1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/CodeGen/ValueTypes.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   auto *BV = dyn_cast<BuildVectorSDNode>(N);
141   if (!BV)
142     return false;
143 
144   APInt SplatUndef;
145   unsigned SplatBitSize;
146   bool HasUndefs;
147   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
148   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
149                              EltSize) &&
150          EltSize == SplatBitSize;
151 }
152 
153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
154 // specializations of the more general isConstantSplatVector()?
155 
156 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   unsigned i = 0, e = N->getNumOperands();
164 
165   // Skip over all of the undef values.
166   while (i != e && N->getOperand(i).isUndef())
167     ++i;
168 
169   // Do not accept an all-undef vector.
170   if (i == e) return false;
171 
172   // Do not accept build_vectors that aren't all constants or which have non-~0
173   // elements. We have to be a bit careful here, as the type of the constant
174   // may not be the same as the type of the vector elements due to type
175   // legalization (the elements are promoted to a legal type for the target and
176   // a vector of a type may be legal when the base element type is not).
177   // We only want to check enough bits to cover the vector elements, because
178   // we care if the resultant vector is all ones, not whether the individual
179   // constants are.
180   SDValue NotZero = N->getOperand(i);
181   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
182   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
183     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
184       return false;
185   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
186     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
187       return false;
188   } else
189     return false;
190 
191   // Okay, we have at least one ~0 value, check to see if the rest match or are
192   // undefs. Even with the above element type twiddling, this should be OK, as
193   // the same type legalization should have applied to all the elements.
194   for (++i; i != e; ++i)
195     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
196       return false;
197   return true;
198 }
199 
200 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
201   // Look through a bit convert.
202   while (N->getOpcode() == ISD::BITCAST)
203     N = N->getOperand(0).getNode();
204 
205   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
206 
207   bool IsAllUndef = true;
208   for (const SDValue &Op : N->op_values()) {
209     if (Op.isUndef())
210       continue;
211     IsAllUndef = false;
212     // Do not accept build_vectors that aren't all constants or which have non-0
213     // elements. We have to be a bit careful here, as the type of the constant
214     // may not be the same as the type of the vector elements due to type
215     // legalization (the elements are promoted to a legal type for the target
216     // and a vector of a type may be legal when the base element type is not).
217     // We only want to check enough bits to cover the vector elements, because
218     // we care if the resultant vector is all zeros, not whether the individual
219     // constants are.
220     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
221     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
222       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
223         return false;
224     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
225       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
226         return false;
227     } else
228       return false;
229   }
230 
231   // Do not accept an all-undef vector.
232   if (IsAllUndef)
233     return false;
234   return true;
235 }
236 
237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
238   if (N->getOpcode() != ISD::BUILD_VECTOR)
239     return false;
240 
241   for (const SDValue &Op : N->op_values()) {
242     if (Op.isUndef())
243       continue;
244     if (!isa<ConstantSDNode>(Op))
245       return false;
246   }
247   return true;
248 }
249 
250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
251   if (N->getOpcode() != ISD::BUILD_VECTOR)
252     return false;
253 
254   for (const SDValue &Op : N->op_values()) {
255     if (Op.isUndef())
256       continue;
257     if (!isa<ConstantFPSDNode>(Op))
258       return false;
259   }
260   return true;
261 }
262 
263 bool ISD::allOperandsUndef(const SDNode *N) {
264   // Return false if the node has no operands.
265   // This is "logically inconsistent" with the definition of "all" but
266   // is probably the desired behavior.
267   if (N->getNumOperands() == 0)
268     return false;
269   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
270 }
271 
272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs, bool AllowTypeMismatch) {
302   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
326                                LHSOp.getValueType() != RHSOp.getValueType()))
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
360   unsigned Operation = Op;
361   if (isIntegerLike)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
373   return getSetCCInverseImpl(Op, Type.isInteger());
374 }
375 
376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
377                                                bool isIntegerLike) {
378   return getSetCCInverseImpl(Op, isIntegerLike);
379 }
380 
381 /// For an integer comparison, return 1 if the comparison is a signed operation
382 /// and 2 if the result is an unsigned comparison. Return zero if the operation
383 /// does not depend on the sign of the input (setne and seteq).
384 static int isSignedOp(ISD::CondCode Opcode) {
385   switch (Opcode) {
386   default: llvm_unreachable("Illegal integer setcc operation!");
387   case ISD::SETEQ:
388   case ISD::SETNE: return 0;
389   case ISD::SETLT:
390   case ISD::SETLE:
391   case ISD::SETGT:
392   case ISD::SETGE: return 1;
393   case ISD::SETULT:
394   case ISD::SETULE:
395   case ISD::SETUGT:
396   case ISD::SETUGE: return 2;
397   }
398 }
399 
400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
401                                        EVT Type) {
402   bool IsInteger = Type.isInteger();
403   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
404     // Cannot fold a signed integer setcc with an unsigned integer setcc.
405     return ISD::SETCC_INVALID;
406 
407   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
408 
409   // If the N and U bits get set, then the resultant comparison DOES suddenly
410   // care about orderedness, and it is true when ordered.
411   if (Op > ISD::SETTRUE2)
412     Op &= ~16;     // Clear the U bit if the N bit is set.
413 
414   // Canonicalize illegal integer setcc's.
415   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
416     Op = ISD::SETNE;
417 
418   return ISD::CondCode(Op);
419 }
420 
421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
422                                         EVT Type) {
423   bool IsInteger = Type.isInteger();
424   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
425     // Cannot fold a signed setcc with an unsigned setcc.
426     return ISD::SETCC_INVALID;
427 
428   // Combine all of the condition bits.
429   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
430 
431   // Canonicalize illegal integer setcc's.
432   if (IsInteger) {
433     switch (Result) {
434     default: break;
435     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
436     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
437     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
438     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
439     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
440     }
441   }
442 
443   return Result;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                           SDNode Profile Support
448 //===----------------------------------------------------------------------===//
449 
450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
452   ID.AddInteger(OpC);
453 }
454 
455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
456 /// solely with their pointer.
457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
458   ID.AddPointer(VTList.VTs);
459 }
460 
461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
462 static void AddNodeIDOperands(FoldingSetNodeID &ID,
463                               ArrayRef<SDValue> Ops) {
464   for (auto& Op : Ops) {
465     ID.AddPointer(Op.getNode());
466     ID.AddInteger(Op.getResNo());
467   }
468 }
469 
470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
471 static void AddNodeIDOperands(FoldingSetNodeID &ID,
472                               ArrayRef<SDUse> Ops) {
473   for (auto& Op : Ops) {
474     ID.AddPointer(Op.getNode());
475     ID.AddInteger(Op.getResNo());
476   }
477 }
478 
479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
480                           SDVTList VTList, ArrayRef<SDValue> OpList) {
481   AddNodeIDOpcode(ID, OpC);
482   AddNodeIDValueTypes(ID, VTList);
483   AddNodeIDOperands(ID, OpList);
484 }
485 
486 /// If this is an SDNode with special info, add this info to the NodeID data.
487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
488   switch (N->getOpcode()) {
489   case ISD::TargetExternalSymbol:
490   case ISD::ExternalSymbol:
491   case ISD::MCSymbol:
492     llvm_unreachable("Should only be used on nodes with operands");
493   default: break;  // Normal nodes don't need extra info.
494   case ISD::TargetConstant:
495   case ISD::Constant: {
496     const ConstantSDNode *C = cast<ConstantSDNode>(N);
497     ID.AddPointer(C->getConstantIntValue());
498     ID.AddBoolean(C->isOpaque());
499     break;
500   }
501   case ISD::TargetConstantFP:
502   case ISD::ConstantFP:
503     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
504     break;
505   case ISD::TargetGlobalAddress:
506   case ISD::GlobalAddress:
507   case ISD::TargetGlobalTLSAddress:
508   case ISD::GlobalTLSAddress: {
509     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
510     ID.AddPointer(GA->getGlobal());
511     ID.AddInteger(GA->getOffset());
512     ID.AddInteger(GA->getTargetFlags());
513     break;
514   }
515   case ISD::BasicBlock:
516     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
517     break;
518   case ISD::Register:
519     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
520     break;
521   case ISD::RegisterMask:
522     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
523     break;
524   case ISD::SRCVALUE:
525     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
526     break;
527   case ISD::FrameIndex:
528   case ISD::TargetFrameIndex:
529     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
530     break;
531   case ISD::LIFETIME_START:
532   case ISD::LIFETIME_END:
533     if (cast<LifetimeSDNode>(N)->hasOffset()) {
534       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
536     }
537     break;
538   case ISD::JumpTable:
539   case ISD::TargetJumpTable:
540     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
542     break;
543   case ISD::ConstantPool:
544   case ISD::TargetConstantPool: {
545     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
546     ID.AddInteger(CP->getAlignment());
547     ID.AddInteger(CP->getOffset());
548     if (CP->isMachineConstantPoolEntry())
549       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
550     else
551       ID.AddPointer(CP->getConstVal());
552     ID.AddInteger(CP->getTargetFlags());
553     break;
554   }
555   case ISD::TargetIndex: {
556     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
557     ID.AddInteger(TI->getIndex());
558     ID.AddInteger(TI->getOffset());
559     ID.AddInteger(TI->getTargetFlags());
560     break;
561   }
562   case ISD::LOAD: {
563     const LoadSDNode *LD = cast<LoadSDNode>(N);
564     ID.AddInteger(LD->getMemoryVT().getRawBits());
565     ID.AddInteger(LD->getRawSubclassData());
566     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::STORE: {
570     const StoreSDNode *ST = cast<StoreSDNode>(N);
571     ID.AddInteger(ST->getMemoryVT().getRawBits());
572     ID.AddInteger(ST->getRawSubclassData());
573     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
574     break;
575   }
576   case ISD::MLOAD: {
577     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
578     ID.AddInteger(MLD->getMemoryVT().getRawBits());
579     ID.AddInteger(MLD->getRawSubclassData());
580     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
581     break;
582   }
583   case ISD::MSTORE: {
584     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
585     ID.AddInteger(MST->getMemoryVT().getRawBits());
586     ID.AddInteger(MST->getRawSubclassData());
587     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
588     break;
589   }
590   case ISD::MGATHER: {
591     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
592     ID.AddInteger(MG->getMemoryVT().getRawBits());
593     ID.AddInteger(MG->getRawSubclassData());
594     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
595     break;
596   }
597   case ISD::MSCATTER: {
598     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
599     ID.AddInteger(MS->getMemoryVT().getRawBits());
600     ID.AddInteger(MS->getRawSubclassData());
601     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
602     break;
603   }
604   case ISD::ATOMIC_CMP_SWAP:
605   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
606   case ISD::ATOMIC_SWAP:
607   case ISD::ATOMIC_LOAD_ADD:
608   case ISD::ATOMIC_LOAD_SUB:
609   case ISD::ATOMIC_LOAD_AND:
610   case ISD::ATOMIC_LOAD_CLR:
611   case ISD::ATOMIC_LOAD_OR:
612   case ISD::ATOMIC_LOAD_XOR:
613   case ISD::ATOMIC_LOAD_NAND:
614   case ISD::ATOMIC_LOAD_MIN:
615   case ISD::ATOMIC_LOAD_MAX:
616   case ISD::ATOMIC_LOAD_UMIN:
617   case ISD::ATOMIC_LOAD_UMAX:
618   case ISD::ATOMIC_LOAD:
619   case ISD::ATOMIC_STORE: {
620     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
621     ID.AddInteger(AT->getMemoryVT().getRawBits());
622     ID.AddInteger(AT->getRawSubclassData());
623     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
624     break;
625   }
626   case ISD::PREFETCH: {
627     const MemSDNode *PF = cast<MemSDNode>(N);
628     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
629     break;
630   }
631   case ISD::VECTOR_SHUFFLE: {
632     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
633     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
634          i != e; ++i)
635       ID.AddInteger(SVN->getMaskElt(i));
636     break;
637   }
638   case ISD::TargetBlockAddress:
639   case ISD::BlockAddress: {
640     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
641     ID.AddPointer(BA->getBlockAddress());
642     ID.AddInteger(BA->getOffset());
643     ID.AddInteger(BA->getTargetFlags());
644     break;
645   }
646   } // end switch (N->getOpcode())
647 
648   // Target specific memory nodes could also have address spaces to check.
649   if (N->isTargetMemoryOpcode())
650     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
651 }
652 
653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
654 /// data.
655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
656   AddNodeIDOpcode(ID, N->getOpcode());
657   // Add the return value info.
658   AddNodeIDValueTypes(ID, N->getVTList());
659   // Add the operand info.
660   AddNodeIDOperands(ID, N->ops());
661 
662   // Handle SDNode leafs with special info.
663   AddNodeIDCustom(ID, N);
664 }
665 
666 //===----------------------------------------------------------------------===//
667 //                              SelectionDAG Class
668 //===----------------------------------------------------------------------===//
669 
670 /// doNotCSE - Return true if CSE should not be performed for this node.
671 static bool doNotCSE(SDNode *N) {
672   if (N->getValueType(0) == MVT::Glue)
673     return true; // Never CSE anything that produces a flag.
674 
675   switch (N->getOpcode()) {
676   default: break;
677   case ISD::HANDLENODE:
678   case ISD::EH_LABEL:
679     return true;   // Never CSE these nodes.
680   }
681 
682   // Check that remaining values produced are not flags.
683   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
684     if (N->getValueType(i) == MVT::Glue)
685       return true; // Never CSE anything that produces a flag.
686 
687   return false;
688 }
689 
690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
691 /// SelectionDAG.
692 void SelectionDAG::RemoveDeadNodes() {
693   // Create a dummy node (which is not added to allnodes), that adds a reference
694   // to the root node, preventing it from being deleted.
695   HandleSDNode Dummy(getRoot());
696 
697   SmallVector<SDNode*, 128> DeadNodes;
698 
699   // Add all obviously-dead nodes to the DeadNodes worklist.
700   for (SDNode &Node : allnodes())
701     if (Node.use_empty())
702       DeadNodes.push_back(&Node);
703 
704   RemoveDeadNodes(DeadNodes);
705 
706   // If the root changed (e.g. it was a dead load, update the root).
707   setRoot(Dummy.getValue());
708 }
709 
710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
711 /// given list, and any nodes that become unreachable as a result.
712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
713 
714   // Process the worklist, deleting the nodes and adding their uses to the
715   // worklist.
716   while (!DeadNodes.empty()) {
717     SDNode *N = DeadNodes.pop_back_val();
718     // Skip to next node if we've already managed to delete the node. This could
719     // happen if replacing a node causes a node previously added to the node to
720     // be deleted.
721     if (N->getOpcode() == ISD::DELETED_NODE)
722       continue;
723 
724     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
725       DUL->NodeDeleted(N, nullptr);
726 
727     // Take the node out of the appropriate CSE map.
728     RemoveNodeFromCSEMaps(N);
729 
730     // Next, brutally remove the operand list.  This is safe to do, as there are
731     // no cycles in the graph.
732     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
733       SDUse &Use = *I++;
734       SDNode *Operand = Use.getNode();
735       Use.set(SDValue());
736 
737       // Now that we removed this operand, see if there are no uses of it left.
738       if (Operand->use_empty())
739         DeadNodes.push_back(Operand);
740     }
741 
742     DeallocateNode(N);
743   }
744 }
745 
746 void SelectionDAG::RemoveDeadNode(SDNode *N){
747   SmallVector<SDNode*, 16> DeadNodes(1, N);
748 
749   // Create a dummy node that adds a reference to the root node, preventing
750   // it from being deleted.  (This matters if the root is an operand of the
751   // dead node.)
752   HandleSDNode Dummy(getRoot());
753 
754   RemoveDeadNodes(DeadNodes);
755 }
756 
757 void SelectionDAG::DeleteNode(SDNode *N) {
758   // First take this out of the appropriate CSE map.
759   RemoveNodeFromCSEMaps(N);
760 
761   // Finally, remove uses due to operands of this node, remove from the
762   // AllNodes list, and delete the node.
763   DeleteNodeNotInCSEMaps(N);
764 }
765 
766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
767   assert(N->getIterator() != AllNodes.begin() &&
768          "Cannot delete the entry node!");
769   assert(N->use_empty() && "Cannot delete a node that is not dead!");
770 
771   // Drop all of the operands and decrement used node's use counts.
772   N->DropOperands();
773 
774   DeallocateNode(N);
775 }
776 
777 void SDDbgInfo::erase(const SDNode *Node) {
778   DbgValMapType::iterator I = DbgValMap.find(Node);
779   if (I == DbgValMap.end())
780     return;
781   for (auto &Val: I->second)
782     Val->setIsInvalidated();
783   DbgValMap.erase(I);
784 }
785 
786 void SelectionDAG::DeallocateNode(SDNode *N) {
787   // If we have operands, deallocate them.
788   removeOperands(N);
789 
790   NodeAllocator.Deallocate(AllNodes.remove(N));
791 
792   // Set the opcode to DELETED_NODE to help catch bugs when node
793   // memory is reallocated.
794   // FIXME: There are places in SDag that have grown a dependency on the opcode
795   // value in the released node.
796   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
797   N->NodeType = ISD::DELETED_NODE;
798 
799   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
800   // them and forget about that node.
801   DbgInfo->erase(N);
802 }
803 
804 #ifndef NDEBUG
805 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
806 static void VerifySDNode(SDNode *N) {
807   switch (N->getOpcode()) {
808   default:
809     break;
810   case ISD::BUILD_PAIR: {
811     EVT VT = N->getValueType(0);
812     assert(N->getNumValues() == 1 && "Too many results!");
813     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
814            "Wrong return type!");
815     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
816     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
817            "Mismatched operand types!");
818     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
819            "Wrong operand type!");
820     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
821            "Wrong return type size");
822     break;
823   }
824   case ISD::BUILD_VECTOR: {
825     assert(N->getNumValues() == 1 && "Too many results!");
826     assert(N->getValueType(0).isVector() && "Wrong return type!");
827     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
828            "Wrong number of operands!");
829     EVT EltVT = N->getValueType(0).getVectorElementType();
830     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
831       assert((I->getValueType() == EltVT ||
832              (EltVT.isInteger() && I->getValueType().isInteger() &&
833               EltVT.bitsLE(I->getValueType()))) &&
834             "Wrong operand type!");
835       assert(I->getValueType() == N->getOperand(0).getValueType() &&
836              "Operands must all have the same type");
837     }
838     break;
839   }
840   }
841 }
842 #endif // NDEBUG
843 
844 /// Insert a newly allocated node into the DAG.
845 ///
846 /// Handles insertion into the all nodes list and CSE map, as well as
847 /// verification and other common operations when a new node is allocated.
848 void SelectionDAG::InsertNode(SDNode *N) {
849   AllNodes.push_back(N);
850 #ifndef NDEBUG
851   N->PersistentId = NextPersistentId++;
852   VerifySDNode(N);
853 #endif
854   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
855     DUL->NodeInserted(N);
856 }
857 
858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
859 /// correspond to it.  This is useful when we're about to delete or repurpose
860 /// the node.  We don't want future request for structurally identical nodes
861 /// to return N anymore.
862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
863   bool Erased = false;
864   switch (N->getOpcode()) {
865   case ISD::HANDLENODE: return false;  // noop.
866   case ISD::CONDCODE:
867     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
868            "Cond code doesn't exist!");
869     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
870     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
871     break;
872   case ISD::ExternalSymbol:
873     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
874     break;
875   case ISD::TargetExternalSymbol: {
876     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
877     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
878         ESN->getSymbol(), ESN->getTargetFlags()));
879     break;
880   }
881   case ISD::MCSymbol: {
882     auto *MCSN = cast<MCSymbolSDNode>(N);
883     Erased = MCSymbols.erase(MCSN->getMCSymbol());
884     break;
885   }
886   case ISD::VALUETYPE: {
887     EVT VT = cast<VTSDNode>(N)->getVT();
888     if (VT.isExtended()) {
889       Erased = ExtendedValueTypeNodes.erase(VT);
890     } else {
891       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
892       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
893     }
894     break;
895   }
896   default:
897     // Remove it from the CSE Map.
898     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
899     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
900     Erased = CSEMap.RemoveNode(N);
901     break;
902   }
903 #ifndef NDEBUG
904   // Verify that the node was actually in one of the CSE maps, unless it has a
905   // flag result (which cannot be CSE'd) or is one of the special cases that are
906   // not subject to CSE.
907   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
908       !N->isMachineOpcode() && !doNotCSE(N)) {
909     N->dump(this);
910     dbgs() << "\n";
911     llvm_unreachable("Node is not in map!");
912   }
913 #endif
914   return Erased;
915 }
916 
917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
918 /// maps and modified in place. Add it back to the CSE maps, unless an identical
919 /// node already exists, in which case transfer all its users to the existing
920 /// node. This transfer can potentially trigger recursive merging.
921 void
922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
923   // For node types that aren't CSE'd, just act as if no identical node
924   // already exists.
925   if (!doNotCSE(N)) {
926     SDNode *Existing = CSEMap.GetOrInsertNode(N);
927     if (Existing != N) {
928       // If there was already an existing matching node, use ReplaceAllUsesWith
929       // to replace the dead one with the existing one.  This can cause
930       // recursive merging of other unrelated nodes down the line.
931       ReplaceAllUsesWith(N, Existing);
932 
933       // N is now dead. Inform the listeners and delete it.
934       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
935         DUL->NodeDeleted(N, Existing);
936       DeleteNodeNotInCSEMaps(N);
937       return;
938     }
939   }
940 
941   // If the node doesn't already exist, we updated it.  Inform listeners.
942   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
943     DUL->NodeUpdated(N);
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
951                                            void *&InsertPos) {
952   if (doNotCSE(N))
953     return nullptr;
954 
955   SDValue Ops[] = { Op };
956   FoldingSetNodeID ID;
957   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
958   AddNodeIDCustom(ID, N);
959   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
960   if (Node)
961     Node->intersectFlagsWith(N->getFlags());
962   return Node;
963 }
964 
965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
966 /// were replaced with those specified.  If this node is never memoized,
967 /// return null, otherwise return a pointer to the slot it would take.  If a
968 /// node already exists with these operands, the slot will be non-null.
969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
970                                            SDValue Op1, SDValue Op2,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   SDValue Ops[] = { Op1, Op2 };
976   FoldingSetNodeID ID;
977   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978   AddNodeIDCustom(ID, N);
979   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980   if (Node)
981     Node->intersectFlagsWith(N->getFlags());
982   return Node;
983 }
984 
985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
986 /// were replaced with those specified.  If this node is never memoized,
987 /// return null, otherwise return a pointer to the slot it would take.  If a
988 /// node already exists with these operands, the slot will be non-null.
989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
990                                            void *&InsertPos) {
991   if (doNotCSE(N))
992     return nullptr;
993 
994   FoldingSetNodeID ID;
995   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
996   AddNodeIDCustom(ID, N);
997   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
998   if (Node)
999     Node->intersectFlagsWith(N->getFlags());
1000   return Node;
1001 }
1002 
1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
1004   Type *Ty = VT == MVT::iPTR ?
1005                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1006                    VT.getTypeForEVT(*getContext());
1007 
1008   return getDataLayout().getABITypeAlignment(Ty);
1009 }
1010 
1011 // EntryNode could meaningfully have debug info if we can find it...
1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1013     : TM(tm), OptLevel(OL),
1014       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1015       Root(getEntryNode()) {
1016   InsertNode(&EntryNode);
1017   DbgInfo = new SDDbgInfo();
1018 }
1019 
1020 void SelectionDAG::init(MachineFunction &NewMF,
1021                         OptimizationRemarkEmitter &NewORE,
1022                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1023                         LegacyDivergenceAnalysis * Divergence,
1024                         ProfileSummaryInfo *PSIin,
1025                         BlockFrequencyInfo *BFIin) {
1026   MF = &NewMF;
1027   SDAGISelPass = PassPtr;
1028   ORE = &NewORE;
1029   TLI = getSubtarget().getTargetLowering();
1030   TSI = getSubtarget().getSelectionDAGInfo();
1031   LibInfo = LibraryInfo;
1032   Context = &MF->getFunction().getContext();
1033   DA = Divergence;
1034   PSI = PSIin;
1035   BFI = BFIin;
1036 }
1037 
1038 SelectionDAG::~SelectionDAG() {
1039   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1040   allnodes_clear();
1041   OperandRecycler.clear(OperandAllocator);
1042   delete DbgInfo;
1043 }
1044 
1045 bool SelectionDAG::shouldOptForSize() const {
1046   return MF->getFunction().hasOptSize() ||
1047       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1048 }
1049 
1050 void SelectionDAG::allnodes_clear() {
1051   assert(&*AllNodes.begin() == &EntryNode);
1052   AllNodes.remove(AllNodes.begin());
1053   while (!AllNodes.empty())
1054     DeallocateNode(&AllNodes.front());
1055 #ifndef NDEBUG
1056   NextPersistentId = 0;
1057 #endif
1058 }
1059 
1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1061                                           void *&InsertPos) {
1062   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1063   if (N) {
1064     switch (N->getOpcode()) {
1065     default: break;
1066     case ISD::Constant:
1067     case ISD::ConstantFP:
1068       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1069                        "debug location.  Use another overload.");
1070     }
1071   }
1072   return N;
1073 }
1074 
1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1076                                           const SDLoc &DL, void *&InsertPos) {
1077   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1078   if (N) {
1079     switch (N->getOpcode()) {
1080     case ISD::Constant:
1081     case ISD::ConstantFP:
1082       // Erase debug location from the node if the node is used at several
1083       // different places. Do not propagate one location to all uses as it
1084       // will cause a worse single stepping debugging experience.
1085       if (N->getDebugLoc() != DL.getDebugLoc())
1086         N->setDebugLoc(DebugLoc());
1087       break;
1088     default:
1089       // When the node's point of use is located earlier in the instruction
1090       // sequence than its prior point of use, update its debug info to the
1091       // earlier location.
1092       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1093         N->setDebugLoc(DL.getDebugLoc());
1094       break;
1095     }
1096   }
1097   return N;
1098 }
1099 
1100 void SelectionDAG::clear() {
1101   allnodes_clear();
1102   OperandRecycler.clear(OperandAllocator);
1103   OperandAllocator.Reset();
1104   CSEMap.clear();
1105 
1106   ExtendedValueTypeNodes.clear();
1107   ExternalSymbols.clear();
1108   TargetExternalSymbols.clear();
1109   MCSymbols.clear();
1110   SDCallSiteDbgInfo.clear();
1111   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1112             static_cast<CondCodeSDNode*>(nullptr));
1113   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1114             static_cast<SDNode*>(nullptr));
1115 
1116   EntryNode.UseList = nullptr;
1117   InsertNode(&EntryNode);
1118   Root = getEntryNode();
1119   DbgInfo->clear();
1120 }
1121 
1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1123   return VT.bitsGT(Op.getValueType())
1124              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1125              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1126 }
1127 
1128 std::pair<SDValue, SDValue>
1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1130                                        const SDLoc &DL, EVT VT) {
1131   assert(!VT.bitsEq(Op.getValueType()) &&
1132          "Strict no-op FP extend/round not allowed.");
1133   SDValue Res =
1134       VT.bitsGT(Op.getValueType())
1135           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1136           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1137                     {Chain, Op, getIntPtrConstant(0, DL)});
1138 
1139   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1140 }
1141 
1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143   return VT.bitsGT(Op.getValueType()) ?
1144     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1145     getNode(ISD::TRUNCATE, DL, VT, Op);
1146 }
1147 
1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1149   return VT.bitsGT(Op.getValueType()) ?
1150     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1151     getNode(ISD::TRUNCATE, DL, VT, Op);
1152 }
1153 
1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1155   return VT.bitsGT(Op.getValueType()) ?
1156     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1157     getNode(ISD::TRUNCATE, DL, VT, Op);
1158 }
1159 
1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1161                                         EVT OpVT) {
1162   if (VT.bitsLE(Op.getValueType()))
1163     return getNode(ISD::TRUNCATE, SL, VT, Op);
1164 
1165   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1166   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1167 }
1168 
1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1170   assert(!VT.isVector() &&
1171          "getZeroExtendInReg should use the vector element type instead of "
1172          "the vector type!");
1173   if (Op.getValueType().getScalarType() == VT) return Op;
1174   unsigned BitWidth = Op.getScalarValueSizeInBits();
1175   APInt Imm = APInt::getLowBitsSet(BitWidth,
1176                                    VT.getSizeInBits());
1177   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1178                  getConstant(Imm, DL, Op.getValueType()));
1179 }
1180 
1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1182   // Only unsigned pointer semantics are supported right now. In the future this
1183   // might delegate to TLI to check pointer signedness.
1184   return getZExtOrTrunc(Op, DL, VT);
1185 }
1186 
1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1188   // Only unsigned pointer semantics are supported right now. In the future this
1189   // might delegate to TLI to check pointer signedness.
1190   return getZeroExtendInReg(Op, DL, VT);
1191 }
1192 
1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1195   EVT EltVT = VT.getScalarType();
1196   SDValue NegOne =
1197     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1198   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1199 }
1200 
1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1203   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1204 }
1205 
1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1207                                       EVT OpVT) {
1208   if (!V)
1209     return getConstant(0, DL, VT);
1210 
1211   switch (TLI->getBooleanContents(OpVT)) {
1212   case TargetLowering::ZeroOrOneBooleanContent:
1213   case TargetLowering::UndefinedBooleanContent:
1214     return getConstant(1, DL, VT);
1215   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1216     return getAllOnesConstant(DL, VT);
1217   }
1218   llvm_unreachable("Unexpected boolean content enum!");
1219 }
1220 
1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1222                                   bool isT, bool isO) {
1223   EVT EltVT = VT.getScalarType();
1224   assert((EltVT.getSizeInBits() >= 64 ||
1225          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1226          "getConstant with a uint64_t value that doesn't fit in the type!");
1227   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1228 }
1229 
1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1231                                   bool isT, bool isO) {
1232   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1233 }
1234 
1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1236                                   EVT VT, bool isT, bool isO) {
1237   assert(VT.isInteger() && "Cannot create FP integer constant!");
1238 
1239   EVT EltVT = VT.getScalarType();
1240   const ConstantInt *Elt = &Val;
1241 
1242   // In some cases the vector type is legal but the element type is illegal and
1243   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1244   // inserted value (the type does not need to match the vector element type).
1245   // Any extra bits introduced will be truncated away.
1246   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1247       TargetLowering::TypePromoteInteger) {
1248    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1249    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1250    Elt = ConstantInt::get(*getContext(), NewVal);
1251   }
1252   // In other cases the element type is illegal and needs to be expanded, for
1253   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1254   // the value into n parts and use a vector type with n-times the elements.
1255   // Then bitcast to the type requested.
1256   // Legalizing constants too early makes the DAGCombiner's job harder so we
1257   // only legalize if the DAG tells us we must produce legal types.
1258   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1259            TLI->getTypeAction(*getContext(), EltVT) ==
1260            TargetLowering::TypeExpandInteger) {
1261     const APInt &NewVal = Elt->getValue();
1262     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1263     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1264     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1265     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1266 
1267     // Check the temporary vector is the correct size. If this fails then
1268     // getTypeToTransformTo() probably returned a type whose size (in bits)
1269     // isn't a power-of-2 factor of the requested type size.
1270     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1271 
1272     SmallVector<SDValue, 2> EltParts;
1273     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1274       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1275                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1276                                      ViaEltVT, isT, isO));
1277     }
1278 
1279     // EltParts is currently in little endian order. If we actually want
1280     // big-endian order then reverse it now.
1281     if (getDataLayout().isBigEndian())
1282       std::reverse(EltParts.begin(), EltParts.end());
1283 
1284     // The elements must be reversed when the element order is different
1285     // to the endianness of the elements (because the BITCAST is itself a
1286     // vector shuffle in this situation). However, we do not need any code to
1287     // perform this reversal because getConstant() is producing a vector
1288     // splat.
1289     // This situation occurs in MIPS MSA.
1290 
1291     SmallVector<SDValue, 8> Ops;
1292     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1293       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1294 
1295     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1296     return V;
1297   }
1298 
1299   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1300          "APInt size does not match type size!");
1301   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1302   FoldingSetNodeID ID;
1303   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1304   ID.AddPointer(Elt);
1305   ID.AddBoolean(isO);
1306   void *IP = nullptr;
1307   SDNode *N = nullptr;
1308   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1309     if (!VT.isVector())
1310       return SDValue(N, 0);
1311 
1312   if (!N) {
1313     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1314     CSEMap.InsertNode(N, IP);
1315     InsertNode(N);
1316     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1317   }
1318 
1319   SDValue Result(N, 0);
1320   if (VT.isScalableVector())
1321     Result = getSplatVector(VT, DL, Result);
1322   else if (VT.isVector())
1323     Result = getSplatBuildVector(VT, DL, Result);
1324 
1325   return Result;
1326 }
1327 
1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1329                                         bool isTarget) {
1330   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1331 }
1332 
1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1334                                              const SDLoc &DL, bool LegalTypes) {
1335   assert(VT.isInteger() && "Shift amount is not an integer type!");
1336   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1337   return getConstant(Val, DL, ShiftVT);
1338 }
1339 
1340 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1341                                            bool isTarget) {
1342   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1343 }
1344 
1345 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1346                                     bool isTarget) {
1347   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1348 }
1349 
1350 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1351                                     EVT VT, bool isTarget) {
1352   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1353 
1354   EVT EltVT = VT.getScalarType();
1355 
1356   // Do the map lookup using the actual bit pattern for the floating point
1357   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1358   // we don't have issues with SNANs.
1359   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1360   FoldingSetNodeID ID;
1361   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1362   ID.AddPointer(&V);
1363   void *IP = nullptr;
1364   SDNode *N = nullptr;
1365   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1366     if (!VT.isVector())
1367       return SDValue(N, 0);
1368 
1369   if (!N) {
1370     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1371     CSEMap.InsertNode(N, IP);
1372     InsertNode(N);
1373   }
1374 
1375   SDValue Result(N, 0);
1376   if (VT.isVector())
1377     Result = getSplatBuildVector(VT, DL, Result);
1378   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1379   return Result;
1380 }
1381 
1382 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1383                                     bool isTarget) {
1384   EVT EltVT = VT.getScalarType();
1385   if (EltVT == MVT::f32)
1386     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1387   else if (EltVT == MVT::f64)
1388     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1389   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1390            EltVT == MVT::f16) {
1391     bool Ignored;
1392     APFloat APF = APFloat(Val);
1393     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1394                 &Ignored);
1395     return getConstantFP(APF, DL, VT, isTarget);
1396   } else
1397     llvm_unreachable("Unsupported type in getConstantFP");
1398 }
1399 
1400 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1401                                        EVT VT, int64_t Offset, bool isTargetGA,
1402                                        unsigned TargetFlags) {
1403   assert((TargetFlags == 0 || isTargetGA) &&
1404          "Cannot set target flags on target-independent globals");
1405 
1406   // Truncate (with sign-extension) the offset value to the pointer size.
1407   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1408   if (BitWidth < 64)
1409     Offset = SignExtend64(Offset, BitWidth);
1410 
1411   unsigned Opc;
1412   if (GV->isThreadLocal())
1413     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1414   else
1415     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1416 
1417   FoldingSetNodeID ID;
1418   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1419   ID.AddPointer(GV);
1420   ID.AddInteger(Offset);
1421   ID.AddInteger(TargetFlags);
1422   void *IP = nullptr;
1423   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1424     return SDValue(E, 0);
1425 
1426   auto *N = newSDNode<GlobalAddressSDNode>(
1427       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1428   CSEMap.InsertNode(N, IP);
1429     InsertNode(N);
1430   return SDValue(N, 0);
1431 }
1432 
1433 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1434   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1435   FoldingSetNodeID ID;
1436   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1437   ID.AddInteger(FI);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1443   CSEMap.InsertNode(N, IP);
1444   InsertNode(N);
1445   return SDValue(N, 0);
1446 }
1447 
1448 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1449                                    unsigned TargetFlags) {
1450   assert((TargetFlags == 0 || isTarget) &&
1451          "Cannot set target flags on target-independent jump tables");
1452   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1453   FoldingSetNodeID ID;
1454   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1455   ID.AddInteger(JTI);
1456   ID.AddInteger(TargetFlags);
1457   void *IP = nullptr;
1458   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459     return SDValue(E, 0);
1460 
1461   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1462   CSEMap.InsertNode(N, IP);
1463   InsertNode(N);
1464   return SDValue(N, 0);
1465 }
1466 
1467 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1468                                       unsigned Alignment, int Offset,
1469                                       bool isTarget,
1470                                       unsigned TargetFlags) {
1471   assert((TargetFlags == 0 || isTarget) &&
1472          "Cannot set target flags on target-independent globals");
1473   if (Alignment == 0)
1474     Alignment = shouldOptForSize()
1475                     ? getDataLayout().getABITypeAlignment(C->getType())
1476                     : getDataLayout().getPrefTypeAlignment(C->getType());
1477   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1478   FoldingSetNodeID ID;
1479   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1480   ID.AddInteger(Alignment);
1481   ID.AddInteger(Offset);
1482   ID.AddPointer(C);
1483   ID.AddInteger(TargetFlags);
1484   void *IP = nullptr;
1485   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1486     return SDValue(E, 0);
1487 
1488   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1489                                           TargetFlags);
1490   CSEMap.InsertNode(N, IP);
1491   InsertNode(N);
1492   return SDValue(N, 0);
1493 }
1494 
1495 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1496                                       unsigned Alignment, int Offset,
1497                                       bool isTarget,
1498                                       unsigned TargetFlags) {
1499   assert((TargetFlags == 0 || isTarget) &&
1500          "Cannot set target flags on target-independent globals");
1501   if (Alignment == 0)
1502     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1503   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1504   FoldingSetNodeID ID;
1505   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1506   ID.AddInteger(Alignment);
1507   ID.AddInteger(Offset);
1508   C->addSelectionDAGCSEId(ID);
1509   ID.AddInteger(TargetFlags);
1510   void *IP = nullptr;
1511   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1512     return SDValue(E, 0);
1513 
1514   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1515                                           TargetFlags);
1516   CSEMap.InsertNode(N, IP);
1517   InsertNode(N);
1518   return SDValue(N, 0);
1519 }
1520 
1521 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1522                                      unsigned TargetFlags) {
1523   FoldingSetNodeID ID;
1524   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1525   ID.AddInteger(Index);
1526   ID.AddInteger(Offset);
1527   ID.AddInteger(TargetFlags);
1528   void *IP = nullptr;
1529   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1530     return SDValue(E, 0);
1531 
1532   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1533   CSEMap.InsertNode(N, IP);
1534   InsertNode(N);
1535   return SDValue(N, 0);
1536 }
1537 
1538 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1539   FoldingSetNodeID ID;
1540   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1541   ID.AddPointer(MBB);
1542   void *IP = nullptr;
1543   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1544     return SDValue(E, 0);
1545 
1546   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1547   CSEMap.InsertNode(N, IP);
1548   InsertNode(N);
1549   return SDValue(N, 0);
1550 }
1551 
1552 SDValue SelectionDAG::getValueType(EVT VT) {
1553   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1554       ValueTypeNodes.size())
1555     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1556 
1557   SDNode *&N = VT.isExtended() ?
1558     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1559 
1560   if (N) return SDValue(N, 0);
1561   N = newSDNode<VTSDNode>(VT);
1562   InsertNode(N);
1563   return SDValue(N, 0);
1564 }
1565 
1566 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1567   SDNode *&N = ExternalSymbols[Sym];
1568   if (N) return SDValue(N, 0);
1569   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1570   InsertNode(N);
1571   return SDValue(N, 0);
1572 }
1573 
1574 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1575   SDNode *&N = MCSymbols[Sym];
1576   if (N)
1577     return SDValue(N, 0);
1578   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1579   InsertNode(N);
1580   return SDValue(N, 0);
1581 }
1582 
1583 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1584                                               unsigned TargetFlags) {
1585   SDNode *&N =
1586       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1587   if (N) return SDValue(N, 0);
1588   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1594   if ((unsigned)Cond >= CondCodeNodes.size())
1595     CondCodeNodes.resize(Cond+1);
1596 
1597   if (!CondCodeNodes[Cond]) {
1598     auto *N = newSDNode<CondCodeSDNode>(Cond);
1599     CondCodeNodes[Cond] = N;
1600     InsertNode(N);
1601   }
1602 
1603   return SDValue(CondCodeNodes[Cond], 0);
1604 }
1605 
1606 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1607 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1608 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1609   std::swap(N1, N2);
1610   ShuffleVectorSDNode::commuteMask(M);
1611 }
1612 
1613 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1614                                        SDValue N2, ArrayRef<int> Mask) {
1615   assert(VT.getVectorNumElements() == Mask.size() &&
1616            "Must have the same number of vector elements as mask elements!");
1617   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1618          "Invalid VECTOR_SHUFFLE");
1619 
1620   // Canonicalize shuffle undef, undef -> undef
1621   if (N1.isUndef() && N2.isUndef())
1622     return getUNDEF(VT);
1623 
1624   // Validate that all indices in Mask are within the range of the elements
1625   // input to the shuffle.
1626   int NElts = Mask.size();
1627   assert(llvm::all_of(Mask,
1628                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1629          "Index out of range");
1630 
1631   // Copy the mask so we can do any needed cleanup.
1632   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1633 
1634   // Canonicalize shuffle v, v -> v, undef
1635   if (N1 == N2) {
1636     N2 = getUNDEF(VT);
1637     for (int i = 0; i != NElts; ++i)
1638       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1639   }
1640 
1641   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1642   if (N1.isUndef())
1643     commuteShuffle(N1, N2, MaskVec);
1644 
1645   if (TLI->hasVectorBlend()) {
1646     // If shuffling a splat, try to blend the splat instead. We do this here so
1647     // that even when this arises during lowering we don't have to re-handle it.
1648     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1649       BitVector UndefElements;
1650       SDValue Splat = BV->getSplatValue(&UndefElements);
1651       if (!Splat)
1652         return;
1653 
1654       for (int i = 0; i < NElts; ++i) {
1655         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1656           continue;
1657 
1658         // If this input comes from undef, mark it as such.
1659         if (UndefElements[MaskVec[i] - Offset]) {
1660           MaskVec[i] = -1;
1661           continue;
1662         }
1663 
1664         // If we can blend a non-undef lane, use that instead.
1665         if (!UndefElements[i])
1666           MaskVec[i] = i + Offset;
1667       }
1668     };
1669     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1670       BlendSplat(N1BV, 0);
1671     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1672       BlendSplat(N2BV, NElts);
1673   }
1674 
1675   // Canonicalize all index into lhs, -> shuffle lhs, undef
1676   // Canonicalize all index into rhs, -> shuffle rhs, undef
1677   bool AllLHS = true, AllRHS = true;
1678   bool N2Undef = N2.isUndef();
1679   for (int i = 0; i != NElts; ++i) {
1680     if (MaskVec[i] >= NElts) {
1681       if (N2Undef)
1682         MaskVec[i] = -1;
1683       else
1684         AllLHS = false;
1685     } else if (MaskVec[i] >= 0) {
1686       AllRHS = false;
1687     }
1688   }
1689   if (AllLHS && AllRHS)
1690     return getUNDEF(VT);
1691   if (AllLHS && !N2Undef)
1692     N2 = getUNDEF(VT);
1693   if (AllRHS) {
1694     N1 = getUNDEF(VT);
1695     commuteShuffle(N1, N2, MaskVec);
1696   }
1697   // Reset our undef status after accounting for the mask.
1698   N2Undef = N2.isUndef();
1699   // Re-check whether both sides ended up undef.
1700   if (N1.isUndef() && N2Undef)
1701     return getUNDEF(VT);
1702 
1703   // If Identity shuffle return that node.
1704   bool Identity = true, AllSame = true;
1705   for (int i = 0; i != NElts; ++i) {
1706     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1707     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1708   }
1709   if (Identity && NElts)
1710     return N1;
1711 
1712   // Shuffling a constant splat doesn't change the result.
1713   if (N2Undef) {
1714     SDValue V = N1;
1715 
1716     // Look through any bitcasts. We check that these don't change the number
1717     // (and size) of elements and just changes their types.
1718     while (V.getOpcode() == ISD::BITCAST)
1719       V = V->getOperand(0);
1720 
1721     // A splat should always show up as a build vector node.
1722     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1723       BitVector UndefElements;
1724       SDValue Splat = BV->getSplatValue(&UndefElements);
1725       // If this is a splat of an undef, shuffling it is also undef.
1726       if (Splat && Splat.isUndef())
1727         return getUNDEF(VT);
1728 
1729       bool SameNumElts =
1730           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1731 
1732       // We only have a splat which can skip shuffles if there is a splatted
1733       // value and no undef lanes rearranged by the shuffle.
1734       if (Splat && UndefElements.none()) {
1735         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1736         // number of elements match or the value splatted is a zero constant.
1737         if (SameNumElts)
1738           return N1;
1739         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1740           if (C->isNullValue())
1741             return N1;
1742       }
1743 
1744       // If the shuffle itself creates a splat, build the vector directly.
1745       if (AllSame && SameNumElts) {
1746         EVT BuildVT = BV->getValueType(0);
1747         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1748         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1749 
1750         // We may have jumped through bitcasts, so the type of the
1751         // BUILD_VECTOR may not match the type of the shuffle.
1752         if (BuildVT != VT)
1753           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1754         return NewBV;
1755       }
1756     }
1757   }
1758 
1759   FoldingSetNodeID ID;
1760   SDValue Ops[2] = { N1, N2 };
1761   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1762   for (int i = 0; i != NElts; ++i)
1763     ID.AddInteger(MaskVec[i]);
1764 
1765   void* IP = nullptr;
1766   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1767     return SDValue(E, 0);
1768 
1769   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1770   // SDNode doesn't have access to it.  This memory will be "leaked" when
1771   // the node is deallocated, but recovered when the NodeAllocator is released.
1772   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1773   llvm::copy(MaskVec, MaskAlloc);
1774 
1775   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1776                                            dl.getDebugLoc(), MaskAlloc);
1777   createOperands(N, Ops);
1778 
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   SDValue V = SDValue(N, 0);
1782   NewSDValueDbgMsg(V, "Creating new node: ", this);
1783   return V;
1784 }
1785 
1786 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1787   EVT VT = SV.getValueType(0);
1788   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1789   ShuffleVectorSDNode::commuteMask(MaskVec);
1790 
1791   SDValue Op0 = SV.getOperand(0);
1792   SDValue Op1 = SV.getOperand(1);
1793   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1794 }
1795 
1796 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1797   FoldingSetNodeID ID;
1798   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1799   ID.AddInteger(RegNo);
1800   void *IP = nullptr;
1801   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1802     return SDValue(E, 0);
1803 
1804   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1805   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1806   CSEMap.InsertNode(N, IP);
1807   InsertNode(N);
1808   return SDValue(N, 0);
1809 }
1810 
1811 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1812   FoldingSetNodeID ID;
1813   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1814   ID.AddPointer(RegMask);
1815   void *IP = nullptr;
1816   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1817     return SDValue(E, 0);
1818 
1819   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1820   CSEMap.InsertNode(N, IP);
1821   InsertNode(N);
1822   return SDValue(N, 0);
1823 }
1824 
1825 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1826                                  MCSymbol *Label) {
1827   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1828 }
1829 
1830 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1831                                    SDValue Root, MCSymbol *Label) {
1832   FoldingSetNodeID ID;
1833   SDValue Ops[] = { Root };
1834   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1835   ID.AddPointer(Label);
1836   void *IP = nullptr;
1837   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1838     return SDValue(E, 0);
1839 
1840   auto *N =
1841       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1842   createOperands(N, Ops);
1843 
1844   CSEMap.InsertNode(N, IP);
1845   InsertNode(N);
1846   return SDValue(N, 0);
1847 }
1848 
1849 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1850                                       int64_t Offset, bool isTarget,
1851                                       unsigned TargetFlags) {
1852   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1853 
1854   FoldingSetNodeID ID;
1855   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1856   ID.AddPointer(BA);
1857   ID.AddInteger(Offset);
1858   ID.AddInteger(TargetFlags);
1859   void *IP = nullptr;
1860   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1861     return SDValue(E, 0);
1862 
1863   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1864   CSEMap.InsertNode(N, IP);
1865   InsertNode(N);
1866   return SDValue(N, 0);
1867 }
1868 
1869 SDValue SelectionDAG::getSrcValue(const Value *V) {
1870   assert((!V || V->getType()->isPointerTy()) &&
1871          "SrcValue is not a pointer?");
1872 
1873   FoldingSetNodeID ID;
1874   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1875   ID.AddPointer(V);
1876 
1877   void *IP = nullptr;
1878   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1879     return SDValue(E, 0);
1880 
1881   auto *N = newSDNode<SrcValueSDNode>(V);
1882   CSEMap.InsertNode(N, IP);
1883   InsertNode(N);
1884   return SDValue(N, 0);
1885 }
1886 
1887 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1888   FoldingSetNodeID ID;
1889   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1890   ID.AddPointer(MD);
1891 
1892   void *IP = nullptr;
1893   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1894     return SDValue(E, 0);
1895 
1896   auto *N = newSDNode<MDNodeSDNode>(MD);
1897   CSEMap.InsertNode(N, IP);
1898   InsertNode(N);
1899   return SDValue(N, 0);
1900 }
1901 
1902 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1903   if (VT == V.getValueType())
1904     return V;
1905 
1906   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1907 }
1908 
1909 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1910                                        unsigned SrcAS, unsigned DestAS) {
1911   SDValue Ops[] = {Ptr};
1912   FoldingSetNodeID ID;
1913   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1914   ID.AddInteger(SrcAS);
1915   ID.AddInteger(DestAS);
1916 
1917   void *IP = nullptr;
1918   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1919     return SDValue(E, 0);
1920 
1921   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1922                                            VT, SrcAS, DestAS);
1923   createOperands(N, Ops);
1924 
1925   CSEMap.InsertNode(N, IP);
1926   InsertNode(N);
1927   return SDValue(N, 0);
1928 }
1929 
1930 /// getShiftAmountOperand - Return the specified value casted to
1931 /// the target's desired shift amount type.
1932 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1933   EVT OpTy = Op.getValueType();
1934   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1935   if (OpTy == ShTy || OpTy.isVector()) return Op;
1936 
1937   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1938 }
1939 
1940 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1941   SDLoc dl(Node);
1942   const TargetLowering &TLI = getTargetLoweringInfo();
1943   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1944   EVT VT = Node->getValueType(0);
1945   SDValue Tmp1 = Node->getOperand(0);
1946   SDValue Tmp2 = Node->getOperand(1);
1947   const MaybeAlign MA(Node->getConstantOperandVal(3));
1948 
1949   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1950                                Tmp2, MachinePointerInfo(V));
1951   SDValue VAList = VAListLoad;
1952 
1953   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1954     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1955                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1956 
1957     VAList =
1958         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1959                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1960   }
1961 
1962   // Increment the pointer, VAList, to the next vaarg
1963   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1964                  getConstant(getDataLayout().getTypeAllocSize(
1965                                                VT.getTypeForEVT(*getContext())),
1966                              dl, VAList.getValueType()));
1967   // Store the incremented VAList to the legalized pointer
1968   Tmp1 =
1969       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1970   // Load the actual argument out of the pointer VAList
1971   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1972 }
1973 
1974 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1975   SDLoc dl(Node);
1976   const TargetLowering &TLI = getTargetLoweringInfo();
1977   // This defaults to loading a pointer from the input and storing it to the
1978   // output, returning the chain.
1979   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1980   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1981   SDValue Tmp1 =
1982       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1983               Node->getOperand(2), MachinePointerInfo(VS));
1984   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1985                   MachinePointerInfo(VD));
1986 }
1987 
1988 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1989   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1990   unsigned ByteSize = VT.getStoreSize();
1991   Type *Ty = VT.getTypeForEVT(*getContext());
1992   unsigned StackAlign =
1993       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1994 
1995   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1996   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1997 }
1998 
1999 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2000   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2001   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2002   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2003   const DataLayout &DL = getDataLayout();
2004   unsigned Align =
2005       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
2006 
2007   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
2008   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
2009   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2010 }
2011 
2012 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2013                                 ISD::CondCode Cond, const SDLoc &dl) {
2014   EVT OpVT = N1.getValueType();
2015 
2016   // These setcc operations always fold.
2017   switch (Cond) {
2018   default: break;
2019   case ISD::SETFALSE:
2020   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2021   case ISD::SETTRUE:
2022   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2023 
2024   case ISD::SETOEQ:
2025   case ISD::SETOGT:
2026   case ISD::SETOGE:
2027   case ISD::SETOLT:
2028   case ISD::SETOLE:
2029   case ISD::SETONE:
2030   case ISD::SETO:
2031   case ISD::SETUO:
2032   case ISD::SETUEQ:
2033   case ISD::SETUNE:
2034     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2035     break;
2036   }
2037 
2038   if (OpVT.isInteger()) {
2039     // For EQ and NE, we can always pick a value for the undef to make the
2040     // predicate pass or fail, so we can return undef.
2041     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2042     // icmp eq/ne X, undef -> undef.
2043     if ((N1.isUndef() || N2.isUndef()) &&
2044         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2045       return getUNDEF(VT);
2046 
2047     // If both operands are undef, we can return undef for int comparison.
2048     // icmp undef, undef -> undef.
2049     if (N1.isUndef() && N2.isUndef())
2050       return getUNDEF(VT);
2051 
2052     // icmp X, X -> true/false
2053     // icmp X, undef -> true/false because undef could be X.
2054     if (N1 == N2)
2055       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2056   }
2057 
2058   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2059     const APInt &C2 = N2C->getAPIntValue();
2060     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2061       const APInt &C1 = N1C->getAPIntValue();
2062 
2063       switch (Cond) {
2064       default: llvm_unreachable("Unknown integer setcc!");
2065       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2066       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2067       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2068       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2069       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2070       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2071       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2072       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2073       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2074       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2075       }
2076     }
2077   }
2078 
2079   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2080   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2081 
2082   if (N1CFP && N2CFP) {
2083     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2084     switch (Cond) {
2085     default: break;
2086     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2087                         return getUNDEF(VT);
2088                       LLVM_FALLTHROUGH;
2089     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2090                                              OpVT);
2091     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2092                         return getUNDEF(VT);
2093                       LLVM_FALLTHROUGH;
2094     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2095                                              R==APFloat::cmpLessThan, dl, VT,
2096                                              OpVT);
2097     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2098                         return getUNDEF(VT);
2099                       LLVM_FALLTHROUGH;
2100     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2101                                              OpVT);
2102     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2103                         return getUNDEF(VT);
2104                       LLVM_FALLTHROUGH;
2105     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2106                                              VT, OpVT);
2107     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2108                         return getUNDEF(VT);
2109                       LLVM_FALLTHROUGH;
2110     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2111                                              R==APFloat::cmpEqual, dl, VT,
2112                                              OpVT);
2113     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2114                         return getUNDEF(VT);
2115                       LLVM_FALLTHROUGH;
2116     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2117                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2118     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2119                                              OpVT);
2120     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2121                                              OpVT);
2122     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2123                                              R==APFloat::cmpEqual, dl, VT,
2124                                              OpVT);
2125     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2126                                              OpVT);
2127     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2128                                              R==APFloat::cmpLessThan, dl, VT,
2129                                              OpVT);
2130     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2131                                              R==APFloat::cmpUnordered, dl, VT,
2132                                              OpVT);
2133     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2134                                              VT, OpVT);
2135     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2136                                              OpVT);
2137     }
2138   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2139     // Ensure that the constant occurs on the RHS.
2140     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2141     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2142       return SDValue();
2143     return getSetCC(dl, VT, N2, N1, SwappedCond);
2144   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2145              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2146     // If an operand is known to be a nan (or undef that could be a nan), we can
2147     // fold it.
2148     // Choosing NaN for the undef will always make unordered comparison succeed
2149     // and ordered comparison fails.
2150     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2151     switch (ISD::getUnorderedFlavor(Cond)) {
2152     default:
2153       llvm_unreachable("Unknown flavor!");
2154     case 0: // Known false.
2155       return getBoolConstant(false, dl, VT, OpVT);
2156     case 1: // Known true.
2157       return getBoolConstant(true, dl, VT, OpVT);
2158     case 2: // Undefined.
2159       return getUNDEF(VT);
2160     }
2161   }
2162 
2163   // Could not fold it.
2164   return SDValue();
2165 }
2166 
2167 /// See if the specified operand can be simplified with the knowledge that only
2168 /// the bits specified by DemandedBits are used.
2169 /// TODO: really we should be making this into the DAG equivalent of
2170 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2171 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2172   EVT VT = V.getValueType();
2173   APInt DemandedElts = VT.isVector()
2174                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2175                            : APInt(1, 1);
2176   return GetDemandedBits(V, DemandedBits, DemandedElts);
2177 }
2178 
2179 /// See if the specified operand can be simplified with the knowledge that only
2180 /// the bits specified by DemandedBits are used in the elements specified by
2181 /// DemandedElts.
2182 /// TODO: really we should be making this into the DAG equivalent of
2183 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2184 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2185                                       const APInt &DemandedElts) {
2186   switch (V.getOpcode()) {
2187   default:
2188     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2189                                                 *this, 0);
2190     break;
2191   case ISD::Constant: {
2192     auto *CV = cast<ConstantSDNode>(V.getNode());
2193     assert(CV && "Const value should be ConstSDNode.");
2194     const APInt &CVal = CV->getAPIntValue();
2195     APInt NewVal = CVal & DemandedBits;
2196     if (NewVal != CVal)
2197       return getConstant(NewVal, SDLoc(V), V.getValueType());
2198     break;
2199   }
2200   case ISD::SRL:
2201     // Only look at single-use SRLs.
2202     if (!V.getNode()->hasOneUse())
2203       break;
2204     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2205       // See if we can recursively simplify the LHS.
2206       unsigned Amt = RHSC->getZExtValue();
2207 
2208       // Watch out for shift count overflow though.
2209       if (Amt >= DemandedBits.getBitWidth())
2210         break;
2211       APInt SrcDemandedBits = DemandedBits << Amt;
2212       if (SDValue SimplifyLHS =
2213               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2214         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2215                        V.getOperand(1));
2216     }
2217     break;
2218   case ISD::AND: {
2219     // X & -1 -> X (ignoring bits which aren't demanded).
2220     // Also handle the case where masked out bits in X are known to be zero.
2221     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2222       const APInt &AndVal = RHSC->getAPIntValue();
2223       if (DemandedBits.isSubsetOf(AndVal) ||
2224           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2225                                   AndVal))
2226         return V.getOperand(0);
2227     }
2228     break;
2229   }
2230   }
2231   return SDValue();
2232 }
2233 
2234 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2235 /// use this predicate to simplify operations downstream.
2236 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2237   unsigned BitWidth = Op.getScalarValueSizeInBits();
2238   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2239 }
2240 
2241 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2242 /// this predicate to simplify operations downstream.  Mask is known to be zero
2243 /// for bits that V cannot have.
2244 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2245                                      unsigned Depth) const {
2246   EVT VT = V.getValueType();
2247   APInt DemandedElts = VT.isVector()
2248                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2249                            : APInt(1, 1);
2250   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2251 }
2252 
2253 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2254 /// DemandedElts.  We use this predicate to simplify operations downstream.
2255 /// Mask is known to be zero for bits that V cannot have.
2256 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2257                                      const APInt &DemandedElts,
2258                                      unsigned Depth) const {
2259   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2260 }
2261 
2262 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2263 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2264                                         unsigned Depth) const {
2265   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2266 }
2267 
2268 /// isSplatValue - Return true if the vector V has the same value
2269 /// across all DemandedElts.
2270 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2271                                 APInt &UndefElts) {
2272   if (!DemandedElts)
2273     return false; // No demanded elts, better to assume we don't know anything.
2274 
2275   EVT VT = V.getValueType();
2276   assert(VT.isVector() && "Vector type expected");
2277 
2278   unsigned NumElts = VT.getVectorNumElements();
2279   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2280   UndefElts = APInt::getNullValue(NumElts);
2281 
2282   switch (V.getOpcode()) {
2283   case ISD::BUILD_VECTOR: {
2284     SDValue Scl;
2285     for (unsigned i = 0; i != NumElts; ++i) {
2286       SDValue Op = V.getOperand(i);
2287       if (Op.isUndef()) {
2288         UndefElts.setBit(i);
2289         continue;
2290       }
2291       if (!DemandedElts[i])
2292         continue;
2293       if (Scl && Scl != Op)
2294         return false;
2295       Scl = Op;
2296     }
2297     return true;
2298   }
2299   case ISD::VECTOR_SHUFFLE: {
2300     // Check if this is a shuffle node doing a splat.
2301     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2302     int SplatIndex = -1;
2303     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2304     for (int i = 0; i != (int)NumElts; ++i) {
2305       int M = Mask[i];
2306       if (M < 0) {
2307         UndefElts.setBit(i);
2308         continue;
2309       }
2310       if (!DemandedElts[i])
2311         continue;
2312       if (0 <= SplatIndex && SplatIndex != M)
2313         return false;
2314       SplatIndex = M;
2315     }
2316     return true;
2317   }
2318   case ISD::EXTRACT_SUBVECTOR: {
2319     SDValue Src = V.getOperand(0);
2320     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2321     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2322     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2323       // Offset the demanded elts by the subvector index.
2324       uint64_t Idx = SubIdx->getZExtValue();
2325       APInt UndefSrcElts;
2326       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2327       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2328         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2329         return true;
2330       }
2331     }
2332     break;
2333   }
2334   case ISD::ADD:
2335   case ISD::SUB:
2336   case ISD::AND: {
2337     APInt UndefLHS, UndefRHS;
2338     SDValue LHS = V.getOperand(0);
2339     SDValue RHS = V.getOperand(1);
2340     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2341         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2342       UndefElts = UndefLHS | UndefRHS;
2343       return true;
2344     }
2345     break;
2346   }
2347   }
2348 
2349   return false;
2350 }
2351 
2352 /// Helper wrapper to main isSplatValue function.
2353 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2354   EVT VT = V.getValueType();
2355   assert(VT.isVector() && "Vector type expected");
2356   unsigned NumElts = VT.getVectorNumElements();
2357 
2358   APInt UndefElts;
2359   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2360   return isSplatValue(V, DemandedElts, UndefElts) &&
2361          (AllowUndefs || !UndefElts);
2362 }
2363 
2364 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2365   V = peekThroughExtractSubvectors(V);
2366 
2367   EVT VT = V.getValueType();
2368   unsigned Opcode = V.getOpcode();
2369   switch (Opcode) {
2370   default: {
2371     APInt UndefElts;
2372     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2373     if (isSplatValue(V, DemandedElts, UndefElts)) {
2374       // Handle case where all demanded elements are UNDEF.
2375       if (DemandedElts.isSubsetOf(UndefElts)) {
2376         SplatIdx = 0;
2377         return getUNDEF(VT);
2378       }
2379       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2380       return V;
2381     }
2382     break;
2383   }
2384   case ISD::VECTOR_SHUFFLE: {
2385     // Check if this is a shuffle node doing a splat.
2386     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2387     // getTargetVShiftNode currently struggles without the splat source.
2388     auto *SVN = cast<ShuffleVectorSDNode>(V);
2389     if (!SVN->isSplat())
2390       break;
2391     int Idx = SVN->getSplatIndex();
2392     int NumElts = V.getValueType().getVectorNumElements();
2393     SplatIdx = Idx % NumElts;
2394     return V.getOperand(Idx / NumElts);
2395   }
2396   }
2397 
2398   return SDValue();
2399 }
2400 
2401 SDValue SelectionDAG::getSplatValue(SDValue V) {
2402   int SplatIdx;
2403   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2404     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2405                    SrcVector.getValueType().getScalarType(), SrcVector,
2406                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2407   return SDValue();
2408 }
2409 
2410 const APInt *
2411 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2412                                           const APInt &DemandedElts) const {
2413   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2414           V.getOpcode() == ISD::SRA) &&
2415          "Unknown shift node");
2416   unsigned BitWidth = V.getScalarValueSizeInBits();
2417   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2418     // Shifting more than the bitwidth is not valid.
2419     const APInt &ShAmt = SA->getAPIntValue();
2420     if (ShAmt.ult(BitWidth))
2421       return &ShAmt;
2422   }
2423   return nullptr;
2424 }
2425 
2426 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2427     SDValue V, const APInt &DemandedElts) const {
2428   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2429           V.getOpcode() == ISD::SRA) &&
2430          "Unknown shift node");
2431   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2432     return ValidAmt;
2433   unsigned BitWidth = V.getScalarValueSizeInBits();
2434   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2435   if (!BV)
2436     return nullptr;
2437   const APInt *MinShAmt = nullptr;
2438   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2439     if (!DemandedElts[i])
2440       continue;
2441     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2442     if (!SA)
2443       return nullptr;
2444     // Shifting more than the bitwidth is not valid.
2445     const APInt &ShAmt = SA->getAPIntValue();
2446     if (ShAmt.uge(BitWidth))
2447       return nullptr;
2448     if (MinShAmt && MinShAmt->ule(ShAmt))
2449       continue;
2450     MinShAmt = &ShAmt;
2451   }
2452   return MinShAmt;
2453 }
2454 
2455 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2456     SDValue V, const APInt &DemandedElts) const {
2457   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2458           V.getOpcode() == ISD::SRA) &&
2459          "Unknown shift node");
2460   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2461     return ValidAmt;
2462   unsigned BitWidth = V.getScalarValueSizeInBits();
2463   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2464   if (!BV)
2465     return nullptr;
2466   const APInt *MaxShAmt = nullptr;
2467   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2468     if (!DemandedElts[i])
2469       continue;
2470     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2471     if (!SA)
2472       return nullptr;
2473     // Shifting more than the bitwidth is not valid.
2474     const APInt &ShAmt = SA->getAPIntValue();
2475     if (ShAmt.uge(BitWidth))
2476       return nullptr;
2477     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2478       continue;
2479     MaxShAmt = &ShAmt;
2480   }
2481   return MaxShAmt;
2482 }
2483 
2484 /// Determine which bits of Op are known to be either zero or one and return
2485 /// them in Known. For vectors, the known bits are those that are shared by
2486 /// every vector element.
2487 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2488   EVT VT = Op.getValueType();
2489   APInt DemandedElts = VT.isVector()
2490                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2491                            : APInt(1, 1);
2492   return computeKnownBits(Op, DemandedElts, Depth);
2493 }
2494 
2495 /// Determine which bits of Op are known to be either zero or one and return
2496 /// them in Known. The DemandedElts argument allows us to only collect the known
2497 /// bits that are shared by the requested vector elements.
2498 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2499                                          unsigned Depth) const {
2500   unsigned BitWidth = Op.getScalarValueSizeInBits();
2501 
2502   KnownBits Known(BitWidth);   // Don't know anything.
2503 
2504   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2505     // We know all of the bits for a constant!
2506     Known.One = C->getAPIntValue();
2507     Known.Zero = ~Known.One;
2508     return Known;
2509   }
2510   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2511     // We know all of the bits for a constant fp!
2512     Known.One = C->getValueAPF().bitcastToAPInt();
2513     Known.Zero = ~Known.One;
2514     return Known;
2515   }
2516 
2517   if (Depth >= MaxRecursionDepth)
2518     return Known;  // Limit search depth.
2519 
2520   KnownBits Known2;
2521   unsigned NumElts = DemandedElts.getBitWidth();
2522   assert((!Op.getValueType().isVector() ||
2523           NumElts == Op.getValueType().getVectorNumElements()) &&
2524          "Unexpected vector size");
2525 
2526   if (!DemandedElts)
2527     return Known;  // No demanded elts, better to assume we don't know anything.
2528 
2529   unsigned Opcode = Op.getOpcode();
2530   switch (Opcode) {
2531   case ISD::BUILD_VECTOR:
2532     // Collect the known bits that are shared by every demanded vector element.
2533     Known.Zero.setAllBits(); Known.One.setAllBits();
2534     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2535       if (!DemandedElts[i])
2536         continue;
2537 
2538       SDValue SrcOp = Op.getOperand(i);
2539       Known2 = computeKnownBits(SrcOp, Depth + 1);
2540 
2541       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2542       if (SrcOp.getValueSizeInBits() != BitWidth) {
2543         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2544                "Expected BUILD_VECTOR implicit truncation");
2545         Known2 = Known2.trunc(BitWidth);
2546       }
2547 
2548       // Known bits are the values that are shared by every demanded element.
2549       Known.One &= Known2.One;
2550       Known.Zero &= Known2.Zero;
2551 
2552       // If we don't know any bits, early out.
2553       if (Known.isUnknown())
2554         break;
2555     }
2556     break;
2557   case ISD::VECTOR_SHUFFLE: {
2558     // Collect the known bits that are shared by every vector element referenced
2559     // by the shuffle.
2560     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2561     Known.Zero.setAllBits(); Known.One.setAllBits();
2562     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2563     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2564     for (unsigned i = 0; i != NumElts; ++i) {
2565       if (!DemandedElts[i])
2566         continue;
2567 
2568       int M = SVN->getMaskElt(i);
2569       if (M < 0) {
2570         // For UNDEF elements, we don't know anything about the common state of
2571         // the shuffle result.
2572         Known.resetAll();
2573         DemandedLHS.clearAllBits();
2574         DemandedRHS.clearAllBits();
2575         break;
2576       }
2577 
2578       if ((unsigned)M < NumElts)
2579         DemandedLHS.setBit((unsigned)M % NumElts);
2580       else
2581         DemandedRHS.setBit((unsigned)M % NumElts);
2582     }
2583     // Known bits are the values that are shared by every demanded element.
2584     if (!!DemandedLHS) {
2585       SDValue LHS = Op.getOperand(0);
2586       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2587       Known.One &= Known2.One;
2588       Known.Zero &= Known2.Zero;
2589     }
2590     // If we don't know any bits, early out.
2591     if (Known.isUnknown())
2592       break;
2593     if (!!DemandedRHS) {
2594       SDValue RHS = Op.getOperand(1);
2595       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2596       Known.One &= Known2.One;
2597       Known.Zero &= Known2.Zero;
2598     }
2599     break;
2600   }
2601   case ISD::CONCAT_VECTORS: {
2602     // Split DemandedElts and test each of the demanded subvectors.
2603     Known.Zero.setAllBits(); Known.One.setAllBits();
2604     EVT SubVectorVT = Op.getOperand(0).getValueType();
2605     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2606     unsigned NumSubVectors = Op.getNumOperands();
2607     for (unsigned i = 0; i != NumSubVectors; ++i) {
2608       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2609       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2610       if (!!DemandedSub) {
2611         SDValue Sub = Op.getOperand(i);
2612         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2613         Known.One &= Known2.One;
2614         Known.Zero &= Known2.Zero;
2615       }
2616       // If we don't know any bits, early out.
2617       if (Known.isUnknown())
2618         break;
2619     }
2620     break;
2621   }
2622   case ISD::INSERT_SUBVECTOR: {
2623     // If we know the element index, demand any elements from the subvector and
2624     // the remainder from the src its inserted into, otherwise assume we need
2625     // the original demanded base elements and ALL the inserted subvector
2626     // elements.
2627     SDValue Src = Op.getOperand(0);
2628     SDValue Sub = Op.getOperand(1);
2629     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2630     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2631     APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts);
2632     APInt DemandedSrcElts = DemandedElts;
2633     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2634       uint64_t Idx = SubIdx->getZExtValue();
2635       DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2636       DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2637     }
2638     Known.One.setAllBits();
2639     Known.Zero.setAllBits();
2640     if (!!DemandedSubElts) {
2641       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2642       if (Known.isUnknown())
2643         break; // early-out.
2644     }
2645     if (!!DemandedSrcElts) {
2646       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2647       Known.One &= Known2.One;
2648       Known.Zero &= Known2.Zero;
2649     }
2650     break;
2651   }
2652   case ISD::EXTRACT_SUBVECTOR: {
2653     // If we know the element index, just demand that subvector elements,
2654     // otherwise demand them all.
2655     SDValue Src = Op.getOperand(0);
2656     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2657     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2658     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2659     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2660       // Offset the demanded elts by the subvector index.
2661       uint64_t Idx = SubIdx->getZExtValue();
2662       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2663     }
2664     Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2665     break;
2666   }
2667   case ISD::SCALAR_TO_VECTOR: {
2668     // We know about scalar_to_vector as much as we know about it source,
2669     // which becomes the first element of otherwise unknown vector.
2670     if (DemandedElts != 1)
2671       break;
2672 
2673     SDValue N0 = Op.getOperand(0);
2674     Known = computeKnownBits(N0, Depth + 1);
2675     if (N0.getValueSizeInBits() != BitWidth)
2676       Known = Known.trunc(BitWidth);
2677 
2678     break;
2679   }
2680   case ISD::BITCAST: {
2681     SDValue N0 = Op.getOperand(0);
2682     EVT SubVT = N0.getValueType();
2683     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2684 
2685     // Ignore bitcasts from unsupported types.
2686     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2687       break;
2688 
2689     // Fast handling of 'identity' bitcasts.
2690     if (BitWidth == SubBitWidth) {
2691       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2692       break;
2693     }
2694 
2695     bool IsLE = getDataLayout().isLittleEndian();
2696 
2697     // Bitcast 'small element' vector to 'large element' scalar/vector.
2698     if ((BitWidth % SubBitWidth) == 0) {
2699       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2700 
2701       // Collect known bits for the (larger) output by collecting the known
2702       // bits from each set of sub elements and shift these into place.
2703       // We need to separately call computeKnownBits for each set of
2704       // sub elements as the knownbits for each is likely to be different.
2705       unsigned SubScale = BitWidth / SubBitWidth;
2706       APInt SubDemandedElts(NumElts * SubScale, 0);
2707       for (unsigned i = 0; i != NumElts; ++i)
2708         if (DemandedElts[i])
2709           SubDemandedElts.setBit(i * SubScale);
2710 
2711       for (unsigned i = 0; i != SubScale; ++i) {
2712         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2713                          Depth + 1);
2714         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2715         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2716         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2717       }
2718     }
2719 
2720     // Bitcast 'large element' scalar/vector to 'small element' vector.
2721     if ((SubBitWidth % BitWidth) == 0) {
2722       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2723 
2724       // Collect known bits for the (smaller) output by collecting the known
2725       // bits from the overlapping larger input elements and extracting the
2726       // sub sections we actually care about.
2727       unsigned SubScale = SubBitWidth / BitWidth;
2728       APInt SubDemandedElts(NumElts / SubScale, 0);
2729       for (unsigned i = 0; i != NumElts; ++i)
2730         if (DemandedElts[i])
2731           SubDemandedElts.setBit(i / SubScale);
2732 
2733       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2734 
2735       Known.Zero.setAllBits(); Known.One.setAllBits();
2736       for (unsigned i = 0; i != NumElts; ++i)
2737         if (DemandedElts[i]) {
2738           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2739           unsigned Offset = (Shifts % SubScale) * BitWidth;
2740           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2741           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2742           // If we don't know any bits, early out.
2743           if (Known.isUnknown())
2744             break;
2745         }
2746     }
2747     break;
2748   }
2749   case ISD::AND:
2750     // If either the LHS or the RHS are Zero, the result is zero.
2751     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2752     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2753 
2754     // Output known-1 bits are only known if set in both the LHS & RHS.
2755     Known.One &= Known2.One;
2756     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2757     Known.Zero |= Known2.Zero;
2758     break;
2759   case ISD::OR:
2760     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2761     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2762 
2763     // Output known-0 bits are only known if clear in both the LHS & RHS.
2764     Known.Zero &= Known2.Zero;
2765     // Output known-1 are known to be set if set in either the LHS | RHS.
2766     Known.One |= Known2.One;
2767     break;
2768   case ISD::XOR: {
2769     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2770     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2771 
2772     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2773     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2774     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2775     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2776     Known.Zero = KnownZeroOut;
2777     break;
2778   }
2779   case ISD::MUL: {
2780     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2781     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2782 
2783     // If low bits are zero in either operand, output low known-0 bits.
2784     // Also compute a conservative estimate for high known-0 bits.
2785     // More trickiness is possible, but this is sufficient for the
2786     // interesting case of alignment computation.
2787     unsigned TrailZ = Known.countMinTrailingZeros() +
2788                       Known2.countMinTrailingZeros();
2789     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2790                                Known2.countMinLeadingZeros(),
2791                                BitWidth) - BitWidth;
2792 
2793     Known.resetAll();
2794     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2795     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2796     break;
2797   }
2798   case ISD::UDIV: {
2799     // For the purposes of computing leading zeros we can conservatively
2800     // treat a udiv as a logical right shift by the power of 2 known to
2801     // be less than the denominator.
2802     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2803     unsigned LeadZ = Known2.countMinLeadingZeros();
2804 
2805     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2806     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2807     if (RHSMaxLeadingZeros != BitWidth)
2808       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2809 
2810     Known.Zero.setHighBits(LeadZ);
2811     break;
2812   }
2813   case ISD::SELECT:
2814   case ISD::VSELECT:
2815     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2816     // If we don't know any bits, early out.
2817     if (Known.isUnknown())
2818       break;
2819     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2820 
2821     // Only known if known in both the LHS and RHS.
2822     Known.One &= Known2.One;
2823     Known.Zero &= Known2.Zero;
2824     break;
2825   case ISD::SELECT_CC:
2826     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2827     // If we don't know any bits, early out.
2828     if (Known.isUnknown())
2829       break;
2830     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2831 
2832     // Only known if known in both the LHS and RHS.
2833     Known.One &= Known2.One;
2834     Known.Zero &= Known2.Zero;
2835     break;
2836   case ISD::SMULO:
2837   case ISD::UMULO:
2838   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2839     if (Op.getResNo() != 1)
2840       break;
2841     // The boolean result conforms to getBooleanContents.
2842     // If we know the result of a setcc has the top bits zero, use this info.
2843     // We know that we have an integer-based boolean since these operations
2844     // are only available for integer.
2845     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2846             TargetLowering::ZeroOrOneBooleanContent &&
2847         BitWidth > 1)
2848       Known.Zero.setBitsFrom(1);
2849     break;
2850   case ISD::SETCC:
2851   case ISD::STRICT_FSETCC:
2852   case ISD::STRICT_FSETCCS: {
2853     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2854     // If we know the result of a setcc has the top bits zero, use this info.
2855     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2856             TargetLowering::ZeroOrOneBooleanContent &&
2857         BitWidth > 1)
2858       Known.Zero.setBitsFrom(1);
2859     break;
2860   }
2861   case ISD::SHL:
2862     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2863 
2864     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2865       unsigned Shift = ShAmt->getZExtValue();
2866       Known.Zero <<= Shift;
2867       Known.One <<= Shift;
2868       // Low bits are known zero.
2869       Known.Zero.setLowBits(Shift);
2870       break;
2871     }
2872 
2873     // No matter the shift amount, the trailing zeros will stay zero.
2874     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2875     Known.One.clearAllBits();
2876 
2877     // Minimum shift low bits are known zero.
2878     if (const APInt *ShMinAmt =
2879             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2880       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2881     break;
2882   case ISD::SRL:
2883     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2884 
2885     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2886       unsigned Shift = ShAmt->getZExtValue();
2887       Known.Zero.lshrInPlace(Shift);
2888       Known.One.lshrInPlace(Shift);
2889       // High bits are known zero.
2890       Known.Zero.setHighBits(Shift);
2891       break;
2892     }
2893 
2894     // No matter the shift amount, the leading zeros will stay zero.
2895     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2896     Known.One.clearAllBits();
2897 
2898     // Minimum shift high bits are known zero.
2899     if (const APInt *ShMinAmt =
2900             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2901       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2902     break;
2903   case ISD::SRA:
2904     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2905       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2906       unsigned Shift = ShAmt->getZExtValue();
2907       // Sign extend known zero/one bit (else is unknown).
2908       Known.Zero.ashrInPlace(Shift);
2909       Known.One.ashrInPlace(Shift);
2910     }
2911     break;
2912   case ISD::FSHL:
2913   case ISD::FSHR:
2914     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2915       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2916 
2917       // For fshl, 0-shift returns the 1st arg.
2918       // For fshr, 0-shift returns the 2nd arg.
2919       if (Amt == 0) {
2920         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2921                                  DemandedElts, Depth + 1);
2922         break;
2923       }
2924 
2925       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2926       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2927       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2928       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2929       if (Opcode == ISD::FSHL) {
2930         Known.One <<= Amt;
2931         Known.Zero <<= Amt;
2932         Known2.One.lshrInPlace(BitWidth - Amt);
2933         Known2.Zero.lshrInPlace(BitWidth - Amt);
2934       } else {
2935         Known.One <<= BitWidth - Amt;
2936         Known.Zero <<= BitWidth - Amt;
2937         Known2.One.lshrInPlace(Amt);
2938         Known2.Zero.lshrInPlace(Amt);
2939       }
2940       Known.One |= Known2.One;
2941       Known.Zero |= Known2.Zero;
2942     }
2943     break;
2944   case ISD::SIGN_EXTEND_INREG: {
2945     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2946     unsigned EBits = EVT.getScalarSizeInBits();
2947 
2948     // Sign extension.  Compute the demanded bits in the result that are not
2949     // present in the input.
2950     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2951 
2952     APInt InSignMask = APInt::getSignMask(EBits);
2953     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2954 
2955     // If the sign extended bits are demanded, we know that the sign
2956     // bit is demanded.
2957     InSignMask = InSignMask.zext(BitWidth);
2958     if (NewBits.getBoolValue())
2959       InputDemandedBits |= InSignMask;
2960 
2961     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2962     Known.One &= InputDemandedBits;
2963     Known.Zero &= InputDemandedBits;
2964 
2965     // If the sign bit of the input is known set or clear, then we know the
2966     // top bits of the result.
2967     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2968       Known.Zero |= NewBits;
2969       Known.One  &= ~NewBits;
2970     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2971       Known.One  |= NewBits;
2972       Known.Zero &= ~NewBits;
2973     } else {                              // Input sign bit unknown
2974       Known.Zero &= ~NewBits;
2975       Known.One  &= ~NewBits;
2976     }
2977     break;
2978   }
2979   case ISD::CTTZ:
2980   case ISD::CTTZ_ZERO_UNDEF: {
2981     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2982     // If we have a known 1, its position is our upper bound.
2983     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2984     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2985     Known.Zero.setBitsFrom(LowBits);
2986     break;
2987   }
2988   case ISD::CTLZ:
2989   case ISD::CTLZ_ZERO_UNDEF: {
2990     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2991     // If we have a known 1, its position is our upper bound.
2992     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2993     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2994     Known.Zero.setBitsFrom(LowBits);
2995     break;
2996   }
2997   case ISD::CTPOP: {
2998     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2999     // If we know some of the bits are zero, they can't be one.
3000     unsigned PossibleOnes = Known2.countMaxPopulation();
3001     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3002     break;
3003   }
3004   case ISD::LOAD: {
3005     LoadSDNode *LD = cast<LoadSDNode>(Op);
3006     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3007     if (ISD::isNON_EXTLoad(LD) && Cst) {
3008       // Determine any common known bits from the loaded constant pool value.
3009       Type *CstTy = Cst->getType();
3010       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3011         // If its a vector splat, then we can (quickly) reuse the scalar path.
3012         // NOTE: We assume all elements match and none are UNDEF.
3013         if (CstTy->isVectorTy()) {
3014           if (const Constant *Splat = Cst->getSplatValue()) {
3015             Cst = Splat;
3016             CstTy = Cst->getType();
3017           }
3018         }
3019         // TODO - do we need to handle different bitwidths?
3020         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3021           // Iterate across all vector elements finding common known bits.
3022           Known.One.setAllBits();
3023           Known.Zero.setAllBits();
3024           for (unsigned i = 0; i != NumElts; ++i) {
3025             if (!DemandedElts[i])
3026               continue;
3027             if (Constant *Elt = Cst->getAggregateElement(i)) {
3028               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3029                 const APInt &Value = CInt->getValue();
3030                 Known.One &= Value;
3031                 Known.Zero &= ~Value;
3032                 continue;
3033               }
3034               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3035                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3036                 Known.One &= Value;
3037                 Known.Zero &= ~Value;
3038                 continue;
3039               }
3040             }
3041             Known.One.clearAllBits();
3042             Known.Zero.clearAllBits();
3043             break;
3044           }
3045         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3046           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3047             const APInt &Value = CInt->getValue();
3048             Known.One = Value;
3049             Known.Zero = ~Value;
3050           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3051             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3052             Known.One = Value;
3053             Known.Zero = ~Value;
3054           }
3055         }
3056       }
3057     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3058       // If this is a ZEXTLoad and we are looking at the loaded value.
3059       EVT VT = LD->getMemoryVT();
3060       unsigned MemBits = VT.getScalarSizeInBits();
3061       Known.Zero.setBitsFrom(MemBits);
3062     } else if (const MDNode *Ranges = LD->getRanges()) {
3063       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3064         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3065     }
3066     break;
3067   }
3068   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3069     EVT InVT = Op.getOperand(0).getValueType();
3070     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3071     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3072     Known = Known.zext(BitWidth);
3073     break;
3074   }
3075   case ISD::ZERO_EXTEND: {
3076     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3077     Known = Known.zext(BitWidth);
3078     break;
3079   }
3080   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3081     EVT InVT = Op.getOperand(0).getValueType();
3082     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3083     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3084     // If the sign bit is known to be zero or one, then sext will extend
3085     // it to the top bits, else it will just zext.
3086     Known = Known.sext(BitWidth);
3087     break;
3088   }
3089   case ISD::SIGN_EXTEND: {
3090     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3091     // If the sign bit is known to be zero or one, then sext will extend
3092     // it to the top bits, else it will just zext.
3093     Known = Known.sext(BitWidth);
3094     break;
3095   }
3096   case ISD::ANY_EXTEND_VECTOR_INREG: {
3097     EVT InVT = Op.getOperand(0).getValueType();
3098     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3099     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3100     Known = Known.anyext(BitWidth);
3101     break;
3102   }
3103   case ISD::ANY_EXTEND: {
3104     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3105     Known = Known.anyext(BitWidth);
3106     break;
3107   }
3108   case ISD::TRUNCATE: {
3109     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3110     Known = Known.trunc(BitWidth);
3111     break;
3112   }
3113   case ISD::AssertZext: {
3114     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3115     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3116     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3117     Known.Zero |= (~InMask);
3118     Known.One  &= (~Known.Zero);
3119     break;
3120   }
3121   case ISD::FGETSIGN:
3122     // All bits are zero except the low bit.
3123     Known.Zero.setBitsFrom(1);
3124     break;
3125   case ISD::USUBO:
3126   case ISD::SSUBO:
3127     if (Op.getResNo() == 1) {
3128       // If we know the result of a setcc has the top bits zero, use this info.
3129       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3130               TargetLowering::ZeroOrOneBooleanContent &&
3131           BitWidth > 1)
3132         Known.Zero.setBitsFrom(1);
3133       break;
3134     }
3135     LLVM_FALLTHROUGH;
3136   case ISD::SUB:
3137   case ISD::SUBC: {
3138     assert(Op.getResNo() == 0 &&
3139            "We only compute knownbits for the difference here.");
3140 
3141     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3142     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3143     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3144                                         Known, Known2);
3145     break;
3146   }
3147   case ISD::UADDO:
3148   case ISD::SADDO:
3149   case ISD::ADDCARRY:
3150     if (Op.getResNo() == 1) {
3151       // If we know the result of a setcc has the top bits zero, use this info.
3152       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3153               TargetLowering::ZeroOrOneBooleanContent &&
3154           BitWidth > 1)
3155         Known.Zero.setBitsFrom(1);
3156       break;
3157     }
3158     LLVM_FALLTHROUGH;
3159   case ISD::ADD:
3160   case ISD::ADDC:
3161   case ISD::ADDE: {
3162     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3163 
3164     // With ADDE and ADDCARRY, a carry bit may be added in.
3165     KnownBits Carry(1);
3166     if (Opcode == ISD::ADDE)
3167       // Can't track carry from glue, set carry to unknown.
3168       Carry.resetAll();
3169     else if (Opcode == ISD::ADDCARRY)
3170       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3171       // the trouble (how often will we find a known carry bit). And I haven't
3172       // tested this very much yet, but something like this might work:
3173       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3174       //   Carry = Carry.zextOrTrunc(1, false);
3175       Carry.resetAll();
3176     else
3177       Carry.setAllZero();
3178 
3179     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3180     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3181     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3182     break;
3183   }
3184   case ISD::SREM:
3185     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3186       const APInt &RA = Rem->getAPIntValue().abs();
3187       if (RA.isPowerOf2()) {
3188         APInt LowBits = RA - 1;
3189         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3190 
3191         // The low bits of the first operand are unchanged by the srem.
3192         Known.Zero = Known2.Zero & LowBits;
3193         Known.One = Known2.One & LowBits;
3194 
3195         // If the first operand is non-negative or has all low bits zero, then
3196         // the upper bits are all zero.
3197         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3198           Known.Zero |= ~LowBits;
3199 
3200         // If the first operand is negative and not all low bits are zero, then
3201         // the upper bits are all one.
3202         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3203           Known.One |= ~LowBits;
3204         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3205       }
3206     }
3207     break;
3208   case ISD::UREM: {
3209     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3210       const APInt &RA = Rem->getAPIntValue();
3211       if (RA.isPowerOf2()) {
3212         APInt LowBits = (RA - 1);
3213         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3214 
3215         // The upper bits are all zero, the lower ones are unchanged.
3216         Known.Zero = Known2.Zero | ~LowBits;
3217         Known.One = Known2.One & LowBits;
3218         break;
3219       }
3220     }
3221 
3222     // Since the result is less than or equal to either operand, any leading
3223     // zero bits in either operand must also exist in the result.
3224     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3225     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3226 
3227     uint32_t Leaders =
3228         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3229     Known.resetAll();
3230     Known.Zero.setHighBits(Leaders);
3231     break;
3232   }
3233   case ISD::EXTRACT_ELEMENT: {
3234     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3235     const unsigned Index = Op.getConstantOperandVal(1);
3236     const unsigned EltBitWidth = Op.getValueSizeInBits();
3237 
3238     // Remove low part of known bits mask
3239     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3240     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3241 
3242     // Remove high part of known bit mask
3243     Known = Known.trunc(EltBitWidth);
3244     break;
3245   }
3246   case ISD::EXTRACT_VECTOR_ELT: {
3247     SDValue InVec = Op.getOperand(0);
3248     SDValue EltNo = Op.getOperand(1);
3249     EVT VecVT = InVec.getValueType();
3250     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3251     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3252 
3253     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3254     // anything about the extended bits.
3255     if (BitWidth > EltBitWidth)
3256       Known = Known.trunc(EltBitWidth);
3257 
3258     // If we know the element index, just demand that vector element, else for
3259     // an unknown element index, ignore DemandedElts and demand them all.
3260     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3261     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3262     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3263       DemandedSrcElts =
3264           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3265 
3266     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3267     if (BitWidth > EltBitWidth)
3268       Known = Known.anyext(BitWidth);
3269     break;
3270   }
3271   case ISD::INSERT_VECTOR_ELT: {
3272     // If we know the element index, split the demand between the
3273     // source vector and the inserted element, otherwise assume we need
3274     // the original demanded vector elements and the value.
3275     SDValue InVec = Op.getOperand(0);
3276     SDValue InVal = Op.getOperand(1);
3277     SDValue EltNo = Op.getOperand(2);
3278     bool DemandedVal = true;
3279     APInt DemandedVecElts = DemandedElts;
3280     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3281     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3282       unsigned EltIdx = CEltNo->getZExtValue();
3283       DemandedVal = !!DemandedElts[EltIdx];
3284       DemandedVecElts.clearBit(EltIdx);
3285     }
3286     Known.One.setAllBits();
3287     Known.Zero.setAllBits();
3288     if (DemandedVal) {
3289       Known2 = computeKnownBits(InVal, Depth + 1);
3290       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3291       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3292     }
3293     if (!!DemandedVecElts) {
3294       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3295       Known.One &= Known2.One;
3296       Known.Zero &= Known2.Zero;
3297     }
3298     break;
3299   }
3300   case ISD::BITREVERSE: {
3301     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3302     Known.Zero = Known2.Zero.reverseBits();
3303     Known.One = Known2.One.reverseBits();
3304     break;
3305   }
3306   case ISD::BSWAP: {
3307     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3308     Known.Zero = Known2.Zero.byteSwap();
3309     Known.One = Known2.One.byteSwap();
3310     break;
3311   }
3312   case ISD::ABS: {
3313     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3314 
3315     // If the source's MSB is zero then we know the rest of the bits already.
3316     if (Known2.isNonNegative()) {
3317       Known.Zero = Known2.Zero;
3318       Known.One = Known2.One;
3319       break;
3320     }
3321 
3322     // We only know that the absolute values's MSB will be zero iff there is
3323     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3324     Known2.One.clearSignBit();
3325     if (Known2.One.getBoolValue()) {
3326       Known.Zero = APInt::getSignMask(BitWidth);
3327       break;
3328     }
3329     break;
3330   }
3331   case ISD::UMIN: {
3332     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3333     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3334 
3335     // UMIN - we know that the result will have the maximum of the
3336     // known zero leading bits of the inputs.
3337     unsigned LeadZero = Known.countMinLeadingZeros();
3338     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3339 
3340     Known.Zero &= Known2.Zero;
3341     Known.One &= Known2.One;
3342     Known.Zero.setHighBits(LeadZero);
3343     break;
3344   }
3345   case ISD::UMAX: {
3346     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3347     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3348 
3349     // UMAX - we know that the result will have the maximum of the
3350     // known one leading bits of the inputs.
3351     unsigned LeadOne = Known.countMinLeadingOnes();
3352     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3353 
3354     Known.Zero &= Known2.Zero;
3355     Known.One &= Known2.One;
3356     Known.One.setHighBits(LeadOne);
3357     break;
3358   }
3359   case ISD::SMIN:
3360   case ISD::SMAX: {
3361     // If we have a clamp pattern, we know that the number of sign bits will be
3362     // the minimum of the clamp min/max range.
3363     bool IsMax = (Opcode == ISD::SMAX);
3364     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3365     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3366       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3367         CstHigh =
3368             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3369     if (CstLow && CstHigh) {
3370       if (!IsMax)
3371         std::swap(CstLow, CstHigh);
3372 
3373       const APInt &ValueLow = CstLow->getAPIntValue();
3374       const APInt &ValueHigh = CstHigh->getAPIntValue();
3375       if (ValueLow.sle(ValueHigh)) {
3376         unsigned LowSignBits = ValueLow.getNumSignBits();
3377         unsigned HighSignBits = ValueHigh.getNumSignBits();
3378         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3379         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3380           Known.One.setHighBits(MinSignBits);
3381           break;
3382         }
3383         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3384           Known.Zero.setHighBits(MinSignBits);
3385           break;
3386         }
3387       }
3388     }
3389 
3390     // Fallback - just get the shared known bits of the operands.
3391     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3392     if (Known.isUnknown()) break; // Early-out
3393     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3394     Known.Zero &= Known2.Zero;
3395     Known.One &= Known2.One;
3396     break;
3397   }
3398   case ISD::FrameIndex:
3399   case ISD::TargetFrameIndex:
3400     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3401     break;
3402 
3403   default:
3404     if (Opcode < ISD::BUILTIN_OP_END)
3405       break;
3406     LLVM_FALLTHROUGH;
3407   case ISD::INTRINSIC_WO_CHAIN:
3408   case ISD::INTRINSIC_W_CHAIN:
3409   case ISD::INTRINSIC_VOID:
3410     // Allow the target to implement this method for its nodes.
3411     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3412     break;
3413   }
3414 
3415   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3416   return Known;
3417 }
3418 
3419 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3420                                                              SDValue N1) const {
3421   // X + 0 never overflow
3422   if (isNullConstant(N1))
3423     return OFK_Never;
3424 
3425   KnownBits N1Known = computeKnownBits(N1);
3426   if (N1Known.Zero.getBoolValue()) {
3427     KnownBits N0Known = computeKnownBits(N0);
3428 
3429     bool overflow;
3430     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3431     if (!overflow)
3432       return OFK_Never;
3433   }
3434 
3435   // mulhi + 1 never overflow
3436   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3437       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3438     return OFK_Never;
3439 
3440   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3441     KnownBits N0Known = computeKnownBits(N0);
3442 
3443     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3444       return OFK_Never;
3445   }
3446 
3447   return OFK_Sometime;
3448 }
3449 
3450 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3451   EVT OpVT = Val.getValueType();
3452   unsigned BitWidth = OpVT.getScalarSizeInBits();
3453 
3454   // Is the constant a known power of 2?
3455   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3456     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3457 
3458   // A left-shift of a constant one will have exactly one bit set because
3459   // shifting the bit off the end is undefined.
3460   if (Val.getOpcode() == ISD::SHL) {
3461     auto *C = isConstOrConstSplat(Val.getOperand(0));
3462     if (C && C->getAPIntValue() == 1)
3463       return true;
3464   }
3465 
3466   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3467   // one bit set.
3468   if (Val.getOpcode() == ISD::SRL) {
3469     auto *C = isConstOrConstSplat(Val.getOperand(0));
3470     if (C && C->getAPIntValue().isSignMask())
3471       return true;
3472   }
3473 
3474   // Are all operands of a build vector constant powers of two?
3475   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3476     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3477           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3478             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3479           return false;
3480         }))
3481       return true;
3482 
3483   // More could be done here, though the above checks are enough
3484   // to handle some common cases.
3485 
3486   // Fall back to computeKnownBits to catch other known cases.
3487   KnownBits Known = computeKnownBits(Val);
3488   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3489 }
3490 
3491 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3492   EVT VT = Op.getValueType();
3493   APInt DemandedElts = VT.isVector()
3494                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3495                            : APInt(1, 1);
3496   return ComputeNumSignBits(Op, DemandedElts, Depth);
3497 }
3498 
3499 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3500                                           unsigned Depth) const {
3501   EVT VT = Op.getValueType();
3502   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3503   unsigned VTBits = VT.getScalarSizeInBits();
3504   unsigned NumElts = DemandedElts.getBitWidth();
3505   unsigned Tmp, Tmp2;
3506   unsigned FirstAnswer = 1;
3507 
3508   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3509     const APInt &Val = C->getAPIntValue();
3510     return Val.getNumSignBits();
3511   }
3512 
3513   if (Depth >= MaxRecursionDepth)
3514     return 1;  // Limit search depth.
3515 
3516   if (!DemandedElts)
3517     return 1;  // No demanded elts, better to assume we don't know anything.
3518 
3519   unsigned Opcode = Op.getOpcode();
3520   switch (Opcode) {
3521   default: break;
3522   case ISD::AssertSext:
3523     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3524     return VTBits-Tmp+1;
3525   case ISD::AssertZext:
3526     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3527     return VTBits-Tmp;
3528 
3529   case ISD::BUILD_VECTOR:
3530     Tmp = VTBits;
3531     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3532       if (!DemandedElts[i])
3533         continue;
3534 
3535       SDValue SrcOp = Op.getOperand(i);
3536       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3537 
3538       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3539       if (SrcOp.getValueSizeInBits() != VTBits) {
3540         assert(SrcOp.getValueSizeInBits() > VTBits &&
3541                "Expected BUILD_VECTOR implicit truncation");
3542         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3543         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3544       }
3545       Tmp = std::min(Tmp, Tmp2);
3546     }
3547     return Tmp;
3548 
3549   case ISD::VECTOR_SHUFFLE: {
3550     // Collect the minimum number of sign bits that are shared by every vector
3551     // element referenced by the shuffle.
3552     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3553     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3554     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3555     for (unsigned i = 0; i != NumElts; ++i) {
3556       int M = SVN->getMaskElt(i);
3557       if (!DemandedElts[i])
3558         continue;
3559       // For UNDEF elements, we don't know anything about the common state of
3560       // the shuffle result.
3561       if (M < 0)
3562         return 1;
3563       if ((unsigned)M < NumElts)
3564         DemandedLHS.setBit((unsigned)M % NumElts);
3565       else
3566         DemandedRHS.setBit((unsigned)M % NumElts);
3567     }
3568     Tmp = std::numeric_limits<unsigned>::max();
3569     if (!!DemandedLHS)
3570       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3571     if (!!DemandedRHS) {
3572       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3573       Tmp = std::min(Tmp, Tmp2);
3574     }
3575     // If we don't know anything, early out and try computeKnownBits fall-back.
3576     if (Tmp == 1)
3577       break;
3578     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3579     return Tmp;
3580   }
3581 
3582   case ISD::BITCAST: {
3583     SDValue N0 = Op.getOperand(0);
3584     EVT SrcVT = N0.getValueType();
3585     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3586 
3587     // Ignore bitcasts from unsupported types..
3588     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3589       break;
3590 
3591     // Fast handling of 'identity' bitcasts.
3592     if (VTBits == SrcBits)
3593       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3594 
3595     bool IsLE = getDataLayout().isLittleEndian();
3596 
3597     // Bitcast 'large element' scalar/vector to 'small element' vector.
3598     if ((SrcBits % VTBits) == 0) {
3599       assert(VT.isVector() && "Expected bitcast to vector");
3600 
3601       unsigned Scale = SrcBits / VTBits;
3602       APInt SrcDemandedElts(NumElts / Scale, 0);
3603       for (unsigned i = 0; i != NumElts; ++i)
3604         if (DemandedElts[i])
3605           SrcDemandedElts.setBit(i / Scale);
3606 
3607       // Fast case - sign splat can be simply split across the small elements.
3608       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3609       if (Tmp == SrcBits)
3610         return VTBits;
3611 
3612       // Slow case - determine how far the sign extends into each sub-element.
3613       Tmp2 = VTBits;
3614       for (unsigned i = 0; i != NumElts; ++i)
3615         if (DemandedElts[i]) {
3616           unsigned SubOffset = i % Scale;
3617           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3618           SubOffset = SubOffset * VTBits;
3619           if (Tmp <= SubOffset)
3620             return 1;
3621           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3622         }
3623       return Tmp2;
3624     }
3625     break;
3626   }
3627 
3628   case ISD::SIGN_EXTEND:
3629     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3630     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3631   case ISD::SIGN_EXTEND_INREG:
3632     // Max of the input and what this extends.
3633     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3634     Tmp = VTBits-Tmp+1;
3635     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3636     return std::max(Tmp, Tmp2);
3637   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3638     SDValue Src = Op.getOperand(0);
3639     EVT SrcVT = Src.getValueType();
3640     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3641     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3642     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3643   }
3644   case ISD::SRA:
3645     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3646     // SRA X, C -> adds C sign bits.
3647     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts))
3648       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3649     else if (const APInt *ShAmt =
3650                  getValidMinimumShiftAmountConstant(Op, DemandedElts))
3651       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3652     return Tmp;
3653   case ISD::SHL:
3654     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3655       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3656       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3657       if (ShAmt->ult(Tmp))
3658         return Tmp - ShAmt->getZExtValue();
3659     } else if (const APInt *ShAmt =
3660                    getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3661       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3662       if (ShAmt->ult(Tmp))
3663         return Tmp - ShAmt->getZExtValue();
3664     }
3665     break;
3666   case ISD::AND:
3667   case ISD::OR:
3668   case ISD::XOR:    // NOT is handled here.
3669     // Logical binary ops preserve the number of sign bits at the worst.
3670     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3671     if (Tmp != 1) {
3672       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3673       FirstAnswer = std::min(Tmp, Tmp2);
3674       // We computed what we know about the sign bits as our first
3675       // answer. Now proceed to the generic code that uses
3676       // computeKnownBits, and pick whichever answer is better.
3677     }
3678     break;
3679 
3680   case ISD::SELECT:
3681   case ISD::VSELECT:
3682     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3683     if (Tmp == 1) return 1;  // Early out.
3684     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3685     return std::min(Tmp, Tmp2);
3686   case ISD::SELECT_CC:
3687     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3688     if (Tmp == 1) return 1;  // Early out.
3689     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3690     return std::min(Tmp, Tmp2);
3691 
3692   case ISD::SMIN:
3693   case ISD::SMAX: {
3694     // If we have a clamp pattern, we know that the number of sign bits will be
3695     // the minimum of the clamp min/max range.
3696     bool IsMax = (Opcode == ISD::SMAX);
3697     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3698     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3699       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3700         CstHigh =
3701             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3702     if (CstLow && CstHigh) {
3703       if (!IsMax)
3704         std::swap(CstLow, CstHigh);
3705       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3706         Tmp = CstLow->getAPIntValue().getNumSignBits();
3707         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3708         return std::min(Tmp, Tmp2);
3709       }
3710     }
3711 
3712     // Fallback - just get the minimum number of sign bits of the operands.
3713     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3714     if (Tmp == 1)
3715       return 1;  // Early out.
3716     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3717     return std::min(Tmp, Tmp2);
3718   }
3719   case ISD::UMIN:
3720   case ISD::UMAX:
3721     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3722     if (Tmp == 1)
3723       return 1;  // Early out.
3724     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3725     return std::min(Tmp, Tmp2);
3726   case ISD::SADDO:
3727   case ISD::UADDO:
3728   case ISD::SSUBO:
3729   case ISD::USUBO:
3730   case ISD::SMULO:
3731   case ISD::UMULO:
3732     if (Op.getResNo() != 1)
3733       break;
3734     // The boolean result conforms to getBooleanContents.  Fall through.
3735     // If setcc returns 0/-1, all bits are sign bits.
3736     // We know that we have an integer-based boolean since these operations
3737     // are only available for integer.
3738     if (TLI->getBooleanContents(VT.isVector(), false) ==
3739         TargetLowering::ZeroOrNegativeOneBooleanContent)
3740       return VTBits;
3741     break;
3742   case ISD::SETCC:
3743   case ISD::STRICT_FSETCC:
3744   case ISD::STRICT_FSETCCS: {
3745     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3746     // If setcc returns 0/-1, all bits are sign bits.
3747     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3748         TargetLowering::ZeroOrNegativeOneBooleanContent)
3749       return VTBits;
3750     break;
3751   }
3752   case ISD::ROTL:
3753   case ISD::ROTR:
3754     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3755 
3756     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3757     if (Tmp == VTBits)
3758       return VTBits;
3759 
3760     if (ConstantSDNode *C =
3761             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3762       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3763 
3764       // Handle rotate right by N like a rotate left by 32-N.
3765       if (Opcode == ISD::ROTR)
3766         RotAmt = (VTBits - RotAmt) % VTBits;
3767 
3768       // If we aren't rotating out all of the known-in sign bits, return the
3769       // number that are left.  This handles rotl(sext(x), 1) for example.
3770       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3771     }
3772     break;
3773   case ISD::ADD:
3774   case ISD::ADDC:
3775     // Add can have at most one carry bit.  Thus we know that the output
3776     // is, at worst, one more bit than the inputs.
3777     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3778     if (Tmp == 1) return 1; // Early out.
3779 
3780     // Special case decrementing a value (ADD X, -1):
3781     if (ConstantSDNode *CRHS =
3782             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3783       if (CRHS->isAllOnesValue()) {
3784         KnownBits Known =
3785             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3786 
3787         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3788         // sign bits set.
3789         if ((Known.Zero | 1).isAllOnesValue())
3790           return VTBits;
3791 
3792         // If we are subtracting one from a positive number, there is no carry
3793         // out of the result.
3794         if (Known.isNonNegative())
3795           return Tmp;
3796       }
3797 
3798     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3799     if (Tmp2 == 1) return 1; // Early out.
3800     return std::min(Tmp, Tmp2) - 1;
3801   case ISD::SUB:
3802     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3803     if (Tmp2 == 1) return 1; // Early out.
3804 
3805     // Handle NEG.
3806     if (ConstantSDNode *CLHS =
3807             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3808       if (CLHS->isNullValue()) {
3809         KnownBits Known =
3810             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3811         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3812         // sign bits set.
3813         if ((Known.Zero | 1).isAllOnesValue())
3814           return VTBits;
3815 
3816         // If the input is known to be positive (the sign bit is known clear),
3817         // the output of the NEG has the same number of sign bits as the input.
3818         if (Known.isNonNegative())
3819           return Tmp2;
3820 
3821         // Otherwise, we treat this like a SUB.
3822       }
3823 
3824     // Sub can have at most one carry bit.  Thus we know that the output
3825     // is, at worst, one more bit than the inputs.
3826     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3827     if (Tmp == 1) return 1; // Early out.
3828     return std::min(Tmp, Tmp2) - 1;
3829   case ISD::MUL: {
3830     // The output of the Mul can be at most twice the valid bits in the inputs.
3831     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3832     if (SignBitsOp0 == 1)
3833       break;
3834     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3835     if (SignBitsOp1 == 1)
3836       break;
3837     unsigned OutValidBits =
3838         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3839     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3840   }
3841   case ISD::TRUNCATE: {
3842     // Check if the sign bits of source go down as far as the truncated value.
3843     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3844     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3845     if (NumSrcSignBits > (NumSrcBits - VTBits))
3846       return NumSrcSignBits - (NumSrcBits - VTBits);
3847     break;
3848   }
3849   case ISD::EXTRACT_ELEMENT: {
3850     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3851     const int BitWidth = Op.getValueSizeInBits();
3852     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3853 
3854     // Get reverse index (starting from 1), Op1 value indexes elements from
3855     // little end. Sign starts at big end.
3856     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3857 
3858     // If the sign portion ends in our element the subtraction gives correct
3859     // result. Otherwise it gives either negative or > bitwidth result
3860     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3861   }
3862   case ISD::INSERT_VECTOR_ELT: {
3863     // If we know the element index, split the demand between the
3864     // source vector and the inserted element, otherwise assume we need
3865     // the original demanded vector elements and the value.
3866     SDValue InVec = Op.getOperand(0);
3867     SDValue InVal = Op.getOperand(1);
3868     SDValue EltNo = Op.getOperand(2);
3869     bool DemandedVal = true;
3870     APInt DemandedVecElts = DemandedElts;
3871     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3872     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3873       unsigned EltIdx = CEltNo->getZExtValue();
3874       DemandedVal = !!DemandedElts[EltIdx];
3875       DemandedVecElts.clearBit(EltIdx);
3876     }
3877     Tmp = std::numeric_limits<unsigned>::max();
3878     if (DemandedVal) {
3879       // TODO - handle implicit truncation of inserted elements.
3880       if (InVal.getScalarValueSizeInBits() != VTBits)
3881         break;
3882       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3883       Tmp = std::min(Tmp, Tmp2);
3884     }
3885     if (!!DemandedVecElts) {
3886       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3887       Tmp = std::min(Tmp, Tmp2);
3888     }
3889     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3890     return Tmp;
3891   }
3892   case ISD::EXTRACT_VECTOR_ELT: {
3893     SDValue InVec = Op.getOperand(0);
3894     SDValue EltNo = Op.getOperand(1);
3895     EVT VecVT = InVec.getValueType();
3896     const unsigned BitWidth = Op.getValueSizeInBits();
3897     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3898     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3899 
3900     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3901     // anything about sign bits. But if the sizes match we can derive knowledge
3902     // about sign bits from the vector operand.
3903     if (BitWidth != EltBitWidth)
3904       break;
3905 
3906     // If we know the element index, just demand that vector element, else for
3907     // an unknown element index, ignore DemandedElts and demand them all.
3908     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3909     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3910     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3911       DemandedSrcElts =
3912           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3913 
3914     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3915   }
3916   case ISD::EXTRACT_SUBVECTOR: {
3917     // If we know the element index, just demand that subvector elements,
3918     // otherwise demand them all.
3919     SDValue Src = Op.getOperand(0);
3920     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3921     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3922     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3923     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3924       // Offset the demanded elts by the subvector index.
3925       uint64_t Idx = SubIdx->getZExtValue();
3926       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3927     }
3928     return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3929   }
3930   case ISD::CONCAT_VECTORS: {
3931     // Determine the minimum number of sign bits across all demanded
3932     // elts of the input vectors. Early out if the result is already 1.
3933     Tmp = std::numeric_limits<unsigned>::max();
3934     EVT SubVectorVT = Op.getOperand(0).getValueType();
3935     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3936     unsigned NumSubVectors = Op.getNumOperands();
3937     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3938       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3939       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3940       if (!DemandedSub)
3941         continue;
3942       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3943       Tmp = std::min(Tmp, Tmp2);
3944     }
3945     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3946     return Tmp;
3947   }
3948   case ISD::INSERT_SUBVECTOR: {
3949     // If we know the element index, demand any elements from the subvector and
3950     // the remainder from the src its inserted into, otherwise assume we need
3951     // the original demanded base elements and ALL the inserted subvector
3952     // elements.
3953     SDValue Src = Op.getOperand(0);
3954     SDValue Sub = Op.getOperand(1);
3955     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3956     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3957     APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts);
3958     APInt DemandedSrcElts = DemandedElts;
3959     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3960       uint64_t Idx = SubIdx->getZExtValue();
3961       DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3962       DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3963     }
3964     Tmp = std::numeric_limits<unsigned>::max();
3965     if (!!DemandedSubElts) {
3966       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3967       if (Tmp == 1)
3968         return 1; // early-out
3969     }
3970     if (!!DemandedSrcElts) {
3971       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3972       Tmp = std::min(Tmp, Tmp2);
3973     }
3974     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3975     return Tmp;
3976   }
3977   }
3978 
3979   // If we are looking at the loaded value of the SDNode.
3980   if (Op.getResNo() == 0) {
3981     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3982     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3983       unsigned ExtType = LD->getExtensionType();
3984       switch (ExtType) {
3985       default: break;
3986       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3987         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3988         return VTBits - Tmp + 1;
3989       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3990         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3991         return VTBits - Tmp;
3992       case ISD::NON_EXTLOAD:
3993         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3994           // We only need to handle vectors - computeKnownBits should handle
3995           // scalar cases.
3996           Type *CstTy = Cst->getType();
3997           if (CstTy->isVectorTy() &&
3998               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3999             Tmp = VTBits;
4000             for (unsigned i = 0; i != NumElts; ++i) {
4001               if (!DemandedElts[i])
4002                 continue;
4003               if (Constant *Elt = Cst->getAggregateElement(i)) {
4004                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4005                   const APInt &Value = CInt->getValue();
4006                   Tmp = std::min(Tmp, Value.getNumSignBits());
4007                   continue;
4008                 }
4009                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4010                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4011                   Tmp = std::min(Tmp, Value.getNumSignBits());
4012                   continue;
4013                 }
4014               }
4015               // Unknown type. Conservatively assume no bits match sign bit.
4016               return 1;
4017             }
4018             return Tmp;
4019           }
4020         }
4021         break;
4022       }
4023     }
4024   }
4025 
4026   // Allow the target to implement this method for its nodes.
4027   if (Opcode >= ISD::BUILTIN_OP_END ||
4028       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4029       Opcode == ISD::INTRINSIC_W_CHAIN ||
4030       Opcode == ISD::INTRINSIC_VOID) {
4031     unsigned NumBits =
4032         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4033     if (NumBits > 1)
4034       FirstAnswer = std::max(FirstAnswer, NumBits);
4035   }
4036 
4037   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4038   // use this information.
4039   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4040 
4041   APInt Mask;
4042   if (Known.isNonNegative()) {        // sign bit is 0
4043     Mask = Known.Zero;
4044   } else if (Known.isNegative()) {  // sign bit is 1;
4045     Mask = Known.One;
4046   } else {
4047     // Nothing known.
4048     return FirstAnswer;
4049   }
4050 
4051   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4052   // the number of identical bits in the top of the input value.
4053   Mask <<= Mask.getBitWidth()-VTBits;
4054   return std::max(FirstAnswer, Mask.countLeadingOnes());
4055 }
4056 
4057 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4058   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4059       !isa<ConstantSDNode>(Op.getOperand(1)))
4060     return false;
4061 
4062   if (Op.getOpcode() == ISD::OR &&
4063       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4064     return false;
4065 
4066   return true;
4067 }
4068 
4069 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4070   // If we're told that NaNs won't happen, assume they won't.
4071   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4072     return true;
4073 
4074   if (Depth >= MaxRecursionDepth)
4075     return false; // Limit search depth.
4076 
4077   // TODO: Handle vectors.
4078   // If the value is a constant, we can obviously see if it is a NaN or not.
4079   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4080     return !C->getValueAPF().isNaN() ||
4081            (SNaN && !C->getValueAPF().isSignaling());
4082   }
4083 
4084   unsigned Opcode = Op.getOpcode();
4085   switch (Opcode) {
4086   case ISD::FADD:
4087   case ISD::FSUB:
4088   case ISD::FMUL:
4089   case ISD::FDIV:
4090   case ISD::FREM:
4091   case ISD::FSIN:
4092   case ISD::FCOS: {
4093     if (SNaN)
4094       return true;
4095     // TODO: Need isKnownNeverInfinity
4096     return false;
4097   }
4098   case ISD::FCANONICALIZE:
4099   case ISD::FEXP:
4100   case ISD::FEXP2:
4101   case ISD::FTRUNC:
4102   case ISD::FFLOOR:
4103   case ISD::FCEIL:
4104   case ISD::FROUND:
4105   case ISD::FRINT:
4106   case ISD::FNEARBYINT: {
4107     if (SNaN)
4108       return true;
4109     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4110   }
4111   case ISD::FABS:
4112   case ISD::FNEG:
4113   case ISD::FCOPYSIGN: {
4114     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4115   }
4116   case ISD::SELECT:
4117     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4118            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4119   case ISD::FP_EXTEND:
4120   case ISD::FP_ROUND: {
4121     if (SNaN)
4122       return true;
4123     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4124   }
4125   case ISD::SINT_TO_FP:
4126   case ISD::UINT_TO_FP:
4127     return true;
4128   case ISD::FMA:
4129   case ISD::FMAD: {
4130     if (SNaN)
4131       return true;
4132     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4133            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4134            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4135   }
4136   case ISD::FSQRT: // Need is known positive
4137   case ISD::FLOG:
4138   case ISD::FLOG2:
4139   case ISD::FLOG10:
4140   case ISD::FPOWI:
4141   case ISD::FPOW: {
4142     if (SNaN)
4143       return true;
4144     // TODO: Refine on operand
4145     return false;
4146   }
4147   case ISD::FMINNUM:
4148   case ISD::FMAXNUM: {
4149     // Only one needs to be known not-nan, since it will be returned if the
4150     // other ends up being one.
4151     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4152            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4153   }
4154   case ISD::FMINNUM_IEEE:
4155   case ISD::FMAXNUM_IEEE: {
4156     if (SNaN)
4157       return true;
4158     // This can return a NaN if either operand is an sNaN, or if both operands
4159     // are NaN.
4160     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4161             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4162            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4163             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4164   }
4165   case ISD::FMINIMUM:
4166   case ISD::FMAXIMUM: {
4167     // TODO: Does this quiet or return the origina NaN as-is?
4168     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4169            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4170   }
4171   case ISD::EXTRACT_VECTOR_ELT: {
4172     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4173   }
4174   default:
4175     if (Opcode >= ISD::BUILTIN_OP_END ||
4176         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4177         Opcode == ISD::INTRINSIC_W_CHAIN ||
4178         Opcode == ISD::INTRINSIC_VOID) {
4179       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4180     }
4181 
4182     return false;
4183   }
4184 }
4185 
4186 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4187   assert(Op.getValueType().isFloatingPoint() &&
4188          "Floating point type expected");
4189 
4190   // If the value is a constant, we can obviously see if it is a zero or not.
4191   // TODO: Add BuildVector support.
4192   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4193     return !C->isZero();
4194   return false;
4195 }
4196 
4197 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4198   assert(!Op.getValueType().isFloatingPoint() &&
4199          "Floating point types unsupported - use isKnownNeverZeroFloat");
4200 
4201   // If the value is a constant, we can obviously see if it is a zero or not.
4202   if (ISD::matchUnaryPredicate(
4203           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4204     return true;
4205 
4206   // TODO: Recognize more cases here.
4207   switch (Op.getOpcode()) {
4208   default: break;
4209   case ISD::OR:
4210     if (isKnownNeverZero(Op.getOperand(1)) ||
4211         isKnownNeverZero(Op.getOperand(0)))
4212       return true;
4213     break;
4214   }
4215 
4216   return false;
4217 }
4218 
4219 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4220   // Check the obvious case.
4221   if (A == B) return true;
4222 
4223   // For for negative and positive zero.
4224   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4225     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4226       if (CA->isZero() && CB->isZero()) return true;
4227 
4228   // Otherwise they may not be equal.
4229   return false;
4230 }
4231 
4232 // FIXME: unify with llvm::haveNoCommonBitsSet.
4233 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4234 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4235   assert(A.getValueType() == B.getValueType() &&
4236          "Values must have the same type");
4237   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4238 }
4239 
4240 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4241                                 ArrayRef<SDValue> Ops,
4242                                 SelectionDAG &DAG) {
4243   int NumOps = Ops.size();
4244   assert(NumOps != 0 && "Can't build an empty vector!");
4245   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4246          "Incorrect element count in BUILD_VECTOR!");
4247 
4248   // BUILD_VECTOR of UNDEFs is UNDEF.
4249   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4250     return DAG.getUNDEF(VT);
4251 
4252   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4253   SDValue IdentitySrc;
4254   bool IsIdentity = true;
4255   for (int i = 0; i != NumOps; ++i) {
4256     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4257         Ops[i].getOperand(0).getValueType() != VT ||
4258         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4259         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4260         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4261       IsIdentity = false;
4262       break;
4263     }
4264     IdentitySrc = Ops[i].getOperand(0);
4265   }
4266   if (IsIdentity)
4267     return IdentitySrc;
4268 
4269   return SDValue();
4270 }
4271 
4272 /// Try to simplify vector concatenation to an input value, undef, or build
4273 /// vector.
4274 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4275                                   ArrayRef<SDValue> Ops,
4276                                   SelectionDAG &DAG) {
4277   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4278   assert(llvm::all_of(Ops,
4279                       [Ops](SDValue Op) {
4280                         return Ops[0].getValueType() == Op.getValueType();
4281                       }) &&
4282          "Concatenation of vectors with inconsistent value types!");
4283   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4284              VT.getVectorNumElements() &&
4285          "Incorrect element count in vector concatenation!");
4286 
4287   if (Ops.size() == 1)
4288     return Ops[0];
4289 
4290   // Concat of UNDEFs is UNDEF.
4291   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4292     return DAG.getUNDEF(VT);
4293 
4294   // Scan the operands and look for extract operations from a single source
4295   // that correspond to insertion at the same location via this concatenation:
4296   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4297   SDValue IdentitySrc;
4298   bool IsIdentity = true;
4299   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4300     SDValue Op = Ops[i];
4301     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4302     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4303         Op.getOperand(0).getValueType() != VT ||
4304         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4305         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4306         Op.getConstantOperandVal(1) != IdentityIndex) {
4307       IsIdentity = false;
4308       break;
4309     }
4310     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4311            "Unexpected identity source vector for concat of extracts");
4312     IdentitySrc = Op.getOperand(0);
4313   }
4314   if (IsIdentity) {
4315     assert(IdentitySrc && "Failed to set source vector of extracts");
4316     return IdentitySrc;
4317   }
4318 
4319   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4320   // simplified to one big BUILD_VECTOR.
4321   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4322   EVT SVT = VT.getScalarType();
4323   SmallVector<SDValue, 16> Elts;
4324   for (SDValue Op : Ops) {
4325     EVT OpVT = Op.getValueType();
4326     if (Op.isUndef())
4327       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4328     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4329       Elts.append(Op->op_begin(), Op->op_end());
4330     else
4331       return SDValue();
4332   }
4333 
4334   // BUILD_VECTOR requires all inputs to be of the same type, find the
4335   // maximum type and extend them all.
4336   for (SDValue Op : Elts)
4337     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4338 
4339   if (SVT.bitsGT(VT.getScalarType()))
4340     for (SDValue &Op : Elts)
4341       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4342                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4343                : DAG.getSExtOrTrunc(Op, DL, SVT);
4344 
4345   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4346   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4347   return V;
4348 }
4349 
4350 /// Gets or creates the specified node.
4351 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4352   FoldingSetNodeID ID;
4353   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4354   void *IP = nullptr;
4355   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4356     return SDValue(E, 0);
4357 
4358   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4359                               getVTList(VT));
4360   CSEMap.InsertNode(N, IP);
4361 
4362   InsertNode(N);
4363   SDValue V = SDValue(N, 0);
4364   NewSDValueDbgMsg(V, "Creating new node: ", this);
4365   return V;
4366 }
4367 
4368 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4369                               SDValue Operand, const SDNodeFlags Flags) {
4370   // Constant fold unary operations with an integer constant operand. Even
4371   // opaque constant will be folded, because the folding of unary operations
4372   // doesn't create new constants with different values. Nevertheless, the
4373   // opaque flag is preserved during folding to prevent future folding with
4374   // other constants.
4375   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4376     const APInt &Val = C->getAPIntValue();
4377     switch (Opcode) {
4378     default: break;
4379     case ISD::SIGN_EXTEND:
4380       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4381                          C->isTargetOpcode(), C->isOpaque());
4382     case ISD::TRUNCATE:
4383       if (C->isOpaque())
4384         break;
4385       LLVM_FALLTHROUGH;
4386     case ISD::ANY_EXTEND:
4387     case ISD::ZERO_EXTEND:
4388       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4389                          C->isTargetOpcode(), C->isOpaque());
4390     case ISD::UINT_TO_FP:
4391     case ISD::SINT_TO_FP: {
4392       APFloat apf(EVTToAPFloatSemantics(VT),
4393                   APInt::getNullValue(VT.getSizeInBits()));
4394       (void)apf.convertFromAPInt(Val,
4395                                  Opcode==ISD::SINT_TO_FP,
4396                                  APFloat::rmNearestTiesToEven);
4397       return getConstantFP(apf, DL, VT);
4398     }
4399     case ISD::BITCAST:
4400       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4401         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4402       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4403         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4404       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4405         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4406       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4407         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4408       break;
4409     case ISD::ABS:
4410       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4411                          C->isOpaque());
4412     case ISD::BITREVERSE:
4413       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4414                          C->isOpaque());
4415     case ISD::BSWAP:
4416       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4417                          C->isOpaque());
4418     case ISD::CTPOP:
4419       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4420                          C->isOpaque());
4421     case ISD::CTLZ:
4422     case ISD::CTLZ_ZERO_UNDEF:
4423       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4424                          C->isOpaque());
4425     case ISD::CTTZ:
4426     case ISD::CTTZ_ZERO_UNDEF:
4427       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4428                          C->isOpaque());
4429     case ISD::FP16_TO_FP: {
4430       bool Ignored;
4431       APFloat FPV(APFloat::IEEEhalf(),
4432                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4433 
4434       // This can return overflow, underflow, or inexact; we don't care.
4435       // FIXME need to be more flexible about rounding mode.
4436       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4437                         APFloat::rmNearestTiesToEven, &Ignored);
4438       return getConstantFP(FPV, DL, VT);
4439     }
4440     }
4441   }
4442 
4443   // Constant fold unary operations with a floating point constant operand.
4444   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4445     APFloat V = C->getValueAPF();    // make copy
4446     switch (Opcode) {
4447     case ISD::FNEG:
4448       V.changeSign();
4449       return getConstantFP(V, DL, VT);
4450     case ISD::FABS:
4451       V.clearSign();
4452       return getConstantFP(V, DL, VT);
4453     case ISD::FCEIL: {
4454       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4455       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4456         return getConstantFP(V, DL, VT);
4457       break;
4458     }
4459     case ISD::FTRUNC: {
4460       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4461       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4462         return getConstantFP(V, DL, VT);
4463       break;
4464     }
4465     case ISD::FFLOOR: {
4466       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4467       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4468         return getConstantFP(V, DL, VT);
4469       break;
4470     }
4471     case ISD::FP_EXTEND: {
4472       bool ignored;
4473       // This can return overflow, underflow, or inexact; we don't care.
4474       // FIXME need to be more flexible about rounding mode.
4475       (void)V.convert(EVTToAPFloatSemantics(VT),
4476                       APFloat::rmNearestTiesToEven, &ignored);
4477       return getConstantFP(V, DL, VT);
4478     }
4479     case ISD::FP_TO_SINT:
4480     case ISD::FP_TO_UINT: {
4481       bool ignored;
4482       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4483       // FIXME need to be more flexible about rounding mode.
4484       APFloat::opStatus s =
4485           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4486       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4487         break;
4488       return getConstant(IntVal, DL, VT);
4489     }
4490     case ISD::BITCAST:
4491       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4492         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4493       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4494         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4495       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4496         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4497       break;
4498     case ISD::FP_TO_FP16: {
4499       bool Ignored;
4500       // This can return overflow, underflow, or inexact; we don't care.
4501       // FIXME need to be more flexible about rounding mode.
4502       (void)V.convert(APFloat::IEEEhalf(),
4503                       APFloat::rmNearestTiesToEven, &Ignored);
4504       return getConstant(V.bitcastToAPInt(), DL, VT);
4505     }
4506     }
4507   }
4508 
4509   // Constant fold unary operations with a vector integer or float operand.
4510   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4511     if (BV->isConstant()) {
4512       switch (Opcode) {
4513       default:
4514         // FIXME: Entirely reasonable to perform folding of other unary
4515         // operations here as the need arises.
4516         break;
4517       case ISD::FNEG:
4518       case ISD::FABS:
4519       case ISD::FCEIL:
4520       case ISD::FTRUNC:
4521       case ISD::FFLOOR:
4522       case ISD::FP_EXTEND:
4523       case ISD::FP_TO_SINT:
4524       case ISD::FP_TO_UINT:
4525       case ISD::TRUNCATE:
4526       case ISD::ANY_EXTEND:
4527       case ISD::ZERO_EXTEND:
4528       case ISD::SIGN_EXTEND:
4529       case ISD::UINT_TO_FP:
4530       case ISD::SINT_TO_FP:
4531       case ISD::ABS:
4532       case ISD::BITREVERSE:
4533       case ISD::BSWAP:
4534       case ISD::CTLZ:
4535       case ISD::CTLZ_ZERO_UNDEF:
4536       case ISD::CTTZ:
4537       case ISD::CTTZ_ZERO_UNDEF:
4538       case ISD::CTPOP: {
4539         SDValue Ops = { Operand };
4540         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4541           return Fold;
4542       }
4543       }
4544     }
4545   }
4546 
4547   unsigned OpOpcode = Operand.getNode()->getOpcode();
4548   switch (Opcode) {
4549   case ISD::TokenFactor:
4550   case ISD::MERGE_VALUES:
4551   case ISD::CONCAT_VECTORS:
4552     return Operand;         // Factor, merge or concat of one node?  No need.
4553   case ISD::BUILD_VECTOR: {
4554     // Attempt to simplify BUILD_VECTOR.
4555     SDValue Ops[] = {Operand};
4556     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4557       return V;
4558     break;
4559   }
4560   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4561   case ISD::FP_EXTEND:
4562     assert(VT.isFloatingPoint() &&
4563            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4564     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4565     assert((!VT.isVector() ||
4566             VT.getVectorNumElements() ==
4567             Operand.getValueType().getVectorNumElements()) &&
4568            "Vector element count mismatch!");
4569     assert(Operand.getValueType().bitsLT(VT) &&
4570            "Invalid fpext node, dst < src!");
4571     if (Operand.isUndef())
4572       return getUNDEF(VT);
4573     break;
4574   case ISD::FP_TO_SINT:
4575   case ISD::FP_TO_UINT:
4576     if (Operand.isUndef())
4577       return getUNDEF(VT);
4578     break;
4579   case ISD::SINT_TO_FP:
4580   case ISD::UINT_TO_FP:
4581     // [us]itofp(undef) = 0, because the result value is bounded.
4582     if (Operand.isUndef())
4583       return getConstantFP(0.0, DL, VT);
4584     break;
4585   case ISD::SIGN_EXTEND:
4586     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4587            "Invalid SIGN_EXTEND!");
4588     assert(VT.isVector() == Operand.getValueType().isVector() &&
4589            "SIGN_EXTEND result type type should be vector iff the operand "
4590            "type is vector!");
4591     if (Operand.getValueType() == VT) return Operand;   // noop extension
4592     assert((!VT.isVector() ||
4593             VT.getVectorNumElements() ==
4594             Operand.getValueType().getVectorNumElements()) &&
4595            "Vector element count mismatch!");
4596     assert(Operand.getValueType().bitsLT(VT) &&
4597            "Invalid sext node, dst < src!");
4598     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4599       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4600     else if (OpOpcode == ISD::UNDEF)
4601       // sext(undef) = 0, because the top bits will all be the same.
4602       return getConstant(0, DL, VT);
4603     break;
4604   case ISD::ZERO_EXTEND:
4605     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4606            "Invalid ZERO_EXTEND!");
4607     assert(VT.isVector() == Operand.getValueType().isVector() &&
4608            "ZERO_EXTEND result type type should be vector iff the operand "
4609            "type is vector!");
4610     if (Operand.getValueType() == VT) return Operand;   // noop extension
4611     assert((!VT.isVector() ||
4612             VT.getVectorNumElements() ==
4613             Operand.getValueType().getVectorNumElements()) &&
4614            "Vector element count mismatch!");
4615     assert(Operand.getValueType().bitsLT(VT) &&
4616            "Invalid zext node, dst < src!");
4617     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4618       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4619     else if (OpOpcode == ISD::UNDEF)
4620       // zext(undef) = 0, because the top bits will be zero.
4621       return getConstant(0, DL, VT);
4622     break;
4623   case ISD::ANY_EXTEND:
4624     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4625            "Invalid ANY_EXTEND!");
4626     assert(VT.isVector() == Operand.getValueType().isVector() &&
4627            "ANY_EXTEND result type type should be vector iff the operand "
4628            "type is vector!");
4629     if (Operand.getValueType() == VT) return Operand;   // noop extension
4630     assert((!VT.isVector() ||
4631             VT.getVectorNumElements() ==
4632             Operand.getValueType().getVectorNumElements()) &&
4633            "Vector element count mismatch!");
4634     assert(Operand.getValueType().bitsLT(VT) &&
4635            "Invalid anyext node, dst < src!");
4636 
4637     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4638         OpOpcode == ISD::ANY_EXTEND)
4639       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4640       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4641     else if (OpOpcode == ISD::UNDEF)
4642       return getUNDEF(VT);
4643 
4644     // (ext (trunc x)) -> x
4645     if (OpOpcode == ISD::TRUNCATE) {
4646       SDValue OpOp = Operand.getOperand(0);
4647       if (OpOp.getValueType() == VT) {
4648         transferDbgValues(Operand, OpOp);
4649         return OpOp;
4650       }
4651     }
4652     break;
4653   case ISD::TRUNCATE:
4654     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4655            "Invalid TRUNCATE!");
4656     assert(VT.isVector() == Operand.getValueType().isVector() &&
4657            "TRUNCATE result type type should be vector iff the operand "
4658            "type is vector!");
4659     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4660     assert((!VT.isVector() ||
4661             VT.getVectorNumElements() ==
4662             Operand.getValueType().getVectorNumElements()) &&
4663            "Vector element count mismatch!");
4664     assert(Operand.getValueType().bitsGT(VT) &&
4665            "Invalid truncate node, src < dst!");
4666     if (OpOpcode == ISD::TRUNCATE)
4667       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4668     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4669         OpOpcode == ISD::ANY_EXTEND) {
4670       // If the source is smaller than the dest, we still need an extend.
4671       if (Operand.getOperand(0).getValueType().getScalarType()
4672             .bitsLT(VT.getScalarType()))
4673         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4674       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4675         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4676       return Operand.getOperand(0);
4677     }
4678     if (OpOpcode == ISD::UNDEF)
4679       return getUNDEF(VT);
4680     break;
4681   case ISD::ANY_EXTEND_VECTOR_INREG:
4682   case ISD::ZERO_EXTEND_VECTOR_INREG:
4683   case ISD::SIGN_EXTEND_VECTOR_INREG:
4684     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4685     assert(Operand.getValueType().bitsLE(VT) &&
4686            "The input must be the same size or smaller than the result.");
4687     assert(VT.getVectorNumElements() <
4688              Operand.getValueType().getVectorNumElements() &&
4689            "The destination vector type must have fewer lanes than the input.");
4690     break;
4691   case ISD::ABS:
4692     assert(VT.isInteger() && VT == Operand.getValueType() &&
4693            "Invalid ABS!");
4694     if (OpOpcode == ISD::UNDEF)
4695       return getUNDEF(VT);
4696     break;
4697   case ISD::BSWAP:
4698     assert(VT.isInteger() && VT == Operand.getValueType() &&
4699            "Invalid BSWAP!");
4700     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4701            "BSWAP types must be a multiple of 16 bits!");
4702     if (OpOpcode == ISD::UNDEF)
4703       return getUNDEF(VT);
4704     break;
4705   case ISD::BITREVERSE:
4706     assert(VT.isInteger() && VT == Operand.getValueType() &&
4707            "Invalid BITREVERSE!");
4708     if (OpOpcode == ISD::UNDEF)
4709       return getUNDEF(VT);
4710     break;
4711   case ISD::BITCAST:
4712     // Basic sanity checking.
4713     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4714            "Cannot BITCAST between types of different sizes!");
4715     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4716     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4717       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4718     if (OpOpcode == ISD::UNDEF)
4719       return getUNDEF(VT);
4720     break;
4721   case ISD::SCALAR_TO_VECTOR:
4722     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4723            (VT.getVectorElementType() == Operand.getValueType() ||
4724             (VT.getVectorElementType().isInteger() &&
4725              Operand.getValueType().isInteger() &&
4726              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4727            "Illegal SCALAR_TO_VECTOR node!");
4728     if (OpOpcode == ISD::UNDEF)
4729       return getUNDEF(VT);
4730     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4731     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4732         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4733         Operand.getConstantOperandVal(1) == 0 &&
4734         Operand.getOperand(0).getValueType() == VT)
4735       return Operand.getOperand(0);
4736     break;
4737   case ISD::FNEG:
4738     // Negation of an unknown bag of bits is still completely undefined.
4739     if (OpOpcode == ISD::UNDEF)
4740       return getUNDEF(VT);
4741 
4742     if (OpOpcode == ISD::FNEG)  // --X -> X
4743       return Operand.getOperand(0);
4744     break;
4745   case ISD::FABS:
4746     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4747       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4748     break;
4749   }
4750 
4751   SDNode *N;
4752   SDVTList VTs = getVTList(VT);
4753   SDValue Ops[] = {Operand};
4754   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4755     FoldingSetNodeID ID;
4756     AddNodeIDNode(ID, Opcode, VTs, Ops);
4757     void *IP = nullptr;
4758     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4759       E->intersectFlagsWith(Flags);
4760       return SDValue(E, 0);
4761     }
4762 
4763     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4764     N->setFlags(Flags);
4765     createOperands(N, Ops);
4766     CSEMap.InsertNode(N, IP);
4767   } else {
4768     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4769     createOperands(N, Ops);
4770   }
4771 
4772   InsertNode(N);
4773   SDValue V = SDValue(N, 0);
4774   NewSDValueDbgMsg(V, "Creating new node: ", this);
4775   return V;
4776 }
4777 
4778 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4779                                        const APInt &C2) {
4780   switch (Opcode) {
4781   case ISD::ADD:  return C1 + C2;
4782   case ISD::SUB:  return C1 - C2;
4783   case ISD::MUL:  return C1 * C2;
4784   case ISD::AND:  return C1 & C2;
4785   case ISD::OR:   return C1 | C2;
4786   case ISD::XOR:  return C1 ^ C2;
4787   case ISD::SHL:  return C1 << C2;
4788   case ISD::SRL:  return C1.lshr(C2);
4789   case ISD::SRA:  return C1.ashr(C2);
4790   case ISD::ROTL: return C1.rotl(C2);
4791   case ISD::ROTR: return C1.rotr(C2);
4792   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4793   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4794   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4795   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4796   case ISD::SADDSAT: return C1.sadd_sat(C2);
4797   case ISD::UADDSAT: return C1.uadd_sat(C2);
4798   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4799   case ISD::USUBSAT: return C1.usub_sat(C2);
4800   case ISD::UDIV:
4801     if (!C2.getBoolValue())
4802       break;
4803     return C1.udiv(C2);
4804   case ISD::UREM:
4805     if (!C2.getBoolValue())
4806       break;
4807     return C1.urem(C2);
4808   case ISD::SDIV:
4809     if (!C2.getBoolValue())
4810       break;
4811     return C1.sdiv(C2);
4812   case ISD::SREM:
4813     if (!C2.getBoolValue())
4814       break;
4815     return C1.srem(C2);
4816   }
4817   return llvm::None;
4818 }
4819 
4820 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4821                                        const GlobalAddressSDNode *GA,
4822                                        const SDNode *N2) {
4823   if (GA->getOpcode() != ISD::GlobalAddress)
4824     return SDValue();
4825   if (!TLI->isOffsetFoldingLegal(GA))
4826     return SDValue();
4827   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4828   if (!C2)
4829     return SDValue();
4830   int64_t Offset = C2->getSExtValue();
4831   switch (Opcode) {
4832   case ISD::ADD: break;
4833   case ISD::SUB: Offset = -uint64_t(Offset); break;
4834   default: return SDValue();
4835   }
4836   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4837                           GA->getOffset() + uint64_t(Offset));
4838 }
4839 
4840 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4841   switch (Opcode) {
4842   case ISD::SDIV:
4843   case ISD::UDIV:
4844   case ISD::SREM:
4845   case ISD::UREM: {
4846     // If a divisor is zero/undef or any element of a divisor vector is
4847     // zero/undef, the whole op is undef.
4848     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4849     SDValue Divisor = Ops[1];
4850     if (Divisor.isUndef() || isNullConstant(Divisor))
4851       return true;
4852 
4853     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4854            llvm::any_of(Divisor->op_values(),
4855                         [](SDValue V) { return V.isUndef() ||
4856                                         isNullConstant(V); });
4857     // TODO: Handle signed overflow.
4858   }
4859   // TODO: Handle oversized shifts.
4860   default:
4861     return false;
4862   }
4863 }
4864 
4865 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4866                                              EVT VT, ArrayRef<SDValue> Ops) {
4867   // If the opcode is a target-specific ISD node, there's nothing we can
4868   // do here and the operand rules may not line up with the below, so
4869   // bail early.
4870   if (Opcode >= ISD::BUILTIN_OP_END)
4871     return SDValue();
4872 
4873   // For now, the array Ops should only contain two values.
4874   // This enforcement will be removed once this function is merged with
4875   // FoldConstantVectorArithmetic
4876   if (Ops.size() != 2)
4877     return SDValue();
4878 
4879   if (isUndef(Opcode, Ops))
4880     return getUNDEF(VT);
4881 
4882   SDNode *N1 = Ops[0].getNode();
4883   SDNode *N2 = Ops[1].getNode();
4884 
4885   // Handle the case of two scalars.
4886   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4887     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4888       if (C1->isOpaque() || C2->isOpaque())
4889         return SDValue();
4890 
4891       Optional<APInt> FoldAttempt =
4892           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4893       if (!FoldAttempt)
4894         return SDValue();
4895 
4896       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4897       assert((!Folded || !VT.isVector()) &&
4898              "Can't fold vectors ops with scalar operands");
4899       return Folded;
4900     }
4901   }
4902 
4903   // fold (add Sym, c) -> Sym+c
4904   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4905     return FoldSymbolOffset(Opcode, VT, GA, N2);
4906   if (TLI->isCommutativeBinOp(Opcode))
4907     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4908       return FoldSymbolOffset(Opcode, VT, GA, N1);
4909 
4910   // For vectors, extract each constant element and fold them individually.
4911   // Either input may be an undef value.
4912   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4913   if (!BV1 && !N1->isUndef())
4914     return SDValue();
4915   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4916   if (!BV2 && !N2->isUndef())
4917     return SDValue();
4918   // If both operands are undef, that's handled the same way as scalars.
4919   if (!BV1 && !BV2)
4920     return SDValue();
4921 
4922   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4923          "Vector binop with different number of elements in operands?");
4924 
4925   EVT SVT = VT.getScalarType();
4926   EVT LegalSVT = SVT;
4927   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4928     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4929     if (LegalSVT.bitsLT(SVT))
4930       return SDValue();
4931   }
4932   SmallVector<SDValue, 4> Outputs;
4933   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4934   for (unsigned I = 0; I != NumOps; ++I) {
4935     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4936     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4937     if (SVT.isInteger()) {
4938       if (V1->getValueType(0).bitsGT(SVT))
4939         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4940       if (V2->getValueType(0).bitsGT(SVT))
4941         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4942     }
4943 
4944     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4945       return SDValue();
4946 
4947     // Fold one vector element.
4948     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4949     if (LegalSVT != SVT)
4950       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4951 
4952     // Scalar folding only succeeded if the result is a constant or UNDEF.
4953     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4954         ScalarResult.getOpcode() != ISD::ConstantFP)
4955       return SDValue();
4956     Outputs.push_back(ScalarResult);
4957   }
4958 
4959   assert(VT.getVectorNumElements() == Outputs.size() &&
4960          "Vector size mismatch!");
4961 
4962   // We may have a vector type but a scalar result. Create a splat.
4963   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4964 
4965   // Build a big vector out of the scalar elements we generated.
4966   return getBuildVector(VT, SDLoc(), Outputs);
4967 }
4968 
4969 // TODO: Merge with FoldConstantArithmetic
4970 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4971                                                    const SDLoc &DL, EVT VT,
4972                                                    ArrayRef<SDValue> Ops,
4973                                                    const SDNodeFlags Flags) {
4974   // If the opcode is a target-specific ISD node, there's nothing we can
4975   // do here and the operand rules may not line up with the below, so
4976   // bail early.
4977   if (Opcode >= ISD::BUILTIN_OP_END)
4978     return SDValue();
4979 
4980   if (isUndef(Opcode, Ops))
4981     return getUNDEF(VT);
4982 
4983   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4984   if (!VT.isVector())
4985     return SDValue();
4986 
4987   unsigned NumElts = VT.getVectorNumElements();
4988 
4989   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4990     return !Op.getValueType().isVector() ||
4991            Op.getValueType().getVectorNumElements() == NumElts;
4992   };
4993 
4994   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4995     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4996     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4997            (BV && BV->isConstant());
4998   };
4999 
5000   // All operands must be vector types with the same number of elements as
5001   // the result type and must be either UNDEF or a build vector of constant
5002   // or UNDEF scalars.
5003   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5004       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5005     return SDValue();
5006 
5007   // If we are comparing vectors, then the result needs to be a i1 boolean
5008   // that is then sign-extended back to the legal result type.
5009   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5010 
5011   // Find legal integer scalar type for constant promotion and
5012   // ensure that its scalar size is at least as large as source.
5013   EVT LegalSVT = VT.getScalarType();
5014   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5015     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5016     if (LegalSVT.bitsLT(VT.getScalarType()))
5017       return SDValue();
5018   }
5019 
5020   // Constant fold each scalar lane separately.
5021   SmallVector<SDValue, 4> ScalarResults;
5022   for (unsigned i = 0; i != NumElts; i++) {
5023     SmallVector<SDValue, 4> ScalarOps;
5024     for (SDValue Op : Ops) {
5025       EVT InSVT = Op.getValueType().getScalarType();
5026       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5027       if (!InBV) {
5028         // We've checked that this is UNDEF or a constant of some kind.
5029         if (Op.isUndef())
5030           ScalarOps.push_back(getUNDEF(InSVT));
5031         else
5032           ScalarOps.push_back(Op);
5033         continue;
5034       }
5035 
5036       SDValue ScalarOp = InBV->getOperand(i);
5037       EVT ScalarVT = ScalarOp.getValueType();
5038 
5039       // Build vector (integer) scalar operands may need implicit
5040       // truncation - do this before constant folding.
5041       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5042         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5043 
5044       ScalarOps.push_back(ScalarOp);
5045     }
5046 
5047     // Constant fold the scalar operands.
5048     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5049 
5050     // Legalize the (integer) scalar constant if necessary.
5051     if (LegalSVT != SVT)
5052       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5053 
5054     // Scalar folding only succeeded if the result is a constant or UNDEF.
5055     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5056         ScalarResult.getOpcode() != ISD::ConstantFP)
5057       return SDValue();
5058     ScalarResults.push_back(ScalarResult);
5059   }
5060 
5061   SDValue V = getBuildVector(VT, DL, ScalarResults);
5062   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5063   return V;
5064 }
5065 
5066 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5067                                          EVT VT, SDValue N1, SDValue N2) {
5068   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5069   //       should. That will require dealing with a potentially non-default
5070   //       rounding mode, checking the "opStatus" return value from the APFloat
5071   //       math calculations, and possibly other variations.
5072   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5073   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5074   if (N1CFP && N2CFP) {
5075     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5076     switch (Opcode) {
5077     case ISD::FADD:
5078       C1.add(C2, APFloat::rmNearestTiesToEven);
5079       return getConstantFP(C1, DL, VT);
5080     case ISD::FSUB:
5081       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5082       return getConstantFP(C1, DL, VT);
5083     case ISD::FMUL:
5084       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5085       return getConstantFP(C1, DL, VT);
5086     case ISD::FDIV:
5087       C1.divide(C2, APFloat::rmNearestTiesToEven);
5088       return getConstantFP(C1, DL, VT);
5089     case ISD::FREM:
5090       C1.mod(C2);
5091       return getConstantFP(C1, DL, VT);
5092     case ISD::FCOPYSIGN:
5093       C1.copySign(C2);
5094       return getConstantFP(C1, DL, VT);
5095     default: break;
5096     }
5097   }
5098   if (N1CFP && Opcode == ISD::FP_ROUND) {
5099     APFloat C1 = N1CFP->getValueAPF();    // make copy
5100     bool Unused;
5101     // This can return overflow, underflow, or inexact; we don't care.
5102     // FIXME need to be more flexible about rounding mode.
5103     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5104                       &Unused);
5105     return getConstantFP(C1, DL, VT);
5106   }
5107 
5108   switch (Opcode) {
5109   case ISD::FSUB:
5110     // -0.0 - undef --> undef (consistent with "fneg undef")
5111     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5112       return getUNDEF(VT);
5113     LLVM_FALLTHROUGH;
5114 
5115   case ISD::FADD:
5116   case ISD::FMUL:
5117   case ISD::FDIV:
5118   case ISD::FREM:
5119     // If both operands are undef, the result is undef. If 1 operand is undef,
5120     // the result is NaN. This should match the behavior of the IR optimizer.
5121     if (N1.isUndef() && N2.isUndef())
5122       return getUNDEF(VT);
5123     if (N1.isUndef() || N2.isUndef())
5124       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5125   }
5126   return SDValue();
5127 }
5128 
5129 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5130                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5131   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5132   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5133   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5134   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5135 
5136   // Canonicalize constant to RHS if commutative.
5137   if (TLI->isCommutativeBinOp(Opcode)) {
5138     if (N1C && !N2C) {
5139       std::swap(N1C, N2C);
5140       std::swap(N1, N2);
5141     } else if (N1CFP && !N2CFP) {
5142       std::swap(N1CFP, N2CFP);
5143       std::swap(N1, N2);
5144     }
5145   }
5146 
5147   switch (Opcode) {
5148   default: break;
5149   case ISD::TokenFactor:
5150     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5151            N2.getValueType() == MVT::Other && "Invalid token factor!");
5152     // Fold trivial token factors.
5153     if (N1.getOpcode() == ISD::EntryToken) return N2;
5154     if (N2.getOpcode() == ISD::EntryToken) return N1;
5155     if (N1 == N2) return N1;
5156     break;
5157   case ISD::BUILD_VECTOR: {
5158     // Attempt to simplify BUILD_VECTOR.
5159     SDValue Ops[] = {N1, N2};
5160     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5161       return V;
5162     break;
5163   }
5164   case ISD::CONCAT_VECTORS: {
5165     SDValue Ops[] = {N1, N2};
5166     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5167       return V;
5168     break;
5169   }
5170   case ISD::AND:
5171     assert(VT.isInteger() && "This operator does not apply to FP types!");
5172     assert(N1.getValueType() == N2.getValueType() &&
5173            N1.getValueType() == VT && "Binary operator types must match!");
5174     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5175     // worth handling here.
5176     if (N2C && N2C->isNullValue())
5177       return N2;
5178     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5179       return N1;
5180     break;
5181   case ISD::OR:
5182   case ISD::XOR:
5183   case ISD::ADD:
5184   case ISD::SUB:
5185     assert(VT.isInteger() && "This operator does not apply to FP types!");
5186     assert(N1.getValueType() == N2.getValueType() &&
5187            N1.getValueType() == VT && "Binary operator types must match!");
5188     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5189     // it's worth handling here.
5190     if (N2C && N2C->isNullValue())
5191       return N1;
5192     break;
5193   case ISD::MUL:
5194     assert(VT.isInteger() && "This operator does not apply to FP types!");
5195     assert(N1.getValueType() == N2.getValueType() &&
5196            N1.getValueType() == VT && "Binary operator types must match!");
5197     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5198       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5199       APInt N2CImm = N2C->getAPIntValue();
5200       return getVScale(DL, VT, MulImm * N2CImm);
5201     }
5202     break;
5203   case ISD::UDIV:
5204   case ISD::UREM:
5205   case ISD::MULHU:
5206   case ISD::MULHS:
5207   case ISD::SDIV:
5208   case ISD::SREM:
5209   case ISD::SMIN:
5210   case ISD::SMAX:
5211   case ISD::UMIN:
5212   case ISD::UMAX:
5213   case ISD::SADDSAT:
5214   case ISD::SSUBSAT:
5215   case ISD::UADDSAT:
5216   case ISD::USUBSAT:
5217     assert(VT.isInteger() && "This operator does not apply to FP types!");
5218     assert(N1.getValueType() == N2.getValueType() &&
5219            N1.getValueType() == VT && "Binary operator types must match!");
5220     break;
5221   case ISD::FADD:
5222   case ISD::FSUB:
5223   case ISD::FMUL:
5224   case ISD::FDIV:
5225   case ISD::FREM:
5226     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5227     assert(N1.getValueType() == N2.getValueType() &&
5228            N1.getValueType() == VT && "Binary operator types must match!");
5229     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5230       return V;
5231     break;
5232   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5233     assert(N1.getValueType() == VT &&
5234            N1.getValueType().isFloatingPoint() &&
5235            N2.getValueType().isFloatingPoint() &&
5236            "Invalid FCOPYSIGN!");
5237     break;
5238   case ISD::SHL:
5239     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5240       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5241       APInt ShiftImm = N2C->getAPIntValue();
5242       return getVScale(DL, VT, MulImm << ShiftImm);
5243     }
5244     LLVM_FALLTHROUGH;
5245   case ISD::SRA:
5246   case ISD::SRL:
5247     if (SDValue V = simplifyShift(N1, N2))
5248       return V;
5249     LLVM_FALLTHROUGH;
5250   case ISD::ROTL:
5251   case ISD::ROTR:
5252     assert(VT == N1.getValueType() &&
5253            "Shift operators return type must be the same as their first arg");
5254     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5255            "Shifts only work on integers");
5256     assert((!VT.isVector() || VT == N2.getValueType()) &&
5257            "Vector shift amounts must be in the same as their first arg");
5258     // Verify that the shift amount VT is big enough to hold valid shift
5259     // amounts.  This catches things like trying to shift an i1024 value by an
5260     // i8, which is easy to fall into in generic code that uses
5261     // TLI.getShiftAmount().
5262     assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >=
5263                Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) &&
5264            "Invalid use of small shift amount with oversized value!");
5265 
5266     // Always fold shifts of i1 values so the code generator doesn't need to
5267     // handle them.  Since we know the size of the shift has to be less than the
5268     // size of the value, the shift/rotate count is guaranteed to be zero.
5269     if (VT == MVT::i1)
5270       return N1;
5271     if (N2C && N2C->isNullValue())
5272       return N1;
5273     break;
5274   case ISD::FP_ROUND:
5275     assert(VT.isFloatingPoint() &&
5276            N1.getValueType().isFloatingPoint() &&
5277            VT.bitsLE(N1.getValueType()) &&
5278            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5279            "Invalid FP_ROUND!");
5280     if (N1.getValueType() == VT) return N1;  // noop conversion.
5281     break;
5282   case ISD::AssertSext:
5283   case ISD::AssertZext: {
5284     EVT EVT = cast<VTSDNode>(N2)->getVT();
5285     assert(VT == N1.getValueType() && "Not an inreg extend!");
5286     assert(VT.isInteger() && EVT.isInteger() &&
5287            "Cannot *_EXTEND_INREG FP types");
5288     assert(!EVT.isVector() &&
5289            "AssertSExt/AssertZExt type should be the vector element type "
5290            "rather than the vector type!");
5291     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5292     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5293     break;
5294   }
5295   case ISD::SIGN_EXTEND_INREG: {
5296     EVT EVT = cast<VTSDNode>(N2)->getVT();
5297     assert(VT == N1.getValueType() && "Not an inreg extend!");
5298     assert(VT.isInteger() && EVT.isInteger() &&
5299            "Cannot *_EXTEND_INREG FP types");
5300     assert(EVT.isVector() == VT.isVector() &&
5301            "SIGN_EXTEND_INREG type should be vector iff the operand "
5302            "type is vector!");
5303     assert((!EVT.isVector() ||
5304             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5305            "Vector element counts must match in SIGN_EXTEND_INREG");
5306     assert(EVT.bitsLE(VT) && "Not extending!");
5307     if (EVT == VT) return N1;  // Not actually extending
5308 
5309     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5310       unsigned FromBits = EVT.getScalarSizeInBits();
5311       Val <<= Val.getBitWidth() - FromBits;
5312       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5313       return getConstant(Val, DL, ConstantVT);
5314     };
5315 
5316     if (N1C) {
5317       const APInt &Val = N1C->getAPIntValue();
5318       return SignExtendInReg(Val, VT);
5319     }
5320     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5321       SmallVector<SDValue, 8> Ops;
5322       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5323       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5324         SDValue Op = N1.getOperand(i);
5325         if (Op.isUndef()) {
5326           Ops.push_back(getUNDEF(OpVT));
5327           continue;
5328         }
5329         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5330         APInt Val = C->getAPIntValue();
5331         Ops.push_back(SignExtendInReg(Val, OpVT));
5332       }
5333       return getBuildVector(VT, DL, Ops);
5334     }
5335     break;
5336   }
5337   case ISD::EXTRACT_VECTOR_ELT:
5338     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5339            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5340              element type of the vector.");
5341 
5342     // Extract from an undefined value or using an undefined index is undefined.
5343     if (N1.isUndef() || N2.isUndef())
5344       return getUNDEF(VT);
5345 
5346     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5347     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5348       return getUNDEF(VT);
5349 
5350     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5351     // expanding copies of large vectors from registers.
5352     if (N2C &&
5353         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5354         N1.getNumOperands() > 0) {
5355       unsigned Factor =
5356         N1.getOperand(0).getValueType().getVectorNumElements();
5357       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5358                      N1.getOperand(N2C->getZExtValue() / Factor),
5359                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5360     }
5361 
5362     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5363     // expanding large vector constants.
5364     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5365       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5366 
5367       if (VT != Elt.getValueType())
5368         // If the vector element type is not legal, the BUILD_VECTOR operands
5369         // are promoted and implicitly truncated, and the result implicitly
5370         // extended. Make that explicit here.
5371         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5372 
5373       return Elt;
5374     }
5375 
5376     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5377     // operations are lowered to scalars.
5378     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5379       // If the indices are the same, return the inserted element else
5380       // if the indices are known different, extract the element from
5381       // the original vector.
5382       SDValue N1Op2 = N1.getOperand(2);
5383       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5384 
5385       if (N1Op2C && N2C) {
5386         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5387           if (VT == N1.getOperand(1).getValueType())
5388             return N1.getOperand(1);
5389           else
5390             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5391         }
5392 
5393         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5394       }
5395     }
5396 
5397     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5398     // when vector types are scalarized and v1iX is legal.
5399     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5400     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5401         N1.getValueType().getVectorNumElements() == 1) {
5402       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5403                      N1.getOperand(1));
5404     }
5405     break;
5406   case ISD::EXTRACT_ELEMENT:
5407     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5408     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5409            (N1.getValueType().isInteger() == VT.isInteger()) &&
5410            N1.getValueType() != VT &&
5411            "Wrong types for EXTRACT_ELEMENT!");
5412 
5413     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5414     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5415     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5416     if (N1.getOpcode() == ISD::BUILD_PAIR)
5417       return N1.getOperand(N2C->getZExtValue());
5418 
5419     // EXTRACT_ELEMENT of a constant int is also very common.
5420     if (N1C) {
5421       unsigned ElementSize = VT.getSizeInBits();
5422       unsigned Shift = ElementSize * N2C->getZExtValue();
5423       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5424       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5425     }
5426     break;
5427   case ISD::EXTRACT_SUBVECTOR:
5428     if (VT.isSimple() && N1.getValueType().isSimple()) {
5429       assert(VT.isVector() && N1.getValueType().isVector() &&
5430              "Extract subvector VTs must be a vectors!");
5431       assert(VT.getVectorElementType() ==
5432              N1.getValueType().getVectorElementType() &&
5433              "Extract subvector VTs must have the same element type!");
5434       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5435              "Extract subvector must be from larger vector to smaller vector!");
5436 
5437       if (N2C) {
5438         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5439                 <= N1.getValueType().getVectorNumElements())
5440                && "Extract subvector overflow!");
5441       }
5442 
5443       // Trivial extraction.
5444       if (VT.getSimpleVT() == N1.getSimpleValueType())
5445         return N1;
5446 
5447       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5448       if (N1.isUndef())
5449         return getUNDEF(VT);
5450 
5451       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5452       // the concat have the same type as the extract.
5453       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5454           N1.getNumOperands() > 0 &&
5455           VT == N1.getOperand(0).getValueType()) {
5456         unsigned Factor = VT.getVectorNumElements();
5457         return N1.getOperand(N2C->getZExtValue() / Factor);
5458       }
5459 
5460       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5461       // during shuffle legalization.
5462       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5463           VT == N1.getOperand(1).getValueType())
5464         return N1.getOperand(1);
5465     }
5466     break;
5467   }
5468 
5469   // Perform trivial constant folding.
5470   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5471     return SV;
5472 
5473   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5474     return V;
5475 
5476   // Canonicalize an UNDEF to the RHS, even over a constant.
5477   if (N1.isUndef()) {
5478     if (TLI->isCommutativeBinOp(Opcode)) {
5479       std::swap(N1, N2);
5480     } else {
5481       switch (Opcode) {
5482       case ISD::SIGN_EXTEND_INREG:
5483       case ISD::SUB:
5484         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5485       case ISD::UDIV:
5486       case ISD::SDIV:
5487       case ISD::UREM:
5488       case ISD::SREM:
5489       case ISD::SSUBSAT:
5490       case ISD::USUBSAT:
5491         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5492       }
5493     }
5494   }
5495 
5496   // Fold a bunch of operators when the RHS is undef.
5497   if (N2.isUndef()) {
5498     switch (Opcode) {
5499     case ISD::XOR:
5500       if (N1.isUndef())
5501         // Handle undef ^ undef -> 0 special case. This is a common
5502         // idiom (misuse).
5503         return getConstant(0, DL, VT);
5504       LLVM_FALLTHROUGH;
5505     case ISD::ADD:
5506     case ISD::SUB:
5507     case ISD::UDIV:
5508     case ISD::SDIV:
5509     case ISD::UREM:
5510     case ISD::SREM:
5511       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5512     case ISD::MUL:
5513     case ISD::AND:
5514     case ISD::SSUBSAT:
5515     case ISD::USUBSAT:
5516       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5517     case ISD::OR:
5518     case ISD::SADDSAT:
5519     case ISD::UADDSAT:
5520       return getAllOnesConstant(DL, VT);
5521     }
5522   }
5523 
5524   // Memoize this node if possible.
5525   SDNode *N;
5526   SDVTList VTs = getVTList(VT);
5527   SDValue Ops[] = {N1, N2};
5528   if (VT != MVT::Glue) {
5529     FoldingSetNodeID ID;
5530     AddNodeIDNode(ID, Opcode, VTs, Ops);
5531     void *IP = nullptr;
5532     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5533       E->intersectFlagsWith(Flags);
5534       return SDValue(E, 0);
5535     }
5536 
5537     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5538     N->setFlags(Flags);
5539     createOperands(N, Ops);
5540     CSEMap.InsertNode(N, IP);
5541   } else {
5542     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5543     createOperands(N, Ops);
5544   }
5545 
5546   InsertNode(N);
5547   SDValue V = SDValue(N, 0);
5548   NewSDValueDbgMsg(V, "Creating new node: ", this);
5549   return V;
5550 }
5551 
5552 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5553                               SDValue N1, SDValue N2, SDValue N3,
5554                               const SDNodeFlags Flags) {
5555   // Perform various simplifications.
5556   switch (Opcode) {
5557   case ISD::FMA: {
5558     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5559     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5560            N3.getValueType() == VT && "FMA types must match!");
5561     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5562     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5563     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5564     if (N1CFP && N2CFP && N3CFP) {
5565       APFloat  V1 = N1CFP->getValueAPF();
5566       const APFloat &V2 = N2CFP->getValueAPF();
5567       const APFloat &V3 = N3CFP->getValueAPF();
5568       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5569       return getConstantFP(V1, DL, VT);
5570     }
5571     break;
5572   }
5573   case ISD::BUILD_VECTOR: {
5574     // Attempt to simplify BUILD_VECTOR.
5575     SDValue Ops[] = {N1, N2, N3};
5576     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5577       return V;
5578     break;
5579   }
5580   case ISD::CONCAT_VECTORS: {
5581     SDValue Ops[] = {N1, N2, N3};
5582     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5583       return V;
5584     break;
5585   }
5586   case ISD::SETCC: {
5587     assert(VT.isInteger() && "SETCC result type must be an integer!");
5588     assert(N1.getValueType() == N2.getValueType() &&
5589            "SETCC operands must have the same type!");
5590     assert(VT.isVector() == N1.getValueType().isVector() &&
5591            "SETCC type should be vector iff the operand type is vector!");
5592     assert((!VT.isVector() ||
5593             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5594            "SETCC vector element counts must match!");
5595     // Use FoldSetCC to simplify SETCC's.
5596     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5597       return V;
5598     // Vector constant folding.
5599     SDValue Ops[] = {N1, N2, N3};
5600     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5601       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5602       return V;
5603     }
5604     break;
5605   }
5606   case ISD::SELECT:
5607   case ISD::VSELECT:
5608     if (SDValue V = simplifySelect(N1, N2, N3))
5609       return V;
5610     break;
5611   case ISD::VECTOR_SHUFFLE:
5612     llvm_unreachable("should use getVectorShuffle constructor!");
5613   case ISD::INSERT_VECTOR_ELT: {
5614     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5615     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5616     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5617       return getUNDEF(VT);
5618 
5619     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5620     if (N3.isUndef())
5621       return getUNDEF(VT);
5622 
5623     // If the inserted element is an UNDEF, just use the input vector.
5624     if (N2.isUndef())
5625       return N1;
5626 
5627     break;
5628   }
5629   case ISD::INSERT_SUBVECTOR: {
5630     // Inserting undef into undef is still undef.
5631     if (N1.isUndef() && N2.isUndef())
5632       return getUNDEF(VT);
5633     SDValue Index = N3;
5634     if (VT.isSimple() && N1.getValueType().isSimple()
5635         && N2.getValueType().isSimple()) {
5636       assert(VT.isVector() && N1.getValueType().isVector() &&
5637              N2.getValueType().isVector() &&
5638              "Insert subvector VTs must be a vectors");
5639       assert(VT == N1.getValueType() &&
5640              "Dest and insert subvector source types must match!");
5641       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5642              "Insert subvector must be from smaller vector to larger vector!");
5643       if (isa<ConstantSDNode>(Index)) {
5644         assert((N2.getValueType().getVectorNumElements() +
5645                 cast<ConstantSDNode>(Index)->getZExtValue()
5646                 <= VT.getVectorNumElements())
5647                && "Insert subvector overflow!");
5648       }
5649 
5650       // Trivial insertion.
5651       if (VT.getSimpleVT() == N2.getSimpleValueType())
5652         return N2;
5653 
5654       // If this is an insert of an extracted vector into an undef vector, we
5655       // can just use the input to the extract.
5656       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5657           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5658         return N2.getOperand(0);
5659     }
5660     break;
5661   }
5662   case ISD::BITCAST:
5663     // Fold bit_convert nodes from a type to themselves.
5664     if (N1.getValueType() == VT)
5665       return N1;
5666     break;
5667   }
5668 
5669   // Memoize node if it doesn't produce a flag.
5670   SDNode *N;
5671   SDVTList VTs = getVTList(VT);
5672   SDValue Ops[] = {N1, N2, N3};
5673   if (VT != MVT::Glue) {
5674     FoldingSetNodeID ID;
5675     AddNodeIDNode(ID, Opcode, VTs, Ops);
5676     void *IP = nullptr;
5677     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5678       E->intersectFlagsWith(Flags);
5679       return SDValue(E, 0);
5680     }
5681 
5682     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5683     N->setFlags(Flags);
5684     createOperands(N, Ops);
5685     CSEMap.InsertNode(N, IP);
5686   } else {
5687     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5688     createOperands(N, Ops);
5689   }
5690 
5691   InsertNode(N);
5692   SDValue V = SDValue(N, 0);
5693   NewSDValueDbgMsg(V, "Creating new node: ", this);
5694   return V;
5695 }
5696 
5697 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5698                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5699   SDValue Ops[] = { N1, N2, N3, N4 };
5700   return getNode(Opcode, DL, VT, Ops);
5701 }
5702 
5703 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5704                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5705                               SDValue N5) {
5706   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5707   return getNode(Opcode, DL, VT, Ops);
5708 }
5709 
5710 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5711 /// the incoming stack arguments to be loaded from the stack.
5712 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5713   SmallVector<SDValue, 8> ArgChains;
5714 
5715   // Include the original chain at the beginning of the list. When this is
5716   // used by target LowerCall hooks, this helps legalize find the
5717   // CALLSEQ_BEGIN node.
5718   ArgChains.push_back(Chain);
5719 
5720   // Add a chain value for each stack argument.
5721   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5722        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5723     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5724       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5725         if (FI->getIndex() < 0)
5726           ArgChains.push_back(SDValue(L, 1));
5727 
5728   // Build a tokenfactor for all the chains.
5729   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5730 }
5731 
5732 /// getMemsetValue - Vectorized representation of the memset value
5733 /// operand.
5734 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5735                               const SDLoc &dl) {
5736   assert(!Value.isUndef());
5737 
5738   unsigned NumBits = VT.getScalarSizeInBits();
5739   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5740     assert(C->getAPIntValue().getBitWidth() == 8);
5741     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5742     if (VT.isInteger()) {
5743       bool IsOpaque = VT.getSizeInBits() > 64 ||
5744           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5745       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5746     }
5747     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5748                              VT);
5749   }
5750 
5751   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5752   EVT IntVT = VT.getScalarType();
5753   if (!IntVT.isInteger())
5754     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5755 
5756   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5757   if (NumBits > 8) {
5758     // Use a multiplication with 0x010101... to extend the input to the
5759     // required length.
5760     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5761     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5762                         DAG.getConstant(Magic, dl, IntVT));
5763   }
5764 
5765   if (VT != Value.getValueType() && !VT.isInteger())
5766     Value = DAG.getBitcast(VT.getScalarType(), Value);
5767   if (VT != Value.getValueType())
5768     Value = DAG.getSplatBuildVector(VT, dl, Value);
5769 
5770   return Value;
5771 }
5772 
5773 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5774 /// used when a memcpy is turned into a memset when the source is a constant
5775 /// string ptr.
5776 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5777                                   const TargetLowering &TLI,
5778                                   const ConstantDataArraySlice &Slice) {
5779   // Handle vector with all elements zero.
5780   if (Slice.Array == nullptr) {
5781     if (VT.isInteger())
5782       return DAG.getConstant(0, dl, VT);
5783     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5784       return DAG.getConstantFP(0.0, dl, VT);
5785     else if (VT.isVector()) {
5786       unsigned NumElts = VT.getVectorNumElements();
5787       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5788       return DAG.getNode(ISD::BITCAST, dl, VT,
5789                          DAG.getConstant(0, dl,
5790                                          EVT::getVectorVT(*DAG.getContext(),
5791                                                           EltVT, NumElts)));
5792     } else
5793       llvm_unreachable("Expected type!");
5794   }
5795 
5796   assert(!VT.isVector() && "Can't handle vector type here!");
5797   unsigned NumVTBits = VT.getSizeInBits();
5798   unsigned NumVTBytes = NumVTBits / 8;
5799   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5800 
5801   APInt Val(NumVTBits, 0);
5802   if (DAG.getDataLayout().isLittleEndian()) {
5803     for (unsigned i = 0; i != NumBytes; ++i)
5804       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5805   } else {
5806     for (unsigned i = 0; i != NumBytes; ++i)
5807       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5808   }
5809 
5810   // If the "cost" of materializing the integer immediate is less than the cost
5811   // of a load, then it is cost effective to turn the load into the immediate.
5812   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5813   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5814     return DAG.getConstant(Val, dl, VT);
5815   return SDValue(nullptr, 0);
5816 }
5817 
5818 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5819                                            const SDLoc &DL,
5820                                            const SDNodeFlags Flags) {
5821   EVT VT = Base.getValueType();
5822   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5823 }
5824 
5825 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5826                                            const SDLoc &DL,
5827                                            const SDNodeFlags Flags) {
5828   assert(Offset.getValueType().isInteger());
5829   EVT BasePtrVT = Ptr.getValueType();
5830   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5831 }
5832 
5833 /// Returns true if memcpy source is constant data.
5834 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5835   uint64_t SrcDelta = 0;
5836   GlobalAddressSDNode *G = nullptr;
5837   if (Src.getOpcode() == ISD::GlobalAddress)
5838     G = cast<GlobalAddressSDNode>(Src);
5839   else if (Src.getOpcode() == ISD::ADD &&
5840            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5841            Src.getOperand(1).getOpcode() == ISD::Constant) {
5842     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5843     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5844   }
5845   if (!G)
5846     return false;
5847 
5848   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5849                                   SrcDelta + G->getOffset());
5850 }
5851 
5852 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5853                                       SelectionDAG &DAG) {
5854   // On Darwin, -Os means optimize for size without hurting performance, so
5855   // only really optimize for size when -Oz (MinSize) is used.
5856   if (MF.getTarget().getTargetTriple().isOSDarwin())
5857     return MF.getFunction().hasMinSize();
5858   return DAG.shouldOptForSize();
5859 }
5860 
5861 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5862                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5863                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5864                           SmallVector<SDValue, 16> &OutStoreChains) {
5865   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5866   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5867   SmallVector<SDValue, 16> GluedLoadChains;
5868   for (unsigned i = From; i < To; ++i) {
5869     OutChains.push_back(OutLoadChains[i]);
5870     GluedLoadChains.push_back(OutLoadChains[i]);
5871   }
5872 
5873   // Chain for all loads.
5874   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5875                                   GluedLoadChains);
5876 
5877   for (unsigned i = From; i < To; ++i) {
5878     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5879     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5880                                   ST->getBasePtr(), ST->getMemoryVT(),
5881                                   ST->getMemOperand());
5882     OutChains.push_back(NewStore);
5883   }
5884 }
5885 
5886 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5887                                        SDValue Chain, SDValue Dst, SDValue Src,
5888                                        uint64_t Size, Align Alignment,
5889                                        bool isVol, bool AlwaysInline,
5890                                        MachinePointerInfo DstPtrInfo,
5891                                        MachinePointerInfo SrcPtrInfo) {
5892   // Turn a memcpy of undef to nop.
5893   // FIXME: We need to honor volatile even is Src is undef.
5894   if (Src.isUndef())
5895     return Chain;
5896 
5897   // Expand memcpy to a series of load and store ops if the size operand falls
5898   // below a certain threshold.
5899   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5900   // rather than maybe a humongous number of loads and stores.
5901   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5902   const DataLayout &DL = DAG.getDataLayout();
5903   LLVMContext &C = *DAG.getContext();
5904   std::vector<EVT> MemOps;
5905   bool DstAlignCanChange = false;
5906   MachineFunction &MF = DAG.getMachineFunction();
5907   MachineFrameInfo &MFI = MF.getFrameInfo();
5908   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5909   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5910   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5911     DstAlignCanChange = true;
5912   MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src));
5913   if (!SrcAlign || Alignment > *SrcAlign)
5914     SrcAlign = Alignment;
5915   assert(SrcAlign && "SrcAlign must be set");
5916   ConstantDataArraySlice Slice;
5917   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5918   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5919   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5920   const MemOp Op = isZeroConstant
5921                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
5922                                     /*IsZeroMemset*/ true, isVol)
5923                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
5924                                      *SrcAlign, isVol, CopyFromConstant);
5925   if (!TLI.findOptimalMemOpLowering(
5926           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
5927           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5928     return SDValue();
5929 
5930   if (DstAlignCanChange) {
5931     Type *Ty = MemOps[0].getTypeForEVT(C);
5932     Align NewAlign = DL.getABITypeAlign(Ty);
5933 
5934     // Don't promote to an alignment that would require dynamic stack
5935     // realignment.
5936     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5937     if (!TRI->needsStackRealignment(MF))
5938       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
5939         NewAlign = NewAlign / 2;
5940 
5941     if (NewAlign > Alignment) {
5942       // Give the stack frame object a larger alignment if needed.
5943       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
5944         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5945       Alignment = NewAlign;
5946     }
5947   }
5948 
5949   MachineMemOperand::Flags MMOFlags =
5950       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5951   SmallVector<SDValue, 16> OutLoadChains;
5952   SmallVector<SDValue, 16> OutStoreChains;
5953   SmallVector<SDValue, 32> OutChains;
5954   unsigned NumMemOps = MemOps.size();
5955   uint64_t SrcOff = 0, DstOff = 0;
5956   for (unsigned i = 0; i != NumMemOps; ++i) {
5957     EVT VT = MemOps[i];
5958     unsigned VTSize = VT.getSizeInBits() / 8;
5959     SDValue Value, Store;
5960 
5961     if (VTSize > Size) {
5962       // Issuing an unaligned load / store pair  that overlaps with the previous
5963       // pair. Adjust the offset accordingly.
5964       assert(i == NumMemOps-1 && i != 0);
5965       SrcOff -= VTSize - Size;
5966       DstOff -= VTSize - Size;
5967     }
5968 
5969     if (CopyFromConstant &&
5970         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5971       // It's unlikely a store of a vector immediate can be done in a single
5972       // instruction. It would require a load from a constantpool first.
5973       // We only handle zero vectors here.
5974       // FIXME: Handle other cases where store of vector immediate is done in
5975       // a single instruction.
5976       ConstantDataArraySlice SubSlice;
5977       if (SrcOff < Slice.Length) {
5978         SubSlice = Slice;
5979         SubSlice.move(SrcOff);
5980       } else {
5981         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5982         SubSlice.Array = nullptr;
5983         SubSlice.Offset = 0;
5984         SubSlice.Length = VTSize;
5985       }
5986       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5987       if (Value.getNode()) {
5988         Store = DAG.getStore(
5989             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5990             DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
5991         OutChains.push_back(Store);
5992       }
5993     }
5994 
5995     if (!Store.getNode()) {
5996       // The type might not be legal for the target.  This should only happen
5997       // if the type is smaller than a legal type, as on PPC, so the right
5998       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5999       // to Load/Store if NVT==VT.
6000       // FIXME does the case above also need this?
6001       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6002       assert(NVT.bitsGE(VT));
6003 
6004       bool isDereferenceable =
6005         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6006       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6007       if (isDereferenceable)
6008         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6009 
6010       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6011                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6012                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6013                              commonAlignment(*SrcAlign, SrcOff).value(),
6014                              SrcMMOFlags);
6015       OutLoadChains.push_back(Value.getValue(1));
6016 
6017       Store = DAG.getTruncStore(
6018           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6019           DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags);
6020       OutStoreChains.push_back(Store);
6021     }
6022     SrcOff += VTSize;
6023     DstOff += VTSize;
6024     Size -= VTSize;
6025   }
6026 
6027   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6028                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6029   unsigned NumLdStInMemcpy = OutStoreChains.size();
6030 
6031   if (NumLdStInMemcpy) {
6032     // It may be that memcpy might be converted to memset if it's memcpy
6033     // of constants. In such a case, we won't have loads and stores, but
6034     // just stores. In the absence of loads, there is nothing to gang up.
6035     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6036       // If target does not care, just leave as it.
6037       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6038         OutChains.push_back(OutLoadChains[i]);
6039         OutChains.push_back(OutStoreChains[i]);
6040       }
6041     } else {
6042       // Ld/St less than/equal limit set by target.
6043       if (NumLdStInMemcpy <= GluedLdStLimit) {
6044           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6045                                         NumLdStInMemcpy, OutLoadChains,
6046                                         OutStoreChains);
6047       } else {
6048         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6049         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6050         unsigned GlueIter = 0;
6051 
6052         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6053           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6054           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6055 
6056           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6057                                        OutLoadChains, OutStoreChains);
6058           GlueIter += GluedLdStLimit;
6059         }
6060 
6061         // Residual ld/st.
6062         if (RemainingLdStInMemcpy) {
6063           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6064                                         RemainingLdStInMemcpy, OutLoadChains,
6065                                         OutStoreChains);
6066         }
6067       }
6068     }
6069   }
6070   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6071 }
6072 
6073 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6074                                         SDValue Chain, SDValue Dst, SDValue Src,
6075                                         uint64_t Size, Align Alignment,
6076                                         bool isVol, bool AlwaysInline,
6077                                         MachinePointerInfo DstPtrInfo,
6078                                         MachinePointerInfo SrcPtrInfo) {
6079   // Turn a memmove of undef to nop.
6080   // FIXME: We need to honor volatile even is Src is undef.
6081   if (Src.isUndef())
6082     return Chain;
6083 
6084   // Expand memmove to a series of load and store ops if the size operand falls
6085   // below a certain threshold.
6086   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6087   const DataLayout &DL = DAG.getDataLayout();
6088   LLVMContext &C = *DAG.getContext();
6089   std::vector<EVT> MemOps;
6090   bool DstAlignCanChange = false;
6091   MachineFunction &MF = DAG.getMachineFunction();
6092   MachineFrameInfo &MFI = MF.getFrameInfo();
6093   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6094   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6095   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6096     DstAlignCanChange = true;
6097   MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src));
6098   if (!SrcAlign || Alignment > *SrcAlign)
6099     SrcAlign = Alignment;
6100   assert(SrcAlign && "SrcAlign must be set");
6101   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6102   if (!TLI.findOptimalMemOpLowering(
6103           MemOps, Limit,
6104           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6105                       /*IsVolatile*/ true),
6106           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6107           MF.getFunction().getAttributes()))
6108     return SDValue();
6109 
6110   if (DstAlignCanChange) {
6111     Type *Ty = MemOps[0].getTypeForEVT(C);
6112     Align NewAlign = DL.getABITypeAlign(Ty);
6113     if (NewAlign > Alignment) {
6114       // Give the stack frame object a larger alignment if needed.
6115       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6116         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6117       Alignment = NewAlign;
6118     }
6119   }
6120 
6121   MachineMemOperand::Flags MMOFlags =
6122       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6123   uint64_t SrcOff = 0, DstOff = 0;
6124   SmallVector<SDValue, 8> LoadValues;
6125   SmallVector<SDValue, 8> LoadChains;
6126   SmallVector<SDValue, 8> OutChains;
6127   unsigned NumMemOps = MemOps.size();
6128   for (unsigned i = 0; i < NumMemOps; i++) {
6129     EVT VT = MemOps[i];
6130     unsigned VTSize = VT.getSizeInBits() / 8;
6131     SDValue Value;
6132 
6133     bool isDereferenceable =
6134       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6135     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6136     if (isDereferenceable)
6137       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6138 
6139     Value = DAG.getLoad(
6140         VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6141         SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags);
6142     LoadValues.push_back(Value);
6143     LoadChains.push_back(Value.getValue(1));
6144     SrcOff += VTSize;
6145   }
6146   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6147   OutChains.clear();
6148   for (unsigned i = 0; i < NumMemOps; i++) {
6149     EVT VT = MemOps[i];
6150     unsigned VTSize = VT.getSizeInBits() / 8;
6151     SDValue Store;
6152 
6153     Store = DAG.getStore(
6154         Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6155         DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6156     OutChains.push_back(Store);
6157     DstOff += VTSize;
6158   }
6159 
6160   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6161 }
6162 
6163 /// Lower the call to 'memset' intrinsic function into a series of store
6164 /// operations.
6165 ///
6166 /// \param DAG Selection DAG where lowered code is placed.
6167 /// \param dl Link to corresponding IR location.
6168 /// \param Chain Control flow dependency.
6169 /// \param Dst Pointer to destination memory location.
6170 /// \param Src Value of byte to write into the memory.
6171 /// \param Size Number of bytes to write.
6172 /// \param Alignment Alignment of the destination in bytes.
6173 /// \param isVol True if destination is volatile.
6174 /// \param DstPtrInfo IR information on the memory pointer.
6175 /// \returns New head in the control flow, if lowering was successful, empty
6176 /// SDValue otherwise.
6177 ///
6178 /// The function tries to replace 'llvm.memset' intrinsic with several store
6179 /// operations and value calculation code. This is usually profitable for small
6180 /// memory size.
6181 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6182                                SDValue Chain, SDValue Dst, SDValue Src,
6183                                uint64_t Size, Align Alignment, bool isVol,
6184                                MachinePointerInfo DstPtrInfo) {
6185   // Turn a memset of undef to nop.
6186   // FIXME: We need to honor volatile even is Src is undef.
6187   if (Src.isUndef())
6188     return Chain;
6189 
6190   // Expand memset to a series of load/store ops if the size operand
6191   // falls below a certain threshold.
6192   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6193   std::vector<EVT> MemOps;
6194   bool DstAlignCanChange = false;
6195   MachineFunction &MF = DAG.getMachineFunction();
6196   MachineFrameInfo &MFI = MF.getFrameInfo();
6197   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6198   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6199   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6200     DstAlignCanChange = true;
6201   bool IsZeroVal =
6202     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6203   if (!TLI.findOptimalMemOpLowering(
6204           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6205           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6206           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6207     return SDValue();
6208 
6209   if (DstAlignCanChange) {
6210     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6211     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6212     if (NewAlign > Alignment) {
6213       // Give the stack frame object a larger alignment if needed.
6214       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6215         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6216       Alignment = NewAlign;
6217     }
6218   }
6219 
6220   SmallVector<SDValue, 8> OutChains;
6221   uint64_t DstOff = 0;
6222   unsigned NumMemOps = MemOps.size();
6223 
6224   // Find the largest store and generate the bit pattern for it.
6225   EVT LargestVT = MemOps[0];
6226   for (unsigned i = 1; i < NumMemOps; i++)
6227     if (MemOps[i].bitsGT(LargestVT))
6228       LargestVT = MemOps[i];
6229   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6230 
6231   for (unsigned i = 0; i < NumMemOps; i++) {
6232     EVT VT = MemOps[i];
6233     unsigned VTSize = VT.getSizeInBits() / 8;
6234     if (VTSize > Size) {
6235       // Issuing an unaligned load / store pair  that overlaps with the previous
6236       // pair. Adjust the offset accordingly.
6237       assert(i == NumMemOps-1 && i != 0);
6238       DstOff -= VTSize - Size;
6239     }
6240 
6241     // If this store is smaller than the largest store see whether we can get
6242     // the smaller value for free with a truncate.
6243     SDValue Value = MemSetValue;
6244     if (VT.bitsLT(LargestVT)) {
6245       if (!LargestVT.isVector() && !VT.isVector() &&
6246           TLI.isTruncateFree(LargestVT, VT))
6247         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6248       else
6249         Value = getMemsetValue(Src, VT, DAG, dl);
6250     }
6251     assert(Value.getValueType() == VT && "Value with wrong type.");
6252     SDValue Store = DAG.getStore(
6253         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6254         DstPtrInfo.getWithOffset(DstOff), Alignment.value(),
6255         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6256     OutChains.push_back(Store);
6257     DstOff += VT.getSizeInBits() / 8;
6258     Size -= VTSize;
6259   }
6260 
6261   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6262 }
6263 
6264 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6265                                             unsigned AS) {
6266   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6267   // pointer operands can be losslessly bitcasted to pointers of address space 0
6268   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6269     report_fatal_error("cannot lower memory intrinsic in address space " +
6270                        Twine(AS));
6271   }
6272 }
6273 
6274 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6275                                 SDValue Src, SDValue Size, Align Alignment,
6276                                 bool isVol, bool AlwaysInline, bool isTailCall,
6277                                 MachinePointerInfo DstPtrInfo,
6278                                 MachinePointerInfo SrcPtrInfo) {
6279   // Check to see if we should lower the memcpy to loads and stores first.
6280   // For cases within the target-specified limits, this is the best choice.
6281   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6282   if (ConstantSize) {
6283     // Memcpy with size zero? Just return the original chain.
6284     if (ConstantSize->isNullValue())
6285       return Chain;
6286 
6287     SDValue Result = getMemcpyLoadsAndStores(
6288         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6289         isVol, false, DstPtrInfo, SrcPtrInfo);
6290     if (Result.getNode())
6291       return Result;
6292   }
6293 
6294   // Then check to see if we should lower the memcpy with target-specific
6295   // code. If the target chooses to do this, this is the next best.
6296   if (TSI) {
6297     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6298         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol,
6299         AlwaysInline, DstPtrInfo, SrcPtrInfo);
6300     if (Result.getNode())
6301       return Result;
6302   }
6303 
6304   // If we really need inline code and the target declined to provide it,
6305   // use a (potentially long) sequence of loads and stores.
6306   if (AlwaysInline) {
6307     assert(ConstantSize && "AlwaysInline requires a constant size!");
6308     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6309                                    ConstantSize->getZExtValue(), Alignment,
6310                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6311   }
6312 
6313   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6314   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6315 
6316   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6317   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6318   // respect volatile, so they may do things like read or write memory
6319   // beyond the given memory regions. But fixing this isn't easy, and most
6320   // people don't care.
6321 
6322   // Emit a library call.
6323   TargetLowering::ArgListTy Args;
6324   TargetLowering::ArgListEntry Entry;
6325   Entry.Ty = Type::getInt8PtrTy(*getContext());
6326   Entry.Node = Dst; Args.push_back(Entry);
6327   Entry.Node = Src; Args.push_back(Entry);
6328 
6329   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6330   Entry.Node = Size; Args.push_back(Entry);
6331   // FIXME: pass in SDLoc
6332   TargetLowering::CallLoweringInfo CLI(*this);
6333   CLI.setDebugLoc(dl)
6334       .setChain(Chain)
6335       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6336                     Dst.getValueType().getTypeForEVT(*getContext()),
6337                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6338                                       TLI->getPointerTy(getDataLayout())),
6339                     std::move(Args))
6340       .setDiscardResult()
6341       .setTailCall(isTailCall);
6342 
6343   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6344   return CallResult.second;
6345 }
6346 
6347 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6348                                       SDValue Dst, unsigned DstAlign,
6349                                       SDValue Src, unsigned SrcAlign,
6350                                       SDValue Size, Type *SizeTy,
6351                                       unsigned ElemSz, bool isTailCall,
6352                                       MachinePointerInfo DstPtrInfo,
6353                                       MachinePointerInfo SrcPtrInfo) {
6354   // Emit a library call.
6355   TargetLowering::ArgListTy Args;
6356   TargetLowering::ArgListEntry Entry;
6357   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6358   Entry.Node = Dst;
6359   Args.push_back(Entry);
6360 
6361   Entry.Node = Src;
6362   Args.push_back(Entry);
6363 
6364   Entry.Ty = SizeTy;
6365   Entry.Node = Size;
6366   Args.push_back(Entry);
6367 
6368   RTLIB::Libcall LibraryCall =
6369       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6370   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6371     report_fatal_error("Unsupported element size");
6372 
6373   TargetLowering::CallLoweringInfo CLI(*this);
6374   CLI.setDebugLoc(dl)
6375       .setChain(Chain)
6376       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6377                     Type::getVoidTy(*getContext()),
6378                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6379                                       TLI->getPointerTy(getDataLayout())),
6380                     std::move(Args))
6381       .setDiscardResult()
6382       .setTailCall(isTailCall);
6383 
6384   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6385   return CallResult.second;
6386 }
6387 
6388 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6389                                  SDValue Src, SDValue Size, Align Alignment,
6390                                  bool isVol, bool isTailCall,
6391                                  MachinePointerInfo DstPtrInfo,
6392                                  MachinePointerInfo SrcPtrInfo) {
6393   // Check to see if we should lower the memmove to loads and stores first.
6394   // For cases within the target-specified limits, this is the best choice.
6395   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6396   if (ConstantSize) {
6397     // Memmove with size zero? Just return the original chain.
6398     if (ConstantSize->isNullValue())
6399       return Chain;
6400 
6401     SDValue Result = getMemmoveLoadsAndStores(
6402         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6403         isVol, false, DstPtrInfo, SrcPtrInfo);
6404     if (Result.getNode())
6405       return Result;
6406   }
6407 
6408   // Then check to see if we should lower the memmove with target-specific
6409   // code. If the target chooses to do this, this is the next best.
6410   if (TSI) {
6411     SDValue Result = TSI->EmitTargetCodeForMemmove(
6412         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo,
6413         SrcPtrInfo);
6414     if (Result.getNode())
6415       return Result;
6416   }
6417 
6418   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6419   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6420 
6421   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6422   // not be safe.  See memcpy above for more details.
6423 
6424   // Emit a library call.
6425   TargetLowering::ArgListTy Args;
6426   TargetLowering::ArgListEntry Entry;
6427   Entry.Ty = Type::getInt8PtrTy(*getContext());
6428   Entry.Node = Dst; Args.push_back(Entry);
6429   Entry.Node = Src; Args.push_back(Entry);
6430 
6431   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6432   Entry.Node = Size; Args.push_back(Entry);
6433   // FIXME:  pass in SDLoc
6434   TargetLowering::CallLoweringInfo CLI(*this);
6435   CLI.setDebugLoc(dl)
6436       .setChain(Chain)
6437       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6438                     Dst.getValueType().getTypeForEVT(*getContext()),
6439                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6440                                       TLI->getPointerTy(getDataLayout())),
6441                     std::move(Args))
6442       .setDiscardResult()
6443       .setTailCall(isTailCall);
6444 
6445   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6446   return CallResult.second;
6447 }
6448 
6449 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6450                                        SDValue Dst, unsigned DstAlign,
6451                                        SDValue Src, unsigned SrcAlign,
6452                                        SDValue Size, Type *SizeTy,
6453                                        unsigned ElemSz, bool isTailCall,
6454                                        MachinePointerInfo DstPtrInfo,
6455                                        MachinePointerInfo SrcPtrInfo) {
6456   // Emit a library call.
6457   TargetLowering::ArgListTy Args;
6458   TargetLowering::ArgListEntry Entry;
6459   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6460   Entry.Node = Dst;
6461   Args.push_back(Entry);
6462 
6463   Entry.Node = Src;
6464   Args.push_back(Entry);
6465 
6466   Entry.Ty = SizeTy;
6467   Entry.Node = Size;
6468   Args.push_back(Entry);
6469 
6470   RTLIB::Libcall LibraryCall =
6471       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6472   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6473     report_fatal_error("Unsupported element size");
6474 
6475   TargetLowering::CallLoweringInfo CLI(*this);
6476   CLI.setDebugLoc(dl)
6477       .setChain(Chain)
6478       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6479                     Type::getVoidTy(*getContext()),
6480                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6481                                       TLI->getPointerTy(getDataLayout())),
6482                     std::move(Args))
6483       .setDiscardResult()
6484       .setTailCall(isTailCall);
6485 
6486   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6487   return CallResult.second;
6488 }
6489 
6490 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6491                                 SDValue Src, SDValue Size, Align Alignment,
6492                                 bool isVol, bool isTailCall,
6493                                 MachinePointerInfo DstPtrInfo) {
6494   // Check to see if we should lower the memset to stores first.
6495   // For cases within the target-specified limits, this is the best choice.
6496   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6497   if (ConstantSize) {
6498     // Memset with size zero? Just return the original chain.
6499     if (ConstantSize->isNullValue())
6500       return Chain;
6501 
6502     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6503                                      ConstantSize->getZExtValue(), Alignment,
6504                                      isVol, DstPtrInfo);
6505 
6506     if (Result.getNode())
6507       return Result;
6508   }
6509 
6510   // Then check to see if we should lower the memset with target-specific
6511   // code. If the target chooses to do this, this is the next best.
6512   if (TSI) {
6513     SDValue Result = TSI->EmitTargetCodeForMemset(
6514         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo);
6515     if (Result.getNode())
6516       return Result;
6517   }
6518 
6519   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6520 
6521   // Emit a library call.
6522   TargetLowering::ArgListTy Args;
6523   TargetLowering::ArgListEntry Entry;
6524   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6525   Args.push_back(Entry);
6526   Entry.Node = Src;
6527   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6528   Args.push_back(Entry);
6529   Entry.Node = Size;
6530   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6531   Args.push_back(Entry);
6532 
6533   // FIXME: pass in SDLoc
6534   TargetLowering::CallLoweringInfo CLI(*this);
6535   CLI.setDebugLoc(dl)
6536       .setChain(Chain)
6537       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6538                     Dst.getValueType().getTypeForEVT(*getContext()),
6539                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6540                                       TLI->getPointerTy(getDataLayout())),
6541                     std::move(Args))
6542       .setDiscardResult()
6543       .setTailCall(isTailCall);
6544 
6545   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6546   return CallResult.second;
6547 }
6548 
6549 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6550                                       SDValue Dst, unsigned DstAlign,
6551                                       SDValue Value, SDValue Size, Type *SizeTy,
6552                                       unsigned ElemSz, bool isTailCall,
6553                                       MachinePointerInfo DstPtrInfo) {
6554   // Emit a library call.
6555   TargetLowering::ArgListTy Args;
6556   TargetLowering::ArgListEntry Entry;
6557   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6558   Entry.Node = Dst;
6559   Args.push_back(Entry);
6560 
6561   Entry.Ty = Type::getInt8Ty(*getContext());
6562   Entry.Node = Value;
6563   Args.push_back(Entry);
6564 
6565   Entry.Ty = SizeTy;
6566   Entry.Node = Size;
6567   Args.push_back(Entry);
6568 
6569   RTLIB::Libcall LibraryCall =
6570       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6571   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6572     report_fatal_error("Unsupported element size");
6573 
6574   TargetLowering::CallLoweringInfo CLI(*this);
6575   CLI.setDebugLoc(dl)
6576       .setChain(Chain)
6577       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6578                     Type::getVoidTy(*getContext()),
6579                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6580                                       TLI->getPointerTy(getDataLayout())),
6581                     std::move(Args))
6582       .setDiscardResult()
6583       .setTailCall(isTailCall);
6584 
6585   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6586   return CallResult.second;
6587 }
6588 
6589 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6590                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6591                                 MachineMemOperand *MMO) {
6592   FoldingSetNodeID ID;
6593   ID.AddInteger(MemVT.getRawBits());
6594   AddNodeIDNode(ID, Opcode, VTList, Ops);
6595   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6596   void* IP = nullptr;
6597   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6598     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6599     return SDValue(E, 0);
6600   }
6601 
6602   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6603                                     VTList, MemVT, MMO);
6604   createOperands(N, Ops);
6605 
6606   CSEMap.InsertNode(N, IP);
6607   InsertNode(N);
6608   return SDValue(N, 0);
6609 }
6610 
6611 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6612                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6613                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6614                                        MachineMemOperand *MMO) {
6615   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6616          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6617   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6618 
6619   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6620   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6621 }
6622 
6623 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6624                                 SDValue Chain, SDValue Ptr, SDValue Val,
6625                                 MachineMemOperand *MMO) {
6626   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6627           Opcode == ISD::ATOMIC_LOAD_SUB ||
6628           Opcode == ISD::ATOMIC_LOAD_AND ||
6629           Opcode == ISD::ATOMIC_LOAD_CLR ||
6630           Opcode == ISD::ATOMIC_LOAD_OR ||
6631           Opcode == ISD::ATOMIC_LOAD_XOR ||
6632           Opcode == ISD::ATOMIC_LOAD_NAND ||
6633           Opcode == ISD::ATOMIC_LOAD_MIN ||
6634           Opcode == ISD::ATOMIC_LOAD_MAX ||
6635           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6636           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6637           Opcode == ISD::ATOMIC_LOAD_FADD ||
6638           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6639           Opcode == ISD::ATOMIC_SWAP ||
6640           Opcode == ISD::ATOMIC_STORE) &&
6641          "Invalid Atomic Op");
6642 
6643   EVT VT = Val.getValueType();
6644 
6645   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6646                                                getVTList(VT, MVT::Other);
6647   SDValue Ops[] = {Chain, Ptr, Val};
6648   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6649 }
6650 
6651 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6652                                 EVT VT, SDValue Chain, SDValue Ptr,
6653                                 MachineMemOperand *MMO) {
6654   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6655 
6656   SDVTList VTs = getVTList(VT, MVT::Other);
6657   SDValue Ops[] = {Chain, Ptr};
6658   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6659 }
6660 
6661 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6662 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6663   if (Ops.size() == 1)
6664     return Ops[0];
6665 
6666   SmallVector<EVT, 4> VTs;
6667   VTs.reserve(Ops.size());
6668   for (unsigned i = 0; i < Ops.size(); ++i)
6669     VTs.push_back(Ops[i].getValueType());
6670   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6671 }
6672 
6673 SDValue SelectionDAG::getMemIntrinsicNode(
6674     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6675     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6676     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6677   if (Align == 0)  // Ensure that codegen never sees alignment 0
6678     Align = getEVTAlignment(MemVT);
6679 
6680   if (!Size && MemVT.isScalableVector())
6681     Size = MemoryLocation::UnknownSize;
6682   else if (!Size)
6683     Size = MemVT.getStoreSize();
6684 
6685   MachineFunction &MF = getMachineFunction();
6686   MachineMemOperand *MMO =
6687       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6688 
6689   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6690 }
6691 
6692 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6693                                           SDVTList VTList,
6694                                           ArrayRef<SDValue> Ops, EVT MemVT,
6695                                           MachineMemOperand *MMO) {
6696   assert((Opcode == ISD::INTRINSIC_VOID ||
6697           Opcode == ISD::INTRINSIC_W_CHAIN ||
6698           Opcode == ISD::PREFETCH ||
6699           ((int)Opcode <= std::numeric_limits<int>::max() &&
6700            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6701          "Opcode is not a memory-accessing opcode!");
6702 
6703   // Memoize the node unless it returns a flag.
6704   MemIntrinsicSDNode *N;
6705   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6706     FoldingSetNodeID ID;
6707     AddNodeIDNode(ID, Opcode, VTList, Ops);
6708     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6709         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6710     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6711     void *IP = nullptr;
6712     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6713       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6714       return SDValue(E, 0);
6715     }
6716 
6717     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6718                                       VTList, MemVT, MMO);
6719     createOperands(N, Ops);
6720 
6721   CSEMap.InsertNode(N, IP);
6722   } else {
6723     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6724                                       VTList, MemVT, MMO);
6725     createOperands(N, Ops);
6726   }
6727   InsertNode(N);
6728   SDValue V(N, 0);
6729   NewSDValueDbgMsg(V, "Creating new node: ", this);
6730   return V;
6731 }
6732 
6733 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6734                                       SDValue Chain, int FrameIndex,
6735                                       int64_t Size, int64_t Offset) {
6736   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6737   const auto VTs = getVTList(MVT::Other);
6738   SDValue Ops[2] = {
6739       Chain,
6740       getFrameIndex(FrameIndex,
6741                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6742                     true)};
6743 
6744   FoldingSetNodeID ID;
6745   AddNodeIDNode(ID, Opcode, VTs, Ops);
6746   ID.AddInteger(FrameIndex);
6747   ID.AddInteger(Size);
6748   ID.AddInteger(Offset);
6749   void *IP = nullptr;
6750   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6751     return SDValue(E, 0);
6752 
6753   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6754       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6755   createOperands(N, Ops);
6756   CSEMap.InsertNode(N, IP);
6757   InsertNode(N);
6758   SDValue V(N, 0);
6759   NewSDValueDbgMsg(V, "Creating new node: ", this);
6760   return V;
6761 }
6762 
6763 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6764 /// MachinePointerInfo record from it.  This is particularly useful because the
6765 /// code generator has many cases where it doesn't bother passing in a
6766 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6767 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6768                                            SelectionDAG &DAG, SDValue Ptr,
6769                                            int64_t Offset = 0) {
6770   // If this is FI+Offset, we can model it.
6771   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6772     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6773                                              FI->getIndex(), Offset);
6774 
6775   // If this is (FI+Offset1)+Offset2, we can model it.
6776   if (Ptr.getOpcode() != ISD::ADD ||
6777       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6778       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6779     return Info;
6780 
6781   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6782   return MachinePointerInfo::getFixedStack(
6783       DAG.getMachineFunction(), FI,
6784       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6785 }
6786 
6787 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6788 /// MachinePointerInfo record from it.  This is particularly useful because the
6789 /// code generator has many cases where it doesn't bother passing in a
6790 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6791 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6792                                            SelectionDAG &DAG, SDValue Ptr,
6793                                            SDValue OffsetOp) {
6794   // If the 'Offset' value isn't a constant, we can't handle this.
6795   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6796     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6797   if (OffsetOp.isUndef())
6798     return InferPointerInfo(Info, DAG, Ptr);
6799   return Info;
6800 }
6801 
6802 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6803                               EVT VT, const SDLoc &dl, SDValue Chain,
6804                               SDValue Ptr, SDValue Offset,
6805                               MachinePointerInfo PtrInfo, EVT MemVT,
6806                               unsigned Alignment,
6807                               MachineMemOperand::Flags MMOFlags,
6808                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6809   assert(Chain.getValueType() == MVT::Other &&
6810         "Invalid chain type");
6811   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6812     Alignment = getEVTAlignment(MemVT);
6813 
6814   MMOFlags |= MachineMemOperand::MOLoad;
6815   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6816   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6817   // clients.
6818   if (PtrInfo.V.isNull())
6819     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6820 
6821   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6822   MachineFunction &MF = getMachineFunction();
6823   MachineMemOperand *MMO = MF.getMachineMemOperand(
6824       PtrInfo, MMOFlags, Size, Alignment, AAInfo, Ranges);
6825   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6826 }
6827 
6828 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6829                               EVT VT, const SDLoc &dl, SDValue Chain,
6830                               SDValue Ptr, SDValue Offset, EVT MemVT,
6831                               MachineMemOperand *MMO) {
6832   if (VT == MemVT) {
6833     ExtType = ISD::NON_EXTLOAD;
6834   } else if (ExtType == ISD::NON_EXTLOAD) {
6835     assert(VT == MemVT && "Non-extending load from different memory type!");
6836   } else {
6837     // Extending load.
6838     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6839            "Should only be an extending load, not truncating!");
6840     assert(VT.isInteger() == MemVT.isInteger() &&
6841            "Cannot convert from FP to Int or Int -> FP!");
6842     assert(VT.isVector() == MemVT.isVector() &&
6843            "Cannot use an ext load to convert to or from a vector!");
6844     assert((!VT.isVector() ||
6845             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6846            "Cannot use an ext load to change the number of vector elements!");
6847   }
6848 
6849   bool Indexed = AM != ISD::UNINDEXED;
6850   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6851 
6852   SDVTList VTs = Indexed ?
6853     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6854   SDValue Ops[] = { Chain, Ptr, Offset };
6855   FoldingSetNodeID ID;
6856   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6857   ID.AddInteger(MemVT.getRawBits());
6858   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6859       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6860   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6861   void *IP = nullptr;
6862   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6863     cast<LoadSDNode>(E)->refineAlignment(MMO);
6864     return SDValue(E, 0);
6865   }
6866   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6867                                   ExtType, MemVT, MMO);
6868   createOperands(N, Ops);
6869 
6870   CSEMap.InsertNode(N, IP);
6871   InsertNode(N);
6872   SDValue V(N, 0);
6873   NewSDValueDbgMsg(V, "Creating new node: ", this);
6874   return V;
6875 }
6876 
6877 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6878                               SDValue Ptr, MachinePointerInfo PtrInfo,
6879                               unsigned Alignment,
6880                               MachineMemOperand::Flags MMOFlags,
6881                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6882   SDValue Undef = getUNDEF(Ptr.getValueType());
6883   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6884                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6885 }
6886 
6887 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6888                               SDValue Ptr, MachineMemOperand *MMO) {
6889   SDValue Undef = getUNDEF(Ptr.getValueType());
6890   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6891                  VT, MMO);
6892 }
6893 
6894 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6895                                  EVT VT, SDValue Chain, SDValue Ptr,
6896                                  MachinePointerInfo PtrInfo, EVT MemVT,
6897                                  unsigned Alignment,
6898                                  MachineMemOperand::Flags MMOFlags,
6899                                  const AAMDNodes &AAInfo) {
6900   SDValue Undef = getUNDEF(Ptr.getValueType());
6901   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6902                  MemVT, Alignment, MMOFlags, AAInfo);
6903 }
6904 
6905 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6906                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6907                                  MachineMemOperand *MMO) {
6908   SDValue Undef = getUNDEF(Ptr.getValueType());
6909   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6910                  MemVT, MMO);
6911 }
6912 
6913 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6914                                      SDValue Base, SDValue Offset,
6915                                      ISD::MemIndexedMode AM) {
6916   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6917   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6918   // Don't propagate the invariant or dereferenceable flags.
6919   auto MMOFlags =
6920       LD->getMemOperand()->getFlags() &
6921       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6922   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6923                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6924                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6925                  LD->getAAInfo());
6926 }
6927 
6928 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6929                                SDValue Ptr, MachinePointerInfo PtrInfo,
6930                                unsigned Alignment,
6931                                MachineMemOperand::Flags MMOFlags,
6932                                const AAMDNodes &AAInfo) {
6933   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6934   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6935     Alignment = getEVTAlignment(Val.getValueType());
6936 
6937   MMOFlags |= MachineMemOperand::MOStore;
6938   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6939 
6940   if (PtrInfo.V.isNull())
6941     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6942 
6943   MachineFunction &MF = getMachineFunction();
6944   uint64_t Size =
6945       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
6946   MachineMemOperand *MMO =
6947       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
6948   return getStore(Chain, dl, Val, Ptr, MMO);
6949 }
6950 
6951 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6952                                SDValue Ptr, MachineMemOperand *MMO) {
6953   assert(Chain.getValueType() == MVT::Other &&
6954         "Invalid chain type");
6955   EVT VT = Val.getValueType();
6956   SDVTList VTs = getVTList(MVT::Other);
6957   SDValue Undef = getUNDEF(Ptr.getValueType());
6958   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6959   FoldingSetNodeID ID;
6960   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6961   ID.AddInteger(VT.getRawBits());
6962   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6963       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6964   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6965   void *IP = nullptr;
6966   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6967     cast<StoreSDNode>(E)->refineAlignment(MMO);
6968     return SDValue(E, 0);
6969   }
6970   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6971                                    ISD::UNINDEXED, false, VT, MMO);
6972   createOperands(N, Ops);
6973 
6974   CSEMap.InsertNode(N, IP);
6975   InsertNode(N);
6976   SDValue V(N, 0);
6977   NewSDValueDbgMsg(V, "Creating new node: ", this);
6978   return V;
6979 }
6980 
6981 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6982                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6983                                     EVT SVT, unsigned Alignment,
6984                                     MachineMemOperand::Flags MMOFlags,
6985                                     const AAMDNodes &AAInfo) {
6986   assert(Chain.getValueType() == MVT::Other &&
6987         "Invalid chain type");
6988   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6989     Alignment = getEVTAlignment(SVT);
6990 
6991   MMOFlags |= MachineMemOperand::MOStore;
6992   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6993 
6994   if (PtrInfo.V.isNull())
6995     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6996 
6997   MachineFunction &MF = getMachineFunction();
6998   MachineMemOperand *MMO = MF.getMachineMemOperand(
6999       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
7000   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7001 }
7002 
7003 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7004                                     SDValue Ptr, EVT SVT,
7005                                     MachineMemOperand *MMO) {
7006   EVT VT = Val.getValueType();
7007 
7008   assert(Chain.getValueType() == MVT::Other &&
7009         "Invalid chain type");
7010   if (VT == SVT)
7011     return getStore(Chain, dl, Val, Ptr, MMO);
7012 
7013   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7014          "Should only be a truncating store, not extending!");
7015   assert(VT.isInteger() == SVT.isInteger() &&
7016          "Can't do FP-INT conversion!");
7017   assert(VT.isVector() == SVT.isVector() &&
7018          "Cannot use trunc store to convert to or from a vector!");
7019   assert((!VT.isVector() ||
7020           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7021          "Cannot use trunc store to change the number of vector elements!");
7022 
7023   SDVTList VTs = getVTList(MVT::Other);
7024   SDValue Undef = getUNDEF(Ptr.getValueType());
7025   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7026   FoldingSetNodeID ID;
7027   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7028   ID.AddInteger(SVT.getRawBits());
7029   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7030       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7031   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7032   void *IP = nullptr;
7033   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7034     cast<StoreSDNode>(E)->refineAlignment(MMO);
7035     return SDValue(E, 0);
7036   }
7037   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7038                                    ISD::UNINDEXED, true, SVT, MMO);
7039   createOperands(N, Ops);
7040 
7041   CSEMap.InsertNode(N, IP);
7042   InsertNode(N);
7043   SDValue V(N, 0);
7044   NewSDValueDbgMsg(V, "Creating new node: ", this);
7045   return V;
7046 }
7047 
7048 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7049                                       SDValue Base, SDValue Offset,
7050                                       ISD::MemIndexedMode AM) {
7051   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7052   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7053   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7054   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7055   FoldingSetNodeID ID;
7056   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7057   ID.AddInteger(ST->getMemoryVT().getRawBits());
7058   ID.AddInteger(ST->getRawSubclassData());
7059   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7060   void *IP = nullptr;
7061   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7062     return SDValue(E, 0);
7063 
7064   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7065                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7066                                    ST->getMemOperand());
7067   createOperands(N, Ops);
7068 
7069   CSEMap.InsertNode(N, IP);
7070   InsertNode(N);
7071   SDValue V(N, 0);
7072   NewSDValueDbgMsg(V, "Creating new node: ", this);
7073   return V;
7074 }
7075 
7076 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7077                                     SDValue Base, SDValue Offset, SDValue Mask,
7078                                     SDValue PassThru, EVT MemVT,
7079                                     MachineMemOperand *MMO,
7080                                     ISD::MemIndexedMode AM,
7081                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7082   bool Indexed = AM != ISD::UNINDEXED;
7083   assert((Indexed || Offset.isUndef()) &&
7084          "Unindexed masked load with an offset!");
7085   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7086                          : getVTList(VT, MVT::Other);
7087   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7088   FoldingSetNodeID ID;
7089   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7090   ID.AddInteger(MemVT.getRawBits());
7091   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7092       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7093   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7094   void *IP = nullptr;
7095   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7096     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7097     return SDValue(E, 0);
7098   }
7099   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7100                                         AM, ExtTy, isExpanding, MemVT, MMO);
7101   createOperands(N, Ops);
7102 
7103   CSEMap.InsertNode(N, IP);
7104   InsertNode(N);
7105   SDValue V(N, 0);
7106   NewSDValueDbgMsg(V, "Creating new node: ", this);
7107   return V;
7108 }
7109 
7110 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7111                                            SDValue Base, SDValue Offset,
7112                                            ISD::MemIndexedMode AM) {
7113   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7114   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7115   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7116                        Offset, LD->getMask(), LD->getPassThru(),
7117                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7118                        LD->getExtensionType(), LD->isExpandingLoad());
7119 }
7120 
7121 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7122                                      SDValue Val, SDValue Base, SDValue Offset,
7123                                      SDValue Mask, EVT MemVT,
7124                                      MachineMemOperand *MMO,
7125                                      ISD::MemIndexedMode AM, bool IsTruncating,
7126                                      bool IsCompressing) {
7127   assert(Chain.getValueType() == MVT::Other &&
7128         "Invalid chain type");
7129   bool Indexed = AM != ISD::UNINDEXED;
7130   assert((Indexed || Offset.isUndef()) &&
7131          "Unindexed masked store with an offset!");
7132   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7133                          : getVTList(MVT::Other);
7134   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7135   FoldingSetNodeID ID;
7136   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7137   ID.AddInteger(MemVT.getRawBits());
7138   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7139       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7140   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7141   void *IP = nullptr;
7142   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7143     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7144     return SDValue(E, 0);
7145   }
7146   auto *N =
7147       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7148                                    IsTruncating, IsCompressing, MemVT, MMO);
7149   createOperands(N, Ops);
7150 
7151   CSEMap.InsertNode(N, IP);
7152   InsertNode(N);
7153   SDValue V(N, 0);
7154   NewSDValueDbgMsg(V, "Creating new node: ", this);
7155   return V;
7156 }
7157 
7158 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7159                                             SDValue Base, SDValue Offset,
7160                                             ISD::MemIndexedMode AM) {
7161   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7162   assert(ST->getOffset().isUndef() &&
7163          "Masked store is already a indexed store!");
7164   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7165                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7166                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7167 }
7168 
7169 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7170                                       ArrayRef<SDValue> Ops,
7171                                       MachineMemOperand *MMO,
7172                                       ISD::MemIndexType IndexType) {
7173   assert(Ops.size() == 6 && "Incompatible number of operands");
7174 
7175   FoldingSetNodeID ID;
7176   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7177   ID.AddInteger(VT.getRawBits());
7178   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7179       dl.getIROrder(), VTs, VT, MMO, IndexType));
7180   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7181   void *IP = nullptr;
7182   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7183     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7184     return SDValue(E, 0);
7185   }
7186 
7187   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7188                                           VTs, VT, MMO, IndexType);
7189   createOperands(N, Ops);
7190 
7191   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7192          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7193   assert(N->getMask().getValueType().getVectorNumElements() ==
7194              N->getValueType(0).getVectorNumElements() &&
7195          "Vector width mismatch between mask and data");
7196   assert(N->getIndex().getValueType().getVectorNumElements() >=
7197              N->getValueType(0).getVectorNumElements() &&
7198          "Vector width mismatch between index and data");
7199   assert(isa<ConstantSDNode>(N->getScale()) &&
7200          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7201          "Scale should be a constant power of 2");
7202 
7203   CSEMap.InsertNode(N, IP);
7204   InsertNode(N);
7205   SDValue V(N, 0);
7206   NewSDValueDbgMsg(V, "Creating new node: ", this);
7207   return V;
7208 }
7209 
7210 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7211                                        ArrayRef<SDValue> Ops,
7212                                        MachineMemOperand *MMO,
7213                                        ISD::MemIndexType IndexType) {
7214   assert(Ops.size() == 6 && "Incompatible number of operands");
7215 
7216   FoldingSetNodeID ID;
7217   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7218   ID.AddInteger(VT.getRawBits());
7219   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7220       dl.getIROrder(), VTs, VT, MMO, IndexType));
7221   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7222   void *IP = nullptr;
7223   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7224     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7225     return SDValue(E, 0);
7226   }
7227   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7228                                            VTs, VT, MMO, IndexType);
7229   createOperands(N, Ops);
7230 
7231   assert(N->getMask().getValueType().getVectorNumElements() ==
7232              N->getValue().getValueType().getVectorNumElements() &&
7233          "Vector width mismatch between mask and data");
7234   assert(N->getIndex().getValueType().getVectorNumElements() >=
7235              N->getValue().getValueType().getVectorNumElements() &&
7236          "Vector width mismatch between index and data");
7237   assert(isa<ConstantSDNode>(N->getScale()) &&
7238          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7239          "Scale should be a constant power of 2");
7240 
7241   CSEMap.InsertNode(N, IP);
7242   InsertNode(N);
7243   SDValue V(N, 0);
7244   NewSDValueDbgMsg(V, "Creating new node: ", this);
7245   return V;
7246 }
7247 
7248 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7249   // select undef, T, F --> T (if T is a constant), otherwise F
7250   // select, ?, undef, F --> F
7251   // select, ?, T, undef --> T
7252   if (Cond.isUndef())
7253     return isConstantValueOfAnyType(T) ? T : F;
7254   if (T.isUndef())
7255     return F;
7256   if (F.isUndef())
7257     return T;
7258 
7259   // select true, T, F --> T
7260   // select false, T, F --> F
7261   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7262     return CondC->isNullValue() ? F : T;
7263 
7264   // TODO: This should simplify VSELECT with constant condition using something
7265   // like this (but check boolean contents to be complete?):
7266   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7267   //    return T;
7268   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7269   //    return F;
7270 
7271   // select ?, T, T --> T
7272   if (T == F)
7273     return T;
7274 
7275   return SDValue();
7276 }
7277 
7278 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7279   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7280   if (X.isUndef())
7281     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7282   // shift X, undef --> undef (because it may shift by the bitwidth)
7283   if (Y.isUndef())
7284     return getUNDEF(X.getValueType());
7285 
7286   // shift 0, Y --> 0
7287   // shift X, 0 --> X
7288   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7289     return X;
7290 
7291   // shift X, C >= bitwidth(X) --> undef
7292   // All vector elements must be too big (or undef) to avoid partial undefs.
7293   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7294     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7295   };
7296   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7297     return getUNDEF(X.getValueType());
7298 
7299   return SDValue();
7300 }
7301 
7302 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7303                                       SDNodeFlags Flags) {
7304   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7305   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7306   // operation is poison. That result can be relaxed to undef.
7307   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7308   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7309   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7310                 (YC && YC->getValueAPF().isNaN());
7311   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7312                 (YC && YC->getValueAPF().isInfinity());
7313 
7314   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7315     return getUNDEF(X.getValueType());
7316 
7317   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7318     return getUNDEF(X.getValueType());
7319 
7320   if (!YC)
7321     return SDValue();
7322 
7323   // X + -0.0 --> X
7324   if (Opcode == ISD::FADD)
7325     if (YC->getValueAPF().isNegZero())
7326       return X;
7327 
7328   // X - +0.0 --> X
7329   if (Opcode == ISD::FSUB)
7330     if (YC->getValueAPF().isPosZero())
7331       return X;
7332 
7333   // X * 1.0 --> X
7334   // X / 1.0 --> X
7335   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7336     if (YC->getValueAPF().isExactlyValue(1.0))
7337       return X;
7338 
7339   return SDValue();
7340 }
7341 
7342 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7343                                SDValue Ptr, SDValue SV, unsigned Align) {
7344   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7345   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7346 }
7347 
7348 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7349                               ArrayRef<SDUse> Ops) {
7350   switch (Ops.size()) {
7351   case 0: return getNode(Opcode, DL, VT);
7352   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7353   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7354   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7355   default: break;
7356   }
7357 
7358   // Copy from an SDUse array into an SDValue array for use with
7359   // the regular getNode logic.
7360   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7361   return getNode(Opcode, DL, VT, NewOps);
7362 }
7363 
7364 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7365                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7366   unsigned NumOps = Ops.size();
7367   switch (NumOps) {
7368   case 0: return getNode(Opcode, DL, VT);
7369   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7370   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7371   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7372   default: break;
7373   }
7374 
7375   switch (Opcode) {
7376   default: break;
7377   case ISD::BUILD_VECTOR:
7378     // Attempt to simplify BUILD_VECTOR.
7379     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7380       return V;
7381     break;
7382   case ISD::CONCAT_VECTORS:
7383     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7384       return V;
7385     break;
7386   case ISD::SELECT_CC:
7387     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7388     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7389            "LHS and RHS of condition must have same type!");
7390     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7391            "True and False arms of SelectCC must have same type!");
7392     assert(Ops[2].getValueType() == VT &&
7393            "select_cc node must be of same type as true and false value!");
7394     break;
7395   case ISD::BR_CC:
7396     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7397     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7398            "LHS/RHS of comparison should match types!");
7399     break;
7400   }
7401 
7402   // Memoize nodes.
7403   SDNode *N;
7404   SDVTList VTs = getVTList(VT);
7405 
7406   if (VT != MVT::Glue) {
7407     FoldingSetNodeID ID;
7408     AddNodeIDNode(ID, Opcode, VTs, Ops);
7409     void *IP = nullptr;
7410 
7411     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7412       return SDValue(E, 0);
7413 
7414     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7415     createOperands(N, Ops);
7416 
7417     CSEMap.InsertNode(N, IP);
7418   } else {
7419     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7420     createOperands(N, Ops);
7421   }
7422 
7423   InsertNode(N);
7424   SDValue V(N, 0);
7425   NewSDValueDbgMsg(V, "Creating new node: ", this);
7426   return V;
7427 }
7428 
7429 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7430                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7431   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7432 }
7433 
7434 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7435                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7436   if (VTList.NumVTs == 1)
7437     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7438 
7439   switch (Opcode) {
7440   case ISD::STRICT_FP_EXTEND:
7441     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7442            "Invalid STRICT_FP_EXTEND!");
7443     assert(VTList.VTs[0].isFloatingPoint() &&
7444            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7445     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7446            "STRICT_FP_EXTEND result type should be vector iff the operand "
7447            "type is vector!");
7448     assert((!VTList.VTs[0].isVector() ||
7449             VTList.VTs[0].getVectorNumElements() ==
7450             Ops[1].getValueType().getVectorNumElements()) &&
7451            "Vector element count mismatch!");
7452     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7453            "Invalid fpext node, dst <= src!");
7454     break;
7455   case ISD::STRICT_FP_ROUND:
7456     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7457     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7458            "STRICT_FP_ROUND result type should be vector iff the operand "
7459            "type is vector!");
7460     assert((!VTList.VTs[0].isVector() ||
7461             VTList.VTs[0].getVectorNumElements() ==
7462             Ops[1].getValueType().getVectorNumElements()) &&
7463            "Vector element count mismatch!");
7464     assert(VTList.VTs[0].isFloatingPoint() &&
7465            Ops[1].getValueType().isFloatingPoint() &&
7466            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7467            isa<ConstantSDNode>(Ops[2]) &&
7468            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7469             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7470            "Invalid STRICT_FP_ROUND!");
7471     break;
7472 #if 0
7473   // FIXME: figure out how to safely handle things like
7474   // int foo(int x) { return 1 << (x & 255); }
7475   // int bar() { return foo(256); }
7476   case ISD::SRA_PARTS:
7477   case ISD::SRL_PARTS:
7478   case ISD::SHL_PARTS:
7479     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7480         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7481       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7482     else if (N3.getOpcode() == ISD::AND)
7483       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7484         // If the and is only masking out bits that cannot effect the shift,
7485         // eliminate the and.
7486         unsigned NumBits = VT.getScalarSizeInBits()*2;
7487         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7488           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7489       }
7490     break;
7491 #endif
7492   }
7493 
7494   // Memoize the node unless it returns a flag.
7495   SDNode *N;
7496   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7497     FoldingSetNodeID ID;
7498     AddNodeIDNode(ID, Opcode, VTList, Ops);
7499     void *IP = nullptr;
7500     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7501       return SDValue(E, 0);
7502 
7503     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7504     N->setFlags(Flags);
7505     createOperands(N, Ops);
7506     CSEMap.InsertNode(N, IP);
7507   } else {
7508     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7509     createOperands(N, Ops);
7510   }
7511   InsertNode(N);
7512   SDValue V(N, 0);
7513   NewSDValueDbgMsg(V, "Creating new node: ", this);
7514   return V;
7515 }
7516 
7517 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7518                               SDVTList VTList) {
7519   return getNode(Opcode, DL, VTList, None);
7520 }
7521 
7522 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7523                               SDValue N1) {
7524   SDValue Ops[] = { N1 };
7525   return getNode(Opcode, DL, VTList, Ops);
7526 }
7527 
7528 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7529                               SDValue N1, SDValue N2) {
7530   SDValue Ops[] = { N1, N2 };
7531   return getNode(Opcode, DL, VTList, Ops);
7532 }
7533 
7534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7535                               SDValue N1, SDValue N2, SDValue N3) {
7536   SDValue Ops[] = { N1, N2, N3 };
7537   return getNode(Opcode, DL, VTList, Ops);
7538 }
7539 
7540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7541                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7542   SDValue Ops[] = { N1, N2, N3, N4 };
7543   return getNode(Opcode, DL, VTList, Ops);
7544 }
7545 
7546 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7547                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7548                               SDValue N5) {
7549   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7550   return getNode(Opcode, DL, VTList, Ops);
7551 }
7552 
7553 SDVTList SelectionDAG::getVTList(EVT VT) {
7554   return makeVTList(SDNode::getValueTypeList(VT), 1);
7555 }
7556 
7557 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7558   FoldingSetNodeID ID;
7559   ID.AddInteger(2U);
7560   ID.AddInteger(VT1.getRawBits());
7561   ID.AddInteger(VT2.getRawBits());
7562 
7563   void *IP = nullptr;
7564   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7565   if (!Result) {
7566     EVT *Array = Allocator.Allocate<EVT>(2);
7567     Array[0] = VT1;
7568     Array[1] = VT2;
7569     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7570     VTListMap.InsertNode(Result, IP);
7571   }
7572   return Result->getSDVTList();
7573 }
7574 
7575 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7576   FoldingSetNodeID ID;
7577   ID.AddInteger(3U);
7578   ID.AddInteger(VT1.getRawBits());
7579   ID.AddInteger(VT2.getRawBits());
7580   ID.AddInteger(VT3.getRawBits());
7581 
7582   void *IP = nullptr;
7583   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7584   if (!Result) {
7585     EVT *Array = Allocator.Allocate<EVT>(3);
7586     Array[0] = VT1;
7587     Array[1] = VT2;
7588     Array[2] = VT3;
7589     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7590     VTListMap.InsertNode(Result, IP);
7591   }
7592   return Result->getSDVTList();
7593 }
7594 
7595 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7596   FoldingSetNodeID ID;
7597   ID.AddInteger(4U);
7598   ID.AddInteger(VT1.getRawBits());
7599   ID.AddInteger(VT2.getRawBits());
7600   ID.AddInteger(VT3.getRawBits());
7601   ID.AddInteger(VT4.getRawBits());
7602 
7603   void *IP = nullptr;
7604   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7605   if (!Result) {
7606     EVT *Array = Allocator.Allocate<EVT>(4);
7607     Array[0] = VT1;
7608     Array[1] = VT2;
7609     Array[2] = VT3;
7610     Array[3] = VT4;
7611     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7612     VTListMap.InsertNode(Result, IP);
7613   }
7614   return Result->getSDVTList();
7615 }
7616 
7617 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7618   unsigned NumVTs = VTs.size();
7619   FoldingSetNodeID ID;
7620   ID.AddInteger(NumVTs);
7621   for (unsigned index = 0; index < NumVTs; index++) {
7622     ID.AddInteger(VTs[index].getRawBits());
7623   }
7624 
7625   void *IP = nullptr;
7626   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7627   if (!Result) {
7628     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7629     llvm::copy(VTs, Array);
7630     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7631     VTListMap.InsertNode(Result, IP);
7632   }
7633   return Result->getSDVTList();
7634 }
7635 
7636 
7637 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7638 /// specified operands.  If the resultant node already exists in the DAG,
7639 /// this does not modify the specified node, instead it returns the node that
7640 /// already exists.  If the resultant node does not exist in the DAG, the
7641 /// input node is returned.  As a degenerate case, if you specify the same
7642 /// input operands as the node already has, the input node is returned.
7643 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7644   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7645 
7646   // Check to see if there is no change.
7647   if (Op == N->getOperand(0)) return N;
7648 
7649   // See if the modified node already exists.
7650   void *InsertPos = nullptr;
7651   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7652     return Existing;
7653 
7654   // Nope it doesn't.  Remove the node from its current place in the maps.
7655   if (InsertPos)
7656     if (!RemoveNodeFromCSEMaps(N))
7657       InsertPos = nullptr;
7658 
7659   // Now we update the operands.
7660   N->OperandList[0].set(Op);
7661 
7662   updateDivergence(N);
7663   // If this gets put into a CSE map, add it.
7664   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7665   return N;
7666 }
7667 
7668 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7669   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7670 
7671   // Check to see if there is no change.
7672   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7673     return N;   // No operands changed, just return the input node.
7674 
7675   // See if the modified node already exists.
7676   void *InsertPos = nullptr;
7677   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7678     return Existing;
7679 
7680   // Nope it doesn't.  Remove the node from its current place in the maps.
7681   if (InsertPos)
7682     if (!RemoveNodeFromCSEMaps(N))
7683       InsertPos = nullptr;
7684 
7685   // Now we update the operands.
7686   if (N->OperandList[0] != Op1)
7687     N->OperandList[0].set(Op1);
7688   if (N->OperandList[1] != Op2)
7689     N->OperandList[1].set(Op2);
7690 
7691   updateDivergence(N);
7692   // If this gets put into a CSE map, add it.
7693   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7694   return N;
7695 }
7696 
7697 SDNode *SelectionDAG::
7698 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7699   SDValue Ops[] = { Op1, Op2, Op3 };
7700   return UpdateNodeOperands(N, Ops);
7701 }
7702 
7703 SDNode *SelectionDAG::
7704 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7705                    SDValue Op3, SDValue Op4) {
7706   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7707   return UpdateNodeOperands(N, Ops);
7708 }
7709 
7710 SDNode *SelectionDAG::
7711 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7712                    SDValue Op3, SDValue Op4, SDValue Op5) {
7713   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7714   return UpdateNodeOperands(N, Ops);
7715 }
7716 
7717 SDNode *SelectionDAG::
7718 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7719   unsigned NumOps = Ops.size();
7720   assert(N->getNumOperands() == NumOps &&
7721          "Update with wrong number of operands");
7722 
7723   // If no operands changed just return the input node.
7724   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7725     return N;
7726 
7727   // See if the modified node already exists.
7728   void *InsertPos = nullptr;
7729   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7730     return Existing;
7731 
7732   // Nope it doesn't.  Remove the node from its current place in the maps.
7733   if (InsertPos)
7734     if (!RemoveNodeFromCSEMaps(N))
7735       InsertPos = nullptr;
7736 
7737   // Now we update the operands.
7738   for (unsigned i = 0; i != NumOps; ++i)
7739     if (N->OperandList[i] != Ops[i])
7740       N->OperandList[i].set(Ops[i]);
7741 
7742   updateDivergence(N);
7743   // If this gets put into a CSE map, add it.
7744   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7745   return N;
7746 }
7747 
7748 /// DropOperands - Release the operands and set this node to have
7749 /// zero operands.
7750 void SDNode::DropOperands() {
7751   // Unlike the code in MorphNodeTo that does this, we don't need to
7752   // watch for dead nodes here.
7753   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7754     SDUse &Use = *I++;
7755     Use.set(SDValue());
7756   }
7757 }
7758 
7759 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7760                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7761   if (NewMemRefs.empty()) {
7762     N->clearMemRefs();
7763     return;
7764   }
7765 
7766   // Check if we can avoid allocating by storing a single reference directly.
7767   if (NewMemRefs.size() == 1) {
7768     N->MemRefs = NewMemRefs[0];
7769     N->NumMemRefs = 1;
7770     return;
7771   }
7772 
7773   MachineMemOperand **MemRefsBuffer =
7774       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7775   llvm::copy(NewMemRefs, MemRefsBuffer);
7776   N->MemRefs = MemRefsBuffer;
7777   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7778 }
7779 
7780 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7781 /// machine opcode.
7782 ///
7783 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7784                                    EVT VT) {
7785   SDVTList VTs = getVTList(VT);
7786   return SelectNodeTo(N, MachineOpc, VTs, None);
7787 }
7788 
7789 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7790                                    EVT VT, SDValue Op1) {
7791   SDVTList VTs = getVTList(VT);
7792   SDValue Ops[] = { Op1 };
7793   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7794 }
7795 
7796 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7797                                    EVT VT, SDValue Op1,
7798                                    SDValue Op2) {
7799   SDVTList VTs = getVTList(VT);
7800   SDValue Ops[] = { Op1, Op2 };
7801   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7802 }
7803 
7804 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7805                                    EVT VT, SDValue Op1,
7806                                    SDValue Op2, SDValue Op3) {
7807   SDVTList VTs = getVTList(VT);
7808   SDValue Ops[] = { Op1, Op2, Op3 };
7809   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7810 }
7811 
7812 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7813                                    EVT VT, ArrayRef<SDValue> Ops) {
7814   SDVTList VTs = getVTList(VT);
7815   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7816 }
7817 
7818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7819                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7820   SDVTList VTs = getVTList(VT1, VT2);
7821   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7822 }
7823 
7824 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7825                                    EVT VT1, EVT VT2) {
7826   SDVTList VTs = getVTList(VT1, VT2);
7827   return SelectNodeTo(N, MachineOpc, VTs, None);
7828 }
7829 
7830 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7831                                    EVT VT1, EVT VT2, EVT VT3,
7832                                    ArrayRef<SDValue> Ops) {
7833   SDVTList VTs = getVTList(VT1, VT2, VT3);
7834   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7835 }
7836 
7837 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7838                                    EVT VT1, EVT VT2,
7839                                    SDValue Op1, SDValue Op2) {
7840   SDVTList VTs = getVTList(VT1, VT2);
7841   SDValue Ops[] = { Op1, Op2 };
7842   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7843 }
7844 
7845 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7846                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7847   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7848   // Reset the NodeID to -1.
7849   New->setNodeId(-1);
7850   if (New != N) {
7851     ReplaceAllUsesWith(N, New);
7852     RemoveDeadNode(N);
7853   }
7854   return New;
7855 }
7856 
7857 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7858 /// the line number information on the merged node since it is not possible to
7859 /// preserve the information that operation is associated with multiple lines.
7860 /// This will make the debugger working better at -O0, were there is a higher
7861 /// probability having other instructions associated with that line.
7862 ///
7863 /// For IROrder, we keep the smaller of the two
7864 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7865   DebugLoc NLoc = N->getDebugLoc();
7866   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7867     N->setDebugLoc(DebugLoc());
7868   }
7869   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7870   N->setIROrder(Order);
7871   return N;
7872 }
7873 
7874 /// MorphNodeTo - This *mutates* the specified node to have the specified
7875 /// return type, opcode, and operands.
7876 ///
7877 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7878 /// node of the specified opcode and operands, it returns that node instead of
7879 /// the current one.  Note that the SDLoc need not be the same.
7880 ///
7881 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7882 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7883 /// node, and because it doesn't require CSE recalculation for any of
7884 /// the node's users.
7885 ///
7886 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7887 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7888 /// the legalizer which maintain worklists that would need to be updated when
7889 /// deleting things.
7890 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7891                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7892   // If an identical node already exists, use it.
7893   void *IP = nullptr;
7894   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7895     FoldingSetNodeID ID;
7896     AddNodeIDNode(ID, Opc, VTs, Ops);
7897     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7898       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7899   }
7900 
7901   if (!RemoveNodeFromCSEMaps(N))
7902     IP = nullptr;
7903 
7904   // Start the morphing.
7905   N->NodeType = Opc;
7906   N->ValueList = VTs.VTs;
7907   N->NumValues = VTs.NumVTs;
7908 
7909   // Clear the operands list, updating used nodes to remove this from their
7910   // use list.  Keep track of any operands that become dead as a result.
7911   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7912   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7913     SDUse &Use = *I++;
7914     SDNode *Used = Use.getNode();
7915     Use.set(SDValue());
7916     if (Used->use_empty())
7917       DeadNodeSet.insert(Used);
7918   }
7919 
7920   // For MachineNode, initialize the memory references information.
7921   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7922     MN->clearMemRefs();
7923 
7924   // Swap for an appropriately sized array from the recycler.
7925   removeOperands(N);
7926   createOperands(N, Ops);
7927 
7928   // Delete any nodes that are still dead after adding the uses for the
7929   // new operands.
7930   if (!DeadNodeSet.empty()) {
7931     SmallVector<SDNode *, 16> DeadNodes;
7932     for (SDNode *N : DeadNodeSet)
7933       if (N->use_empty())
7934         DeadNodes.push_back(N);
7935     RemoveDeadNodes(DeadNodes);
7936   }
7937 
7938   if (IP)
7939     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7940   return N;
7941 }
7942 
7943 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7944   unsigned OrigOpc = Node->getOpcode();
7945   unsigned NewOpc;
7946   switch (OrigOpc) {
7947   default:
7948     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7949 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7950   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7951 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7952   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
7953 #include "llvm/IR/ConstrainedOps.def"
7954   }
7955 
7956   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7957 
7958   // We're taking this node out of the chain, so we need to re-link things.
7959   SDValue InputChain = Node->getOperand(0);
7960   SDValue OutputChain = SDValue(Node, 1);
7961   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7962 
7963   SmallVector<SDValue, 3> Ops;
7964   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7965     Ops.push_back(Node->getOperand(i));
7966 
7967   SDVTList VTs = getVTList(Node->getValueType(0));
7968   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7969 
7970   // MorphNodeTo can operate in two ways: if an existing node with the
7971   // specified operands exists, it can just return it.  Otherwise, it
7972   // updates the node in place to have the requested operands.
7973   if (Res == Node) {
7974     // If we updated the node in place, reset the node ID.  To the isel,
7975     // this should be just like a newly allocated machine node.
7976     Res->setNodeId(-1);
7977   } else {
7978     ReplaceAllUsesWith(Node, Res);
7979     RemoveDeadNode(Node);
7980   }
7981 
7982   return Res;
7983 }
7984 
7985 /// getMachineNode - These are used for target selectors to create a new node
7986 /// with specified return type(s), MachineInstr opcode, and operands.
7987 ///
7988 /// Note that getMachineNode returns the resultant node.  If there is already a
7989 /// node of the specified opcode and operands, it returns that node instead of
7990 /// the current one.
7991 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7992                                             EVT VT) {
7993   SDVTList VTs = getVTList(VT);
7994   return getMachineNode(Opcode, dl, VTs, None);
7995 }
7996 
7997 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7998                                             EVT VT, SDValue Op1) {
7999   SDVTList VTs = getVTList(VT);
8000   SDValue Ops[] = { Op1 };
8001   return getMachineNode(Opcode, dl, VTs, Ops);
8002 }
8003 
8004 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8005                                             EVT VT, SDValue Op1, SDValue Op2) {
8006   SDVTList VTs = getVTList(VT);
8007   SDValue Ops[] = { Op1, Op2 };
8008   return getMachineNode(Opcode, dl, VTs, Ops);
8009 }
8010 
8011 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8012                                             EVT VT, SDValue Op1, SDValue Op2,
8013                                             SDValue Op3) {
8014   SDVTList VTs = getVTList(VT);
8015   SDValue Ops[] = { Op1, Op2, Op3 };
8016   return getMachineNode(Opcode, dl, VTs, Ops);
8017 }
8018 
8019 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8020                                             EVT VT, ArrayRef<SDValue> Ops) {
8021   SDVTList VTs = getVTList(VT);
8022   return getMachineNode(Opcode, dl, VTs, Ops);
8023 }
8024 
8025 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8026                                             EVT VT1, EVT VT2, SDValue Op1,
8027                                             SDValue Op2) {
8028   SDVTList VTs = getVTList(VT1, VT2);
8029   SDValue Ops[] = { Op1, Op2 };
8030   return getMachineNode(Opcode, dl, VTs, Ops);
8031 }
8032 
8033 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8034                                             EVT VT1, EVT VT2, SDValue Op1,
8035                                             SDValue Op2, SDValue Op3) {
8036   SDVTList VTs = getVTList(VT1, VT2);
8037   SDValue Ops[] = { Op1, Op2, Op3 };
8038   return getMachineNode(Opcode, dl, VTs, Ops);
8039 }
8040 
8041 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8042                                             EVT VT1, EVT VT2,
8043                                             ArrayRef<SDValue> Ops) {
8044   SDVTList VTs = getVTList(VT1, VT2);
8045   return getMachineNode(Opcode, dl, VTs, Ops);
8046 }
8047 
8048 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8049                                             EVT VT1, EVT VT2, EVT VT3,
8050                                             SDValue Op1, SDValue Op2) {
8051   SDVTList VTs = getVTList(VT1, VT2, VT3);
8052   SDValue Ops[] = { Op1, Op2 };
8053   return getMachineNode(Opcode, dl, VTs, Ops);
8054 }
8055 
8056 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8057                                             EVT VT1, EVT VT2, EVT VT3,
8058                                             SDValue Op1, SDValue Op2,
8059                                             SDValue Op3) {
8060   SDVTList VTs = getVTList(VT1, VT2, VT3);
8061   SDValue Ops[] = { Op1, Op2, Op3 };
8062   return getMachineNode(Opcode, dl, VTs, Ops);
8063 }
8064 
8065 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8066                                             EVT VT1, EVT VT2, EVT VT3,
8067                                             ArrayRef<SDValue> Ops) {
8068   SDVTList VTs = getVTList(VT1, VT2, VT3);
8069   return getMachineNode(Opcode, dl, VTs, Ops);
8070 }
8071 
8072 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8073                                             ArrayRef<EVT> ResultTys,
8074                                             ArrayRef<SDValue> Ops) {
8075   SDVTList VTs = getVTList(ResultTys);
8076   return getMachineNode(Opcode, dl, VTs, Ops);
8077 }
8078 
8079 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8080                                             SDVTList VTs,
8081                                             ArrayRef<SDValue> Ops) {
8082   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8083   MachineSDNode *N;
8084   void *IP = nullptr;
8085 
8086   if (DoCSE) {
8087     FoldingSetNodeID ID;
8088     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8089     IP = nullptr;
8090     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8091       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8092     }
8093   }
8094 
8095   // Allocate a new MachineSDNode.
8096   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8097   createOperands(N, Ops);
8098 
8099   if (DoCSE)
8100     CSEMap.InsertNode(N, IP);
8101 
8102   InsertNode(N);
8103   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8104   return N;
8105 }
8106 
8107 /// getTargetExtractSubreg - A convenience function for creating
8108 /// TargetOpcode::EXTRACT_SUBREG nodes.
8109 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8110                                              SDValue Operand) {
8111   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8112   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8113                                   VT, Operand, SRIdxVal);
8114   return SDValue(Subreg, 0);
8115 }
8116 
8117 /// getTargetInsertSubreg - A convenience function for creating
8118 /// TargetOpcode::INSERT_SUBREG nodes.
8119 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8120                                             SDValue Operand, SDValue Subreg) {
8121   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8122   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8123                                   VT, Operand, Subreg, SRIdxVal);
8124   return SDValue(Result, 0);
8125 }
8126 
8127 /// getNodeIfExists - Get the specified node if it's already available, or
8128 /// else return NULL.
8129 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8130                                       ArrayRef<SDValue> Ops,
8131                                       const SDNodeFlags Flags) {
8132   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8133     FoldingSetNodeID ID;
8134     AddNodeIDNode(ID, Opcode, VTList, Ops);
8135     void *IP = nullptr;
8136     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8137       E->intersectFlagsWith(Flags);
8138       return E;
8139     }
8140   }
8141   return nullptr;
8142 }
8143 
8144 /// getDbgValue - Creates a SDDbgValue node.
8145 ///
8146 /// SDNode
8147 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8148                                       SDNode *N, unsigned R, bool IsIndirect,
8149                                       const DebugLoc &DL, unsigned O) {
8150   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8151          "Expected inlined-at fields to agree");
8152   return new (DbgInfo->getAlloc())
8153       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8154 }
8155 
8156 /// Constant
8157 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8158                                               DIExpression *Expr,
8159                                               const Value *C,
8160                                               const DebugLoc &DL, unsigned O) {
8161   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8162          "Expected inlined-at fields to agree");
8163   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8164 }
8165 
8166 /// FrameIndex
8167 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8168                                                 DIExpression *Expr, unsigned FI,
8169                                                 bool IsIndirect,
8170                                                 const DebugLoc &DL,
8171                                                 unsigned O) {
8172   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8173          "Expected inlined-at fields to agree");
8174   return new (DbgInfo->getAlloc())
8175       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8176 }
8177 
8178 /// VReg
8179 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8180                                           DIExpression *Expr,
8181                                           unsigned VReg, bool IsIndirect,
8182                                           const DebugLoc &DL, unsigned O) {
8183   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8184          "Expected inlined-at fields to agree");
8185   return new (DbgInfo->getAlloc())
8186       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8187 }
8188 
8189 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8190                                      unsigned OffsetInBits, unsigned SizeInBits,
8191                                      bool InvalidateDbg) {
8192   SDNode *FromNode = From.getNode();
8193   SDNode *ToNode = To.getNode();
8194   assert(FromNode && ToNode && "Can't modify dbg values");
8195 
8196   // PR35338
8197   // TODO: assert(From != To && "Redundant dbg value transfer");
8198   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8199   if (From == To || FromNode == ToNode)
8200     return;
8201 
8202   if (!FromNode->getHasDebugValue())
8203     return;
8204 
8205   SmallVector<SDDbgValue *, 2> ClonedDVs;
8206   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8207     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8208       continue;
8209 
8210     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8211 
8212     // Just transfer the dbg value attached to From.
8213     if (Dbg->getResNo() != From.getResNo())
8214       continue;
8215 
8216     DIVariable *Var = Dbg->getVariable();
8217     auto *Expr = Dbg->getExpression();
8218     // If a fragment is requested, update the expression.
8219     if (SizeInBits) {
8220       // When splitting a larger (e.g., sign-extended) value whose
8221       // lower bits are described with an SDDbgValue, do not attempt
8222       // to transfer the SDDbgValue to the upper bits.
8223       if (auto FI = Expr->getFragmentInfo())
8224         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8225           continue;
8226       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8227                                                              SizeInBits);
8228       if (!Fragment)
8229         continue;
8230       Expr = *Fragment;
8231     }
8232     // Clone the SDDbgValue and move it to To.
8233     SDDbgValue *Clone = getDbgValue(
8234         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8235         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8236     ClonedDVs.push_back(Clone);
8237 
8238     if (InvalidateDbg) {
8239       // Invalidate value and indicate the SDDbgValue should not be emitted.
8240       Dbg->setIsInvalidated();
8241       Dbg->setIsEmitted();
8242     }
8243   }
8244 
8245   for (SDDbgValue *Dbg : ClonedDVs)
8246     AddDbgValue(Dbg, ToNode, false);
8247 }
8248 
8249 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8250   if (!N.getHasDebugValue())
8251     return;
8252 
8253   SmallVector<SDDbgValue *, 2> ClonedDVs;
8254   for (auto DV : GetDbgValues(&N)) {
8255     if (DV->isInvalidated())
8256       continue;
8257     switch (N.getOpcode()) {
8258     default:
8259       break;
8260     case ISD::ADD:
8261       SDValue N0 = N.getOperand(0);
8262       SDValue N1 = N.getOperand(1);
8263       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8264           isConstantIntBuildVectorOrConstantInt(N1)) {
8265         uint64_t Offset = N.getConstantOperandVal(1);
8266         // Rewrite an ADD constant node into a DIExpression. Since we are
8267         // performing arithmetic to compute the variable's *value* in the
8268         // DIExpression, we need to mark the expression with a
8269         // DW_OP_stack_value.
8270         auto *DIExpr = DV->getExpression();
8271         DIExpr =
8272             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8273         SDDbgValue *Clone =
8274             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8275                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8276         ClonedDVs.push_back(Clone);
8277         DV->setIsInvalidated();
8278         DV->setIsEmitted();
8279         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8280                    N0.getNode()->dumprFull(this);
8281                    dbgs() << " into " << *DIExpr << '\n');
8282       }
8283     }
8284   }
8285 
8286   for (SDDbgValue *Dbg : ClonedDVs)
8287     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8288 }
8289 
8290 /// Creates a SDDbgLabel node.
8291 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8292                                       const DebugLoc &DL, unsigned O) {
8293   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8294          "Expected inlined-at fields to agree");
8295   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8296 }
8297 
8298 namespace {
8299 
8300 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8301 /// pointed to by a use iterator is deleted, increment the use iterator
8302 /// so that it doesn't dangle.
8303 ///
8304 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8305   SDNode::use_iterator &UI;
8306   SDNode::use_iterator &UE;
8307 
8308   void NodeDeleted(SDNode *N, SDNode *E) override {
8309     // Increment the iterator as needed.
8310     while (UI != UE && N == *UI)
8311       ++UI;
8312   }
8313 
8314 public:
8315   RAUWUpdateListener(SelectionDAG &d,
8316                      SDNode::use_iterator &ui,
8317                      SDNode::use_iterator &ue)
8318     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8319 };
8320 
8321 } // end anonymous namespace
8322 
8323 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8324 /// This can cause recursive merging of nodes in the DAG.
8325 ///
8326 /// This version assumes From has a single result value.
8327 ///
8328 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8329   SDNode *From = FromN.getNode();
8330   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8331          "Cannot replace with this method!");
8332   assert(From != To.getNode() && "Cannot replace uses of with self");
8333 
8334   // Preserve Debug Values
8335   transferDbgValues(FromN, To);
8336 
8337   // Iterate over all the existing uses of From. New uses will be added
8338   // to the beginning of the use list, which we avoid visiting.
8339   // This specifically avoids visiting uses of From that arise while the
8340   // replacement is happening, because any such uses would be the result
8341   // of CSE: If an existing node looks like From after one of its operands
8342   // is replaced by To, we don't want to replace of all its users with To
8343   // too. See PR3018 for more info.
8344   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8345   RAUWUpdateListener Listener(*this, UI, UE);
8346   while (UI != UE) {
8347     SDNode *User = *UI;
8348 
8349     // This node is about to morph, remove its old self from the CSE maps.
8350     RemoveNodeFromCSEMaps(User);
8351 
8352     // A user can appear in a use list multiple times, and when this
8353     // happens the uses are usually next to each other in the list.
8354     // To help reduce the number of CSE recomputations, process all
8355     // the uses of this user that we can find this way.
8356     do {
8357       SDUse &Use = UI.getUse();
8358       ++UI;
8359       Use.set(To);
8360       if (To->isDivergent() != From->isDivergent())
8361         updateDivergence(User);
8362     } while (UI != UE && *UI == User);
8363     // Now that we have modified User, add it back to the CSE maps.  If it
8364     // already exists there, recursively merge the results together.
8365     AddModifiedNodeToCSEMaps(User);
8366   }
8367 
8368   // If we just RAUW'd the root, take note.
8369   if (FromN == getRoot())
8370     setRoot(To);
8371 }
8372 
8373 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8374 /// This can cause recursive merging of nodes in the DAG.
8375 ///
8376 /// This version assumes that for each value of From, there is a
8377 /// corresponding value in To in the same position with the same type.
8378 ///
8379 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8380 #ifndef NDEBUG
8381   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8382     assert((!From->hasAnyUseOfValue(i) ||
8383             From->getValueType(i) == To->getValueType(i)) &&
8384            "Cannot use this version of ReplaceAllUsesWith!");
8385 #endif
8386 
8387   // Handle the trivial case.
8388   if (From == To)
8389     return;
8390 
8391   // Preserve Debug Info. Only do this if there's a use.
8392   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8393     if (From->hasAnyUseOfValue(i)) {
8394       assert((i < To->getNumValues()) && "Invalid To location");
8395       transferDbgValues(SDValue(From, i), SDValue(To, i));
8396     }
8397 
8398   // Iterate over just the existing users of From. See the comments in
8399   // the ReplaceAllUsesWith above.
8400   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8401   RAUWUpdateListener Listener(*this, UI, UE);
8402   while (UI != UE) {
8403     SDNode *User = *UI;
8404 
8405     // This node is about to morph, remove its old self from the CSE maps.
8406     RemoveNodeFromCSEMaps(User);
8407 
8408     // A user can appear in a use list multiple times, and when this
8409     // happens the uses are usually next to each other in the list.
8410     // To help reduce the number of CSE recomputations, process all
8411     // the uses of this user that we can find this way.
8412     do {
8413       SDUse &Use = UI.getUse();
8414       ++UI;
8415       Use.setNode(To);
8416       if (To->isDivergent() != From->isDivergent())
8417         updateDivergence(User);
8418     } while (UI != UE && *UI == User);
8419 
8420     // Now that we have modified User, add it back to the CSE maps.  If it
8421     // already exists there, recursively merge the results together.
8422     AddModifiedNodeToCSEMaps(User);
8423   }
8424 
8425   // If we just RAUW'd the root, take note.
8426   if (From == getRoot().getNode())
8427     setRoot(SDValue(To, getRoot().getResNo()));
8428 }
8429 
8430 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8431 /// This can cause recursive merging of nodes in the DAG.
8432 ///
8433 /// This version can replace From with any result values.  To must match the
8434 /// number and types of values returned by From.
8435 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8436   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8437     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8438 
8439   // Preserve Debug Info.
8440   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8441     transferDbgValues(SDValue(From, i), To[i]);
8442 
8443   // Iterate over just the existing users of From. See the comments in
8444   // the ReplaceAllUsesWith above.
8445   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8446   RAUWUpdateListener Listener(*this, UI, UE);
8447   while (UI != UE) {
8448     SDNode *User = *UI;
8449 
8450     // This node is about to morph, remove its old self from the CSE maps.
8451     RemoveNodeFromCSEMaps(User);
8452 
8453     // A user can appear in a use list multiple times, and when this happens the
8454     // uses are usually next to each other in the list.  To help reduce the
8455     // number of CSE and divergence recomputations, process all the uses of this
8456     // user that we can find this way.
8457     bool To_IsDivergent = false;
8458     do {
8459       SDUse &Use = UI.getUse();
8460       const SDValue &ToOp = To[Use.getResNo()];
8461       ++UI;
8462       Use.set(ToOp);
8463       To_IsDivergent |= ToOp->isDivergent();
8464     } while (UI != UE && *UI == User);
8465 
8466     if (To_IsDivergent != From->isDivergent())
8467       updateDivergence(User);
8468 
8469     // Now that we have modified User, add it back to the CSE maps.  If it
8470     // already exists there, recursively merge the results together.
8471     AddModifiedNodeToCSEMaps(User);
8472   }
8473 
8474   // If we just RAUW'd the root, take note.
8475   if (From == getRoot().getNode())
8476     setRoot(SDValue(To[getRoot().getResNo()]));
8477 }
8478 
8479 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8480 /// uses of other values produced by From.getNode() alone.  The Deleted
8481 /// vector is handled the same way as for ReplaceAllUsesWith.
8482 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8483   // Handle the really simple, really trivial case efficiently.
8484   if (From == To) return;
8485 
8486   // Handle the simple, trivial, case efficiently.
8487   if (From.getNode()->getNumValues() == 1) {
8488     ReplaceAllUsesWith(From, To);
8489     return;
8490   }
8491 
8492   // Preserve Debug Info.
8493   transferDbgValues(From, To);
8494 
8495   // Iterate over just the existing users of From. See the comments in
8496   // the ReplaceAllUsesWith above.
8497   SDNode::use_iterator UI = From.getNode()->use_begin(),
8498                        UE = From.getNode()->use_end();
8499   RAUWUpdateListener Listener(*this, UI, UE);
8500   while (UI != UE) {
8501     SDNode *User = *UI;
8502     bool UserRemovedFromCSEMaps = false;
8503 
8504     // A user can appear in a use list multiple times, and when this
8505     // happens the uses are usually next to each other in the list.
8506     // To help reduce the number of CSE recomputations, process all
8507     // the uses of this user that we can find this way.
8508     do {
8509       SDUse &Use = UI.getUse();
8510 
8511       // Skip uses of different values from the same node.
8512       if (Use.getResNo() != From.getResNo()) {
8513         ++UI;
8514         continue;
8515       }
8516 
8517       // If this node hasn't been modified yet, it's still in the CSE maps,
8518       // so remove its old self from the CSE maps.
8519       if (!UserRemovedFromCSEMaps) {
8520         RemoveNodeFromCSEMaps(User);
8521         UserRemovedFromCSEMaps = true;
8522       }
8523 
8524       ++UI;
8525       Use.set(To);
8526       if (To->isDivergent() != From->isDivergent())
8527         updateDivergence(User);
8528     } while (UI != UE && *UI == User);
8529     // We are iterating over all uses of the From node, so if a use
8530     // doesn't use the specific value, no changes are made.
8531     if (!UserRemovedFromCSEMaps)
8532       continue;
8533 
8534     // Now that we have modified User, add it back to the CSE maps.  If it
8535     // already exists there, recursively merge the results together.
8536     AddModifiedNodeToCSEMaps(User);
8537   }
8538 
8539   // If we just RAUW'd the root, take note.
8540   if (From == getRoot())
8541     setRoot(To);
8542 }
8543 
8544 namespace {
8545 
8546   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8547   /// to record information about a use.
8548   struct UseMemo {
8549     SDNode *User;
8550     unsigned Index;
8551     SDUse *Use;
8552   };
8553 
8554   /// operator< - Sort Memos by User.
8555   bool operator<(const UseMemo &L, const UseMemo &R) {
8556     return (intptr_t)L.User < (intptr_t)R.User;
8557   }
8558 
8559 } // end anonymous namespace
8560 
8561 void SelectionDAG::updateDivergence(SDNode * N)
8562 {
8563   if (TLI->isSDNodeAlwaysUniform(N))
8564     return;
8565   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8566   for (auto &Op : N->ops()) {
8567     if (Op.Val.getValueType() != MVT::Other)
8568       IsDivergent |= Op.getNode()->isDivergent();
8569   }
8570   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8571     N->SDNodeBits.IsDivergent = IsDivergent;
8572     for (auto U : N->uses()) {
8573       updateDivergence(U);
8574     }
8575   }
8576 }
8577 
8578 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8579   DenseMap<SDNode *, unsigned> Degree;
8580   Order.reserve(AllNodes.size());
8581   for (auto &N : allnodes()) {
8582     unsigned NOps = N.getNumOperands();
8583     Degree[&N] = NOps;
8584     if (0 == NOps)
8585       Order.push_back(&N);
8586   }
8587   for (size_t I = 0; I != Order.size(); ++I) {
8588     SDNode *N = Order[I];
8589     for (auto U : N->uses()) {
8590       unsigned &UnsortedOps = Degree[U];
8591       if (0 == --UnsortedOps)
8592         Order.push_back(U);
8593     }
8594   }
8595 }
8596 
8597 #ifndef NDEBUG
8598 void SelectionDAG::VerifyDAGDiverence() {
8599   std::vector<SDNode *> TopoOrder;
8600   CreateTopologicalOrder(TopoOrder);
8601   const TargetLowering &TLI = getTargetLoweringInfo();
8602   DenseMap<const SDNode *, bool> DivergenceMap;
8603   for (auto &N : allnodes()) {
8604     DivergenceMap[&N] = false;
8605   }
8606   for (auto N : TopoOrder) {
8607     bool IsDivergent = DivergenceMap[N];
8608     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8609     for (auto &Op : N->ops()) {
8610       if (Op.Val.getValueType() != MVT::Other)
8611         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8612     }
8613     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8614       DivergenceMap[N] = true;
8615     }
8616   }
8617   for (auto &N : allnodes()) {
8618     (void)N;
8619     assert(DivergenceMap[&N] == N.isDivergent() &&
8620            "Divergence bit inconsistency detected\n");
8621   }
8622 }
8623 #endif
8624 
8625 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8626 /// uses of other values produced by From.getNode() alone.  The same value
8627 /// may appear in both the From and To list.  The Deleted vector is
8628 /// handled the same way as for ReplaceAllUsesWith.
8629 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8630                                               const SDValue *To,
8631                                               unsigned Num){
8632   // Handle the simple, trivial case efficiently.
8633   if (Num == 1)
8634     return ReplaceAllUsesOfValueWith(*From, *To);
8635 
8636   transferDbgValues(*From, *To);
8637 
8638   // Read up all the uses and make records of them. This helps
8639   // processing new uses that are introduced during the
8640   // replacement process.
8641   SmallVector<UseMemo, 4> Uses;
8642   for (unsigned i = 0; i != Num; ++i) {
8643     unsigned FromResNo = From[i].getResNo();
8644     SDNode *FromNode = From[i].getNode();
8645     for (SDNode::use_iterator UI = FromNode->use_begin(),
8646          E = FromNode->use_end(); UI != E; ++UI) {
8647       SDUse &Use = UI.getUse();
8648       if (Use.getResNo() == FromResNo) {
8649         UseMemo Memo = { *UI, i, &Use };
8650         Uses.push_back(Memo);
8651       }
8652     }
8653   }
8654 
8655   // Sort the uses, so that all the uses from a given User are together.
8656   llvm::sort(Uses);
8657 
8658   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8659        UseIndex != UseIndexEnd; ) {
8660     // We know that this user uses some value of From.  If it is the right
8661     // value, update it.
8662     SDNode *User = Uses[UseIndex].User;
8663 
8664     // This node is about to morph, remove its old self from the CSE maps.
8665     RemoveNodeFromCSEMaps(User);
8666 
8667     // The Uses array is sorted, so all the uses for a given User
8668     // are next to each other in the list.
8669     // To help reduce the number of CSE recomputations, process all
8670     // the uses of this user that we can find this way.
8671     do {
8672       unsigned i = Uses[UseIndex].Index;
8673       SDUse &Use = *Uses[UseIndex].Use;
8674       ++UseIndex;
8675 
8676       Use.set(To[i]);
8677     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8678 
8679     // Now that we have modified User, add it back to the CSE maps.  If it
8680     // already exists there, recursively merge the results together.
8681     AddModifiedNodeToCSEMaps(User);
8682   }
8683 }
8684 
8685 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8686 /// based on their topological order. It returns the maximum id and a vector
8687 /// of the SDNodes* in assigned order by reference.
8688 unsigned SelectionDAG::AssignTopologicalOrder() {
8689   unsigned DAGSize = 0;
8690 
8691   // SortedPos tracks the progress of the algorithm. Nodes before it are
8692   // sorted, nodes after it are unsorted. When the algorithm completes
8693   // it is at the end of the list.
8694   allnodes_iterator SortedPos = allnodes_begin();
8695 
8696   // Visit all the nodes. Move nodes with no operands to the front of
8697   // the list immediately. Annotate nodes that do have operands with their
8698   // operand count. Before we do this, the Node Id fields of the nodes
8699   // may contain arbitrary values. After, the Node Id fields for nodes
8700   // before SortedPos will contain the topological sort index, and the
8701   // Node Id fields for nodes At SortedPos and after will contain the
8702   // count of outstanding operands.
8703   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8704     SDNode *N = &*I++;
8705     checkForCycles(N, this);
8706     unsigned Degree = N->getNumOperands();
8707     if (Degree == 0) {
8708       // A node with no uses, add it to the result array immediately.
8709       N->setNodeId(DAGSize++);
8710       allnodes_iterator Q(N);
8711       if (Q != SortedPos)
8712         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8713       assert(SortedPos != AllNodes.end() && "Overran node list");
8714       ++SortedPos;
8715     } else {
8716       // Temporarily use the Node Id as scratch space for the degree count.
8717       N->setNodeId(Degree);
8718     }
8719   }
8720 
8721   // Visit all the nodes. As we iterate, move nodes into sorted order,
8722   // such that by the time the end is reached all nodes will be sorted.
8723   for (SDNode &Node : allnodes()) {
8724     SDNode *N = &Node;
8725     checkForCycles(N, this);
8726     // N is in sorted position, so all its uses have one less operand
8727     // that needs to be sorted.
8728     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8729          UI != UE; ++UI) {
8730       SDNode *P = *UI;
8731       unsigned Degree = P->getNodeId();
8732       assert(Degree != 0 && "Invalid node degree");
8733       --Degree;
8734       if (Degree == 0) {
8735         // All of P's operands are sorted, so P may sorted now.
8736         P->setNodeId(DAGSize++);
8737         if (P->getIterator() != SortedPos)
8738           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8739         assert(SortedPos != AllNodes.end() && "Overran node list");
8740         ++SortedPos;
8741       } else {
8742         // Update P's outstanding operand count.
8743         P->setNodeId(Degree);
8744       }
8745     }
8746     if (Node.getIterator() == SortedPos) {
8747 #ifndef NDEBUG
8748       allnodes_iterator I(N);
8749       SDNode *S = &*++I;
8750       dbgs() << "Overran sorted position:\n";
8751       S->dumprFull(this); dbgs() << "\n";
8752       dbgs() << "Checking if this is due to cycles\n";
8753       checkForCycles(this, true);
8754 #endif
8755       llvm_unreachable(nullptr);
8756     }
8757   }
8758 
8759   assert(SortedPos == AllNodes.end() &&
8760          "Topological sort incomplete!");
8761   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8762          "First node in topological sort is not the entry token!");
8763   assert(AllNodes.front().getNodeId() == 0 &&
8764          "First node in topological sort has non-zero id!");
8765   assert(AllNodes.front().getNumOperands() == 0 &&
8766          "First node in topological sort has operands!");
8767   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8768          "Last node in topologic sort has unexpected id!");
8769   assert(AllNodes.back().use_empty() &&
8770          "Last node in topologic sort has users!");
8771   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8772   return DAGSize;
8773 }
8774 
8775 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8776 /// value is produced by SD.
8777 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8778   if (SD) {
8779     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8780     SD->setHasDebugValue(true);
8781   }
8782   DbgInfo->add(DB, SD, isParameter);
8783 }
8784 
8785 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8786   DbgInfo->add(DB);
8787 }
8788 
8789 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8790                                                    SDValue NewMemOp) {
8791   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8792   // The new memory operation must have the same position as the old load in
8793   // terms of memory dependency. Create a TokenFactor for the old load and new
8794   // memory operation and update uses of the old load's output chain to use that
8795   // TokenFactor.
8796   SDValue OldChain = SDValue(OldLoad, 1);
8797   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8798   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8799     return NewChain;
8800 
8801   SDValue TokenFactor =
8802       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8803   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8804   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8805   return TokenFactor;
8806 }
8807 
8808 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8809                                                      Function **OutFunction) {
8810   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8811 
8812   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8813   auto *Module = MF->getFunction().getParent();
8814   auto *Function = Module->getFunction(Symbol);
8815 
8816   if (OutFunction != nullptr)
8817       *OutFunction = Function;
8818 
8819   if (Function != nullptr) {
8820     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8821     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8822   }
8823 
8824   std::string ErrorStr;
8825   raw_string_ostream ErrorFormatter(ErrorStr);
8826 
8827   ErrorFormatter << "Undefined external symbol ";
8828   ErrorFormatter << '"' << Symbol << '"';
8829   ErrorFormatter.flush();
8830 
8831   report_fatal_error(ErrorStr);
8832 }
8833 
8834 //===----------------------------------------------------------------------===//
8835 //                              SDNode Class
8836 //===----------------------------------------------------------------------===//
8837 
8838 bool llvm::isNullConstant(SDValue V) {
8839   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8840   return Const != nullptr && Const->isNullValue();
8841 }
8842 
8843 bool llvm::isNullFPConstant(SDValue V) {
8844   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8845   return Const != nullptr && Const->isZero() && !Const->isNegative();
8846 }
8847 
8848 bool llvm::isAllOnesConstant(SDValue V) {
8849   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8850   return Const != nullptr && Const->isAllOnesValue();
8851 }
8852 
8853 bool llvm::isOneConstant(SDValue V) {
8854   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8855   return Const != nullptr && Const->isOne();
8856 }
8857 
8858 SDValue llvm::peekThroughBitcasts(SDValue V) {
8859   while (V.getOpcode() == ISD::BITCAST)
8860     V = V.getOperand(0);
8861   return V;
8862 }
8863 
8864 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8865   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8866     V = V.getOperand(0);
8867   return V;
8868 }
8869 
8870 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8871   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8872     V = V.getOperand(0);
8873   return V;
8874 }
8875 
8876 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8877   if (V.getOpcode() != ISD::XOR)
8878     return false;
8879   V = peekThroughBitcasts(V.getOperand(1));
8880   unsigned NumBits = V.getScalarValueSizeInBits();
8881   ConstantSDNode *C =
8882       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8883   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8884 }
8885 
8886 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8887                                           bool AllowTruncation) {
8888   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8889     return CN;
8890 
8891   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8892     BitVector UndefElements;
8893     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8894 
8895     // BuildVectors can truncate their operands. Ignore that case here unless
8896     // AllowTruncation is set.
8897     if (CN && (UndefElements.none() || AllowUndefs)) {
8898       EVT CVT = CN->getValueType(0);
8899       EVT NSVT = N.getValueType().getScalarType();
8900       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8901       if (AllowTruncation || (CVT == NSVT))
8902         return CN;
8903     }
8904   }
8905 
8906   return nullptr;
8907 }
8908 
8909 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8910                                           bool AllowUndefs,
8911                                           bool AllowTruncation) {
8912   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8913     return CN;
8914 
8915   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8916     BitVector UndefElements;
8917     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8918 
8919     // BuildVectors can truncate their operands. Ignore that case here unless
8920     // AllowTruncation is set.
8921     if (CN && (UndefElements.none() || AllowUndefs)) {
8922       EVT CVT = CN->getValueType(0);
8923       EVT NSVT = N.getValueType().getScalarType();
8924       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8925       if (AllowTruncation || (CVT == NSVT))
8926         return CN;
8927     }
8928   }
8929 
8930   return nullptr;
8931 }
8932 
8933 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8934   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8935     return CN;
8936 
8937   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8938     BitVector UndefElements;
8939     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8940     if (CN && (UndefElements.none() || AllowUndefs))
8941       return CN;
8942   }
8943 
8944   return nullptr;
8945 }
8946 
8947 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8948                                               const APInt &DemandedElts,
8949                                               bool AllowUndefs) {
8950   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8951     return CN;
8952 
8953   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8954     BitVector UndefElements;
8955     ConstantFPSDNode *CN =
8956         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8957     if (CN && (UndefElements.none() || AllowUndefs))
8958       return CN;
8959   }
8960 
8961   return nullptr;
8962 }
8963 
8964 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8965   // TODO: may want to use peekThroughBitcast() here.
8966   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8967   return C && C->isNullValue();
8968 }
8969 
8970 bool llvm::isOneOrOneSplat(SDValue N) {
8971   // TODO: may want to use peekThroughBitcast() here.
8972   unsigned BitWidth = N.getScalarValueSizeInBits();
8973   ConstantSDNode *C = isConstOrConstSplat(N);
8974   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8975 }
8976 
8977 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8978   N = peekThroughBitcasts(N);
8979   unsigned BitWidth = N.getScalarValueSizeInBits();
8980   ConstantSDNode *C = isConstOrConstSplat(N);
8981   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8982 }
8983 
8984 HandleSDNode::~HandleSDNode() {
8985   DropOperands();
8986 }
8987 
8988 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8989                                          const DebugLoc &DL,
8990                                          const GlobalValue *GA, EVT VT,
8991                                          int64_t o, unsigned TF)
8992     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8993   TheGlobal = GA;
8994 }
8995 
8996 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8997                                          EVT VT, unsigned SrcAS,
8998                                          unsigned DestAS)
8999     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9000       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9001 
9002 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9003                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9004     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9005   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9006   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9007   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9008   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9009 
9010   // We check here that the size of the memory operand fits within the size of
9011   // the MMO. This is because the MMO might indicate only a possible address
9012   // range instead of specifying the affected memory addresses precisely.
9013   // TODO: Make MachineMemOperands aware of scalable vectors.
9014   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9015          "Size mismatch!");
9016 }
9017 
9018 /// Profile - Gather unique data for the node.
9019 ///
9020 void SDNode::Profile(FoldingSetNodeID &ID) const {
9021   AddNodeIDNode(ID, this);
9022 }
9023 
9024 namespace {
9025 
9026   struct EVTArray {
9027     std::vector<EVT> VTs;
9028 
9029     EVTArray() {
9030       VTs.reserve(MVT::LAST_VALUETYPE);
9031       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9032         VTs.push_back(MVT((MVT::SimpleValueType)i));
9033     }
9034   };
9035 
9036 } // end anonymous namespace
9037 
9038 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9039 static ManagedStatic<EVTArray> SimpleVTArray;
9040 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9041 
9042 /// getValueTypeList - Return a pointer to the specified value type.
9043 ///
9044 const EVT *SDNode::getValueTypeList(EVT VT) {
9045   if (VT.isExtended()) {
9046     sys::SmartScopedLock<true> Lock(*VTMutex);
9047     return &(*EVTs->insert(VT).first);
9048   } else {
9049     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9050            "Value type out of range!");
9051     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9052   }
9053 }
9054 
9055 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9056 /// indicated value.  This method ignores uses of other values defined by this
9057 /// operation.
9058 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9059   assert(Value < getNumValues() && "Bad value!");
9060 
9061   // TODO: Only iterate over uses of a given value of the node
9062   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9063     if (UI.getUse().getResNo() == Value) {
9064       if (NUses == 0)
9065         return false;
9066       --NUses;
9067     }
9068   }
9069 
9070   // Found exactly the right number of uses?
9071   return NUses == 0;
9072 }
9073 
9074 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9075 /// value. This method ignores uses of other values defined by this operation.
9076 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9077   assert(Value < getNumValues() && "Bad value!");
9078 
9079   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9080     if (UI.getUse().getResNo() == Value)
9081       return true;
9082 
9083   return false;
9084 }
9085 
9086 /// isOnlyUserOf - Return true if this node is the only use of N.
9087 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9088   bool Seen = false;
9089   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9090     SDNode *User = *I;
9091     if (User == this)
9092       Seen = true;
9093     else
9094       return false;
9095   }
9096 
9097   return Seen;
9098 }
9099 
9100 /// Return true if the only users of N are contained in Nodes.
9101 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9102   bool Seen = false;
9103   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9104     SDNode *User = *I;
9105     if (llvm::any_of(Nodes,
9106                      [&User](const SDNode *Node) { return User == Node; }))
9107       Seen = true;
9108     else
9109       return false;
9110   }
9111 
9112   return Seen;
9113 }
9114 
9115 /// isOperand - Return true if this node is an operand of N.
9116 bool SDValue::isOperandOf(const SDNode *N) const {
9117   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9118 }
9119 
9120 bool SDNode::isOperandOf(const SDNode *N) const {
9121   return any_of(N->op_values(),
9122                 [this](SDValue Op) { return this == Op.getNode(); });
9123 }
9124 
9125 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9126 /// be a chain) reaches the specified operand without crossing any
9127 /// side-effecting instructions on any chain path.  In practice, this looks
9128 /// through token factors and non-volatile loads.  In order to remain efficient,
9129 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9130 ///
9131 /// Note that we only need to examine chains when we're searching for
9132 /// side-effects; SelectionDAG requires that all side-effects are represented
9133 /// by chains, even if another operand would force a specific ordering. This
9134 /// constraint is necessary to allow transformations like splitting loads.
9135 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9136                                              unsigned Depth) const {
9137   if (*this == Dest) return true;
9138 
9139   // Don't search too deeply, we just want to be able to see through
9140   // TokenFactor's etc.
9141   if (Depth == 0) return false;
9142 
9143   // If this is a token factor, all inputs to the TF happen in parallel.
9144   if (getOpcode() == ISD::TokenFactor) {
9145     // First, try a shallow search.
9146     if (is_contained((*this)->ops(), Dest)) {
9147       // We found the chain we want as an operand of this TokenFactor.
9148       // Essentially, we reach the chain without side-effects if we could
9149       // serialize the TokenFactor into a simple chain of operations with
9150       // Dest as the last operation. This is automatically true if the
9151       // chain has one use: there are no other ordering constraints.
9152       // If the chain has more than one use, we give up: some other
9153       // use of Dest might force a side-effect between Dest and the current
9154       // node.
9155       if (Dest.hasOneUse())
9156         return true;
9157     }
9158     // Next, try a deep search: check whether every operand of the TokenFactor
9159     // reaches Dest.
9160     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9161       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9162     });
9163   }
9164 
9165   // Loads don't have side effects, look through them.
9166   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9167     if (Ld->isUnordered())
9168       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9169   }
9170   return false;
9171 }
9172 
9173 bool SDNode::hasPredecessor(const SDNode *N) const {
9174   SmallPtrSet<const SDNode *, 32> Visited;
9175   SmallVector<const SDNode *, 16> Worklist;
9176   Worklist.push_back(this);
9177   return hasPredecessorHelper(N, Visited, Worklist);
9178 }
9179 
9180 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9181   this->Flags.intersectWith(Flags);
9182 }
9183 
9184 SDValue
9185 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9186                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9187                                   bool AllowPartials) {
9188   // The pattern must end in an extract from index 0.
9189   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9190       !isNullConstant(Extract->getOperand(1)))
9191     return SDValue();
9192 
9193   // Match against one of the candidate binary ops.
9194   SDValue Op = Extract->getOperand(0);
9195   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9196         return Op.getOpcode() == unsigned(BinOp);
9197       }))
9198     return SDValue();
9199 
9200   // Floating-point reductions may require relaxed constraints on the final step
9201   // of the reduction because they may reorder intermediate operations.
9202   unsigned CandidateBinOp = Op.getOpcode();
9203   if (Op.getValueType().isFloatingPoint()) {
9204     SDNodeFlags Flags = Op->getFlags();
9205     switch (CandidateBinOp) {
9206     case ISD::FADD:
9207       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9208         return SDValue();
9209       break;
9210     default:
9211       llvm_unreachable("Unhandled FP opcode for binop reduction");
9212     }
9213   }
9214 
9215   // Matching failed - attempt to see if we did enough stages that a partial
9216   // reduction from a subvector is possible.
9217   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9218     if (!AllowPartials || !Op)
9219       return SDValue();
9220     EVT OpVT = Op.getValueType();
9221     EVT OpSVT = OpVT.getScalarType();
9222     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9223     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9224       return SDValue();
9225     BinOp = (ISD::NodeType)CandidateBinOp;
9226     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9227                    getVectorIdxConstant(0, SDLoc(Op)));
9228   };
9229 
9230   // At each stage, we're looking for something that looks like:
9231   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9232   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9233   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9234   // %a = binop <8 x i32> %op, %s
9235   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9236   // we expect something like:
9237   // <4,5,6,7,u,u,u,u>
9238   // <2,3,u,u,u,u,u,u>
9239   // <1,u,u,u,u,u,u,u>
9240   // While a partial reduction match would be:
9241   // <2,3,u,u,u,u,u,u>
9242   // <1,u,u,u,u,u,u,u>
9243   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9244   SDValue PrevOp;
9245   for (unsigned i = 0; i < Stages; ++i) {
9246     unsigned MaskEnd = (1 << i);
9247 
9248     if (Op.getOpcode() != CandidateBinOp)
9249       return PartialReduction(PrevOp, MaskEnd);
9250 
9251     SDValue Op0 = Op.getOperand(0);
9252     SDValue Op1 = Op.getOperand(1);
9253 
9254     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9255     if (Shuffle) {
9256       Op = Op1;
9257     } else {
9258       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9259       Op = Op0;
9260     }
9261 
9262     // The first operand of the shuffle should be the same as the other operand
9263     // of the binop.
9264     if (!Shuffle || Shuffle->getOperand(0) != Op)
9265       return PartialReduction(PrevOp, MaskEnd);
9266 
9267     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9268     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9269       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9270         return PartialReduction(PrevOp, MaskEnd);
9271 
9272     PrevOp = Op;
9273   }
9274 
9275   BinOp = (ISD::NodeType)CandidateBinOp;
9276   return Op;
9277 }
9278 
9279 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9280   assert(N->getNumValues() == 1 &&
9281          "Can't unroll a vector with multiple results!");
9282 
9283   EVT VT = N->getValueType(0);
9284   unsigned NE = VT.getVectorNumElements();
9285   EVT EltVT = VT.getVectorElementType();
9286   SDLoc dl(N);
9287 
9288   SmallVector<SDValue, 8> Scalars;
9289   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9290 
9291   // If ResNE is 0, fully unroll the vector op.
9292   if (ResNE == 0)
9293     ResNE = NE;
9294   else if (NE > ResNE)
9295     NE = ResNE;
9296 
9297   unsigned i;
9298   for (i= 0; i != NE; ++i) {
9299     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9300       SDValue Operand = N->getOperand(j);
9301       EVT OperandVT = Operand.getValueType();
9302       if (OperandVT.isVector()) {
9303         // A vector operand; extract a single element.
9304         EVT OperandEltVT = OperandVT.getVectorElementType();
9305         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9306                               Operand, getVectorIdxConstant(i, dl));
9307       } else {
9308         // A scalar operand; just use it as is.
9309         Operands[j] = Operand;
9310       }
9311     }
9312 
9313     switch (N->getOpcode()) {
9314     default: {
9315       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9316                                 N->getFlags()));
9317       break;
9318     }
9319     case ISD::VSELECT:
9320       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9321       break;
9322     case ISD::SHL:
9323     case ISD::SRA:
9324     case ISD::SRL:
9325     case ISD::ROTL:
9326     case ISD::ROTR:
9327       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9328                                getShiftAmountOperand(Operands[0].getValueType(),
9329                                                      Operands[1])));
9330       break;
9331     case ISD::SIGN_EXTEND_INREG: {
9332       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9333       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9334                                 Operands[0],
9335                                 getValueType(ExtVT)));
9336     }
9337     }
9338   }
9339 
9340   for (; i < ResNE; ++i)
9341     Scalars.push_back(getUNDEF(EltVT));
9342 
9343   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9344   return getBuildVector(VecVT, dl, Scalars);
9345 }
9346 
9347 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9348     SDNode *N, unsigned ResNE) {
9349   unsigned Opcode = N->getOpcode();
9350   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9351           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9352           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9353          "Expected an overflow opcode");
9354 
9355   EVT ResVT = N->getValueType(0);
9356   EVT OvVT = N->getValueType(1);
9357   EVT ResEltVT = ResVT.getVectorElementType();
9358   EVT OvEltVT = OvVT.getVectorElementType();
9359   SDLoc dl(N);
9360 
9361   // If ResNE is 0, fully unroll the vector op.
9362   unsigned NE = ResVT.getVectorNumElements();
9363   if (ResNE == 0)
9364     ResNE = NE;
9365   else if (NE > ResNE)
9366     NE = ResNE;
9367 
9368   SmallVector<SDValue, 8> LHSScalars;
9369   SmallVector<SDValue, 8> RHSScalars;
9370   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9371   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9372 
9373   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9374   SDVTList VTs = getVTList(ResEltVT, SVT);
9375   SmallVector<SDValue, 8> ResScalars;
9376   SmallVector<SDValue, 8> OvScalars;
9377   for (unsigned i = 0; i < NE; ++i) {
9378     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9379     SDValue Ov =
9380         getSelect(dl, OvEltVT, Res.getValue(1),
9381                   getBoolConstant(true, dl, OvEltVT, ResVT),
9382                   getConstant(0, dl, OvEltVT));
9383 
9384     ResScalars.push_back(Res);
9385     OvScalars.push_back(Ov);
9386   }
9387 
9388   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9389   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9390 
9391   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9392   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9393   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9394                         getBuildVector(NewOvVT, dl, OvScalars));
9395 }
9396 
9397 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9398                                                   LoadSDNode *Base,
9399                                                   unsigned Bytes,
9400                                                   int Dist) const {
9401   if (LD->isVolatile() || Base->isVolatile())
9402     return false;
9403   // TODO: probably too restrictive for atomics, revisit
9404   if (!LD->isSimple())
9405     return false;
9406   if (LD->isIndexed() || Base->isIndexed())
9407     return false;
9408   if (LD->getChain() != Base->getChain())
9409     return false;
9410   EVT VT = LD->getValueType(0);
9411   if (VT.getSizeInBits() / 8 != Bytes)
9412     return false;
9413 
9414   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9415   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9416 
9417   int64_t Offset = 0;
9418   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9419     return (Dist * Bytes == Offset);
9420   return false;
9421 }
9422 
9423 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9424 /// it cannot be inferred.
9425 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9426   // If this is a GlobalAddress + cst, return the alignment.
9427   const GlobalValue *GV = nullptr;
9428   int64_t GVOffset = 0;
9429   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9430     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9431     KnownBits Known(PtrWidth);
9432     llvm::computeKnownBits(GV, Known, getDataLayout());
9433     unsigned AlignBits = Known.countMinTrailingZeros();
9434     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9435     if (Align)
9436       return MinAlign(Align, GVOffset);
9437   }
9438 
9439   // If this is a direct reference to a stack slot, use information about the
9440   // stack slot's alignment.
9441   int FrameIdx = INT_MIN;
9442   int64_t FrameOffset = 0;
9443   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9444     FrameIdx = FI->getIndex();
9445   } else if (isBaseWithConstantOffset(Ptr) &&
9446              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9447     // Handle FI+Cst
9448     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9449     FrameOffset = Ptr.getConstantOperandVal(1);
9450   }
9451 
9452   if (FrameIdx != INT_MIN) {
9453     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9454     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9455                                     FrameOffset);
9456     return FIInfoAlign;
9457   }
9458 
9459   return 0;
9460 }
9461 
9462 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9463 /// which is split (or expanded) into two not necessarily identical pieces.
9464 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9465   // Currently all types are split in half.
9466   EVT LoVT, HiVT;
9467   if (!VT.isVector())
9468     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9469   else
9470     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9471 
9472   return std::make_pair(LoVT, HiVT);
9473 }
9474 
9475 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9476 /// low/high part.
9477 std::pair<SDValue, SDValue>
9478 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9479                           const EVT &HiVT) {
9480   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9481          N.getValueType().getVectorNumElements() &&
9482          "More vector elements requested than available!");
9483   SDValue Lo, Hi;
9484   Lo =
9485       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9486   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9487                getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
9488   return std::make_pair(Lo, Hi);
9489 }
9490 
9491 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9492 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9493   EVT VT = N.getValueType();
9494   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9495                                 NextPowerOf2(VT.getVectorNumElements()));
9496   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9497                  getVectorIdxConstant(0, DL));
9498 }
9499 
9500 void SelectionDAG::ExtractVectorElements(SDValue Op,
9501                                          SmallVectorImpl<SDValue> &Args,
9502                                          unsigned Start, unsigned Count,
9503                                          EVT EltVT) {
9504   EVT VT = Op.getValueType();
9505   if (Count == 0)
9506     Count = VT.getVectorNumElements();
9507   if (EltVT == EVT())
9508     EltVT = VT.getVectorElementType();
9509   SDLoc SL(Op);
9510   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9511     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9512                            getVectorIdxConstant(i, SL)));
9513   }
9514 }
9515 
9516 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9517 unsigned GlobalAddressSDNode::getAddressSpace() const {
9518   return getGlobal()->getType()->getAddressSpace();
9519 }
9520 
9521 Type *ConstantPoolSDNode::getType() const {
9522   if (isMachineConstantPoolEntry())
9523     return Val.MachineCPVal->getType();
9524   return Val.ConstVal->getType();
9525 }
9526 
9527 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9528                                         unsigned &SplatBitSize,
9529                                         bool &HasAnyUndefs,
9530                                         unsigned MinSplatBits,
9531                                         bool IsBigEndian) const {
9532   EVT VT = getValueType(0);
9533   assert(VT.isVector() && "Expected a vector type");
9534   unsigned VecWidth = VT.getSizeInBits();
9535   if (MinSplatBits > VecWidth)
9536     return false;
9537 
9538   // FIXME: The widths are based on this node's type, but build vectors can
9539   // truncate their operands.
9540   SplatValue = APInt(VecWidth, 0);
9541   SplatUndef = APInt(VecWidth, 0);
9542 
9543   // Get the bits. Bits with undefined values (when the corresponding element
9544   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9545   // in SplatValue. If any of the values are not constant, give up and return
9546   // false.
9547   unsigned int NumOps = getNumOperands();
9548   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9549   unsigned EltWidth = VT.getScalarSizeInBits();
9550 
9551   for (unsigned j = 0; j < NumOps; ++j) {
9552     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9553     SDValue OpVal = getOperand(i);
9554     unsigned BitPos = j * EltWidth;
9555 
9556     if (OpVal.isUndef())
9557       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9558     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9559       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9560     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9561       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9562     else
9563       return false;
9564   }
9565 
9566   // The build_vector is all constants or undefs. Find the smallest element
9567   // size that splats the vector.
9568   HasAnyUndefs = (SplatUndef != 0);
9569 
9570   // FIXME: This does not work for vectors with elements less than 8 bits.
9571   while (VecWidth > 8) {
9572     unsigned HalfSize = VecWidth / 2;
9573     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9574     APInt LowValue = SplatValue.trunc(HalfSize);
9575     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9576     APInt LowUndef = SplatUndef.trunc(HalfSize);
9577 
9578     // If the two halves do not match (ignoring undef bits), stop here.
9579     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9580         MinSplatBits > HalfSize)
9581       break;
9582 
9583     SplatValue = HighValue | LowValue;
9584     SplatUndef = HighUndef & LowUndef;
9585 
9586     VecWidth = HalfSize;
9587   }
9588 
9589   SplatBitSize = VecWidth;
9590   return true;
9591 }
9592 
9593 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9594                                          BitVector *UndefElements) const {
9595   if (UndefElements) {
9596     UndefElements->clear();
9597     UndefElements->resize(getNumOperands());
9598   }
9599   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9600          "Unexpected vector size");
9601   if (!DemandedElts)
9602     return SDValue();
9603   SDValue Splatted;
9604   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9605     if (!DemandedElts[i])
9606       continue;
9607     SDValue Op = getOperand(i);
9608     if (Op.isUndef()) {
9609       if (UndefElements)
9610         (*UndefElements)[i] = true;
9611     } else if (!Splatted) {
9612       Splatted = Op;
9613     } else if (Splatted != Op) {
9614       return SDValue();
9615     }
9616   }
9617 
9618   if (!Splatted) {
9619     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9620     assert(getOperand(FirstDemandedIdx).isUndef() &&
9621            "Can only have a splat without a constant for all undefs.");
9622     return getOperand(FirstDemandedIdx);
9623   }
9624 
9625   return Splatted;
9626 }
9627 
9628 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9629   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9630   return getSplatValue(DemandedElts, UndefElements);
9631 }
9632 
9633 ConstantSDNode *
9634 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9635                                         BitVector *UndefElements) const {
9636   return dyn_cast_or_null<ConstantSDNode>(
9637       getSplatValue(DemandedElts, UndefElements));
9638 }
9639 
9640 ConstantSDNode *
9641 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9642   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9643 }
9644 
9645 ConstantFPSDNode *
9646 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9647                                           BitVector *UndefElements) const {
9648   return dyn_cast_or_null<ConstantFPSDNode>(
9649       getSplatValue(DemandedElts, UndefElements));
9650 }
9651 
9652 ConstantFPSDNode *
9653 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9654   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9655 }
9656 
9657 int32_t
9658 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9659                                                    uint32_t BitWidth) const {
9660   if (ConstantFPSDNode *CN =
9661           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9662     bool IsExact;
9663     APSInt IntVal(BitWidth);
9664     const APFloat &APF = CN->getValueAPF();
9665     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9666             APFloat::opOK ||
9667         !IsExact)
9668       return -1;
9669 
9670     return IntVal.exactLogBase2();
9671   }
9672   return -1;
9673 }
9674 
9675 bool BuildVectorSDNode::isConstant() const {
9676   for (const SDValue &Op : op_values()) {
9677     unsigned Opc = Op.getOpcode();
9678     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9679       return false;
9680   }
9681   return true;
9682 }
9683 
9684 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9685   // Find the first non-undef value in the shuffle mask.
9686   unsigned i, e;
9687   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9688     /* search */;
9689 
9690   // If all elements are undefined, this shuffle can be considered a splat
9691   // (although it should eventually get simplified away completely).
9692   if (i == e)
9693     return true;
9694 
9695   // Make sure all remaining elements are either undef or the same as the first
9696   // non-undef value.
9697   for (int Idx = Mask[i]; i != e; ++i)
9698     if (Mask[i] >= 0 && Mask[i] != Idx)
9699       return false;
9700   return true;
9701 }
9702 
9703 // Returns the SDNode if it is a constant integer BuildVector
9704 // or constant integer.
9705 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9706   if (isa<ConstantSDNode>(N))
9707     return N.getNode();
9708   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9709     return N.getNode();
9710   // Treat a GlobalAddress supporting constant offset folding as a
9711   // constant integer.
9712   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9713     if (GA->getOpcode() == ISD::GlobalAddress &&
9714         TLI->isOffsetFoldingLegal(GA))
9715       return GA;
9716   return nullptr;
9717 }
9718 
9719 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9720   if (isa<ConstantFPSDNode>(N))
9721     return N.getNode();
9722 
9723   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9724     return N.getNode();
9725 
9726   return nullptr;
9727 }
9728 
9729 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9730   assert(!Node->OperandList && "Node already has operands");
9731   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9732          "too many operands to fit into SDNode");
9733   SDUse *Ops = OperandRecycler.allocate(
9734       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9735 
9736   bool IsDivergent = false;
9737   for (unsigned I = 0; I != Vals.size(); ++I) {
9738     Ops[I].setUser(Node);
9739     Ops[I].setInitial(Vals[I]);
9740     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9741       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9742   }
9743   Node->NumOperands = Vals.size();
9744   Node->OperandList = Ops;
9745   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9746   if (!TLI->isSDNodeAlwaysUniform(Node))
9747     Node->SDNodeBits.IsDivergent = IsDivergent;
9748   checkForCycles(Node);
9749 }
9750 
9751 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9752                                      SmallVectorImpl<SDValue> &Vals) {
9753   size_t Limit = SDNode::getMaxNumOperands();
9754   while (Vals.size() > Limit) {
9755     unsigned SliceIdx = Vals.size() - Limit;
9756     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9757     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9758     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9759     Vals.emplace_back(NewTF);
9760   }
9761   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9762 }
9763 
9764 #ifndef NDEBUG
9765 static void checkForCyclesHelper(const SDNode *N,
9766                                  SmallPtrSetImpl<const SDNode*> &Visited,
9767                                  SmallPtrSetImpl<const SDNode*> &Checked,
9768                                  const llvm::SelectionDAG *DAG) {
9769   // If this node has already been checked, don't check it again.
9770   if (Checked.count(N))
9771     return;
9772 
9773   // If a node has already been visited on this depth-first walk, reject it as
9774   // a cycle.
9775   if (!Visited.insert(N).second) {
9776     errs() << "Detected cycle in SelectionDAG\n";
9777     dbgs() << "Offending node:\n";
9778     N->dumprFull(DAG); dbgs() << "\n";
9779     abort();
9780   }
9781 
9782   for (const SDValue &Op : N->op_values())
9783     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9784 
9785   Checked.insert(N);
9786   Visited.erase(N);
9787 }
9788 #endif
9789 
9790 void llvm::checkForCycles(const llvm::SDNode *N,
9791                           const llvm::SelectionDAG *DAG,
9792                           bool force) {
9793 #ifndef NDEBUG
9794   bool check = force;
9795 #ifdef EXPENSIVE_CHECKS
9796   check = true;
9797 #endif  // EXPENSIVE_CHECKS
9798   if (check) {
9799     assert(N && "Checking nonexistent SDNode");
9800     SmallPtrSet<const SDNode*, 32> visited;
9801     SmallPtrSet<const SDNode*, 32> checked;
9802     checkForCyclesHelper(N, visited, checked, DAG);
9803   }
9804 #endif  // !NDEBUG
9805 }
9806 
9807 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9808   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9809 }
9810