 517 518 return ISD::CondCode(Op); 519 } 520 521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 522 EVT Type) { 523 bool IsInteger = Type.isInteger(); 524 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 525 // Cannot fold a signed setcc with an unsigned setcc. 526 return ISD::SETCC_INVALID; 527 528 // Combine all of the condition bits. 529 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 530 531 // Canonicalize illegal integer setcc's. 532 if (IsInteger) { 533 switch (Result) { 534 default: break; 535 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 536 case ISD::SETOEQ: // SETEQ & SETU[LG]E 537 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 538 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 539 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 540 } 541 } 542 543 return Result; 544 } 545 546 //===----------------------------------------------------------------------===// 547 // SDNode Profile Support 548 //===----------------------------------------------------------------------===// 549 550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 552 ID.AddInteger(OpC); 553 } 554 555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 556 /// solely with their pointer. 557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 558 ID.AddPointer(VTList.VTs); 559 } 560 561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 562 static void AddNodeIDOperands(FoldingSetNodeID &ID, 563 ArrayRef<SDValue> Ops) { 564 for (auto& Op : Ops) { 565 ID.AddPointer(Op.getNode()); 566 ID.AddInteger(Op.getResNo()); 567 } 568 } 569 570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 571 static void AddNodeIDOperands(FoldingSetNodeID &ID, 572 ArrayRef<SDUse> Ops) { 573 for (auto& Op : Ops) { 574 ID.AddPointer(Op.getNode()); 575 ID.AddInteger(Op.getResNo()); 576 } 577 } 578 579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 580 SDVTList VTList, ArrayRef<SDValue> OpList) { 581 AddNodeIDOpcode(ID, OpC); 582 AddNodeIDValueTypes(ID, VTList); 583 AddNodeIDOperands(ID, OpList); 584 } 585 586 /// If this is an SDNode with special info, add this info to the NodeID data. 587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 588 switch (N->getOpcode()) { 589 case ISD::TargetExternalSymbol: 590 case ISD::ExternalSymbol: 591 case ISD::MCSymbol: 592 llvm_unreachable("Should only be used on nodes with operands"); 593 default: break; // Normal nodes don't need extra info. 594 case ISD::TargetConstant: 595 case ISD::Constant: { 596 const ConstantSDNode *C = cast<ConstantSDNode>(N); 597 ID.AddPointer(C->getConstantIntValue()); 598 ID.AddBoolean(C->isOpaque()); 599 break; 600 } 601 case ISD::TargetConstantFP: 602 case ISD::ConstantFP: 603 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 604 break; 605 case ISD::TargetGlobalAddress: 606 case ISD::GlobalAddress: 607 case ISD::TargetGlobalTLSAddress: 608 case ISD::GlobalTLSAddress: { 609 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 610 ID.AddPointer(GA->getGlobal()); 611 ID.AddInteger(GA->getOffset()); 612 ID.AddInteger(GA->getTargetFlags()); 613 break; 614 } 615 case ISD::BasicBlock: 616 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 617 break; 618 case ISD::Register: 619 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 620 break; 621 case ISD::RegisterMask: 622 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 623 break; 624 case ISD::SRCVALUE: 625 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 626 break; 627 case ISD::FrameIndex: 628 case ISD::TargetFrameIndex: 629 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 630 break; 631 case ISD::LIFETIME_START: 632 case ISD::LIFETIME_END: 633 if (cast<LifetimeSDNode>(N)->hasOffset()) { 634 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 635 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 636 } 637 break; 638 case ISD::PSEUDO_PROBE: 639 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 640 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 641 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 642 break; 643 case ISD::JumpTable: 644 case ISD::TargetJumpTable: 645 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 646 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 647 break; 648 case ISD::ConstantPool: 649 case ISD::TargetConstantPool: { 650 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 651 ID.AddInteger(CP->getAlign().value()); 652 ID.AddInteger(CP->getOffset()); 653 if (CP->isMachineConstantPoolEntry()) 654 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 655 else 656 ID.AddPointer(CP->getConstVal()); 657 ID.AddInteger(CP->getTargetFlags()); 658 break; 659 } 660 case ISD::TargetIndex: { 661 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 662 ID.AddInteger(TI->getIndex()); 663 ID.AddInteger(TI->getOffset()); 664 ID.AddInteger(TI->getTargetFlags()); 665 break; 666 } 667 case ISD::LOAD: { 668 const LoadSDNode *LD = cast<LoadSDNode>(N); 669 ID.AddInteger(LD->getMemoryVT().getRawBits()); 670 ID.AddInteger(LD->getRawSubclassData()); 671 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 672 break; 673 } 674 case ISD::STORE: { 675 const StoreSDNode *ST = cast<StoreSDNode>(N); 676 ID.AddInteger(ST->getMemoryVT().getRawBits()); 677 ID.AddInteger(ST->getRawSubclassData()); 678 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 679 break; 680 } 681 case ISD::MLOAD: { 682 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 683 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 684 ID.AddInteger(MLD->getRawSubclassData()); 685 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 686 break; 687 } 688 case ISD::MSTORE: { 689 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 690 ID.AddInteger(MST->getMemoryVT().getRawBits()); 691 ID.AddInteger(MST->getRawSubclassData()); 692 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 693 break; 694 } 695 case ISD::MGATHER: { 696 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 697 ID.AddInteger(MG->getMemoryVT().getRawBits()); 698 ID.AddInteger(MG->getRawSubclassData()); 699 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 700 break; 701 } 702 case ISD::MSCATTER: { 703 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 704 ID.AddInteger(MS->getMemoryVT().getRawBits()); 705 ID.AddInteger(MS->getRawSubclassData()); 706 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 707 break; 708 } 709 case ISD::ATOMIC_CMP_SWAP: 710 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 711 case ISD::ATOMIC_SWAP: 712 case ISD::ATOMIC_LOAD_ADD: 713 case ISD::ATOMIC_LOAD_SUB: 714 case ISD::ATOMIC_LOAD_AND: 715 case ISD::ATOMIC_LOAD_CLR: 716 case ISD::ATOMIC_LOAD_OR: 717 case ISD::ATOMIC_LOAD_XOR: 718 case ISD::ATOMIC_LOAD_NAND: 719 case ISD::ATOMIC_LOAD_MIN: 720 case ISD::ATOMIC_LOAD_MAX: 721 case ISD::ATOMIC_LOAD_UMIN: 722 case ISD::ATOMIC_LOAD_UMAX: 723 case ISD::ATOMIC_LOAD: 724 case ISD::ATOMIC_STORE: { 725 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 726 ID.AddInteger(AT->getMemoryVT().getRawBits()); 727 ID.AddInteger(AT->getRawSubclassData()); 728 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 729 break; 730 } 731 case ISD::PREFETCH: { 732 const MemSDNode *PF = cast<MemSDNode>(N); 733 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 734 break; 735 } 736 case ISD::VECTOR_SHUFFLE: { 737 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 738 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 739 i != e; ++i) 740 ID.AddInteger(SVN->getMaskElt(i)); 741 break; 742 } 743 case ISD::TargetBlockAddress: 744 case ISD::BlockAddress: { 745 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 746 ID.AddPointer(BA->getBlockAddress()); 747 ID.AddInteger(BA->getOffset()); 748 ID.AddInteger(BA->getTargetFlags()); 749 break; 750 } 751 } // end switch (N->getOpcode()) 752 753 // Target specific memory nodes could also have address spaces to check. 754 if (N->isTargetMemoryOpcode()) 755 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 756 } 757 758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 759 /// data. 760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 761 AddNodeIDOpcode(ID, N->getOpcode()); 762 // Add the return value info. 763 AddNodeIDValueTypes(ID, N->getVTList()); 764 // Add the operand info. 765 AddNodeIDOperands(ID, N->ops()); 766 767 // Handle SDNode leafs with special info. 768 AddNodeIDCustom(ID, N); 769 } 770 771 //===----------------------------------------------------------------------===// 772 // SelectionDAG Class 773 //===----------------------------------------------------------------------===// 774 775 /// doNotCSE - Return true if CSE should not be performed for this node. 776 static bool doNotCSE(SDNode *N) { 777 if (N->getValueType(0) == MVT::Glue) 778 return true; // Never CSE anything that produces a flag. 779 780 switch (N->getOpcode()) { 781 default: break; 782 case ISD::HANDLENODE: 783 case ISD::EH_LABEL: 784 return true; // Never CSE these nodes. 785 } 786 787 // Check that remaining values produced are not flags. 788 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 789 if (N->getValueType(i) == MVT::Glue) 790 return true; // Never CSE anything that produces a flag. 791 792 return false; 793 } 794 795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 796 /// SelectionDAG. 797 void SelectionDAG::RemoveDeadNodes() { 798 // Create a dummy node (which is not added to allnodes), that adds a reference 799 // to the root node, preventing it from being deleted. 800 HandleSDNode Dummy(getRoot()); 801 802 SmallVector<SDNode*, 128> DeadNodes; 803 804 // Add all obviously-dead nodes to the DeadNodes worklist. 805 for (SDNode &Node : allnodes()) 806 if (Node.use_empty()) 807 DeadNodes.push_back(&Node); 808 809 RemoveDeadNodes(DeadNodes); 810 811 // If the root changed (e.g. it was a dead load, update the root). 812 setRoot(Dummy.getValue()); 813 } 814 815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 816 /// given list, and any nodes that become unreachable as a result. 817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 818 819 // Process the worklist, deleting the nodes and adding their uses to the 820 // worklist. 821 while (!DeadNodes.empty()) { 822 SDNode *N = DeadNodes.pop_back_val(); 823 // Skip to next node if we've already managed to delete the node. This could 824 // happen if replacing a node causes a node previously added to the node to 825 // be deleted. 826 if (N->getOpcode() == ISD::DELETED_NODE) 827 continue; 828 829 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 830 DUL->NodeDeleted(N, nullptr); 831 832 // Take the node out of the appropriate CSE map. 833 RemoveNodeFromCSEMaps(N); 834 835 // Next, brutally remove the operand list. This is safe to do, as there are 836 // no cycles in the graph. 837 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 838 SDUse &Use = *I++; 839 SDNode *Operand = Use.getNode(); 840 Use.set(SDValue()); 841 842 // Now that we removed this operand, see if there are no uses of it left. 843 if (Operand->use_empty()) 844 DeadNodes.push_back(Operand); 845 } 846 847 DeallocateNode(N); 848 } 849 } 850 851 void SelectionDAG::RemoveDeadNode(SDNode *N){ 852 SmallVector<SDNode*, 16> DeadNodes(1, N); 853 854 // Create a dummy node that adds a reference to the root node, preventing 855 // it from being deleted. (This matters if the root is an operand of the 856 // dead node.) 857 HandleSDNode Dummy(getRoot()); 858 859 RemoveDeadNodes(DeadNodes); 860 } 861 862 void SelectionDAG::DeleteNode(SDNode *N) { 863 // First take this out of the appropriate CSE map. 864 RemoveNodeFromCSEMaps(N); 865 866 // Finally, remove uses due to operands of this node, remove from the 867 // AllNodes list, and delete the node. 868 DeleteNodeNotInCSEMaps(N); 869 } 870 871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 872 assert(N->getIterator() != AllNodes.begin() && 873 "Cannot delete the entry node!"); 874 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 875 876 // Drop all of the operands and decrement used node's use counts. 877 N->DropOperands(); 878 879 DeallocateNode(N); 880 } 881 882 void SDDbgInfo::erase(const SDNode *Node) { 883 DbgValMapType::iterator I = DbgValMap.find(Node); 884 if (I == DbgValMap.end()) 885 return; 886 for (auto &Val: I->second) 887 Val->setIsInvalidated(); 888 DbgValMap.erase(I); 889 } 890 891 void SelectionDAG::DeallocateNode(SDNode *N) { 892 // If we have operands, deallocate them. 893 removeOperands(N); 894 895 NodeAllocator.Deallocate(AllNodes.remove(N)); 896 897 // Set the opcode to DELETED_NODE to help catch bugs when node 898 // memory is reallocated. 899 // FIXME: There are places in SDag that have grown a dependency on the opcode 900 // value in the released node. 901 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 902 N->NodeType = ISD::DELETED_NODE; 903 904 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 905 // them and forget about that node. 906 DbgInfo->erase(N); 907 } 908 909 #ifndef NDEBUG 910 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 911 static void VerifySDNode(SDNode *N) { 912 switch (N->getOpcode()) { 913 default: 914 break; 915 case ISD::BUILD_PAIR: { 916 EVT VT = N->getValueType(0); 917 assert(N->getNumValues() == 1 && "Too many results!"); 918 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 919 "Wrong return type!"); 920 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 921 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 922 "Mismatched operand types!"); 923 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 924 "Wrong operand type!"); 925 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 926 "Wrong return type size"); 927 break; 928 } 929 case ISD::BUILD_VECTOR: { 930 assert(N->getNumValues() == 1 && "Too many results!"); 931 assert(N->getValueType(0).isVector() && "Wrong return type!"); 932 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 933 "Wrong number of operands!"); 934 EVT EltVT = N->getValueType(0).getVectorElementType(); 935 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 936 assert((I->getValueType() == EltVT || 937 (EltVT.isInteger() && I->getValueType().isInteger() && 938 EltVT.bitsLE(I->getValueType()))) && 939 "Wrong operand type!"); 940 assert(I->getValueType() == N->getOperand(0).getValueType() && 941 "Operands must all have the same type"); 942 } 943 break; 944 } 945 } 946 } 947 #endif // NDEBUG 948 949 /// Insert a newly allocated node into the DAG. 950 /// 951 /// Handles insertion into the all nodes list and CSE map, as well as 952 /// verification and other common operations when a new node is allocated. 953 void SelectionDAG::InsertNode(SDNode *N) { 954 AllNodes.push_back(N); 955 #ifndef NDEBUG 956 N->PersistentId = NextPersistentId++; 957 VerifySDNode(N); 958 #endif 959 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 960 DUL->NodeInserted(N); 961 } 962 963 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 964 /// correspond to it. This is useful when we're about to delete or repurpose 965 /// the node. We don't want future request for structurally identical nodes 966 /// to return N anymore. 967 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 968 bool Erased = false; 969 switch (N->getOpcode()) { 970 case ISD::HANDLENODE: return false; // noop. 971 case ISD::CONDCODE: 972 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 973 "Cond code doesn't exist!"); 974 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 975 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 976 break; 977 case ISD::ExternalSymbol: 978 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 979 break; 980 case ISD::TargetExternalSymbol: { 981 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 982 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 983 ESN->getSymbol(), ESN->getTargetFlags())); 984 break; 985 } 986 case ISD::MCSymbol: { 987 auto *MCSN = cast<MCSymbolSDNode>(N); 988 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 989 break; 990 } 991 case ISD::VALUETYPE: { 992 EVT VT = cast<VTSDNode>(N)->getVT(); 993 if (VT.isExtended()) { 994 Erased = ExtendedValueTypeNodes.erase(VT); 995 } else { 996 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 997 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 998 } 999 break; 1000 } 1001 default: 1002 // Remove it from the CSE Map. 1003 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1004 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1005 Erased = CSEMap.RemoveNode(N); 1006 break; 1007 } 1008 #ifndef NDEBUG 1009 // Verify that the node was actually in one of the CSE maps, unless it has a 1010 // flag result (which cannot be CSE'd) or is one of the special cases that are 1011 // not subject to CSE. 1012 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1013 !N->isMachineOpcode() && !doNotCSE(N)) { 1014 N->dump(this); 1015 dbgs() << "\n"; 1016 llvm_unreachable("Node is not in map!"); 1017 } 1018 #endif 1019 return Erased; 1020 } 1021 1022 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1023 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1024 /// node already exists, in which case transfer all its users to the existing 1025 /// node. This transfer can potentially trigger recursive merging. 1026 void 1027 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1028 // For node types that aren't CSE'd, just act as if no identical node 1029 // already exists. 1030 if (!doNotCSE(N)) { 1031 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1032 if (Existing != N) { 1033 // If there was already an existing matching node, use ReplaceAllUsesWith 1034 // to replace the dead one with the existing one. This can cause 1035 // recursive merging of other unrelated nodes down the line. 1036 ReplaceAllUsesWith(N, Existing); 1037 1038 // N is now dead. Inform the listeners and delete it. 1039 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1040 DUL->NodeDeleted(N, Existing); 1041 DeleteNodeNotInCSEMaps(N); 1042 return; 1043 } 1044 } 1045 1046 // If the node doesn't already exist, we updated it. Inform listeners. 1047 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1048 DUL->NodeUpdated(N); 1049 } 1050 1051 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1052 /// were replaced with those specified. If this node is never memoized, 1053 /// return null, otherwise return a pointer to the slot it would take. If a 1054 /// node already exists with these operands, the slot will be non-null. 1055 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1056 void *&InsertPos) { 1057 if (doNotCSE(N)) 1058 return nullptr; 1059 1060 SDValue Ops[] = { Op }; 1061 FoldingSetNodeID ID; 1062 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1063 AddNodeIDCustom(ID, N); 1064 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1065 if (Node) 1066 Node->intersectFlagsWith(N->getFlags()); 1067 return Node; 1068 } 1069 1070 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1071 /// were replaced with those specified. If this node is never memoized, 1072 /// return null, otherwise return a pointer to the slot it would take. If a 1073 /// node already exists with these operands, the slot will be non-null. 1074 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1075 SDValue Op1, SDValue Op2, 1076 void *&InsertPos) { 1077 if (doNotCSE(N)) 1078 return nullptr; 1079 1080 SDValue Ops[] = { Op1, Op2 }; 1081 FoldingSetNodeID ID; 1082 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1083 AddNodeIDCustom(ID, N); 1084 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1085 if (Node) 1086 Node->intersectFlagsWith(N->getFlags()); 1087 return Node; 1088 } 1089 1090 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1091 /// were replaced with those specified. If this node is never memoized, 1092 /// return null, otherwise return a pointer to the slot it would take. If a 1093 /// node already exists with these operands, the slot will be non-null. 1094 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1095 void *&InsertPos) { 1096 if (doNotCSE(N)) 1097 return nullptr; 1098 1099 FoldingSetNodeID ID; 1100 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1101 AddNodeIDCustom(ID, N); 1102 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1103 if (Node) 1104 Node->intersectFlagsWith(N->getFlags()); 1105 return Node; 1106 } 1107 1108 Align SelectionDAG::getEVTAlign(EVT VT) const { 1109 Type *Ty = VT == MVT::iPTR ? 1110 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1111 VT.getTypeForEVT(*getContext()); 1112 1113 return getDataLayout().getABITypeAlign(Ty); 1114 } 1115 1116 // EntryNode could meaningfully have debug info if we can find it... 1117 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1118 : TM(tm), OptLevel(OL), 1119 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1120 Root(getEntryNode()) { 1121 InsertNode(&EntryNode); 1122 DbgInfo = new SDDbgInfo(); 1123 } 1124 1125 void SelectionDAG::init(MachineFunction &NewMF, 1126 OptimizationRemarkEmitter &NewORE, 1127 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1128 LegacyDivergenceAnalysis * Divergence, 1129 ProfileSummaryInfo *PSIin, 1130 BlockFrequencyInfo *BFIin) { 1131 MF = &NewMF; 1132 SDAGISelPass = PassPtr; 1133 ORE = &NewORE; 1134 TLI = getSubtarget().getTargetLowering(); 1135 TSI = getSubtarget().getSelectionDAGInfo(); 1136 LibInfo = LibraryInfo; 1137 Context = &MF->getFunction().getContext(); 1138 DA = Divergence; 1139 PSI = PSIin; 1140 BFI = BFIin; 1141 } 1142 1143 SelectionDAG::~SelectionDAG() { 1144 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1145 allnodes_clear(); 1146 OperandRecycler.clear(OperandAllocator); 1147 delete DbgInfo; 1148 } 1149 1150 bool SelectionDAG::shouldOptForSize() const { 1151 return MF->getFunction().hasOptSize() || 1152 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1153 } 1154 1155 void SelectionDAG::allnodes_clear() { 1156 assert(&*AllNodes.begin() == &EntryNode); 1157 AllNodes.remove(AllNodes.begin()); 1158 while (!AllNodes.empty()) 1159 DeallocateNode(&AllNodes.front()); 1160 #ifndef NDEBUG 1161 NextPersistentId = 0; 1162 #endif 1163 } 1164 1165 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1166 void *&InsertPos) { 1167 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1168 if (N) { 1169 switch (N->getOpcode()) { 1170 default: break; 1171 case ISD::Constant: 1172 case ISD::ConstantFP: 1173 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1174 "debug location. Use another overload."); 1175 } 1176 } 1177 return N; 1178 } 1179 1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1181 const SDLoc &DL, void *&InsertPos) { 1182 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1183 if (N) { 1184 switch (N->getOpcode()) { 1185 case ISD::Constant: 1186 case ISD::ConstantFP: 1187 // Erase debug location from the node if the node is used at several 1188 // different places. Do not propagate one location to all uses as it 1189 // will cause a worse single stepping debugging experience. 1190 if (N->getDebugLoc() != DL.getDebugLoc()) 1191 N->setDebugLoc(DebugLoc()); 1192 break; 1193 default: 1194 // When the node's point of use is located earlier in the instruction 1195 // sequence than its prior point of use, update its debug info to the 1196 // earlier location. 1197 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1198 N->setDebugLoc(DL.getDebugLoc()); 1199 break; 1200 } 1201 } 1202 return N; 1203 } 1204 1205 void SelectionDAG::clear() { 1206 allnodes_clear(); 1207 OperandRecycler.clear(OperandAllocator); 1208 OperandAllocator.Reset(); 1209 CSEMap.clear(); 1210 1211 ExtendedValueTypeNodes.clear(); 1212 ExternalSymbols.clear(); 1213 TargetExternalSymbols.clear(); 1214 MCSymbols.clear(); 1215 SDCallSiteDbgInfo.clear(); 1216 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1217 static_cast<CondCodeSDNode*>(nullptr)); 1218 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1219 static_cast<SDNode*>(nullptr)); 1220 1221 EntryNode.UseList = nullptr; 1222 InsertNode(&EntryNode); 1223 Root = getEntryNode(); 1224 DbgInfo->clear(); 1225 } 1226 1227 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1228 return VT.bitsGT(Op.getValueType()) 1229 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1230 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1231 } 1232 1233 std::pair<SDValue, SDValue> 1234 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1235 const SDLoc &DL, EVT VT) { 1236 assert(!VT.bitsEq(Op.getValueType()) && 1237 "Strict no-op FP extend/round not allowed."); 1238 SDValue Res = 1239 VT.bitsGT(Op.getValueType()) 1240 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1241 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1242 {Chain, Op, getIntPtrConstant(0, DL)}); 1243 1244 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1245 } 1246 1247 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1248 return VT.bitsGT(Op.getValueType()) ? 1249 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1250 getNode(ISD::TRUNCATE, DL, VT, Op); 1251 } 1252 1253 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1254 return VT.bitsGT(Op.getValueType()) ? 1255 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1256 getNode(ISD::TRUNCATE, DL, VT, Op); 1257 } 1258 1259 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1260 return VT.bitsGT(Op.getValueType()) ? 1261 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1262 getNode(ISD::TRUNCATE, DL, VT, Op); 1263 } 1264 1265 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1266 EVT OpVT) { 1267 if (VT.bitsLE(Op.getValueType())) 1268 return getNode(ISD::TRUNCATE, SL, VT, Op); 1269 1270 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1271 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1272 } 1273 1274 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1275 EVT OpVT = Op.getValueType(); 1276 assert(VT.isInteger() && OpVT.isInteger() && 1277 "Cannot getZeroExtendInReg FP types"); 1278 assert(VT.isVector() == OpVT.isVector() && 1279 "getZeroExtendInReg type should be vector iff the operand " 1280 "type is vector!"); 1281 assert((!VT.isVector() || 1282 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1283 "Vector element counts must match in getZeroExtendInReg"); 1284 assert(VT.bitsLE(OpVT) && "Not extending!"); 1285 if (OpVT == VT) 1286 return Op; 1287 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1288 VT.getScalarSizeInBits()); 1289 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1290 } 1291 1292 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1293 // Only unsigned pointer semantics are supported right now. In the future this 1294 // might delegate to TLI to check pointer signedness. 1295 return getZExtOrTrunc(Op, DL, VT); 1296 } 1297 1298 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1299 // Only unsigned pointer semantics are supported right now. In the future this 1300 // might delegate to TLI to check pointer signedness. 1301 return getZeroExtendInReg(Op, DL, VT); 1302 } 1303 1304 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1305 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1306 EVT EltVT = VT.getScalarType(); 1307 SDValue NegOne = 1308 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1309 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1310 } 1311 1312 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1313 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1314 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1315 } 1316 1317 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1318 EVT OpVT) { 1319 if (!V) 1320 return getConstant(0, DL, VT); 1321 1322 switch (TLI->getBooleanContents(OpVT)) { 1323 case TargetLowering::ZeroOrOneBooleanContent: 1324 case TargetLowering::UndefinedBooleanContent: 1325 return getConstant(1, DL, VT); 1326 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1327 return getAllOnesConstant(DL, VT); 1328 } 1329 llvm_unreachable("Unexpected boolean content enum!"); 1330 } 1331 1332 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1333 bool isT, bool isO) { 1334 EVT EltVT = VT.getScalarType(); 1335 assert((EltVT.getSizeInBits() >= 64 || 1336 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1337 "getConstant with a uint64_t value that doesn't fit in the type!"); 1338 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1339 } 1340 1341 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1342 bool isT, bool isO) { 1343 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1344 } 1345 1346 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1347 EVT VT, bool isT, bool isO) { 1348 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1349 1350 EVT EltVT = VT.getScalarType(); 1351 const ConstantInt *Elt = &Val; 1352 1353 // In some cases the vector type is legal but the element type is illegal and 1354 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1355 // inserted value (the type does not need to match the vector element type). 1356 // Any extra bits introduced will be truncated away. 1357 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1358 TargetLowering::TypePromoteInteger) { 1359 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1360 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1361 Elt = ConstantInt::get(*getContext(), NewVal); 1362 } 1363 // In other cases the element type is illegal and needs to be expanded, for 1364 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1365 // the value into n parts and use a vector type with n-times the elements. 1366 // Then bitcast to the type requested. 1367 // Legalizing constants too early makes the DAGCombiner's job harder so we 1368 // only legalize if the DAG tells us we must produce legal types. 1369 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1370 TLI->getTypeAction(*getContext(), EltVT) == 1371 TargetLowering::TypeExpandInteger) { 1372 const APInt &NewVal = Elt->getValue(); 1373 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1374 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1375 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1376 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1377 1378 // Check the temporary vector is the correct size. If this fails then 1379 // getTypeToTransformTo() probably returned a type whose size (in bits) 1380 // isn't a power-of-2 factor of the requested type size. 1381 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1382 1383 SmallVector<SDValue, 2> EltParts; 1384 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1385 EltParts.push_back(getConstant( 1386 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1387 ViaEltVT, isT, isO)); 1388 } 1389 1390 // EltParts is currently in little endian order. If we actually want 1391 // big-endian order then reverse it now. 1392 if (getDataLayout().isBigEndian()) 1393 std::reverse(EltParts.begin(), EltParts.end()); 1394 1395 // The elements must be reversed when the element order is different 1396 // to the endianness of the elements (because the BITCAST is itself a 1397 // vector shuffle in this situation). However, we do not need any code to 1398 // perform this reversal because getConstant() is producing a vector 1399 // splat. 1400 // This situation occurs in MIPS MSA. 1401 1402 SmallVector<SDValue, 8> Ops; 1403 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1404 llvm::append_range(Ops, EltParts); 1405 1406 SDValue V = 1407 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1408 return V; 1409 } 1410 1411 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1412 "APInt size does not match type size!"); 1413 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1414 FoldingSetNodeID ID; 1415 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1416 ID.AddPointer(Elt); 1417 ID.AddBoolean(isO); 1418 void *IP = nullptr; 1419 SDNode *N = nullptr; 1420 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1421 if (!VT.isVector()) 1422 return SDValue(N, 0); 1423 1424 if (!N) { 1425 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1426 CSEMap.InsertNode(N, IP); 1427 InsertNode(N); 1428 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1429 } 1430 1431 SDValue Result(N, 0); 1432 if (VT.isScalableVector()) 1433 Result = getSplatVector(VT, DL, Result); 1434 else if (VT.isVector()) 1435 Result = getSplatBuildVector(VT, DL, Result); 1436 1437 return Result; 1438 } 1439 1440 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1441 bool isTarget) { 1442 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1443 } 1444 1445 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1446 const SDLoc &DL, bool LegalTypes) { 1447 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1448 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1449 return getConstant(Val, DL, ShiftVT); 1450 } 1451 1452 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1453 bool isTarget) { 1454 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1455 } 1456 1457 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1458 bool isTarget) { 1459 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1460 } 1461 1462 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1463 EVT VT, bool isTarget) { 1464 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1465 1466 EVT EltVT = VT.getScalarType(); 1467 1468 // Do the map lookup using the actual bit pattern for the floating point 1469 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1470 // we don't have issues with SNANs. 1471 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1472 FoldingSetNodeID ID; 1473 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1474 ID.AddPointer(&V); 1475 void *IP = nullptr; 1476 SDNode *N = nullptr; 1477 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1478 if (!VT.isVector()) 1479 return SDValue(N, 0); 1480 1481 if (!N) { 1482 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1483 CSEMap.InsertNode(N, IP); 1484 InsertNode(N); 1485 } 1486 1487 SDValue Result(N, 0); 1488 if (VT.isScalableVector()) 1489 Result = getSplatVector(VT, DL, Result); 1490 else if (VT.isVector()) 1491 Result = getSplatBuildVector(VT, DL, Result); 1492 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1493 return Result; 1494 } 1495 1496 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1497 bool isTarget) { 1498 EVT EltVT = VT.getScalarType(); 1499 if (EltVT == MVT::f32) 1500 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1501 else if (EltVT == MVT::f64) 1502 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1503 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1504 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1505 bool Ignored; 1506 APFloat APF = APFloat(Val); 1507 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1508 &Ignored); 1509 return getConstantFP(APF, DL, VT, isTarget); 1510 } else 1511 llvm_unreachable("Unsupported type in getConstantFP"); 1512 } 1513 1514 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1515 EVT VT, int64_t Offset, bool isTargetGA, 1516 unsigned TargetFlags) { 1517 assert((TargetFlags == 0 || isTargetGA) && 1518 "Cannot set target flags on target-independent globals"); 1519 1520 // Truncate (with sign-extension) the offset value to the pointer size. 1521 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1522 if (BitWidth < 64) 1523 Offset = SignExtend64(Offset, BitWidth); 1524 1525 unsigned Opc; 1526 if (GV->isThreadLocal()) 1527 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1528 else 1529 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1530 1531 FoldingSetNodeID ID; 1532 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1533 ID.AddPointer(GV); 1534 ID.AddInteger(Offset); 1535 ID.AddInteger(TargetFlags); 1536 void *IP = nullptr; 1537 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1538 return SDValue(E, 0); 1539 1540 auto *N = newSDNode<GlobalAddressSDNode>( 1541 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1542 CSEMap.InsertNode(N, IP); 1543 InsertNode(N); 1544 return SDValue(N, 0); 1545 } 1546 1547 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1548 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1549 FoldingSetNodeID ID; 1550 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1551 ID.AddInteger(FI); 1552 void *IP = nullptr; 1553 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1554 return SDValue(E, 0); 1555 1556 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1557 CSEMap.InsertNode(N, IP); 1558 InsertNode(N); 1559 return SDValue(N, 0); 1560 } 1561 1562 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1563 unsigned TargetFlags) { 1564 assert((TargetFlags == 0 || isTarget) && 1565 "Cannot set target flags on target-independent jump tables"); 1566 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1567 FoldingSetNodeID ID; 1568 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1569 ID.AddInteger(JTI); 1570 ID.AddInteger(TargetFlags); 1571 void *IP = nullptr; 1572 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1573 return SDValue(E, 0); 1574 1575 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1576 CSEMap.InsertNode(N, IP); 1577 InsertNode(N); 1578 return SDValue(N, 0); 1579 } 1580 1581 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1582 MaybeAlign Alignment, int Offset, 1583 bool isTarget, unsigned TargetFlags) { 1584 assert((TargetFlags == 0 || isTarget) && 1585 "Cannot set target flags on target-independent globals"); 1586 if (!Alignment) 1587 Alignment = shouldOptForSize() 1588 ? getDataLayout().getABITypeAlign(C->getType()) 1589 : getDataLayout().getPrefTypeAlign(C->getType()); 1590 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1591 FoldingSetNodeID ID; 1592 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1593 ID.AddInteger(Alignment->value()); 1594 ID.AddInteger(Offset); 1595 ID.AddPointer(C); 1596 ID.AddInteger(TargetFlags); 1597 void *IP = nullptr; 1598 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1599 return SDValue(E, 0); 1600 1601 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1602 TargetFlags); 1603 CSEMap.InsertNode(N, IP); 1604 InsertNode(N); 1605 SDValue V = SDValue(N, 0); 1606 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1607 return V; 1608 } 1609 1610 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1611 MaybeAlign Alignment, int Offset, 1612 bool isTarget, unsigned TargetFlags) { 1613 assert((TargetFlags == 0 || isTarget) && 1614 "Cannot set target flags on target-independent globals"); 1615 if (!Alignment) 1616 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1617 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1618 FoldingSetNodeID ID; 1619 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1620 ID.AddInteger(Alignment->value()); 1621 ID.AddInteger(Offset); 1622 C->addSelectionDAGCSEId(ID); 1623 ID.AddInteger(TargetFlags); 1624 void *IP = nullptr; 1625 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1626 return SDValue(E, 0); 1627 1628 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1629 TargetFlags); 1630 CSEMap.InsertNode(N, IP); 1631 InsertNode(N); 1632 return SDValue(N, 0); 1633 } 1634 1635 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1636 unsigned TargetFlags) { 1637 FoldingSetNodeID ID; 1638 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1639 ID.AddInteger(Index); 1640 ID.AddInteger(Offset); 1641 ID.AddInteger(TargetFlags); 1642 void *IP = nullptr; 1643 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1644 return SDValue(E, 0); 1645 1646 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1647 CSEMap.InsertNode(N, IP); 1648 InsertNode(N); 1649 return SDValue(N, 0); 1650 } 1651 1652 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1653 FoldingSetNodeID ID; 1654 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1655 ID.AddPointer(MBB); 1656 void *IP = nullptr; 1657 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1658 return SDValue(E, 0); 1659 1660 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1661 CSEMap.InsertNode(N, IP); 1662 InsertNode(N); 1663 return SDValue(N, 0); 1664 } 1665 1666 SDValue SelectionDAG::getValueType(EVT VT) { 1667 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1668 ValueTypeNodes.size()) 1669 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1670 1671 SDNode *&N = VT.isExtended() ? 1672 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1673 1674 if (N) return SDValue(N, 0); 1675 N = newSDNode<VTSDNode>(VT); 1676 InsertNode(N); 1677 return SDValue(N, 0); 1678 } 1679 1680 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1681 SDNode *&N = ExternalSymbols[Sym]; 1682 if (N) return SDValue(N, 0); 1683 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1684 InsertNode(N); 1685 return SDValue(N, 0); 1686 } 1687 1688 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1689 SDNode *&N = MCSymbols[Sym]; 1690 if (N) 1691 return SDValue(N, 0); 1692 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1693 InsertNode(N); 1694 return SDValue(N, 0); 1695 } 1696 1697 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1698 unsigned TargetFlags) { 1699 SDNode *&N = 1700 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1701 if (N) return SDValue(N, 0); 1702 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1703 InsertNode(N); 1704 return SDValue(N, 0); 1705 } 1706 1707 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1708 if ((unsigned)Cond >= CondCodeNodes.size()) 1709 CondCodeNodes.resize(Cond+1); 1710 1711 if (!CondCodeNodes[Cond]) { 1712 auto *N = newSDNode<CondCodeSDNode>(Cond); 1713 CondCodeNodes[Cond] = N; 1714 InsertNode(N); 1715 } 1716 1717 return SDValue(CondCodeNodes[Cond], 0); 1718 } 1719 1720 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1721 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1722 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1723 std::swap(N1, N2); 1724 ShuffleVectorSDNode::commuteMask(M); 1725 } 1726 1727 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1728 SDValue N2, ArrayRef<int> Mask) { 1729 assert(VT.getVectorNumElements() == Mask.size() && 1730 "Must have the same number of vector elements as mask elements!"); 1731 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1732 "Invalid VECTOR_SHUFFLE"); 1733 1734 // Canonicalize shuffle undef, undef -> undef 1735 if (N1.isUndef() && N2.isUndef()) 1736 return getUNDEF(VT); 1737 1738 // Validate that all indices in Mask are within the range of the elements 1739 // input to the shuffle. 1740 int NElts = Mask.size(); 1741 assert(llvm::all_of(Mask, 1742 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1743 "Index out of range"); 1744 1745 // Copy the mask so we can do any needed cleanup. 1746 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1747 1748 // Canonicalize shuffle v, v -> v, undef 1749 if (N1 == N2) { 1750 N2 = getUNDEF(VT); 1751 for (int i = 0; i != NElts; ++i) 1752 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1753 } 1754 1755 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1756 if (N1.isUndef()) 1757 commuteShuffle(N1, N2, MaskVec); 1758 1759 if (TLI->hasVectorBlend()) { 1760 // If shuffling a splat, try to blend the splat instead. We do this here so 1761 // that even when this arises during lowering we don't have to re-handle it. 1762 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1763 BitVector UndefElements; 1764 SDValue Splat = BV->getSplatValue(&UndefElements); 1765 if (!Splat) 1766 return; 1767 1768 for (int i = 0; i < NElts; ++i) { 1769 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1770 continue; 1771 1772 // If this input comes from undef, mark it as such. 1773 if (UndefElements[MaskVec[i] - Offset]) { 1774 MaskVec[i] = -1; 1775 continue; 1776 } 1777 1778 // If we can blend a non-undef lane, use that instead. 1779 if (!UndefElements[i]) 1780 MaskVec[i] = i + Offset; 1781 } 1782 }; 1783 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1784 BlendSplat(N1BV, 0); 1785 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1786 BlendSplat(N2BV, NElts); 1787 } 1788 1789 // Canonicalize all index into lhs, -> shuffle lhs, undef 1790 // Canonicalize all index into rhs, -> shuffle rhs, undef 1791 bool AllLHS = true, AllRHS = true; 1792 bool N2Undef = N2.isUndef(); 1793 for (int i = 0; i != NElts; ++i) { 1794 if (MaskVec[i] >= NElts) { 1795 if (N2Undef) 1796 MaskVec[i] = -1; 1797 else 1798 AllLHS = false; 1799 } else if (MaskVec[i] >= 0) { 1800 AllRHS = false; 1801 } 1802 } 1803 if (AllLHS && AllRHS) 1804 return getUNDEF(VT); 1805 if (AllLHS && !N2Undef) 1806 N2 = getUNDEF(VT); 1807 if (AllRHS) { 1808 N1 = getUNDEF(VT); 1809 commuteShuffle(N1, N2, MaskVec); 1810 } 1811 // Reset our undef status after accounting for the mask. 1812 N2Undef = N2.isUndef(); 1813 // Re-check whether both sides ended up undef. 1814 if (N1.isUndef() && N2Undef) 1815 return getUNDEF(VT); 1816 1817 // If Identity shuffle return that node. 1818 bool Identity = true, AllSame = true; 1819 for (int i = 0; i != NElts; ++i) { 1820 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1821 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1822 } 1823 if (Identity && NElts) 1824 return N1; 1825 1826 // Shuffling a constant splat doesn't change the result. 1827 if (N2Undef) { 1828 SDValue V = N1; 1829 1830 // Look through any bitcasts. We check that these don't change the number 1831 // (and size) of elements and just changes their types. 1832 while (V.getOpcode() == ISD::BITCAST) 1833 V = V->getOperand(0); 1834 1835 // A splat should always show up as a build vector node. 1836 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1837 BitVector UndefElements; 1838 SDValue Splat = BV->getSplatValue(&UndefElements); 1839 // If this is a splat of an undef, shuffling it is also undef. 1840 if (Splat && Splat.isUndef()) 1841 return getUNDEF(VT); 1842 1843 bool SameNumElts = 1844 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1845 1846 // We only have a splat which can skip shuffles if there is a splatted 1847 // value and no undef lanes rearranged by the shuffle. 1848 if (Splat && UndefElements.none()) { 1849 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1850 // number of elements match or the value splatted is a zero constant. 1851 if (SameNumElts) 1852 return N1; 1853 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1854 if (C->isNullValue()) 1855 return N1; 1856 } 1857 1858 // If the shuffle itself creates a splat, build the vector directly. 1859 if (AllSame && SameNumElts) { 1860 EVT BuildVT = BV->getValueType(0); 1861 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1862 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1863 1864 // We may have jumped through bitcasts, so the type of the 1865 // BUILD_VECTOR may not match the type of the shuffle. 1866 if (BuildVT != VT) 1867 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1868 return NewBV; 1869 } 1870 } 1871 } 1872 1873 FoldingSetNodeID ID; 1874 SDValue Ops[2] = { N1, N2 }; 1875 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1876 for (int i = 0; i != NElts; ++i) 1877 ID.AddInteger(MaskVec[i]); 1878 1879 void* IP = nullptr; 1880 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1881 return SDValue(E, 0); 1882 1883 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1884 // SDNode doesn't have access to it. This memory will be "leaked" when 1885 // the node is deallocated, but recovered when the NodeAllocator is released. 1886 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1887 llvm::copy(MaskVec, MaskAlloc); 1888 1889 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1890 dl.getDebugLoc(), MaskAlloc); 1891 createOperands(N, Ops); 1892 1893 CSEMap.InsertNode(N, IP); 1894 InsertNode(N); 1895 SDValue V = SDValue(N, 0); 1896 NewSDValueDbgMsg(V, "Creating new node: ", this); 1897 return V; 1898 } 1899 1900 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1901 EVT VT = SV.getValueType(0); 1902 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1903 ShuffleVectorSDNode::commuteMask(MaskVec); 1904 1905 SDValue Op0 = SV.getOperand(0); 1906 SDValue Op1 = SV.getOperand(1); 1907 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1908 } 1909 1910 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1911 FoldingSetNodeID ID; 1912 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1913 ID.AddInteger(RegNo); 1914 void *IP = nullptr; 1915 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1916 return SDValue(E, 0); 1917 1918 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1919 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1920 CSEMap.InsertNode(N, IP); 1921 InsertNode(N); 1922 return SDValue(N, 0); 1923 } 1924 1925 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1926 FoldingSetNodeID ID; 1927 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1928 ID.AddPointer(RegMask); 1929 void *IP = nullptr; 1930 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1931 return SDValue(E, 0); 1932 1933 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1934 CSEMap.InsertNode(N, IP); 1935 InsertNode(N); 1936 return SDValue(N, 0); 1937 } 1938 1939 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1940 MCSymbol *Label) { 1941 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1942 } 1943 1944 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1945 SDValue Root, MCSymbol *Label) { 1946 FoldingSetNodeID ID; 1947 SDValue Ops[] = { Root }; 1948 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1949 ID.AddPointer(Label); 1950 void *IP = nullptr; 1951 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1952 return SDValue(E, 0); 1953 1954 auto *N = 1955 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1956 createOperands(N, Ops); 1957 1958 CSEMap.InsertNode(N, IP); 1959 InsertNode(N); 1960 return SDValue(N, 0); 1961 } 1962 1963 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1964 int64_t Offset, bool isTarget, 1965 unsigned TargetFlags) { 1966 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1967 1968 FoldingSetNodeID ID; 1969 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1970 ID.AddPointer(BA); 1971 ID.AddInteger(Offset); 1972 ID.AddInteger(TargetFlags); 1973 void *IP = nullptr; 1974 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1975 return SDValue(E, 0); 1976 1977 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1978 CSEMap.InsertNode(N, IP); 1979 InsertNode(N); 1980 return SDValue(N, 0); 1981 } 1982 1983 SDValue SelectionDAG::getSrcValue(const Value *V) { 1984 FoldingSetNodeID ID; 1985 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1986 ID.AddPointer(V); 1987 1988 void *IP = nullptr; 1989 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1990 return SDValue(E, 0); 1991 1992 auto *N = newSDNode<SrcValueSDNode>(V); 1993 CSEMap.InsertNode(N, IP); 1994 InsertNode(N); 1995 return SDValue(N, 0); 1996 } 1997 1998 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1999 FoldingSetNodeID ID; 2000 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2001 ID.AddPointer(MD); 2002 2003 void *IP = nullptr; 2004 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2005 return SDValue(E, 0); 2006 2007 auto *N = newSDNode<MDNodeSDNode>(MD); 2008 CSEMap.InsertNode(N, IP); 2009 InsertNode(N); 2010 return SDValue(N, 0); 2011 } 2012 2013 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2014 if (VT == V.getValueType()) 2015 return V; 2016 2017 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2018 } 2019 2020 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2021 unsigned SrcAS, unsigned DestAS) { 2022 SDValue Ops[] = {Ptr}; 2023 FoldingSetNodeID ID; 2024 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2025 ID.AddInteger(SrcAS); 2026 ID.AddInteger(DestAS); 2027 2028 void *IP = nullptr; 2029 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2030 return SDValue(E, 0); 2031 2032 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2033 VT, SrcAS, DestAS); 2034 createOperands(N, Ops); 2035 2036 CSEMap.InsertNode(N, IP); 2037 InsertNode(N); 2038 return SDValue(N, 0); 2039 } 2040 2041 SDValue SelectionDAG::getFreeze(SDValue V) { 2042 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2043 } 2044 2045 /// getShiftAmountOperand - Return the specified value casted to 2046 /// the target's desired shift amount type. 2047 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2048 EVT OpTy = Op.getValueType(); 2049 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2050 if (OpTy == ShTy || OpTy.isVector()) return Op; 2051 2052 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2053 } 2054 2055 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2056 SDLoc dl(Node); 2057 const TargetLowering &TLI = getTargetLoweringInfo(); 2058 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2059 EVT VT = Node->getValueType(0); 2060 SDValue Tmp1 = Node->getOperand(0); 2061 SDValue Tmp2 = Node->getOperand(1); 2062 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2063 2064 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2065 Tmp2, MachinePointerInfo(V)); 2066 SDValue VAList = VAListLoad; 2067 2068 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2069 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2070 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2071 2072 VAList = 2073 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2074 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2075 } 2076 2077 // Increment the pointer, VAList, to the next vaarg 2078 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2079 getConstant(getDataLayout().getTypeAllocSize( 2080 VT.getTypeForEVT(*getContext())), 2081 dl, VAList.getValueType())); 2082 // Store the incremented VAList to the legalized pointer 2083 Tmp1 = 2084 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2085 // Load the actual argument out of the pointer VAList 2086 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2087 } 2088 2089 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2090 SDLoc dl(Node); 2091 const TargetLowering &TLI = getTargetLoweringInfo(); 2092 // This defaults to loading a pointer from the input and storing it to the 2093 // output, returning the chain. 2094 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2095 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2096 SDValue Tmp1 = 2097 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2098 Node->getOperand(2), MachinePointerInfo(VS)); 2099 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2100 MachinePointerInfo(VD)); 2101 } 2102 2103 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2104 const DataLayout &DL = getDataLayout(); 2105 Type *Ty = VT.getTypeForEVT(*getContext()); 2106 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2107 2108 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2109 return RedAlign; 2110 2111 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2112 const Align StackAlign = TFI->getStackAlign(); 2113 2114 // See if we can choose a smaller ABI alignment in cases where it's an 2115 // illegal vector type that will get broken down. 2116 if (RedAlign > StackAlign) { 2117 EVT IntermediateVT; 2118 MVT RegisterVT; 2119 unsigned NumIntermediates; 2120 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2121 NumIntermediates, RegisterVT); 2122 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2123 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2124 if (RedAlign2 < RedAlign) 2125 RedAlign = RedAlign2; 2126 } 2127 2128 return RedAlign; 2129 } 2130 2131 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2132 MachineFrameInfo &MFI = MF->getFrameInfo(); 2133 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2134 int StackID = 0; 2135 if (Bytes.isScalable()) 2136 StackID = TFI->getStackIDForScalableVectors(); 2137 // The stack id gives an indication of whether the object is scalable or 2138 // not, so it's safe to pass in the minimum size here. 2139 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2140 false, nullptr, StackID); 2141 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2142 } 2143 2144 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2145 Type *Ty = VT.getTypeForEVT(*getContext()); 2146 Align StackAlign = 2147 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2148 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2149 } 2150 2151 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2152 TypeSize VT1Size = VT1.getStoreSize(); 2153 TypeSize VT2Size = VT2.getStoreSize(); 2154 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2155 "Don't know how to choose the maximum size when creating a stack " 2156 "temporary"); 2157 TypeSize Bytes = 2158 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2159 2160 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2161 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2162 const DataLayout &DL = getDataLayout(); 2163 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2164 return CreateStackTemporary(Bytes, Align); 2165 } 2166 2167 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2168 ISD::CondCode Cond, const SDLoc &dl) { 2169 EVT OpVT = N1.getValueType(); 2170 2171 // These setcc operations always fold. 2172 switch (Cond) { 2173 default: break; 2174 case ISD::SETFALSE: 2175 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2176 case ISD::SETTRUE: 2177 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2178 2179 case ISD::SETOEQ: 2180 case ISD::SETOGT: 2181 case ISD::SETOGE: 2182 case ISD::SETOLT: 2183 case ISD::SETOLE: 2184 case ISD::SETONE: 2185 case ISD::SETO: 2186 case ISD::SETUO: 2187 case ISD::SETUEQ: 2188 case ISD::SETUNE: 2189 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2190 break; 2191 } 2192 2193 if (OpVT.isInteger()) { 2194 // For EQ and NE, we can always pick a value for the undef to make the 2195 // predicate pass or fail, so we can return undef. 2196 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2197 // icmp eq/ne X, undef -> undef. 2198 if ((N1.isUndef() || N2.isUndef()) && 2199 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2200 return getUNDEF(VT); 2201 2202 // If both operands are undef, we can return undef for int comparison. 2203 // icmp undef, undef -> undef. 2204 if (N1.isUndef() && N2.isUndef()) 2205 return getUNDEF(VT); 2206 2207 // icmp X, X -> true/false 2208 // icmp X, undef -> true/false because undef could be X. 2209 if (N1 == N2) 2210 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2211 } 2212 2213 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2214 const APInt &C2 = N2C->getAPIntValue(); 2215 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2216 const APInt &C1 = N1C->getAPIntValue(); 2217 2218 switch (Cond) { 2219 default: llvm_unreachable("Unknown integer setcc!"); 2220 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2221 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2222 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2223 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2224 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2225 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2226 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2227 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2228 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2229 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2230 } 2231 } 2232 } 2233 2234 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2235 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2236 2237 if (N1CFP && N2CFP) { 2238 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2239 switch (Cond) { 2240 default: break; 2241 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2242 return getUNDEF(VT); 2243 LLVM_FALLTHROUGH; 2244 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2245 OpVT); 2246 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2247 return getUNDEF(VT); 2248 LLVM_FALLTHROUGH; 2249 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2250 R==APFloat::cmpLessThan, dl, VT, 2251 OpVT); 2252 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2253 return getUNDEF(VT); 2254 LLVM_FALLTHROUGH; 2255 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2256 OpVT); 2257 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2258 return getUNDEF(VT); 2259 LLVM_FALLTHROUGH; 2260 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2261 VT, OpVT); 2262 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2263 return getUNDEF(VT); 2264 LLVM_FALLTHROUGH; 2265 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2266 R==APFloat::cmpEqual, dl, VT, 2267 OpVT); 2268 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2269 return getUNDEF(VT); 2270 LLVM_FALLTHROUGH; 2271 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2272 R==APFloat::cmpEqual, dl, VT, OpVT); 2273 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2274 OpVT); 2275 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2276 OpVT); 2277 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2278 R==APFloat::cmpEqual, dl, VT, 2279 OpVT); 2280 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2281 OpVT); 2282 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2283 R==APFloat::cmpLessThan, dl, VT, 2284 OpVT); 2285 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2286 R==APFloat::cmpUnordered, dl, VT, 2287 OpVT); 2288 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2289 VT, OpVT); 2290 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2291 OpVT); 2292 } 2293 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2294 // Ensure that the constant occurs on the RHS. 2295 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2296 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2297 return SDValue(); 2298 return getSetCC(dl, VT, N2, N1, SwappedCond); 2299 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2300 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2301 // If an operand is known to be a nan (or undef that could be a nan), we can 2302 // fold it. 2303 // Choosing NaN for the undef will always make unordered comparison succeed 2304 // and ordered comparison fails. 2305 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2306 switch (ISD::getUnorderedFlavor(Cond)) { 2307 default: 2308 llvm_unreachable("Unknown flavor!"); 2309 case 0: // Known false. 2310 return getBoolConstant(false, dl, VT, OpVT); 2311 case 1: // Known true. 2312 return getBoolConstant(true, dl, VT, OpVT); 2313 case 2: // Undefined. 2314 return getUNDEF(VT); 2315 } 2316 } 2317 2318 // Could not fold it. 2319 return SDValue(); 2320 } 2321 2322 /// See if the specified operand can be simplified with the knowledge that only 2323 /// the bits specified by DemandedBits are used. 2324 /// TODO: really we should be making this into the DAG equivalent of 2325 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2326 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2327 EVT VT = V.getValueType(); 2328 2329 if (VT.isScalableVector()) 2330 return SDValue(); 2331 2332 APInt DemandedElts = VT.isVector() 2333 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2334 : APInt(1, 1); 2335 return GetDemandedBits(V, DemandedBits, DemandedElts); 2336 } 2337 2338 /// See if the specified operand can be simplified with the knowledge that only 2339 /// the bits specified by DemandedBits are used in the elements specified by 2340 /// DemandedElts. 2341 /// TODO: really we should be making this into the DAG equivalent of 2342 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2343 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2344 const APInt &DemandedElts) { 2345 switch (V.getOpcode()) { 2346 default: 2347 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2348 *this, 0); 2349 case ISD::Constant: { 2350 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2351 APInt NewVal = CVal & DemandedBits; 2352 if (NewVal != CVal) 2353 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2354 break; 2355 } 2356 case ISD::SRL: 2357 // Only look at single-use SRLs. 2358 if (!V.getNode()->hasOneUse()) 2359 break; 2360 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2361 // See if we can recursively simplify the LHS. 2362 unsigned Amt = RHSC->getZExtValue(); 2363 2364 // Watch out for shift count overflow though. 2365 if (Amt >= DemandedBits.getBitWidth()) 2366 break; 2367 APInt SrcDemandedBits = DemandedBits << Amt; 2368 if (SDValue SimplifyLHS = 2369 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2370 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2371 V.getOperand(1)); 2372 } 2373 break; 2374 } 2375 return SDValue(); 2376 } 2377 2378 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2379 /// use this predicate to simplify operations downstream. 2380 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2381 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2382 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2383 } 2384 2385 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2386 /// this predicate to simplify operations downstream. Mask is known to be zero 2387 /// for bits that V cannot have. 2388 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2389 unsigned Depth) const { 2390 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2391 } 2392 2393 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2394 /// DemandedElts. We use this predicate to simplify operations downstream. 2395 /// Mask is known to be zero for bits that V cannot have. 2396 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2397 const APInt &DemandedElts, 2398 unsigned Depth) const { 2399 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2400 } 2401 2402 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2403 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2404 unsigned Depth) const { 2405 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2406 } 2407 2408 /// isSplatValue - Return true if the vector V has the same value 2409 /// across all DemandedElts. For scalable vectors it does not make 2410 /// sense to specify which elements are demanded or undefined, therefore 2411 /// they are simply ignored. 2412 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2413 APInt &UndefElts, unsigned Depth) { 2414 EVT VT = V.getValueType(); 2415 assert(VT.isVector() && "Vector type expected"); 2416 2417 if (!VT.isScalableVector() && !DemandedElts) 2418 return false; // No demanded elts, better to assume we don't know anything. 2419 2420 if (Depth >= MaxRecursionDepth) 2421 return false; // Limit search depth. 2422 2423 // Deal with some common cases here that work for both fixed and scalable 2424 // vector types. 2425 switch (V.getOpcode()) { 2426 case ISD::SPLAT_VECTOR: 2427 UndefElts = V.getOperand(0).isUndef() 2428 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2429 : APInt(DemandedElts.getBitWidth(), 0); 2430 return true; 2431 case ISD::ADD: 2432 case ISD::SUB: 2433 case ISD::AND: { 2434 APInt UndefLHS, UndefRHS; 2435 SDValue LHS = V.getOperand(0); 2436 SDValue RHS = V.getOperand(1); 2437 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2438 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2439 UndefElts = UndefLHS | UndefRHS; 2440 return true; 2441 } 2442 break; 2443 } 2444 case ISD::TRUNCATE: 2445 case ISD::SIGN_EXTEND: 2446 case ISD::ZERO_EXTEND: 2447 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2448 } 2449 2450 // We don't support other cases than those above for scalable vectors at 2451 // the moment. 2452 if (VT.isScalableVector()) 2453 return false; 2454 2455 unsigned NumElts = VT.getVectorNumElements(); 2456 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2457 UndefElts = APInt::getNullValue(NumElts); 2458 2459 switch (V.getOpcode()) { 2460 case ISD::BUILD_VECTOR: { 2461 SDValue Scl; 2462 for (unsigned i = 0; i != NumElts; ++i) { 2463 SDValue Op = V.getOperand(i); 2464 if (Op.isUndef()) { 2465 UndefElts.setBit(i); 2466 continue; 2467 } 2468 if (!DemandedElts[i]) 2469 continue; 2470 if (Scl && Scl != Op) 2471 return false; 2472 Scl = Op; 2473 } 2474 return true; 2475 } 2476 case ISD::VECTOR_SHUFFLE: { 2477 // Check if this is a shuffle node doing a splat. 2478 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2479 int SplatIndex = -1; 2480 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2481 for (int i = 0; i != (int)NumElts; ++i) { 2482 int M = Mask[i]; 2483 if (M < 0) { 2484 UndefElts.setBit(i); 2485 continue; 2486 } 2487 if (!DemandedElts[i]) 2488 continue; 2489 if (0 <= SplatIndex && SplatIndex != M) 2490 return false; 2491 SplatIndex = M; 2492 } 2493 return true; 2494 } 2495 case ISD::EXTRACT_SUBVECTOR: { 2496 // Offset the demanded elts by the subvector index. 2497 SDValue Src = V.getOperand(0); 2498 uint64_t Idx = V.getConstantOperandVal(1); 2499 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2500 APInt UndefSrcElts; 2501 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2502 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2503 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2504 return true; 2505 } 2506 break; 2507 } 2508 } 2509 2510 return false; 2511 } 2512 2513 /// Helper wrapper to main isSplatValue function. 2514 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2515 EVT VT = V.getValueType(); 2516 assert(VT.isVector() && "Vector type expected"); 2517 2518 APInt UndefElts; 2519 APInt DemandedElts; 2520 2521 // For now we don't support this with scalable vectors. 2522 if (!VT.isScalableVector()) 2523 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2524 return isSplatValue(V, DemandedElts, UndefElts) && 2525 (AllowUndefs || !UndefElts); 2526 } 2527 2528 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2529 V = peekThroughExtractSubvectors(V); 2530 2531 EVT VT = V.getValueType(); 2532 unsigned Opcode = V.getOpcode(); 2533 switch (Opcode) { 2534 default: { 2535 APInt UndefElts; 2536 APInt DemandedElts; 2537 2538 if (!VT.isScalableVector()) 2539 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2540 2541 if (isSplatValue(V, DemandedElts, UndefElts)) { 2542 if (VT.isScalableVector()) { 2543 // DemandedElts and UndefElts are ignored for scalable vectors, since 2544 // the only supported cases are SPLAT_VECTOR nodes. 2545 SplatIdx = 0; 2546 } else { 2547 // Handle case where all demanded elements are UNDEF. 2548 if (DemandedElts.isSubsetOf(UndefElts)) { 2549 SplatIdx = 0; 2550 return getUNDEF(VT); 2551 } 2552 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2553 } 2554 return V; 2555 } 2556 break; 2557 } 2558 case ISD::SPLAT_VECTOR: 2559 SplatIdx = 0; 2560 return V; 2561 case ISD::VECTOR_SHUFFLE: { 2562 if (VT.isScalableVector()) 2563 return SDValue(); 2564 2565 // Check if this is a shuffle node doing a splat. 2566 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2567 // getTargetVShiftNode currently struggles without the splat source. 2568 auto *SVN = cast<ShuffleVectorSDNode>(V); 2569 if (!SVN->isSplat()) 2570 break; 2571 int Idx = SVN->getSplatIndex(); 2572 int NumElts = V.getValueType().getVectorNumElements(); 2573 SplatIdx = Idx % NumElts; 2574 return V.getOperand(Idx / NumElts); 2575 } 2576 } 2577 2578 return SDValue(); 2579 } 2580 2581 SDValue SelectionDAG::getSplatValue(SDValue V) { 2582 int SplatIdx; 2583 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2584 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2585 SrcVector.getValueType().getScalarType(), SrcVector, 2586 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2587 return SDValue(); 2588 } 2589 2590 const APInt * 2591 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2592 const APInt &DemandedElts) const { 2593 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2594 V.getOpcode() == ISD::SRA) && 2595 "Unknown shift node"); 2596 unsigned BitWidth = V.getScalarValueSizeInBits(); 2597 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2598 // Shifting more than the bitwidth is not valid. 2599 const APInt &ShAmt = SA->getAPIntValue(); 2600 if (ShAmt.ult(BitWidth)) 2601 return &ShAmt; 2602 } 2603 return nullptr; 2604 } 2605 2606 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2607 SDValue V, const APInt &DemandedElts) const { 2608 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2609 V.getOpcode() == ISD::SRA) && 2610 "Unknown shift node"); 2611 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2612 return ValidAmt; 2613 unsigned BitWidth = V.getScalarValueSizeInBits(); 2614 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2615 if (!BV) 2616 return nullptr; 2617 const APInt *MinShAmt = nullptr; 2618 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2619 if (!DemandedElts[i]) 2620 continue; 2621 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2622 if (!SA) 2623 return nullptr; 2624 // Shifting more than the bitwidth is not valid. 2625 const APInt &ShAmt = SA->getAPIntValue(); 2626 if (ShAmt.uge(BitWidth)) 2627 return nullptr; 2628 if (MinShAmt && MinShAmt->ule(ShAmt)) 2629 continue; 2630 MinShAmt = &ShAmt; 2631 } 2632 return MinShAmt; 2633 } 2634 2635 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2636 SDValue V, const APInt &DemandedElts) const { 2637 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2638 V.getOpcode() == ISD::SRA) && 2639 "Unknown shift node"); 2640 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2641 return ValidAmt; 2642 unsigned BitWidth = V.getScalarValueSizeInBits(); 2643 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2644 if (!BV) 2645 return nullptr; 2646 const APInt *MaxShAmt = nullptr; 2647 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2648 if (!DemandedElts[i]) 2649 continue; 2650 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2651 if (!SA) 2652 return nullptr; 2653 // Shifting more than the bitwidth is not valid. 2654 const APInt &ShAmt = SA->getAPIntValue(); 2655 if (ShAmt.uge(BitWidth)) 2656 return nullptr; 2657 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2658 continue; 2659 MaxShAmt = &ShAmt; 2660 } 2661 return MaxShAmt; 2662 } 2663 2664 /// Determine which bits of Op are known to be either zero or one and return 2665 /// them in Known. For vectors, the known bits are those that are shared by 2666 /// every vector element. 2667 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2668 EVT VT = Op.getValueType(); 2669 2670 // TOOD: Until we have a plan for how to represent demanded elements for 2671 // scalable vectors, we can just bail out for now. 2672 if (Op.getValueType().isScalableVector()) { 2673 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2674 return KnownBits(BitWidth); 2675 } 2676 2677 APInt DemandedElts = VT.isVector() 2678 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2679 : APInt(1, 1); 2680 return computeKnownBits(Op, DemandedElts, Depth); 2681 } 2682 2683 /// Determine which bits of Op are known to be either zero or one and return 2684 /// them in Known. The DemandedElts argument allows us to only collect the known 2685 /// bits that are shared by the requested vector elements. 2686 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2687 unsigned Depth) const { 2688 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2689 2690 KnownBits Known(BitWidth); // Don't know anything. 2691 2692 // TOOD: Until we have a plan for how to represent demanded elements for 2693 // scalable vectors, we can just bail out for now. 2694 if (Op.getValueType().isScalableVector()) 2695 return Known; 2696 2697 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2698 // We know all of the bits for a constant! 2699 return KnownBits::makeConstant(C->getAPIntValue()); 2700 } 2701 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2702 // We know all of the bits for a constant fp! 2703 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2704 } 2705 2706 if (Depth >= MaxRecursionDepth) 2707 return Known; // Limit search depth. 2708 2709 KnownBits Known2; 2710 unsigned NumElts = DemandedElts.getBitWidth(); 2711 assert((!Op.getValueType().isVector() || 2712 NumElts == Op.getValueType().getVectorNumElements()) && 2713 "Unexpected vector size"); 2714 2715 if (!DemandedElts) 2716 return Known; // No demanded elts, better to assume we don't know anything. 2717 2718 unsigned Opcode = Op.getOpcode(); 2719 switch (Opcode) { 2720 case ISD::BUILD_VECTOR: 2721 // Collect the known bits that are shared by every demanded vector element. 2722 Known.Zero.setAllBits(); Known.One.setAllBits(); 2723 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2724 if (!DemandedElts[i]) 2725 continue; 2726 2727 SDValue SrcOp = Op.getOperand(i); 2728 Known2 = computeKnownBits(SrcOp, Depth + 1); 2729 2730 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2731 if (SrcOp.getValueSizeInBits() != BitWidth) { 2732 assert(SrcOp.getValueSizeInBits() > BitWidth && 2733 "Expected BUILD_VECTOR implicit truncation"); 2734 Known2 = Known2.trunc(BitWidth); 2735 } 2736 2737 // Known bits are the values that are shared by every demanded element. 2738 Known = KnownBits::commonBits(Known, Known2); 2739 2740 // If we don't know any bits, early out. 2741 if (Known.isUnknown()) 2742 break; 2743 } 2744 break; 2745 case ISD::VECTOR_SHUFFLE: { 2746 // Collect the known bits that are shared by every vector element referenced 2747 // by the shuffle. 2748 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2749 Known.Zero.setAllBits(); Known.One.setAllBits(); 2750 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2751 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2752 for (unsigned i = 0; i != NumElts; ++i) { 2753 if (!DemandedElts[i]) 2754 continue; 2755 2756 int M = SVN->getMaskElt(i); 2757 if (M < 0) { 2758 // For UNDEF elements, we don't know anything about the common state of 2759 // the shuffle result. 2760 Known.resetAll(); 2761 DemandedLHS.clearAllBits(); 2762 DemandedRHS.clearAllBits(); 2763 break; 2764 } 2765 2766 if ((unsigned)M < NumElts) 2767 DemandedLHS.setBit((unsigned)M % NumElts); 2768 else 2769 DemandedRHS.setBit((unsigned)M % NumElts); 2770 } 2771 // Known bits are the values that are shared by every demanded element. 2772 if (!!DemandedLHS) { 2773 SDValue LHS = Op.getOperand(0); 2774 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2775 Known = KnownBits::commonBits(Known, Known2); 2776 } 2777 // If we don't know any bits, early out. 2778 if (Known.isUnknown()) 2779 break; 2780 if (!!DemandedRHS) { 2781 SDValue RHS = Op.getOperand(1); 2782 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2783 Known = KnownBits::commonBits(Known, Known2); 2784 } 2785 break; 2786 } 2787 case ISD::CONCAT_VECTORS: { 2788 // Split DemandedElts and test each of the demanded subvectors. 2789 Known.Zero.setAllBits(); Known.One.setAllBits(); 2790 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2791 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2792 unsigned NumSubVectors = Op.getNumOperands(); 2793 for (unsigned i = 0; i != NumSubVectors; ++i) { 2794 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2795 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2796 if (!!DemandedSub) { 2797 SDValue Sub = Op.getOperand(i); 2798 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2799 Known = KnownBits::commonBits(Known, Known2); 2800 } 2801 // If we don't know any bits, early out. 2802 if (Known.isUnknown()) 2803 break; 2804 } 2805 break; 2806 } 2807 case ISD::INSERT_SUBVECTOR: { 2808 // Demand any elements from the subvector and the remainder from the src its 2809 // inserted into. 2810 SDValue Src = Op.getOperand(0); 2811 SDValue Sub = Op.getOperand(1); 2812 uint64_t Idx = Op.getConstantOperandVal(2); 2813 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2814 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2815 APInt DemandedSrcElts = DemandedElts; 2816 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2817 2818 Known.One.setAllBits(); 2819 Known.Zero.setAllBits(); 2820 if (!!DemandedSubElts) { 2821 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2822 if (Known.isUnknown()) 2823 break; // early-out. 2824 } 2825 if (!!DemandedSrcElts) { 2826 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2827 Known = KnownBits::commonBits(Known, Known2); 2828 } 2829 break; 2830 } 2831 case ISD::EXTRACT_SUBVECTOR: { 2832 // Offset the demanded elts by the subvector index. 2833 SDValue Src = Op.getOperand(0); 2834 // Bail until we can represent demanded elements for scalable vectors. 2835 if (Src.getValueType().isScalableVector()) 2836 break; 2837 uint64_t Idx = Op.getConstantOperandVal(1); 2838 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2839 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2840 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2841 break; 2842 } 2843 case ISD::SCALAR_TO_VECTOR: { 2844 // We know about scalar_to_vector as much as we know about it source, 2845 // which becomes the first element of otherwise unknown vector. 2846 if (DemandedElts != 1) 2847 break; 2848 2849 SDValue N0 = Op.getOperand(0); 2850 Known = computeKnownBits(N0, Depth + 1); 2851 if (N0.getValueSizeInBits() != BitWidth) 2852 Known = Known.trunc(BitWidth); 2853 2854 break; 2855 } 2856 case ISD::BITCAST: { 2857 SDValue N0 = Op.getOperand(0); 2858 EVT SubVT = N0.getValueType(); 2859 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2860 2861 // Ignore bitcasts from unsupported types. 2862 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2863 break; 2864 2865 // Fast handling of 'identity' bitcasts. 2866 if (BitWidth == SubBitWidth) { 2867 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2868 break; 2869 } 2870 2871 bool IsLE = getDataLayout().isLittleEndian(); 2872 2873 // Bitcast 'small element' vector to 'large element' scalar/vector. 2874 if ((BitWidth % SubBitWidth) == 0) { 2875 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2876 2877 // Collect known bits for the (larger) output by collecting the known 2878 // bits from each set of sub elements and shift these into place. 2879 // We need to separately call computeKnownBits for each set of 2880 // sub elements as the knownbits for each is likely to be different. 2881 unsigned SubScale = BitWidth / SubBitWidth; 2882 APInt SubDemandedElts(NumElts * SubScale, 0); 2883 for (unsigned i = 0; i != NumElts; ++i) 2884 if (DemandedElts[i]) 2885 SubDemandedElts.setBit(i * SubScale); 2886 2887 for (unsigned i = 0; i != SubScale; ++i) { 2888 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2889 Depth + 1); 2890 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2891 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2892 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2893 } 2894 } 2895 2896 // Bitcast 'large element' scalar/vector to 'small element' vector. 2897 if ((SubBitWidth % BitWidth) == 0) { 2898 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2899 2900 // Collect known bits for the (smaller) output by collecting the known 2901 // bits from the overlapping larger input elements and extracting the 2902 // sub sections we actually care about. 2903 unsigned SubScale = SubBitWidth / BitWidth; 2904 APInt SubDemandedElts(NumElts / SubScale, 0); 2905 for (unsigned i = 0; i != NumElts; ++i) 2906 if (DemandedElts[i]) 2907 SubDemandedElts.setBit(i / SubScale); 2908 2909 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2910 2911 Known.Zero.setAllBits(); Known.One.setAllBits(); 2912 for (unsigned i = 0; i != NumElts; ++i) 2913 if (DemandedElts[i]) { 2914 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2915 unsigned Offset = (Shifts % SubScale) * BitWidth; 2916 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2917 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2918 // If we don't know any bits, early out. 2919 if (Known.isUnknown()) 2920 break; 2921 } 2922 } 2923 break; 2924 } 2925 case ISD::AND: 2926 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2927 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2928 2929 Known &= Known2; 2930 break; 2931 case ISD::OR: 2932 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2933 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2934 2935 Known |= Known2; 2936 break; 2937 case ISD::XOR: 2938 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2939 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2940 2941 Known ^= Known2; 2942 break; 2943 case ISD::MUL: { 2944 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2945 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2946 Known = KnownBits::computeForMul(Known, Known2); 2947 break; 2948 } 2949 case ISD::UDIV: { 2950 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2951 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2952 Known = KnownBits::udiv(Known, Known2); 2953 break; 2954 } 2955 case ISD::SELECT: 2956 case ISD::VSELECT: 2957 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2958 // If we don't know any bits, early out. 2959 if (Known.isUnknown()) 2960 break; 2961 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2962 2963 // Only known if known in both the LHS and RHS. 2964 Known = KnownBits::commonBits(Known, Known2); 2965 break; 2966 case ISD::SELECT_CC: 2967 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2968 // If we don't know any bits, early out. 2969 if (Known.isUnknown()) 2970 break; 2971 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2972 2973 // Only known if known in both the LHS and RHS. 2974 Known = KnownBits::commonBits(Known, Known2); 2975 break; 2976 case ISD::SMULO: 2977 case ISD::UMULO: 2978 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2979 if (Op.getResNo() != 1) 2980 break; 2981 // The boolean result conforms to getBooleanContents. 2982 // If we know the result of a setcc has the top bits zero, use this info. 2983 // We know that we have an integer-based boolean since these operations 2984 // are only available for integer. 2985 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2986 TargetLowering::ZeroOrOneBooleanContent && 2987 BitWidth > 1) 2988 Known.Zero.setBitsFrom(1); 2989 break; 2990 case ISD::SETCC: 2991 case ISD::STRICT_FSETCC: 2992 case ISD::STRICT_FSETCCS: { 2993 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2994 // If we know the result of a setcc has the top bits zero, use this info. 2995 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2996 TargetLowering::ZeroOrOneBooleanContent && 2997 BitWidth > 1) 2998 Known.Zero.setBitsFrom(1); 2999 break; 3000 } 3001 case ISD::SHL: 3002 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3003 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3004 Known = KnownBits::shl(Known, Known2); 3005 3006 // Minimum shift low bits are known zero. 3007 if (const APInt *ShMinAmt = 3008 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3009 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3010 break; 3011 case ISD::SRL: 3012 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3013 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3014 Known = KnownBits::lshr(Known, Known2); 3015 3016 // Minimum shift high bits are known zero. 3017 if (const APInt *ShMinAmt = 3018 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3019 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3020 break; 3021 case ISD::SRA: 3022 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3023 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3024 Known = KnownBits::ashr(Known, Known2); 3025 // TODO: Add minimum shift high known sign bits. 3026 break; 3027 case ISD::FSHL: 3028 case ISD::FSHR: 3029 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3030 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3031 3032 // For fshl, 0-shift returns the 1st arg. 3033 // For fshr, 0-shift returns the 2nd arg. 3034 if (Amt == 0) { 3035 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3036 DemandedElts, Depth + 1); 3037 break; 3038 } 3039 3040 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3041 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3042 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3043 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3044 if (Opcode == ISD::FSHL) { 3045 Known.One <<= Amt; 3046 Known.Zero <<= Amt; 3047 Known2.One.lshrInPlace(BitWidth - Amt); 3048 Known2.Zero.lshrInPlace(BitWidth - Amt); 3049 } else { 3050 Known.One <<= BitWidth - Amt; 3051 Known.Zero <<= BitWidth - Amt; 3052 Known2.One.lshrInPlace(Amt); 3053 Known2.Zero.lshrInPlace(Amt); 3054 } 3055 Known.One |= Known2.One; 3056 Known.Zero |= Known2.Zero; 3057 } 3058 break; 3059 case ISD::SIGN_EXTEND_INREG: { 3060 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3061 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3062 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3063 break; 3064 } 3065 case ISD::CTTZ: 3066 case ISD::CTTZ_ZERO_UNDEF: { 3067 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3068 // If we have a known 1, its position is our upper bound. 3069 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3070 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3071 Known.Zero.setBitsFrom(LowBits); 3072 break; 3073 } 3074 case ISD::CTLZ: 3075 case ISD::CTLZ_ZERO_UNDEF: { 3076 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3077 // If we have a known 1, its position is our upper bound. 3078 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3079 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3080 Known.Zero.setBitsFrom(LowBits); 3081 break; 3082 } 3083 case ISD::CTPOP: { 3084 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3085 // If we know some of the bits are zero, they can't be one. 3086 unsigned PossibleOnes = Known2.countMaxPopulation(); 3087 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3088 break; 3089 } 3090 case ISD::PARITY: { 3091 // Parity returns 0 everywhere but the LSB. 3092 Known.Zero.setBitsFrom(1); 3093 break; 3094 } 3095 case ISD::LOAD: { 3096 LoadSDNode *LD = cast<LoadSDNode>(Op); 3097 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3098 if (ISD::isNON_EXTLoad(LD) && Cst) { 3099 // Determine any common known bits from the loaded constant pool value. 3100 Type *CstTy = Cst->getType(); 3101 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3102 // If its a vector splat, then we can (quickly) reuse the scalar path. 3103 // NOTE: We assume all elements match and none are UNDEF. 3104 if (CstTy->isVectorTy()) { 3105 if (const Constant *Splat = Cst->getSplatValue()) { 3106 Cst = Splat; 3107 CstTy = Cst->getType(); 3108 } 3109 } 3110 // TODO - do we need to handle different bitwidths? 3111 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3112 // Iterate across all vector elements finding common known bits. 3113 Known.One.setAllBits(); 3114 Known.Zero.setAllBits(); 3115 for (unsigned i = 0; i != NumElts; ++i) { 3116 if (!DemandedElts[i]) 3117 continue; 3118 if (Constant *Elt = Cst->getAggregateElement(i)) { 3119 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3120 const APInt &Value = CInt->getValue(); 3121 Known.One &= Value; 3122 Known.Zero &= ~Value; 3123 continue; 3124 } 3125 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3126 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3127 Known.One &= Value; 3128 Known.Zero &= ~Value; 3129 continue; 3130 } 3131 } 3132 Known.One.clearAllBits(); 3133 Known.Zero.clearAllBits(); 3134 break; 3135 } 3136 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3137 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3138 Known = KnownBits::makeConstant(CInt->getValue()); 3139 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3140 Known = 3141 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3142 } 3143 } 3144 } 3145 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3146 // If this is a ZEXTLoad and we are looking at the loaded value. 3147 EVT VT = LD->getMemoryVT(); 3148 unsigned MemBits = VT.getScalarSizeInBits(); 3149 Known.Zero.setBitsFrom(MemBits); 3150 } else if (const MDNode *Ranges = LD->getRanges()) { 3151 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3152 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3153 } 3154 break; 3155 } 3156 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3157 EVT InVT = Op.getOperand(0).getValueType(); 3158 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3159 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3160 Known = Known.zext(BitWidth); 3161 break; 3162 } 3163 case ISD::ZERO_EXTEND: { 3164 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3165 Known = Known.zext(BitWidth); 3166 break; 3167 } 3168 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3169 EVT InVT = Op.getOperand(0).getValueType(); 3170 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3171 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3172 // If the sign bit is known to be zero or one, then sext will extend 3173 // it to the top bits, else it will just zext. 3174 Known = Known.sext(BitWidth); 3175 break; 3176 } 3177 case ISD::SIGN_EXTEND: { 3178 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3179 // If the sign bit is known to be zero or one, then sext will extend 3180 // it to the top bits, else it will just zext. 3181 Known = Known.sext(BitWidth); 3182 break; 3183 } 3184 case ISD::ANY_EXTEND_VECTOR_INREG: { 3185 EVT InVT = Op.getOperand(0).getValueType(); 3186 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3187 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3188 Known = Known.anyext(BitWidth); 3189 break; 3190 } 3191 case ISD::ANY_EXTEND: { 3192 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3193 Known = Known.anyext(BitWidth); 3194 break; 3195 } 3196 case ISD::TRUNCATE: { 3197 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3198 Known = Known.trunc(BitWidth); 3199 break; 3200 } 3201 case ISD::AssertZext: { 3202 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3203 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3204 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3205 Known.Zero |= (~InMask); 3206 Known.One &= (~Known.Zero); 3207 break; 3208 } 3209 case ISD::AssertAlign: { 3210 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3211 assert(LogOfAlign != 0); 3212 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3213 // well as clearing one bits. 3214 Known.Zero.setLowBits(LogOfAlign); 3215 Known.One.clearLowBits(LogOfAlign); 3216 break; 3217 } 3218 case ISD::FGETSIGN: 3219 // All bits are zero except the low bit. 3220 Known.Zero.setBitsFrom(1); 3221 break; 3222 case ISD::USUBO: 3223 case ISD::SSUBO: 3224 if (Op.getResNo() == 1) { 3225 // If we know the result of a setcc has the top bits zero, use this info. 3226 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3227 TargetLowering::ZeroOrOneBooleanContent && 3228 BitWidth > 1) 3229 Known.Zero.setBitsFrom(1); 3230 break; 3231 } 3232 LLVM_FALLTHROUGH; 3233 case ISD::SUB: 3234 case ISD::SUBC: { 3235 assert(Op.getResNo() == 0 && 3236 "We only compute knownbits for the difference here."); 3237 3238 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3239 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3240 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3241 Known, Known2); 3242 break; 3243 } 3244 case ISD::UADDO: 3245 case ISD::SADDO: 3246 case ISD::ADDCARRY: 3247 if (Op.getResNo() == 1) { 3248 // If we know the result of a setcc has the top bits zero, use this info. 3249 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3250 TargetLowering::ZeroOrOneBooleanContent && 3251 BitWidth > 1) 3252 Known.Zero.setBitsFrom(1); 3253 break; 3254 } 3255 LLVM_FALLTHROUGH; 3256 case ISD::ADD: 3257 case ISD::ADDC: 3258 case ISD::ADDE: { 3259 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3260 3261 // With ADDE and ADDCARRY, a carry bit may be added in. 3262 KnownBits Carry(1); 3263 if (Opcode == ISD::ADDE) 3264 // Can't track carry from glue, set carry to unknown. 3265 Carry.resetAll(); 3266 else if (Opcode == ISD::ADDCARRY) 3267 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3268 // the trouble (how often will we find a known carry bit). And I haven't 3269 // tested this very much yet, but something like this might work: 3270 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3271 // Carry = Carry.zextOrTrunc(1, false); 3272 Carry.resetAll(); 3273 else 3274 Carry.setAllZero(); 3275 3276 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3277 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3278 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3279 break; 3280 } 3281 case ISD::SREM: { 3282 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3283 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3284 Known = KnownBits::srem(Known, Known2); 3285 break; 3286 } 3287 case ISD::UREM: { 3288 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3289 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3290 Known = KnownBits::urem(Known, Known2); 3291 break; 3292 } 3293 case ISD::EXTRACT_ELEMENT: { 3294 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3295 const unsigned Index = Op.getConstantOperandVal(1); 3296 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3297 3298 // Remove low part of known bits mask 3299 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3300 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3301 3302 // Remove high part of known bit mask 3303 Known = Known.trunc(EltBitWidth); 3304 break; 3305 } 3306 case ISD::EXTRACT_VECTOR_ELT: { 3307 SDValue InVec = Op.getOperand(0); 3308 SDValue EltNo = Op.getOperand(1); 3309 EVT VecVT = InVec.getValueType(); 3310 // computeKnownBits not yet implemented for scalable vectors. 3311 if (VecVT.isScalableVector()) 3312 break; 3313 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3314 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3315 3316 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3317 // anything about the extended bits. 3318 if (BitWidth > EltBitWidth) 3319 Known = Known.trunc(EltBitWidth); 3320 3321 // If we know the element index, just demand that vector element, else for 3322 // an unknown element index, ignore DemandedElts and demand them all. 3323 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3324 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3325 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3326 DemandedSrcElts = 3327 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3328 3329 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3330 if (BitWidth > EltBitWidth) 3331 Known = Known.anyext(BitWidth); 3332 break; 3333 } 3334 case ISD::INSERT_VECTOR_ELT: { 3335 // If we know the element index, split the demand between the 3336 // source vector and the inserted element, otherwise assume we need 3337 // the original demanded vector elements and the value. 3338 SDValue InVec = Op.getOperand(0); 3339 SDValue InVal = Op.getOperand(1); 3340 SDValue EltNo = Op.getOperand(2); 3341 bool DemandedVal = true; 3342 APInt DemandedVecElts = DemandedElts; 3343 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3344 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3345 unsigned EltIdx = CEltNo->getZExtValue(); 3346 DemandedVal = !!DemandedElts[EltIdx]; 3347 DemandedVecElts.clearBit(EltIdx); 3348 } 3349 Known.One.setAllBits(); 3350 Known.Zero.setAllBits(); 3351 if (DemandedVal) { 3352 Known2 = computeKnownBits(InVal, Depth + 1); 3353 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3354 } 3355 if (!!DemandedVecElts) { 3356 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3357 Known = KnownBits::commonBits(Known, Known2); 3358 } 3359 break; 3360 } 3361 case ISD::BITREVERSE: { 3362 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3363 Known = Known2.reverseBits(); 3364 break; 3365 } 3366 case ISD::BSWAP: { 3367 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3368 Known = Known2.byteSwap(); 3369 break; 3370 } 3371 case ISD::ABS: { 3372 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3373 Known = Known2.abs(); 3374 break; 3375 } 3376 case ISD::UMIN: { 3377 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3378 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3379 Known = KnownBits::umin(Known, Known2); 3380 break; 3381 } 3382 case ISD::UMAX: { 3383 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3384 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3385 Known = KnownBits::umax(Known, Known2); 3386 break; 3387 } 3388 case ISD::SMIN: 3389 case ISD::SMAX: { 3390 // If we have a clamp pattern, we know that the number of sign bits will be 3391 // the minimum of the clamp min/max range. 3392 bool IsMax = (Opcode == ISD::SMAX); 3393 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3394 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3395 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3396 CstHigh = 3397 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3398 if (CstLow && CstHigh) { 3399 if (!IsMax) 3400 std::swap(CstLow, CstHigh); 3401 3402 const APInt &ValueLow = CstLow->getAPIntValue(); 3403 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3404 if (ValueLow.sle(ValueHigh)) { 3405 unsigned LowSignBits = ValueLow.getNumSignBits(); 3406 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3407 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3408 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3409 Known.One.setHighBits(MinSignBits); 3410 break; 3411 } 3412 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3413 Known.Zero.setHighBits(MinSignBits); 3414 break; 3415 } 3416 } 3417 } 3418 3419 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3420 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3421 if (IsMax) 3422 Known = KnownBits::smax(Known, Known2); 3423 else 3424 Known = KnownBits::smin(Known, Known2); 3425 break; 3426 } 3427 case ISD::FrameIndex: 3428 case ISD::TargetFrameIndex: 3429 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3430 Known, getMachineFunction()); 3431 break; 3432 3433 default: 3434 if (Opcode < ISD::BUILTIN_OP_END) 3435 break; 3436 LLVM_FALLTHROUGH; 3437 case ISD::INTRINSIC_WO_CHAIN: 3438 case ISD::INTRINSIC_W_CHAIN: 3439 case ISD::INTRINSIC_VOID: 3440 // Allow the target to implement this method for its nodes. 3441 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3442 break; 3443 } 3444 3445 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3446 return Known; 3447 } 3448 3449 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3450 SDValue N1) const { 3451 // X + 0 never overflow 3452 if (isNullConstant(N1)) 3453 return OFK_Never; 3454 3455 KnownBits N1Known = computeKnownBits(N1); 3456 if (N1Known.Zero.getBoolValue()) { 3457 KnownBits N0Known = computeKnownBits(N0); 3458 3459 bool overflow; 3460 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3461 if (!overflow) 3462 return OFK_Never; 3463 } 3464 3465 // mulhi + 1 never overflow 3466 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3467 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3468 return OFK_Never; 3469 3470 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3471 KnownBits N0Known = computeKnownBits(N0); 3472 3473 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3474 return OFK_Never; 3475 } 3476 3477 return OFK_Sometime; 3478 } 3479 3480 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3481 EVT OpVT = Val.getValueType(); 3482 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3483 3484 // Is the constant a known power of 2? 3485 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3486 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3487 3488 // A left-shift of a constant one will have exactly one bit set because 3489 // shifting the bit off the end is undefined. 3490 if (Val.getOpcode() == ISD::SHL) { 3491 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3492 if (C && C->getAPIntValue() == 1) 3493 return true; 3494 } 3495 3496 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3497 // one bit set. 3498 if (Val.getOpcode() == ISD::SRL) { 3499 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3500 if (C && C->getAPIntValue().isSignMask()) 3501 return true; 3502 } 3503 3504 // Are all operands of a build vector constant powers of two? 3505 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3506 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3507 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3508 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3509 return false; 3510 })) 3511 return true; 3512 3513 // More could be done here, though the above checks are enough 3514 // to handle some common cases. 3515 3516 // Fall back to computeKnownBits to catch other known cases. 3517 KnownBits Known = computeKnownBits(Val); 3518 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3519 } 3520 3521 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3522 EVT VT = Op.getValueType(); 3523 3524 // TODO: Assume we don't know anything for now. 3525 if (VT.isScalableVector()) 3526 return 1; 3527 3528 APInt DemandedElts = VT.isVector() 3529 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3530 : APInt(1, 1); 3531 return ComputeNumSignBits(Op, DemandedElts, Depth); 3532 } 3533 3534 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3535 unsigned Depth) const { 3536 EVT VT = Op.getValueType(); 3537 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3538 unsigned VTBits = VT.getScalarSizeInBits(); 3539 unsigned NumElts = DemandedElts.getBitWidth(); 3540 unsigned Tmp, Tmp2; 3541 unsigned FirstAnswer = 1; 3542 3543 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3544 const APInt &Val = C->getAPIntValue(); 3545 return Val.getNumSignBits(); 3546 } 3547 3548 if (Depth >= MaxRecursionDepth) 3549 return 1; // Limit search depth. 3550 3551 if (!DemandedElts || VT.isScalableVector()) 3552 return 1; // No demanded elts, better to assume we don't know anything. 3553 3554 unsigned Opcode = Op.getOpcode(); 3555 switch (Opcode) { 3556 default: break; 3557 case ISD::AssertSext: 3558 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3559 return VTBits-Tmp+1; 3560 case ISD::AssertZext: 3561 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3562 return VTBits-Tmp; 3563 3564 case ISD::BUILD_VECTOR: 3565 Tmp = VTBits; 3566 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3567 if (!DemandedElts[i]) 3568 continue; 3569 3570 SDValue SrcOp = Op.getOperand(i); 3571 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3572 3573 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3574 if (SrcOp.getValueSizeInBits() != VTBits) { 3575 assert(SrcOp.getValueSizeInBits() > VTBits && 3576 "Expected BUILD_VECTOR implicit truncation"); 3577 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3578 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3579 } 3580 Tmp = std::min(Tmp, Tmp2); 3581 } 3582 return Tmp; 3583 3584 case ISD::VECTOR_SHUFFLE: { 3585 // Collect the minimum number of sign bits that are shared by every vector 3586 // element referenced by the shuffle. 3587 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3588 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3589 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3590 for (unsigned i = 0; i != NumElts; ++i) { 3591 int M = SVN->getMaskElt(i); 3592 if (!DemandedElts[i]) 3593 continue; 3594 // For UNDEF elements, we don't know anything about the common state of 3595 // the shuffle result. 3596 if (M < 0) 3597 return 1; 3598 if ((unsigned)M < NumElts) 3599 DemandedLHS.setBit((unsigned)M % NumElts); 3600 else 3601 DemandedRHS.setBit((unsigned)M % NumElts); 3602 } 3603 Tmp = std::numeric_limits<unsigned>::max(); 3604 if (!!DemandedLHS) 3605 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3606 if (!!DemandedRHS) { 3607 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3608 Tmp = std::min(Tmp, Tmp2); 3609 } 3610 // If we don't know anything, early out and try computeKnownBits fall-back. 3611 if (Tmp == 1) 3612 break; 3613 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3614 return Tmp; 3615 } 3616 3617 case ISD::BITCAST: { 3618 SDValue N0 = Op.getOperand(0); 3619 EVT SrcVT = N0.getValueType(); 3620 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3621 3622 // Ignore bitcasts from unsupported types.. 3623 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3624 break; 3625 3626 // Fast handling of 'identity' bitcasts. 3627 if (VTBits == SrcBits) 3628 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3629 3630 bool IsLE = getDataLayout().isLittleEndian(); 3631 3632 // Bitcast 'large element' scalar/vector to 'small element' vector. 3633 if ((SrcBits % VTBits) == 0) { 3634 assert(VT.isVector() && "Expected bitcast to vector"); 3635 3636 unsigned Scale = SrcBits / VTBits; 3637 APInt SrcDemandedElts(NumElts / Scale, 0); 3638 for (unsigned i = 0; i != NumElts; ++i) 3639 if (DemandedElts[i]) 3640 SrcDemandedElts.setBit(i / Scale); 3641 3642 // Fast case - sign splat can be simply split across the small elements. 3643 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3644 if (Tmp == SrcBits) 3645 return VTBits; 3646 3647 // Slow case - determine how far the sign extends into each sub-element. 3648 Tmp2 = VTBits; 3649 for (unsigned i = 0; i != NumElts; ++i) 3650 if (DemandedElts[i]) { 3651 unsigned SubOffset = i % Scale; 3652 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3653 SubOffset = SubOffset * VTBits; 3654 if (Tmp <= SubOffset) 3655 return 1; 3656 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3657 } 3658 return Tmp2; 3659 } 3660 break; 3661 } 3662 3663 case ISD::SIGN_EXTEND: 3664 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3665 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3666 case ISD::SIGN_EXTEND_INREG: 3667 // Max of the input and what this extends. 3668 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3669 Tmp = VTBits-Tmp+1; 3670 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3671 return std::max(Tmp, Tmp2); 3672 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3673 SDValue Src = Op.getOperand(0); 3674 EVT SrcVT = Src.getValueType(); 3675 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3676 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3677 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3678 } 3679 case ISD::SRA: 3680 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3681 // SRA X, C -> adds C sign bits. 3682 if (const APInt *ShAmt = 3683 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3684 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3685 return Tmp; 3686 case ISD::SHL: 3687 if (const APInt *ShAmt = 3688 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3689 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3690 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3691 if (ShAmt->ult(Tmp)) 3692 return Tmp - ShAmt->getZExtValue(); 3693 } 3694 break; 3695 case ISD::AND: 3696 case ISD::OR: 3697 case ISD::XOR: // NOT is handled here. 3698 // Logical binary ops preserve the number of sign bits at the worst. 3699 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3700 if (Tmp != 1) { 3701 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3702 FirstAnswer = std::min(Tmp, Tmp2); 3703 // We computed what we know about the sign bits as our first 3704 // answer. Now proceed to the generic code that uses 3705 // computeKnownBits, and pick whichever answer is better. 3706 } 3707 break; 3708 3709 case ISD::SELECT: 3710 case ISD::VSELECT: 3711 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3712 if (Tmp == 1) return 1; // Early out. 3713 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3714 return std::min(Tmp, Tmp2); 3715 case ISD::SELECT_CC: 3716 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3717 if (Tmp == 1) return 1; // Early out. 3718 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3719 return std::min(Tmp, Tmp2); 3720 3721 case ISD::SMIN: 3722 case ISD::SMAX: { 3723 // If we have a clamp pattern, we know that the number of sign bits will be 3724 // the minimum of the clamp min/max range. 3725 bool IsMax = (Opcode == ISD::SMAX); 3726 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3727 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3728 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3729 CstHigh = 3730 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3731 if (CstLow && CstHigh) { 3732 if (!IsMax) 3733 std::swap(CstLow, CstHigh); 3734 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3735 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3736 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3737 return std::min(Tmp, Tmp2); 3738 } 3739 } 3740 3741 // Fallback - just get the minimum number of sign bits of the operands. 3742 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3743 if (Tmp == 1) 3744 return 1; // Early out. 3745 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3746 return std::min(Tmp, Tmp2); 3747 } 3748 case ISD::UMIN: 3749 case ISD::UMAX: 3750 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3751 if (Tmp == 1) 3752 return 1; // Early out. 3753 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3754 return std::min(Tmp, Tmp2); 3755 case ISD::SADDO: 3756 case ISD::UADDO: 3757 case ISD::SSUBO: 3758 case ISD::USUBO: 3759 case ISD::SMULO: 3760 case ISD::UMULO: 3761 if (Op.getResNo() != 1) 3762 break; 3763 // The boolean result conforms to getBooleanContents. Fall through. 3764 // If setcc returns 0/-1, all bits are sign bits. 3765 // We know that we have an integer-based boolean since these operations 3766 // are only available for integer. 3767 if (TLI->getBooleanContents(VT.isVector(), false) == 3768 TargetLowering::ZeroOrNegativeOneBooleanContent) 3769 return VTBits; 3770 break; 3771 case ISD::SETCC: 3772 case ISD::STRICT_FSETCC: 3773 case ISD::STRICT_FSETCCS: { 3774 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3775 // If setcc returns 0/-1, all bits are sign bits. 3776 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3777 TargetLowering::ZeroOrNegativeOneBooleanContent) 3778 return VTBits; 3779 break; 3780 } 3781 case ISD::ROTL: 3782 case ISD::ROTR: 3783 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3784 3785 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3786 if (Tmp == VTBits) 3787 return VTBits; 3788 3789 if (ConstantSDNode *C = 3790 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3791 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3792 3793 // Handle rotate right by N like a rotate left by 32-N. 3794 if (Opcode == ISD::ROTR) 3795 RotAmt = (VTBits - RotAmt) % VTBits; 3796 3797 // If we aren't rotating out all of the known-in sign bits, return the 3798 // number that are left. This handles rotl(sext(x), 1) for example. 3799 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3800 } 3801 break; 3802 case ISD::ADD: 3803 case ISD::ADDC: 3804 // Add can have at most one carry bit. Thus we know that the output 3805 // is, at worst, one more bit than the inputs. 3806 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3807 if (Tmp == 1) return 1; // Early out. 3808 3809 // Special case decrementing a value (ADD X, -1): 3810 if (ConstantSDNode *CRHS = 3811 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3812 if (CRHS->isAllOnesValue()) { 3813 KnownBits Known = 3814 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3815 3816 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3817 // sign bits set. 3818 if ((Known.Zero | 1).isAllOnesValue()) 3819 return VTBits; 3820 3821 // If we are subtracting one from a positive number, there is no carry 3822 // out of the result. 3823 if (Known.isNonNegative()) 3824 return Tmp; 3825 } 3826 3827 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3828 if (Tmp2 == 1) return 1; // Early out. 3829 return std::min(Tmp, Tmp2) - 1; 3830 case ISD::SUB: 3831 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3832 if (Tmp2 == 1) return 1; // Early out. 3833 3834 // Handle NEG. 3835 if (ConstantSDNode *CLHS = 3836 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3837 if (CLHS->isNullValue()) { 3838 KnownBits Known = 3839 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3840 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3841 // sign bits set. 3842 if ((Known.Zero | 1).isAllOnesValue()) 3843 return VTBits; 3844 3845 // If the input is known to be positive (the sign bit is known clear), 3846 // the output of the NEG has the same number of sign bits as the input. 3847 if (Known.isNonNegative()) 3848 return Tmp2; 3849 3850 // Otherwise, we treat this like a SUB. 3851 } 3852 3853 // Sub can have at most one carry bit. Thus we know that the output 3854 // is, at worst, one more bit than the inputs. 3855 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3856 if (Tmp == 1) return 1; // Early out. 3857 return std::min(Tmp, Tmp2) - 1; 3858 case ISD::MUL: { 3859 // The output of the Mul can be at most twice the valid bits in the inputs. 3860 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3861 if (SignBitsOp0 == 1) 3862 break; 3863 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3864 if (SignBitsOp1 == 1) 3865 break; 3866 unsigned OutValidBits = 3867 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3868 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3869 } 3870 case ISD::TRUNCATE: { 3871 // Check if the sign bits of source go down as far as the truncated value. 3872 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3873 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3874 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3875 return NumSrcSignBits - (NumSrcBits - VTBits); 3876 break; 3877 } 3878 case ISD::EXTRACT_ELEMENT: { 3879 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3880 const int BitWidth = Op.getValueSizeInBits(); 3881 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3882 3883 // Get reverse index (starting from 1), Op1 value indexes elements from 3884 // little end. Sign starts at big end. 3885 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3886 3887 // If the sign portion ends in our element the subtraction gives correct 3888 // result. Otherwise it gives either negative or > bitwidth result 3889 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3890 } 3891 case ISD::INSERT_VECTOR_ELT: { 3892 // If we know the element index, split the demand between the 3893 // source vector and the inserted element, otherwise assume we need 3894 // the original demanded vector elements and the value. 3895 SDValue InVec = Op.getOperand(0); 3896 SDValue InVal = Op.getOperand(1); 3897 SDValue EltNo = Op.getOperand(2); 3898 bool DemandedVal = true; 3899 APInt DemandedVecElts = DemandedElts; 3900 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3901 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3902 unsigned EltIdx = CEltNo->getZExtValue(); 3903 DemandedVal = !!DemandedElts[EltIdx]; 3904 DemandedVecElts.clearBit(EltIdx); 3905 } 3906 Tmp = std::numeric_limits<unsigned>::max(); 3907 if (DemandedVal) { 3908 // TODO - handle implicit truncation of inserted elements. 3909 if (InVal.getScalarValueSizeInBits() != VTBits) 3910 break; 3911 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3912 Tmp = std::min(Tmp, Tmp2); 3913 } 3914 if (!!DemandedVecElts) { 3915 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3916 Tmp = std::min(Tmp, Tmp2); 3917 } 3918 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3919 return Tmp; 3920 } 3921 case ISD::EXTRACT_VECTOR_ELT: { 3922 SDValue InVec = Op.getOperand(0); 3923 SDValue EltNo = Op.getOperand(1); 3924 EVT VecVT = InVec.getValueType(); 3925 // ComputeNumSignBits not yet implemented for scalable vectors. 3926 if (VecVT.isScalableVector()) 3927 break; 3928 const unsigned BitWidth = Op.getValueSizeInBits(); 3929 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3930 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3931 3932 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3933 // anything about sign bits. But if the sizes match we can derive knowledge 3934 // about sign bits from the vector operand. 3935 if (BitWidth != EltBitWidth) 3936 break; 3937 3938 // If we know the element index, just demand that vector element, else for 3939 // an unknown element index, ignore DemandedElts and demand them all. 3940 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3941 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3942 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3943 DemandedSrcElts = 3944 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3945 3946 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3947 } 3948 case ISD::EXTRACT_SUBVECTOR: { 3949 // Offset the demanded elts by the subvector index. 3950 SDValue Src = Op.getOperand(0); 3951 // Bail until we can represent demanded elements for scalable vectors. 3952 if (Src.getValueType().isScalableVector()) 3953 break; 3954 uint64_t Idx = Op.getConstantOperandVal(1); 3955 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3956 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3957 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3958 } 3959 case ISD::CONCAT_VECTORS: { 3960 // Determine the minimum number of sign bits across all demanded 3961 // elts of the input vectors. Early out if the result is already 1. 3962 Tmp = std::numeric_limits<unsigned>::max(); 3963 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3964 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3965 unsigned NumSubVectors = Op.getNumOperands(); 3966 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3967 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3968 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3969 if (!DemandedSub) 3970 continue; 3971 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3972 Tmp = std::min(Tmp, Tmp2); 3973 } 3974 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3975 return Tmp; 3976 } 3977 case ISD::INSERT_SUBVECTOR: { 3978 // Demand any elements from the subvector and the remainder from the src its 3979 // inserted into. 3980 SDValue Src = Op.getOperand(0); 3981 SDValue Sub = Op.getOperand(1); 3982 uint64_t Idx = Op.getConstantOperandVal(2); 3983 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3984 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3985 APInt DemandedSrcElts = DemandedElts; 3986 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3987 3988 Tmp = std::numeric_limits<unsigned>::max(); 3989 if (!!DemandedSubElts) { 3990 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3991 if (Tmp == 1) 3992 return 1; // early-out 3993 } 3994 if (!!DemandedSrcElts) { 3995 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3996 Tmp = std::min(Tmp, Tmp2); 3997 } 3998 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3999 return Tmp; 4000 } 4001 } 4002 4003 // If we are looking at the loaded value of the SDNode. 4004 if (Op.getResNo() == 0) { 4005 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4006 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4007 unsigned ExtType = LD->getExtensionType(); 4008 switch (ExtType) { 4009 default: break; 4010 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4011 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4012 return VTBits - Tmp + 1; 4013 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4014 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4015 return VTBits - Tmp; 4016 case ISD::NON_EXTLOAD: 4017 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4018 // We only need to handle vectors - computeKnownBits should handle 4019 // scalar cases. 4020 Type *CstTy = Cst->getType(); 4021 if (CstTy->isVectorTy() && 4022 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4023 Tmp = VTBits; 4024 for (unsigned i = 0; i != NumElts; ++i) { 4025 if (!DemandedElts[i]) 4026 continue; 4027 if (Constant *Elt = Cst->getAggregateElement(i)) { 4028 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4029 const APInt &Value = CInt->getValue(); 4030 Tmp = std::min(Tmp, Value.getNumSignBits()); 4031 continue; 4032 } 4033 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4034 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4035 Tmp = std::min(Tmp, Value.getNumSignBits()); 4036 continue; 4037 } 4038 } 4039 // Unknown type. Conservatively assume no bits match sign bit. 4040 return 1; 4041 } 4042 return Tmp; 4043 } 4044 } 4045 break; 4046 } 4047 } 4048 } 4049 4050 // Allow the target to implement this method for its nodes. 4051 if (Opcode >= ISD::BUILTIN_OP_END || 4052 Opcode == ISD::INTRINSIC_WO_CHAIN || 4053 Opcode == ISD::INTRINSIC_W_CHAIN || 4054 Opcode == ISD::INTRINSIC_VOID) { 4055 unsigned NumBits = 4056 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4057 if (NumBits > 1) 4058 FirstAnswer = std::max(FirstAnswer, NumBits); 4059 } 4060 4061 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4062 // use this information. 4063 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4064 4065 APInt Mask; 4066 if (Known.isNonNegative()) { // sign bit is 0 4067 Mask = Known.Zero; 4068 } else if (Known.isNegative()) { // sign bit is 1; 4069 Mask = Known.One; 4070 } else { 4071 // Nothing known. 4072 return FirstAnswer; 4073 } 4074 4075 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4076 // the number of identical bits in the top of the input value. 4077 Mask <<= Mask.getBitWidth()-VTBits; 4078 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4079 } 4080 4081 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4082 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4083 !isa<ConstantSDNode>(Op.getOperand(1))) 4084 return false; 4085 4086 if (Op.getOpcode() == ISD::OR && 4087 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4088 return false; 4089 4090 return true; 4091 } 4092 4093 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4094 // If we're told that NaNs won't happen, assume they won't. 4095 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4096 return true; 4097 4098 if (Depth >= MaxRecursionDepth) 4099 return false; // Limit search depth. 4100 4101 // TODO: Handle vectors. 4102 // If the value is a constant, we can obviously see if it is a NaN or not. 4103 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4104 return !C->getValueAPF().isNaN() || 4105 (SNaN && !C->getValueAPF().isSignaling()); 4106 } 4107 4108 unsigned Opcode = Op.getOpcode(); 4109 switch (Opcode) { 4110 case ISD::FADD: 4111 case ISD::FSUB: 4112 case ISD::FMUL: 4113 case ISD::FDIV: 4114 case ISD::FREM: 4115 case ISD::FSIN: 4116 case ISD::FCOS: { 4117 if (SNaN) 4118 return true; 4119 // TODO: Need isKnownNeverInfinity 4120 return false; 4121 } 4122 case ISD::FCANONICALIZE: 4123 case ISD::FEXP: 4124 case ISD::FEXP2: 4125 case ISD::FTRUNC: 4126 case ISD::FFLOOR: 4127 case ISD::FCEIL: 4128 case ISD::FROUND: 4129 case ISD::FROUNDEVEN: 4130 case ISD::FRINT: 4131 case ISD::FNEARBYINT: { 4132 if (SNaN) 4133 return true; 4134 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4135 } 4136 case ISD::FABS: 4137 case ISD::FNEG: 4138 case ISD::FCOPYSIGN: { 4139 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4140 } 4141 case ISD::SELECT: 4142 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4143 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4144 case ISD::FP_EXTEND: 4145 case ISD::FP_ROUND: { 4146 if (SNaN) 4147 return true; 4148 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4149 } 4150 case ISD::SINT_TO_FP: 4151 case ISD::UINT_TO_FP: 4152 return true; 4153 case ISD::FMA: 4154 case ISD::FMAD: { 4155 if (SNaN) 4156 return true; 4157 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4158 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4159 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4160 } 4161 case ISD::FSQRT: // Need is known positive 4162 case ISD::FLOG: 4163 case ISD::FLOG2: 4164 case ISD::FLOG10: 4165 case ISD::FPOWI: 4166 case ISD::FPOW: { 4167 if (SNaN) 4168 return true; 4169 // TODO: Refine on operand 4170 return false; 4171 } 4172 case ISD::FMINNUM: 4173 case ISD::FMAXNUM: { 4174 // Only one needs to be known not-nan, since it will be returned if the 4175 // other ends up being one. 4176 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4177 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4178 } 4179 case ISD::FMINNUM_IEEE: 4180 case ISD::FMAXNUM_IEEE: { 4181 if (SNaN) 4182 return true; 4183 // This can return a NaN if either operand is an sNaN, or if both operands 4184 // are NaN. 4185 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4186 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4187 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4188 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4189 } 4190 case ISD::FMINIMUM: 4191 case ISD::FMAXIMUM: { 4192 // TODO: Does this quiet or return the origina NaN as-is? 4193 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4194 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4195 } 4196 case ISD::EXTRACT_VECTOR_ELT: { 4197 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4198 } 4199 default: 4200 if (Opcode >= ISD::BUILTIN_OP_END || 4201 Opcode == ISD::INTRINSIC_WO_CHAIN || 4202 Opcode == ISD::INTRINSIC_W_CHAIN || 4203 Opcode == ISD::INTRINSIC_VOID) { 4204 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4205 } 4206 4207 return false; 4208 } 4209 } 4210 4211 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4212 assert(Op.getValueType().isFloatingPoint() && 4213 "Floating point type expected"); 4214 4215 // If the value is a constant, we can obviously see if it is a zero or not. 4216 // TODO: Add BuildVector support. 4217 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4218 return !C->isZero(); 4219 return false; 4220 } 4221 4222 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4223 assert(!Op.getValueType().isFloatingPoint() && 4224 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4225 4226 // If the value is a constant, we can obviously see if it is a zero or not. 4227 if (ISD::matchUnaryPredicate( 4228 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4229 return true; 4230 4231 // TODO: Recognize more cases here. 4232 switch (Op.getOpcode()) { 4233 default: break; 4234 case ISD::OR: 4235 if (isKnownNeverZero(Op.getOperand(1)) || 4236 isKnownNeverZero(Op.getOperand(0))) 4237 return true; 4238 break; 4239 } 4240 4241 return false; 4242 } 4243 4244 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4245 // Check the obvious case. 4246 if (A == B) return true; 4247 4248 // For for negative and positive zero. 4249 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4250 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4251 if (CA->isZero() && CB->isZero()) return true; 4252 4253 // Otherwise they may not be equal. 4254 return false; 4255 } 4256 4257 // FIXME: unify with llvm::haveNoCommonBitsSet. 4258 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4259 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4260 assert(A.getValueType() == B.getValueType() && 4261 "Values must have the same type"); 4262 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4263 } 4264 4265 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4266 ArrayRef<SDValue> Ops, 4267 SelectionDAG &DAG) { 4268 int NumOps = Ops.size(); 4269 assert(NumOps != 0 && "Can't build an empty vector!"); 4270 assert(!VT.isScalableVector() && 4271 "BUILD_VECTOR cannot be used with scalable types"); 4272 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4273 "Incorrect element count in BUILD_VECTOR!"); 4274 4275 // BUILD_VECTOR of UNDEFs is UNDEF. 4276 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4277 return DAG.getUNDEF(VT); 4278 4279 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4280 SDValue IdentitySrc; 4281 bool IsIdentity = true; 4282 for (int i = 0; i != NumOps; ++i) { 4283 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4284 Ops[i].getOperand(0).getValueType() != VT || 4285 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4286 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4287 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4288 IsIdentity = false; 4289 break; 4290 } 4291 IdentitySrc = Ops[i].getOperand(0); 4292 } 4293 if (IsIdentity) 4294 return IdentitySrc; 4295 4296 return SDValue(); 4297 } 4298 4299 /// Try to simplify vector concatenation to an input value, undef, or build 4300 /// vector. 4301 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4302 ArrayRef<SDValue> Ops, 4303 SelectionDAG &DAG) { 4304 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4305 assert(llvm::all_of(Ops, 4306 [Ops](SDValue Op) { 4307 return Ops[0].getValueType() == Op.getValueType(); 4308 }) && 4309 "Concatenation of vectors with inconsistent value types!"); 4310 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4311 VT.getVectorElementCount() && 4312 "Incorrect element count in vector concatenation!"); 4313 4314 if (Ops.size() == 1) 4315 return Ops[0]; 4316 4317 // Concat of UNDEFs is UNDEF. 4318 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4319 return DAG.getUNDEF(VT); 4320 4321 // Scan the operands and look for extract operations from a single source 4322 // that correspond to insertion at the same location via this concatenation: 4323 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4324 SDValue IdentitySrc; 4325 bool IsIdentity = true; 4326 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4327 SDValue Op = Ops[i]; 4328 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4329 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4330 Op.getOperand(0).getValueType() != VT || 4331 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4332 Op.getConstantOperandVal(1) != IdentityIndex) { 4333 IsIdentity = false; 4334 break; 4335 } 4336 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4337 "Unexpected identity source vector for concat of extracts"); 4338 IdentitySrc = Op.getOperand(0); 4339 } 4340 if (IsIdentity) { 4341 assert(IdentitySrc && "Failed to set source vector of extracts"); 4342 return IdentitySrc; 4343 } 4344 4345 // The code below this point is only designed to work for fixed width 4346 // vectors, so we bail out for now. 4347 if (VT.isScalableVector()) 4348 return SDValue(); 4349 4350 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4351 // simplified to one big BUILD_VECTOR. 4352 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4353 EVT SVT = VT.getScalarType(); 4354 SmallVector<SDValue, 16> Elts; 4355 for (SDValue Op : Ops) { 4356 EVT OpVT = Op.getValueType(); 4357 if (Op.isUndef()) 4358 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4359 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4360 Elts.append(Op->op_begin(), Op->op_end()); 4361 else 4362 return SDValue(); 4363 } 4364 4365 // BUILD_VECTOR requires all inputs to be of the same type, find the 4366 // maximum type and extend them all. 4367 for (SDValue Op : Elts) 4368 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4369 4370 if (SVT.bitsGT(VT.getScalarType())) { 4371 for (SDValue &Op : Elts) { 4372 if (Op.isUndef()) 4373 Op = DAG.getUNDEF(SVT); 4374 else 4375 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4376 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4377 : DAG.getSExtOrTrunc(Op, DL, SVT); 4378 } 4379 } 4380 4381 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4382 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4383 return V; 4384 } 4385 4386 /// Gets or creates the specified node. 4387 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4388 FoldingSetNodeID ID; 4389 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4390 void *IP = nullptr; 4391 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4392 return SDValue(E, 0); 4393 4394 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4395 getVTList(VT)); 4396 CSEMap.InsertNode(N, IP); 4397 4398 InsertNode(N); 4399 SDValue V = SDValue(N, 0); 4400 NewSDValueDbgMsg(V, "Creating new node: ", this); 4401 return V; 4402 } 4403 4404 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4405 SDValue Operand) { 4406 SDNodeFlags Flags; 4407 if (Inserter) 4408 Flags = Inserter->getFlags(); 4409 return getNode(Opcode, DL, VT, Operand, Flags); 4410 } 4411 4412 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4413 SDValue Operand, const SDNodeFlags Flags) { 4414 // Constant fold unary operations with an integer constant operand. Even 4415 // opaque constant will be folded, because the folding of unary operations 4416 // doesn't create new constants with different values. Nevertheless, the 4417 // opaque flag is preserved during folding to prevent future folding with 4418 // other constants. 4419 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4420 const APInt &Val = C->getAPIntValue(); 4421 switch (Opcode) { 4422 default: break; 4423 case ISD::SIGN_EXTEND: 4424 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4425 C->isTargetOpcode(), C->isOpaque()); 4426 case ISD::TRUNCATE: 4427 if (C->isOpaque()) 4428 break; 4429 LLVM_FALLTHROUGH; 4430 case ISD::ANY_EXTEND: 4431 case ISD::ZERO_EXTEND: 4432 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4433 C->isTargetOpcode(), C->isOpaque()); 4434 case ISD::UINT_TO_FP: 4435 case ISD::SINT_TO_FP: { 4436 APFloat apf(EVTToAPFloatSemantics(VT), 4437 APInt::getNullValue(VT.getSizeInBits())); 4438 (void)apf.convertFromAPInt(Val, 4439 Opcode==ISD::SINT_TO_FP, 4440 APFloat::rmNearestTiesToEven); 4441 return getConstantFP(apf, DL, VT); 4442 } 4443 case ISD::BITCAST: 4444 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4445 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4446 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4447 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4448 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4449 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4450 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4451 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4452 break; 4453 case ISD::ABS: 4454 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4455 C->isOpaque()); 4456 case ISD::BITREVERSE: 4457 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4458 C->isOpaque()); 4459 case ISD::BSWAP: 4460 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4461 C->isOpaque()); 4462 case ISD::CTPOP: 4463 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4464 C->isOpaque()); 4465 case ISD::CTLZ: 4466 case ISD::CTLZ_ZERO_UNDEF: 4467 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4468 C->isOpaque()); 4469 case ISD::CTTZ: 4470 case ISD::CTTZ_ZERO_UNDEF: 4471 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4472 C->isOpaque()); 4473 case ISD::FP16_TO_FP: { 4474 bool Ignored; 4475 APFloat FPV(APFloat::IEEEhalf(), 4476 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4477 4478 // This can return overflow, underflow, or inexact; we don't care. 4479 // FIXME need to be more flexible about rounding mode. 4480 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4481 APFloat::rmNearestTiesToEven, &Ignored); 4482 return getConstantFP(FPV, DL, VT); 4483 } 4484 } 4485 } 4486 4487 // Constant fold unary operations with a floating point constant operand. 4488 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4489 APFloat V = C->getValueAPF(); // make copy 4490 switch (Opcode) { 4491 case ISD::FNEG: 4492 V.changeSign(); 4493 return getConstantFP(V, DL, VT); 4494 case ISD::FABS: 4495 V.clearSign(); 4496 return getConstantFP(V, DL, VT); 4497 case ISD::FCEIL: { 4498 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4499 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4500 return getConstantFP(V, DL, VT); 4501 break; 4502 } 4503 case ISD::FTRUNC: { 4504 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4505 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4506 return getConstantFP(V, DL, VT); 4507 break; 4508 } 4509 case ISD::FFLOOR: { 4510 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4511 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4512 return getConstantFP(V, DL, VT); 4513 break; 4514 } 4515 case ISD::FP_EXTEND: { 4516 bool ignored; 4517 // This can return overflow, underflow, or inexact; we don't care. 4518 // FIXME need to be more flexible about rounding mode. 4519 (void)V.convert(EVTToAPFloatSemantics(VT), 4520 APFloat::rmNearestTiesToEven, &ignored); 4521 return getConstantFP(V, DL, VT); 4522 } 4523 case ISD::FP_TO_SINT: 4524 case ISD::FP_TO_UINT: { 4525 bool ignored; 4526 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4527 // FIXME need to be more flexible about rounding mode. 4528 APFloat::opStatus s = 4529 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4530 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4531 break; 4532 return getConstant(IntVal, DL, VT); 4533 } 4534 case ISD::BITCAST: 4535 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4536 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4537 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4538 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4539 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4540 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4541 break; 4542 case ISD::FP_TO_FP16: { 4543 bool Ignored; 4544 // This can return overflow, underflow, or inexact; we don't care. 4545 // FIXME need to be more flexible about rounding mode. 4546 (void)V.convert(APFloat::IEEEhalf(), 4547 APFloat::rmNearestTiesToEven, &Ignored); 4548 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4549 } 4550 } 4551 } 4552 4553 // Constant fold unary operations with a vector integer or float operand. 4554 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4555 if (BV->isConstant()) { 4556 switch (Opcode) { 4557 default: 4558 // FIXME: Entirely reasonable to perform folding of other unary 4559 // operations here as the need arises. 4560 break; 4561 case ISD::FNEG: 4562 case ISD::FABS: 4563 case ISD::FCEIL: 4564 case ISD::FTRUNC: 4565 case ISD::FFLOOR: 4566 case ISD::FP_EXTEND: 4567 case ISD::FP_TO_SINT: 4568 case ISD::FP_TO_UINT: 4569 case ISD::TRUNCATE: 4570 case ISD::ANY_EXTEND: 4571 case ISD::ZERO_EXTEND: 4572 case ISD::SIGN_EXTEND: 4573 case ISD::UINT_TO_FP: 4574 case ISD::SINT_TO_FP: 4575 case ISD::ABS: 4576 case ISD::BITREVERSE: 4577 case ISD::BSWAP: 4578 case ISD::CTLZ: 4579 case ISD::CTLZ_ZERO_UNDEF: 4580 case ISD::CTTZ: 4581 case ISD::CTTZ_ZERO_UNDEF: 4582 case ISD::CTPOP: { 4583 SDValue Ops = { Operand }; 4584 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4585 return Fold; 4586 } 4587 } 4588 } 4589 } 4590 4591 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4592 switch (Opcode) { 4593 case ISD::FREEZE: 4594 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4595 break; 4596 case ISD::TokenFactor: 4597 case ISD::MERGE_VALUES: 4598 case ISD::CONCAT_VECTORS: 4599 return Operand; // Factor, merge or concat of one node? No need. 4600 case ISD::BUILD_VECTOR: { 4601 // Attempt to simplify BUILD_VECTOR. 4602 SDValue Ops[] = {Operand}; 4603 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4604 return V; 4605 break; 4606 } 4607 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4608 case ISD::FP_EXTEND: 4609 assert(VT.isFloatingPoint() && 4610 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4611 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4612 assert((!VT.isVector() || 4613 VT.getVectorElementCount() == 4614 Operand.getValueType().getVectorElementCount()) && 4615 "Vector element count mismatch!"); 4616 assert(Operand.getValueType().bitsLT(VT) && 4617 "Invalid fpext node, dst < src!"); 4618 if (Operand.isUndef()) 4619 return getUNDEF(VT); 4620 break; 4621 case ISD::FP_TO_SINT: 4622 case ISD::FP_TO_UINT: 4623 if (Operand.isUndef()) 4624 return getUNDEF(VT); 4625 break; 4626 case ISD::SINT_TO_FP: 4627 case ISD::UINT_TO_FP: 4628 // [us]itofp(undef) = 0, because the result value is bounded. 4629 if (Operand.isUndef()) 4630 return getConstantFP(0.0, DL, VT); 4631 break; 4632 case ISD::SIGN_EXTEND: 4633 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4634 "Invalid SIGN_EXTEND!"); 4635 assert(VT.isVector() == Operand.getValueType().isVector() && 4636 "SIGN_EXTEND result type type should be vector iff the operand " 4637 "type is vector!"); 4638 if (Operand.getValueType() == VT) return Operand; // noop extension 4639 assert((!VT.isVector() || 4640 VT.getVectorElementCount() == 4641 Operand.getValueType().getVectorElementCount()) && 4642 "Vector element count mismatch!"); 4643 assert(Operand.getValueType().bitsLT(VT) && 4644 "Invalid sext node, dst < src!"); 4645 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4646 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4647 else if (OpOpcode == ISD::UNDEF) 4648 // sext(undef) = 0, because the top bits will all be the same. 4649 return getConstant(0, DL, VT); 4650 break; 4651 case ISD::ZERO_EXTEND: 4652 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4653 "Invalid ZERO_EXTEND!"); 4654 assert(VT.isVector() == Operand.getValueType().isVector() && 4655 "ZERO_EXTEND result type type should be vector iff the operand " 4656 "type is vector!"); 4657 if (Operand.getValueType() == VT) return Operand; // noop extension 4658 assert((!VT.isVector() || 4659 VT.getVectorElementCount() == 4660 Operand.getValueType().getVectorElementCount()) && 4661 "Vector element count mismatch!"); 4662 assert(Operand.getValueType().bitsLT(VT) && 4663 "Invalid zext node, dst < src!"); 4664 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4665 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4666 else if (OpOpcode == ISD::UNDEF) 4667 // zext(undef) = 0, because the top bits will be zero. 4668 return getConstant(0, DL, VT); 4669 break; 4670 case ISD::ANY_EXTEND: 4671 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4672 "Invalid ANY_EXTEND!"); 4673 assert(VT.isVector() == Operand.getValueType().isVector() && 4674 "ANY_EXTEND result type type should be vector iff the operand " 4675 "type is vector!"); 4676 if (Operand.getValueType() == VT) return Operand; // noop extension 4677 assert((!VT.isVector() || 4678 VT.getVectorElementCount() == 4679 Operand.getValueType().getVectorElementCount()) && 4680 "Vector element count mismatch!"); 4681 assert(Operand.getValueType().bitsLT(VT) && 4682 "Invalid anyext node, dst < src!"); 4683 4684 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4685 OpOpcode == ISD::ANY_EXTEND) 4686 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4687 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4688 else if (OpOpcode == ISD::UNDEF) 4689 return getUNDEF(VT); 4690 4691 // (ext (trunc x)) -> x 4692 if (OpOpcode == ISD::TRUNCATE) { 4693 SDValue OpOp = Operand.getOperand(0); 4694 if (OpOp.getValueType() == VT) { 4695 transferDbgValues(Operand, OpOp); 4696 return OpOp; 4697 } 4698 } 4699 break; 4700 case ISD::TRUNCATE: 4701 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4702 "Invalid TRUNCATE!"); 4703 assert(VT.isVector() == Operand.getValueType().isVector() && 4704 "TRUNCATE result type type should be vector iff the operand " 4705 "type is vector!"); 4706 if (Operand.getValueType() == VT) return Operand; // noop truncate 4707 assert((!VT.isVector() || 4708 VT.getVectorElementCount() == 4709 Operand.getValueType().getVectorElementCount()) && 4710 "Vector element count mismatch!"); 4711 assert(Operand.getValueType().bitsGT(VT) && 4712 "Invalid truncate node, src < dst!"); 4713 if (OpOpcode == ISD::TRUNCATE) 4714 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4715 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4716 OpOpcode == ISD::ANY_EXTEND) { 4717 // If the source is smaller than the dest, we still need an extend. 4718 if (Operand.getOperand(0).getValueType().getScalarType() 4719 .bitsLT(VT.getScalarType())) 4720 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4721 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4722 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4723 return Operand.getOperand(0); 4724 } 4725 if (OpOpcode == ISD::UNDEF) 4726 return getUNDEF(VT); 4727 break; 4728 case ISD::ANY_EXTEND_VECTOR_INREG: 4729 case ISD::ZERO_EXTEND_VECTOR_INREG: 4730 case ISD::SIGN_EXTEND_VECTOR_INREG: 4731 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4732 assert(Operand.getValueType().bitsLE(VT) && 4733 "The input must be the same size or smaller than the result."); 4734 assert(VT.getVectorNumElements() < 4735 Operand.getValueType().getVectorNumElements() && 4736 "The destination vector type must have fewer lanes than the input."); 4737 break; 4738 case ISD::ABS: 4739 assert(VT.isInteger() && VT == Operand.getValueType() && 4740 "Invalid ABS!"); 4741 if (OpOpcode == ISD::UNDEF) 4742 return getUNDEF(VT); 4743 break; 4744 case ISD::BSWAP: 4745 assert(VT.isInteger() && VT == Operand.getValueType() && 4746 "Invalid BSWAP!"); 4747 assert((VT.getScalarSizeInBits() % 16 == 0) && 4748 "BSWAP types must be a multiple of 16 bits!"); 4749 if (OpOpcode == ISD::UNDEF) 4750 return getUNDEF(VT); 4751 break; 4752 case ISD::BITREVERSE: 4753 assert(VT.isInteger() && VT == Operand.getValueType() && 4754 "Invalid BITREVERSE!"); 4755 if (OpOpcode == ISD::UNDEF) 4756 return getUNDEF(VT); 4757 break; 4758 case ISD::BITCAST: 4759 // Basic sanity checking. 4760 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4761 "Cannot BITCAST between types of different sizes!"); 4762 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4763 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4764 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4765 if (OpOpcode == ISD::UNDEF) 4766 return getUNDEF(VT); 4767 break; 4768 case ISD::SCALAR_TO_VECTOR: 4769 assert(VT.isVector() && !Operand.getValueType().isVector() && 4770 (VT.getVectorElementType() == Operand.getValueType() || 4771 (VT.getVectorElementType().isInteger() && 4772 Operand.getValueType().isInteger() && 4773 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4774 "Illegal SCALAR_TO_VECTOR node!"); 4775 if (OpOpcode == ISD::UNDEF) 4776 return getUNDEF(VT); 4777 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4778 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4779 isa<ConstantSDNode>(Operand.getOperand(1)) && 4780 Operand.getConstantOperandVal(1) == 0 && 4781 Operand.getOperand(0).getValueType() == VT) 4782 return Operand.getOperand(0); 4783 break; 4784 case ISD::FNEG: 4785 // Negation of an unknown bag of bits is still completely undefined. 4786 if (OpOpcode == ISD::UNDEF) 4787 return getUNDEF(VT); 4788 4789 if (OpOpcode == ISD::FNEG) // --X -> X 4790 return Operand.getOperand(0); 4791 break; 4792 case ISD::FABS: 4793 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4794 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4795 break; 4796 case ISD::VSCALE: 4797 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4798 break; 4799 case ISD::CTPOP: 4800 if (Operand.getValueType().getScalarType() == MVT::i1) 4801 return Operand; 4802 break; 4803 case ISD::CTLZ: 4804 case ISD::CTTZ: 4805 if (Operand.getValueType().getScalarType() == MVT::i1) 4806 return getNOT(DL, Operand, Operand.getValueType()); 4807 break; 4808 case ISD::VECREDUCE_SMIN: 4809 case ISD::VECREDUCE_UMAX: 4810 if (Operand.getValueType().getScalarType() == MVT::i1) 4811 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4812 break; 4813 case ISD::VECREDUCE_SMAX: 4814 case ISD::VECREDUCE_UMIN: 4815 if (Operand.getValueType().getScalarType() == MVT::i1) 4816 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4817 break; 4818 } 4819 4820 SDNode *N; 4821 SDVTList VTs = getVTList(VT); 4822 SDValue Ops[] = {Operand}; 4823 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4824 FoldingSetNodeID ID; 4825 AddNodeIDNode(ID, Opcode, VTs, Ops); 4826 void *IP = nullptr; 4827 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4828 E->intersectFlagsWith(Flags); 4829 return SDValue(E, 0); 4830 } 4831 4832 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4833 N->setFlags(Flags); 4834 createOperands(N, Ops); 4835 CSEMap.InsertNode(N, IP); 4836 } else { 4837 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4838 createOperands(N, Ops); 4839 } 4840 4841 InsertNode(N); 4842 SDValue V = SDValue(N, 0); 4843 NewSDValueDbgMsg(V, "Creating new node: ", this); 4844 return V; 4845 } 4846 4847 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4848 const APInt &C2) { 4849 switch (Opcode) { 4850 case ISD::ADD: return C1 + C2; 4851 case ISD::SUB: return C1 - C2; 4852 case ISD::MUL: return C1 * C2; 4853 case ISD::AND: return C1 & C2; 4854 case ISD::OR: return C1 | C2; 4855 case ISD::XOR: return C1 ^ C2; 4856 case ISD::SHL: return C1 << C2; 4857 case ISD::SRL: return C1.lshr(C2); 4858 case ISD::SRA: return C1.ashr(C2); 4859 case ISD::ROTL: return C1.rotl(C2); 4860 case ISD::ROTR: return C1.rotr(C2); 4861 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4862 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4863 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4864 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4865 case ISD::SADDSAT: return C1.sadd_sat(C2); 4866 case ISD::UADDSAT: return C1.uadd_sat(C2); 4867 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4868 case ISD::USUBSAT: return C1.usub_sat(C2); 4869 case ISD::UDIV: 4870 if (!C2.getBoolValue()) 4871 break; 4872 return C1.udiv(C2); 4873 case ISD::UREM: 4874 if (!C2.getBoolValue()) 4875 break; 4876 return C1.urem(C2); 4877 case ISD::SDIV: 4878 if (!C2.getBoolValue()) 4879 break; 4880 return C1.sdiv(C2); 4881 case ISD::SREM: 4882 if (!C2.getBoolValue()) 4883 break; 4884 return C1.srem(C2); 4885 } 4886 return llvm::None; 4887 } 4888 4889 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4890 const GlobalAddressSDNode *GA, 4891 const SDNode *N2) { 4892 if (GA->getOpcode() != ISD::GlobalAddress) 4893 return SDValue(); 4894 if (!TLI->isOffsetFoldingLegal(GA)) 4895 return SDValue(); 4896 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4897 if (!C2) 4898 return SDValue(); 4899 int64_t Offset = C2->getSExtValue(); 4900 switch (Opcode) { 4901 case ISD::ADD: break; 4902 case ISD::SUB: Offset = -uint64_t(Offset); break; 4903 default: return SDValue(); 4904 } 4905 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4906 GA->getOffset() + uint64_t(Offset)); 4907 } 4908 4909 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4910 switch (Opcode) { 4911 case ISD::SDIV: 4912 case ISD::UDIV: 4913 case ISD::SREM: 4914 case ISD::UREM: { 4915 // If a divisor is zero/undef or any element of a divisor vector is 4916 // zero/undef, the whole op is undef. 4917 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4918 SDValue Divisor = Ops[1]; 4919 if (Divisor.isUndef() || isNullConstant(Divisor)) 4920 return true; 4921 4922 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4923 llvm::any_of(Divisor->op_values(), 4924 [](SDValue V) { return V.isUndef() || 4925 isNullConstant(V); }); 4926 // TODO: Handle signed overflow. 4927 } 4928 // TODO: Handle oversized shifts. 4929 default: 4930 return false; 4931 } 4932 } 4933 4934 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4935 EVT VT, ArrayRef<SDValue> Ops) { 4936 // If the opcode is a target-specific ISD node, there's nothing we can 4937 // do here and the operand rules may not line up with the below, so 4938 // bail early. 4939 if (Opcode >= ISD::BUILTIN_OP_END) 4940 return SDValue(); 4941 4942 // For now, the array Ops should only contain two values. 4943 // This enforcement will be removed once this function is merged with 4944 // FoldConstantVectorArithmetic 4945 if (Ops.size() != 2) 4946 return SDValue(); 4947 4948 if (isUndef(Opcode, Ops)) 4949 return getUNDEF(VT); 4950 4951 SDNode *N1 = Ops[0].getNode(); 4952 SDNode *N2 = Ops[1].getNode(); 4953 4954 // Handle the case of two scalars. 4955 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4956 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4957 if (C1->isOpaque() || C2->isOpaque()) 4958 return SDValue(); 4959 4960 Optional<APInt> FoldAttempt = 4961 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4962 if (!FoldAttempt) 4963 return SDValue(); 4964 4965 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4966 assert((!Folded || !VT.isVector()) && 4967 "Can't fold vectors ops with scalar operands"); 4968 return Folded; 4969 } 4970 } 4971 4972 // fold (add Sym, c) -> Sym+c 4973 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4974 return FoldSymbolOffset(Opcode, VT, GA, N2); 4975 if (TLI->isCommutativeBinOp(Opcode)) 4976 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4977 return FoldSymbolOffset(Opcode, VT, GA, N1); 4978 4979 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4980 // vector width, however we should be able to do constant folds involving 4981 // splat vector nodes too. 4982 if (VT.isScalableVector()) 4983 return SDValue(); 4984 4985 // For fixed width vectors, extract each constant element and fold them 4986 // individually. Either input may be an undef value. 4987 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4988 if (!BV1 && !N1->isUndef()) 4989 return SDValue(); 4990 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4991 if (!BV2 && !N2->isUndef()) 4992 return SDValue(); 4993 // If both operands are undef, that's handled the same way as scalars. 4994 if (!BV1 && !BV2) 4995 return SDValue(); 4996 4997 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4998 "Vector binop with different number of elements in operands?"); 4999 5000 EVT SVT = VT.getScalarType(); 5001 EVT LegalSVT = SVT; 5002 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5003 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5004 if (LegalSVT.bitsLT(SVT)) 5005 return SDValue(); 5006 } 5007 SmallVector<SDValue, 4> Outputs; 5008 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5009 for (unsigned I = 0; I != NumOps; ++I) { 5010 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5011 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5012 if (SVT.isInteger()) { 5013 if (V1->getValueType(0).bitsGT(SVT)) 5014 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5015 if (V2->getValueType(0).bitsGT(SVT)) 5016 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5017 } 5018 5019 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5020 return SDValue(); 5021 5022 // Fold one vector element. 5023 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5024 if (LegalSVT != SVT) 5025 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5026 5027 // Scalar folding only succeeded if the result is a constant or UNDEF. 5028 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5029 ScalarResult.getOpcode() != ISD::ConstantFP) 5030 return SDValue(); 5031 Outputs.push_back(ScalarResult); 5032 } 5033 5034 assert(VT.getVectorNumElements() == Outputs.size() && 5035 "Vector size mismatch!"); 5036 5037 // We may have a vector type but a scalar result. Create a splat. 5038 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5039 5040 // Build a big vector out of the scalar elements we generated. 5041 return getBuildVector(VT, SDLoc(), Outputs); 5042 } 5043 5044 // TODO: Merge with FoldConstantArithmetic 5045 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5046 const SDLoc &DL, EVT VT, 5047 ArrayRef<SDValue> Ops, 5048 const SDNodeFlags Flags) { 5049 // If the opcode is a target-specific ISD node, there's nothing we can 5050 // do here and the operand rules may not line up with the below, so 5051 // bail early. 5052 if (Opcode >= ISD::BUILTIN_OP_END) 5053 return SDValue(); 5054 5055 if (isUndef(Opcode, Ops)) 5056 return getUNDEF(VT); 5057 5058 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5059 if (!VT.isVector()) 5060 return SDValue(); 5061 5062 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5063 // vector width, however we should be able to do constant folds involving 5064 // splat vector nodes too. 5065 if (VT.isScalableVector()) 5066 return SDValue(); 5067 5068 // From this point onwards all vectors are assumed to be fixed width. 5069 unsigned NumElts = VT.getVectorNumElements(); 5070 5071 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5072 return !Op.getValueType().isVector() || 5073 Op.getValueType().getVectorNumElements() == NumElts; 5074 }; 5075 5076 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5077 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5078 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5079 (BV && BV->isConstant()); 5080 }; 5081 5082 // All operands must be vector types with the same number of elements as 5083 // the result type and must be either UNDEF or a build vector of constant 5084 // or UNDEF scalars. 5085 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5086 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5087 return SDValue(); 5088 5089 // If we are comparing vectors, then the result needs to be a i1 boolean 5090 // that is then sign-extended back to the legal result type. 5091 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5092 5093 // Find legal integer scalar type for constant promotion and 5094 // ensure that its scalar size is at least as large as source. 5095 EVT LegalSVT = VT.getScalarType(); 5096 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5097 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5098 if (LegalSVT.bitsLT(VT.getScalarType())) 5099 return SDValue(); 5100 } 5101 5102 // Constant fold each scalar lane separately. 5103 SmallVector<SDValue, 4> ScalarResults; 5104 for (unsigned i = 0; i != NumElts; i++) { 5105 SmallVector<SDValue, 4> ScalarOps; 5106 for (SDValue Op : Ops) { 5107 EVT InSVT = Op.getValueType().getScalarType(); 5108 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5109 if (!InBV) { 5110 // We've checked that this is UNDEF or a constant of some kind. 5111 if (Op.isUndef()) 5112 ScalarOps.push_back(getUNDEF(InSVT)); 5113 else 5114 ScalarOps.push_back(Op); 5115 continue; 5116 } 5117 5118 SDValue ScalarOp = InBV->getOperand(i); 5119 EVT ScalarVT = ScalarOp.getValueType(); 5120 5121 // Build vector (integer) scalar operands may need implicit 5122 // truncation - do this before constant folding. 5123 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5124 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5125 5126 ScalarOps.push_back(ScalarOp); 5127 } 5128 5129 // Constant fold the scalar operands. 5130 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5131 5132 // Legalize the (integer) scalar constant if necessary. 5133 if (LegalSVT != SVT) 5134 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5135 5136 // Scalar folding only succeeded if the result is a constant or UNDEF. 5137 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5138 ScalarResult.getOpcode() != ISD::ConstantFP) 5139 return SDValue(); 5140 ScalarResults.push_back(ScalarResult); 5141 } 5142 5143 SDValue V = getBuildVector(VT, DL, ScalarResults); 5144 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5145 return V; 5146 } 5147 5148 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5149 EVT VT, SDValue N1, SDValue N2) { 5150 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5151 // should. That will require dealing with a potentially non-default 5152 // rounding mode, checking the "opStatus" return value from the APFloat 5153 // math calculations, and possibly other variations. 5154 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5155 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5156 if (N1CFP && N2CFP) { 5157 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5158 switch (Opcode) { 5159 case ISD::FADD: 5160 C1.add(C2, APFloat::rmNearestTiesToEven); 5161 return getConstantFP(C1, DL, VT); 5162 case ISD::FSUB: 5163 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5164 return getConstantFP(C1, DL, VT); 5165 case ISD::FMUL: 5166 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5167 return getConstantFP(C1, DL, VT); 5168 case ISD::FDIV: 5169 C1.divide(C2, APFloat::rmNearestTiesToEven); 5170 return getConstantFP(C1, DL, VT); 5171 case ISD::FREM: 5172 C1.mod(C2); 5173 return getConstantFP(C1, DL, VT); 5174 case ISD::FCOPYSIGN: 5175 C1.copySign(C2); 5176 return getConstantFP(C1, DL, VT); 5177 default: break; 5178 } 5179 } 5180 if (N1CFP && Opcode == ISD::FP_ROUND) { 5181 APFloat C1 = N1CFP->getValueAPF(); // make copy 5182 bool Unused; 5183 // This can return overflow, underflow, or inexact; we don't care. 5184 // FIXME need to be more flexible about rounding mode. 5185 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5186 &Unused); 5187 return getConstantFP(C1, DL, VT); 5188 } 5189 5190 switch (Opcode) { 5191 case ISD::FSUB: 5192 // -0.0 - undef --> undef (consistent with "fneg undef") 5193 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5194 return getUNDEF(VT); 5195 LLVM_FALLTHROUGH; 5196 5197 case ISD::FADD: 5198 case ISD::FMUL: 5199 case ISD::FDIV: 5200 case ISD::FREM: 5201 // If both operands are undef, the result is undef. If 1 operand is undef, 5202 // the result is NaN. This should match the behavior of the IR optimizer. 5203 if (N1.isUndef() && N2.isUndef()) 5204 return getUNDEF(VT); 5205 if (N1.isUndef() || N2.isUndef()) 5206 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5207 } 5208 return SDValue(); 5209 } 5210 5211 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5212 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5213 5214 // There's no need to assert on a byte-aligned pointer. All pointers are at 5215 // least byte aligned. 5216 if (A == Align(1)) 5217 return Val; 5218 5219 FoldingSetNodeID ID; 5220 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5221 ID.AddInteger(A.value()); 5222 5223 void *IP = nullptr; 5224 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5225 return SDValue(E, 0); 5226 5227 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5228 Val.getValueType(), A); 5229 createOperands(N, {Val}); 5230 5231 CSEMap.InsertNode(N, IP); 5232 InsertNode(N); 5233 5234 SDValue V(N, 0); 5235 NewSDValueDbgMsg(V, "Creating new node: ", this); 5236 return V; 5237 } 5238 5239 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5240 SDValue N1, SDValue N2) { 5241 SDNodeFlags Flags; 5242 if (Inserter) 5243 Flags = Inserter->getFlags(); 5244 return getNode(Opcode, DL, VT, N1, N2, Flags); 5245 } 5246 5247 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5248 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5249 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5250 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5251 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5252 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5253 5254 // Canonicalize constant to RHS if commutative. 5255 if (TLI->isCommutativeBinOp(Opcode)) { 5256 if (N1C && !N2C) { 5257 std::swap(N1C, N2C); 5258 std::swap(N1, N2); 5259 } else if (N1CFP && !N2CFP) { 5260 std::swap(N1CFP, N2CFP); 5261 std::swap(N1, N2); 5262 } 5263 } 5264 5265 switch (Opcode) { 5266 default: break; 5267 case ISD::TokenFactor: 5268 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5269 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5270 // Fold trivial token factors. 5271 if (N1.getOpcode() == ISD::EntryToken) return N2; 5272 if (N2.getOpcode() == ISD::EntryToken) return N1; 5273 if (N1 == N2) return N1; 5274 break; 5275 case ISD::BUILD_VECTOR: { 5276 // Attempt to simplify BUILD_VECTOR. 5277 SDValue Ops[] = {N1, N2}; 5278 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5279 return V; 5280 break; 5281 } 5282 case ISD::CONCAT_VECTORS: { 5283 SDValue Ops[] = {N1, N2}; 5284 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5285 return V; 5286 break; 5287 } 5288 case ISD::AND: 5289 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5290 assert(N1.getValueType() == N2.getValueType() && 5291 N1.getValueType() == VT && "Binary operator types must match!"); 5292 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5293 // worth handling here. 5294 if (N2C && N2C->isNullValue()) 5295 return N2; 5296 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5297 return N1; 5298 break; 5299 case ISD::OR: 5300 case ISD::XOR: 5301 case ISD::ADD: 5302 case ISD::SUB: 5303 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5304 assert(N1.getValueType() == N2.getValueType() && 5305 N1.getValueType() == VT && "Binary operator types must match!"); 5306 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5307 // it's worth handling here. 5308 if (N2C && N2C->isNullValue()) 5309 return N1; 5310 break; 5311 case ISD::MUL: 5312 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5313 assert(N1.getValueType() == N2.getValueType() && 5314 N1.getValueType() == VT && "Binary operator types must match!"); 5315 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5316 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5317 APInt N2CImm = N2C->getAPIntValue(); 5318 return getVScale(DL, VT, MulImm * N2CImm); 5319 } 5320 break; 5321 case ISD::UDIV: 5322 case ISD::UREM: 5323 case ISD::MULHU: 5324 case ISD::MULHS: 5325 case ISD::SDIV: 5326 case ISD::SREM: 5327 case ISD::SADDSAT: 5328 case ISD::SSUBSAT: 5329 case ISD::UADDSAT: 5330 case ISD::USUBSAT: 5331 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5332 assert(N1.getValueType() == N2.getValueType() && 5333 N1.getValueType() == VT && "Binary operator types must match!"); 5334 break; 5335 case ISD::SMIN: 5336 case ISD::UMAX: 5337 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5338 assert(N1.getValueType() == N2.getValueType() && 5339 N1.getValueType() == VT && "Binary operator types must match!"); 5340 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5341 return getNode(ISD::OR, DL, VT, N1, N2); 5342 break; 5343 case ISD::SMAX: 5344 case ISD::UMIN: 5345 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5346 assert(N1.getValueType() == N2.getValueType() && 5347 N1.getValueType() == VT && "Binary operator types must match!"); 5348 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5349 return getNode(ISD::AND, DL, VT, N1, N2); 5350 break; 5351 case ISD::FADD: 5352 case ISD::FSUB: 5353 case ISD::FMUL: 5354 case ISD::FDIV: 5355 case ISD::FREM: 5356 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5357 assert(N1.getValueType() == N2.getValueType() && 5358 N1.getValueType() == VT && "Binary operator types must match!"); 5359 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5360 return V; 5361 break; 5362 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5363 assert(N1.getValueType() == VT && 5364 N1.getValueType().isFloatingPoint() && 5365 N2.getValueType().isFloatingPoint() && 5366 "Invalid FCOPYSIGN!"); 5367 break; 5368 case ISD::SHL: 5369 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5370 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5371 APInt ShiftImm = N2C->getAPIntValue(); 5372 return getVScale(DL, VT, MulImm << ShiftImm); 5373 } 5374 LLVM_FALLTHROUGH; 5375 case ISD::SRA: 5376 case ISD::SRL: 5377 if (SDValue V = simplifyShift(N1, N2)) 5378 return V; 5379 LLVM_FALLTHROUGH; 5380 case ISD::ROTL: 5381 case ISD::ROTR: 5382 assert(VT == N1.getValueType() && 5383 "Shift operators return type must be the same as their first arg"); 5384 assert(VT.isInteger() && N2.getValueType().isInteger() && 5385 "Shifts only work on integers"); 5386 assert((!VT.isVector() || VT == N2.getValueType()) && 5387 "Vector shift amounts must be in the same as their first arg"); 5388 // Verify that the shift amount VT is big enough to hold valid shift 5389 // amounts. This catches things like trying to shift an i1024 value by an 5390 // i8, which is easy to fall into in generic code that uses 5391 // TLI.getShiftAmount(). 5392 assert(N2.getValueType().getScalarSizeInBits() >= 5393 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5394 "Invalid use of small shift amount with oversized value!"); 5395 5396 // Always fold shifts of i1 values so the code generator doesn't need to 5397 // handle them. Since we know the size of the shift has to be less than the 5398 // size of the value, the shift/rotate count is guaranteed to be zero. 5399 if (VT == MVT::i1) 5400 return N1; 5401 if (N2C && N2C->isNullValue()) 5402 return N1; 5403 break; 5404 case ISD::FP_ROUND: 5405 assert(VT.isFloatingPoint() && 5406 N1.getValueType().isFloatingPoint() && 5407 VT.bitsLE(N1.getValueType()) && 5408 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5409 "Invalid FP_ROUND!"); 5410 if (N1.getValueType() == VT) return N1; // noop conversion. 5411 break; 5412 case ISD::AssertSext: 5413 case ISD::AssertZext: { 5414 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5415 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5416 assert(VT.isInteger() && EVT.isInteger() && 5417 "Cannot *_EXTEND_INREG FP types"); 5418 assert(!EVT.isVector() && 5419 "AssertSExt/AssertZExt type should be the vector element type " 5420 "rather than the vector type!"); 5421 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5422 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5423 break; 5424 } 5425 case ISD::SIGN_EXTEND_INREG: { 5426 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5427 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5428 assert(VT.isInteger() && EVT.isInteger() && 5429 "Cannot *_EXTEND_INREG FP types"); 5430 assert(EVT.isVector() == VT.isVector() && 5431 "SIGN_EXTEND_INREG type should be vector iff the operand " 5432 "type is vector!"); 5433 assert((!EVT.isVector() || 5434 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5435 "Vector element counts must match in SIGN_EXTEND_INREG"); 5436 assert(EVT.bitsLE(VT) && "Not extending!"); 5437 if (EVT == VT) return N1; // Not actually extending 5438 5439 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5440 unsigned FromBits = EVT.getScalarSizeInBits(); 5441 Val <<= Val.getBitWidth() - FromBits; 5442 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5443 return getConstant(Val, DL, ConstantVT); 5444 }; 5445 5446 if (N1C) { 5447 const APInt &Val = N1C->getAPIntValue(); 5448 return SignExtendInReg(Val, VT); 5449 } 5450 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5451 SmallVector<SDValue, 8> Ops; 5452 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5453 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5454 SDValue Op = N1.getOperand(i); 5455 if (Op.isUndef()) { 5456 Ops.push_back(getUNDEF(OpVT)); 5457 continue; 5458 } 5459 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5460 APInt Val = C->getAPIntValue(); 5461 Ops.push_back(SignExtendInReg(Val, OpVT)); 5462 } 5463 return getBuildVector(VT, DL, Ops); 5464 } 5465 break; 5466 } 5467 case ISD::EXTRACT_VECTOR_ELT: 5468 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5469 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5470 element type of the vector."); 5471 5472 // Extract from an undefined value or using an undefined index is undefined. 5473 if (N1.isUndef() || N2.isUndef()) 5474 return getUNDEF(VT); 5475 5476 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5477 // vectors. For scalable vectors we will provide appropriate support for 5478 // dealing with arbitrary indices. 5479 if (N2C && N1.getValueType().isFixedLengthVector() && 5480 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5481 return getUNDEF(VT); 5482 5483 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5484 // expanding copies of large vectors from registers. This only works for 5485 // fixed length vectors, since we need to know the exact number of 5486 // elements. 5487 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5488 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5489 unsigned Factor = 5490 N1.getOperand(0).getValueType().getVectorNumElements(); 5491 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5492 N1.getOperand(N2C->getZExtValue() / Factor), 5493 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5494 } 5495 5496 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5497 // lowering is expanding large vector constants. 5498 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5499 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5500 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5501 N1.getValueType().isFixedLengthVector()) && 5502 "BUILD_VECTOR used for scalable vectors"); 5503 unsigned Index = 5504 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5505 SDValue Elt = N1.getOperand(Index); 5506 5507 if (VT != Elt.getValueType()) 5508 // If the vector element type is not legal, the BUILD_VECTOR operands 5509 // are promoted and implicitly truncated, and the result implicitly 5510 // extended. Make that explicit here. 5511 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5512 5513 return Elt; 5514 } 5515 5516 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5517 // operations are lowered to scalars. 5518 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5519 // If the indices are the same, return the inserted element else 5520 // if the indices are known different, extract the element from 5521 // the original vector. 5522 SDValue N1Op2 = N1.getOperand(2); 5523 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5524 5525 if (N1Op2C && N2C) { 5526 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5527 if (VT == N1.getOperand(1).getValueType()) 5528 return N1.getOperand(1); 5529 else 5530 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5531 } 5532 5533 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5534 } 5535 } 5536 5537 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5538 // when vector types are scalarized and v1iX is legal. 5539 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5540 // Here we are completely ignoring the extract element index (N2), 5541 // which is fine for fixed width vectors, since any index other than 0 5542 // is undefined anyway. However, this cannot be ignored for scalable 5543 // vectors - in theory we could support this, but we don't want to do this 5544 // without a profitability check. 5545 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5546 N1.getValueType().isFixedLengthVector() && 5547 N1.getValueType().getVectorNumElements() == 1) { 5548 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5549 N1.getOperand(1)); 5550 } 5551 break; 5552 case ISD::EXTRACT_ELEMENT: 5553 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5554 assert(!N1.getValueType().isVector() && !VT.isVector() && 5555 (N1.getValueType().isInteger() == VT.isInteger()) && 5556 N1.getValueType() != VT && 5557 "Wrong types for EXTRACT_ELEMENT!"); 5558 5559 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5560 // 64-bit integers into 32-bit parts. Instead of building the extract of 5561 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5562 if (N1.getOpcode() == ISD::BUILD_PAIR) 5563 return N1.getOperand(N2C->getZExtValue()); 5564 5565 // EXTRACT_ELEMENT of a constant int is also very common. 5566 if (N1C) { 5567 unsigned ElementSize = VT.getSizeInBits(); 5568 unsigned Shift = ElementSize * N2C->getZExtValue(); 5569 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5570 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5571 } 5572 break; 5573 case ISD::EXTRACT_SUBVECTOR: 5574 EVT N1VT = N1.getValueType(); 5575 assert(VT.isVector() && N1VT.isVector() && 5576 "Extract subvector VTs must be vectors!"); 5577 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5578 "Extract subvector VTs must have the same element type!"); 5579 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5580 "Cannot extract a scalable vector from a fixed length vector!"); 5581 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5582 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5583 "Extract subvector must be from larger vector to smaller vector!"); 5584 assert(N2C && "Extract subvector index must be a constant"); 5585 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5586 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5587 N1VT.getVectorMinNumElements()) && 5588 "Extract subvector overflow!"); 5589 assert(N2C->getAPIntValue().getBitWidth() == 5590 TLI->getVectorIdxTy(getDataLayout()) 5591 .getSizeInBits() 5592 .getFixedSize() && 5593 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5594 5595 // Trivial extraction. 5596 if (VT == N1VT) 5597 return N1; 5598 5599 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5600 if (N1.isUndef()) 5601 return getUNDEF(VT); 5602 5603 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5604 // the concat have the same type as the extract. 5605 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5606 VT == N1.getOperand(0).getValueType()) { 5607 unsigned Factor = VT.getVectorMinNumElements(); 5608 return N1.getOperand(N2C->getZExtValue() / Factor); 5609 } 5610 5611 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5612 // during shuffle legalization. 5613 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5614 VT == N1.getOperand(1).getValueType()) 5615 return N1.getOperand(1); 5616 break; 5617 } 5618 5619 // Perform trivial constant folding. 5620 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5621 return SV; 5622 5623 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5624 return V; 5625 5626 // Canonicalize an UNDEF to the RHS, even over a constant. 5627 if (N1.isUndef()) { 5628 if (TLI->isCommutativeBinOp(Opcode)) { 5629 std::swap(N1, N2); 5630 } else { 5631 switch (Opcode) { 5632 case ISD::SIGN_EXTEND_INREG: 5633 case ISD::SUB: 5634 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5635 case ISD::UDIV: 5636 case ISD::SDIV: 5637 case ISD::UREM: 5638 case ISD::SREM: 5639 case ISD::SSUBSAT: 5640 case ISD::USUBSAT: 5641 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5642 } 5643 } 5644 } 5645 5646 // Fold a bunch of operators when the RHS is undef. 5647 if (N2.isUndef()) { 5648 switch (Opcode) { 5649 case ISD::XOR: 5650 if (N1.isUndef()) 5651 // Handle undef ^ undef -> 0 special case. This is a common 5652 // idiom (misuse). 5653 return getConstant(0, DL, VT); 5654 LLVM_FALLTHROUGH; 5655 case ISD::ADD: 5656 case ISD::SUB: 5657 case ISD::UDIV: 5658 case ISD::SDIV: 5659 case ISD::UREM: 5660 case ISD::SREM: 5661 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5662 case ISD::MUL: 5663 case ISD::AND: 5664 case ISD::SSUBSAT: 5665 case ISD::USUBSAT: 5666 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5667 case ISD::OR: 5668 case ISD::SADDSAT: 5669 case ISD::UADDSAT: 5670 return getAllOnesConstant(DL, VT); 5671 } 5672 } 5673 5674 // Memoize this node if possible. 5675 SDNode *N; 5676 SDVTList VTs = getVTList(VT); 5677 SDValue Ops[] = {N1, N2}; 5678 if (VT != MVT::Glue) { 5679 FoldingSetNodeID ID; 5680 AddNodeIDNode(ID, Opcode, VTs, Ops); 5681 void *IP = nullptr; 5682 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5683 E->intersectFlagsWith(Flags); 5684 return SDValue(E, 0); 5685 } 5686 5687 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5688 N->setFlags(Flags); 5689 createOperands(N, Ops); 5690 CSEMap.InsertNode(N, IP); 5691 } else { 5692 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5693 createOperands(N, Ops); 5694 } 5695 5696 InsertNode(N); 5697 SDValue V = SDValue(N, 0); 5698 NewSDValueDbgMsg(V, "Creating new node: ", this); 5699 return V; 5700 } 5701 5702 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5703 SDValue N1, SDValue N2, SDValue N3) { 5704 SDNodeFlags Flags; 5705 if (Inserter) 5706 Flags = Inserter->getFlags(); 5707 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5708 } 5709 5710 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5711 SDValue N1, SDValue N2, SDValue N3, 5712 const SDNodeFlags Flags) { 5713 // Perform various simplifications. 5714 switch (Opcode) { 5715 case ISD::FMA: { 5716 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5717 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5718 N3.getValueType() == VT && "FMA types must match!"); 5719 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5720 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5721 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5722 if (N1CFP && N2CFP && N3CFP) { 5723 APFloat V1 = N1CFP->getValueAPF(); 5724 const APFloat &V2 = N2CFP->getValueAPF(); 5725 const APFloat &V3 = N3CFP->getValueAPF(); 5726 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5727 return getConstantFP(V1, DL, VT); 5728 } 5729 break; 5730 } 5731 case ISD::BUILD_VECTOR: { 5732 // Attempt to simplify BUILD_VECTOR. 5733 SDValue Ops[] = {N1, N2, N3}; 5734 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5735 return V; 5736 break; 5737 } 5738 case ISD::CONCAT_VECTORS: { 5739 SDValue Ops[] = {N1, N2, N3}; 5740 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5741 return V; 5742 break; 5743 } 5744 case ISD::SETCC: { 5745 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5746 assert(N1.getValueType() == N2.getValueType() && 5747 "SETCC operands must have the same type!"); 5748 assert(VT.isVector() == N1.getValueType().isVector() && 5749 "SETCC type should be vector iff the operand type is vector!"); 5750 assert((!VT.isVector() || VT.getVectorElementCount() == 5751 N1.getValueType().getVectorElementCount()) && 5752 "SETCC vector element counts must match!"); 5753 // Use FoldSetCC to simplify SETCC's. 5754 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5755 return V; 5756 // Vector constant folding. 5757 SDValue Ops[] = {N1, N2, N3}; 5758 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5759 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5760 return V; 5761 } 5762 break; 5763 } 5764 case ISD::SELECT: 5765 case ISD::VSELECT: 5766 if (SDValue V = simplifySelect(N1, N2, N3)) 5767 return V; 5768 break; 5769 case ISD::VECTOR_SHUFFLE: 5770 llvm_unreachable("should use getVectorShuffle constructor!"); 5771 case ISD::INSERT_VECTOR_ELT: { 5772 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5773 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5774 // for scalable vectors where we will generate appropriate code to 5775 // deal with out-of-bounds cases correctly. 5776 if (N3C && N1.getValueType().isFixedLengthVector() && 5777 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5778 return getUNDEF(VT); 5779 5780 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5781 if (N3.isUndef()) 5782 return getUNDEF(VT); 5783 5784 // If the inserted element is an UNDEF, just use the input vector. 5785 if (N2.isUndef()) 5786 return N1; 5787 5788 break; 5789 } 5790 case ISD::INSERT_SUBVECTOR: { 5791 // Inserting undef into undef is still undef. 5792 if (N1.isUndef() && N2.isUndef()) 5793 return getUNDEF(VT); 5794 5795 EVT N2VT = N2.getValueType(); 5796 assert(VT == N1.getValueType() && 5797 "Dest and insert subvector source types must match!"); 5798 assert(VT.isVector() && N2VT.isVector() && 5799 "Insert subvector VTs must be vectors!"); 5800 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5801 "Cannot insert a scalable vector into a fixed length vector!"); 5802 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5803 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5804 "Insert subvector must be from smaller vector to larger vector!"); 5805 assert(isa<ConstantSDNode>(N3) && 5806 "Insert subvector index must be constant"); 5807 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5808 (N2VT.getVectorMinNumElements() + 5809 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5810 VT.getVectorMinNumElements()) && 5811 "Insert subvector overflow!"); 5812 5813 // Trivial insertion. 5814 if (VT == N2VT) 5815 return N2; 5816 5817 // If this is an insert of an extracted vector into an undef vector, we 5818 // can just use the input to the extract. 5819 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5820 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5821 return N2.getOperand(0); 5822 break; 5823 } 5824 case ISD::BITCAST: 5825 // Fold bit_convert nodes from a type to themselves. 5826 if (N1.getValueType() == VT) 5827 return N1; 5828 break; 5829 } 5830 5831 // Memoize node if it doesn't produce a flag. 5832 SDNode *N; 5833 SDVTList VTs = getVTList(VT); 5834 SDValue Ops[] = {N1, N2, N3}; 5835 if (VT != MVT::Glue) { 5836 FoldingSetNodeID ID; 5837 AddNodeIDNode(ID, Opcode, VTs, Ops); 5838 void *IP = nullptr; 5839 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5840 E->intersectFlagsWith(Flags); 5841 return SDValue(E, 0); 5842 } 5843 5844 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5845 N->setFlags(Flags); 5846 createOperands(N, Ops); 5847 CSEMap.InsertNode(N, IP); 5848 } else { 5849 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5850 createOperands(N, Ops); 5851 } 5852 5853 InsertNode(N); 5854 SDValue V = SDValue(N, 0); 5855 NewSDValueDbgMsg(V, "Creating new node: ", this); 5856 return V; 5857 } 5858 5859 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5860 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5861 SDValue Ops[] = { N1, N2, N3, N4 }; 5862 return getNode(Opcode, DL, VT, Ops); 5863 } 5864 5865 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5866 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5867 SDValue N5) { 5868 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5869 return getNode(Opcode, DL, VT, Ops); 5870 } 5871 5872 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5873 /// the incoming stack arguments to be loaded from the stack. 5874 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5875 SmallVector<SDValue, 8> ArgChains; 5876 5877 // Include the original chain at the beginning of the list. When this is 5878 // used by target LowerCall hooks, this helps legalize find the 5879 // CALLSEQ_BEGIN node. 5880 ArgChains.push_back(Chain); 5881 5882 // Add a chain value for each stack argument. 5883 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5884 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5885 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5886 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5887 if (FI->getIndex() < 0) 5888 ArgChains.push_back(SDValue(L, 1)); 5889 5890 // Build a tokenfactor for all the chains. 5891 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5892 } 5893 5894 /// getMemsetValue - Vectorized representation of the memset value 5895 /// operand. 5896 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5897 const SDLoc &dl) { 5898 assert(!Value.isUndef()); 5899 5900 unsigned NumBits = VT.getScalarSizeInBits(); 5901 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5902 assert(C->getAPIntValue().getBitWidth() == 8); 5903 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5904 if (VT.isInteger()) { 5905 bool IsOpaque = VT.getSizeInBits() > 64 || 5906 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5907 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5908 } 5909 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5910 VT); 5911 } 5912 5913 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5914 EVT IntVT = VT.getScalarType(); 5915 if (!IntVT.isInteger()) 5916 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5917 5918 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5919 if (NumBits > 8) { 5920 // Use a multiplication with 0x010101... to extend the input to the 5921 // required length. 5922 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5923 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5924 DAG.getConstant(Magic, dl, IntVT)); 5925 } 5926 5927 if (VT != Value.getValueType() && !VT.isInteger()) 5928 Value = DAG.getBitcast(VT.getScalarType(), Value); 5929 if (VT != Value.getValueType()) 5930 Value = DAG.getSplatBuildVector(VT, dl, Value); 5931 5932 return Value; 5933 } 5934 5935 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5936 /// used when a memcpy is turned into a memset when the source is a constant 5937 /// string ptr. 5938 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5939 const TargetLowering &TLI, 5940 const ConstantDataArraySlice &Slice) { 5941 // Handle vector with all elements zero. 5942 if (Slice.Array == nullptr) { 5943 if (VT.isInteger()) 5944 return DAG.getConstant(0, dl, VT); 5945 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5946 return DAG.getConstantFP(0.0, dl, VT); 5947 else if (VT.isVector()) { 5948 unsigned NumElts = VT.getVectorNumElements(); 5949 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5950 return DAG.getNode(ISD::BITCAST, dl, VT, 5951 DAG.getConstant(0, dl, 5952 EVT::getVectorVT(*DAG.getContext(), 5953 EltVT, NumElts))); 5954 } else 5955 llvm_unreachable("Expected type!"); 5956 } 5957 5958 assert(!VT.isVector() && "Can't handle vector type here!"); 5959 unsigned NumVTBits = VT.getSizeInBits(); 5960 unsigned NumVTBytes = NumVTBits / 8; 5961 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5962 5963 APInt Val(NumVTBits, 0); 5964 if (DAG.getDataLayout().isLittleEndian()) { 5965 for (unsigned i = 0; i != NumBytes; ++i) 5966 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5967 } else { 5968 for (unsigned i = 0; i != NumBytes; ++i) 5969 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5970 } 5971 5972 // If the "cost" of materializing the integer immediate is less than the cost 5973 // of a load, then it is cost effective to turn the load into the immediate. 5974 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5975 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5976 return DAG.getConstant(Val, dl, VT); 5977 return SDValue(nullptr, 0); 5978 } 5979 5980 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5981 const SDLoc &DL, 5982 const SDNodeFlags Flags) { 5983 EVT VT = Base.getValueType(); 5984 SDValue Index; 5985 5986 if (Offset.isScalable()) 5987 Index = getVScale(DL, Base.getValueType(), 5988 APInt(Base.getValueSizeInBits().getFixedSize(), 5989 Offset.getKnownMinSize())); 5990 else 5991 Index = getConstant(Offset.getFixedSize(), DL, VT); 5992 5993 return getMemBasePlusOffset(Base, Index, DL, Flags); 5994 } 5995 5996 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5997 const SDLoc &DL, 5998 const SDNodeFlags Flags) { 5999 assert(Offset.getValueType().isInteger()); 6000 EVT BasePtrVT = Ptr.getValueType(); 6001 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6002 } 6003 6004 /// Returns true if memcpy source is constant data. 6005 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6006 uint64_t SrcDelta = 0; 6007 GlobalAddressSDNode *G = nullptr; 6008 if (Src.getOpcode() == ISD::GlobalAddress) 6009 G = cast<GlobalAddressSDNode>(Src); 6010 else if (Src.getOpcode() == ISD::ADD && 6011 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6012 Src.getOperand(1).getOpcode() == ISD::Constant) { 6013 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6014 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6015 } 6016 if (!G) 6017 return false; 6018 6019 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6020 SrcDelta + G->getOffset()); 6021 } 6022 6023 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6024 SelectionDAG &DAG) { 6025 // On Darwin, -Os means optimize for size without hurting performance, so 6026 // only really optimize for size when -Oz (MinSize) is used. 6027 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6028 return MF.getFunction().hasMinSize(); 6029 return DAG.shouldOptForSize(); 6030 } 6031 6032 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6033 SmallVector<SDValue, 32> &OutChains, unsigned From, 6034 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6035 SmallVector<SDValue, 16> &OutStoreChains) { 6036 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6037 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6038 SmallVector<SDValue, 16> GluedLoadChains; 6039 for (unsigned i = From; i < To; ++i) { 6040 OutChains.push_back(OutLoadChains[i]); 6041 GluedLoadChains.push_back(OutLoadChains[i]); 6042 } 6043 6044 // Chain for all loads. 6045 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6046 GluedLoadChains); 6047 6048 for (unsigned i = From; i < To; ++i) { 6049 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6050 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6051 ST->getBasePtr(), ST->getMemoryVT(), 6052 ST->getMemOperand()); 6053 OutChains.push_back(NewStore); 6054 } 6055 } 6056 6057 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6058 SDValue Chain, SDValue Dst, SDValue Src, 6059 uint64_t Size, Align Alignment, 6060 bool isVol, bool AlwaysInline, 6061 MachinePointerInfo DstPtrInfo, 6062 MachinePointerInfo SrcPtrInfo) { 6063 // Turn a memcpy of undef to nop. 6064 // FIXME: We need to honor volatile even is Src is undef. 6065 if (Src.isUndef()) 6066 return Chain; 6067 6068 // Expand memcpy to a series of load and store ops if the size operand falls 6069 // below a certain threshold. 6070 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6071 // rather than maybe a humongous number of loads and stores. 6072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6073 const DataLayout &DL = DAG.getDataLayout(); 6074 LLVMContext &C = *DAG.getContext(); 6075 std::vector<EVT> MemOps; 6076 bool DstAlignCanChange = false; 6077 MachineFunction &MF = DAG.getMachineFunction(); 6078 MachineFrameInfo &MFI = MF.getFrameInfo(); 6079 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6080 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6081 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6082 DstAlignCanChange = true; 6083 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6084 if (!SrcAlign || Alignment > *SrcAlign) 6085 SrcAlign = Alignment; 6086 assert(SrcAlign && "SrcAlign must be set"); 6087 ConstantDataArraySlice Slice; 6088 // If marked as volatile, perform a copy even when marked as constant. 6089 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6090 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6091 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6092 const MemOp Op = isZeroConstant 6093 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6094 /*IsZeroMemset*/ true, isVol) 6095 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6096 *SrcAlign, isVol, CopyFromConstant); 6097 if (!TLI.findOptimalMemOpLowering( 6098 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6099 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6100 return SDValue(); 6101 6102 if (DstAlignCanChange) { 6103 Type *Ty = MemOps[0].getTypeForEVT(C); 6104 Align NewAlign = DL.getABITypeAlign(Ty); 6105 6106 // Don't promote to an alignment that would require dynamic stack 6107 // realignment. 6108 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6109 if (!TRI->needsStackRealignment(MF)) 6110 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6111 NewAlign = NewAlign / 2; 6112 6113 if (NewAlign > Alignment) { 6114 // Give the stack frame object a larger alignment if needed. 6115 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6116 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6117 Alignment = NewAlign; 6118 } 6119 } 6120 6121 MachineMemOperand::Flags MMOFlags = 6122 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6123 SmallVector<SDValue, 16> OutLoadChains; 6124 SmallVector<SDValue, 16> OutStoreChains; 6125 SmallVector<SDValue, 32> OutChains; 6126 unsigned NumMemOps = MemOps.size(); 6127 uint64_t SrcOff = 0, DstOff = 0; 6128 for (unsigned i = 0; i != NumMemOps; ++i) { 6129 EVT VT = MemOps[i]; 6130 unsigned VTSize = VT.getSizeInBits() / 8; 6131 SDValue Value, Store; 6132 6133 if (VTSize > Size) { 6134 // Issuing an unaligned load / store pair that overlaps with the previous 6135 // pair. Adjust the offset accordingly. 6136 assert(i == NumMemOps-1 && i != 0); 6137 SrcOff -= VTSize - Size; 6138 DstOff -= VTSize - Size; 6139 } 6140 6141 if (CopyFromConstant && 6142 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6143 // It's unlikely a store of a vector immediate can be done in a single 6144 // instruction. It would require a load from a constantpool first. 6145 // We only handle zero vectors here. 6146 // FIXME: Handle other cases where store of vector immediate is done in 6147 // a single instruction. 6148 ConstantDataArraySlice SubSlice; 6149 if (SrcOff < Slice.Length) { 6150 SubSlice = Slice; 6151 SubSlice.move(SrcOff); 6152 } else { 6153 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6154 SubSlice.Array = nullptr; 6155 SubSlice.Offset = 0; 6156 SubSlice.Length = VTSize; 6157 } 6158 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6159 if (Value.getNode()) { 6160 Store = DAG.getStore( 6161 Chain, dl, Value, 6162 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6163 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6164 OutChains.push_back(Store); 6165 } 6166 } 6167 6168 if (!Store.getNode()) { 6169 // The type might not be legal for the target. This should only happen 6170 // if the type is smaller than a legal type, as on PPC, so the right 6171 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6172 // to Load/Store if NVT==VT. 6173 // FIXME does the case above also need this? 6174 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6175 assert(NVT.bitsGE(VT)); 6176 6177 bool isDereferenceable = 6178 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6179 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6180 if (isDereferenceable) 6181 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6182 6183 Value = DAG.getExtLoad( 6184 ISD::EXTLOAD, dl, NVT, Chain, 6185 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6186 SrcPtrInfo.getWithOffset(SrcOff), VT, 6187 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6188 OutLoadChains.push_back(Value.getValue(1)); 6189 6190 Store = DAG.getTruncStore( 6191 Chain, dl, Value, 6192 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6193 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6194 OutStoreChains.push_back(Store); 6195 } 6196 SrcOff += VTSize; 6197 DstOff += VTSize; 6198 Size -= VTSize; 6199 } 6200 6201 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6202 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6203 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6204 6205 if (NumLdStInMemcpy) { 6206 // It may be that memcpy might be converted to memset if it's memcpy 6207 // of constants. In such a case, we won't have loads and stores, but 6208 // just stores. In the absence of loads, there is nothing to gang up. 6209 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6210 // If target does not care, just leave as it. 6211 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6212 OutChains.push_back(OutLoadChains[i]); 6213 OutChains.push_back(OutStoreChains[i]); 6214 } 6215 } else { 6216 // Ld/St less than/equal limit set by target. 6217 if (NumLdStInMemcpy <= GluedLdStLimit) { 6218 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6219 NumLdStInMemcpy, OutLoadChains, 6220 OutStoreChains); 6221 } else { 6222 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6223 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6224 unsigned GlueIter = 0; 6225 6226 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6227 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6228 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6229 6230 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6231 OutLoadChains, OutStoreChains); 6232 GlueIter += GluedLdStLimit; 6233 } 6234 6235 // Residual ld/st. 6236 if (RemainingLdStInMemcpy) { 6237 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6238 RemainingLdStInMemcpy, OutLoadChains, 6239 OutStoreChains); 6240 } 6241 } 6242 } 6243 } 6244 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6245 } 6246 6247 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6248 SDValue Chain, SDValue Dst, SDValue Src, 6249 uint64_t Size, Align Alignment, 6250 bool isVol, bool AlwaysInline, 6251 MachinePointerInfo DstPtrInfo, 6252 MachinePointerInfo SrcPtrInfo) { 6253 // Turn a memmove of undef to nop. 6254 // FIXME: We need to honor volatile even is Src is undef. 6255 if (Src.isUndef()) 6256 return Chain; 6257 6258 // Expand memmove to a series of load and store ops if the size operand falls 6259 // below a certain threshold. 6260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6261 const DataLayout &DL = DAG.getDataLayout(); 6262 LLVMContext &C = *DAG.getContext(); 6263 std::vector<EVT> MemOps; 6264 bool DstAlignCanChange = false; 6265 MachineFunction &MF = DAG.getMachineFunction(); 6266 MachineFrameInfo &MFI = MF.getFrameInfo(); 6267 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6268 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6269 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6270 DstAlignCanChange = true; 6271 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6272 if (!SrcAlign || Alignment > *SrcAlign) 6273 SrcAlign = Alignment; 6274 assert(SrcAlign && "SrcAlign must be set"); 6275 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6276 if (!TLI.findOptimalMemOpLowering( 6277 MemOps, Limit, 6278 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6279 /*IsVolatile*/ true), 6280 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6281 MF.getFunction().getAttributes())) 6282 return SDValue(); 6283 6284 if (DstAlignCanChange) { 6285 Type *Ty = MemOps[0].getTypeForEVT(C); 6286 Align NewAlign = DL.getABITypeAlign(Ty); 6287 if (NewAlign > Alignment) { 6288 // Give the stack frame object a larger alignment if needed. 6289 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6290 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6291 Alignment = NewAlign; 6292 } 6293 } 6294 6295 MachineMemOperand::Flags MMOFlags = 6296 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6297 uint64_t SrcOff = 0, DstOff = 0; 6298 SmallVector<SDValue, 8> LoadValues; 6299 SmallVector<SDValue, 8> LoadChains; 6300 SmallVector<SDValue, 8> OutChains; 6301 unsigned NumMemOps = MemOps.size(); 6302 for (unsigned i = 0; i < NumMemOps; i++) { 6303 EVT VT = MemOps[i]; 6304 unsigned VTSize = VT.getSizeInBits() / 8; 6305 SDValue Value; 6306 6307 bool isDereferenceable = 6308 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6309 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6310 if (isDereferenceable) 6311 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6312 6313 Value = 6314 DAG.getLoad(VT, dl, Chain, 6315 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6316 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6317 LoadValues.push_back(Value); 6318 LoadChains.push_back(Value.getValue(1)); 6319 SrcOff += VTSize; 6320 } 6321 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6322 OutChains.clear(); 6323 for (unsigned i = 0; i < NumMemOps; i++) { 6324 EVT VT = MemOps[i]; 6325 unsigned VTSize = VT.getSizeInBits() / 8; 6326 SDValue Store; 6327 6328 Store = 6329 DAG.getStore(Chain, dl, LoadValues[i], 6330 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6331 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6332 OutChains.push_back(Store); 6333 DstOff += VTSize; 6334 } 6335 6336 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6337 } 6338 6339 /// Lower the call to 'memset' intrinsic function into a series of store 6340 /// operations. 6341 /// 6342 /// \param DAG Selection DAG where lowered code is placed. 6343 /// \param dl Link to corresponding IR location. 6344 /// \param Chain Control flow dependency. 6345 /// \param Dst Pointer to destination memory location. 6346 /// \param Src Value of byte to write into the memory. 6347 /// \param Size Number of bytes to write. 6348 /// \param Alignment Alignment of the destination in bytes. 6349 /// \param isVol True if destination is volatile. 6350 /// \param DstPtrInfo IR information on the memory pointer. 6351 /// \returns New head in the control flow, if lowering was successful, empty 6352 /// SDValue otherwise. 6353 /// 6354 /// The function tries to replace 'llvm.memset' intrinsic with several store 6355 /// operations and value calculation code. This is usually profitable for small 6356 /// memory size. 6357 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6358 SDValue Chain, SDValue Dst, SDValue Src, 6359 uint64_t Size, Align Alignment, bool isVol, 6360 MachinePointerInfo DstPtrInfo) { 6361 // Turn a memset of undef to nop. 6362 // FIXME: We need to honor volatile even is Src is undef. 6363 if (Src.isUndef()) 6364 return Chain; 6365 6366 // Expand memset to a series of load/store ops if the size operand 6367 // falls below a certain threshold. 6368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6369 std::vector<EVT> MemOps; 6370 bool DstAlignCanChange = false; 6371 MachineFunction &MF = DAG.getMachineFunction(); 6372 MachineFrameInfo &MFI = MF.getFrameInfo(); 6373 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6374 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6375 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6376 DstAlignCanChange = true; 6377 bool IsZeroVal = 6378 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6379 if (!TLI.findOptimalMemOpLowering( 6380 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6381 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6382 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6383 return SDValue(); 6384 6385 if (DstAlignCanChange) { 6386 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6387 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6388 if (NewAlign > Alignment) { 6389 // Give the stack frame object a larger alignment if needed. 6390 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6391 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6392 Alignment = NewAlign; 6393 } 6394 } 6395 6396 SmallVector<SDValue, 8> OutChains; 6397 uint64_t DstOff = 0; 6398 unsigned NumMemOps = MemOps.size(); 6399 6400 // Find the largest store and generate the bit pattern for it. 6401 EVT LargestVT = MemOps[0]; 6402 for (unsigned i = 1; i < NumMemOps; i++) 6403 if (MemOps[i].bitsGT(LargestVT)) 6404 LargestVT = MemOps[i]; 6405 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6406 6407 for (unsigned i = 0; i < NumMemOps; i++) { 6408 EVT VT = MemOps[i]; 6409 unsigned VTSize = VT.getSizeInBits() / 8; 6410 if (VTSize > Size) { 6411 // Issuing an unaligned load / store pair that overlaps with the previous 6412 // pair. Adjust the offset accordingly. 6413 assert(i == NumMemOps-1 && i != 0); 6414 DstOff -= VTSize - Size; 6415 } 6416 6417 // If this store is smaller than the largest store see whether we can get 6418 // the smaller value for free with a truncate. 6419 SDValue Value = MemSetValue; 6420 if (VT.bitsLT(LargestVT)) { 6421 if (!LargestVT.isVector() && !VT.isVector() && 6422 TLI.isTruncateFree(LargestVT, VT)) 6423 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6424 else 6425 Value = getMemsetValue(Src, VT, DAG, dl); 6426 } 6427 assert(Value.getValueType() == VT && "Value with wrong type."); 6428 SDValue Store = DAG.getStore( 6429 Chain, dl, Value, 6430 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6431 DstPtrInfo.getWithOffset(DstOff), Alignment, 6432 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6433 OutChains.push_back(Store); 6434 DstOff += VT.getSizeInBits() / 8; 6435 Size -= VTSize; 6436 } 6437 6438 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6439 } 6440 6441 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6442 unsigned AS) { 6443 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6444 // pointer operands can be losslessly bitcasted to pointers of address space 0 6445 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6446 report_fatal_error("cannot lower memory intrinsic in address space " + 6447 Twine(AS)); 6448 } 6449 } 6450 6451 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6452 SDValue Src, SDValue Size, Align Alignment, 6453 bool isVol, bool AlwaysInline, bool isTailCall, 6454 MachinePointerInfo DstPtrInfo, 6455 MachinePointerInfo SrcPtrInfo) { 6456 // Check to see if we should lower the memcpy to loads and stores first. 6457 // For cases within the target-specified limits, this is the best choice. 6458 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6459 if (ConstantSize) { 6460 // Memcpy with size zero? Just return the original chain. 6461 if (ConstantSize->isNullValue()) 6462 return Chain; 6463 6464 SDValue Result = getMemcpyLoadsAndStores( 6465 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6466 isVol, false, DstPtrInfo, SrcPtrInfo); 6467 if (Result.getNode()) 6468 return Result; 6469 } 6470 6471 // Then check to see if we should lower the memcpy with target-specific 6472 // code. If the target chooses to do this, this is the next best. 6473 if (TSI) { 6474 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6475 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6476 DstPtrInfo, SrcPtrInfo); 6477 if (Result.getNode()) 6478 return Result; 6479 } 6480 6481 // If we really need inline code and the target declined to provide it, 6482 // use a (potentially long) sequence of loads and stores. 6483 if (AlwaysInline) { 6484 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6485 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6486 ConstantSize->getZExtValue(), Alignment, 6487 isVol, true, DstPtrInfo, SrcPtrInfo); 6488 } 6489 6490 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6491 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6492 6493 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6494 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6495 // respect volatile, so they may do things like read or write memory 6496 // beyond the given memory regions. But fixing this isn't easy, and most 6497 // people don't care. 6498 6499 // Emit a library call. 6500 TargetLowering::ArgListTy Args; 6501 TargetLowering::ArgListEntry Entry; 6502 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6503 Entry.Node = Dst; Args.push_back(Entry); 6504 Entry.Node = Src; Args.push_back(Entry); 6505 6506 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6507 Entry.Node = Size; Args.push_back(Entry); 6508 // FIXME: pass in SDLoc 6509 TargetLowering::CallLoweringInfo CLI(*this); 6510 CLI.setDebugLoc(dl) 6511 .setChain(Chain) 6512 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6513 Dst.getValueType().getTypeForEVT(*getContext()), 6514 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6515 TLI->getPointerTy(getDataLayout())), 6516 std::move(Args)) 6517 .setDiscardResult() 6518 .setTailCall(isTailCall); 6519 6520 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6521 return CallResult.second; 6522 } 6523 6524 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6525 SDValue Dst, unsigned DstAlign, 6526 SDValue Src, unsigned SrcAlign, 6527 SDValue Size, Type *SizeTy, 6528 unsigned ElemSz, bool isTailCall, 6529 MachinePointerInfo DstPtrInfo, 6530 MachinePointerInfo SrcPtrInfo) { 6531 // Emit a library call. 6532 TargetLowering::ArgListTy Args; 6533 TargetLowering::ArgListEntry Entry; 6534 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6535 Entry.Node = Dst; 6536 Args.push_back(Entry); 6537 6538 Entry.Node = Src; 6539 Args.push_back(Entry); 6540 6541 Entry.Ty = SizeTy; 6542 Entry.Node = Size; 6543 Args.push_back(Entry); 6544 6545 RTLIB::Libcall LibraryCall = 6546 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6547 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6548 report_fatal_error("Unsupported element size"); 6549 6550 TargetLowering::CallLoweringInfo CLI(*this); 6551 CLI.setDebugLoc(dl) 6552 .setChain(Chain) 6553 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6554 Type::getVoidTy(*getContext()), 6555 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6556 TLI->getPointerTy(getDataLayout())), 6557 std::move(Args)) 6558 .setDiscardResult() 6559 .setTailCall(isTailCall); 6560 6561 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6562 return CallResult.second; 6563 } 6564 6565 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6566 SDValue Src, SDValue Size, Align Alignment, 6567 bool isVol, bool isTailCall, 6568 MachinePointerInfo DstPtrInfo, 6569 MachinePointerInfo SrcPtrInfo) { 6570 // Check to see if we should lower the memmove to loads and stores first. 6571 // For cases within the target-specified limits, this is the best choice. 6572 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6573 if (ConstantSize) { 6574 // Memmove with size zero? Just return the original chain. 6575 if (ConstantSize->isNullValue()) 6576 return Chain; 6577 6578 SDValue Result = getMemmoveLoadsAndStores( 6579 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6580 isVol, false, DstPtrInfo, SrcPtrInfo); 6581 if (Result.getNode()) 6582 return Result; 6583 } 6584 6585 // Then check to see if we should lower the memmove with target-specific 6586 // code. If the target chooses to do this, this is the next best. 6587 if (TSI) { 6588 SDValue Result = 6589 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6590 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6591 if (Result.getNode()) 6592 return Result; 6593 } 6594 6595 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6596 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6597 6598 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6599 // not be safe. See memcpy above for more details. 6600 6601 // Emit a library call. 6602 TargetLowering::ArgListTy Args; 6603 TargetLowering::ArgListEntry Entry; 6604 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6605 Entry.Node = Dst; Args.push_back(Entry); 6606 Entry.Node = Src; Args.push_back(Entry); 6607 6608 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6609 Entry.Node = Size; Args.push_back(Entry); 6610 // FIXME: pass in SDLoc 6611 TargetLowering::CallLoweringInfo CLI(*this); 6612 CLI.setDebugLoc(dl) 6613 .setChain(Chain) 6614 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6615 Dst.getValueType().getTypeForEVT(*getContext()), 6616 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6617 TLI->getPointerTy(getDataLayout())), 6618 std::move(Args)) 6619 .setDiscardResult() 6620 .setTailCall(isTailCall); 6621 6622 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6623 return CallResult.second; 6624 } 6625 6626 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6627 SDValue Dst, unsigned DstAlign, 6628 SDValue Src, unsigned SrcAlign, 6629 SDValue Size, Type *SizeTy, 6630 unsigned ElemSz, bool isTailCall, 6631 MachinePointerInfo DstPtrInfo, 6632 MachinePointerInfo SrcPtrInfo) { 6633 // Emit a library call. 6634 TargetLowering::ArgListTy Args; 6635 TargetLowering::ArgListEntry Entry; 6636 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6637 Entry.Node = Dst; 6638 Args.push_back(Entry); 6639 6640 Entry.Node = Src; 6641 Args.push_back(Entry); 6642 6643 Entry.Ty = SizeTy; 6644 Entry.Node = Size; 6645 Args.push_back(Entry); 6646 6647 RTLIB::Libcall LibraryCall = 6648 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6649 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6650 report_fatal_error("Unsupported element size"); 6651 6652 TargetLowering::CallLoweringInfo CLI(*this); 6653 CLI.setDebugLoc(dl) 6654 .setChain(Chain) 6655 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6656 Type::getVoidTy(*getContext()), 6657 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6658 TLI->getPointerTy(getDataLayout())), 6659 std::move(Args)) 6660 .setDiscardResult() 6661 .setTailCall(isTailCall); 6662 6663 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6664 return CallResult.second; 6665 } 6666 6667 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6668 SDValue Src, SDValue Size, Align Alignment, 6669 bool isVol, bool isTailCall, 6670 MachinePointerInfo DstPtrInfo) { 6671 // Check to see if we should lower the memset to stores first. 6672 // For cases within the target-specified limits, this is the best choice. 6673 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6674 if (ConstantSize) { 6675 // Memset with size zero? Just return the original chain. 6676 if (ConstantSize->isNullValue()) 6677 return Chain; 6678 6679 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6680 ConstantSize->getZExtValue(), Alignment, 6681 isVol, DstPtrInfo); 6682 6683 if (Result.getNode()) 6684 return Result; 6685 } 6686 6687 // Then check to see if we should lower the memset with target-specific 6688 // code. If the target chooses to do this, this is the next best. 6689 if (TSI) { 6690 SDValue Result = TSI->EmitTargetCodeForMemset( 6691 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6692 if (Result.getNode()) 6693 return Result; 6694 } 6695 6696 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6697 6698 // Emit a library call. 6699 TargetLowering::ArgListTy Args; 6700 TargetLowering::ArgListEntry Entry; 6701 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6702 Args.push_back(Entry); 6703 Entry.Node = Src; 6704 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6705 Args.push_back(Entry); 6706 Entry.Node = Size; 6707 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6708 Args.push_back(Entry); 6709 6710 // FIXME: pass in SDLoc 6711 TargetLowering::CallLoweringInfo CLI(*this); 6712 CLI.setDebugLoc(dl) 6713 .setChain(Chain) 6714 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6715 Dst.getValueType().getTypeForEVT(*getContext()), 6716 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6717 TLI->getPointerTy(getDataLayout())), 6718 std::move(Args)) 6719 .setDiscardResult() 6720 .setTailCall(isTailCall); 6721 6722 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6723 return CallResult.second; 6724 } 6725 6726 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6727 SDValue Dst, unsigned DstAlign, 6728 SDValue Value, SDValue Size, Type *SizeTy, 6729 unsigned ElemSz, bool isTailCall, 6730 MachinePointerInfo DstPtrInfo) { 6731 // Emit a library call. 6732 TargetLowering::ArgListTy Args; 6733 TargetLowering::ArgListEntry Entry; 6734 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6735 Entry.Node = Dst; 6736 Args.push_back(Entry); 6737 6738 Entry.Ty = Type::getInt8Ty(*getContext()); 6739 Entry.Node = Value; 6740 Args.push_back(Entry); 6741 6742 Entry.Ty = SizeTy; 6743 Entry.Node = Size; 6744 Args.push_back(Entry); 6745 6746 RTLIB::Libcall LibraryCall = 6747 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6748 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6749 report_fatal_error("Unsupported element size"); 6750 6751 TargetLowering::CallLoweringInfo CLI(*this); 6752 CLI.setDebugLoc(dl) 6753 .setChain(Chain) 6754 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6755 Type::getVoidTy(*getContext()), 6756 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6757 TLI->getPointerTy(getDataLayout())), 6758 std::move(Args)) 6759 .setDiscardResult() 6760 .setTailCall(isTailCall); 6761 6762 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6763 return CallResult.second; 6764 } 6765 6766 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6767 SDVTList VTList, ArrayRef<SDValue> Ops, 6768 MachineMemOperand *MMO) { 6769 FoldingSetNodeID ID; 6770 ID.AddInteger(MemVT.getRawBits()); 6771 AddNodeIDNode(ID, Opcode, VTList, Ops); 6772 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6773 void* IP = nullptr; 6774 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6775 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6776 return SDValue(E, 0); 6777 } 6778 6779 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6780 VTList, MemVT, MMO); 6781 createOperands(N, Ops); 6782 6783 CSEMap.InsertNode(N, IP); 6784 InsertNode(N); 6785 return SDValue(N, 0); 6786 } 6787 6788 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6789 EVT MemVT, SDVTList VTs, SDValue Chain, 6790 SDValue Ptr, SDValue Cmp, SDValue Swp, 6791 MachineMemOperand *MMO) { 6792 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6793 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6794 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6795 6796 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6797 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6798 } 6799 6800 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6801 SDValue Chain, SDValue Ptr, SDValue Val, 6802 MachineMemOperand *MMO) { 6803 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6804 Opcode == ISD::ATOMIC_LOAD_SUB || 6805 Opcode == ISD::ATOMIC_LOAD_AND || 6806 Opcode == ISD::ATOMIC_LOAD_CLR || 6807 Opcode == ISD::ATOMIC_LOAD_OR || 6808 Opcode == ISD::ATOMIC_LOAD_XOR || 6809 Opcode == ISD::ATOMIC_LOAD_NAND || 6810 Opcode == ISD::ATOMIC_LOAD_MIN || 6811 Opcode == ISD::ATOMIC_LOAD_MAX || 6812 Opcode == ISD::ATOMIC_LOAD_UMIN || 6813 Opcode == ISD::ATOMIC_LOAD_UMAX || 6814 Opcode == ISD::ATOMIC_LOAD_FADD || 6815 Opcode == ISD::ATOMIC_LOAD_FSUB || 6816 Opcode == ISD::ATOMIC_SWAP || 6817 Opcode == ISD::ATOMIC_STORE) && 6818 "Invalid Atomic Op"); 6819 6820 EVT VT = Val.getValueType(); 6821 6822 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6823 getVTList(VT, MVT::Other); 6824 SDValue Ops[] = {Chain, Ptr, Val}; 6825 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6826 } 6827 6828 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6829 EVT VT, SDValue Chain, SDValue Ptr, 6830 MachineMemOperand *MMO) { 6831 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6832 6833 SDVTList VTs = getVTList(VT, MVT::Other); 6834 SDValue Ops[] = {Chain, Ptr}; 6835 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6836 } 6837 6838 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6839 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6840 if (Ops.size() == 1) 6841 return Ops[0]; 6842 6843 SmallVector<EVT, 4> VTs; 6844 VTs.reserve(Ops.size()); 6845 for (unsigned i = 0; i < Ops.size(); ++i) 6846 VTs.push_back(Ops[i].getValueType()); 6847 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6848 } 6849 6850 SDValue SelectionDAG::getMemIntrinsicNode( 6851 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6852 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6853 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6854 if (!Size && MemVT.isScalableVector()) 6855 Size = MemoryLocation::UnknownSize; 6856 else if (!Size) 6857 Size = MemVT.getStoreSize(); 6858 6859 MachineFunction &MF = getMachineFunction(); 6860 MachineMemOperand *MMO = 6861 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6862 6863 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6864 } 6865 6866 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6867 SDVTList VTList, 6868 ArrayRef<SDValue> Ops, EVT MemVT, 6869 MachineMemOperand *MMO) { 6870 assert((Opcode == ISD::INTRINSIC_VOID || 6871 Opcode == ISD::INTRINSIC_W_CHAIN || 6872 Opcode == ISD::PREFETCH || 6873 ((int)Opcode <= std::numeric_limits<int>::max() && 6874 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6875 "Opcode is not a memory-accessing opcode!"); 6876 6877 // Memoize the node unless it returns a flag. 6878 MemIntrinsicSDNode *N; 6879 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6880 FoldingSetNodeID ID; 6881 AddNodeIDNode(ID, Opcode, VTList, Ops); 6882 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6883 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6884 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6885 void *IP = nullptr; 6886 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6887 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6888 return SDValue(E, 0); 6889 } 6890 6891 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6892 VTList, MemVT, MMO); 6893 createOperands(N, Ops); 6894 6895 CSEMap.InsertNode(N, IP); 6896 } else { 6897 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6898 VTList, MemVT, MMO); 6899 createOperands(N, Ops); 6900 } 6901 InsertNode(N); 6902 SDValue V(N, 0); 6903 NewSDValueDbgMsg(V, "Creating new node: ", this); 6904 return V; 6905 } 6906 6907 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6908 SDValue Chain, int FrameIndex, 6909 int64_t Size, int64_t Offset) { 6910 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6911 const auto VTs = getVTList(MVT::Other); 6912 SDValue Ops[2] = { 6913 Chain, 6914 getFrameIndex(FrameIndex, 6915 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6916 true)}; 6917 6918 FoldingSetNodeID ID; 6919 AddNodeIDNode(ID, Opcode, VTs, Ops); 6920 ID.AddInteger(FrameIndex); 6921 ID.AddInteger(Size); 6922 ID.AddInteger(Offset); 6923 void *IP = nullptr; 6924 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6925 return SDValue(E, 0); 6926 6927 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6928 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6929 createOperands(N, Ops); 6930 CSEMap.InsertNode(N, IP); 6931 InsertNode(N); 6932 SDValue V(N, 0); 6933 NewSDValueDbgMsg(V, "Creating new node: ", this); 6934 return V; 6935 } 6936 6937 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 6938 uint64_t Guid, uint64_t Index, 6939 uint32_t Attr) { 6940 const unsigned Opcode = ISD::PSEUDO_PROBE; 6941 const auto VTs = getVTList(MVT::Other); 6942 SDValue Ops[] = {Chain}; 6943 FoldingSetNodeID ID; 6944 AddNodeIDNode(ID, Opcode, VTs, Ops); 6945 ID.AddInteger(Guid); 6946 ID.AddInteger(Index); 6947 void *IP = nullptr; 6948 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 6949 return SDValue(E, 0); 6950 6951 auto *N = newSDNode<PseudoProbeSDNode>( 6952 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 6953 createOperands(N, Ops); 6954 CSEMap.InsertNode(N, IP); 6955 InsertNode(N); 6956 SDValue V(N, 0); 6957 NewSDValueDbgMsg(V, "Creating new node: ", this); 6958 return V; 6959 } 6960 6961 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6962 /// MachinePointerInfo record from it. This is particularly useful because the 6963 /// code generator has many cases where it doesn't bother passing in a 6964 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6965 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6966 SelectionDAG &DAG, SDValue Ptr, 6967 int64_t Offset = 0) { 6968 // If this is FI+Offset, we can model it. 6969 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6970 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6971 FI->getIndex(), Offset); 6972 6973 // If this is (FI+Offset1)+Offset2, we can model it. 6974 if (Ptr.getOpcode() != ISD::ADD || 6975 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6976 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6977 return Info; 6978 6979 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6980 return MachinePointerInfo::getFixedStack( 6981 DAG.getMachineFunction(), FI, 6982 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6983 } 6984 6985 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6986 /// MachinePointerInfo record from it. This is particularly useful because the 6987 /// code generator has many cases where it doesn't bother passing in a 6988 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6989 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6990 SelectionDAG &DAG, SDValue Ptr, 6991 SDValue OffsetOp) { 6992 // If the 'Offset' value isn't a constant, we can't handle this. 6993 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6994 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6995 if (OffsetOp.isUndef()) 6996 return InferPointerInfo(Info, DAG, Ptr); 6997 return Info; 6998 } 6999 7000 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7001 EVT VT, const SDLoc &dl, SDValue Chain, 7002 SDValue Ptr, SDValue Offset, 7003 MachinePointerInfo PtrInfo, EVT MemVT, 7004 Align Alignment, 7005 MachineMemOperand::Flags MMOFlags, 7006 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7007 assert(Chain.getValueType() == MVT::Other && 7008 "Invalid chain type"); 7009 7010 MMOFlags |= MachineMemOperand::MOLoad; 7011 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7012 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7013 // clients. 7014 if (PtrInfo.V.isNull()) 7015 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7016 7017 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7018 MachineFunction &MF = getMachineFunction(); 7019 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7020 Alignment, AAInfo, Ranges); 7021 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7022 } 7023 7024 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7025 EVT VT, const SDLoc &dl, SDValue Chain, 7026 SDValue Ptr, SDValue Offset, EVT MemVT, 7027 MachineMemOperand *MMO) { 7028 if (VT == MemVT) { 7029 ExtType = ISD::NON_EXTLOAD; 7030 } else if (ExtType == ISD::NON_EXTLOAD) { 7031 assert(VT == MemVT && "Non-extending load from different memory type!"); 7032 } else { 7033 // Extending load. 7034 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7035 "Should only be an extending load, not truncating!"); 7036 assert(VT.isInteger() == MemVT.isInteger() && 7037 "Cannot convert from FP to Int or Int -> FP!"); 7038 assert(VT.isVector() == MemVT.isVector() && 7039 "Cannot use an ext load to convert to or from a vector!"); 7040 assert((!VT.isVector() || 7041 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7042 "Cannot use an ext load to change the number of vector elements!"); 7043 } 7044 7045 bool Indexed = AM != ISD::UNINDEXED; 7046 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7047 7048 SDVTList VTs = Indexed ? 7049 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7050 SDValue Ops[] = { Chain, Ptr, Offset }; 7051 FoldingSetNodeID ID; 7052 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7053 ID.AddInteger(MemVT.getRawBits()); 7054 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7055 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7056 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7057 void *IP = nullptr; 7058 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7059 cast<LoadSDNode>(E)->refineAlignment(MMO); 7060 return SDValue(E, 0); 7061 } 7062 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7063 ExtType, MemVT, MMO); 7064 createOperands(N, Ops); 7065 7066 CSEMap.InsertNode(N, IP); 7067 InsertNode(N); 7068 SDValue V(N, 0); 7069 NewSDValueDbgMsg(V, "Creating new node: ", this); 7070 return V; 7071 } 7072 7073 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7074 SDValue Ptr, MachinePointerInfo PtrInfo, 7075 MaybeAlign Alignment, 7076 MachineMemOperand::Flags MMOFlags, 7077 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7078 SDValue Undef = getUNDEF(Ptr.getValueType()); 7079 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7080 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7081 } 7082 7083 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7084 SDValue Ptr, MachineMemOperand *MMO) { 7085 SDValue Undef = getUNDEF(Ptr.getValueType()); 7086 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7087 VT, MMO); 7088 } 7089 7090 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7091 EVT VT, SDValue Chain, SDValue Ptr, 7092 MachinePointerInfo PtrInfo, EVT MemVT, 7093 MaybeAlign Alignment, 7094 MachineMemOperand::Flags MMOFlags, 7095 const AAMDNodes &AAInfo) { 7096 SDValue Undef = getUNDEF(Ptr.getValueType()); 7097 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7098 MemVT, Alignment, MMOFlags, AAInfo); 7099 } 7100 7101 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7102 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7103 MachineMemOperand *MMO) { 7104 SDValue Undef = getUNDEF(Ptr.getValueType()); 7105 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7106 MemVT, MMO); 7107 } 7108 7109 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7110 SDValue Base, SDValue Offset, 7111 ISD::MemIndexedMode AM) { 7112 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7113 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7114 // Don't propagate the invariant or dereferenceable flags. 7115 auto MMOFlags = 7116 LD->getMemOperand()->getFlags() & 7117 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7118 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7119 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7120 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7121 } 7122 7123 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7124 SDValue Ptr, MachinePointerInfo PtrInfo, 7125 Align Alignment, 7126 MachineMemOperand::Flags MMOFlags, 7127 const AAMDNodes &AAInfo) { 7128 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7129 7130 MMOFlags |= MachineMemOperand::MOStore; 7131 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7132 7133 if (PtrInfo.V.isNull()) 7134 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7135 7136 MachineFunction &MF = getMachineFunction(); 7137 uint64_t Size = 7138 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7139 MachineMemOperand *MMO = 7140 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7141 return getStore(Chain, dl, Val, Ptr, MMO); 7142 } 7143 7144 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7145 SDValue Ptr, MachineMemOperand *MMO) { 7146 assert(Chain.getValueType() == MVT::Other && 7147 "Invalid chain type"); 7148 EVT VT = Val.getValueType(); 7149 SDVTList VTs = getVTList(MVT::Other); 7150 SDValue Undef = getUNDEF(Ptr.getValueType()); 7151 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7152 FoldingSetNodeID ID; 7153 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7154 ID.AddInteger(VT.getRawBits()); 7155 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7156 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7157 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7158 void *IP = nullptr; 7159 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7160 cast<StoreSDNode>(E)->refineAlignment(MMO); 7161 return SDValue(E, 0); 7162 } 7163 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7164 ISD::UNINDEXED, false, VT, MMO); 7165 createOperands(N, Ops); 7166 7167 CSEMap.InsertNode(N, IP); 7168 InsertNode(N); 7169 SDValue V(N, 0); 7170 NewSDValueDbgMsg(V, "Creating new node: ", this); 7171 return V; 7172 } 7173 7174 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7175 SDValue Ptr, MachinePointerInfo PtrInfo, 7176 EVT SVT, Align Alignment, 7177 MachineMemOperand::Flags MMOFlags, 7178 const AAMDNodes &AAInfo) { 7179 assert(Chain.getValueType() == MVT::Other && 7180 "Invalid chain type"); 7181 7182 MMOFlags |= MachineMemOperand::MOStore; 7183 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7184 7185 if (PtrInfo.V.isNull()) 7186 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7187 7188 MachineFunction &MF = getMachineFunction(); 7189 MachineMemOperand *MMO = MF.getMachineMemOperand( 7190 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7191 Alignment, AAInfo); 7192 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7193 } 7194 7195 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7196 SDValue Ptr, EVT SVT, 7197 MachineMemOperand *MMO) { 7198 EVT VT = Val.getValueType(); 7199 7200 assert(Chain.getValueType() == MVT::Other && 7201 "Invalid chain type"); 7202 if (VT == SVT) 7203 return getStore(Chain, dl, Val, Ptr, MMO); 7204 7205 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7206 "Should only be a truncating store, not extending!"); 7207 assert(VT.isInteger() == SVT.isInteger() && 7208 "Can't do FP-INT conversion!"); 7209 assert(VT.isVector() == SVT.isVector() && 7210 "Cannot use trunc store to convert to or from a vector!"); 7211 assert((!VT.isVector() || 7212 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7213 "Cannot use trunc store to change the number of vector elements!"); 7214 7215 SDVTList VTs = getVTList(MVT::Other); 7216 SDValue Undef = getUNDEF(Ptr.getValueType()); 7217 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7218 FoldingSetNodeID ID; 7219 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7220 ID.AddInteger(SVT.getRawBits()); 7221 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7222 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7223 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7224 void *IP = nullptr; 7225 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7226 cast<StoreSDNode>(E)->refineAlignment(MMO); 7227 return SDValue(E, 0); 7228 } 7229 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7230 ISD::UNINDEXED, true, SVT, MMO); 7231 createOperands(N, Ops); 7232 7233 CSEMap.InsertNode(N, IP); 7234 InsertNode(N); 7235 SDValue V(N, 0); 7236 NewSDValueDbgMsg(V, "Creating new node: ", this); 7237 return V; 7238 } 7239 7240 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7241 SDValue Base, SDValue Offset, 7242 ISD::MemIndexedMode AM) { 7243 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7244 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7245 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7246 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7247 FoldingSetNodeID ID; 7248 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7249 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7250 ID.AddInteger(ST->getRawSubclassData()); 7251 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7252 void *IP = nullptr; 7253 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7254 return SDValue(E, 0); 7255 7256 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7257 ST->isTruncatingStore(), ST->getMemoryVT(), 7258 ST->getMemOperand()); 7259 createOperands(N, Ops); 7260 7261 CSEMap.InsertNode(N, IP); 7262 InsertNode(N); 7263 SDValue V(N, 0); 7264 NewSDValueDbgMsg(V, "Creating new node: ", this); 7265 return V; 7266 } 7267 7268 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7269 SDValue Base, SDValue Offset, SDValue Mask, 7270 SDValue PassThru, EVT MemVT, 7271 MachineMemOperand *MMO, 7272 ISD::MemIndexedMode AM, 7273 ISD::LoadExtType ExtTy, bool isExpanding) { 7274 bool Indexed = AM != ISD::UNINDEXED; 7275 assert((Indexed || Offset.isUndef()) && 7276 "Unindexed masked load with an offset!"); 7277 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7278 : getVTList(VT, MVT::Other); 7279 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7280 FoldingSetNodeID ID; 7281 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7282 ID.AddInteger(MemVT.getRawBits()); 7283 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7284 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7285 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7286 void *IP = nullptr; 7287 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7288 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7289 return SDValue(E, 0); 7290 } 7291 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7292 AM, ExtTy, isExpanding, MemVT, MMO); 7293 createOperands(N, Ops); 7294 7295 CSEMap.InsertNode(N, IP); 7296 InsertNode(N); 7297 SDValue V(N, 0); 7298 NewSDValueDbgMsg(V, "Creating new node: ", this); 7299 return V; 7300 } 7301 7302 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7303 SDValue Base, SDValue Offset, 7304 ISD::MemIndexedMode AM) { 7305 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7306 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7307 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7308 Offset, LD->getMask(), LD->getPassThru(), 7309 LD->getMemoryVT(), LD->getMemOperand(), AM, 7310 LD->getExtensionType(), LD->isExpandingLoad()); 7311 } 7312 7313 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7314 SDValue Val, SDValue Base, SDValue Offset, 7315 SDValue Mask, EVT MemVT, 7316 MachineMemOperand *MMO, 7317 ISD::MemIndexedMode AM, bool IsTruncating, 7318 bool IsCompressing) { 7319 assert(Chain.getValueType() == MVT::Other && 7320 "Invalid chain type"); 7321 bool Indexed = AM != ISD::UNINDEXED; 7322 assert((Indexed || Offset.isUndef()) && 7323 "Unindexed masked store with an offset!"); 7324 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7325 : getVTList(MVT::Other); 7326 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7327 FoldingSetNodeID ID; 7328 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7329 ID.AddInteger(MemVT.getRawBits()); 7330 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7331 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7332 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7333 void *IP = nullptr; 7334 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7335 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7336 return SDValue(E, 0); 7337 } 7338 auto *N = 7339 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7340 IsTruncating, IsCompressing, MemVT, MMO); 7341 createOperands(N, Ops); 7342 7343 CSEMap.InsertNode(N, IP); 7344 InsertNode(N); 7345 SDValue V(N, 0); 7346 NewSDValueDbgMsg(V, "Creating new node: ", this); 7347 return V; 7348 } 7349 7350 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7351 SDValue Base, SDValue Offset, 7352 ISD::MemIndexedMode AM) { 7353 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7354 assert(ST->getOffset().isUndef() && 7355 "Masked store is already a indexed store!"); 7356 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7357 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7358 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7359 } 7360 7361 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7362 ArrayRef<SDValue> Ops, 7363 MachineMemOperand *MMO, 7364 ISD::MemIndexType IndexType, 7365 ISD::LoadExtType ExtTy) { 7366 assert(Ops.size() == 6 && "Incompatible number of operands"); 7367 7368 FoldingSetNodeID ID; 7369 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7370 ID.AddInteger(VT.getRawBits()); 7371 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7372 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7373 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7374 void *IP = nullptr; 7375 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7376 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7377 return SDValue(E, 0); 7378 } 7379 7380 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7381 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7382 VTs, VT, MMO, IndexType, ExtTy); 7383 createOperands(N, Ops); 7384 7385 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7386 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7387 assert(N->getMask().getValueType().getVectorElementCount() == 7388 N->getValueType(0).getVectorElementCount() && 7389 "Vector width mismatch between mask and data"); 7390 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7391 N->getValueType(0).getVectorElementCount().isScalable() && 7392 "Scalable flags of index and data do not match"); 7393 assert(ElementCount::isKnownGE( 7394 N->getIndex().getValueType().getVectorElementCount(), 7395 N->getValueType(0).getVectorElementCount()) && 7396 "Vector width mismatch between index and data"); 7397 assert(isa<ConstantSDNode>(N->getScale()) && 7398 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7399 "Scale should be a constant power of 2"); 7400 7401 CSEMap.InsertNode(N, IP); 7402 InsertNode(N); 7403 SDValue V(N, 0); 7404 NewSDValueDbgMsg(V, "Creating new node: ", this); 7405 return V; 7406 } 7407 7408 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7409 ArrayRef<SDValue> Ops, 7410 MachineMemOperand *MMO, 7411 ISD::MemIndexType IndexType, 7412 bool IsTrunc) { 7413 assert(Ops.size() == 6 && "Incompatible number of operands"); 7414 7415 FoldingSetNodeID ID; 7416 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7417 ID.AddInteger(VT.getRawBits()); 7418 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7419 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7420 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7421 void *IP = nullptr; 7422 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7423 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7424 return SDValue(E, 0); 7425 } 7426 7427 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7428 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7429 VTs, VT, MMO, IndexType, IsTrunc); 7430 createOperands(N, Ops); 7431 7432 assert(N->getMask().getValueType().getVectorElementCount() == 7433 N->getValue().getValueType().getVectorElementCount() && 7434 "Vector width mismatch between mask and data"); 7435 assert( 7436 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7437 N->getValue().getValueType().getVectorElementCount().isScalable() && 7438 "Scalable flags of index and data do not match"); 7439 assert(ElementCount::isKnownGE( 7440 N->getIndex().getValueType().getVectorElementCount(), 7441 N->getValue().getValueType().getVectorElementCount()) && 7442 "Vector width mismatch between index and data"); 7443 assert(isa<ConstantSDNode>(N->getScale()) && 7444 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7445 "Scale should be a constant power of 2"); 7446 7447 CSEMap.InsertNode(N, IP); 7448 InsertNode(N); 7449 SDValue V(N, 0); 7450 NewSDValueDbgMsg(V, "Creating new node: ", this); 7451 return V; 7452 } 7453 7454 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7455 // select undef, T, F --> T (if T is a constant), otherwise F 7456 // select, ?, undef, F --> F 7457 // select, ?, T, undef --> T 7458 if (Cond.isUndef()) 7459 return isConstantValueOfAnyType(T) ? T : F; 7460 if (T.isUndef()) 7461 return F; 7462 if (F.isUndef()) 7463 return T; 7464 7465 // select true, T, F --> T 7466 // select false, T, F --> F 7467 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7468 return CondC->isNullValue() ? F : T; 7469 7470 // TODO: This should simplify VSELECT with constant condition using something 7471 // like this (but check boolean contents to be complete?): 7472 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7473 // return T; 7474 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7475 // return F; 7476 7477 // select ?, T, T --> T 7478 if (T == F) 7479 return T; 7480 7481 return SDValue(); 7482 } 7483 7484 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7485 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7486 if (X.isUndef()) 7487 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7488 // shift X, undef --> undef (because it may shift by the bitwidth) 7489 if (Y.isUndef()) 7490 return getUNDEF(X.getValueType()); 7491 7492 // shift 0, Y --> 0 7493 // shift X, 0 --> X 7494 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7495 return X; 7496 7497 // shift X, C >= bitwidth(X) --> undef 7498 // All vector elements must be too big (or undef) to avoid partial undefs. 7499 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7500 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7501 }; 7502 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7503 return getUNDEF(X.getValueType()); 7504 7505 return SDValue(); 7506 } 7507 7508 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7509 SDNodeFlags Flags) { 7510 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7511 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7512 // operation is poison. That result can be relaxed to undef. 7513 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7514 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7515 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7516 (YC && YC->getValueAPF().isNaN()); 7517 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7518 (YC && YC->getValueAPF().isInfinity()); 7519 7520 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7521 return getUNDEF(X.getValueType()); 7522 7523 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7524 return getUNDEF(X.getValueType()); 7525 7526 if (!YC) 7527 return SDValue(); 7528 7529 // X + -0.0 --> X 7530 if (Opcode == ISD::FADD) 7531 if (YC->getValueAPF().isNegZero()) 7532 return X; 7533 7534 // X - +0.0 --> X 7535 if (Opcode == ISD::FSUB) 7536 if (YC->getValueAPF().isPosZero()) 7537 return X; 7538 7539 // X * 1.0 --> X 7540 // X / 1.0 --> X 7541 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7542 if (YC->getValueAPF().isExactlyValue(1.0)) 7543 return X; 7544 7545 // X * 0.0 --> 0.0 7546 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7547 if (YC->getValueAPF().isZero()) 7548 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7549 7550 return SDValue(); 7551 } 7552 7553 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7554 SDValue Ptr, SDValue SV, unsigned Align) { 7555 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7556 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7557 } 7558 7559 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7560 ArrayRef<SDUse> Ops) { 7561 switch (Ops.size()) { 7562 case 0: return getNode(Opcode, DL, VT); 7563 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7564 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7565 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7566 default: break; 7567 } 7568 7569 // Copy from an SDUse array into an SDValue array for use with 7570 // the regular getNode logic. 7571 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7572 return getNode(Opcode, DL, VT, NewOps); 7573 } 7574 7575 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7576 ArrayRef<SDValue> Ops) { 7577 SDNodeFlags Flags; 7578 if (Inserter) 7579 Flags = Inserter->getFlags(); 7580 return getNode(Opcode, DL, VT, Ops, Flags); 7581 } 7582 7583 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7584 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7585 unsigned NumOps = Ops.size(); 7586 switch (NumOps) { 7587 case 0: return getNode(Opcode, DL, VT); 7588 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7589 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7590 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7591 default: break; 7592 } 7593 7594 switch (Opcode) { 7595 default: break; 7596 case ISD::BUILD_VECTOR: 7597 // Attempt to simplify BUILD_VECTOR. 7598 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7599 return V; 7600 break; 7601 case ISD::CONCAT_VECTORS: 7602 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7603 return V; 7604 break; 7605 case ISD::SELECT_CC: 7606 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7607 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7608 "LHS and RHS of condition must have same type!"); 7609 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7610 "True and False arms of SelectCC must have same type!"); 7611 assert(Ops[2].getValueType() == VT && 7612 "select_cc node must be of same type as true and false value!"); 7613 break; 7614 case ISD::BR_CC: 7615 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7616 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7617 "LHS/RHS of comparison should match types!"); 7618 break; 7619 } 7620 7621 // Memoize nodes. 7622 SDNode *N; 7623 SDVTList VTs = getVTList(VT); 7624 7625 if (VT != MVT::Glue) { 7626 FoldingSetNodeID ID; 7627 AddNodeIDNode(ID, Opcode, VTs, Ops); 7628 void *IP = nullptr; 7629 7630 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7631 return SDValue(E, 0); 7632 7633 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7634 createOperands(N, Ops); 7635 7636 CSEMap.InsertNode(N, IP); 7637 } else { 7638 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7639 createOperands(N, Ops); 7640 } 7641 7642 N->setFlags(Flags); 7643 InsertNode(N); 7644 SDValue V(N, 0); 7645 NewSDValueDbgMsg(V, "Creating new node: ", this); 7646 return V; 7647 } 7648 7649 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7650 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7651 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7652 } 7653 7654 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7655 ArrayRef<SDValue> Ops) { 7656 SDNodeFlags Flags; 7657 if (Inserter) 7658 Flags = Inserter->getFlags(); 7659 return getNode(Opcode, DL, VTList, Ops, Flags); 7660 } 7661 7662 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7663 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7664 if (VTList.NumVTs == 1) 7665 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7666 7667 switch (Opcode) { 7668 case ISD::STRICT_FP_EXTEND: 7669 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7670 "Invalid STRICT_FP_EXTEND!"); 7671 assert(VTList.VTs[0].isFloatingPoint() && 7672 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7673 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7674 "STRICT_FP_EXTEND result type should be vector iff the operand " 7675 "type is vector!"); 7676 assert((!VTList.VTs[0].isVector() || 7677 VTList.VTs[0].getVectorNumElements() == 7678 Ops[1].getValueType().getVectorNumElements()) && 7679 "Vector element count mismatch!"); 7680 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7681 "Invalid fpext node, dst <= src!"); 7682 break; 7683 case ISD::STRICT_FP_ROUND: 7684 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7685 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7686 "STRICT_FP_ROUND result type should be vector iff the operand " 7687 "type is vector!"); 7688 assert((!VTList.VTs[0].isVector() || 7689 VTList.VTs[0].getVectorNumElements() == 7690 Ops[1].getValueType().getVectorNumElements()) && 7691 "Vector element count mismatch!"); 7692 assert(VTList.VTs[0].isFloatingPoint() && 7693 Ops[1].getValueType().isFloatingPoint() && 7694 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7695 isa<ConstantSDNode>(Ops[2]) && 7696 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7697 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7698 "Invalid STRICT_FP_ROUND!"); 7699 break; 7700 #if 0 7701 // FIXME: figure out how to safely handle things like 7702 // int foo(int x) { return 1 << (x & 255); } 7703 // int bar() { return foo(256); } 7704 case ISD::SRA_PARTS: 7705 case ISD::SRL_PARTS: 7706 case ISD::SHL_PARTS: 7707 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7708 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7709 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7710 else if (N3.getOpcode() == ISD::AND) 7711 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7712 // If the and is only masking out bits that cannot effect the shift, 7713 // eliminate the and. 7714 unsigned NumBits = VT.getScalarSizeInBits()*2; 7715 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7716 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7717 } 7718 break; 7719 #endif 7720 } 7721 7722 // Memoize the node unless it returns a flag. 7723 SDNode *N; 7724 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7725 FoldingSetNodeID ID; 7726 AddNodeIDNode(ID, Opcode, VTList, Ops); 7727 void *IP = nullptr; 7728 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7729 return SDValue(E, 0); 7730 7731 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7732 createOperands(N, Ops); 7733 CSEMap.InsertNode(N, IP); 7734 } else { 7735 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7736 createOperands(N, Ops); 7737 } 7738 7739 N->setFlags(Flags); 7740 InsertNode(N); 7741 SDValue V(N, 0); 7742 NewSDValueDbgMsg(V, "Creating new node: ", this); 7743 return V; 7744 } 7745 7746 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7747 SDVTList VTList) { 7748 return getNode(Opcode, DL, VTList, None); 7749 } 7750 7751 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7752 SDValue N1) { 7753 SDValue Ops[] = { N1 }; 7754 return getNode(Opcode, DL, VTList, Ops); 7755 } 7756 7757 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7758 SDValue N1, SDValue N2) { 7759 SDValue Ops[] = { N1, N2 }; 7760 return getNode(Opcode, DL, VTList, Ops); 7761 } 7762 7763 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7764 SDValue N1, SDValue N2, SDValue N3) { 7765 SDValue Ops[] = { N1, N2, N3 }; 7766 return getNode(Opcode, DL, VTList, Ops); 7767 } 7768 7769 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7770 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7771 SDValue Ops[] = { N1, N2, N3, N4 }; 7772 return getNode(Opcode, DL, VTList, Ops); 7773 } 7774 7775 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7776 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7777 SDValue N5) { 7778 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7779 return getNode(Opcode, DL, VTList, Ops); 7780 } 7781 7782 SDVTList SelectionDAG::getVTList(EVT VT) { 7783 return makeVTList(SDNode::getValueTypeList(VT), 1); 7784 } 7785 7786 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7787 FoldingSetNodeID ID; 7788 ID.AddInteger(2U); 7789 ID.AddInteger(VT1.getRawBits()); 7790 ID.AddInteger(VT2.getRawBits()); 7791 7792 void *IP = nullptr; 7793 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7794 if (!Result) { 7795 EVT *Array = Allocator.Allocate<EVT>(2); 7796 Array[0] = VT1; 7797 Array[1] = VT2; 7798 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7799 VTListMap.InsertNode(Result, IP); 7800 } 7801 return Result->getSDVTList(); 7802 } 7803 7804 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7805 FoldingSetNodeID ID; 7806 ID.AddInteger(3U); 7807 ID.AddInteger(VT1.getRawBits()); 7808 ID.AddInteger(VT2.getRawBits()); 7809 ID.AddInteger(VT3.getRawBits()); 7810 7811 void *IP = nullptr; 7812 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7813 if (!Result) { 7814 EVT *Array = Allocator.Allocate<EVT>(3); 7815 Array[0] = VT1; 7816 Array[1] = VT2; 7817 Array[2] = VT3; 7818 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7819 VTListMap.InsertNode(Result, IP); 7820 } 7821 return Result->getSDVTList(); 7822 } 7823 7824 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7825 FoldingSetNodeID ID; 7826 ID.AddInteger(4U); 7827 ID.AddInteger(VT1.getRawBits()); 7828 ID.AddInteger(VT2.getRawBits()); 7829 ID.AddInteger(VT3.getRawBits()); 7830 ID.AddInteger(VT4.getRawBits()); 7831 7832 void *IP = nullptr; 7833 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7834 if (!Result) { 7835 EVT *Array = Allocator.Allocate<EVT>(4); 7836 Array[0] = VT1; 7837 Array[1] = VT2; 7838 Array[2] = VT3; 7839 Array[3] = VT4; 7840 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7841 VTListMap.InsertNode(Result, IP); 7842 } 7843 return Result->getSDVTList(); 7844 } 7845 7846 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7847 unsigned NumVTs = VTs.size(); 7848 FoldingSetNodeID ID; 7849 ID.AddInteger(NumVTs); 7850 for (unsigned index = 0; index < NumVTs; index++) { 7851 ID.AddInteger(VTs[index].getRawBits()); 7852 } 7853 7854 void *IP = nullptr; 7855 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7856 if (!Result) { 7857 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7858 llvm::copy(VTs, Array); 7859 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7860 VTListMap.InsertNode(Result, IP); 7861 } 7862 return Result->getSDVTList(); 7863 } 7864 7865 7866 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7867 /// specified operands. If the resultant node already exists in the DAG, 7868 /// this does not modify the specified node, instead it returns the node that 7869 /// already exists. If the resultant node does not exist in the DAG, the 7870 /// input node is returned. As a degenerate case, if you specify the same 7871 /// input operands as the node already has, the input node is returned. 7872 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7873 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7874 7875 // Check to see if there is no change. 7876 if (Op == N->getOperand(0)) return N; 7877 7878 // See if the modified node already exists. 7879 void *InsertPos = nullptr; 7880 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7881 return Existing; 7882 7883 // Nope it doesn't. Remove the node from its current place in the maps. 7884 if (InsertPos) 7885 if (!RemoveNodeFromCSEMaps(N)) 7886 InsertPos = nullptr; 7887 7888 // Now we update the operands. 7889 N->OperandList[0].set(Op); 7890 7891 updateDivergence(N); 7892 // If this gets put into a CSE map, add it. 7893 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7894 return N; 7895 } 7896 7897 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7898 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7899 7900 // Check to see if there is no change. 7901 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7902 return N; // No operands changed, just return the input node. 7903 7904 // See if the modified node already exists. 7905 void *InsertPos = nullptr; 7906 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7907 return Existing; 7908 7909 // Nope it doesn't. Remove the node from its current place in the maps. 7910 if (InsertPos) 7911 if (!RemoveNodeFromCSEMaps(N)) 7912 InsertPos = nullptr; 7913 7914 // Now we update the operands. 7915 if (N->OperandList[0] != Op1) 7916 N->OperandList[0].set(Op1); 7917 if (N->OperandList[1] != Op2) 7918 N->OperandList[1].set(Op2); 7919 7920 updateDivergence(N); 7921 // If this gets put into a CSE map, add it. 7922 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7923 return N; 7924 } 7925 7926 SDNode *SelectionDAG:: 7927 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7928 SDValue Ops[] = { Op1, Op2, Op3 }; 7929 return UpdateNodeOperands(N, Ops); 7930 } 7931 7932 SDNode *SelectionDAG:: 7933 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7934 SDValue Op3, SDValue Op4) { 7935 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7936 return UpdateNodeOperands(N, Ops); 7937 } 7938 7939 SDNode *SelectionDAG:: 7940 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7941 SDValue Op3, SDValue Op4, SDValue Op5) { 7942 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7943 return UpdateNodeOperands(N, Ops); 7944 } 7945 7946 SDNode *SelectionDAG:: 7947 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7948 unsigned NumOps = Ops.size(); 7949 assert(N->getNumOperands() == NumOps && 7950 "Update with wrong number of operands"); 7951 7952 // If no operands changed just return the input node. 7953 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7954 return N; 7955 7956 // See if the modified node already exists. 7957 void *InsertPos = nullptr; 7958 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7959 return Existing; 7960 7961 // Nope it doesn't. Remove the node from its current place in the maps. 7962 if (InsertPos) 7963 if (!RemoveNodeFromCSEMaps(N)) 7964 InsertPos = nullptr; 7965 7966 // Now we update the operands. 7967 for (unsigned i = 0; i != NumOps; ++i) 7968 if (N->OperandList[i] != Ops[i]) 7969 N->OperandList[i].set(Ops[i]); 7970 7971 updateDivergence(N); 7972 // If this gets put into a CSE map, add it. 7973 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7974 return N; 7975 } 7976 7977 /// DropOperands - Release the operands and set this node to have 7978 /// zero operands. 7979 void SDNode::DropOperands() { 7980 // Unlike the code in MorphNodeTo that does this, we don't need to 7981 // watch for dead nodes here. 7982 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7983 SDUse &Use = *I++; 7984 Use.set(SDValue()); 7985 } 7986 } 7987 7988 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7989 ArrayRef<MachineMemOperand *> NewMemRefs) { 7990 if (NewMemRefs.empty()) { 7991 N->clearMemRefs(); 7992 return; 7993 } 7994 7995 // Check if we can avoid allocating by storing a single reference directly. 7996 if (NewMemRefs.size() == 1) { 7997 N->MemRefs = NewMemRefs[0]; 7998 N->NumMemRefs = 1; 7999 return; 8000 } 8001 8002 MachineMemOperand **MemRefsBuffer = 8003 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8004 llvm::copy(NewMemRefs, MemRefsBuffer); 8005 N->MemRefs = MemRefsBuffer; 8006 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8007 } 8008 8009 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8010 /// machine opcode. 8011 /// 8012 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8013 EVT VT) { 8014 SDVTList VTs = getVTList(VT); 8015 return SelectNodeTo(N, MachineOpc, VTs, None); 8016 } 8017 8018 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8019 EVT VT, SDValue Op1) { 8020 SDVTList VTs = getVTList(VT); 8021 SDValue Ops[] = { Op1 }; 8022 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8023 } 8024 8025 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8026 EVT VT, SDValue Op1, 8027 SDValue Op2) { 8028 SDVTList VTs = getVTList(VT); 8029 SDValue Ops[] = { Op1, Op2 }; 8030 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8031 } 8032 8033 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8034 EVT VT, SDValue Op1, 8035 SDValue Op2, SDValue Op3) { 8036 SDVTList VTs = getVTList(VT); 8037 SDValue Ops[] = { Op1, Op2, Op3 }; 8038 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8039 } 8040 8041 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8042 EVT VT, ArrayRef<SDValue> Ops) { 8043 SDVTList VTs = getVTList(VT); 8044 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8045 } 8046 8047 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8048 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8049 SDVTList VTs = getVTList(VT1, VT2); 8050 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8051 } 8052 8053 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8054 EVT VT1, EVT VT2) { 8055 SDVTList VTs = getVTList(VT1, VT2); 8056 return SelectNodeTo(N, MachineOpc, VTs, None); 8057 } 8058 8059 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8060 EVT VT1, EVT VT2, EVT VT3, 8061 ArrayRef<SDValue> Ops) { 8062 SDVTList VTs = getVTList(VT1, VT2, VT3); 8063 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8064 } 8065 8066 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8067 EVT VT1, EVT VT2, 8068 SDValue Op1, SDValue Op2) { 8069 SDVTList VTs = getVTList(VT1, VT2); 8070 SDValue Ops[] = { Op1, Op2 }; 8071 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8072 } 8073 8074 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8075 SDVTList VTs,ArrayRef<SDValue> Ops) { 8076 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8077 // Reset the NodeID to -1. 8078 New->setNodeId(-1); 8079 if (New != N) { 8080 ReplaceAllUsesWith(N, New); 8081 RemoveDeadNode(N); 8082 } 8083 return New; 8084 } 8085 8086 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8087 /// the line number information on the merged node since it is not possible to 8088 /// preserve the information that operation is associated with multiple lines. 8089 /// This will make the debugger working better at -O0, were there is a higher 8090 /// probability having other instructions associated with that line. 8091 /// 8092 /// For IROrder, we keep the smaller of the two 8093 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8094 DebugLoc NLoc = N->getDebugLoc(); 8095 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8096 N->setDebugLoc(DebugLoc()); 8097 } 8098 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8099 N->setIROrder(Order); 8100 return N; 8101 } 8102 8103 /// MorphNodeTo - This *mutates* the specified node to have the specified 8104 /// return type, opcode, and operands. 8105 /// 8106 /// Note that MorphNodeTo returns the resultant node. If there is already a 8107 /// node of the specified opcode and operands, it returns that node instead of 8108 /// the current one. Note that the SDLoc need not be the same. 8109 /// 8110 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8111 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8112 /// node, and because it doesn't require CSE recalculation for any of 8113 /// the node's users. 8114 /// 8115 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8116 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8117 /// the legalizer which maintain worklists that would need to be updated when 8118 /// deleting things. 8119 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8120 SDVTList VTs, ArrayRef<SDValue> Ops) { 8121 // If an identical node already exists, use it. 8122 void *IP = nullptr; 8123 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8124 FoldingSetNodeID ID; 8125 AddNodeIDNode(ID, Opc, VTs, Ops); 8126 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8127 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8128 } 8129 8130 if (!RemoveNodeFromCSEMaps(N)) 8131 IP = nullptr; 8132 8133 // Start the morphing. 8134 N->NodeType = Opc; 8135 N->ValueList = VTs.VTs; 8136 N->NumValues = VTs.NumVTs; 8137 8138 // Clear the operands list, updating used nodes to remove this from their 8139 // use list. Keep track of any operands that become dead as a result. 8140 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8141 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8142 SDUse &Use = *I++; 8143 SDNode *Used = Use.getNode(); 8144 Use.set(SDValue()); 8145 if (Used->use_empty()) 8146 DeadNodeSet.insert(Used); 8147 } 8148 8149 // For MachineNode, initialize the memory references information. 8150 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8151 MN->clearMemRefs(); 8152 8153 // Swap for an appropriately sized array from the recycler. 8154 removeOperands(N); 8155 createOperands(N, Ops); 8156 8157 // Delete any nodes that are still dead after adding the uses for the 8158 // new operands. 8159 if (!DeadNodeSet.empty()) { 8160 SmallVector<SDNode *, 16> DeadNodes; 8161 for (SDNode *N : DeadNodeSet) 8162 if (N->use_empty()) 8163 DeadNodes.push_back(N); 8164 RemoveDeadNodes(DeadNodes); 8165 } 8166 8167 if (IP) 8168 CSEMap.InsertNode(N, IP); // Memoize the new node. 8169 return N; 8170 } 8171 8172 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8173 unsigned OrigOpc = Node->getOpcode(); 8174 unsigned NewOpc; 8175 switch (OrigOpc) { 8176 default: 8177 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8178 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8179 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8180 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8181 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8182 #include "llvm/IR/ConstrainedOps.def" 8183 } 8184 8185 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8186 8187 // We're taking this node out of the chain, so we need to re-link things. 8188 SDValue InputChain = Node->getOperand(0); 8189 SDValue OutputChain = SDValue(Node, 1); 8190 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8191 8192 SmallVector<SDValue, 3> Ops; 8193 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8194 Ops.push_back(Node->getOperand(i)); 8195 8196 SDVTList VTs = getVTList(Node->getValueType(0)); 8197 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8198 8199 // MorphNodeTo can operate in two ways: if an existing node with the 8200 // specified operands exists, it can just return it. Otherwise, it 8201 // updates the node in place to have the requested operands. 8202 if (Res == Node) { 8203 // If we updated the node in place, reset the node ID. To the isel, 8204 // this should be just like a newly allocated machine node. 8205 Res->setNodeId(-1); 8206 } else { 8207 ReplaceAllUsesWith(Node, Res); 8208 RemoveDeadNode(Node); 8209 } 8210 8211 return Res; 8212 } 8213 8214 /// getMachineNode - These are used for target selectors to create a new node 8215 /// with specified return type(s), MachineInstr opcode, and operands. 8216 /// 8217 /// Note that getMachineNode returns the resultant node. If there is already a 8218 /// node of the specified opcode and operands, it returns that node instead of 8219 /// the current one. 8220 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8221 EVT VT) { 8222 SDVTList VTs = getVTList(VT); 8223 return getMachineNode(Opcode, dl, VTs, None); 8224 } 8225 8226 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8227 EVT VT, SDValue Op1) { 8228 SDVTList VTs = getVTList(VT); 8229 SDValue Ops[] = { Op1 }; 8230 return getMachineNode(Opcode, dl, VTs, Ops); 8231 } 8232 8233 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8234 EVT VT, SDValue Op1, SDValue Op2) { 8235 SDVTList VTs = getVTList(VT); 8236 SDValue Ops[] = { Op1, Op2 }; 8237 return getMachineNode(Opcode, dl, VTs, Ops); 8238 } 8239 8240 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8241 EVT VT, SDValue Op1, SDValue Op2, 8242 SDValue Op3) { 8243 SDVTList VTs = getVTList(VT); 8244 SDValue Ops[] = { Op1, Op2, Op3 }; 8245 return getMachineNode(Opcode, dl, VTs, Ops); 8246 } 8247 8248 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8249 EVT VT, ArrayRef<SDValue> Ops) { 8250 SDVTList VTs = getVTList(VT); 8251 return getMachineNode(Opcode, dl, VTs, Ops); 8252 } 8253 8254 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8255 EVT VT1, EVT VT2, SDValue Op1, 8256 SDValue Op2) { 8257 SDVTList VTs = getVTList(VT1, VT2); 8258 SDValue Ops[] = { Op1, Op2 }; 8259 return getMachineNode(Opcode, dl, VTs, Ops); 8260 } 8261 8262 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8263 EVT VT1, EVT VT2, SDValue Op1, 8264 SDValue Op2, SDValue Op3) { 8265 SDVTList VTs = getVTList(VT1, VT2); 8266 SDValue Ops[] = { Op1, Op2, Op3 }; 8267 return getMachineNode(Opcode, dl, VTs, Ops); 8268 } 8269 8270 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8271 EVT VT1, EVT VT2, 8272 ArrayRef<SDValue> Ops) { 8273 SDVTList VTs = getVTList(VT1, VT2); 8274 return getMachineNode(Opcode, dl, VTs, Ops); 8275 } 8276 8277 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8278 EVT VT1, EVT VT2, EVT VT3, 8279 SDValue Op1, SDValue Op2) { 8280 SDVTList VTs = getVTList(VT1, VT2, VT3); 8281 SDValue Ops[] = { Op1, Op2 }; 8282 return getMachineNode(Opcode, dl, VTs, Ops); 8283 } 8284 8285 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8286 EVT VT1, EVT VT2, EVT VT3, 8287 SDValue Op1, SDValue Op2, 8288 SDValue Op3) { 8289 SDVTList VTs = getVTList(VT1, VT2, VT3); 8290 SDValue Ops[] = { Op1, Op2, Op3 }; 8291 return getMachineNode(Opcode, dl, VTs, Ops); 8292 } 8293 8294 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8295 EVT VT1, EVT VT2, EVT VT3, 8296 ArrayRef<SDValue> Ops) { 8297 SDVTList VTs = getVTList(VT1, VT2, VT3); 8298 return getMachineNode(Opcode, dl, VTs, Ops); 8299 } 8300 8301 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8302 ArrayRef<EVT> ResultTys, 8303 ArrayRef<SDValue> Ops) { 8304 SDVTList VTs = getVTList(ResultTys); 8305 return getMachineNode(Opcode, dl, VTs, Ops); 8306 } 8307 8308 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8309 SDVTList VTs, 8310 ArrayRef<SDValue> Ops) { 8311 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8312 MachineSDNode *N; 8313 void *IP = nullptr; 8314 8315 if (DoCSE) { 8316 FoldingSetNodeID ID; 8317 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8318 IP = nullptr; 8319 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8320 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8321 } 8322 } 8323 8324 // Allocate a new MachineSDNode. 8325 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8326 createOperands(N, Ops); 8327 8328 if (DoCSE) 8329 CSEMap.InsertNode(N, IP); 8330 8331 InsertNode(N); 8332 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8333 return N; 8334 } 8335 8336 /// getTargetExtractSubreg - A convenience function for creating 8337 /// TargetOpcode::EXTRACT_SUBREG nodes. 8338 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8339 SDValue Operand) { 8340 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8341 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8342 VT, Operand, SRIdxVal); 8343 return SDValue(Subreg, 0); 8344 } 8345 8346 /// getTargetInsertSubreg - A convenience function for creating 8347 /// TargetOpcode::INSERT_SUBREG nodes. 8348 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8349 SDValue Operand, SDValue Subreg) { 8350 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8351 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8352 VT, Operand, Subreg, SRIdxVal); 8353 return SDValue(Result, 0); 8354 } 8355 8356 /// getNodeIfExists - Get the specified node if it's already available, or 8357 /// else return NULL. 8358 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8359 ArrayRef<SDValue> Ops) { 8360 SDNodeFlags Flags; 8361 if (Inserter) 8362 Flags = Inserter->getFlags(); 8363 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8364 } 8365 8366 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8367 ArrayRef<SDValue> Ops, 8368 const SDNodeFlags Flags) { 8369 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8370 FoldingSetNodeID ID; 8371 AddNodeIDNode(ID, Opcode, VTList, Ops); 8372 void *IP = nullptr; 8373 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8374 E->intersectFlagsWith(Flags); 8375 return E; 8376 } 8377 } 8378 return nullptr; 8379 } 8380 8381 /// doesNodeExist - Check if a node exists without modifying its flags. 8382 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8383 ArrayRef<SDValue> Ops) { 8384 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8385 FoldingSetNodeID ID; 8386 AddNodeIDNode(ID, Opcode, VTList, Ops); 8387 void *IP = nullptr; 8388 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8389 return true; 8390 } 8391 return false; 8392 } 8393 8394 /// getDbgValue - Creates a SDDbgValue node. 8395 /// 8396 /// SDNode 8397 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8398 SDNode *N, unsigned R, bool IsIndirect, 8399 const DebugLoc &DL, unsigned O) { 8400 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8401 "Expected inlined-at fields to agree"); 8402 return new (DbgInfo->getAlloc()) 8403 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8404 } 8405 8406 /// Constant 8407 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8408 DIExpression *Expr, 8409 const Value *C, 8410 const DebugLoc &DL, unsigned O) { 8411 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8412 "Expected inlined-at fields to agree"); 8413 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8414 } 8415 8416 /// FrameIndex 8417 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8418 DIExpression *Expr, unsigned FI, 8419 bool IsIndirect, 8420 const DebugLoc &DL, 8421 unsigned O) { 8422 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8423 "Expected inlined-at fields to agree"); 8424 return new (DbgInfo->getAlloc()) 8425 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8426 } 8427 8428 /// VReg 8429 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8430 DIExpression *Expr, 8431 unsigned VReg, bool IsIndirect, 8432 const DebugLoc &DL, unsigned O) { 8433 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8434 "Expected inlined-at fields to agree"); 8435 return new (DbgInfo->getAlloc()) 8436 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8437 } 8438 8439 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8440 unsigned OffsetInBits, unsigned SizeInBits, 8441 bool InvalidateDbg) { 8442 SDNode *FromNode = From.getNode(); 8443 SDNode *ToNode = To.getNode(); 8444 assert(FromNode && ToNode && "Can't modify dbg values"); 8445 8446 // PR35338 8447 // TODO: assert(From != To && "Redundant dbg value transfer"); 8448 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8449 if (From == To || FromNode == ToNode) 8450 return; 8451 8452 if (!FromNode->getHasDebugValue()) 8453 return; 8454 8455 SmallVector<SDDbgValue *, 2> ClonedDVs; 8456 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8457 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8458 continue; 8459 8460 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8461 8462 // Just transfer the dbg value attached to From. 8463 if (Dbg->getResNo() != From.getResNo()) 8464 continue; 8465 8466 DIVariable *Var = Dbg->getVariable(); 8467 auto *Expr = Dbg->getExpression(); 8468 // If a fragment is requested, update the expression. 8469 if (SizeInBits) { 8470 // When splitting a larger (e.g., sign-extended) value whose 8471 // lower bits are described with an SDDbgValue, do not attempt 8472 // to transfer the SDDbgValue to the upper bits. 8473 if (auto FI = Expr->getFragmentInfo()) 8474 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8475 continue; 8476 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8477 SizeInBits); 8478 if (!Fragment) 8479 continue; 8480 Expr = *Fragment; 8481 } 8482 // Clone the SDDbgValue and move it to To. 8483 SDDbgValue *Clone = getDbgValue( 8484 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8485 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8486 ClonedDVs.push_back(Clone); 8487 8488 if (InvalidateDbg) { 8489 // Invalidate value and indicate the SDDbgValue should not be emitted. 8490 Dbg->setIsInvalidated(); 8491 Dbg->setIsEmitted(); 8492 } 8493 } 8494 8495 for (SDDbgValue *Dbg : ClonedDVs) 8496 AddDbgValue(Dbg, ToNode, false); 8497 } 8498 8499 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8500 if (!N.getHasDebugValue()) 8501 return; 8502 8503 SmallVector<SDDbgValue *, 2> ClonedDVs; 8504 for (auto DV : GetDbgValues(&N)) { 8505 if (DV->isInvalidated()) 8506 continue; 8507 switch (N.getOpcode()) { 8508 default: 8509 break; 8510 case ISD::ADD: 8511 SDValue N0 = N.getOperand(0); 8512 SDValue N1 = N.getOperand(1); 8513 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8514 isConstantIntBuildVectorOrConstantInt(N1)) { 8515 uint64_t Offset = N.getConstantOperandVal(1); 8516 // Rewrite an ADD constant node into a DIExpression. Since we are 8517 // performing arithmetic to compute the variable's *value* in the 8518 // DIExpression, we need to mark the expression with a 8519 // DW_OP_stack_value. 8520 auto *DIExpr = DV->getExpression(); 8521 DIExpr = 8522 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8523 SDDbgValue *Clone = 8524 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8525 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8526 ClonedDVs.push_back(Clone); 8527 DV->setIsInvalidated(); 8528 DV->setIsEmitted(); 8529 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8530 N0.getNode()->dumprFull(this); 8531 dbgs() << " into " << *DIExpr << '\n'); 8532 } 8533 } 8534 } 8535 8536 for (SDDbgValue *Dbg : ClonedDVs) 8537 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8538 } 8539 8540 /// Creates a SDDbgLabel node. 8541 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8542 const DebugLoc &DL, unsigned O) { 8543 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8544 "Expected inlined-at fields to agree"); 8545 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8546 } 8547 8548 namespace { 8549 8550 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8551 /// pointed to by a use iterator is deleted, increment the use iterator 8552 /// so that it doesn't dangle. 8553 /// 8554 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8555 SDNode::use_iterator &UI; 8556 SDNode::use_iterator &UE; 8557 8558 void NodeDeleted(SDNode *N, SDNode *E) override { 8559 // Increment the iterator as needed. 8560 while (UI != UE && N == *UI) 8561 ++UI; 8562 } 8563 8564 public: 8565 RAUWUpdateListener(SelectionDAG &d, 8566 SDNode::use_iterator &ui, 8567 SDNode::use_iterator &ue) 8568 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8569 }; 8570 8571 } // end anonymous namespace 8572 8573 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8574 /// This can cause recursive merging of nodes in the DAG. 8575 /// 8576 /// This version assumes From has a single result value. 8577 /// 8578 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8579 SDNode *From = FromN.getNode(); 8580 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8581 "Cannot replace with this method!"); 8582 assert(From != To.getNode() && "Cannot replace uses of with self"); 8583 8584 // Preserve Debug Values 8585 transferDbgValues(FromN, To); 8586 8587 // Iterate over all the existing uses of From. New uses will be added 8588 // to the beginning of the use list, which we avoid visiting. 8589 // This specifically avoids visiting uses of From that arise while the 8590 // replacement is happening, because any such uses would be the result 8591 // of CSE: If an existing node looks like From after one of its operands 8592 // is replaced by To, we don't want to replace of all its users with To 8593 // too. See PR3018 for more info. 8594 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8595 RAUWUpdateListener Listener(*this, UI, UE); 8596 while (UI != UE) { 8597 SDNode *User = *UI; 8598 8599 // This node is about to morph, remove its old self from the CSE maps. 8600 RemoveNodeFromCSEMaps(User); 8601 8602 // A user can appear in a use list multiple times, and when this 8603 // happens the uses are usually next to each other in the list. 8604 // To help reduce the number of CSE recomputations, process all 8605 // the uses of this user that we can find this way. 8606 do { 8607 SDUse &Use = UI.getUse(); 8608 ++UI; 8609 Use.set(To); 8610 if (To->isDivergent() != From->isDivergent()) 8611 updateDivergence(User); 8612 } while (UI != UE && *UI == User); 8613 // Now that we have modified User, add it back to the CSE maps. If it 8614 // already exists there, recursively merge the results together. 8615 AddModifiedNodeToCSEMaps(User); 8616 } 8617 8618 // If we just RAUW'd the root, take note. 8619 if (FromN == getRoot()) 8620 setRoot(To); 8621 } 8622 8623 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8624 /// This can cause recursive merging of nodes in the DAG. 8625 /// 8626 /// This version assumes that for each value of From, there is a 8627 /// corresponding value in To in the same position with the same type. 8628 /// 8629 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8630 #ifndef NDEBUG 8631 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8632 assert((!From->hasAnyUseOfValue(i) || 8633 From->getValueType(i) == To->getValueType(i)) && 8634 "Cannot use this version of ReplaceAllUsesWith!"); 8635 #endif 8636 8637 // Handle the trivial case. 8638 if (From == To) 8639 return; 8640 8641 // Preserve Debug Info. Only do this if there's a use. 8642 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8643 if (From->hasAnyUseOfValue(i)) { 8644 assert((i < To->getNumValues()) && "Invalid To location"); 8645 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8646 } 8647 8648 // Iterate over just the existing users of From. See the comments in 8649 // the ReplaceAllUsesWith above. 8650 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8651 RAUWUpdateListener Listener(*this, UI, UE); 8652 while (UI != UE) { 8653 SDNode *User = *UI; 8654 8655 // This node is about to morph, remove its old self from the CSE maps. 8656 RemoveNodeFromCSEMaps(User); 8657 8658 // A user can appear in a use list multiple times, and when this 8659 // happens the uses are usually next to each other in the list. 8660 // To help reduce the number of CSE recomputations, process all 8661 // the uses of this user that we can find this way. 8662 do { 8663 SDUse &Use = UI.getUse(); 8664 ++UI; 8665 Use.setNode(To); 8666 if (To->isDivergent() != From->isDivergent()) 8667 updateDivergence(User); 8668 } while (UI != UE && *UI == User); 8669 8670 // Now that we have modified User, add it back to the CSE maps. If it 8671 // already exists there, recursively merge the results together. 8672 AddModifiedNodeToCSEMaps(User); 8673 } 8674 8675 // If we just RAUW'd the root, take note. 8676 if (From == getRoot().getNode()) 8677 setRoot(SDValue(To, getRoot().getResNo())); 8678 } 8679 8680 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8681 /// This can cause recursive merging of nodes in the DAG. 8682 /// 8683 /// This version can replace From with any result values. To must match the 8684 /// number and types of values returned by From. 8685 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8686 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8687 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8688 8689 // Preserve Debug Info. 8690 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8691 transferDbgValues(SDValue(From, i), To[i]); 8692 8693 // Iterate over just the existing users of From. See the comments in 8694 // the ReplaceAllUsesWith above. 8695 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8696 RAUWUpdateListener Listener(*this, UI, UE); 8697 while (UI != UE) { 8698 SDNode *User = *UI; 8699 8700 // This node is about to morph, remove its old self from the CSE maps. 8701 RemoveNodeFromCSEMaps(User); 8702 8703 // A user can appear in a use list multiple times, and when this happens the 8704 // uses are usually next to each other in the list. To help reduce the 8705 // number of CSE and divergence recomputations, process all the uses of this 8706 // user that we can find this way. 8707 bool To_IsDivergent = false; 8708 do { 8709 SDUse &Use = UI.getUse(); 8710 const SDValue &ToOp = To[Use.getResNo()]; 8711 ++UI; 8712 Use.set(ToOp); 8713 To_IsDivergent |= ToOp->isDivergent(); 8714 } while (UI != UE && *UI == User); 8715 8716 if (To_IsDivergent != From->isDivergent()) 8717 updateDivergence(User); 8718 8719 // Now that we have modified User, add it back to the CSE maps. If it 8720 // already exists there, recursively merge the results together. 8721 AddModifiedNodeToCSEMaps(User); 8722 } 8723 8724 // If we just RAUW'd the root, take note. 8725 if (From == getRoot().getNode()) 8726 setRoot(SDValue(To[getRoot().getResNo()])); 8727 } 8728 8729 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8730 /// uses of other values produced by From.getNode() alone. The Deleted 8731 /// vector is handled the same way as for ReplaceAllUsesWith. 8732 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8733 // Handle the really simple, really trivial case efficiently. 8734 if (From == To) return; 8735 8736 // Handle the simple, trivial, case efficiently. 8737 if (From.getNode()->getNumValues() == 1) { 8738 ReplaceAllUsesWith(From, To); 8739 return; 8740 } 8741 8742 // Preserve Debug Info. 8743 transferDbgValues(From, To); 8744 8745 // Iterate over just the existing users of From. See the comments in 8746 // the ReplaceAllUsesWith above. 8747 SDNode::use_iterator UI = From.getNode()->use_begin(), 8748 UE = From.getNode()->use_end(); 8749 RAUWUpdateListener Listener(*this, UI, UE); 8750 while (UI != UE) { 8751 SDNode *User = *UI; 8752 bool UserRemovedFromCSEMaps = false; 8753 8754 // A user can appear in a use list multiple times, and when this 8755 // happens the uses are usually next to each other in the list. 8756 // To help reduce the number of CSE recomputations, process all 8757 // the uses of this user that we can find this way. 8758 do { 8759 SDUse &Use = UI.getUse(); 8760 8761 // Skip uses of different values from the same node. 8762 if (Use.getResNo() != From.getResNo()) { 8763 ++UI; 8764 continue; 8765 } 8766 8767 // If this node hasn't been modified yet, it's still in the CSE maps, 8768 // so remove its old self from the CSE maps. 8769 if (!UserRemovedFromCSEMaps) { 8770 RemoveNodeFromCSEMaps(User); 8771 UserRemovedFromCSEMaps = true; 8772 } 8773 8774 ++UI; 8775 Use.set(To); 8776 if (To->isDivergent() != From->isDivergent()) 8777 updateDivergence(User); 8778 } while (UI != UE && *UI == User); 8779 // We are iterating over all uses of the From node, so if a use 8780 // doesn't use the specific value, no changes are made. 8781 if (!UserRemovedFromCSEMaps) 8782 continue; 8783 8784 // Now that we have modified User, add it back to the CSE maps. If it 8785 // already exists there, recursively merge the results together. 8786 AddModifiedNodeToCSEMaps(User); 8787 } 8788 8789 // If we just RAUW'd the root, take note. 8790 if (From == getRoot()) 8791 setRoot(To); 8792 } 8793 8794 namespace { 8795 8796 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8797 /// to record information about a use. 8798 struct UseMemo { 8799 SDNode *User; 8800 unsigned Index; 8801 SDUse *Use; 8802 }; 8803 8804 /// operator< - Sort Memos by User. 8805 bool operator<(const UseMemo &L, const UseMemo &R) { 8806 return (intptr_t)L.User < (intptr_t)R.User; 8807 } 8808 8809 } // end anonymous namespace 8810 8811 bool SelectionDAG::calculateDivergence(SDNode *N) { 8812 if (TLI->isSDNodeAlwaysUniform(N)) { 8813 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8814 "Conflicting divergence information!"); 8815 return false; 8816 } 8817 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8818 return true; 8819 for (auto &Op : N->ops()) { 8820 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8821 return true; 8822 } 8823 return false; 8824 } 8825 8826 void SelectionDAG::updateDivergence(SDNode *N) { 8827 SmallVector<SDNode *, 16> Worklist(1, N); 8828 do { 8829 N = Worklist.pop_back_val(); 8830 bool IsDivergent = calculateDivergence(N); 8831 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8832 N->SDNodeBits.IsDivergent = IsDivergent; 8833 llvm::append_range(Worklist, N->uses()); 8834 } 8835 } while (!Worklist.empty()); 8836 } 8837 8838 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8839 DenseMap<SDNode *, unsigned> Degree; 8840 Order.reserve(AllNodes.size()); 8841 for (auto &N : allnodes()) { 8842 unsigned NOps = N.getNumOperands(); 8843 Degree[&N] = NOps; 8844 if (0 == NOps) 8845 Order.push_back(&N); 8846 } 8847 for (size_t I = 0; I != Order.size(); ++I) { 8848 SDNode *N = Order[I]; 8849 for (auto U : N->uses()) { 8850 unsigned &UnsortedOps = Degree[U]; 8851 if (0 == --UnsortedOps) 8852 Order.push_back(U); 8853 } 8854 } 8855 } 8856 8857 #ifndef NDEBUG 8858 void SelectionDAG::VerifyDAGDiverence() { 8859 std::vector<SDNode *> TopoOrder; 8860 CreateTopologicalOrder(TopoOrder); 8861 for (auto *N : TopoOrder) { 8862 assert(calculateDivergence(N) == N->isDivergent() && 8863 "Divergence bit inconsistency detected"); 8864 } 8865 } 8866 #endif 8867 8868 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8869 /// uses of other values produced by From.getNode() alone. The same value 8870 /// may appear in both the From and To list. The Deleted vector is 8871 /// handled the same way as for ReplaceAllUsesWith. 8872 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8873 const SDValue *To, 8874 unsigned Num){ 8875 // Handle the simple, trivial case efficiently. 8876 if (Num == 1) 8877 return ReplaceAllUsesOfValueWith(*From, *To); 8878 8879 transferDbgValues(*From, *To); 8880 8881 // Read up all the uses and make records of them. This helps 8882 // processing new uses that are introduced during the 8883 // replacement process. 8884 SmallVector<UseMemo, 4> Uses; 8885 for (unsigned i = 0; i != Num; ++i) { 8886 unsigned FromResNo = From[i].getResNo(); 8887 SDNode *FromNode = From[i].getNode(); 8888 for (SDNode::use_iterator UI = FromNode->use_begin(), 8889 E = FromNode->use_end(); UI != E; ++UI) { 8890 SDUse &Use = UI.getUse(); 8891 if (Use.getResNo() == FromResNo) { 8892 UseMemo Memo = { *UI, i, &Use }; 8893 Uses.push_back(Memo); 8894 } 8895 } 8896 } 8897 8898 // Sort the uses, so that all the uses from a given User are together. 8899 llvm::sort(Uses); 8900 8901 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8902 UseIndex != UseIndexEnd; ) { 8903 // We know that this user uses some value of From. If it is the right 8904 // value, update it. 8905 SDNode *User = Uses[UseIndex].User; 8906 8907 // This node is about to morph, remove its old self from the CSE maps. 8908 RemoveNodeFromCSEMaps(User); 8909 8910 // The Uses array is sorted, so all the uses for a given User 8911 // are next to each other in the list. 8912 // To help reduce the number of CSE recomputations, process all 8913 // the uses of this user that we can find this way. 8914 do { 8915 unsigned i = Uses[UseIndex].Index; 8916 SDUse &Use = *Uses[UseIndex].Use; 8917 ++UseIndex; 8918 8919 Use.set(To[i]); 8920 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8921 8922 // Now that we have modified User, add it back to the CSE maps. If it 8923 // already exists there, recursively merge the results together. 8924 AddModifiedNodeToCSEMaps(User); 8925 } 8926 } 8927 8928 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8929 /// based on their topological order. It returns the maximum id and a vector 8930 /// of the SDNodes* in assigned order by reference. 8931 unsigned SelectionDAG::AssignTopologicalOrder() { 8932 unsigned DAGSize = 0; 8933 8934 // SortedPos tracks the progress of the algorithm. Nodes before it are 8935 // sorted, nodes after it are unsorted. When the algorithm completes 8936 // it is at the end of the list. 8937 allnodes_iterator SortedPos = allnodes_begin(); 8938 8939 // Visit all the nodes. Move nodes with no operands to the front of 8940 // the list immediately. Annotate nodes that do have operands with their 8941 // operand count. Before we do this, the Node Id fields of the nodes 8942 // may contain arbitrary values. After, the Node Id fields for nodes 8943 // before SortedPos will contain the topological sort index, and the 8944 // Node Id fields for nodes At SortedPos and after will contain the 8945 // count of outstanding operands. 8946 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8947 SDNode *N = &*I++; 8948 checkForCycles(N, this); 8949 unsigned Degree = N->getNumOperands(); 8950 if (Degree == 0) { 8951 // A node with no uses, add it to the result array immediately. 8952 N->setNodeId(DAGSize++); 8953 allnodes_iterator Q(N); 8954 if (Q != SortedPos) 8955 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8956 assert(SortedPos != AllNodes.end() && "Overran node list"); 8957 ++SortedPos; 8958 } else { 8959 // Temporarily use the Node Id as scratch space for the degree count. 8960 N->setNodeId(Degree); 8961 } 8962 } 8963 8964 // Visit all the nodes. As we iterate, move nodes into sorted order, 8965 // such that by the time the end is reached all nodes will be sorted. 8966 for (SDNode &Node : allnodes()) { 8967 SDNode *N = &Node; 8968 checkForCycles(N, this); 8969 // N is in sorted position, so all its uses have one less operand 8970 // that needs to be sorted. 8971 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8972 UI != UE; ++UI) { 8973 SDNode *P = *UI; 8974 unsigned Degree = P->getNodeId(); 8975 assert(Degree != 0 && "Invalid node degree"); 8976 --Degree; 8977 if (Degree == 0) { 8978 // All of P's operands are sorted, so P may sorted now. 8979 P->setNodeId(DAGSize++); 8980 if (P->getIterator() != SortedPos) 8981 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8982 assert(SortedPos != AllNodes.end() && "Overran node list"); 8983 ++SortedPos; 8984 } else { 8985 // Update P's outstanding operand count. 8986 P->setNodeId(Degree); 8987 } 8988 } 8989 if (Node.getIterator() == SortedPos) { 8990 #ifndef NDEBUG 8991 allnodes_iterator I(N); 8992 SDNode *S = &*++I; 8993 dbgs() << "Overran sorted position:\n"; 8994 S->dumprFull(this); dbgs() << "\n"; 8995 dbgs() << "Checking if this is due to cycles\n"; 8996 checkForCycles(this, true); 8997 #endif 8998 llvm_unreachable(nullptr); 8999 } 9000 } 9001 9002 assert(SortedPos == AllNodes.end() && 9003 "Topological sort incomplete!"); 9004 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9005 "First node in topological sort is not the entry token!"); 9006 assert(AllNodes.front().getNodeId() == 0 && 9007 "First node in topological sort has non-zero id!"); 9008 assert(AllNodes.front().getNumOperands() == 0 && 9009 "First node in topological sort has operands!"); 9010 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9011 "Last node in topologic sort has unexpected id!"); 9012 assert(AllNodes.back().use_empty() && 9013 "Last node in topologic sort has users!"); 9014 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9015 return DAGSize; 9016 } 9017 9018 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9019 /// value is produced by SD. 9020 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 9021 if (SD) { 9022 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9023 SD->setHasDebugValue(true); 9024 } 9025 DbgInfo->add(DB, SD, isParameter); 9026 } 9027 9028 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 9029 DbgInfo->add(DB); 9030 } 9031 9032 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9033 SDValue NewMemOpChain) { 9034 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9035 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9036 // The new memory operation must have the same position as the old load in 9037 // terms of memory dependency. Create a TokenFactor for the old load and new 9038 // memory operation and update uses of the old load's output chain to use that 9039 // TokenFactor. 9040 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9041 return NewMemOpChain; 9042 9043 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9044 OldChain, NewMemOpChain); 9045 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9046 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9047 return TokenFactor; 9048 } 9049 9050 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9051 SDValue NewMemOp) { 9052 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9053 SDValue OldChain = SDValue(OldLoad, 1); 9054 SDValue NewMemOpChain = NewMemOp.getValue(1); 9055 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9056 } 9057 9058 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9059 Function **OutFunction) { 9060 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9061 9062 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9063 auto *Module = MF->getFunction().getParent(); 9064 auto *Function = Module->getFunction(Symbol); 9065 9066 if (OutFunction != nullptr) 9067 *OutFunction = Function; 9068 9069 if (Function != nullptr) { 9070 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9071 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9072 } 9073 9074 std::string ErrorStr; 9075 raw_string_ostream ErrorFormatter(ErrorStr); 9076 9077 ErrorFormatter << "Undefined external symbol "; 9078 ErrorFormatter << '"' << Symbol << '"'; 9079 ErrorFormatter.flush(); 9080 9081 report_fatal_error(ErrorStr); 9082 } 9083 9084 //===----------------------------------------------------------------------===// 9085 // SDNode Class 9086 //===----------------------------------------------------------------------===// 9087 9088 bool llvm::isNullConstant(SDValue V) { 9089 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9090 return Const != nullptr && Const->isNullValue(); 9091 } 9092 9093 bool llvm::isNullFPConstant(SDValue V) { 9094 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9095 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9096 } 9097 9098 bool llvm::isAllOnesConstant(SDValue V) { 9099 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9100 return Const != nullptr && Const->isAllOnesValue(); 9101 } 9102 9103 bool llvm::isOneConstant(SDValue V) { 9104 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9105 return Const != nullptr && Const->isOne(); 9106 } 9107 9108 SDValue llvm::peekThroughBitcasts(SDValue V) { 9109 while (V.getOpcode() == ISD::BITCAST) 9110 V = V.getOperand(0); 9111 return V; 9112 } 9113 9114 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9115 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9116 V = V.getOperand(0); 9117 return V; 9118 } 9119 9120 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9121 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9122 V = V.getOperand(0); 9123 return V; 9124 } 9125 9126 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9127 if (V.getOpcode() != ISD::XOR) 9128 return false; 9129 V = peekThroughBitcasts(V.getOperand(1)); 9130 unsigned NumBits = V.getScalarValueSizeInBits(); 9131 ConstantSDNode *C = 9132 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9133 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9134 } 9135 9136 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9137 bool AllowTruncation) { 9138 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9139 return CN; 9140 9141 // SplatVectors can truncate their operands. Ignore that case here unless 9142 // AllowTruncation is set. 9143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9144 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9145 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9146 EVT CVT = CN->getValueType(0); 9147 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9148 if (AllowTruncation || CVT == VecEltVT) 9149 return CN; 9150 } 9151 } 9152 9153 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9154 BitVector UndefElements; 9155 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9156 9157 // BuildVectors can truncate their operands. Ignore that case here unless 9158 // AllowTruncation is set. 9159 if (CN && (UndefElements.none() || AllowUndefs)) { 9160 EVT CVT = CN->getValueType(0); 9161 EVT NSVT = N.getValueType().getScalarType(); 9162 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9163 if (AllowTruncation || (CVT == NSVT)) 9164 return CN; 9165 } 9166 } 9167 9168 return nullptr; 9169 } 9170 9171 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9172 bool AllowUndefs, 9173 bool AllowTruncation) { 9174 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9175 return CN; 9176 9177 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9178 BitVector UndefElements; 9179 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9180 9181 // BuildVectors can truncate their operands. Ignore that case here unless 9182 // AllowTruncation is set. 9183 if (CN && (UndefElements.none() || AllowUndefs)) { 9184 EVT CVT = CN->getValueType(0); 9185 EVT NSVT = N.getValueType().getScalarType(); 9186 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9187 if (AllowTruncation || (CVT == NSVT)) 9188 return CN; 9189 } 9190 } 9191 9192 return nullptr; 9193 } 9194 9195 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9196 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9197 return CN; 9198 9199 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9200 BitVector UndefElements; 9201 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9202 if (CN && (UndefElements.none() || AllowUndefs)) 9203 return CN; 9204 } 9205 9206 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9207 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9208 return CN; 9209 9210 return nullptr; 9211 } 9212 9213 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9214 const APInt &DemandedElts, 9215 bool AllowUndefs) { 9216 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9217 return CN; 9218 9219 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9220 BitVector UndefElements; 9221 ConstantFPSDNode *CN = 9222 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9223 if (CN && (UndefElements.none() || AllowUndefs)) 9224 return CN; 9225 } 9226 9227 return nullptr; 9228 } 9229 9230 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9231 // TODO: may want to use peekThroughBitcast() here. 9232 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9233 return C && C->isNullValue(); 9234 } 9235 9236 bool llvm::isOneOrOneSplat(SDValue N) { 9237 // TODO: may want to use peekThroughBitcast() here. 9238 unsigned BitWidth = N.getScalarValueSizeInBits(); 9239 ConstantSDNode *C = isConstOrConstSplat(N); 9240 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9241 } 9242 9243 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9244 N = peekThroughBitcasts(N); 9245 unsigned BitWidth = N.getScalarValueSizeInBits(); 9246 ConstantSDNode *C = isConstOrConstSplat(N); 9247 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9248 } 9249 9250 HandleSDNode::~HandleSDNode() { 9251 DropOperands(); 9252 } 9253 9254 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9255 const DebugLoc &DL, 9256 const GlobalValue *GA, EVT VT, 9257 int64_t o, unsigned TF) 9258 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9259 TheGlobal = GA; 9260 } 9261 9262 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9263 EVT VT, unsigned SrcAS, 9264 unsigned DestAS) 9265 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9266 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9267 9268 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9269 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9270 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9271 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9272 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9273 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9274 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9275 9276 // We check here that the size of the memory operand fits within the size of 9277 // the MMO. This is because the MMO might indicate only a possible address 9278 // range instead of specifying the affected memory addresses precisely. 9279 // TODO: Make MachineMemOperands aware of scalable vectors. 9280 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9281 "Size mismatch!"); 9282 } 9283 9284 /// Profile - Gather unique data for the node. 9285 /// 9286 void SDNode::Profile(FoldingSetNodeID &ID) const { 9287 AddNodeIDNode(ID, this); 9288 } 9289 9290 namespace { 9291 9292 struct EVTArray { 9293 std::vector<EVT> VTs; 9294 9295 EVTArray() { 9296 VTs.reserve(MVT::LAST_VALUETYPE); 9297 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9298 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9299 } 9300 }; 9301 9302 } // end anonymous namespace 9303 9304 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9305 static ManagedStatic<EVTArray> SimpleVTArray; 9306 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9307 9308 /// getValueTypeList - Return a pointer to the specified value type. 9309 /// 9310 const EVT *SDNode::getValueTypeList(EVT VT) { 9311 if (VT.isExtended()) { 9312 sys::SmartScopedLock<true> Lock(*VTMutex); 9313 return &(*EVTs->insert(VT).first); 9314 } else { 9315 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9316 "Value type out of range!"); 9317 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9318 } 9319 } 9320 9321 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9322 /// indicated value. This method ignores uses of other values defined by this 9323 /// operation. 9324 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9325 assert(Value < getNumValues() && "Bad value!"); 9326 9327 // TODO: Only iterate over uses of a given value of the node 9328 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9329 if (UI.getUse().getResNo() == Value) { 9330 if (NUses == 0) 9331 return false; 9332 --NUses; 9333 } 9334 } 9335 9336 // Found exactly the right number of uses? 9337 return NUses == 0; 9338 } 9339 9340 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9341 /// value. This method ignores uses of other values defined by this operation. 9342 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9343 assert(Value < getNumValues() && "Bad value!"); 9344 9345 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9346 if (UI.getUse().getResNo() == Value) 9347 return true; 9348 9349 return false; 9350 } 9351 9352 /// isOnlyUserOf - Return true if this node is the only use of N. 9353 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9354 bool Seen = false; 9355 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9356 SDNode *User = *I; 9357 if (User == this) 9358 Seen = true; 9359 else 9360 return false; 9361 } 9362 9363 return Seen; 9364 } 9365 9366 /// Return true if the only users of N are contained in Nodes. 9367 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9368 bool Seen = false; 9369 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9370 SDNode *User = *I; 9371 if (llvm::is_contained(Nodes, User)) 9372 Seen = true; 9373 else 9374 return false; 9375 } 9376 9377 return Seen; 9378 } 9379 9380 /// isOperand - Return true if this node is an operand of N. 9381 bool SDValue::isOperandOf(const SDNode *N) const { 9382 return is_contained(N->op_values(), *this); 9383 } 9384 9385 bool SDNode::isOperandOf(const SDNode *N) const { 9386 return any_of(N->op_values(), 9387 [this](SDValue Op) { return this == Op.getNode(); }); 9388 } 9389 9390 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9391 /// be a chain) reaches the specified operand without crossing any 9392 /// side-effecting instructions on any chain path. In practice, this looks 9393 /// through token factors and non-volatile loads. In order to remain efficient, 9394 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9395 /// 9396 /// Note that we only need to examine chains when we're searching for 9397 /// side-effects; SelectionDAG requires that all side-effects are represented 9398 /// by chains, even if another operand would force a specific ordering. This 9399 /// constraint is necessary to allow transformations like splitting loads. 9400 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9401 unsigned Depth) const { 9402 if (*this == Dest) return true; 9403 9404 // Don't search too deeply, we just want to be able to see through 9405 // TokenFactor's etc. 9406 if (Depth == 0) return false; 9407 9408 // If this is a token factor, all inputs to the TF happen in parallel. 9409 if (getOpcode() == ISD::TokenFactor) { 9410 // First, try a shallow search. 9411 if (is_contained((*this)->ops(), Dest)) { 9412 // We found the chain we want as an operand of this TokenFactor. 9413 // Essentially, we reach the chain without side-effects if we could 9414 // serialize the TokenFactor into a simple chain of operations with 9415 // Dest as the last operation. This is automatically true if the 9416 // chain has one use: there are no other ordering constraints. 9417 // If the chain has more than one use, we give up: some other 9418 // use of Dest might force a side-effect between Dest and the current 9419 // node. 9420 if (Dest.hasOneUse()) 9421 return true; 9422 } 9423 // Next, try a deep search: check whether every operand of the TokenFactor 9424 // reaches Dest. 9425 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9426 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9427 }); 9428 } 9429 9430 // Loads don't have side effects, look through them. 9431 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9432 if (Ld->isUnordered()) 9433 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9434 } 9435 return false; 9436 } 9437 9438 bool SDNode::hasPredecessor(const SDNode *N) const { 9439 SmallPtrSet<const SDNode *, 32> Visited; 9440 SmallVector<const SDNode *, 16> Worklist; 9441 Worklist.push_back(this); 9442 return hasPredecessorHelper(N, Visited, Worklist); 9443 } 9444 9445 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9446 this->Flags.intersectWith(Flags); 9447 } 9448 9449 SDValue 9450 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9451 ArrayRef<ISD::NodeType> CandidateBinOps, 9452 bool AllowPartials) { 9453 // The pattern must end in an extract from index 0. 9454 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9455 !isNullConstant(Extract->getOperand(1))) 9456 return SDValue(); 9457 9458 // Match against one of the candidate binary ops. 9459 SDValue Op = Extract->getOperand(0); 9460 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9461 return Op.getOpcode() == unsigned(BinOp); 9462 })) 9463 return SDValue(); 9464 9465 // Floating-point reductions may require relaxed constraints on the final step 9466 // of the reduction because they may reorder intermediate operations. 9467 unsigned CandidateBinOp = Op.getOpcode(); 9468 if (Op.getValueType().isFloatingPoint()) { 9469 SDNodeFlags Flags = Op->getFlags(); 9470 switch (CandidateBinOp) { 9471 case ISD::FADD: 9472 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9473 return SDValue(); 9474 break; 9475 default: 9476 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9477 } 9478 } 9479 9480 // Matching failed - attempt to see if we did enough stages that a partial 9481 // reduction from a subvector is possible. 9482 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9483 if (!AllowPartials || !Op) 9484 return SDValue(); 9485 EVT OpVT = Op.getValueType(); 9486 EVT OpSVT = OpVT.getScalarType(); 9487 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9488 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9489 return SDValue(); 9490 BinOp = (ISD::NodeType)CandidateBinOp; 9491 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9492 getVectorIdxConstant(0, SDLoc(Op))); 9493 }; 9494 9495 // At each stage, we're looking for something that looks like: 9496 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9497 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9498 // i32 undef, i32 undef, i32 undef, i32 undef> 9499 // %a = binop <8 x i32> %op, %s 9500 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9501 // we expect something like: 9502 // <4,5,6,7,u,u,u,u> 9503 // <2,3,u,u,u,u,u,u> 9504 // <1,u,u,u,u,u,u,u> 9505 // While a partial reduction match would be: 9506 // <2,3,u,u,u,u,u,u> 9507 // <1,u,u,u,u,u,u,u> 9508 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9509 SDValue PrevOp; 9510 for (unsigned i = 0; i < Stages; ++i) { 9511 unsigned MaskEnd = (1 << i); 9512 9513 if (Op.getOpcode() != CandidateBinOp) 9514 return PartialReduction(PrevOp, MaskEnd); 9515 9516 SDValue Op0 = Op.getOperand(0); 9517 SDValue Op1 = Op.getOperand(1); 9518 9519 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9520 if (Shuffle) { 9521 Op = Op1; 9522 } else { 9523 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9524 Op = Op0; 9525 } 9526 9527 // The first operand of the shuffle should be the same as the other operand 9528 // of the binop. 9529 if (!Shuffle || Shuffle->getOperand(0) != Op) 9530 return PartialReduction(PrevOp, MaskEnd); 9531 9532 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9533 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9534 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9535 return PartialReduction(PrevOp, MaskEnd); 9536 9537 PrevOp = Op; 9538 } 9539 9540 // Handle subvector reductions, which tend to appear after the shuffle 9541 // reduction stages. 9542 while (Op.getOpcode() == CandidateBinOp) { 9543 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9544 SDValue Op0 = Op.getOperand(0); 9545 SDValue Op1 = Op.getOperand(1); 9546 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9547 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9548 Op0.getOperand(0) != Op1.getOperand(0)) 9549 break; 9550 SDValue Src = Op0.getOperand(0); 9551 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9552 if (NumSrcElts != (2 * NumElts)) 9553 break; 9554 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9555 Op1.getConstantOperandAPInt(1) == NumElts) && 9556 !(Op1.getConstantOperandAPInt(1) == 0 && 9557 Op0.getConstantOperandAPInt(1) == NumElts)) 9558 break; 9559 Op = Src; 9560 } 9561 9562 BinOp = (ISD::NodeType)CandidateBinOp; 9563 return Op; 9564 } 9565 9566 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9567 assert(N->getNumValues() == 1 && 9568 "Can't unroll a vector with multiple results!"); 9569 9570 EVT VT = N->getValueType(0); 9571 unsigned NE = VT.getVectorNumElements(); 9572 EVT EltVT = VT.getVectorElementType(); 9573 SDLoc dl(N); 9574 9575 SmallVector<SDValue, 8> Scalars; 9576 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9577 9578 // If ResNE is 0, fully unroll the vector op. 9579 if (ResNE == 0) 9580 ResNE = NE; 9581 else if (NE > ResNE) 9582 NE = ResNE; 9583 9584 unsigned i; 9585 for (i= 0; i != NE; ++i) { 9586 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9587 SDValue Operand = N->getOperand(j); 9588 EVT OperandVT = Operand.getValueType(); 9589 if (OperandVT.isVector()) { 9590 // A vector operand; extract a single element. 9591 EVT OperandEltVT = OperandVT.getVectorElementType(); 9592 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9593 Operand, getVectorIdxConstant(i, dl)); 9594 } else { 9595 // A scalar operand; just use it as is. 9596 Operands[j] = Operand; 9597 } 9598 } 9599 9600 switch (N->getOpcode()) { 9601 default: { 9602 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9603 N->getFlags())); 9604 break; 9605 } 9606 case ISD::VSELECT: 9607 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9608 break; 9609 case ISD::SHL: 9610 case ISD::SRA: 9611 case ISD::SRL: 9612 case ISD::ROTL: 9613 case ISD::ROTR: 9614 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9615 getShiftAmountOperand(Operands[0].getValueType(), 9616 Operands[1]))); 9617 break; 9618 case ISD::SIGN_EXTEND_INREG: { 9619 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9620 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9621 Operands[0], 9622 getValueType(ExtVT))); 9623 } 9624 } 9625 } 9626 9627 for (; i < ResNE; ++i) 9628 Scalars.push_back(getUNDEF(EltVT)); 9629 9630 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9631 return getBuildVector(VecVT, dl, Scalars); 9632 } 9633 9634 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9635 SDNode *N, unsigned ResNE) { 9636 unsigned Opcode = N->getOpcode(); 9637 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9638 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9639 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9640 "Expected an overflow opcode"); 9641 9642 EVT ResVT = N->getValueType(0); 9643 EVT OvVT = N->getValueType(1); 9644 EVT ResEltVT = ResVT.getVectorElementType(); 9645 EVT OvEltVT = OvVT.getVectorElementType(); 9646 SDLoc dl(N); 9647 9648 // If ResNE is 0, fully unroll the vector op. 9649 unsigned NE = ResVT.getVectorNumElements(); 9650 if (ResNE == 0) 9651 ResNE = NE; 9652 else if (NE > ResNE) 9653 NE = ResNE; 9654 9655 SmallVector<SDValue, 8> LHSScalars; 9656 SmallVector<SDValue, 8> RHSScalars; 9657 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9658 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9659 9660 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9661 SDVTList VTs = getVTList(ResEltVT, SVT); 9662 SmallVector<SDValue, 8> ResScalars; 9663 SmallVector<SDValue, 8> OvScalars; 9664 for (unsigned i = 0; i < NE; ++i) { 9665 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9666 SDValue Ov = 9667 getSelect(dl, OvEltVT, Res.getValue(1), 9668 getBoolConstant(true, dl, OvEltVT, ResVT), 9669 getConstant(0, dl, OvEltVT)); 9670 9671 ResScalars.push_back(Res); 9672 OvScalars.push_back(Ov); 9673 } 9674 9675 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9676 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9677 9678 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9679 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9680 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9681 getBuildVector(NewOvVT, dl, OvScalars)); 9682 } 9683 9684 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9685 LoadSDNode *Base, 9686 unsigned Bytes, 9687 int Dist) const { 9688 if (LD->isVolatile() || Base->isVolatile()) 9689 return false; 9690 // TODO: probably too restrictive for atomics, revisit 9691 if (!LD->isSimple()) 9692 return false; 9693 if (LD->isIndexed() || Base->isIndexed()) 9694 return false; 9695 if (LD->getChain() != Base->getChain()) 9696 return false; 9697 EVT VT = LD->getValueType(0); 9698 if (VT.getSizeInBits() / 8 != Bytes) 9699 return false; 9700 9701 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9702 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9703 9704 int64_t Offset = 0; 9705 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9706 return (Dist * Bytes == Offset); 9707 return false; 9708 } 9709 9710 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9711 /// if it cannot be inferred. 9712 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9713 // If this is a GlobalAddress + cst, return the alignment. 9714 const GlobalValue *GV = nullptr; 9715 int64_t GVOffset = 0; 9716 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9717 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9718 KnownBits Known(PtrWidth); 9719 llvm::computeKnownBits(GV, Known, getDataLayout()); 9720 unsigned AlignBits = Known.countMinTrailingZeros(); 9721 if (AlignBits) 9722 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9723 } 9724 9725 // If this is a direct reference to a stack slot, use information about the 9726 // stack slot's alignment. 9727 int FrameIdx = INT_MIN; 9728 int64_t FrameOffset = 0; 9729 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9730 FrameIdx = FI->getIndex(); 9731 } else if (isBaseWithConstantOffset(Ptr) && 9732 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9733 // Handle FI+Cst 9734 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9735 FrameOffset = Ptr.getConstantOperandVal(1); 9736 } 9737 9738 if (FrameIdx != INT_MIN) { 9739 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9740 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9741 } 9742 9743 return None; 9744 } 9745 9746 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9747 /// which is split (or expanded) into two not necessarily identical pieces. 9748 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9749 // Currently all types are split in half. 9750 EVT LoVT, HiVT; 9751 if (!VT.isVector()) 9752 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9753 else 9754 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9755 9756 return std::make_pair(LoVT, HiVT); 9757 } 9758 9759 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9760 /// type, dependent on an enveloping VT that has been split into two identical 9761 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9762 std::pair<EVT, EVT> 9763 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9764 bool *HiIsEmpty) const { 9765 EVT EltTp = VT.getVectorElementType(); 9766 // Examples: 9767 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9768 // custom VL=9 with enveloping VL=8/8 yields 8/1 9769 // custom VL=10 with enveloping VL=8/8 yields 8/2 9770 // etc. 9771 ElementCount VTNumElts = VT.getVectorElementCount(); 9772 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9773 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9774 "Mixing fixed width and scalable vectors when enveloping a type"); 9775 EVT LoVT, HiVT; 9776 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9777 LoVT = EnvVT; 9778 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9779 *HiIsEmpty = false; 9780 } else { 9781 // Flag that hi type has zero storage size, but return split envelop type 9782 // (this would be easier if vector types with zero elements were allowed). 9783 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9784 HiVT = EnvVT; 9785 *HiIsEmpty = true; 9786 } 9787 return std::make_pair(LoVT, HiVT); 9788 } 9789 9790 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9791 /// low/high part. 9792 std::pair<SDValue, SDValue> 9793 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9794 const EVT &HiVT) { 9795 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9796 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9797 "Splitting vector with an invalid mixture of fixed and scalable " 9798 "vector types"); 9799 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9800 N.getValueType().getVectorMinNumElements() && 9801 "More vector elements requested than available!"); 9802 SDValue Lo, Hi; 9803 Lo = 9804 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9805 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9806 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9807 // IDX with the runtime scaling factor of the result vector type. For 9808 // fixed-width result vectors, that runtime scaling factor is 1. 9809 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9810 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9811 return std::make_pair(Lo, Hi); 9812 } 9813 9814 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9815 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9816 EVT VT = N.getValueType(); 9817 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9818 NextPowerOf2(VT.getVectorNumElements())); 9819 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9820 getVectorIdxConstant(0, DL)); 9821 } 9822 9823 void SelectionDAG::ExtractVectorElements(SDValue Op, 9824 SmallVectorImpl<SDValue> &Args, 9825 unsigned Start, unsigned Count, 9826 EVT EltVT) { 9827 EVT VT = Op.getValueType(); 9828 if (Count == 0) 9829 Count = VT.getVectorNumElements(); 9830 if (EltVT == EVT()) 9831 EltVT = VT.getVectorElementType(); 9832 SDLoc SL(Op); 9833 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9834 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9835 getVectorIdxConstant(i, SL))); 9836 } 9837 } 9838 9839 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9840 unsigned GlobalAddressSDNode::getAddressSpace() const { 9841 return getGlobal()->getType()->getAddressSpace(); 9842 } 9843 9844 Type *ConstantPoolSDNode::getType() const { 9845 if (isMachineConstantPoolEntry()) 9846 return Val.MachineCPVal->getType(); 9847 return Val.ConstVal->getType(); 9848 } 9849 9850 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9851 unsigned &SplatBitSize, 9852 bool &HasAnyUndefs, 9853 unsigned MinSplatBits, 9854 bool IsBigEndian) const { 9855 EVT VT = getValueType(0); 9856 assert(VT.isVector() && "Expected a vector type"); 9857 unsigned VecWidth = VT.getSizeInBits(); 9858 if (MinSplatBits > VecWidth) 9859 return false; 9860 9861 // FIXME: The widths are based on this node's type, but build vectors can 9862 // truncate their operands. 9863 SplatValue = APInt(VecWidth, 0); 9864 SplatUndef = APInt(VecWidth, 0); 9865 9866 // Get the bits. Bits with undefined values (when the corresponding element 9867 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9868 // in SplatValue. If any of the values are not constant, give up and return 9869 // false. 9870 unsigned int NumOps = getNumOperands(); 9871 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9872 unsigned EltWidth = VT.getScalarSizeInBits(); 9873 9874 for (unsigned j = 0; j < NumOps; ++j) { 9875 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9876 SDValue OpVal = getOperand(i); 9877 unsigned BitPos = j * EltWidth; 9878 9879 if (OpVal.isUndef()) 9880 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9881 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9882 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9883 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9884 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9885 else 9886 return false; 9887 } 9888 9889 // The build_vector is all constants or undefs. Find the smallest element 9890 // size that splats the vector. 9891 HasAnyUndefs = (SplatUndef != 0); 9892 9893 // FIXME: This does not work for vectors with elements less than 8 bits. 9894 while (VecWidth > 8) { 9895 unsigned HalfSize = VecWidth / 2; 9896 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9897 APInt LowValue = SplatValue.trunc(HalfSize); 9898 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9899 APInt LowUndef = SplatUndef.trunc(HalfSize); 9900 9901 // If the two halves do not match (ignoring undef bits), stop here. 9902 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9903 MinSplatBits > HalfSize) 9904 break; 9905 9906 SplatValue = HighValue | LowValue; 9907 SplatUndef = HighUndef & LowUndef; 9908 9909 VecWidth = HalfSize; 9910 } 9911 9912 SplatBitSize = VecWidth; 9913 return true; 9914 } 9915 9916 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9917 BitVector *UndefElements) const { 9918 unsigned NumOps = getNumOperands(); 9919 if (UndefElements) { 9920 UndefElements->clear(); 9921 UndefElements->resize(NumOps); 9922 } 9923 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9924 if (!DemandedElts) 9925 return SDValue(); 9926 SDValue Splatted; 9927 for (unsigned i = 0; i != NumOps; ++i) { 9928 if (!DemandedElts[i]) 9929 continue; 9930 SDValue Op = getOperand(i); 9931 if (Op.isUndef()) { 9932 if (UndefElements) 9933 (*UndefElements)[i] = true; 9934 } else if (!Splatted) { 9935 Splatted = Op; 9936 } else if (Splatted != Op) { 9937 return SDValue(); 9938 } 9939 } 9940 9941 if (!Splatted) { 9942 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9943 assert(getOperand(FirstDemandedIdx).isUndef() && 9944 "Can only have a splat without a constant for all undefs."); 9945 return getOperand(FirstDemandedIdx); 9946 } 9947 9948 return Splatted; 9949 } 9950 9951 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9952 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9953 return getSplatValue(DemandedElts, UndefElements); 9954 } 9955 9956 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 9957 SmallVectorImpl<SDValue> &Sequence, 9958 BitVector *UndefElements) const { 9959 unsigned NumOps = getNumOperands(); 9960 Sequence.clear(); 9961 if (UndefElements) { 9962 UndefElements->clear(); 9963 UndefElements->resize(NumOps); 9964 } 9965 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9966 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 9967 return false; 9968 9969 // Set the undefs even if we don't find a sequence (like getSplatValue). 9970 if (UndefElements) 9971 for (unsigned I = 0; I != NumOps; ++I) 9972 if (DemandedElts[I] && getOperand(I).isUndef()) 9973 (*UndefElements)[I] = true; 9974 9975 // Iteratively widen the sequence length looking for repetitions. 9976 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 9977 Sequence.append(SeqLen, SDValue()); 9978 for (unsigned I = 0; I != NumOps; ++I) { 9979 if (!DemandedElts[I]) 9980 continue; 9981 SDValue &SeqOp = Sequence[I % SeqLen]; 9982 SDValue Op = getOperand(I); 9983 if (Op.isUndef()) { 9984 if (!SeqOp) 9985 SeqOp = Op; 9986 continue; 9987 } 9988 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 9989 Sequence.clear(); 9990 break; 9991 } 9992 SeqOp = Op; 9993 } 9994 if (!Sequence.empty()) 9995 return true; 9996 } 9997 9998 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 9999 return false; 10000 } 10001 10002 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10003 BitVector *UndefElements) const { 10004 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10005 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10006 } 10007 10008 ConstantSDNode * 10009 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10010 BitVector *UndefElements) const { 10011 return dyn_cast_or_null<ConstantSDNode>( 10012 getSplatValue(DemandedElts, UndefElements)); 10013 } 10014 10015 ConstantSDNode * 10016 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10017 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10018 } 10019 10020 ConstantFPSDNode * 10021 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10022 BitVector *UndefElements) const { 10023 return dyn_cast_or_null<ConstantFPSDNode>( 10024 getSplatValue(DemandedElts, UndefElements)); 10025 } 10026 10027 ConstantFPSDNode * 10028 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10029 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10030 } 10031 10032 int32_t 10033 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10034 uint32_t BitWidth) const { 10035 if (ConstantFPSDNode *CN = 10036 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10037 bool IsExact; 10038 APSInt IntVal(BitWidth); 10039 const APFloat &APF = CN->getValueAPF(); 10040 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10041 APFloat::opOK || 10042 !IsExact) 10043 return -1; 10044 10045 return IntVal.exactLogBase2(); 10046 } 10047 return -1; 10048 } 10049 10050 bool BuildVectorSDNode::isConstant() const { 10051 for (const SDValue &Op : op_values()) { 10052 unsigned Opc = Op.getOpcode(); 10053 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10054 return false; 10055 } 10056 return true; 10057 } 10058 10059 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10060 // Find the first non-undef value in the shuffle mask. 10061 unsigned i, e; 10062 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10063 /* search */; 10064 10065 // If all elements are undefined, this shuffle can be considered a splat 10066 // (although it should eventually get simplified away completely). 10067 if (i == e) 10068 return true; 10069 10070 // Make sure all remaining elements are either undef or the same as the first 10071 // non-undef value. 10072 for (int Idx = Mask[i]; i != e; ++i) 10073 if (Mask[i] >= 0 && Mask[i] != Idx) 10074 return false; 10075 return true; 10076 } 10077 10078 // Returns the SDNode if it is a constant integer BuildVector 10079 // or constant integer. 10080 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10081 if (isa<ConstantSDNode>(N)) 10082 return N.getNode(); 10083 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10084 return N.getNode(); 10085 // Treat a GlobalAddress supporting constant offset folding as a 10086 // constant integer. 10087 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10088 if (GA->getOpcode() == ISD::GlobalAddress && 10089 TLI->isOffsetFoldingLegal(GA)) 10090 return GA; 10091 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10092 isa<ConstantSDNode>(N.getOperand(0))) 10093 return N.getNode(); 10094 return nullptr; 10095 } 10096 10097 // Returns the SDNode if it is a constant float BuildVector 10098 // or constant float. 10099 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10100 if (isa<ConstantFPSDNode>(N)) 10101 return N.getNode(); 10102 10103 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10104 return N.getNode(); 10105 10106 return nullptr; 10107 } 10108 10109 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10110 assert(!Node->OperandList && "Node already has operands"); 10111 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10112 "too many operands to fit into SDNode"); 10113 SDUse *Ops = OperandRecycler.allocate( 10114 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10115 10116 bool IsDivergent = false; 10117 for (unsigned I = 0; I != Vals.size(); ++I) { 10118 Ops[I].setUser(Node); 10119 Ops[I].setInitial(Vals[I]); 10120 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10121 IsDivergent |= Ops[I].getNode()->isDivergent(); 10122 } 10123 Node->NumOperands = Vals.size(); 10124 Node->OperandList = Ops; 10125 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10126 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10127 Node->SDNodeBits.IsDivergent = IsDivergent; 10128 } 10129 checkForCycles(Node); 10130 } 10131 10132 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10133 SmallVectorImpl<SDValue> &Vals) { 10134 size_t Limit = SDNode::getMaxNumOperands(); 10135 while (Vals.size() > Limit) { 10136 unsigned SliceIdx = Vals.size() - Limit; 10137 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10138 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10139 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10140 Vals.emplace_back(NewTF); 10141 } 10142 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10143 } 10144 10145 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10146 EVT VT, SDNodeFlags Flags) { 10147 switch (Opcode) { 10148 default: 10149 return SDValue(); 10150 case ISD::ADD: 10151 case ISD::OR: 10152 case ISD::XOR: 10153 case ISD::UMAX: 10154 return getConstant(0, DL, VT); 10155 case ISD::MUL: 10156 return getConstant(1, DL, VT); 10157 case ISD::AND: 10158 case ISD::UMIN: 10159 return getAllOnesConstant(DL, VT); 10160 case ISD::SMAX: 10161 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10162 case ISD::SMIN: 10163 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10164 case ISD::FADD: 10165 return getConstantFP(-0.0, DL, VT); 10166 case ISD::FMUL: 10167 return getConstantFP(1.0, DL, VT); 10168 case ISD::FMINNUM: 10169 case ISD::FMAXNUM: { 10170 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10171 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10172 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10173 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10174 APFloat::getLargest(Semantics); 10175 if (Opcode == ISD::FMAXNUM) 10176 NeutralAF.changeSign(); 10177 10178 return getConstantFP(NeutralAF, DL, VT); 10179 } 10180 } 10181 } 10182 10183 #ifndef NDEBUG 10184 static void checkForCyclesHelper(const SDNode *N, 10185 SmallPtrSetImpl<const SDNode*> &Visited, 10186 SmallPtrSetImpl<const SDNode*> &Checked, 10187 const llvm::SelectionDAG *DAG) { 10188 // If this node has already been checked, don't check it again. 10189 if (Checked.count(N)) 10190 return; 10191 10192 // If a node has already been visited on this depth-first walk, reject it as 10193 // a cycle. 10194 if (!Visited.insert(N).second) { 10195 errs() << "Detected cycle in SelectionDAG\n"; 10196 dbgs() << "Offending node:\n"; 10197 N->dumprFull(DAG); dbgs() << "\n"; 10198 abort(); 10199 } 10200 10201 for (const SDValue &Op : N->op_values()) 10202 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10203 10204 Checked.insert(N); 10205 Visited.erase(N); 10206 } 10207 #endif 10208 10209 void llvm::checkForCycles(const llvm::SDNode *N, 10210 const llvm::SelectionDAG *DAG, 10211 bool force) { 10212 #ifndef NDEBUG 10213 bool check = force; 10214 #ifdef EXPENSIVE_CHECKS 10215 check = true; 10216 #endif // EXPENSIVE_CHECKS 10217 if (check) { 10218 assert(N && "Checking nonexistent SDNode"); 10219 SmallPtrSet<const SDNode*, 32> visited; 10220 SmallPtrSet<const SDNode*, 32> checked; 10221 checkForCyclesHelper(N, visited, checked, DAG); 10222 } 10223 #endif // !NDEBUG 10224 } 10225 10226 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10227 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10228 } 10229