1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/Analysis.h"
30 #include "llvm/CodeGen/FunctionLoweringInfo.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
141     unsigned EltSize =
142         N->getValueType(0).getVectorElementType().getSizeInBits();
143     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
144       SplatVal = Op0->getAPIntValue().trunc(EltSize);
145       return true;
146     }
147     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
148       SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize);
149       return true;
150     }
151   }
152 
153   auto *BV = dyn_cast<BuildVectorSDNode>(N);
154   if (!BV)
155     return false;
156 
157   APInt SplatUndef;
158   unsigned SplatBitSize;
159   bool HasUndefs;
160   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
161   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
162                              EltSize) &&
163          EltSize == SplatBitSize;
164 }
165 
166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
167 // specializations of the more general isConstantSplatVector()?
168 
169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
170   // Look through a bit convert.
171   while (N->getOpcode() == ISD::BITCAST)
172     N = N->getOperand(0).getNode();
173 
174   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
175     APInt SplatVal;
176     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
177   }
178 
179   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
180 
181   unsigned i = 0, e = N->getNumOperands();
182 
183   // Skip over all of the undef values.
184   while (i != e && N->getOperand(i).isUndef())
185     ++i;
186 
187   // Do not accept an all-undef vector.
188   if (i == e) return false;
189 
190   // Do not accept build_vectors that aren't all constants or which have non-~0
191   // elements. We have to be a bit careful here, as the type of the constant
192   // may not be the same as the type of the vector elements due to type
193   // legalization (the elements are promoted to a legal type for the target and
194   // a vector of a type may be legal when the base element type is not).
195   // We only want to check enough bits to cover the vector elements, because
196   // we care if the resultant vector is all ones, not whether the individual
197   // constants are.
198   SDValue NotZero = N->getOperand(i);
199   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
200   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
201     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
202       return false;
203   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
204     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
205       return false;
206   } else
207     return false;
208 
209   // Okay, we have at least one ~0 value, check to see if the rest match or are
210   // undefs. Even with the above element type twiddling, this should be OK, as
211   // the same type legalization should have applied to all the elements.
212   for (++i; i != e; ++i)
213     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
214       return false;
215   return true;
216 }
217 
218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
219   // Look through a bit convert.
220   while (N->getOpcode() == ISD::BITCAST)
221     N = N->getOperand(0).getNode();
222 
223   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
224     APInt SplatVal;
225     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
226   }
227 
228   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
229 
230   bool IsAllUndef = true;
231   for (const SDValue &Op : N->op_values()) {
232     if (Op.isUndef())
233       continue;
234     IsAllUndef = false;
235     // Do not accept build_vectors that aren't all constants or which have non-0
236     // elements. We have to be a bit careful here, as the type of the constant
237     // may not be the same as the type of the vector elements due to type
238     // legalization (the elements are promoted to a legal type for the target
239     // and a vector of a type may be legal when the base element type is not).
240     // We only want to check enough bits to cover the vector elements, because
241     // we care if the resultant vector is all zeros, not whether the individual
242     // constants are.
243     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
244     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
245       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
246         return false;
247     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
248       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
249         return false;
250     } else
251       return false;
252   }
253 
254   // Do not accept an all-undef vector.
255   if (IsAllUndef)
256     return false;
257   return true;
258 }
259 
260 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
261   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
262 }
263 
264 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
265   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
266 }
267 
268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
269   if (N->getOpcode() != ISD::BUILD_VECTOR)
270     return false;
271 
272   for (const SDValue &Op : N->op_values()) {
273     if (Op.isUndef())
274       continue;
275     if (!isa<ConstantSDNode>(Op))
276       return false;
277   }
278   return true;
279 }
280 
281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
282   if (N->getOpcode() != ISD::BUILD_VECTOR)
283     return false;
284 
285   for (const SDValue &Op : N->op_values()) {
286     if (Op.isUndef())
287       continue;
288     if (!isa<ConstantFPSDNode>(Op))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::allOperandsUndef(const SDNode *N) {
295   // Return false if the node has no operands.
296   // This is "logically inconsistent" with the definition of "all" but
297   // is probably the desired behavior.
298   if (N->getNumOperands() == 0)
299     return false;
300   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
301 }
302 
303 bool ISD::matchUnaryPredicate(SDValue Op,
304                               std::function<bool(ConstantSDNode *)> Match,
305                               bool AllowUndefs) {
306   // FIXME: Add support for scalar UNDEF cases?
307   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
308     return Match(Cst);
309 
310   // FIXME: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
312       ISD::SPLAT_VECTOR != Op.getOpcode())
313     return false;
314 
315   EVT SVT = Op.getValueType().getScalarType();
316   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
317     if (AllowUndefs && Op.getOperand(i).isUndef()) {
318       if (!Match(nullptr))
319         return false;
320       continue;
321     }
322 
323     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
324     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
325       return false;
326   }
327   return true;
328 }
329 
330 bool ISD::matchBinaryPredicate(
331     SDValue LHS, SDValue RHS,
332     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
333     bool AllowUndefs, bool AllowTypeMismatch) {
334   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
335     return false;
336 
337   // TODO: Add support for scalar UNDEF cases?
338   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
339     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
340       return Match(LHSCst, RHSCst);
341 
342   // TODO: Add support for vector UNDEF cases?
343   if (LHS.getOpcode() != RHS.getOpcode() ||
344       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
345        LHS.getOpcode() != ISD::SPLAT_VECTOR))
346     return false;
347 
348   EVT SVT = LHS.getValueType().getScalarType();
349   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
350     SDValue LHSOp = LHS.getOperand(i);
351     SDValue RHSOp = RHS.getOperand(i);
352     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
353     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
354     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
355     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
356     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
357       return false;
358     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
359                                LHSOp.getValueType() != RHSOp.getValueType()))
360       return false;
361     if (!Match(LHSCst, RHSCst))
362       return false;
363   }
364   return true;
365 }
366 
367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
368   switch (VecReduceOpcode) {
369   default:
370     llvm_unreachable("Expected VECREDUCE opcode");
371   case ISD::VECREDUCE_FADD:
372   case ISD::VECREDUCE_SEQ_FADD:
373   case ISD::VP_REDUCE_FADD:
374   case ISD::VP_REDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378   case ISD::VP_REDUCE_FMUL:
379   case ISD::VP_REDUCE_SEQ_FMUL:
380     return ISD::FMUL;
381   case ISD::VECREDUCE_ADD:
382   case ISD::VP_REDUCE_ADD:
383     return ISD::ADD;
384   case ISD::VECREDUCE_MUL:
385   case ISD::VP_REDUCE_MUL:
386     return ISD::MUL;
387   case ISD::VECREDUCE_AND:
388   case ISD::VP_REDUCE_AND:
389     return ISD::AND;
390   case ISD::VECREDUCE_OR:
391   case ISD::VP_REDUCE_OR:
392     return ISD::OR;
393   case ISD::VECREDUCE_XOR:
394   case ISD::VP_REDUCE_XOR:
395     return ISD::XOR;
396   case ISD::VECREDUCE_SMAX:
397   case ISD::VP_REDUCE_SMAX:
398     return ISD::SMAX;
399   case ISD::VECREDUCE_SMIN:
400   case ISD::VP_REDUCE_SMIN:
401     return ISD::SMIN;
402   case ISD::VECREDUCE_UMAX:
403   case ISD::VP_REDUCE_UMAX:
404     return ISD::UMAX;
405   case ISD::VECREDUCE_UMIN:
406   case ISD::VP_REDUCE_UMIN:
407     return ISD::UMIN;
408   case ISD::VECREDUCE_FMAX:
409   case ISD::VP_REDUCE_FMAX:
410     return ISD::FMAXNUM;
411   case ISD::VECREDUCE_FMIN:
412   case ISD::VP_REDUCE_FMIN:
413     return ISD::FMINNUM;
414   }
415 }
416 
417 bool ISD::isVPOpcode(unsigned Opcode) {
418   switch (Opcode) {
419   default:
420     return false;
421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
422   case ISD::VPSD:                                                              \
423     return true;
424 #include "llvm/IR/VPIntrinsics.def"
425   }
426 }
427 
428 bool ISD::isVPBinaryOp(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     break;
432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
433 #define VP_PROPERTY_BINARYOP return true;
434 #define END_REGISTER_VP_SDNODE(VPSD) break;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437   return false;
438 }
439 
440 bool ISD::isVPReduction(unsigned Opcode) {
441   switch (Opcode) {
442   default:
443     break;
444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
446 #define END_REGISTER_VP_SDNODE(VPSD) break;
447 #include "llvm/IR/VPIntrinsics.def"
448   }
449   return false;
450 }
451 
452 /// The operand position of the vector mask.
453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
454   switch (Opcode) {
455   default:
456     return None;
457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
458   case ISD::VPSD:                                                              \
459     return MASKPOS;
460 #include "llvm/IR/VPIntrinsics.def"
461   }
462 }
463 
464 /// The operand position of the explicit vector length parameter.
465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
466   switch (Opcode) {
467   default:
468     return None;
469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
470   case ISD::VPSD:                                                              \
471     return EVLPOS;
472 #include "llvm/IR/VPIntrinsics.def"
473   }
474 }
475 
476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
477   switch (ExtType) {
478   case ISD::EXTLOAD:
479     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
480   case ISD::SEXTLOAD:
481     return ISD::SIGN_EXTEND;
482   case ISD::ZEXTLOAD:
483     return ISD::ZERO_EXTEND;
484   default:
485     break;
486   }
487 
488   llvm_unreachable("Invalid LoadExtType");
489 }
490 
491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
492   // To perform this operation, we just need to swap the L and G bits of the
493   // operation.
494   unsigned OldL = (Operation >> 2) & 1;
495   unsigned OldG = (Operation >> 1) & 1;
496   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
497                        (OldL << 1) |       // New G bit
498                        (OldG << 2));       // New L bit.
499 }
500 
501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
502   unsigned Operation = Op;
503   if (isIntegerLike)
504     Operation ^= 7;   // Flip L, G, E bits, but not U.
505   else
506     Operation ^= 15;  // Flip all of the condition bits.
507 
508   if (Operation > ISD::SETTRUE2)
509     Operation &= ~8;  // Don't let N and U bits get set.
510 
511   return ISD::CondCode(Operation);
512 }
513 
514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
515   return getSetCCInverseImpl(Op, Type.isInteger());
516 }
517 
518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
519                                                bool isIntegerLike) {
520   return getSetCCInverseImpl(Op, isIntegerLike);
521 }
522 
523 /// For an integer comparison, return 1 if the comparison is a signed operation
524 /// and 2 if the result is an unsigned comparison. Return zero if the operation
525 /// does not depend on the sign of the input (setne and seteq).
526 static int isSignedOp(ISD::CondCode Opcode) {
527   switch (Opcode) {
528   default: llvm_unreachable("Illegal integer setcc operation!");
529   case ISD::SETEQ:
530   case ISD::SETNE: return 0;
531   case ISD::SETLT:
532   case ISD::SETLE:
533   case ISD::SETGT:
534   case ISD::SETGE: return 1;
535   case ISD::SETULT:
536   case ISD::SETULE:
537   case ISD::SETUGT:
538   case ISD::SETUGE: return 2;
539   }
540 }
541 
542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
543                                        EVT Type) {
544   bool IsInteger = Type.isInteger();
545   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
546     // Cannot fold a signed integer setcc with an unsigned integer setcc.
547     return ISD::SETCC_INVALID;
548 
549   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
550 
551   // If the N and U bits get set, then the resultant comparison DOES suddenly
552   // care about orderedness, and it is true when ordered.
553   if (Op > ISD::SETTRUE2)
554     Op &= ~16;     // Clear the U bit if the N bit is set.
555 
556   // Canonicalize illegal integer setcc's.
557   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
558     Op = ISD::SETNE;
559 
560   return ISD::CondCode(Op);
561 }
562 
563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
564                                         EVT Type) {
565   bool IsInteger = Type.isInteger();
566   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
567     // Cannot fold a signed setcc with an unsigned setcc.
568     return ISD::SETCC_INVALID;
569 
570   // Combine all of the condition bits.
571   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
572 
573   // Canonicalize illegal integer setcc's.
574   if (IsInteger) {
575     switch (Result) {
576     default: break;
577     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
578     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
579     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
580     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
581     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
582     }
583   }
584 
585   return Result;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                           SDNode Profile Support
590 //===----------------------------------------------------------------------===//
591 
592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
594   ID.AddInteger(OpC);
595 }
596 
597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
598 /// solely with their pointer.
599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
600   ID.AddPointer(VTList.VTs);
601 }
602 
603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
604 static void AddNodeIDOperands(FoldingSetNodeID &ID,
605                               ArrayRef<SDValue> Ops) {
606   for (auto& Op : Ops) {
607     ID.AddPointer(Op.getNode());
608     ID.AddInteger(Op.getResNo());
609   }
610 }
611 
612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
613 static void AddNodeIDOperands(FoldingSetNodeID &ID,
614                               ArrayRef<SDUse> Ops) {
615   for (auto& Op : Ops) {
616     ID.AddPointer(Op.getNode());
617     ID.AddInteger(Op.getResNo());
618   }
619 }
620 
621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
622                           SDVTList VTList, ArrayRef<SDValue> OpList) {
623   AddNodeIDOpcode(ID, OpC);
624   AddNodeIDValueTypes(ID, VTList);
625   AddNodeIDOperands(ID, OpList);
626 }
627 
628 /// If this is an SDNode with special info, add this info to the NodeID data.
629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
630   switch (N->getOpcode()) {
631   case ISD::TargetExternalSymbol:
632   case ISD::ExternalSymbol:
633   case ISD::MCSymbol:
634     llvm_unreachable("Should only be used on nodes with operands");
635   default: break;  // Normal nodes don't need extra info.
636   case ISD::TargetConstant:
637   case ISD::Constant: {
638     const ConstantSDNode *C = cast<ConstantSDNode>(N);
639     ID.AddPointer(C->getConstantIntValue());
640     ID.AddBoolean(C->isOpaque());
641     break;
642   }
643   case ISD::TargetConstantFP:
644   case ISD::ConstantFP:
645     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
646     break;
647   case ISD::TargetGlobalAddress:
648   case ISD::GlobalAddress:
649   case ISD::TargetGlobalTLSAddress:
650   case ISD::GlobalTLSAddress: {
651     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
652     ID.AddPointer(GA->getGlobal());
653     ID.AddInteger(GA->getOffset());
654     ID.AddInteger(GA->getTargetFlags());
655     break;
656   }
657   case ISD::BasicBlock:
658     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
659     break;
660   case ISD::Register:
661     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
662     break;
663   case ISD::RegisterMask:
664     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
665     break;
666   case ISD::SRCVALUE:
667     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
668     break;
669   case ISD::FrameIndex:
670   case ISD::TargetFrameIndex:
671     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
672     break;
673   case ISD::LIFETIME_START:
674   case ISD::LIFETIME_END:
675     if (cast<LifetimeSDNode>(N)->hasOffset()) {
676       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
677       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
678     }
679     break;
680   case ISD::PSEUDO_PROBE:
681     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
682     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
683     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
684     break;
685   case ISD::JumpTable:
686   case ISD::TargetJumpTable:
687     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
688     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
689     break;
690   case ISD::ConstantPool:
691   case ISD::TargetConstantPool: {
692     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
693     ID.AddInteger(CP->getAlign().value());
694     ID.AddInteger(CP->getOffset());
695     if (CP->isMachineConstantPoolEntry())
696       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
697     else
698       ID.AddPointer(CP->getConstVal());
699     ID.AddInteger(CP->getTargetFlags());
700     break;
701   }
702   case ISD::TargetIndex: {
703     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
704     ID.AddInteger(TI->getIndex());
705     ID.AddInteger(TI->getOffset());
706     ID.AddInteger(TI->getTargetFlags());
707     break;
708   }
709   case ISD::LOAD: {
710     const LoadSDNode *LD = cast<LoadSDNode>(N);
711     ID.AddInteger(LD->getMemoryVT().getRawBits());
712     ID.AddInteger(LD->getRawSubclassData());
713     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
714     ID.AddInteger(LD->getMemOperand()->getFlags());
715     break;
716   }
717   case ISD::STORE: {
718     const StoreSDNode *ST = cast<StoreSDNode>(N);
719     ID.AddInteger(ST->getMemoryVT().getRawBits());
720     ID.AddInteger(ST->getRawSubclassData());
721     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
722     ID.AddInteger(ST->getMemOperand()->getFlags());
723     break;
724   }
725   case ISD::VP_LOAD: {
726     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
727     ID.AddInteger(ELD->getMemoryVT().getRawBits());
728     ID.AddInteger(ELD->getRawSubclassData());
729     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
730     ID.AddInteger(ELD->getMemOperand()->getFlags());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     ID.AddInteger(EST->getMemOperand()->getFlags());
739     break;
740   }
741   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
742     const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
743     ID.AddInteger(SLD->getMemoryVT().getRawBits());
744     ID.AddInteger(SLD->getRawSubclassData());
745     ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
746     break;
747   }
748   case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
749     const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
750     ID.AddInteger(SST->getMemoryVT().getRawBits());
751     ID.AddInteger(SST->getRawSubclassData());
752     ID.AddInteger(SST->getPointerInfo().getAddrSpace());
753     break;
754   }
755   case ISD::VP_GATHER: {
756     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
757     ID.AddInteger(EG->getMemoryVT().getRawBits());
758     ID.AddInteger(EG->getRawSubclassData());
759     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
760     ID.AddInteger(EG->getMemOperand()->getFlags());
761     break;
762   }
763   case ISD::VP_SCATTER: {
764     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
765     ID.AddInteger(ES->getMemoryVT().getRawBits());
766     ID.AddInteger(ES->getRawSubclassData());
767     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
768     ID.AddInteger(ES->getMemOperand()->getFlags());
769     break;
770   }
771   case ISD::MLOAD: {
772     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
773     ID.AddInteger(MLD->getMemoryVT().getRawBits());
774     ID.AddInteger(MLD->getRawSubclassData());
775     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
776     ID.AddInteger(MLD->getMemOperand()->getFlags());
777     break;
778   }
779   case ISD::MSTORE: {
780     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
781     ID.AddInteger(MST->getMemoryVT().getRawBits());
782     ID.AddInteger(MST->getRawSubclassData());
783     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
784     ID.AddInteger(MST->getMemOperand()->getFlags());
785     break;
786   }
787   case ISD::MGATHER: {
788     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
789     ID.AddInteger(MG->getMemoryVT().getRawBits());
790     ID.AddInteger(MG->getRawSubclassData());
791     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
792     ID.AddInteger(MG->getMemOperand()->getFlags());
793     break;
794   }
795   case ISD::MSCATTER: {
796     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
797     ID.AddInteger(MS->getMemoryVT().getRawBits());
798     ID.AddInteger(MS->getRawSubclassData());
799     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
800     ID.AddInteger(MS->getMemOperand()->getFlags());
801     break;
802   }
803   case ISD::ATOMIC_CMP_SWAP:
804   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
805   case ISD::ATOMIC_SWAP:
806   case ISD::ATOMIC_LOAD_ADD:
807   case ISD::ATOMIC_LOAD_SUB:
808   case ISD::ATOMIC_LOAD_AND:
809   case ISD::ATOMIC_LOAD_CLR:
810   case ISD::ATOMIC_LOAD_OR:
811   case ISD::ATOMIC_LOAD_XOR:
812   case ISD::ATOMIC_LOAD_NAND:
813   case ISD::ATOMIC_LOAD_MIN:
814   case ISD::ATOMIC_LOAD_MAX:
815   case ISD::ATOMIC_LOAD_UMIN:
816   case ISD::ATOMIC_LOAD_UMAX:
817   case ISD::ATOMIC_LOAD:
818   case ISD::ATOMIC_STORE: {
819     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
820     ID.AddInteger(AT->getMemoryVT().getRawBits());
821     ID.AddInteger(AT->getRawSubclassData());
822     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
823     ID.AddInteger(AT->getMemOperand()->getFlags());
824     break;
825   }
826   case ISD::PREFETCH: {
827     const MemSDNode *PF = cast<MemSDNode>(N);
828     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
829     ID.AddInteger(PF->getMemOperand()->getFlags());
830     break;
831   }
832   case ISD::VECTOR_SHUFFLE: {
833     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
834     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
835          i != e; ++i)
836       ID.AddInteger(SVN->getMaskElt(i));
837     break;
838   }
839   case ISD::TargetBlockAddress:
840   case ISD::BlockAddress: {
841     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
842     ID.AddPointer(BA->getBlockAddress());
843     ID.AddInteger(BA->getOffset());
844     ID.AddInteger(BA->getTargetFlags());
845     break;
846   }
847   case ISD::AssertAlign:
848     ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
849     break;
850   } // end switch (N->getOpcode())
851 
852   // Target specific memory nodes could also have address spaces and flags
853   // to check.
854   if (N->isTargetMemoryOpcode()) {
855     const MemSDNode *MN = cast<MemSDNode>(N);
856     ID.AddInteger(MN->getPointerInfo().getAddrSpace());
857     ID.AddInteger(MN->getMemOperand()->getFlags());
858   }
859 }
860 
861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
862 /// data.
863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
864   AddNodeIDOpcode(ID, N->getOpcode());
865   // Add the return value info.
866   AddNodeIDValueTypes(ID, N->getVTList());
867   // Add the operand info.
868   AddNodeIDOperands(ID, N->ops());
869 
870   // Handle SDNode leafs with special info.
871   AddNodeIDCustom(ID, N);
872 }
873 
874 //===----------------------------------------------------------------------===//
875 //                              SelectionDAG Class
876 //===----------------------------------------------------------------------===//
877 
878 /// doNotCSE - Return true if CSE should not be performed for this node.
879 static bool doNotCSE(SDNode *N) {
880   if (N->getValueType(0) == MVT::Glue)
881     return true; // Never CSE anything that produces a flag.
882 
883   switch (N->getOpcode()) {
884   default: break;
885   case ISD::HANDLENODE:
886   case ISD::EH_LABEL:
887     return true;   // Never CSE these nodes.
888   }
889 
890   // Check that remaining values produced are not flags.
891   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
892     if (N->getValueType(i) == MVT::Glue)
893       return true; // Never CSE anything that produces a flag.
894 
895   return false;
896 }
897 
898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
899 /// SelectionDAG.
900 void SelectionDAG::RemoveDeadNodes() {
901   // Create a dummy node (which is not added to allnodes), that adds a reference
902   // to the root node, preventing it from being deleted.
903   HandleSDNode Dummy(getRoot());
904 
905   SmallVector<SDNode*, 128> DeadNodes;
906 
907   // Add all obviously-dead nodes to the DeadNodes worklist.
908   for (SDNode &Node : allnodes())
909     if (Node.use_empty())
910       DeadNodes.push_back(&Node);
911 
912   RemoveDeadNodes(DeadNodes);
913 
914   // If the root changed (e.g. it was a dead load, update the root).
915   setRoot(Dummy.getValue());
916 }
917 
918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
919 /// given list, and any nodes that become unreachable as a result.
920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
921 
922   // Process the worklist, deleting the nodes and adding their uses to the
923   // worklist.
924   while (!DeadNodes.empty()) {
925     SDNode *N = DeadNodes.pop_back_val();
926     // Skip to next node if we've already managed to delete the node. This could
927     // happen if replacing a node causes a node previously added to the node to
928     // be deleted.
929     if (N->getOpcode() == ISD::DELETED_NODE)
930       continue;
931 
932     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
933       DUL->NodeDeleted(N, nullptr);
934 
935     // Take the node out of the appropriate CSE map.
936     RemoveNodeFromCSEMaps(N);
937 
938     // Next, brutally remove the operand list.  This is safe to do, as there are
939     // no cycles in the graph.
940     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
941       SDUse &Use = *I++;
942       SDNode *Operand = Use.getNode();
943       Use.set(SDValue());
944 
945       // Now that we removed this operand, see if there are no uses of it left.
946       if (Operand->use_empty())
947         DeadNodes.push_back(Operand);
948     }
949 
950     DeallocateNode(N);
951   }
952 }
953 
954 void SelectionDAG::RemoveDeadNode(SDNode *N){
955   SmallVector<SDNode*, 16> DeadNodes(1, N);
956 
957   // Create a dummy node that adds a reference to the root node, preventing
958   // it from being deleted.  (This matters if the root is an operand of the
959   // dead node.)
960   HandleSDNode Dummy(getRoot());
961 
962   RemoveDeadNodes(DeadNodes);
963 }
964 
965 void SelectionDAG::DeleteNode(SDNode *N) {
966   // First take this out of the appropriate CSE map.
967   RemoveNodeFromCSEMaps(N);
968 
969   // Finally, remove uses due to operands of this node, remove from the
970   // AllNodes list, and delete the node.
971   DeleteNodeNotInCSEMaps(N);
972 }
973 
974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
975   assert(N->getIterator() != AllNodes.begin() &&
976          "Cannot delete the entry node!");
977   assert(N->use_empty() && "Cannot delete a node that is not dead!");
978 
979   // Drop all of the operands and decrement used node's use counts.
980   N->DropOperands();
981 
982   DeallocateNode(N);
983 }
984 
985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
986   assert(!(V->isVariadic() && isParameter));
987   if (isParameter)
988     ByvalParmDbgValues.push_back(V);
989   else
990     DbgValues.push_back(V);
991   for (const SDNode *Node : V->getSDNodes())
992     if (Node)
993       DbgValMap[Node].push_back(V);
994 }
995 
996 void SDDbgInfo::erase(const SDNode *Node) {
997   DbgValMapType::iterator I = DbgValMap.find(Node);
998   if (I == DbgValMap.end())
999     return;
1000   for (auto &Val: I->second)
1001     Val->setIsInvalidated();
1002   DbgValMap.erase(I);
1003 }
1004 
1005 void SelectionDAG::DeallocateNode(SDNode *N) {
1006   // If we have operands, deallocate them.
1007   removeOperands(N);
1008 
1009   NodeAllocator.Deallocate(AllNodes.remove(N));
1010 
1011   // Set the opcode to DELETED_NODE to help catch bugs when node
1012   // memory is reallocated.
1013   // FIXME: There are places in SDag that have grown a dependency on the opcode
1014   // value in the released node.
1015   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1016   N->NodeType = ISD::DELETED_NODE;
1017 
1018   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1019   // them and forget about that node.
1020   DbgInfo->erase(N);
1021 }
1022 
1023 #ifndef NDEBUG
1024 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
1025 static void VerifySDNode(SDNode *N) {
1026   switch (N->getOpcode()) {
1027   default:
1028     break;
1029   case ISD::BUILD_PAIR: {
1030     EVT VT = N->getValueType(0);
1031     assert(N->getNumValues() == 1 && "Too many results!");
1032     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1033            "Wrong return type!");
1034     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1035     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1036            "Mismatched operand types!");
1037     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1038            "Wrong operand type!");
1039     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1040            "Wrong return type size");
1041     break;
1042   }
1043   case ISD::BUILD_VECTOR: {
1044     assert(N->getNumValues() == 1 && "Too many results!");
1045     assert(N->getValueType(0).isVector() && "Wrong return type!");
1046     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1047            "Wrong number of operands!");
1048     EVT EltVT = N->getValueType(0).getVectorElementType();
1049     for (const SDUse &Op : N->ops()) {
1050       assert((Op.getValueType() == EltVT ||
1051               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1052                EltVT.bitsLE(Op.getValueType()))) &&
1053              "Wrong operand type!");
1054       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1055              "Operands must all have the same type");
1056     }
1057     break;
1058   }
1059   }
1060 }
1061 #endif // NDEBUG
1062 
1063 /// Insert a newly allocated node into the DAG.
1064 ///
1065 /// Handles insertion into the all nodes list and CSE map, as well as
1066 /// verification and other common operations when a new node is allocated.
1067 void SelectionDAG::InsertNode(SDNode *N) {
1068   AllNodes.push_back(N);
1069 #ifndef NDEBUG
1070   N->PersistentId = NextPersistentId++;
1071   VerifySDNode(N);
1072 #endif
1073   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1074     DUL->NodeInserted(N);
1075 }
1076 
1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1078 /// correspond to it.  This is useful when we're about to delete or repurpose
1079 /// the node.  We don't want future request for structurally identical nodes
1080 /// to return N anymore.
1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1082   bool Erased = false;
1083   switch (N->getOpcode()) {
1084   case ISD::HANDLENODE: return false;  // noop.
1085   case ISD::CONDCODE:
1086     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1087            "Cond code doesn't exist!");
1088     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1089     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1090     break;
1091   case ISD::ExternalSymbol:
1092     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1093     break;
1094   case ISD::TargetExternalSymbol: {
1095     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1096     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1097         ESN->getSymbol(), ESN->getTargetFlags()));
1098     break;
1099   }
1100   case ISD::MCSymbol: {
1101     auto *MCSN = cast<MCSymbolSDNode>(N);
1102     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1103     break;
1104   }
1105   case ISD::VALUETYPE: {
1106     EVT VT = cast<VTSDNode>(N)->getVT();
1107     if (VT.isExtended()) {
1108       Erased = ExtendedValueTypeNodes.erase(VT);
1109     } else {
1110       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1111       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1112     }
1113     break;
1114   }
1115   default:
1116     // Remove it from the CSE Map.
1117     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1118     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1119     Erased = CSEMap.RemoveNode(N);
1120     break;
1121   }
1122 #ifndef NDEBUG
1123   // Verify that the node was actually in one of the CSE maps, unless it has a
1124   // flag result (which cannot be CSE'd) or is one of the special cases that are
1125   // not subject to CSE.
1126   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1127       !N->isMachineOpcode() && !doNotCSE(N)) {
1128     N->dump(this);
1129     dbgs() << "\n";
1130     llvm_unreachable("Node is not in map!");
1131   }
1132 #endif
1133   return Erased;
1134 }
1135 
1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1138 /// node already exists, in which case transfer all its users to the existing
1139 /// node. This transfer can potentially trigger recursive merging.
1140 void
1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1142   // For node types that aren't CSE'd, just act as if no identical node
1143   // already exists.
1144   if (!doNotCSE(N)) {
1145     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1146     if (Existing != N) {
1147       // If there was already an existing matching node, use ReplaceAllUsesWith
1148       // to replace the dead one with the existing one.  This can cause
1149       // recursive merging of other unrelated nodes down the line.
1150       ReplaceAllUsesWith(N, Existing);
1151 
1152       // N is now dead. Inform the listeners and delete it.
1153       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1154         DUL->NodeDeleted(N, Existing);
1155       DeleteNodeNotInCSEMaps(N);
1156       return;
1157     }
1158   }
1159 
1160   // If the node doesn't already exist, we updated it.  Inform listeners.
1161   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1162     DUL->NodeUpdated(N);
1163 }
1164 
1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1166 /// were replaced with those specified.  If this node is never memoized,
1167 /// return null, otherwise return a pointer to the slot it would take.  If a
1168 /// node already exists with these operands, the slot will be non-null.
1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1170                                            void *&InsertPos) {
1171   if (doNotCSE(N))
1172     return nullptr;
1173 
1174   SDValue Ops[] = { Op };
1175   FoldingSetNodeID ID;
1176   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1177   AddNodeIDCustom(ID, N);
1178   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1179   if (Node)
1180     Node->intersectFlagsWith(N->getFlags());
1181   return Node;
1182 }
1183 
1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1185 /// were replaced with those specified.  If this node is never memoized,
1186 /// return null, otherwise return a pointer to the slot it would take.  If a
1187 /// node already exists with these operands, the slot will be non-null.
1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1189                                            SDValue Op1, SDValue Op2,
1190                                            void *&InsertPos) {
1191   if (doNotCSE(N))
1192     return nullptr;
1193 
1194   SDValue Ops[] = { Op1, Op2 };
1195   FoldingSetNodeID ID;
1196   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1197   AddNodeIDCustom(ID, N);
1198   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1199   if (Node)
1200     Node->intersectFlagsWith(N->getFlags());
1201   return Node;
1202 }
1203 
1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1205 /// were replaced with those specified.  If this node is never memoized,
1206 /// return null, otherwise return a pointer to the slot it would take.  If a
1207 /// node already exists with these operands, the slot will be non-null.
1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1209                                            void *&InsertPos) {
1210   if (doNotCSE(N))
1211     return nullptr;
1212 
1213   FoldingSetNodeID ID;
1214   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1215   AddNodeIDCustom(ID, N);
1216   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1217   if (Node)
1218     Node->intersectFlagsWith(N->getFlags());
1219   return Node;
1220 }
1221 
1222 Align SelectionDAG::getEVTAlign(EVT VT) const {
1223   Type *Ty = VT == MVT::iPTR ?
1224                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1225                    VT.getTypeForEVT(*getContext());
1226 
1227   return getDataLayout().getABITypeAlign(Ty);
1228 }
1229 
1230 // EntryNode could meaningfully have debug info if we can find it...
1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1232     : TM(tm), OptLevel(OL),
1233       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1234       Root(getEntryNode()) {
1235   InsertNode(&EntryNode);
1236   DbgInfo = new SDDbgInfo();
1237 }
1238 
1239 void SelectionDAG::init(MachineFunction &NewMF,
1240                         OptimizationRemarkEmitter &NewORE,
1241                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1242                         LegacyDivergenceAnalysis * Divergence,
1243                         ProfileSummaryInfo *PSIin,
1244                         BlockFrequencyInfo *BFIin) {
1245   MF = &NewMF;
1246   SDAGISelPass = PassPtr;
1247   ORE = &NewORE;
1248   TLI = getSubtarget().getTargetLowering();
1249   TSI = getSubtarget().getSelectionDAGInfo();
1250   LibInfo = LibraryInfo;
1251   Context = &MF->getFunction().getContext();
1252   DA = Divergence;
1253   PSI = PSIin;
1254   BFI = BFIin;
1255 }
1256 
1257 SelectionDAG::~SelectionDAG() {
1258   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1259   allnodes_clear();
1260   OperandRecycler.clear(OperandAllocator);
1261   delete DbgInfo;
1262 }
1263 
1264 bool SelectionDAG::shouldOptForSize() const {
1265   return MF->getFunction().hasOptSize() ||
1266       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1267 }
1268 
1269 void SelectionDAG::allnodes_clear() {
1270   assert(&*AllNodes.begin() == &EntryNode);
1271   AllNodes.remove(AllNodes.begin());
1272   while (!AllNodes.empty())
1273     DeallocateNode(&AllNodes.front());
1274 #ifndef NDEBUG
1275   NextPersistentId = 0;
1276 #endif
1277 }
1278 
1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1280                                           void *&InsertPos) {
1281   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1282   if (N) {
1283     switch (N->getOpcode()) {
1284     default: break;
1285     case ISD::Constant:
1286     case ISD::ConstantFP:
1287       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1288                        "debug location.  Use another overload.");
1289     }
1290   }
1291   return N;
1292 }
1293 
1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1295                                           const SDLoc &DL, void *&InsertPos) {
1296   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1297   if (N) {
1298     switch (N->getOpcode()) {
1299     case ISD::Constant:
1300     case ISD::ConstantFP:
1301       // Erase debug location from the node if the node is used at several
1302       // different places. Do not propagate one location to all uses as it
1303       // will cause a worse single stepping debugging experience.
1304       if (N->getDebugLoc() != DL.getDebugLoc())
1305         N->setDebugLoc(DebugLoc());
1306       break;
1307     default:
1308       // When the node's point of use is located earlier in the instruction
1309       // sequence than its prior point of use, update its debug info to the
1310       // earlier location.
1311       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1312         N->setDebugLoc(DL.getDebugLoc());
1313       break;
1314     }
1315   }
1316   return N;
1317 }
1318 
1319 void SelectionDAG::clear() {
1320   allnodes_clear();
1321   OperandRecycler.clear(OperandAllocator);
1322   OperandAllocator.Reset();
1323   CSEMap.clear();
1324 
1325   ExtendedValueTypeNodes.clear();
1326   ExternalSymbols.clear();
1327   TargetExternalSymbols.clear();
1328   MCSymbols.clear();
1329   SDCallSiteDbgInfo.clear();
1330   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1331             static_cast<CondCodeSDNode*>(nullptr));
1332   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1333             static_cast<SDNode*>(nullptr));
1334 
1335   EntryNode.UseList = nullptr;
1336   InsertNode(&EntryNode);
1337   Root = getEntryNode();
1338   DbgInfo->clear();
1339 }
1340 
1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1342   return VT.bitsGT(Op.getValueType())
1343              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1344              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1345 }
1346 
1347 std::pair<SDValue, SDValue>
1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1349                                        const SDLoc &DL, EVT VT) {
1350   assert(!VT.bitsEq(Op.getValueType()) &&
1351          "Strict no-op FP extend/round not allowed.");
1352   SDValue Res =
1353       VT.bitsGT(Op.getValueType())
1354           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1355           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1356                     {Chain, Op, getIntPtrConstant(0, DL)});
1357 
1358   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1359 }
1360 
1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1362   return VT.bitsGT(Op.getValueType()) ?
1363     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1364     getNode(ISD::TRUNCATE, DL, VT, Op);
1365 }
1366 
1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1368   return VT.bitsGT(Op.getValueType()) ?
1369     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1370     getNode(ISD::TRUNCATE, DL, VT, Op);
1371 }
1372 
1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1374   return VT.bitsGT(Op.getValueType()) ?
1375     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1376     getNode(ISD::TRUNCATE, DL, VT, Op);
1377 }
1378 
1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1380                                         EVT OpVT) {
1381   if (VT.bitsLE(Op.getValueType()))
1382     return getNode(ISD::TRUNCATE, SL, VT, Op);
1383 
1384   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1385   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1386 }
1387 
1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1389   EVT OpVT = Op.getValueType();
1390   assert(VT.isInteger() && OpVT.isInteger() &&
1391          "Cannot getZeroExtendInReg FP types");
1392   assert(VT.isVector() == OpVT.isVector() &&
1393          "getZeroExtendInReg type should be vector iff the operand "
1394          "type is vector!");
1395   assert((!VT.isVector() ||
1396           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1397          "Vector element counts must match in getZeroExtendInReg");
1398   assert(VT.bitsLE(OpVT) && "Not extending!");
1399   if (OpVT == VT)
1400     return Op;
1401   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1402                                    VT.getScalarSizeInBits());
1403   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1404 }
1405 
1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1407   // Only unsigned pointer semantics are supported right now. In the future this
1408   // might delegate to TLI to check pointer signedness.
1409   return getZExtOrTrunc(Op, DL, VT);
1410 }
1411 
1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1413   // Only unsigned pointer semantics are supported right now. In the future this
1414   // might delegate to TLI to check pointer signedness.
1415   return getZeroExtendInReg(Op, DL, VT);
1416 }
1417 
1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1420   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1421 }
1422 
1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1424   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1425   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1426 }
1427 
1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val,
1429                                       SDValue Mask, SDValue EVL, EVT VT) {
1430   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1431   return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1432 }
1433 
1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1435                                       EVT OpVT) {
1436   if (!V)
1437     return getConstant(0, DL, VT);
1438 
1439   switch (TLI->getBooleanContents(OpVT)) {
1440   case TargetLowering::ZeroOrOneBooleanContent:
1441   case TargetLowering::UndefinedBooleanContent:
1442     return getConstant(1, DL, VT);
1443   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1444     return getAllOnesConstant(DL, VT);
1445   }
1446   llvm_unreachable("Unexpected boolean content enum!");
1447 }
1448 
1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1450                                   bool isT, bool isO) {
1451   EVT EltVT = VT.getScalarType();
1452   assert((EltVT.getSizeInBits() >= 64 ||
1453           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1454          "getConstant with a uint64_t value that doesn't fit in the type!");
1455   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1456 }
1457 
1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1459                                   bool isT, bool isO) {
1460   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1461 }
1462 
1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1464                                   EVT VT, bool isT, bool isO) {
1465   assert(VT.isInteger() && "Cannot create FP integer constant!");
1466 
1467   EVT EltVT = VT.getScalarType();
1468   const ConstantInt *Elt = &Val;
1469 
1470   // In some cases the vector type is legal but the element type is illegal and
1471   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1472   // inserted value (the type does not need to match the vector element type).
1473   // Any extra bits introduced will be truncated away.
1474   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1475                            TargetLowering::TypePromoteInteger) {
1476     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1477     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1478     Elt = ConstantInt::get(*getContext(), NewVal);
1479   }
1480   // In other cases the element type is illegal and needs to be expanded, for
1481   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1482   // the value into n parts and use a vector type with n-times the elements.
1483   // Then bitcast to the type requested.
1484   // Legalizing constants too early makes the DAGCombiner's job harder so we
1485   // only legalize if the DAG tells us we must produce legal types.
1486   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1487            TLI->getTypeAction(*getContext(), EltVT) ==
1488                TargetLowering::TypeExpandInteger) {
1489     const APInt &NewVal = Elt->getValue();
1490     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1491     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1492 
1493     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1494     if (VT.isScalableVector()) {
1495       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1496              "Can only handle an even split!");
1497       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1498 
1499       SmallVector<SDValue, 2> ScalarParts;
1500       for (unsigned i = 0; i != Parts; ++i)
1501         ScalarParts.push_back(getConstant(
1502             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1503             ViaEltVT, isT, isO));
1504 
1505       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1506     }
1507 
1508     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1509     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1510 
1511     // Check the temporary vector is the correct size. If this fails then
1512     // getTypeToTransformTo() probably returned a type whose size (in bits)
1513     // isn't a power-of-2 factor of the requested type size.
1514     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1515 
1516     SmallVector<SDValue, 2> EltParts;
1517     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1518       EltParts.push_back(getConstant(
1519           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1520           ViaEltVT, isT, isO));
1521 
1522     // EltParts is currently in little endian order. If we actually want
1523     // big-endian order then reverse it now.
1524     if (getDataLayout().isBigEndian())
1525       std::reverse(EltParts.begin(), EltParts.end());
1526 
1527     // The elements must be reversed when the element order is different
1528     // to the endianness of the elements (because the BITCAST is itself a
1529     // vector shuffle in this situation). However, we do not need any code to
1530     // perform this reversal because getConstant() is producing a vector
1531     // splat.
1532     // This situation occurs in MIPS MSA.
1533 
1534     SmallVector<SDValue, 8> Ops;
1535     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1536       llvm::append_range(Ops, EltParts);
1537 
1538     SDValue V =
1539         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1540     return V;
1541   }
1542 
1543   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1544          "APInt size does not match type size!");
1545   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1546   FoldingSetNodeID ID;
1547   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1548   ID.AddPointer(Elt);
1549   ID.AddBoolean(isO);
1550   void *IP = nullptr;
1551   SDNode *N = nullptr;
1552   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1553     if (!VT.isVector())
1554       return SDValue(N, 0);
1555 
1556   if (!N) {
1557     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1558     CSEMap.InsertNode(N, IP);
1559     InsertNode(N);
1560     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1561   }
1562 
1563   SDValue Result(N, 0);
1564   if (VT.isScalableVector())
1565     Result = getSplatVector(VT, DL, Result);
1566   else if (VT.isVector())
1567     Result = getSplatBuildVector(VT, DL, Result);
1568 
1569   return Result;
1570 }
1571 
1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1573                                         bool isTarget) {
1574   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1575 }
1576 
1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1578                                              const SDLoc &DL, bool LegalTypes) {
1579   assert(VT.isInteger() && "Shift amount is not an integer type!");
1580   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1581   return getConstant(Val, DL, ShiftVT);
1582 }
1583 
1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1585                                            bool isTarget) {
1586   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1587 }
1588 
1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1590                                     bool isTarget) {
1591   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1592 }
1593 
1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1595                                     EVT VT, bool isTarget) {
1596   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1597 
1598   EVT EltVT = VT.getScalarType();
1599 
1600   // Do the map lookup using the actual bit pattern for the floating point
1601   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1602   // we don't have issues with SNANs.
1603   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1604   FoldingSetNodeID ID;
1605   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1606   ID.AddPointer(&V);
1607   void *IP = nullptr;
1608   SDNode *N = nullptr;
1609   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1610     if (!VT.isVector())
1611       return SDValue(N, 0);
1612 
1613   if (!N) {
1614     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1615     CSEMap.InsertNode(N, IP);
1616     InsertNode(N);
1617   }
1618 
1619   SDValue Result(N, 0);
1620   if (VT.isScalableVector())
1621     Result = getSplatVector(VT, DL, Result);
1622   else if (VT.isVector())
1623     Result = getSplatBuildVector(VT, DL, Result);
1624   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1625   return Result;
1626 }
1627 
1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1629                                     bool isTarget) {
1630   EVT EltVT = VT.getScalarType();
1631   if (EltVT == MVT::f32)
1632     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1633   if (EltVT == MVT::f64)
1634     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1635   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1636       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1637     bool Ignored;
1638     APFloat APF = APFloat(Val);
1639     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1640                 &Ignored);
1641     return getConstantFP(APF, DL, VT, isTarget);
1642   }
1643   llvm_unreachable("Unsupported type in getConstantFP");
1644 }
1645 
1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1647                                        EVT VT, int64_t Offset, bool isTargetGA,
1648                                        unsigned TargetFlags) {
1649   assert((TargetFlags == 0 || isTargetGA) &&
1650          "Cannot set target flags on target-independent globals");
1651 
1652   // Truncate (with sign-extension) the offset value to the pointer size.
1653   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1654   if (BitWidth < 64)
1655     Offset = SignExtend64(Offset, BitWidth);
1656 
1657   unsigned Opc;
1658   if (GV->isThreadLocal())
1659     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1660   else
1661     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1662 
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddPointer(GV);
1666   ID.AddInteger(Offset);
1667   ID.AddInteger(TargetFlags);
1668   void *IP = nullptr;
1669   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1670     return SDValue(E, 0);
1671 
1672   auto *N = newSDNode<GlobalAddressSDNode>(
1673       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1674   CSEMap.InsertNode(N, IP);
1675     InsertNode(N);
1676   return SDValue(N, 0);
1677 }
1678 
1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1680   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1681   FoldingSetNodeID ID;
1682   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1683   ID.AddInteger(FI);
1684   void *IP = nullptr;
1685   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1686     return SDValue(E, 0);
1687 
1688   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1689   CSEMap.InsertNode(N, IP);
1690   InsertNode(N);
1691   return SDValue(N, 0);
1692 }
1693 
1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1695                                    unsigned TargetFlags) {
1696   assert((TargetFlags == 0 || isTarget) &&
1697          "Cannot set target flags on target-independent jump tables");
1698   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1699   FoldingSetNodeID ID;
1700   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1701   ID.AddInteger(JTI);
1702   ID.AddInteger(TargetFlags);
1703   void *IP = nullptr;
1704   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1705     return SDValue(E, 0);
1706 
1707   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1708   CSEMap.InsertNode(N, IP);
1709   InsertNode(N);
1710   return SDValue(N, 0);
1711 }
1712 
1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1714                                       MaybeAlign Alignment, int Offset,
1715                                       bool isTarget, unsigned TargetFlags) {
1716   assert((TargetFlags == 0 || isTarget) &&
1717          "Cannot set target flags on target-independent globals");
1718   if (!Alignment)
1719     Alignment = shouldOptForSize()
1720                     ? getDataLayout().getABITypeAlign(C->getType())
1721                     : getDataLayout().getPrefTypeAlign(C->getType());
1722   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1723   FoldingSetNodeID ID;
1724   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1725   ID.AddInteger(Alignment->value());
1726   ID.AddInteger(Offset);
1727   ID.AddPointer(C);
1728   ID.AddInteger(TargetFlags);
1729   void *IP = nullptr;
1730   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1731     return SDValue(E, 0);
1732 
1733   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1734                                           TargetFlags);
1735   CSEMap.InsertNode(N, IP);
1736   InsertNode(N);
1737   SDValue V = SDValue(N, 0);
1738   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1739   return V;
1740 }
1741 
1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1743                                       MaybeAlign Alignment, int Offset,
1744                                       bool isTarget, unsigned TargetFlags) {
1745   assert((TargetFlags == 0 || isTarget) &&
1746          "Cannot set target flags on target-independent globals");
1747   if (!Alignment)
1748     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1749   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1750   FoldingSetNodeID ID;
1751   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1752   ID.AddInteger(Alignment->value());
1753   ID.AddInteger(Offset);
1754   C->addSelectionDAGCSEId(ID);
1755   ID.AddInteger(TargetFlags);
1756   void *IP = nullptr;
1757   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1758     return SDValue(E, 0);
1759 
1760   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1761                                           TargetFlags);
1762   CSEMap.InsertNode(N, IP);
1763   InsertNode(N);
1764   return SDValue(N, 0);
1765 }
1766 
1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1768                                      unsigned TargetFlags) {
1769   FoldingSetNodeID ID;
1770   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1771   ID.AddInteger(Index);
1772   ID.AddInteger(Offset);
1773   ID.AddInteger(TargetFlags);
1774   void *IP = nullptr;
1775   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1776     return SDValue(E, 0);
1777 
1778   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1785   FoldingSetNodeID ID;
1786   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1787   ID.AddPointer(MBB);
1788   void *IP = nullptr;
1789   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1790     return SDValue(E, 0);
1791 
1792   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1793   CSEMap.InsertNode(N, IP);
1794   InsertNode(N);
1795   return SDValue(N, 0);
1796 }
1797 
1798 SDValue SelectionDAG::getValueType(EVT VT) {
1799   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1800       ValueTypeNodes.size())
1801     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1802 
1803   SDNode *&N = VT.isExtended() ?
1804     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1805 
1806   if (N) return SDValue(N, 0);
1807   N = newSDNode<VTSDNode>(VT);
1808   InsertNode(N);
1809   return SDValue(N, 0);
1810 }
1811 
1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1813   SDNode *&N = ExternalSymbols[Sym];
1814   if (N) return SDValue(N, 0);
1815   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1816   InsertNode(N);
1817   return SDValue(N, 0);
1818 }
1819 
1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1821   SDNode *&N = MCSymbols[Sym];
1822   if (N)
1823     return SDValue(N, 0);
1824   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1825   InsertNode(N);
1826   return SDValue(N, 0);
1827 }
1828 
1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1830                                               unsigned TargetFlags) {
1831   SDNode *&N =
1832       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1833   if (N) return SDValue(N, 0);
1834   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1835   InsertNode(N);
1836   return SDValue(N, 0);
1837 }
1838 
1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1840   if ((unsigned)Cond >= CondCodeNodes.size())
1841     CondCodeNodes.resize(Cond+1);
1842 
1843   if (!CondCodeNodes[Cond]) {
1844     auto *N = newSDNode<CondCodeSDNode>(Cond);
1845     CondCodeNodes[Cond] = N;
1846     InsertNode(N);
1847   }
1848 
1849   return SDValue(CondCodeNodes[Cond], 0);
1850 }
1851 
1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1853   APInt One(ResVT.getScalarSizeInBits(), 1);
1854   return getStepVector(DL, ResVT, One);
1855 }
1856 
1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1858   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1859   if (ResVT.isScalableVector())
1860     return getNode(
1861         ISD::STEP_VECTOR, DL, ResVT,
1862         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1863 
1864   SmallVector<SDValue, 16> OpsStepConstants;
1865   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1866     OpsStepConstants.push_back(
1867         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1868   return getBuildVector(ResVT, DL, OpsStepConstants);
1869 }
1870 
1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1874   std::swap(N1, N2);
1875   ShuffleVectorSDNode::commuteMask(M);
1876 }
1877 
1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1879                                        SDValue N2, ArrayRef<int> Mask) {
1880   assert(VT.getVectorNumElements() == Mask.size() &&
1881          "Must have the same number of vector elements as mask elements!");
1882   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1883          "Invalid VECTOR_SHUFFLE");
1884 
1885   // Canonicalize shuffle undef, undef -> undef
1886   if (N1.isUndef() && N2.isUndef())
1887     return getUNDEF(VT);
1888 
1889   // Validate that all indices in Mask are within the range of the elements
1890   // input to the shuffle.
1891   int NElts = Mask.size();
1892   assert(llvm::all_of(Mask,
1893                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1894          "Index out of range");
1895 
1896   // Copy the mask so we can do any needed cleanup.
1897   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1898 
1899   // Canonicalize shuffle v, v -> v, undef
1900   if (N1 == N2) {
1901     N2 = getUNDEF(VT);
1902     for (int i = 0; i != NElts; ++i)
1903       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1904   }
1905 
1906   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1907   if (N1.isUndef())
1908     commuteShuffle(N1, N2, MaskVec);
1909 
1910   if (TLI->hasVectorBlend()) {
1911     // If shuffling a splat, try to blend the splat instead. We do this here so
1912     // that even when this arises during lowering we don't have to re-handle it.
1913     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1914       BitVector UndefElements;
1915       SDValue Splat = BV->getSplatValue(&UndefElements);
1916       if (!Splat)
1917         return;
1918 
1919       for (int i = 0; i < NElts; ++i) {
1920         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1921           continue;
1922 
1923         // If this input comes from undef, mark it as such.
1924         if (UndefElements[MaskVec[i] - Offset]) {
1925           MaskVec[i] = -1;
1926           continue;
1927         }
1928 
1929         // If we can blend a non-undef lane, use that instead.
1930         if (!UndefElements[i])
1931           MaskVec[i] = i + Offset;
1932       }
1933     };
1934     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1935       BlendSplat(N1BV, 0);
1936     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1937       BlendSplat(N2BV, NElts);
1938   }
1939 
1940   // Canonicalize all index into lhs, -> shuffle lhs, undef
1941   // Canonicalize all index into rhs, -> shuffle rhs, undef
1942   bool AllLHS = true, AllRHS = true;
1943   bool N2Undef = N2.isUndef();
1944   for (int i = 0; i != NElts; ++i) {
1945     if (MaskVec[i] >= NElts) {
1946       if (N2Undef)
1947         MaskVec[i] = -1;
1948       else
1949         AllLHS = false;
1950     } else if (MaskVec[i] >= 0) {
1951       AllRHS = false;
1952     }
1953   }
1954   if (AllLHS && AllRHS)
1955     return getUNDEF(VT);
1956   if (AllLHS && !N2Undef)
1957     N2 = getUNDEF(VT);
1958   if (AllRHS) {
1959     N1 = getUNDEF(VT);
1960     commuteShuffle(N1, N2, MaskVec);
1961   }
1962   // Reset our undef status after accounting for the mask.
1963   N2Undef = N2.isUndef();
1964   // Re-check whether both sides ended up undef.
1965   if (N1.isUndef() && N2Undef)
1966     return getUNDEF(VT);
1967 
1968   // If Identity shuffle return that node.
1969   bool Identity = true, AllSame = true;
1970   for (int i = 0; i != NElts; ++i) {
1971     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1972     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1973   }
1974   if (Identity && NElts)
1975     return N1;
1976 
1977   // Shuffling a constant splat doesn't change the result.
1978   if (N2Undef) {
1979     SDValue V = N1;
1980 
1981     // Look through any bitcasts. We check that these don't change the number
1982     // (and size) of elements and just changes their types.
1983     while (V.getOpcode() == ISD::BITCAST)
1984       V = V->getOperand(0);
1985 
1986     // A splat should always show up as a build vector node.
1987     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1988       BitVector UndefElements;
1989       SDValue Splat = BV->getSplatValue(&UndefElements);
1990       // If this is a splat of an undef, shuffling it is also undef.
1991       if (Splat && Splat.isUndef())
1992         return getUNDEF(VT);
1993 
1994       bool SameNumElts =
1995           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1996 
1997       // We only have a splat which can skip shuffles if there is a splatted
1998       // value and no undef lanes rearranged by the shuffle.
1999       if (Splat && UndefElements.none()) {
2000         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2001         // number of elements match or the value splatted is a zero constant.
2002         if (SameNumElts)
2003           return N1;
2004         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
2005           if (C->isZero())
2006             return N1;
2007       }
2008 
2009       // If the shuffle itself creates a splat, build the vector directly.
2010       if (AllSame && SameNumElts) {
2011         EVT BuildVT = BV->getValueType(0);
2012         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2013         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2014 
2015         // We may have jumped through bitcasts, so the type of the
2016         // BUILD_VECTOR may not match the type of the shuffle.
2017         if (BuildVT != VT)
2018           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2019         return NewBV;
2020       }
2021     }
2022   }
2023 
2024   FoldingSetNodeID ID;
2025   SDValue Ops[2] = { N1, N2 };
2026   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
2027   for (int i = 0; i != NElts; ++i)
2028     ID.AddInteger(MaskVec[i]);
2029 
2030   void* IP = nullptr;
2031   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2032     return SDValue(E, 0);
2033 
2034   // Allocate the mask array for the node out of the BumpPtrAllocator, since
2035   // SDNode doesn't have access to it.  This memory will be "leaked" when
2036   // the node is deallocated, but recovered when the NodeAllocator is released.
2037   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2038   llvm::copy(MaskVec, MaskAlloc);
2039 
2040   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2041                                            dl.getDebugLoc(), MaskAlloc);
2042   createOperands(N, Ops);
2043 
2044   CSEMap.InsertNode(N, IP);
2045   InsertNode(N);
2046   SDValue V = SDValue(N, 0);
2047   NewSDValueDbgMsg(V, "Creating new node: ", this);
2048   return V;
2049 }
2050 
2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2052   EVT VT = SV.getValueType(0);
2053   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2054   ShuffleVectorSDNode::commuteMask(MaskVec);
2055 
2056   SDValue Op0 = SV.getOperand(0);
2057   SDValue Op1 = SV.getOperand(1);
2058   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2059 }
2060 
2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2062   FoldingSetNodeID ID;
2063   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2064   ID.AddInteger(RegNo);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2070   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2071   CSEMap.InsertNode(N, IP);
2072   InsertNode(N);
2073   return SDValue(N, 0);
2074 }
2075 
2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2077   FoldingSetNodeID ID;
2078   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2079   ID.AddPointer(RegMask);
2080   void *IP = nullptr;
2081   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2082     return SDValue(E, 0);
2083 
2084   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2085   CSEMap.InsertNode(N, IP);
2086   InsertNode(N);
2087   return SDValue(N, 0);
2088 }
2089 
2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2091                                  MCSymbol *Label) {
2092   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2093 }
2094 
2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2096                                    SDValue Root, MCSymbol *Label) {
2097   FoldingSetNodeID ID;
2098   SDValue Ops[] = { Root };
2099   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2100   ID.AddPointer(Label);
2101   void *IP = nullptr;
2102   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2103     return SDValue(E, 0);
2104 
2105   auto *N =
2106       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2107   createOperands(N, Ops);
2108 
2109   CSEMap.InsertNode(N, IP);
2110   InsertNode(N);
2111   return SDValue(N, 0);
2112 }
2113 
2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2115                                       int64_t Offset, bool isTarget,
2116                                       unsigned TargetFlags) {
2117   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2118 
2119   FoldingSetNodeID ID;
2120   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2121   ID.AddPointer(BA);
2122   ID.AddInteger(Offset);
2123   ID.AddInteger(TargetFlags);
2124   void *IP = nullptr;
2125   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2126     return SDValue(E, 0);
2127 
2128   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2129   CSEMap.InsertNode(N, IP);
2130   InsertNode(N);
2131   return SDValue(N, 0);
2132 }
2133 
2134 SDValue SelectionDAG::getSrcValue(const Value *V) {
2135   FoldingSetNodeID ID;
2136   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2137   ID.AddPointer(V);
2138 
2139   void *IP = nullptr;
2140   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2141     return SDValue(E, 0);
2142 
2143   auto *N = newSDNode<SrcValueSDNode>(V);
2144   CSEMap.InsertNode(N, IP);
2145   InsertNode(N);
2146   return SDValue(N, 0);
2147 }
2148 
2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2150   FoldingSetNodeID ID;
2151   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2152   ID.AddPointer(MD);
2153 
2154   void *IP = nullptr;
2155   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2156     return SDValue(E, 0);
2157 
2158   auto *N = newSDNode<MDNodeSDNode>(MD);
2159   CSEMap.InsertNode(N, IP);
2160   InsertNode(N);
2161   return SDValue(N, 0);
2162 }
2163 
2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2165   if (VT == V.getValueType())
2166     return V;
2167 
2168   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2169 }
2170 
2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2172                                        unsigned SrcAS, unsigned DestAS) {
2173   SDValue Ops[] = {Ptr};
2174   FoldingSetNodeID ID;
2175   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2176   ID.AddInteger(SrcAS);
2177   ID.AddInteger(DestAS);
2178 
2179   void *IP = nullptr;
2180   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2181     return SDValue(E, 0);
2182 
2183   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2184                                            VT, SrcAS, DestAS);
2185   createOperands(N, Ops);
2186 
2187   CSEMap.InsertNode(N, IP);
2188   InsertNode(N);
2189   return SDValue(N, 0);
2190 }
2191 
2192 SDValue SelectionDAG::getFreeze(SDValue V) {
2193   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2194 }
2195 
2196 /// getShiftAmountOperand - Return the specified value casted to
2197 /// the target's desired shift amount type.
2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2199   EVT OpTy = Op.getValueType();
2200   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2201   if (OpTy == ShTy || OpTy.isVector()) return Op;
2202 
2203   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2204 }
2205 
2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2207   SDLoc dl(Node);
2208   const TargetLowering &TLI = getTargetLoweringInfo();
2209   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2210   EVT VT = Node->getValueType(0);
2211   SDValue Tmp1 = Node->getOperand(0);
2212   SDValue Tmp2 = Node->getOperand(1);
2213   const MaybeAlign MA(Node->getConstantOperandVal(3));
2214 
2215   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2216                                Tmp2, MachinePointerInfo(V));
2217   SDValue VAList = VAListLoad;
2218 
2219   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2220     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2221                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2222 
2223     VAList =
2224         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2225                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2226   }
2227 
2228   // Increment the pointer, VAList, to the next vaarg
2229   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2230                  getConstant(getDataLayout().getTypeAllocSize(
2231                                                VT.getTypeForEVT(*getContext())),
2232                              dl, VAList.getValueType()));
2233   // Store the incremented VAList to the legalized pointer
2234   Tmp1 =
2235       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2236   // Load the actual argument out of the pointer VAList
2237   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2238 }
2239 
2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2241   SDLoc dl(Node);
2242   const TargetLowering &TLI = getTargetLoweringInfo();
2243   // This defaults to loading a pointer from the input and storing it to the
2244   // output, returning the chain.
2245   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2246   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2247   SDValue Tmp1 =
2248       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2249               Node->getOperand(2), MachinePointerInfo(VS));
2250   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2251                   MachinePointerInfo(VD));
2252 }
2253 
2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2255   const DataLayout &DL = getDataLayout();
2256   Type *Ty = VT.getTypeForEVT(*getContext());
2257   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2258 
2259   if (TLI->isTypeLegal(VT) || !VT.isVector())
2260     return RedAlign;
2261 
2262   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2263   const Align StackAlign = TFI->getStackAlign();
2264 
2265   // See if we can choose a smaller ABI alignment in cases where it's an
2266   // illegal vector type that will get broken down.
2267   if (RedAlign > StackAlign) {
2268     EVT IntermediateVT;
2269     MVT RegisterVT;
2270     unsigned NumIntermediates;
2271     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2272                                 NumIntermediates, RegisterVT);
2273     Ty = IntermediateVT.getTypeForEVT(*getContext());
2274     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2275     if (RedAlign2 < RedAlign)
2276       RedAlign = RedAlign2;
2277   }
2278 
2279   return RedAlign;
2280 }
2281 
2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2283   MachineFrameInfo &MFI = MF->getFrameInfo();
2284   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2285   int StackID = 0;
2286   if (Bytes.isScalable())
2287     StackID = TFI->getStackIDForScalableVectors();
2288   // The stack id gives an indication of whether the object is scalable or
2289   // not, so it's safe to pass in the minimum size here.
2290   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2291                                        false, nullptr, StackID);
2292   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2293 }
2294 
2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2296   Type *Ty = VT.getTypeForEVT(*getContext());
2297   Align StackAlign =
2298       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2299   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2300 }
2301 
2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2303   TypeSize VT1Size = VT1.getStoreSize();
2304   TypeSize VT2Size = VT2.getStoreSize();
2305   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2306          "Don't know how to choose the maximum size when creating a stack "
2307          "temporary");
2308   TypeSize Bytes =
2309       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2310 
2311   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2312   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2313   const DataLayout &DL = getDataLayout();
2314   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2315   return CreateStackTemporary(Bytes, Align);
2316 }
2317 
2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2319                                 ISD::CondCode Cond, const SDLoc &dl) {
2320   EVT OpVT = N1.getValueType();
2321 
2322   // These setcc operations always fold.
2323   switch (Cond) {
2324   default: break;
2325   case ISD::SETFALSE:
2326   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2327   case ISD::SETTRUE:
2328   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2329 
2330   case ISD::SETOEQ:
2331   case ISD::SETOGT:
2332   case ISD::SETOGE:
2333   case ISD::SETOLT:
2334   case ISD::SETOLE:
2335   case ISD::SETONE:
2336   case ISD::SETO:
2337   case ISD::SETUO:
2338   case ISD::SETUEQ:
2339   case ISD::SETUNE:
2340     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2341     break;
2342   }
2343 
2344   if (OpVT.isInteger()) {
2345     // For EQ and NE, we can always pick a value for the undef to make the
2346     // predicate pass or fail, so we can return undef.
2347     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2348     // icmp eq/ne X, undef -> undef.
2349     if ((N1.isUndef() || N2.isUndef()) &&
2350         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2351       return getUNDEF(VT);
2352 
2353     // If both operands are undef, we can return undef for int comparison.
2354     // icmp undef, undef -> undef.
2355     if (N1.isUndef() && N2.isUndef())
2356       return getUNDEF(VT);
2357 
2358     // icmp X, X -> true/false
2359     // icmp X, undef -> true/false because undef could be X.
2360     if (N1 == N2)
2361       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2362   }
2363 
2364   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2365     const APInt &C2 = N2C->getAPIntValue();
2366     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2367       const APInt &C1 = N1C->getAPIntValue();
2368 
2369       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2370                              dl, VT, OpVT);
2371     }
2372   }
2373 
2374   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2375   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2376 
2377   if (N1CFP && N2CFP) {
2378     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2379     switch (Cond) {
2380     default: break;
2381     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2382                         return getUNDEF(VT);
2383                       LLVM_FALLTHROUGH;
2384     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2387                         return getUNDEF(VT);
2388                       LLVM_FALLTHROUGH;
2389     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpLessThan, dl, VT,
2391                                              OpVT);
2392     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2393                         return getUNDEF(VT);
2394                       LLVM_FALLTHROUGH;
2395     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2396                                              OpVT);
2397     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2398                         return getUNDEF(VT);
2399                       LLVM_FALLTHROUGH;
2400     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2401                                              VT, OpVT);
2402     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2403                         return getUNDEF(VT);
2404                       LLVM_FALLTHROUGH;
2405     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2406                                              R==APFloat::cmpEqual, dl, VT,
2407                                              OpVT);
2408     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2409                         return getUNDEF(VT);
2410                       LLVM_FALLTHROUGH;
2411     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2412                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2413     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2414                                              OpVT);
2415     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2416                                              OpVT);
2417     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2418                                              R==APFloat::cmpEqual, dl, VT,
2419                                              OpVT);
2420     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2421                                              OpVT);
2422     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2423                                              R==APFloat::cmpLessThan, dl, VT,
2424                                              OpVT);
2425     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2426                                              R==APFloat::cmpUnordered, dl, VT,
2427                                              OpVT);
2428     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2429                                              VT, OpVT);
2430     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2431                                              OpVT);
2432     }
2433   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2434     // Ensure that the constant occurs on the RHS.
2435     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2436     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2437       return SDValue();
2438     return getSetCC(dl, VT, N2, N1, SwappedCond);
2439   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2440              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2441     // If an operand is known to be a nan (or undef that could be a nan), we can
2442     // fold it.
2443     // Choosing NaN for the undef will always make unordered comparison succeed
2444     // and ordered comparison fails.
2445     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2446     switch (ISD::getUnorderedFlavor(Cond)) {
2447     default:
2448       llvm_unreachable("Unknown flavor!");
2449     case 0: // Known false.
2450       return getBoolConstant(false, dl, VT, OpVT);
2451     case 1: // Known true.
2452       return getBoolConstant(true, dl, VT, OpVT);
2453     case 2: // Undefined.
2454       return getUNDEF(VT);
2455     }
2456   }
2457 
2458   // Could not fold it.
2459   return SDValue();
2460 }
2461 
2462 /// See if the specified operand can be simplified with the knowledge that only
2463 /// the bits specified by DemandedBits are used.
2464 /// TODO: really we should be making this into the DAG equivalent of
2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2467   EVT VT = V.getValueType();
2468 
2469   if (VT.isScalableVector())
2470     return SDValue();
2471 
2472   APInt DemandedElts = VT.isVector()
2473                            ? APInt::getAllOnes(VT.getVectorNumElements())
2474                            : APInt(1, 1);
2475   return GetDemandedBits(V, DemandedBits, DemandedElts);
2476 }
2477 
2478 /// See if the specified operand can be simplified with the knowledge that only
2479 /// the bits specified by DemandedBits are used in the elements specified by
2480 /// DemandedElts.
2481 /// TODO: really we should be making this into the DAG equivalent of
2482 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2483 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2484                                       const APInt &DemandedElts) {
2485   switch (V.getOpcode()) {
2486   default:
2487     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2488                                                 *this);
2489   case ISD::Constant: {
2490     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2491     APInt NewVal = CVal & DemandedBits;
2492     if (NewVal != CVal)
2493       return getConstant(NewVal, SDLoc(V), V.getValueType());
2494     break;
2495   }
2496   case ISD::SRL:
2497     // Only look at single-use SRLs.
2498     if (!V.getNode()->hasOneUse())
2499       break;
2500     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2501       // See if we can recursively simplify the LHS.
2502       unsigned Amt = RHSC->getZExtValue();
2503 
2504       // Watch out for shift count overflow though.
2505       if (Amt >= DemandedBits.getBitWidth())
2506         break;
2507       APInt SrcDemandedBits = DemandedBits << Amt;
2508       if (SDValue SimplifyLHS =
2509               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2510         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2511                        V.getOperand(1));
2512     }
2513     break;
2514   }
2515   return SDValue();
2516 }
2517 
2518 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2519 /// use this predicate to simplify operations downstream.
2520 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2521   unsigned BitWidth = Op.getScalarValueSizeInBits();
2522   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2523 }
2524 
2525 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2526 /// this predicate to simplify operations downstream.  Mask is known to be zero
2527 /// for bits that V cannot have.
2528 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2529                                      unsigned Depth) const {
2530   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2531 }
2532 
2533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2534 /// DemandedElts.  We use this predicate to simplify operations downstream.
2535 /// Mask is known to be zero for bits that V cannot have.
2536 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2537                                      const APInt &DemandedElts,
2538                                      unsigned Depth) const {
2539   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2540 }
2541 
2542 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2543 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2544                                         unsigned Depth) const {
2545   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2546 }
2547 
2548 /// isSplatValue - Return true if the vector V has the same value
2549 /// across all DemandedElts. For scalable vectors it does not make
2550 /// sense to specify which elements are demanded or undefined, therefore
2551 /// they are simply ignored.
2552 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2553                                 APInt &UndefElts, unsigned Depth) const {
2554   unsigned Opcode = V.getOpcode();
2555   EVT VT = V.getValueType();
2556   assert(VT.isVector() && "Vector type expected");
2557 
2558   if (!VT.isScalableVector() && !DemandedElts)
2559     return false; // No demanded elts, better to assume we don't know anything.
2560 
2561   if (Depth >= MaxRecursionDepth)
2562     return false; // Limit search depth.
2563 
2564   // Deal with some common cases here that work for both fixed and scalable
2565   // vector types.
2566   switch (Opcode) {
2567   case ISD::SPLAT_VECTOR:
2568     UndefElts = V.getOperand(0).isUndef()
2569                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2570                     : APInt(DemandedElts.getBitWidth(), 0);
2571     return true;
2572   case ISD::ADD:
2573   case ISD::SUB:
2574   case ISD::AND:
2575   case ISD::XOR:
2576   case ISD::OR: {
2577     APInt UndefLHS, UndefRHS;
2578     SDValue LHS = V.getOperand(0);
2579     SDValue RHS = V.getOperand(1);
2580     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2581         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2582       UndefElts = UndefLHS | UndefRHS;
2583       return true;
2584     }
2585     return false;
2586   }
2587   case ISD::ABS:
2588   case ISD::TRUNCATE:
2589   case ISD::SIGN_EXTEND:
2590   case ISD::ZERO_EXTEND:
2591     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2592   default:
2593     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2594         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2595       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2596     break;
2597 }
2598 
2599   // We don't support other cases than those above for scalable vectors at
2600   // the moment.
2601   if (VT.isScalableVector())
2602     return false;
2603 
2604   unsigned NumElts = VT.getVectorNumElements();
2605   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2606   UndefElts = APInt::getZero(NumElts);
2607 
2608   switch (Opcode) {
2609   case ISD::BUILD_VECTOR: {
2610     SDValue Scl;
2611     for (unsigned i = 0; i != NumElts; ++i) {
2612       SDValue Op = V.getOperand(i);
2613       if (Op.isUndef()) {
2614         UndefElts.setBit(i);
2615         continue;
2616       }
2617       if (!DemandedElts[i])
2618         continue;
2619       if (Scl && Scl != Op)
2620         return false;
2621       Scl = Op;
2622     }
2623     return true;
2624   }
2625   case ISD::VECTOR_SHUFFLE: {
2626     // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2627     APInt DemandedLHS = APInt::getNullValue(NumElts);
2628     APInt DemandedRHS = APInt::getNullValue(NumElts);
2629     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2630     for (int i = 0; i != (int)NumElts; ++i) {
2631       int M = Mask[i];
2632       if (M < 0) {
2633         UndefElts.setBit(i);
2634         continue;
2635       }
2636       if (!DemandedElts[i])
2637         continue;
2638       if (M < (int)NumElts)
2639         DemandedLHS.setBit(M);
2640       else
2641         DemandedRHS.setBit(M - NumElts);
2642     }
2643 
2644     // If we aren't demanding either op, assume there's no splat.
2645     // If we are demanding both ops, assume there's no splat.
2646     if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2647         (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2648       return false;
2649 
2650     // See if the demanded elts of the source op is a splat or we only demand
2651     // one element, which should always be a splat.
2652     // TODO: Handle source ops splats with undefs.
2653     auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2654       APInt SrcUndefs;
2655       return (SrcElts.countPopulation() == 1) ||
2656              (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2657               (SrcElts & SrcUndefs).isZero());
2658     };
2659     if (!DemandedLHS.isZero())
2660       return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2661     return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2662   }
2663   case ISD::EXTRACT_SUBVECTOR: {
2664     // Offset the demanded elts by the subvector index.
2665     SDValue Src = V.getOperand(0);
2666     // We don't support scalable vectors at the moment.
2667     if (Src.getValueType().isScalableVector())
2668       return false;
2669     uint64_t Idx = V.getConstantOperandVal(1);
2670     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2671     APInt UndefSrcElts;
2672     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2673     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2674       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2675       return true;
2676     }
2677     break;
2678   }
2679   case ISD::ANY_EXTEND_VECTOR_INREG:
2680   case ISD::SIGN_EXTEND_VECTOR_INREG:
2681   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2682     // Widen the demanded elts by the src element count.
2683     SDValue Src = V.getOperand(0);
2684     // We don't support scalable vectors at the moment.
2685     if (Src.getValueType().isScalableVector())
2686       return false;
2687     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2688     APInt UndefSrcElts;
2689     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
2690     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2691       UndefElts = UndefSrcElts.trunc(NumElts);
2692       return true;
2693     }
2694     break;
2695   }
2696   case ISD::BITCAST: {
2697     SDValue Src = V.getOperand(0);
2698     EVT SrcVT = Src.getValueType();
2699     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2700     unsigned BitWidth = VT.getScalarSizeInBits();
2701 
2702     // Ignore bitcasts from unsupported types.
2703     // TODO: Add fp support?
2704     if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2705       break;
2706 
2707     // Bitcast 'small element' vector to 'large element' vector.
2708     if ((BitWidth % SrcBitWidth) == 0) {
2709       // See if each sub element is a splat.
2710       unsigned Scale = BitWidth / SrcBitWidth;
2711       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2712       APInt ScaledDemandedElts =
2713           APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2714       for (unsigned I = 0; I != Scale; ++I) {
2715         APInt SubUndefElts;
2716         APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2717         APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2718         SubDemandedElts &= ScaledDemandedElts;
2719         if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2720           return false;
2721         // TODO: Add support for merging sub undef elements.
2722         if (SubDemandedElts.isSubsetOf(SubUndefElts))
2723           return false;
2724       }
2725       return true;
2726     }
2727     break;
2728   }
2729   }
2730 
2731   return false;
2732 }
2733 
2734 /// Helper wrapper to main isSplatValue function.
2735 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2736   EVT VT = V.getValueType();
2737   assert(VT.isVector() && "Vector type expected");
2738 
2739   APInt UndefElts;
2740   APInt DemandedElts;
2741 
2742   // For now we don't support this with scalable vectors.
2743   if (!VT.isScalableVector())
2744     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2745   return isSplatValue(V, DemandedElts, UndefElts) &&
2746          (AllowUndefs || !UndefElts);
2747 }
2748 
2749 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2750   V = peekThroughExtractSubvectors(V);
2751 
2752   EVT VT = V.getValueType();
2753   unsigned Opcode = V.getOpcode();
2754   switch (Opcode) {
2755   default: {
2756     APInt UndefElts;
2757     APInt DemandedElts;
2758 
2759     if (!VT.isScalableVector())
2760       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2761 
2762     if (isSplatValue(V, DemandedElts, UndefElts)) {
2763       if (VT.isScalableVector()) {
2764         // DemandedElts and UndefElts are ignored for scalable vectors, since
2765         // the only supported cases are SPLAT_VECTOR nodes.
2766         SplatIdx = 0;
2767       } else {
2768         // Handle case where all demanded elements are UNDEF.
2769         if (DemandedElts.isSubsetOf(UndefElts)) {
2770           SplatIdx = 0;
2771           return getUNDEF(VT);
2772         }
2773         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2774       }
2775       return V;
2776     }
2777     break;
2778   }
2779   case ISD::SPLAT_VECTOR:
2780     SplatIdx = 0;
2781     return V;
2782   case ISD::VECTOR_SHUFFLE: {
2783     if (VT.isScalableVector())
2784       return SDValue();
2785 
2786     // Check if this is a shuffle node doing a splat.
2787     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2788     // getTargetVShiftNode currently struggles without the splat source.
2789     auto *SVN = cast<ShuffleVectorSDNode>(V);
2790     if (!SVN->isSplat())
2791       break;
2792     int Idx = SVN->getSplatIndex();
2793     int NumElts = V.getValueType().getVectorNumElements();
2794     SplatIdx = Idx % NumElts;
2795     return V.getOperand(Idx / NumElts);
2796   }
2797   }
2798 
2799   return SDValue();
2800 }
2801 
2802 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2803   int SplatIdx;
2804   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2805     EVT SVT = SrcVector.getValueType().getScalarType();
2806     EVT LegalSVT = SVT;
2807     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2808       if (!SVT.isInteger())
2809         return SDValue();
2810       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2811       if (LegalSVT.bitsLT(SVT))
2812         return SDValue();
2813     }
2814     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2815                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2816   }
2817   return SDValue();
2818 }
2819 
2820 const APInt *
2821 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2822                                           const APInt &DemandedElts) const {
2823   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2824           V.getOpcode() == ISD::SRA) &&
2825          "Unknown shift node");
2826   unsigned BitWidth = V.getScalarValueSizeInBits();
2827   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2828     // Shifting more than the bitwidth is not valid.
2829     const APInt &ShAmt = SA->getAPIntValue();
2830     if (ShAmt.ult(BitWidth))
2831       return &ShAmt;
2832   }
2833   return nullptr;
2834 }
2835 
2836 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2837     SDValue V, const APInt &DemandedElts) const {
2838   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2839           V.getOpcode() == ISD::SRA) &&
2840          "Unknown shift node");
2841   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2842     return ValidAmt;
2843   unsigned BitWidth = V.getScalarValueSizeInBits();
2844   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2845   if (!BV)
2846     return nullptr;
2847   const APInt *MinShAmt = nullptr;
2848   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2849     if (!DemandedElts[i])
2850       continue;
2851     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2852     if (!SA)
2853       return nullptr;
2854     // Shifting more than the bitwidth is not valid.
2855     const APInt &ShAmt = SA->getAPIntValue();
2856     if (ShAmt.uge(BitWidth))
2857       return nullptr;
2858     if (MinShAmt && MinShAmt->ule(ShAmt))
2859       continue;
2860     MinShAmt = &ShAmt;
2861   }
2862   return MinShAmt;
2863 }
2864 
2865 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2866     SDValue V, const APInt &DemandedElts) const {
2867   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2868           V.getOpcode() == ISD::SRA) &&
2869          "Unknown shift node");
2870   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2871     return ValidAmt;
2872   unsigned BitWidth = V.getScalarValueSizeInBits();
2873   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2874   if (!BV)
2875     return nullptr;
2876   const APInt *MaxShAmt = nullptr;
2877   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2878     if (!DemandedElts[i])
2879       continue;
2880     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2881     if (!SA)
2882       return nullptr;
2883     // Shifting more than the bitwidth is not valid.
2884     const APInt &ShAmt = SA->getAPIntValue();
2885     if (ShAmt.uge(BitWidth))
2886       return nullptr;
2887     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2888       continue;
2889     MaxShAmt = &ShAmt;
2890   }
2891   return MaxShAmt;
2892 }
2893 
2894 /// Determine which bits of Op are known to be either zero or one and return
2895 /// them in Known. For vectors, the known bits are those that are shared by
2896 /// every vector element.
2897 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2898   EVT VT = Op.getValueType();
2899 
2900   // TOOD: Until we have a plan for how to represent demanded elements for
2901   // scalable vectors, we can just bail out for now.
2902   if (Op.getValueType().isScalableVector()) {
2903     unsigned BitWidth = Op.getScalarValueSizeInBits();
2904     return KnownBits(BitWidth);
2905   }
2906 
2907   APInt DemandedElts = VT.isVector()
2908                            ? APInt::getAllOnes(VT.getVectorNumElements())
2909                            : APInt(1, 1);
2910   return computeKnownBits(Op, DemandedElts, Depth);
2911 }
2912 
2913 /// Determine which bits of Op are known to be either zero or one and return
2914 /// them in Known. The DemandedElts argument allows us to only collect the known
2915 /// bits that are shared by the requested vector elements.
2916 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2917                                          unsigned Depth) const {
2918   unsigned BitWidth = Op.getScalarValueSizeInBits();
2919 
2920   KnownBits Known(BitWidth);   // Don't know anything.
2921 
2922   // TOOD: Until we have a plan for how to represent demanded elements for
2923   // scalable vectors, we can just bail out for now.
2924   if (Op.getValueType().isScalableVector())
2925     return Known;
2926 
2927   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2928     // We know all of the bits for a constant!
2929     return KnownBits::makeConstant(C->getAPIntValue());
2930   }
2931   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2932     // We know all of the bits for a constant fp!
2933     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2934   }
2935 
2936   if (Depth >= MaxRecursionDepth)
2937     return Known;  // Limit search depth.
2938 
2939   KnownBits Known2;
2940   unsigned NumElts = DemandedElts.getBitWidth();
2941   assert((!Op.getValueType().isVector() ||
2942           NumElts == Op.getValueType().getVectorNumElements()) &&
2943          "Unexpected vector size");
2944 
2945   if (!DemandedElts)
2946     return Known;  // No demanded elts, better to assume we don't know anything.
2947 
2948   unsigned Opcode = Op.getOpcode();
2949   switch (Opcode) {
2950   case ISD::BUILD_VECTOR:
2951     // Collect the known bits that are shared by every demanded vector element.
2952     Known.Zero.setAllBits(); Known.One.setAllBits();
2953     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2954       if (!DemandedElts[i])
2955         continue;
2956 
2957       SDValue SrcOp = Op.getOperand(i);
2958       Known2 = computeKnownBits(SrcOp, Depth + 1);
2959 
2960       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2961       if (SrcOp.getValueSizeInBits() != BitWidth) {
2962         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2963                "Expected BUILD_VECTOR implicit truncation");
2964         Known2 = Known2.trunc(BitWidth);
2965       }
2966 
2967       // Known bits are the values that are shared by every demanded element.
2968       Known = KnownBits::commonBits(Known, Known2);
2969 
2970       // If we don't know any bits, early out.
2971       if (Known.isUnknown())
2972         break;
2973     }
2974     break;
2975   case ISD::VECTOR_SHUFFLE: {
2976     // Collect the known bits that are shared by every vector element referenced
2977     // by the shuffle.
2978     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2979     Known.Zero.setAllBits(); Known.One.setAllBits();
2980     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2981     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2982     for (unsigned i = 0; i != NumElts; ++i) {
2983       if (!DemandedElts[i])
2984         continue;
2985 
2986       int M = SVN->getMaskElt(i);
2987       if (M < 0) {
2988         // For UNDEF elements, we don't know anything about the common state of
2989         // the shuffle result.
2990         Known.resetAll();
2991         DemandedLHS.clearAllBits();
2992         DemandedRHS.clearAllBits();
2993         break;
2994       }
2995 
2996       if ((unsigned)M < NumElts)
2997         DemandedLHS.setBit((unsigned)M % NumElts);
2998       else
2999         DemandedRHS.setBit((unsigned)M % NumElts);
3000     }
3001     // Known bits are the values that are shared by every demanded element.
3002     if (!!DemandedLHS) {
3003       SDValue LHS = Op.getOperand(0);
3004       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3005       Known = KnownBits::commonBits(Known, Known2);
3006     }
3007     // If we don't know any bits, early out.
3008     if (Known.isUnknown())
3009       break;
3010     if (!!DemandedRHS) {
3011       SDValue RHS = Op.getOperand(1);
3012       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3013       Known = KnownBits::commonBits(Known, Known2);
3014     }
3015     break;
3016   }
3017   case ISD::CONCAT_VECTORS: {
3018     // Split DemandedElts and test each of the demanded subvectors.
3019     Known.Zero.setAllBits(); Known.One.setAllBits();
3020     EVT SubVectorVT = Op.getOperand(0).getValueType();
3021     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3022     unsigned NumSubVectors = Op.getNumOperands();
3023     for (unsigned i = 0; i != NumSubVectors; ++i) {
3024       APInt DemandedSub =
3025           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3026       if (!!DemandedSub) {
3027         SDValue Sub = Op.getOperand(i);
3028         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3029         Known = KnownBits::commonBits(Known, Known2);
3030       }
3031       // If we don't know any bits, early out.
3032       if (Known.isUnknown())
3033         break;
3034     }
3035     break;
3036   }
3037   case ISD::INSERT_SUBVECTOR: {
3038     // Demand any elements from the subvector and the remainder from the src its
3039     // inserted into.
3040     SDValue Src = Op.getOperand(0);
3041     SDValue Sub = Op.getOperand(1);
3042     uint64_t Idx = Op.getConstantOperandVal(2);
3043     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3044     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3045     APInt DemandedSrcElts = DemandedElts;
3046     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3047 
3048     Known.One.setAllBits();
3049     Known.Zero.setAllBits();
3050     if (!!DemandedSubElts) {
3051       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3052       if (Known.isUnknown())
3053         break; // early-out.
3054     }
3055     if (!!DemandedSrcElts) {
3056       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3057       Known = KnownBits::commonBits(Known, Known2);
3058     }
3059     break;
3060   }
3061   case ISD::EXTRACT_SUBVECTOR: {
3062     // Offset the demanded elts by the subvector index.
3063     SDValue Src = Op.getOperand(0);
3064     // Bail until we can represent demanded elements for scalable vectors.
3065     if (Src.getValueType().isScalableVector())
3066       break;
3067     uint64_t Idx = Op.getConstantOperandVal(1);
3068     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3069     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3070     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3071     break;
3072   }
3073   case ISD::SCALAR_TO_VECTOR: {
3074     // We know about scalar_to_vector as much as we know about it source,
3075     // which becomes the first element of otherwise unknown vector.
3076     if (DemandedElts != 1)
3077       break;
3078 
3079     SDValue N0 = Op.getOperand(0);
3080     Known = computeKnownBits(N0, Depth + 1);
3081     if (N0.getValueSizeInBits() != BitWidth)
3082       Known = Known.trunc(BitWidth);
3083 
3084     break;
3085   }
3086   case ISD::BITCAST: {
3087     SDValue N0 = Op.getOperand(0);
3088     EVT SubVT = N0.getValueType();
3089     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3090 
3091     // Ignore bitcasts from unsupported types.
3092     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3093       break;
3094 
3095     // Fast handling of 'identity' bitcasts.
3096     if (BitWidth == SubBitWidth) {
3097       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3098       break;
3099     }
3100 
3101     bool IsLE = getDataLayout().isLittleEndian();
3102 
3103     // Bitcast 'small element' vector to 'large element' scalar/vector.
3104     if ((BitWidth % SubBitWidth) == 0) {
3105       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3106 
3107       // Collect known bits for the (larger) output by collecting the known
3108       // bits from each set of sub elements and shift these into place.
3109       // We need to separately call computeKnownBits for each set of
3110       // sub elements as the knownbits for each is likely to be different.
3111       unsigned SubScale = BitWidth / SubBitWidth;
3112       APInt SubDemandedElts(NumElts * SubScale, 0);
3113       for (unsigned i = 0; i != NumElts; ++i)
3114         if (DemandedElts[i])
3115           SubDemandedElts.setBit(i * SubScale);
3116 
3117       for (unsigned i = 0; i != SubScale; ++i) {
3118         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3119                          Depth + 1);
3120         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3121         Known.insertBits(Known2, SubBitWidth * Shifts);
3122       }
3123     }
3124 
3125     // Bitcast 'large element' scalar/vector to 'small element' vector.
3126     if ((SubBitWidth % BitWidth) == 0) {
3127       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3128 
3129       // Collect known bits for the (smaller) output by collecting the known
3130       // bits from the overlapping larger input elements and extracting the
3131       // sub sections we actually care about.
3132       unsigned SubScale = SubBitWidth / BitWidth;
3133       APInt SubDemandedElts =
3134           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3135       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3136 
3137       Known.Zero.setAllBits(); Known.One.setAllBits();
3138       for (unsigned i = 0; i != NumElts; ++i)
3139         if (DemandedElts[i]) {
3140           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3141           unsigned Offset = (Shifts % SubScale) * BitWidth;
3142           Known = KnownBits::commonBits(Known,
3143                                         Known2.extractBits(BitWidth, Offset));
3144           // If we don't know any bits, early out.
3145           if (Known.isUnknown())
3146             break;
3147         }
3148     }
3149     break;
3150   }
3151   case ISD::AND:
3152     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3153     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3154 
3155     Known &= Known2;
3156     break;
3157   case ISD::OR:
3158     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3159     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3160 
3161     Known |= Known2;
3162     break;
3163   case ISD::XOR:
3164     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3165     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3166 
3167     Known ^= Known2;
3168     break;
3169   case ISD::MUL: {
3170     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3171     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3172     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3173     // TODO: SelfMultiply can be poison, but not undef.
3174     if (SelfMultiply)
3175       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3176           Op.getOperand(0), DemandedElts, false, Depth + 1);
3177     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3178     break;
3179   }
3180   case ISD::MULHU: {
3181     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3182     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3183     Known = KnownBits::mulhu(Known, Known2);
3184     break;
3185   }
3186   case ISD::MULHS: {
3187     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3188     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3189     Known = KnownBits::mulhs(Known, Known2);
3190     break;
3191   }
3192   case ISD::UMUL_LOHI: {
3193     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3194     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3195     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3196     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3197     if (Op.getResNo() == 0)
3198       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3199     else
3200       Known = KnownBits::mulhu(Known, Known2);
3201     break;
3202   }
3203   case ISD::SMUL_LOHI: {
3204     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3205     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3206     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3207     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3208     if (Op.getResNo() == 0)
3209       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3210     else
3211       Known = KnownBits::mulhs(Known, Known2);
3212     break;
3213   }
3214   case ISD::UDIV: {
3215     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3216     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3217     Known = KnownBits::udiv(Known, Known2);
3218     break;
3219   }
3220   case ISD::AVGCEILU: {
3221     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3222     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3223     Known = Known.zext(BitWidth + 1);
3224     Known2 = Known2.zext(BitWidth + 1);
3225     KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3226     Known = KnownBits::computeForAddCarry(Known, Known2, One);
3227     Known = Known.extractBits(BitWidth, 1);
3228     break;
3229   }
3230   case ISD::SELECT:
3231   case ISD::VSELECT:
3232     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3233     // If we don't know any bits, early out.
3234     if (Known.isUnknown())
3235       break;
3236     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3237 
3238     // Only known if known in both the LHS and RHS.
3239     Known = KnownBits::commonBits(Known, Known2);
3240     break;
3241   case ISD::SELECT_CC:
3242     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3243     // If we don't know any bits, early out.
3244     if (Known.isUnknown())
3245       break;
3246     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3247 
3248     // Only known if known in both the LHS and RHS.
3249     Known = KnownBits::commonBits(Known, Known2);
3250     break;
3251   case ISD::SMULO:
3252   case ISD::UMULO:
3253     if (Op.getResNo() != 1)
3254       break;
3255     // The boolean result conforms to getBooleanContents.
3256     // If we know the result of a setcc has the top bits zero, use this info.
3257     // We know that we have an integer-based boolean since these operations
3258     // are only available for integer.
3259     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3260             TargetLowering::ZeroOrOneBooleanContent &&
3261         BitWidth > 1)
3262       Known.Zero.setBitsFrom(1);
3263     break;
3264   case ISD::SETCC:
3265   case ISD::STRICT_FSETCC:
3266   case ISD::STRICT_FSETCCS: {
3267     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3268     // If we know the result of a setcc has the top bits zero, use this info.
3269     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3270             TargetLowering::ZeroOrOneBooleanContent &&
3271         BitWidth > 1)
3272       Known.Zero.setBitsFrom(1);
3273     break;
3274   }
3275   case ISD::SHL:
3276     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3277     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3278     Known = KnownBits::shl(Known, Known2);
3279 
3280     // Minimum shift low bits are known zero.
3281     if (const APInt *ShMinAmt =
3282             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3283       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3284     break;
3285   case ISD::SRL:
3286     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3287     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3288     Known = KnownBits::lshr(Known, Known2);
3289 
3290     // Minimum shift high bits are known zero.
3291     if (const APInt *ShMinAmt =
3292             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3293       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3294     break;
3295   case ISD::SRA:
3296     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3297     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3298     Known = KnownBits::ashr(Known, Known2);
3299     // TODO: Add minimum shift high known sign bits.
3300     break;
3301   case ISD::FSHL:
3302   case ISD::FSHR:
3303     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3304       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3305 
3306       // For fshl, 0-shift returns the 1st arg.
3307       // For fshr, 0-shift returns the 2nd arg.
3308       if (Amt == 0) {
3309         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3310                                  DemandedElts, Depth + 1);
3311         break;
3312       }
3313 
3314       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3315       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3316       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3317       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3318       if (Opcode == ISD::FSHL) {
3319         Known.One <<= Amt;
3320         Known.Zero <<= Amt;
3321         Known2.One.lshrInPlace(BitWidth - Amt);
3322         Known2.Zero.lshrInPlace(BitWidth - Amt);
3323       } else {
3324         Known.One <<= BitWidth - Amt;
3325         Known.Zero <<= BitWidth - Amt;
3326         Known2.One.lshrInPlace(Amt);
3327         Known2.Zero.lshrInPlace(Amt);
3328       }
3329       Known.One |= Known2.One;
3330       Known.Zero |= Known2.Zero;
3331     }
3332     break;
3333   case ISD::SIGN_EXTEND_INREG: {
3334     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3335     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3336     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3337     break;
3338   }
3339   case ISD::CTTZ:
3340   case ISD::CTTZ_ZERO_UNDEF: {
3341     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3342     // If we have a known 1, its position is our upper bound.
3343     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3344     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3345     Known.Zero.setBitsFrom(LowBits);
3346     break;
3347   }
3348   case ISD::CTLZ:
3349   case ISD::CTLZ_ZERO_UNDEF: {
3350     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3351     // If we have a known 1, its position is our upper bound.
3352     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3353     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3354     Known.Zero.setBitsFrom(LowBits);
3355     break;
3356   }
3357   case ISD::CTPOP: {
3358     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3359     // If we know some of the bits are zero, they can't be one.
3360     unsigned PossibleOnes = Known2.countMaxPopulation();
3361     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3362     break;
3363   }
3364   case ISD::PARITY: {
3365     // Parity returns 0 everywhere but the LSB.
3366     Known.Zero.setBitsFrom(1);
3367     break;
3368   }
3369   case ISD::LOAD: {
3370     LoadSDNode *LD = cast<LoadSDNode>(Op);
3371     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3372     if (ISD::isNON_EXTLoad(LD) && Cst) {
3373       // Determine any common known bits from the loaded constant pool value.
3374       Type *CstTy = Cst->getType();
3375       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3376         // If its a vector splat, then we can (quickly) reuse the scalar path.
3377         // NOTE: We assume all elements match and none are UNDEF.
3378         if (CstTy->isVectorTy()) {
3379           if (const Constant *Splat = Cst->getSplatValue()) {
3380             Cst = Splat;
3381             CstTy = Cst->getType();
3382           }
3383         }
3384         // TODO - do we need to handle different bitwidths?
3385         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3386           // Iterate across all vector elements finding common known bits.
3387           Known.One.setAllBits();
3388           Known.Zero.setAllBits();
3389           for (unsigned i = 0; i != NumElts; ++i) {
3390             if (!DemandedElts[i])
3391               continue;
3392             if (Constant *Elt = Cst->getAggregateElement(i)) {
3393               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3394                 const APInt &Value = CInt->getValue();
3395                 Known.One &= Value;
3396                 Known.Zero &= ~Value;
3397                 continue;
3398               }
3399               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3400                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3401                 Known.One &= Value;
3402                 Known.Zero &= ~Value;
3403                 continue;
3404               }
3405             }
3406             Known.One.clearAllBits();
3407             Known.Zero.clearAllBits();
3408             break;
3409           }
3410         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3411           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3412             Known = KnownBits::makeConstant(CInt->getValue());
3413           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3414             Known =
3415                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3416           }
3417         }
3418       }
3419     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3420       // If this is a ZEXTLoad and we are looking at the loaded value.
3421       EVT VT = LD->getMemoryVT();
3422       unsigned MemBits = VT.getScalarSizeInBits();
3423       Known.Zero.setBitsFrom(MemBits);
3424     } else if (const MDNode *Ranges = LD->getRanges()) {
3425       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3426         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3427     }
3428     break;
3429   }
3430   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3431     EVT InVT = Op.getOperand(0).getValueType();
3432     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3433     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3434     Known = Known.zext(BitWidth);
3435     break;
3436   }
3437   case ISD::ZERO_EXTEND: {
3438     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3439     Known = Known.zext(BitWidth);
3440     break;
3441   }
3442   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3443     EVT InVT = Op.getOperand(0).getValueType();
3444     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3445     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3446     // If the sign bit is known to be zero or one, then sext will extend
3447     // it to the top bits, else it will just zext.
3448     Known = Known.sext(BitWidth);
3449     break;
3450   }
3451   case ISD::SIGN_EXTEND: {
3452     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3453     // If the sign bit is known to be zero or one, then sext will extend
3454     // it to the top bits, else it will just zext.
3455     Known = Known.sext(BitWidth);
3456     break;
3457   }
3458   case ISD::ANY_EXTEND_VECTOR_INREG: {
3459     EVT InVT = Op.getOperand(0).getValueType();
3460     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3461     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3462     Known = Known.anyext(BitWidth);
3463     break;
3464   }
3465   case ISD::ANY_EXTEND: {
3466     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3467     Known = Known.anyext(BitWidth);
3468     break;
3469   }
3470   case ISD::TRUNCATE: {
3471     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3472     Known = Known.trunc(BitWidth);
3473     break;
3474   }
3475   case ISD::AssertZext: {
3476     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3477     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3478     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3479     Known.Zero |= (~InMask);
3480     Known.One  &= (~Known.Zero);
3481     break;
3482   }
3483   case ISD::AssertAlign: {
3484     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3485     assert(LogOfAlign != 0);
3486 
3487     // TODO: Should use maximum with source
3488     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3489     // well as clearing one bits.
3490     Known.Zero.setLowBits(LogOfAlign);
3491     Known.One.clearLowBits(LogOfAlign);
3492     break;
3493   }
3494   case ISD::FGETSIGN:
3495     // All bits are zero except the low bit.
3496     Known.Zero.setBitsFrom(1);
3497     break;
3498   case ISD::USUBO:
3499   case ISD::SSUBO:
3500     if (Op.getResNo() == 1) {
3501       // If we know the result of a setcc has the top bits zero, use this info.
3502       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3503               TargetLowering::ZeroOrOneBooleanContent &&
3504           BitWidth > 1)
3505         Known.Zero.setBitsFrom(1);
3506       break;
3507     }
3508     LLVM_FALLTHROUGH;
3509   case ISD::SUB:
3510   case ISD::SUBC: {
3511     assert(Op.getResNo() == 0 &&
3512            "We only compute knownbits for the difference here.");
3513 
3514     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3515     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3516     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3517                                         Known, Known2);
3518     break;
3519   }
3520   case ISD::UADDO:
3521   case ISD::SADDO:
3522   case ISD::ADDCARRY:
3523     if (Op.getResNo() == 1) {
3524       // If we know the result of a setcc has the top bits zero, use this info.
3525       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3526               TargetLowering::ZeroOrOneBooleanContent &&
3527           BitWidth > 1)
3528         Known.Zero.setBitsFrom(1);
3529       break;
3530     }
3531     LLVM_FALLTHROUGH;
3532   case ISD::ADD:
3533   case ISD::ADDC:
3534   case ISD::ADDE: {
3535     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3536 
3537     // With ADDE and ADDCARRY, a carry bit may be added in.
3538     KnownBits Carry(1);
3539     if (Opcode == ISD::ADDE)
3540       // Can't track carry from glue, set carry to unknown.
3541       Carry.resetAll();
3542     else if (Opcode == ISD::ADDCARRY)
3543       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3544       // the trouble (how often will we find a known carry bit). And I haven't
3545       // tested this very much yet, but something like this might work:
3546       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3547       //   Carry = Carry.zextOrTrunc(1, false);
3548       Carry.resetAll();
3549     else
3550       Carry.setAllZero();
3551 
3552     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3553     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3554     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3555     break;
3556   }
3557   case ISD::SREM: {
3558     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3559     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3560     Known = KnownBits::srem(Known, Known2);
3561     break;
3562   }
3563   case ISD::UREM: {
3564     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3565     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3566     Known = KnownBits::urem(Known, Known2);
3567     break;
3568   }
3569   case ISD::EXTRACT_ELEMENT: {
3570     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3571     const unsigned Index = Op.getConstantOperandVal(1);
3572     const unsigned EltBitWidth = Op.getValueSizeInBits();
3573 
3574     // Remove low part of known bits mask
3575     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3576     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3577 
3578     // Remove high part of known bit mask
3579     Known = Known.trunc(EltBitWidth);
3580     break;
3581   }
3582   case ISD::EXTRACT_VECTOR_ELT: {
3583     SDValue InVec = Op.getOperand(0);
3584     SDValue EltNo = Op.getOperand(1);
3585     EVT VecVT = InVec.getValueType();
3586     // computeKnownBits not yet implemented for scalable vectors.
3587     if (VecVT.isScalableVector())
3588       break;
3589     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3590     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3591 
3592     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3593     // anything about the extended bits.
3594     if (BitWidth > EltBitWidth)
3595       Known = Known.trunc(EltBitWidth);
3596 
3597     // If we know the element index, just demand that vector element, else for
3598     // an unknown element index, ignore DemandedElts and demand them all.
3599     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3600     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3601     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3602       DemandedSrcElts =
3603           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3604 
3605     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3606     if (BitWidth > EltBitWidth)
3607       Known = Known.anyext(BitWidth);
3608     break;
3609   }
3610   case ISD::INSERT_VECTOR_ELT: {
3611     // If we know the element index, split the demand between the
3612     // source vector and the inserted element, otherwise assume we need
3613     // the original demanded vector elements and the value.
3614     SDValue InVec = Op.getOperand(0);
3615     SDValue InVal = Op.getOperand(1);
3616     SDValue EltNo = Op.getOperand(2);
3617     bool DemandedVal = true;
3618     APInt DemandedVecElts = DemandedElts;
3619     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3620     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3621       unsigned EltIdx = CEltNo->getZExtValue();
3622       DemandedVal = !!DemandedElts[EltIdx];
3623       DemandedVecElts.clearBit(EltIdx);
3624     }
3625     Known.One.setAllBits();
3626     Known.Zero.setAllBits();
3627     if (DemandedVal) {
3628       Known2 = computeKnownBits(InVal, Depth + 1);
3629       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3630     }
3631     if (!!DemandedVecElts) {
3632       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3633       Known = KnownBits::commonBits(Known, Known2);
3634     }
3635     break;
3636   }
3637   case ISD::BITREVERSE: {
3638     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3639     Known = Known2.reverseBits();
3640     break;
3641   }
3642   case ISD::BSWAP: {
3643     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3644     Known = Known2.byteSwap();
3645     break;
3646   }
3647   case ISD::ABS: {
3648     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3649     Known = Known2.abs();
3650     break;
3651   }
3652   case ISD::USUBSAT: {
3653     // The result of usubsat will never be larger than the LHS.
3654     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3655     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3656     break;
3657   }
3658   case ISD::UMIN: {
3659     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3660     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3661     Known = KnownBits::umin(Known, Known2);
3662     break;
3663   }
3664   case ISD::UMAX: {
3665     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3666     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3667     Known = KnownBits::umax(Known, Known2);
3668     break;
3669   }
3670   case ISD::SMIN:
3671   case ISD::SMAX: {
3672     // If we have a clamp pattern, we know that the number of sign bits will be
3673     // the minimum of the clamp min/max range.
3674     bool IsMax = (Opcode == ISD::SMAX);
3675     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3676     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3677       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3678         CstHigh =
3679             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3680     if (CstLow && CstHigh) {
3681       if (!IsMax)
3682         std::swap(CstLow, CstHigh);
3683 
3684       const APInt &ValueLow = CstLow->getAPIntValue();
3685       const APInt &ValueHigh = CstHigh->getAPIntValue();
3686       if (ValueLow.sle(ValueHigh)) {
3687         unsigned LowSignBits = ValueLow.getNumSignBits();
3688         unsigned HighSignBits = ValueHigh.getNumSignBits();
3689         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3690         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3691           Known.One.setHighBits(MinSignBits);
3692           break;
3693         }
3694         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3695           Known.Zero.setHighBits(MinSignBits);
3696           break;
3697         }
3698       }
3699     }
3700 
3701     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3702     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3703     if (IsMax)
3704       Known = KnownBits::smax(Known, Known2);
3705     else
3706       Known = KnownBits::smin(Known, Known2);
3707     break;
3708   }
3709   case ISD::FP_TO_UINT_SAT: {
3710     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3711     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3712     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3713     break;
3714   }
3715   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3716     if (Op.getResNo() == 1) {
3717       // The boolean result conforms to getBooleanContents.
3718       // If we know the result of a setcc has the top bits zero, use this info.
3719       // We know that we have an integer-based boolean since these operations
3720       // are only available for integer.
3721       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3722               TargetLowering::ZeroOrOneBooleanContent &&
3723           BitWidth > 1)
3724         Known.Zero.setBitsFrom(1);
3725       break;
3726     }
3727     LLVM_FALLTHROUGH;
3728   case ISD::ATOMIC_CMP_SWAP:
3729   case ISD::ATOMIC_SWAP:
3730   case ISD::ATOMIC_LOAD_ADD:
3731   case ISD::ATOMIC_LOAD_SUB:
3732   case ISD::ATOMIC_LOAD_AND:
3733   case ISD::ATOMIC_LOAD_CLR:
3734   case ISD::ATOMIC_LOAD_OR:
3735   case ISD::ATOMIC_LOAD_XOR:
3736   case ISD::ATOMIC_LOAD_NAND:
3737   case ISD::ATOMIC_LOAD_MIN:
3738   case ISD::ATOMIC_LOAD_MAX:
3739   case ISD::ATOMIC_LOAD_UMIN:
3740   case ISD::ATOMIC_LOAD_UMAX:
3741   case ISD::ATOMIC_LOAD: {
3742     unsigned MemBits =
3743         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3744     // If we are looking at the loaded value.
3745     if (Op.getResNo() == 0) {
3746       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3747         Known.Zero.setBitsFrom(MemBits);
3748     }
3749     break;
3750   }
3751   case ISD::FrameIndex:
3752   case ISD::TargetFrameIndex:
3753     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3754                                        Known, getMachineFunction());
3755     break;
3756 
3757   default:
3758     if (Opcode < ISD::BUILTIN_OP_END)
3759       break;
3760     LLVM_FALLTHROUGH;
3761   case ISD::INTRINSIC_WO_CHAIN:
3762   case ISD::INTRINSIC_W_CHAIN:
3763   case ISD::INTRINSIC_VOID:
3764     // Allow the target to implement this method for its nodes.
3765     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3766     break;
3767   }
3768 
3769   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3770   return Known;
3771 }
3772 
3773 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3774                                                              SDValue N1) const {
3775   // X + 0 never overflow
3776   if (isNullConstant(N1))
3777     return OFK_Never;
3778 
3779   KnownBits N1Known = computeKnownBits(N1);
3780   if (N1Known.Zero.getBoolValue()) {
3781     KnownBits N0Known = computeKnownBits(N0);
3782 
3783     bool overflow;
3784     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3785     if (!overflow)
3786       return OFK_Never;
3787   }
3788 
3789   // mulhi + 1 never overflow
3790   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3791       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3792     return OFK_Never;
3793 
3794   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3795     KnownBits N0Known = computeKnownBits(N0);
3796 
3797     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3798       return OFK_Never;
3799   }
3800 
3801   return OFK_Sometime;
3802 }
3803 
3804 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3805   EVT OpVT = Val.getValueType();
3806   unsigned BitWidth = OpVT.getScalarSizeInBits();
3807 
3808   // Is the constant a known power of 2?
3809   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3810     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3811 
3812   // A left-shift of a constant one will have exactly one bit set because
3813   // shifting the bit off the end is undefined.
3814   if (Val.getOpcode() == ISD::SHL) {
3815     auto *C = isConstOrConstSplat(Val.getOperand(0));
3816     if (C && C->getAPIntValue() == 1)
3817       return true;
3818   }
3819 
3820   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3821   // one bit set.
3822   if (Val.getOpcode() == ISD::SRL) {
3823     auto *C = isConstOrConstSplat(Val.getOperand(0));
3824     if (C && C->getAPIntValue().isSignMask())
3825       return true;
3826   }
3827 
3828   // Are all operands of a build vector constant powers of two?
3829   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3830     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3831           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3832             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3833           return false;
3834         }))
3835       return true;
3836 
3837   // Is the operand of a splat vector a constant power of two?
3838   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3839     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3840       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3841         return true;
3842 
3843   // More could be done here, though the above checks are enough
3844   // to handle some common cases.
3845 
3846   // Fall back to computeKnownBits to catch other known cases.
3847   KnownBits Known = computeKnownBits(Val);
3848   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3849 }
3850 
3851 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3852   EVT VT = Op.getValueType();
3853 
3854   // TODO: Assume we don't know anything for now.
3855   if (VT.isScalableVector())
3856     return 1;
3857 
3858   APInt DemandedElts = VT.isVector()
3859                            ? APInt::getAllOnes(VT.getVectorNumElements())
3860                            : APInt(1, 1);
3861   return ComputeNumSignBits(Op, DemandedElts, Depth);
3862 }
3863 
3864 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3865                                           unsigned Depth) const {
3866   EVT VT = Op.getValueType();
3867   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3868   unsigned VTBits = VT.getScalarSizeInBits();
3869   unsigned NumElts = DemandedElts.getBitWidth();
3870   unsigned Tmp, Tmp2;
3871   unsigned FirstAnswer = 1;
3872 
3873   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3874     const APInt &Val = C->getAPIntValue();
3875     return Val.getNumSignBits();
3876   }
3877 
3878   if (Depth >= MaxRecursionDepth)
3879     return 1;  // Limit search depth.
3880 
3881   if (!DemandedElts || VT.isScalableVector())
3882     return 1;  // No demanded elts, better to assume we don't know anything.
3883 
3884   unsigned Opcode = Op.getOpcode();
3885   switch (Opcode) {
3886   default: break;
3887   case ISD::AssertSext:
3888     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3889     return VTBits-Tmp+1;
3890   case ISD::AssertZext:
3891     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3892     return VTBits-Tmp;
3893 
3894   case ISD::BUILD_VECTOR:
3895     Tmp = VTBits;
3896     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3897       if (!DemandedElts[i])
3898         continue;
3899 
3900       SDValue SrcOp = Op.getOperand(i);
3901       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3902 
3903       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3904       if (SrcOp.getValueSizeInBits() != VTBits) {
3905         assert(SrcOp.getValueSizeInBits() > VTBits &&
3906                "Expected BUILD_VECTOR implicit truncation");
3907         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3908         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3909       }
3910       Tmp = std::min(Tmp, Tmp2);
3911     }
3912     return Tmp;
3913 
3914   case ISD::VECTOR_SHUFFLE: {
3915     // Collect the minimum number of sign bits that are shared by every vector
3916     // element referenced by the shuffle.
3917     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3918     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3919     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3920     for (unsigned i = 0; i != NumElts; ++i) {
3921       int M = SVN->getMaskElt(i);
3922       if (!DemandedElts[i])
3923         continue;
3924       // For UNDEF elements, we don't know anything about the common state of
3925       // the shuffle result.
3926       if (M < 0)
3927         return 1;
3928       if ((unsigned)M < NumElts)
3929         DemandedLHS.setBit((unsigned)M % NumElts);
3930       else
3931         DemandedRHS.setBit((unsigned)M % NumElts);
3932     }
3933     Tmp = std::numeric_limits<unsigned>::max();
3934     if (!!DemandedLHS)
3935       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3936     if (!!DemandedRHS) {
3937       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3938       Tmp = std::min(Tmp, Tmp2);
3939     }
3940     // If we don't know anything, early out and try computeKnownBits fall-back.
3941     if (Tmp == 1)
3942       break;
3943     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3944     return Tmp;
3945   }
3946 
3947   case ISD::BITCAST: {
3948     SDValue N0 = Op.getOperand(0);
3949     EVT SrcVT = N0.getValueType();
3950     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3951 
3952     // Ignore bitcasts from unsupported types..
3953     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3954       break;
3955 
3956     // Fast handling of 'identity' bitcasts.
3957     if (VTBits == SrcBits)
3958       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3959 
3960     bool IsLE = getDataLayout().isLittleEndian();
3961 
3962     // Bitcast 'large element' scalar/vector to 'small element' vector.
3963     if ((SrcBits % VTBits) == 0) {
3964       assert(VT.isVector() && "Expected bitcast to vector");
3965 
3966       unsigned Scale = SrcBits / VTBits;
3967       APInt SrcDemandedElts =
3968           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3969 
3970       // Fast case - sign splat can be simply split across the small elements.
3971       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3972       if (Tmp == SrcBits)
3973         return VTBits;
3974 
3975       // Slow case - determine how far the sign extends into each sub-element.
3976       Tmp2 = VTBits;
3977       for (unsigned i = 0; i != NumElts; ++i)
3978         if (DemandedElts[i]) {
3979           unsigned SubOffset = i % Scale;
3980           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3981           SubOffset = SubOffset * VTBits;
3982           if (Tmp <= SubOffset)
3983             return 1;
3984           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3985         }
3986       return Tmp2;
3987     }
3988     break;
3989   }
3990 
3991   case ISD::FP_TO_SINT_SAT:
3992     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3993     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3994     return VTBits - Tmp + 1;
3995   case ISD::SIGN_EXTEND:
3996     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3997     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3998   case ISD::SIGN_EXTEND_INREG:
3999     // Max of the input and what this extends.
4000     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4001     Tmp = VTBits-Tmp+1;
4002     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4003     return std::max(Tmp, Tmp2);
4004   case ISD::SIGN_EXTEND_VECTOR_INREG: {
4005     SDValue Src = Op.getOperand(0);
4006     EVT SrcVT = Src.getValueType();
4007     APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4008     Tmp = VTBits - SrcVT.getScalarSizeInBits();
4009     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4010   }
4011   case ISD::SRA:
4012     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4013     // SRA X, C -> adds C sign bits.
4014     if (const APInt *ShAmt =
4015             getValidMinimumShiftAmountConstant(Op, DemandedElts))
4016       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
4017     return Tmp;
4018   case ISD::SHL:
4019     if (const APInt *ShAmt =
4020             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
4021       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4022       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4023       if (ShAmt->ult(Tmp))
4024         return Tmp - ShAmt->getZExtValue();
4025     }
4026     break;
4027   case ISD::AND:
4028   case ISD::OR:
4029   case ISD::XOR:    // NOT is handled here.
4030     // Logical binary ops preserve the number of sign bits at the worst.
4031     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4032     if (Tmp != 1) {
4033       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4034       FirstAnswer = std::min(Tmp, Tmp2);
4035       // We computed what we know about the sign bits as our first
4036       // answer. Now proceed to the generic code that uses
4037       // computeKnownBits, and pick whichever answer is better.
4038     }
4039     break;
4040 
4041   case ISD::SELECT:
4042   case ISD::VSELECT:
4043     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4044     if (Tmp == 1) return 1;  // Early out.
4045     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4046     return std::min(Tmp, Tmp2);
4047   case ISD::SELECT_CC:
4048     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4049     if (Tmp == 1) return 1;  // Early out.
4050     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4051     return std::min(Tmp, Tmp2);
4052 
4053   case ISD::SMIN:
4054   case ISD::SMAX: {
4055     // If we have a clamp pattern, we know that the number of sign bits will be
4056     // the minimum of the clamp min/max range.
4057     bool IsMax = (Opcode == ISD::SMAX);
4058     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4059     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4060       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4061         CstHigh =
4062             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4063     if (CstLow && CstHigh) {
4064       if (!IsMax)
4065         std::swap(CstLow, CstHigh);
4066       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4067         Tmp = CstLow->getAPIntValue().getNumSignBits();
4068         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4069         return std::min(Tmp, Tmp2);
4070       }
4071     }
4072 
4073     // Fallback - just get the minimum number of sign bits of the operands.
4074     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4075     if (Tmp == 1)
4076       return 1;  // Early out.
4077     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4078     return std::min(Tmp, Tmp2);
4079   }
4080   case ISD::UMIN:
4081   case ISD::UMAX:
4082     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4083     if (Tmp == 1)
4084       return 1;  // Early out.
4085     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4086     return std::min(Tmp, Tmp2);
4087   case ISD::SADDO:
4088   case ISD::UADDO:
4089   case ISD::SSUBO:
4090   case ISD::USUBO:
4091   case ISD::SMULO:
4092   case ISD::UMULO:
4093     if (Op.getResNo() != 1)
4094       break;
4095     // The boolean result conforms to getBooleanContents.  Fall through.
4096     // If setcc returns 0/-1, all bits are sign bits.
4097     // We know that we have an integer-based boolean since these operations
4098     // are only available for integer.
4099     if (TLI->getBooleanContents(VT.isVector(), false) ==
4100         TargetLowering::ZeroOrNegativeOneBooleanContent)
4101       return VTBits;
4102     break;
4103   case ISD::SETCC:
4104   case ISD::STRICT_FSETCC:
4105   case ISD::STRICT_FSETCCS: {
4106     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4107     // If setcc returns 0/-1, all bits are sign bits.
4108     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4109         TargetLowering::ZeroOrNegativeOneBooleanContent)
4110       return VTBits;
4111     break;
4112   }
4113   case ISD::ROTL:
4114   case ISD::ROTR:
4115     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4116 
4117     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4118     if (Tmp == VTBits)
4119       return VTBits;
4120 
4121     if (ConstantSDNode *C =
4122             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4123       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4124 
4125       // Handle rotate right by N like a rotate left by 32-N.
4126       if (Opcode == ISD::ROTR)
4127         RotAmt = (VTBits - RotAmt) % VTBits;
4128 
4129       // If we aren't rotating out all of the known-in sign bits, return the
4130       // number that are left.  This handles rotl(sext(x), 1) for example.
4131       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4132     }
4133     break;
4134   case ISD::ADD:
4135   case ISD::ADDC:
4136     // Add can have at most one carry bit.  Thus we know that the output
4137     // is, at worst, one more bit than the inputs.
4138     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4139     if (Tmp == 1) return 1; // Early out.
4140 
4141     // Special case decrementing a value (ADD X, -1):
4142     if (ConstantSDNode *CRHS =
4143             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4144       if (CRHS->isAllOnes()) {
4145         KnownBits Known =
4146             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4147 
4148         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4149         // sign bits set.
4150         if ((Known.Zero | 1).isAllOnes())
4151           return VTBits;
4152 
4153         // If we are subtracting one from a positive number, there is no carry
4154         // out of the result.
4155         if (Known.isNonNegative())
4156           return Tmp;
4157       }
4158 
4159     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4160     if (Tmp2 == 1) return 1; // Early out.
4161     return std::min(Tmp, Tmp2) - 1;
4162   case ISD::SUB:
4163     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4164     if (Tmp2 == 1) return 1; // Early out.
4165 
4166     // Handle NEG.
4167     if (ConstantSDNode *CLHS =
4168             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4169       if (CLHS->isZero()) {
4170         KnownBits Known =
4171             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4172         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4173         // sign bits set.
4174         if ((Known.Zero | 1).isAllOnes())
4175           return VTBits;
4176 
4177         // If the input is known to be positive (the sign bit is known clear),
4178         // the output of the NEG has the same number of sign bits as the input.
4179         if (Known.isNonNegative())
4180           return Tmp2;
4181 
4182         // Otherwise, we treat this like a SUB.
4183       }
4184 
4185     // Sub can have at most one carry bit.  Thus we know that the output
4186     // is, at worst, one more bit than the inputs.
4187     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4188     if (Tmp == 1) return 1; // Early out.
4189     return std::min(Tmp, Tmp2) - 1;
4190   case ISD::MUL: {
4191     // The output of the Mul can be at most twice the valid bits in the inputs.
4192     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4193     if (SignBitsOp0 == 1)
4194       break;
4195     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4196     if (SignBitsOp1 == 1)
4197       break;
4198     unsigned OutValidBits =
4199         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4200     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4201   }
4202   case ISD::SREM:
4203     // The sign bit is the LHS's sign bit, except when the result of the
4204     // remainder is zero. The magnitude of the result should be less than or
4205     // equal to the magnitude of the LHS. Therefore, the result should have
4206     // at least as many sign bits as the left hand side.
4207     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4208   case ISD::TRUNCATE: {
4209     // Check if the sign bits of source go down as far as the truncated value.
4210     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4211     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4212     if (NumSrcSignBits > (NumSrcBits - VTBits))
4213       return NumSrcSignBits - (NumSrcBits - VTBits);
4214     break;
4215   }
4216   case ISD::EXTRACT_ELEMENT: {
4217     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4218     const int BitWidth = Op.getValueSizeInBits();
4219     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4220 
4221     // Get reverse index (starting from 1), Op1 value indexes elements from
4222     // little end. Sign starts at big end.
4223     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4224 
4225     // If the sign portion ends in our element the subtraction gives correct
4226     // result. Otherwise it gives either negative or > bitwidth result
4227     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4228   }
4229   case ISD::INSERT_VECTOR_ELT: {
4230     // If we know the element index, split the demand between the
4231     // source vector and the inserted element, otherwise assume we need
4232     // the original demanded vector elements and the value.
4233     SDValue InVec = Op.getOperand(0);
4234     SDValue InVal = Op.getOperand(1);
4235     SDValue EltNo = Op.getOperand(2);
4236     bool DemandedVal = true;
4237     APInt DemandedVecElts = DemandedElts;
4238     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4239     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4240       unsigned EltIdx = CEltNo->getZExtValue();
4241       DemandedVal = !!DemandedElts[EltIdx];
4242       DemandedVecElts.clearBit(EltIdx);
4243     }
4244     Tmp = std::numeric_limits<unsigned>::max();
4245     if (DemandedVal) {
4246       // TODO - handle implicit truncation of inserted elements.
4247       if (InVal.getScalarValueSizeInBits() != VTBits)
4248         break;
4249       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4250       Tmp = std::min(Tmp, Tmp2);
4251     }
4252     if (!!DemandedVecElts) {
4253       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4254       Tmp = std::min(Tmp, Tmp2);
4255     }
4256     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4257     return Tmp;
4258   }
4259   case ISD::EXTRACT_VECTOR_ELT: {
4260     SDValue InVec = Op.getOperand(0);
4261     SDValue EltNo = Op.getOperand(1);
4262     EVT VecVT = InVec.getValueType();
4263     // ComputeNumSignBits not yet implemented for scalable vectors.
4264     if (VecVT.isScalableVector())
4265       break;
4266     const unsigned BitWidth = Op.getValueSizeInBits();
4267     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4268     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4269 
4270     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4271     // anything about sign bits. But if the sizes match we can derive knowledge
4272     // about sign bits from the vector operand.
4273     if (BitWidth != EltBitWidth)
4274       break;
4275 
4276     // If we know the element index, just demand that vector element, else for
4277     // an unknown element index, ignore DemandedElts and demand them all.
4278     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4279     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4280     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4281       DemandedSrcElts =
4282           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4283 
4284     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4285   }
4286   case ISD::EXTRACT_SUBVECTOR: {
4287     // Offset the demanded elts by the subvector index.
4288     SDValue Src = Op.getOperand(0);
4289     // Bail until we can represent demanded elements for scalable vectors.
4290     if (Src.getValueType().isScalableVector())
4291       break;
4292     uint64_t Idx = Op.getConstantOperandVal(1);
4293     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4294     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
4295     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4296   }
4297   case ISD::CONCAT_VECTORS: {
4298     // Determine the minimum number of sign bits across all demanded
4299     // elts of the input vectors. Early out if the result is already 1.
4300     Tmp = std::numeric_limits<unsigned>::max();
4301     EVT SubVectorVT = Op.getOperand(0).getValueType();
4302     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4303     unsigned NumSubVectors = Op.getNumOperands();
4304     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4305       APInt DemandedSub =
4306           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4307       if (!DemandedSub)
4308         continue;
4309       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4310       Tmp = std::min(Tmp, Tmp2);
4311     }
4312     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4313     return Tmp;
4314   }
4315   case ISD::INSERT_SUBVECTOR: {
4316     // Demand any elements from the subvector and the remainder from the src its
4317     // inserted into.
4318     SDValue Src = Op.getOperand(0);
4319     SDValue Sub = Op.getOperand(1);
4320     uint64_t Idx = Op.getConstantOperandVal(2);
4321     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4322     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4323     APInt DemandedSrcElts = DemandedElts;
4324     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4325 
4326     Tmp = std::numeric_limits<unsigned>::max();
4327     if (!!DemandedSubElts) {
4328       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4329       if (Tmp == 1)
4330         return 1; // early-out
4331     }
4332     if (!!DemandedSrcElts) {
4333       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4334       Tmp = std::min(Tmp, Tmp2);
4335     }
4336     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4337     return Tmp;
4338   }
4339   case ISD::ATOMIC_CMP_SWAP:
4340   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4341   case ISD::ATOMIC_SWAP:
4342   case ISD::ATOMIC_LOAD_ADD:
4343   case ISD::ATOMIC_LOAD_SUB:
4344   case ISD::ATOMIC_LOAD_AND:
4345   case ISD::ATOMIC_LOAD_CLR:
4346   case ISD::ATOMIC_LOAD_OR:
4347   case ISD::ATOMIC_LOAD_XOR:
4348   case ISD::ATOMIC_LOAD_NAND:
4349   case ISD::ATOMIC_LOAD_MIN:
4350   case ISD::ATOMIC_LOAD_MAX:
4351   case ISD::ATOMIC_LOAD_UMIN:
4352   case ISD::ATOMIC_LOAD_UMAX:
4353   case ISD::ATOMIC_LOAD: {
4354     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4355     // If we are looking at the loaded value.
4356     if (Op.getResNo() == 0) {
4357       if (Tmp == VTBits)
4358         return 1; // early-out
4359       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4360         return VTBits - Tmp + 1;
4361       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4362         return VTBits - Tmp;
4363     }
4364     break;
4365   }
4366   }
4367 
4368   // If we are looking at the loaded value of the SDNode.
4369   if (Op.getResNo() == 0) {
4370     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4371     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4372       unsigned ExtType = LD->getExtensionType();
4373       switch (ExtType) {
4374       default: break;
4375       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4376         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4377         return VTBits - Tmp + 1;
4378       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4379         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4380         return VTBits - Tmp;
4381       case ISD::NON_EXTLOAD:
4382         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4383           // We only need to handle vectors - computeKnownBits should handle
4384           // scalar cases.
4385           Type *CstTy = Cst->getType();
4386           if (CstTy->isVectorTy() &&
4387               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4388               VTBits == CstTy->getScalarSizeInBits()) {
4389             Tmp = VTBits;
4390             for (unsigned i = 0; i != NumElts; ++i) {
4391               if (!DemandedElts[i])
4392                 continue;
4393               if (Constant *Elt = Cst->getAggregateElement(i)) {
4394                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4395                   const APInt &Value = CInt->getValue();
4396                   Tmp = std::min(Tmp, Value.getNumSignBits());
4397                   continue;
4398                 }
4399                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4400                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4401                   Tmp = std::min(Tmp, Value.getNumSignBits());
4402                   continue;
4403                 }
4404               }
4405               // Unknown type. Conservatively assume no bits match sign bit.
4406               return 1;
4407             }
4408             return Tmp;
4409           }
4410         }
4411         break;
4412       }
4413     }
4414   }
4415 
4416   // Allow the target to implement this method for its nodes.
4417   if (Opcode >= ISD::BUILTIN_OP_END ||
4418       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4419       Opcode == ISD::INTRINSIC_W_CHAIN ||
4420       Opcode == ISD::INTRINSIC_VOID) {
4421     unsigned NumBits =
4422         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4423     if (NumBits > 1)
4424       FirstAnswer = std::max(FirstAnswer, NumBits);
4425   }
4426 
4427   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4428   // use this information.
4429   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4430   return std::max(FirstAnswer, Known.countMinSignBits());
4431 }
4432 
4433 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4434                                                  unsigned Depth) const {
4435   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4436   return Op.getScalarValueSizeInBits() - SignBits + 1;
4437 }
4438 
4439 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4440                                                  const APInt &DemandedElts,
4441                                                  unsigned Depth) const {
4442   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4443   return Op.getScalarValueSizeInBits() - SignBits + 1;
4444 }
4445 
4446 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4447                                                     unsigned Depth) const {
4448   // Early out for FREEZE.
4449   if (Op.getOpcode() == ISD::FREEZE)
4450     return true;
4451 
4452   // TODO: Assume we don't know anything for now.
4453   EVT VT = Op.getValueType();
4454   if (VT.isScalableVector())
4455     return false;
4456 
4457   APInt DemandedElts = VT.isVector()
4458                            ? APInt::getAllOnes(VT.getVectorNumElements())
4459                            : APInt(1, 1);
4460   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4461 }
4462 
4463 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4464                                                     const APInt &DemandedElts,
4465                                                     bool PoisonOnly,
4466                                                     unsigned Depth) const {
4467   unsigned Opcode = Op.getOpcode();
4468 
4469   // Early out for FREEZE.
4470   if (Opcode == ISD::FREEZE)
4471     return true;
4472 
4473   if (Depth >= MaxRecursionDepth)
4474     return false; // Limit search depth.
4475 
4476   if (isIntOrFPConstant(Op))
4477     return true;
4478 
4479   switch (Opcode) {
4480   case ISD::UNDEF:
4481     return PoisonOnly;
4482 
4483   case ISD::BUILD_VECTOR:
4484     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4485     // this shouldn't affect the result.
4486     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4487       if (!DemandedElts[i])
4488         continue;
4489       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4490                                             Depth + 1))
4491         return false;
4492     }
4493     return true;
4494 
4495   // TODO: Search for noundef attributes from library functions.
4496 
4497   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4498 
4499   default:
4500     // Allow the target to implement this method for its nodes.
4501     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4502         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4503       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4504           Op, DemandedElts, *this, PoisonOnly, Depth);
4505     break;
4506   }
4507 
4508   return false;
4509 }
4510 
4511 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4512   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4513       !isa<ConstantSDNode>(Op.getOperand(1)))
4514     return false;
4515 
4516   if (Op.getOpcode() == ISD::OR &&
4517       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4518     return false;
4519 
4520   return true;
4521 }
4522 
4523 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4524   // If we're told that NaNs won't happen, assume they won't.
4525   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4526     return true;
4527 
4528   if (Depth >= MaxRecursionDepth)
4529     return false; // Limit search depth.
4530 
4531   // TODO: Handle vectors.
4532   // If the value is a constant, we can obviously see if it is a NaN or not.
4533   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4534     return !C->getValueAPF().isNaN() ||
4535            (SNaN && !C->getValueAPF().isSignaling());
4536   }
4537 
4538   unsigned Opcode = Op.getOpcode();
4539   switch (Opcode) {
4540   case ISD::FADD:
4541   case ISD::FSUB:
4542   case ISD::FMUL:
4543   case ISD::FDIV:
4544   case ISD::FREM:
4545   case ISD::FSIN:
4546   case ISD::FCOS: {
4547     if (SNaN)
4548       return true;
4549     // TODO: Need isKnownNeverInfinity
4550     return false;
4551   }
4552   case ISD::FCANONICALIZE:
4553   case ISD::FEXP:
4554   case ISD::FEXP2:
4555   case ISD::FTRUNC:
4556   case ISD::FFLOOR:
4557   case ISD::FCEIL:
4558   case ISD::FROUND:
4559   case ISD::FROUNDEVEN:
4560   case ISD::FRINT:
4561   case ISD::FNEARBYINT: {
4562     if (SNaN)
4563       return true;
4564     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4565   }
4566   case ISD::FABS:
4567   case ISD::FNEG:
4568   case ISD::FCOPYSIGN: {
4569     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4570   }
4571   case ISD::SELECT:
4572     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4573            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4574   case ISD::FP_EXTEND:
4575   case ISD::FP_ROUND: {
4576     if (SNaN)
4577       return true;
4578     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4579   }
4580   case ISD::SINT_TO_FP:
4581   case ISD::UINT_TO_FP:
4582     return true;
4583   case ISD::FMA:
4584   case ISD::FMAD: {
4585     if (SNaN)
4586       return true;
4587     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4588            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4589            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4590   }
4591   case ISD::FSQRT: // Need is known positive
4592   case ISD::FLOG:
4593   case ISD::FLOG2:
4594   case ISD::FLOG10:
4595   case ISD::FPOWI:
4596   case ISD::FPOW: {
4597     if (SNaN)
4598       return true;
4599     // TODO: Refine on operand
4600     return false;
4601   }
4602   case ISD::FMINNUM:
4603   case ISD::FMAXNUM: {
4604     // Only one needs to be known not-nan, since it will be returned if the
4605     // other ends up being one.
4606     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4607            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4608   }
4609   case ISD::FMINNUM_IEEE:
4610   case ISD::FMAXNUM_IEEE: {
4611     if (SNaN)
4612       return true;
4613     // This can return a NaN if either operand is an sNaN, or if both operands
4614     // are NaN.
4615     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4616             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4617            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4618             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4619   }
4620   case ISD::FMINIMUM:
4621   case ISD::FMAXIMUM: {
4622     // TODO: Does this quiet or return the origina NaN as-is?
4623     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4624            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4625   }
4626   case ISD::EXTRACT_VECTOR_ELT: {
4627     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4628   }
4629   default:
4630     if (Opcode >= ISD::BUILTIN_OP_END ||
4631         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4632         Opcode == ISD::INTRINSIC_W_CHAIN ||
4633         Opcode == ISD::INTRINSIC_VOID) {
4634       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4635     }
4636 
4637     return false;
4638   }
4639 }
4640 
4641 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4642   assert(Op.getValueType().isFloatingPoint() &&
4643          "Floating point type expected");
4644 
4645   // If the value is a constant, we can obviously see if it is a zero or not.
4646   // TODO: Add BuildVector support.
4647   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4648     return !C->isZero();
4649   return false;
4650 }
4651 
4652 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4653   assert(!Op.getValueType().isFloatingPoint() &&
4654          "Floating point types unsupported - use isKnownNeverZeroFloat");
4655 
4656   // If the value is a constant, we can obviously see if it is a zero or not.
4657   if (ISD::matchUnaryPredicate(Op,
4658                                [](ConstantSDNode *C) { return !C->isZero(); }))
4659     return true;
4660 
4661   // TODO: Recognize more cases here.
4662   switch (Op.getOpcode()) {
4663   default: break;
4664   case ISD::OR:
4665     if (isKnownNeverZero(Op.getOperand(1)) ||
4666         isKnownNeverZero(Op.getOperand(0)))
4667       return true;
4668     break;
4669   }
4670 
4671   return false;
4672 }
4673 
4674 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4675   // Check the obvious case.
4676   if (A == B) return true;
4677 
4678   // For for negative and positive zero.
4679   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4680     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4681       if (CA->isZero() && CB->isZero()) return true;
4682 
4683   // Otherwise they may not be equal.
4684   return false;
4685 }
4686 
4687 // Only bits set in Mask must be negated, other bits may be arbitrary.
4688 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) {
4689   if (isBitwiseNot(V, AllowUndefs))
4690     return V.getOperand(0);
4691 
4692   // Handle any_extend (not (truncate X)) pattern, where Mask only sets
4693   // bits in the non-extended part.
4694   ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
4695   if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
4696     return SDValue();
4697   SDValue ExtArg = V.getOperand(0);
4698   if (ExtArg.getScalarValueSizeInBits() >=
4699           MaskC->getAPIntValue().getActiveBits() &&
4700       isBitwiseNot(ExtArg, AllowUndefs) &&
4701       ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4702       ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
4703     return ExtArg.getOperand(0).getOperand(0);
4704   return SDValue();
4705 }
4706 
4707 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) {
4708   // Match masked merge pattern (X & ~M) op (Y & M)
4709   // Including degenerate case (X & ~M) op M
4710   auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
4711                                       SDValue Other) {
4712     if (SDValue NotOperand =
4713             getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
4714       if (Other == NotOperand)
4715         return true;
4716       if (Other->getOpcode() == ISD::AND)
4717         return NotOperand == Other->getOperand(0) ||
4718                NotOperand == Other->getOperand(1);
4719     }
4720     return false;
4721   };
4722   if (A->getOpcode() == ISD::AND)
4723     return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
4724            MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
4725   return false;
4726 }
4727 
4728 // FIXME: unify with llvm::haveNoCommonBitsSet.
4729 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4730   assert(A.getValueType() == B.getValueType() &&
4731          "Values must have the same type");
4732   if (haveNoCommonBitsSetCommutative(A, B) ||
4733       haveNoCommonBitsSetCommutative(B, A))
4734     return true;
4735   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4736                                         computeKnownBits(B));
4737 }
4738 
4739 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4740                                SelectionDAG &DAG) {
4741   if (cast<ConstantSDNode>(Step)->isZero())
4742     return DAG.getConstant(0, DL, VT);
4743 
4744   return SDValue();
4745 }
4746 
4747 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4748                                 ArrayRef<SDValue> Ops,
4749                                 SelectionDAG &DAG) {
4750   int NumOps = Ops.size();
4751   assert(NumOps != 0 && "Can't build an empty vector!");
4752   assert(!VT.isScalableVector() &&
4753          "BUILD_VECTOR cannot be used with scalable types");
4754   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4755          "Incorrect element count in BUILD_VECTOR!");
4756 
4757   // BUILD_VECTOR of UNDEFs is UNDEF.
4758   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4759     return DAG.getUNDEF(VT);
4760 
4761   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4762   SDValue IdentitySrc;
4763   bool IsIdentity = true;
4764   for (int i = 0; i != NumOps; ++i) {
4765     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4766         Ops[i].getOperand(0).getValueType() != VT ||
4767         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4768         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4769         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4770       IsIdentity = false;
4771       break;
4772     }
4773     IdentitySrc = Ops[i].getOperand(0);
4774   }
4775   if (IsIdentity)
4776     return IdentitySrc;
4777 
4778   return SDValue();
4779 }
4780 
4781 /// Try to simplify vector concatenation to an input value, undef, or build
4782 /// vector.
4783 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4784                                   ArrayRef<SDValue> Ops,
4785                                   SelectionDAG &DAG) {
4786   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4787   assert(llvm::all_of(Ops,
4788                       [Ops](SDValue Op) {
4789                         return Ops[0].getValueType() == Op.getValueType();
4790                       }) &&
4791          "Concatenation of vectors with inconsistent value types!");
4792   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4793              VT.getVectorElementCount() &&
4794          "Incorrect element count in vector concatenation!");
4795 
4796   if (Ops.size() == 1)
4797     return Ops[0];
4798 
4799   // Concat of UNDEFs is UNDEF.
4800   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4801     return DAG.getUNDEF(VT);
4802 
4803   // Scan the operands and look for extract operations from a single source
4804   // that correspond to insertion at the same location via this concatenation:
4805   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4806   SDValue IdentitySrc;
4807   bool IsIdentity = true;
4808   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4809     SDValue Op = Ops[i];
4810     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4811     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4812         Op.getOperand(0).getValueType() != VT ||
4813         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4814         Op.getConstantOperandVal(1) != IdentityIndex) {
4815       IsIdentity = false;
4816       break;
4817     }
4818     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4819            "Unexpected identity source vector for concat of extracts");
4820     IdentitySrc = Op.getOperand(0);
4821   }
4822   if (IsIdentity) {
4823     assert(IdentitySrc && "Failed to set source vector of extracts");
4824     return IdentitySrc;
4825   }
4826 
4827   // The code below this point is only designed to work for fixed width
4828   // vectors, so we bail out for now.
4829   if (VT.isScalableVector())
4830     return SDValue();
4831 
4832   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4833   // simplified to one big BUILD_VECTOR.
4834   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4835   EVT SVT = VT.getScalarType();
4836   SmallVector<SDValue, 16> Elts;
4837   for (SDValue Op : Ops) {
4838     EVT OpVT = Op.getValueType();
4839     if (Op.isUndef())
4840       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4841     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4842       Elts.append(Op->op_begin(), Op->op_end());
4843     else
4844       return SDValue();
4845   }
4846 
4847   // BUILD_VECTOR requires all inputs to be of the same type, find the
4848   // maximum type and extend them all.
4849   for (SDValue Op : Elts)
4850     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4851 
4852   if (SVT.bitsGT(VT.getScalarType())) {
4853     for (SDValue &Op : Elts) {
4854       if (Op.isUndef())
4855         Op = DAG.getUNDEF(SVT);
4856       else
4857         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4858                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4859                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4860     }
4861   }
4862 
4863   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4864   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4865   return V;
4866 }
4867 
4868 /// Gets or creates the specified node.
4869 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4870   FoldingSetNodeID ID;
4871   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4872   void *IP = nullptr;
4873   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4874     return SDValue(E, 0);
4875 
4876   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4877                               getVTList(VT));
4878   CSEMap.InsertNode(N, IP);
4879 
4880   InsertNode(N);
4881   SDValue V = SDValue(N, 0);
4882   NewSDValueDbgMsg(V, "Creating new node: ", this);
4883   return V;
4884 }
4885 
4886 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4887                               SDValue Operand) {
4888   SDNodeFlags Flags;
4889   if (Inserter)
4890     Flags = Inserter->getFlags();
4891   return getNode(Opcode, DL, VT, Operand, Flags);
4892 }
4893 
4894 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4895                               SDValue Operand, const SDNodeFlags Flags) {
4896   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4897          "Operand is DELETED_NODE!");
4898   // Constant fold unary operations with an integer constant operand. Even
4899   // opaque constant will be folded, because the folding of unary operations
4900   // doesn't create new constants with different values. Nevertheless, the
4901   // opaque flag is preserved during folding to prevent future folding with
4902   // other constants.
4903   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4904     const APInt &Val = C->getAPIntValue();
4905     switch (Opcode) {
4906     default: break;
4907     case ISD::SIGN_EXTEND:
4908       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4909                          C->isTargetOpcode(), C->isOpaque());
4910     case ISD::TRUNCATE:
4911       if (C->isOpaque())
4912         break;
4913       LLVM_FALLTHROUGH;
4914     case ISD::ZERO_EXTEND:
4915       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4916                          C->isTargetOpcode(), C->isOpaque());
4917     case ISD::ANY_EXTEND:
4918       // Some targets like RISCV prefer to sign extend some types.
4919       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4920         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4921                            C->isTargetOpcode(), C->isOpaque());
4922       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4923                          C->isTargetOpcode(), C->isOpaque());
4924     case ISD::UINT_TO_FP:
4925     case ISD::SINT_TO_FP: {
4926       APFloat apf(EVTToAPFloatSemantics(VT),
4927                   APInt::getZero(VT.getSizeInBits()));
4928       (void)apf.convertFromAPInt(Val,
4929                                  Opcode==ISD::SINT_TO_FP,
4930                                  APFloat::rmNearestTiesToEven);
4931       return getConstantFP(apf, DL, VT);
4932     }
4933     case ISD::BITCAST:
4934       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4935         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4936       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4937         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4938       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4939         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4940       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4941         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4942       break;
4943     case ISD::ABS:
4944       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4945                          C->isOpaque());
4946     case ISD::BITREVERSE:
4947       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4948                          C->isOpaque());
4949     case ISD::BSWAP:
4950       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4951                          C->isOpaque());
4952     case ISD::CTPOP:
4953       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4954                          C->isOpaque());
4955     case ISD::CTLZ:
4956     case ISD::CTLZ_ZERO_UNDEF:
4957       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4958                          C->isOpaque());
4959     case ISD::CTTZ:
4960     case ISD::CTTZ_ZERO_UNDEF:
4961       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4962                          C->isOpaque());
4963     case ISD::FP16_TO_FP: {
4964       bool Ignored;
4965       APFloat FPV(APFloat::IEEEhalf(),
4966                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4967 
4968       // This can return overflow, underflow, or inexact; we don't care.
4969       // FIXME need to be more flexible about rounding mode.
4970       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4971                         APFloat::rmNearestTiesToEven, &Ignored);
4972       return getConstantFP(FPV, DL, VT);
4973     }
4974     case ISD::STEP_VECTOR: {
4975       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4976         return V;
4977       break;
4978     }
4979     }
4980   }
4981 
4982   // Constant fold unary operations with a floating point constant operand.
4983   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4984     APFloat V = C->getValueAPF();    // make copy
4985     switch (Opcode) {
4986     case ISD::FNEG:
4987       V.changeSign();
4988       return getConstantFP(V, DL, VT);
4989     case ISD::FABS:
4990       V.clearSign();
4991       return getConstantFP(V, DL, VT);
4992     case ISD::FCEIL: {
4993       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4994       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4995         return getConstantFP(V, DL, VT);
4996       break;
4997     }
4998     case ISD::FTRUNC: {
4999       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
5000       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5001         return getConstantFP(V, DL, VT);
5002       break;
5003     }
5004     case ISD::FFLOOR: {
5005       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
5006       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5007         return getConstantFP(V, DL, VT);
5008       break;
5009     }
5010     case ISD::FP_EXTEND: {
5011       bool ignored;
5012       // This can return overflow, underflow, or inexact; we don't care.
5013       // FIXME need to be more flexible about rounding mode.
5014       (void)V.convert(EVTToAPFloatSemantics(VT),
5015                       APFloat::rmNearestTiesToEven, &ignored);
5016       return getConstantFP(V, DL, VT);
5017     }
5018     case ISD::FP_TO_SINT:
5019     case ISD::FP_TO_UINT: {
5020       bool ignored;
5021       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
5022       // FIXME need to be more flexible about rounding mode.
5023       APFloat::opStatus s =
5024           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
5025       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
5026         break;
5027       return getConstant(IntVal, DL, VT);
5028     }
5029     case ISD::BITCAST:
5030       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
5031         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5032       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
5033         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5034       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
5035         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5036       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
5037         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5038       break;
5039     case ISD::FP_TO_FP16: {
5040       bool Ignored;
5041       // This can return overflow, underflow, or inexact; we don't care.
5042       // FIXME need to be more flexible about rounding mode.
5043       (void)V.convert(APFloat::IEEEhalf(),
5044                       APFloat::rmNearestTiesToEven, &Ignored);
5045       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5046     }
5047     }
5048   }
5049 
5050   // Constant fold unary operations with a vector integer or float operand.
5051   switch (Opcode) {
5052   default:
5053     // FIXME: Entirely reasonable to perform folding of other unary
5054     // operations here as the need arises.
5055     break;
5056   case ISD::FNEG:
5057   case ISD::FABS:
5058   case ISD::FCEIL:
5059   case ISD::FTRUNC:
5060   case ISD::FFLOOR:
5061   case ISD::FP_EXTEND:
5062   case ISD::FP_TO_SINT:
5063   case ISD::FP_TO_UINT:
5064   case ISD::TRUNCATE:
5065   case ISD::ANY_EXTEND:
5066   case ISD::ZERO_EXTEND:
5067   case ISD::SIGN_EXTEND:
5068   case ISD::UINT_TO_FP:
5069   case ISD::SINT_TO_FP:
5070   case ISD::ABS:
5071   case ISD::BITREVERSE:
5072   case ISD::BSWAP:
5073   case ISD::CTLZ:
5074   case ISD::CTLZ_ZERO_UNDEF:
5075   case ISD::CTTZ:
5076   case ISD::CTTZ_ZERO_UNDEF:
5077   case ISD::CTPOP: {
5078     SDValue Ops = {Operand};
5079     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5080       return Fold;
5081   }
5082   }
5083 
5084   unsigned OpOpcode = Operand.getNode()->getOpcode();
5085   switch (Opcode) {
5086   case ISD::STEP_VECTOR:
5087     assert(VT.isScalableVector() &&
5088            "STEP_VECTOR can only be used with scalable types");
5089     assert(OpOpcode == ISD::TargetConstant &&
5090            VT.getVectorElementType() == Operand.getValueType() &&
5091            "Unexpected step operand");
5092     break;
5093   case ISD::FREEZE:
5094     assert(VT == Operand.getValueType() && "Unexpected VT!");
5095     if (isGuaranteedNotToBeUndefOrPoison(Operand))
5096       return Operand;
5097     break;
5098   case ISD::TokenFactor:
5099   case ISD::MERGE_VALUES:
5100   case ISD::CONCAT_VECTORS:
5101     return Operand;         // Factor, merge or concat of one node?  No need.
5102   case ISD::BUILD_VECTOR: {
5103     // Attempt to simplify BUILD_VECTOR.
5104     SDValue Ops[] = {Operand};
5105     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5106       return V;
5107     break;
5108   }
5109   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5110   case ISD::FP_EXTEND:
5111     assert(VT.isFloatingPoint() &&
5112            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
5113     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
5114     assert((!VT.isVector() ||
5115             VT.getVectorElementCount() ==
5116             Operand.getValueType().getVectorElementCount()) &&
5117            "Vector element count mismatch!");
5118     assert(Operand.getValueType().bitsLT(VT) &&
5119            "Invalid fpext node, dst < src!");
5120     if (Operand.isUndef())
5121       return getUNDEF(VT);
5122     break;
5123   case ISD::FP_TO_SINT:
5124   case ISD::FP_TO_UINT:
5125     if (Operand.isUndef())
5126       return getUNDEF(VT);
5127     break;
5128   case ISD::SINT_TO_FP:
5129   case ISD::UINT_TO_FP:
5130     // [us]itofp(undef) = 0, because the result value is bounded.
5131     if (Operand.isUndef())
5132       return getConstantFP(0.0, DL, VT);
5133     break;
5134   case ISD::SIGN_EXTEND:
5135     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5136            "Invalid SIGN_EXTEND!");
5137     assert(VT.isVector() == Operand.getValueType().isVector() &&
5138            "SIGN_EXTEND result type type should be vector iff the operand "
5139            "type is vector!");
5140     if (Operand.getValueType() == VT) return Operand;   // noop extension
5141     assert((!VT.isVector() ||
5142             VT.getVectorElementCount() ==
5143                 Operand.getValueType().getVectorElementCount()) &&
5144            "Vector element count mismatch!");
5145     assert(Operand.getValueType().bitsLT(VT) &&
5146            "Invalid sext node, dst < src!");
5147     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5148       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5149     if (OpOpcode == ISD::UNDEF)
5150       // sext(undef) = 0, because the top bits will all be the same.
5151       return getConstant(0, DL, VT);
5152     break;
5153   case ISD::ZERO_EXTEND:
5154     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5155            "Invalid ZERO_EXTEND!");
5156     assert(VT.isVector() == Operand.getValueType().isVector() &&
5157            "ZERO_EXTEND result type type should be vector iff the operand "
5158            "type is vector!");
5159     if (Operand.getValueType() == VT) return Operand;   // noop extension
5160     assert((!VT.isVector() ||
5161             VT.getVectorElementCount() ==
5162                 Operand.getValueType().getVectorElementCount()) &&
5163            "Vector element count mismatch!");
5164     assert(Operand.getValueType().bitsLT(VT) &&
5165            "Invalid zext node, dst < src!");
5166     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5167       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5168     if (OpOpcode == ISD::UNDEF)
5169       // zext(undef) = 0, because the top bits will be zero.
5170       return getConstant(0, DL, VT);
5171     break;
5172   case ISD::ANY_EXTEND:
5173     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5174            "Invalid ANY_EXTEND!");
5175     assert(VT.isVector() == Operand.getValueType().isVector() &&
5176            "ANY_EXTEND result type type should be vector iff the operand "
5177            "type is vector!");
5178     if (Operand.getValueType() == VT) return Operand;   // noop extension
5179     assert((!VT.isVector() ||
5180             VT.getVectorElementCount() ==
5181                 Operand.getValueType().getVectorElementCount()) &&
5182            "Vector element count mismatch!");
5183     assert(Operand.getValueType().bitsLT(VT) &&
5184            "Invalid anyext node, dst < src!");
5185 
5186     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5187         OpOpcode == ISD::ANY_EXTEND)
5188       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5189       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5190     if (OpOpcode == ISD::UNDEF)
5191       return getUNDEF(VT);
5192 
5193     // (ext (trunc x)) -> x
5194     if (OpOpcode == ISD::TRUNCATE) {
5195       SDValue OpOp = Operand.getOperand(0);
5196       if (OpOp.getValueType() == VT) {
5197         transferDbgValues(Operand, OpOp);
5198         return OpOp;
5199       }
5200     }
5201     break;
5202   case ISD::TRUNCATE:
5203     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5204            "Invalid TRUNCATE!");
5205     assert(VT.isVector() == Operand.getValueType().isVector() &&
5206            "TRUNCATE result type type should be vector iff the operand "
5207            "type is vector!");
5208     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5209     assert((!VT.isVector() ||
5210             VT.getVectorElementCount() ==
5211                 Operand.getValueType().getVectorElementCount()) &&
5212            "Vector element count mismatch!");
5213     assert(Operand.getValueType().bitsGT(VT) &&
5214            "Invalid truncate node, src < dst!");
5215     if (OpOpcode == ISD::TRUNCATE)
5216       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5217     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5218         OpOpcode == ISD::ANY_EXTEND) {
5219       // If the source is smaller than the dest, we still need an extend.
5220       if (Operand.getOperand(0).getValueType().getScalarType()
5221             .bitsLT(VT.getScalarType()))
5222         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5223       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5224         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5225       return Operand.getOperand(0);
5226     }
5227     if (OpOpcode == ISD::UNDEF)
5228       return getUNDEF(VT);
5229     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5230       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5231     break;
5232   case ISD::ANY_EXTEND_VECTOR_INREG:
5233   case ISD::ZERO_EXTEND_VECTOR_INREG:
5234   case ISD::SIGN_EXTEND_VECTOR_INREG:
5235     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5236     assert(Operand.getValueType().bitsLE(VT) &&
5237            "The input must be the same size or smaller than the result.");
5238     assert(VT.getVectorMinNumElements() <
5239                Operand.getValueType().getVectorMinNumElements() &&
5240            "The destination vector type must have fewer lanes than the input.");
5241     break;
5242   case ISD::ABS:
5243     assert(VT.isInteger() && VT == Operand.getValueType() &&
5244            "Invalid ABS!");
5245     if (OpOpcode == ISD::UNDEF)
5246       return getConstant(0, DL, VT);
5247     break;
5248   case ISD::BSWAP:
5249     assert(VT.isInteger() && VT == Operand.getValueType() &&
5250            "Invalid BSWAP!");
5251     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5252            "BSWAP types must be a multiple of 16 bits!");
5253     if (OpOpcode == ISD::UNDEF)
5254       return getUNDEF(VT);
5255     // bswap(bswap(X)) -> X.
5256     if (OpOpcode == ISD::BSWAP)
5257       return Operand.getOperand(0);
5258     break;
5259   case ISD::BITREVERSE:
5260     assert(VT.isInteger() && VT == Operand.getValueType() &&
5261            "Invalid BITREVERSE!");
5262     if (OpOpcode == ISD::UNDEF)
5263       return getUNDEF(VT);
5264     break;
5265   case ISD::BITCAST:
5266     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5267            "Cannot BITCAST between types of different sizes!");
5268     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5269     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5270       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5271     if (OpOpcode == ISD::UNDEF)
5272       return getUNDEF(VT);
5273     break;
5274   case ISD::SCALAR_TO_VECTOR:
5275     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5276            (VT.getVectorElementType() == Operand.getValueType() ||
5277             (VT.getVectorElementType().isInteger() &&
5278              Operand.getValueType().isInteger() &&
5279              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5280            "Illegal SCALAR_TO_VECTOR node!");
5281     if (OpOpcode == ISD::UNDEF)
5282       return getUNDEF(VT);
5283     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5284     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5285         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5286         Operand.getConstantOperandVal(1) == 0 &&
5287         Operand.getOperand(0).getValueType() == VT)
5288       return Operand.getOperand(0);
5289     break;
5290   case ISD::FNEG:
5291     // Negation of an unknown bag of bits is still completely undefined.
5292     if (OpOpcode == ISD::UNDEF)
5293       return getUNDEF(VT);
5294 
5295     if (OpOpcode == ISD::FNEG)  // --X -> X
5296       return Operand.getOperand(0);
5297     break;
5298   case ISD::FABS:
5299     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5300       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5301     break;
5302   case ISD::VSCALE:
5303     assert(VT == Operand.getValueType() && "Unexpected VT!");
5304     break;
5305   case ISD::CTPOP:
5306     if (Operand.getValueType().getScalarType() == MVT::i1)
5307       return Operand;
5308     break;
5309   case ISD::CTLZ:
5310   case ISD::CTTZ:
5311     if (Operand.getValueType().getScalarType() == MVT::i1)
5312       return getNOT(DL, Operand, Operand.getValueType());
5313     break;
5314   case ISD::VECREDUCE_ADD:
5315     if (Operand.getValueType().getScalarType() == MVT::i1)
5316       return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand);
5317     break;
5318   case ISD::VECREDUCE_SMIN:
5319   case ISD::VECREDUCE_UMAX:
5320     if (Operand.getValueType().getScalarType() == MVT::i1)
5321       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5322     break;
5323   case ISD::VECREDUCE_SMAX:
5324   case ISD::VECREDUCE_UMIN:
5325     if (Operand.getValueType().getScalarType() == MVT::i1)
5326       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5327     break;
5328   }
5329 
5330   SDNode *N;
5331   SDVTList VTs = getVTList(VT);
5332   SDValue Ops[] = {Operand};
5333   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5334     FoldingSetNodeID ID;
5335     AddNodeIDNode(ID, Opcode, VTs, Ops);
5336     void *IP = nullptr;
5337     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5338       E->intersectFlagsWith(Flags);
5339       return SDValue(E, 0);
5340     }
5341 
5342     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5343     N->setFlags(Flags);
5344     createOperands(N, Ops);
5345     CSEMap.InsertNode(N, IP);
5346   } else {
5347     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5348     createOperands(N, Ops);
5349   }
5350 
5351   InsertNode(N);
5352   SDValue V = SDValue(N, 0);
5353   NewSDValueDbgMsg(V, "Creating new node: ", this);
5354   return V;
5355 }
5356 
5357 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5358                                        const APInt &C2) {
5359   switch (Opcode) {
5360   case ISD::ADD:  return C1 + C2;
5361   case ISD::SUB:  return C1 - C2;
5362   case ISD::MUL:  return C1 * C2;
5363   case ISD::AND:  return C1 & C2;
5364   case ISD::OR:   return C1 | C2;
5365   case ISD::XOR:  return C1 ^ C2;
5366   case ISD::SHL:  return C1 << C2;
5367   case ISD::SRL:  return C1.lshr(C2);
5368   case ISD::SRA:  return C1.ashr(C2);
5369   case ISD::ROTL: return C1.rotl(C2);
5370   case ISD::ROTR: return C1.rotr(C2);
5371   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5372   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5373   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5374   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5375   case ISD::SADDSAT: return C1.sadd_sat(C2);
5376   case ISD::UADDSAT: return C1.uadd_sat(C2);
5377   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5378   case ISD::USUBSAT: return C1.usub_sat(C2);
5379   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5380   case ISD::USHLSAT: return C1.ushl_sat(C2);
5381   case ISD::UDIV:
5382     if (!C2.getBoolValue())
5383       break;
5384     return C1.udiv(C2);
5385   case ISD::UREM:
5386     if (!C2.getBoolValue())
5387       break;
5388     return C1.urem(C2);
5389   case ISD::SDIV:
5390     if (!C2.getBoolValue())
5391       break;
5392     return C1.sdiv(C2);
5393   case ISD::SREM:
5394     if (!C2.getBoolValue())
5395       break;
5396     return C1.srem(C2);
5397   case ISD::MULHS: {
5398     unsigned FullWidth = C1.getBitWidth() * 2;
5399     APInt C1Ext = C1.sext(FullWidth);
5400     APInt C2Ext = C2.sext(FullWidth);
5401     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5402   }
5403   case ISD::MULHU: {
5404     unsigned FullWidth = C1.getBitWidth() * 2;
5405     APInt C1Ext = C1.zext(FullWidth);
5406     APInt C2Ext = C2.zext(FullWidth);
5407     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5408   }
5409   case ISD::AVGFLOORS: {
5410     unsigned FullWidth = C1.getBitWidth() + 1;
5411     APInt C1Ext = C1.sext(FullWidth);
5412     APInt C2Ext = C2.sext(FullWidth);
5413     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5414   }
5415   case ISD::AVGFLOORU: {
5416     unsigned FullWidth = C1.getBitWidth() + 1;
5417     APInt C1Ext = C1.zext(FullWidth);
5418     APInt C2Ext = C2.zext(FullWidth);
5419     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5420   }
5421   case ISD::AVGCEILS: {
5422     unsigned FullWidth = C1.getBitWidth() + 1;
5423     APInt C1Ext = C1.sext(FullWidth);
5424     APInt C2Ext = C2.sext(FullWidth);
5425     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5426   }
5427   case ISD::AVGCEILU: {
5428     unsigned FullWidth = C1.getBitWidth() + 1;
5429     APInt C1Ext = C1.zext(FullWidth);
5430     APInt C2Ext = C2.zext(FullWidth);
5431     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5432   }
5433   }
5434   return llvm::None;
5435 }
5436 
5437 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5438                                        const GlobalAddressSDNode *GA,
5439                                        const SDNode *N2) {
5440   if (GA->getOpcode() != ISD::GlobalAddress)
5441     return SDValue();
5442   if (!TLI->isOffsetFoldingLegal(GA))
5443     return SDValue();
5444   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5445   if (!C2)
5446     return SDValue();
5447   int64_t Offset = C2->getSExtValue();
5448   switch (Opcode) {
5449   case ISD::ADD: break;
5450   case ISD::SUB: Offset = -uint64_t(Offset); break;
5451   default: return SDValue();
5452   }
5453   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5454                           GA->getOffset() + uint64_t(Offset));
5455 }
5456 
5457 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5458   switch (Opcode) {
5459   case ISD::SDIV:
5460   case ISD::UDIV:
5461   case ISD::SREM:
5462   case ISD::UREM: {
5463     // If a divisor is zero/undef or any element of a divisor vector is
5464     // zero/undef, the whole op is undef.
5465     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5466     SDValue Divisor = Ops[1];
5467     if (Divisor.isUndef() || isNullConstant(Divisor))
5468       return true;
5469 
5470     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5471            llvm::any_of(Divisor->op_values(),
5472                         [](SDValue V) { return V.isUndef() ||
5473                                         isNullConstant(V); });
5474     // TODO: Handle signed overflow.
5475   }
5476   // TODO: Handle oversized shifts.
5477   default:
5478     return false;
5479   }
5480 }
5481 
5482 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5483                                              EVT VT, ArrayRef<SDValue> Ops) {
5484   // If the opcode is a target-specific ISD node, there's nothing we can
5485   // do here and the operand rules may not line up with the below, so
5486   // bail early.
5487   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5488   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5489   // foldCONCAT_VECTORS in getNode before this is called.
5490   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5491     return SDValue();
5492 
5493   unsigned NumOps = Ops.size();
5494   if (NumOps == 0)
5495     return SDValue();
5496 
5497   if (isUndef(Opcode, Ops))
5498     return getUNDEF(VT);
5499 
5500   // Handle binops special cases.
5501   if (NumOps == 2) {
5502     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5503       return CFP;
5504 
5505     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5506       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5507         if (C1->isOpaque() || C2->isOpaque())
5508           return SDValue();
5509 
5510         Optional<APInt> FoldAttempt =
5511             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5512         if (!FoldAttempt)
5513           return SDValue();
5514 
5515         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5516         assert((!Folded || !VT.isVector()) &&
5517                "Can't fold vectors ops with scalar operands");
5518         return Folded;
5519       }
5520     }
5521 
5522     // fold (add Sym, c) -> Sym+c
5523     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5524       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5525     if (TLI->isCommutativeBinOp(Opcode))
5526       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5527         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5528   }
5529 
5530   // This is for vector folding only from here on.
5531   if (!VT.isVector())
5532     return SDValue();
5533 
5534   ElementCount NumElts = VT.getVectorElementCount();
5535 
5536   // See if we can fold through bitcasted integer ops.
5537   // TODO: Can we handle undef elements?
5538   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5539       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5540       Ops[0].getOpcode() == ISD::BITCAST &&
5541       Ops[1].getOpcode() == ISD::BITCAST) {
5542     SDValue N1 = peekThroughBitcasts(Ops[0]);
5543     SDValue N2 = peekThroughBitcasts(Ops[1]);
5544     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5545     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5546     EVT BVVT = N1.getValueType();
5547     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5548       bool IsLE = getDataLayout().isLittleEndian();
5549       unsigned EltBits = VT.getScalarSizeInBits();
5550       SmallVector<APInt> RawBits1, RawBits2;
5551       BitVector UndefElts1, UndefElts2;
5552       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5553           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5554           UndefElts1.none() && UndefElts2.none()) {
5555         SmallVector<APInt> RawBits;
5556         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5557           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5558           if (!Fold)
5559             break;
5560           RawBits.push_back(Fold.getValue());
5561         }
5562         if (RawBits.size() == NumElts.getFixedValue()) {
5563           // We have constant folded, but we need to cast this again back to
5564           // the original (possibly legalized) type.
5565           SmallVector<APInt> DstBits;
5566           BitVector DstUndefs;
5567           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5568                                            DstBits, RawBits, DstUndefs,
5569                                            BitVector(RawBits.size(), false));
5570           EVT BVEltVT = BV1->getOperand(0).getValueType();
5571           unsigned BVEltBits = BVEltVT.getSizeInBits();
5572           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5573           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5574             if (DstUndefs[I])
5575               continue;
5576             Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
5577           }
5578           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5579         }
5580       }
5581     }
5582   }
5583 
5584   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5585   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5586   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5587       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5588     APInt RHSVal;
5589     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5590       APInt NewStep = Opcode == ISD::MUL
5591                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5592                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5593       return getStepVector(DL, VT, NewStep);
5594     }
5595   }
5596 
5597   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5598     return !Op.getValueType().isVector() ||
5599            Op.getValueType().getVectorElementCount() == NumElts;
5600   };
5601 
5602   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5603     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5604            Op.getOpcode() == ISD::BUILD_VECTOR ||
5605            Op.getOpcode() == ISD::SPLAT_VECTOR;
5606   };
5607 
5608   // All operands must be vector types with the same number of elements as
5609   // the result type and must be either UNDEF or a build/splat vector
5610   // or UNDEF scalars.
5611   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5612       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5613     return SDValue();
5614 
5615   // If we are comparing vectors, then the result needs to be a i1 boolean that
5616   // is then extended back to the legal result type depending on how booleans
5617   // are represented.
5618   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5619   ISD::NodeType ExtendCode =
5620       (Opcode == ISD::SETCC && SVT != VT.getScalarType())
5621           ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
5622           : ISD::SIGN_EXTEND;
5623 
5624   // Find legal integer scalar type for constant promotion and
5625   // ensure that its scalar size is at least as large as source.
5626   EVT LegalSVT = VT.getScalarType();
5627   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5628     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5629     if (LegalSVT.bitsLT(VT.getScalarType()))
5630       return SDValue();
5631   }
5632 
5633   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5634   // only have one operand to check. For fixed-length vector types we may have
5635   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5636   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5637 
5638   // Constant fold each scalar lane separately.
5639   SmallVector<SDValue, 4> ScalarResults;
5640   for (unsigned I = 0; I != NumVectorElts; I++) {
5641     SmallVector<SDValue, 4> ScalarOps;
5642     for (SDValue Op : Ops) {
5643       EVT InSVT = Op.getValueType().getScalarType();
5644       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5645           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5646         if (Op.isUndef())
5647           ScalarOps.push_back(getUNDEF(InSVT));
5648         else
5649           ScalarOps.push_back(Op);
5650         continue;
5651       }
5652 
5653       SDValue ScalarOp =
5654           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5655       EVT ScalarVT = ScalarOp.getValueType();
5656 
5657       // Build vector (integer) scalar operands may need implicit
5658       // truncation - do this before constant folding.
5659       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
5660         // Don't create illegally-typed nodes unless they're constants or undef
5661         // - if we fail to constant fold we can't guarantee the (dead) nodes
5662         // we're creating will be cleaned up before being visited for
5663         // legalization.
5664         if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
5665             !isa<ConstantSDNode>(ScalarOp) &&
5666             TLI->getTypeAction(*getContext(), InSVT) !=
5667                 TargetLowering::TypeLegal)
5668           return SDValue();
5669         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5670       }
5671 
5672       ScalarOps.push_back(ScalarOp);
5673     }
5674 
5675     // Constant fold the scalar operands.
5676     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5677 
5678     // Legalize the (integer) scalar constant if necessary.
5679     if (LegalSVT != SVT)
5680       ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
5681 
5682     // Scalar folding only succeeded if the result is a constant or UNDEF.
5683     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5684         ScalarResult.getOpcode() != ISD::ConstantFP)
5685       return SDValue();
5686     ScalarResults.push_back(ScalarResult);
5687   }
5688 
5689   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5690                                    : getBuildVector(VT, DL, ScalarResults);
5691   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5692   return V;
5693 }
5694 
5695 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5696                                          EVT VT, SDValue N1, SDValue N2) {
5697   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5698   //       should. That will require dealing with a potentially non-default
5699   //       rounding mode, checking the "opStatus" return value from the APFloat
5700   //       math calculations, and possibly other variations.
5701   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5702   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5703   if (N1CFP && N2CFP) {
5704     APFloat C1 = N1CFP->getValueAPF(); // make copy
5705     const APFloat &C2 = N2CFP->getValueAPF();
5706     switch (Opcode) {
5707     case ISD::FADD:
5708       C1.add(C2, APFloat::rmNearestTiesToEven);
5709       return getConstantFP(C1, DL, VT);
5710     case ISD::FSUB:
5711       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5712       return getConstantFP(C1, DL, VT);
5713     case ISD::FMUL:
5714       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5715       return getConstantFP(C1, DL, VT);
5716     case ISD::FDIV:
5717       C1.divide(C2, APFloat::rmNearestTiesToEven);
5718       return getConstantFP(C1, DL, VT);
5719     case ISD::FREM:
5720       C1.mod(C2);
5721       return getConstantFP(C1, DL, VT);
5722     case ISD::FCOPYSIGN:
5723       C1.copySign(C2);
5724       return getConstantFP(C1, DL, VT);
5725     case ISD::FMINNUM:
5726       return getConstantFP(minnum(C1, C2), DL, VT);
5727     case ISD::FMAXNUM:
5728       return getConstantFP(maxnum(C1, C2), DL, VT);
5729     case ISD::FMINIMUM:
5730       return getConstantFP(minimum(C1, C2), DL, VT);
5731     case ISD::FMAXIMUM:
5732       return getConstantFP(maximum(C1, C2), DL, VT);
5733     default: break;
5734     }
5735   }
5736   if (N1CFP && Opcode == ISD::FP_ROUND) {
5737     APFloat C1 = N1CFP->getValueAPF();    // make copy
5738     bool Unused;
5739     // This can return overflow, underflow, or inexact; we don't care.
5740     // FIXME need to be more flexible about rounding mode.
5741     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5742                       &Unused);
5743     return getConstantFP(C1, DL, VT);
5744   }
5745 
5746   switch (Opcode) {
5747   case ISD::FSUB:
5748     // -0.0 - undef --> undef (consistent with "fneg undef")
5749     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5750       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5751         return getUNDEF(VT);
5752     LLVM_FALLTHROUGH;
5753 
5754   case ISD::FADD:
5755   case ISD::FMUL:
5756   case ISD::FDIV:
5757   case ISD::FREM:
5758     // If both operands are undef, the result is undef. If 1 operand is undef,
5759     // the result is NaN. This should match the behavior of the IR optimizer.
5760     if (N1.isUndef() && N2.isUndef())
5761       return getUNDEF(VT);
5762     if (N1.isUndef() || N2.isUndef())
5763       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5764   }
5765   return SDValue();
5766 }
5767 
5768 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5769   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5770 
5771   // There's no need to assert on a byte-aligned pointer. All pointers are at
5772   // least byte aligned.
5773   if (A == Align(1))
5774     return Val;
5775 
5776   FoldingSetNodeID ID;
5777   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5778   ID.AddInteger(A.value());
5779 
5780   void *IP = nullptr;
5781   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5782     return SDValue(E, 0);
5783 
5784   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5785                                          Val.getValueType(), A);
5786   createOperands(N, {Val});
5787 
5788   CSEMap.InsertNode(N, IP);
5789   InsertNode(N);
5790 
5791   SDValue V(N, 0);
5792   NewSDValueDbgMsg(V, "Creating new node: ", this);
5793   return V;
5794 }
5795 
5796 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5797                               SDValue N1, SDValue N2) {
5798   SDNodeFlags Flags;
5799   if (Inserter)
5800     Flags = Inserter->getFlags();
5801   return getNode(Opcode, DL, VT, N1, N2, Flags);
5802 }
5803 
5804 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5805                                                 SDValue &N2) const {
5806   if (!TLI->isCommutativeBinOp(Opcode))
5807     return;
5808 
5809   // Canonicalize:
5810   //   binop(const, nonconst) -> binop(nonconst, const)
5811   bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5812   bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5813   bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5814   bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5815   if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5816     std::swap(N1, N2);
5817 
5818   // Canonicalize:
5819   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5820   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5821            N2.getOpcode() == ISD::STEP_VECTOR)
5822     std::swap(N1, N2);
5823 }
5824 
5825 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5826                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5827   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5828          N2.getOpcode() != ISD::DELETED_NODE &&
5829          "Operand is DELETED_NODE!");
5830 
5831   canonicalizeCommutativeBinop(Opcode, N1, N2);
5832 
5833   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5834   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5835 
5836   // Don't allow undefs in vector splats - we might be returning N2 when folding
5837   // to zero etc.
5838   ConstantSDNode *N2CV =
5839       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5840 
5841   switch (Opcode) {
5842   default: break;
5843   case ISD::TokenFactor:
5844     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5845            N2.getValueType() == MVT::Other && "Invalid token factor!");
5846     // Fold trivial token factors.
5847     if (N1.getOpcode() == ISD::EntryToken) return N2;
5848     if (N2.getOpcode() == ISD::EntryToken) return N1;
5849     if (N1 == N2) return N1;
5850     break;
5851   case ISD::BUILD_VECTOR: {
5852     // Attempt to simplify BUILD_VECTOR.
5853     SDValue Ops[] = {N1, N2};
5854     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5855       return V;
5856     break;
5857   }
5858   case ISD::CONCAT_VECTORS: {
5859     SDValue Ops[] = {N1, N2};
5860     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5861       return V;
5862     break;
5863   }
5864   case ISD::AND:
5865     assert(VT.isInteger() && "This operator does not apply to FP types!");
5866     assert(N1.getValueType() == N2.getValueType() &&
5867            N1.getValueType() == VT && "Binary operator types must match!");
5868     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5869     // worth handling here.
5870     if (N2CV && N2CV->isZero())
5871       return N2;
5872     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5873       return N1;
5874     break;
5875   case ISD::OR:
5876   case ISD::XOR:
5877   case ISD::ADD:
5878   case ISD::SUB:
5879     assert(VT.isInteger() && "This operator does not apply to FP types!");
5880     assert(N1.getValueType() == N2.getValueType() &&
5881            N1.getValueType() == VT && "Binary operator types must match!");
5882     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5883     // it's worth handling here.
5884     if (N2CV && N2CV->isZero())
5885       return N1;
5886     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5887         VT.getVectorElementType() == MVT::i1)
5888       return getNode(ISD::XOR, DL, VT, N1, N2);
5889     break;
5890   case ISD::MUL:
5891     assert(VT.isInteger() && "This operator does not apply to FP types!");
5892     assert(N1.getValueType() == N2.getValueType() &&
5893            N1.getValueType() == VT && "Binary operator types must match!");
5894     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5895       return getNode(ISD::AND, DL, VT, N1, N2);
5896     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5897       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5898       const APInt &N2CImm = N2C->getAPIntValue();
5899       return getVScale(DL, VT, MulImm * N2CImm);
5900     }
5901     break;
5902   case ISD::UDIV:
5903   case ISD::UREM:
5904   case ISD::MULHU:
5905   case ISD::MULHS:
5906   case ISD::SDIV:
5907   case ISD::SREM:
5908   case ISD::SADDSAT:
5909   case ISD::SSUBSAT:
5910   case ISD::UADDSAT:
5911   case ISD::USUBSAT:
5912     assert(VT.isInteger() && "This operator does not apply to FP types!");
5913     assert(N1.getValueType() == N2.getValueType() &&
5914            N1.getValueType() == VT && "Binary operator types must match!");
5915     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5916       // fold (add_sat x, y) -> (or x, y) for bool types.
5917       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5918         return getNode(ISD::OR, DL, VT, N1, N2);
5919       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5920       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5921         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5922     }
5923     break;
5924   case ISD::SMIN:
5925   case ISD::UMAX:
5926     assert(VT.isInteger() && "This operator does not apply to FP types!");
5927     assert(N1.getValueType() == N2.getValueType() &&
5928            N1.getValueType() == VT && "Binary operator types must match!");
5929     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5930       return getNode(ISD::OR, DL, VT, N1, N2);
5931     break;
5932   case ISD::SMAX:
5933   case ISD::UMIN:
5934     assert(VT.isInteger() && "This operator does not apply to FP types!");
5935     assert(N1.getValueType() == N2.getValueType() &&
5936            N1.getValueType() == VT && "Binary operator types must match!");
5937     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5938       return getNode(ISD::AND, DL, VT, N1, N2);
5939     break;
5940   case ISD::FADD:
5941   case ISD::FSUB:
5942   case ISD::FMUL:
5943   case ISD::FDIV:
5944   case ISD::FREM:
5945     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5946     assert(N1.getValueType() == N2.getValueType() &&
5947            N1.getValueType() == VT && "Binary operator types must match!");
5948     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5949       return V;
5950     break;
5951   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5952     assert(N1.getValueType() == VT &&
5953            N1.getValueType().isFloatingPoint() &&
5954            N2.getValueType().isFloatingPoint() &&
5955            "Invalid FCOPYSIGN!");
5956     break;
5957   case ISD::SHL:
5958     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5959       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5960       const APInt &ShiftImm = N2C->getAPIntValue();
5961       return getVScale(DL, VT, MulImm << ShiftImm);
5962     }
5963     LLVM_FALLTHROUGH;
5964   case ISD::SRA:
5965   case ISD::SRL:
5966     if (SDValue V = simplifyShift(N1, N2))
5967       return V;
5968     LLVM_FALLTHROUGH;
5969   case ISD::ROTL:
5970   case ISD::ROTR:
5971     assert(VT == N1.getValueType() &&
5972            "Shift operators return type must be the same as their first arg");
5973     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5974            "Shifts only work on integers");
5975     assert((!VT.isVector() || VT == N2.getValueType()) &&
5976            "Vector shift amounts must be in the same as their first arg");
5977     // Verify that the shift amount VT is big enough to hold valid shift
5978     // amounts.  This catches things like trying to shift an i1024 value by an
5979     // i8, which is easy to fall into in generic code that uses
5980     // TLI.getShiftAmount().
5981     assert(N2.getValueType().getScalarSizeInBits() >=
5982                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5983            "Invalid use of small shift amount with oversized value!");
5984 
5985     // Always fold shifts of i1 values so the code generator doesn't need to
5986     // handle them.  Since we know the size of the shift has to be less than the
5987     // size of the value, the shift/rotate count is guaranteed to be zero.
5988     if (VT == MVT::i1)
5989       return N1;
5990     if (N2CV && N2CV->isZero())
5991       return N1;
5992     break;
5993   case ISD::FP_ROUND:
5994     assert(VT.isFloatingPoint() &&
5995            N1.getValueType().isFloatingPoint() &&
5996            VT.bitsLE(N1.getValueType()) &&
5997            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5998            "Invalid FP_ROUND!");
5999     if (N1.getValueType() == VT) return N1;  // noop conversion.
6000     break;
6001   case ISD::AssertSext:
6002   case ISD::AssertZext: {
6003     EVT EVT = cast<VTSDNode>(N2)->getVT();
6004     assert(VT == N1.getValueType() && "Not an inreg extend!");
6005     assert(VT.isInteger() && EVT.isInteger() &&
6006            "Cannot *_EXTEND_INREG FP types");
6007     assert(!EVT.isVector() &&
6008            "AssertSExt/AssertZExt type should be the vector element type "
6009            "rather than the vector type!");
6010     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
6011     if (VT.getScalarType() == EVT) return N1; // noop assertion.
6012     break;
6013   }
6014   case ISD::SIGN_EXTEND_INREG: {
6015     EVT EVT = cast<VTSDNode>(N2)->getVT();
6016     assert(VT == N1.getValueType() && "Not an inreg extend!");
6017     assert(VT.isInteger() && EVT.isInteger() &&
6018            "Cannot *_EXTEND_INREG FP types");
6019     assert(EVT.isVector() == VT.isVector() &&
6020            "SIGN_EXTEND_INREG type should be vector iff the operand "
6021            "type is vector!");
6022     assert((!EVT.isVector() ||
6023             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
6024            "Vector element counts must match in SIGN_EXTEND_INREG");
6025     assert(EVT.bitsLE(VT) && "Not extending!");
6026     if (EVT == VT) return N1;  // Not actually extending
6027 
6028     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
6029       unsigned FromBits = EVT.getScalarSizeInBits();
6030       Val <<= Val.getBitWidth() - FromBits;
6031       Val.ashrInPlace(Val.getBitWidth() - FromBits);
6032       return getConstant(Val, DL, ConstantVT);
6033     };
6034 
6035     if (N1C) {
6036       const APInt &Val = N1C->getAPIntValue();
6037       return SignExtendInReg(Val, VT);
6038     }
6039 
6040     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
6041       SmallVector<SDValue, 8> Ops;
6042       llvm::EVT OpVT = N1.getOperand(0).getValueType();
6043       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
6044         SDValue Op = N1.getOperand(i);
6045         if (Op.isUndef()) {
6046           Ops.push_back(getUNDEF(OpVT));
6047           continue;
6048         }
6049         ConstantSDNode *C = cast<ConstantSDNode>(Op);
6050         APInt Val = C->getAPIntValue();
6051         Ops.push_back(SignExtendInReg(Val, OpVT));
6052       }
6053       return getBuildVector(VT, DL, Ops);
6054     }
6055     break;
6056   }
6057   case ISD::FP_TO_SINT_SAT:
6058   case ISD::FP_TO_UINT_SAT: {
6059     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
6060            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
6061     assert(N1.getValueType().isVector() == VT.isVector() &&
6062            "FP_TO_*INT_SAT type should be vector iff the operand type is "
6063            "vector!");
6064     assert((!VT.isVector() || VT.getVectorNumElements() ==
6065                                   N1.getValueType().getVectorNumElements()) &&
6066            "Vector element counts must match in FP_TO_*INT_SAT");
6067     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
6068            "Type to saturate to must be a scalar.");
6069     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
6070            "Not extending!");
6071     break;
6072   }
6073   case ISD::EXTRACT_VECTOR_ELT:
6074     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
6075            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
6076              element type of the vector.");
6077 
6078     // Extract from an undefined value or using an undefined index is undefined.
6079     if (N1.isUndef() || N2.isUndef())
6080       return getUNDEF(VT);
6081 
6082     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
6083     // vectors. For scalable vectors we will provide appropriate support for
6084     // dealing with arbitrary indices.
6085     if (N2C && N1.getValueType().isFixedLengthVector() &&
6086         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
6087       return getUNDEF(VT);
6088 
6089     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
6090     // expanding copies of large vectors from registers. This only works for
6091     // fixed length vectors, since we need to know the exact number of
6092     // elements.
6093     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
6094         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
6095       unsigned Factor =
6096         N1.getOperand(0).getValueType().getVectorNumElements();
6097       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
6098                      N1.getOperand(N2C->getZExtValue() / Factor),
6099                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
6100     }
6101 
6102     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
6103     // lowering is expanding large vector constants.
6104     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
6105                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
6106       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
6107               N1.getValueType().isFixedLengthVector()) &&
6108              "BUILD_VECTOR used for scalable vectors");
6109       unsigned Index =
6110           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
6111       SDValue Elt = N1.getOperand(Index);
6112 
6113       if (VT != Elt.getValueType())
6114         // If the vector element type is not legal, the BUILD_VECTOR operands
6115         // are promoted and implicitly truncated, and the result implicitly
6116         // extended. Make that explicit here.
6117         Elt = getAnyExtOrTrunc(Elt, DL, VT);
6118 
6119       return Elt;
6120     }
6121 
6122     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
6123     // operations are lowered to scalars.
6124     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
6125       // If the indices are the same, return the inserted element else
6126       // if the indices are known different, extract the element from
6127       // the original vector.
6128       SDValue N1Op2 = N1.getOperand(2);
6129       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
6130 
6131       if (N1Op2C && N2C) {
6132         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
6133           if (VT == N1.getOperand(1).getValueType())
6134             return N1.getOperand(1);
6135           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
6136         }
6137         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6138       }
6139     }
6140 
6141     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6142     // when vector types are scalarized and v1iX is legal.
6143     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6144     // Here we are completely ignoring the extract element index (N2),
6145     // which is fine for fixed width vectors, since any index other than 0
6146     // is undefined anyway. However, this cannot be ignored for scalable
6147     // vectors - in theory we could support this, but we don't want to do this
6148     // without a profitability check.
6149     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6150         N1.getValueType().isFixedLengthVector() &&
6151         N1.getValueType().getVectorNumElements() == 1) {
6152       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6153                      N1.getOperand(1));
6154     }
6155     break;
6156   case ISD::EXTRACT_ELEMENT:
6157     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6158     assert(!N1.getValueType().isVector() && !VT.isVector() &&
6159            (N1.getValueType().isInteger() == VT.isInteger()) &&
6160            N1.getValueType() != VT &&
6161            "Wrong types for EXTRACT_ELEMENT!");
6162 
6163     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6164     // 64-bit integers into 32-bit parts.  Instead of building the extract of
6165     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6166     if (N1.getOpcode() == ISD::BUILD_PAIR)
6167       return N1.getOperand(N2C->getZExtValue());
6168 
6169     // EXTRACT_ELEMENT of a constant int is also very common.
6170     if (N1C) {
6171       unsigned ElementSize = VT.getSizeInBits();
6172       unsigned Shift = ElementSize * N2C->getZExtValue();
6173       const APInt &Val = N1C->getAPIntValue();
6174       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6175     }
6176     break;
6177   case ISD::EXTRACT_SUBVECTOR: {
6178     EVT N1VT = N1.getValueType();
6179     assert(VT.isVector() && N1VT.isVector() &&
6180            "Extract subvector VTs must be vectors!");
6181     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6182            "Extract subvector VTs must have the same element type!");
6183     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6184            "Cannot extract a scalable vector from a fixed length vector!");
6185     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6186             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6187            "Extract subvector must be from larger vector to smaller vector!");
6188     assert(N2C && "Extract subvector index must be a constant");
6189     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6190             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6191                 N1VT.getVectorMinNumElements()) &&
6192            "Extract subvector overflow!");
6193     assert(N2C->getAPIntValue().getBitWidth() ==
6194                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6195            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6196 
6197     // Trivial extraction.
6198     if (VT == N1VT)
6199       return N1;
6200 
6201     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6202     if (N1.isUndef())
6203       return getUNDEF(VT);
6204 
6205     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6206     // the concat have the same type as the extract.
6207     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6208         VT == N1.getOperand(0).getValueType()) {
6209       unsigned Factor = VT.getVectorMinNumElements();
6210       return N1.getOperand(N2C->getZExtValue() / Factor);
6211     }
6212 
6213     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6214     // during shuffle legalization.
6215     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6216         VT == N1.getOperand(1).getValueType())
6217       return N1.getOperand(1);
6218     break;
6219   }
6220   }
6221 
6222   // Perform trivial constant folding.
6223   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6224     return SV;
6225 
6226   // Canonicalize an UNDEF to the RHS, even over a constant.
6227   if (N1.isUndef()) {
6228     if (TLI->isCommutativeBinOp(Opcode)) {
6229       std::swap(N1, N2);
6230     } else {
6231       switch (Opcode) {
6232       case ISD::SUB:
6233         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6234       case ISD::SIGN_EXTEND_INREG:
6235       case ISD::UDIV:
6236       case ISD::SDIV:
6237       case ISD::UREM:
6238       case ISD::SREM:
6239       case ISD::SSUBSAT:
6240       case ISD::USUBSAT:
6241         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6242       }
6243     }
6244   }
6245 
6246   // Fold a bunch of operators when the RHS is undef.
6247   if (N2.isUndef()) {
6248     switch (Opcode) {
6249     case ISD::XOR:
6250       if (N1.isUndef())
6251         // Handle undef ^ undef -> 0 special case. This is a common
6252         // idiom (misuse).
6253         return getConstant(0, DL, VT);
6254       LLVM_FALLTHROUGH;
6255     case ISD::ADD:
6256     case ISD::SUB:
6257     case ISD::UDIV:
6258     case ISD::SDIV:
6259     case ISD::UREM:
6260     case ISD::SREM:
6261       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6262     case ISD::MUL:
6263     case ISD::AND:
6264     case ISD::SSUBSAT:
6265     case ISD::USUBSAT:
6266       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6267     case ISD::OR:
6268     case ISD::SADDSAT:
6269     case ISD::UADDSAT:
6270       return getAllOnesConstant(DL, VT);
6271     }
6272   }
6273 
6274   // Memoize this node if possible.
6275   SDNode *N;
6276   SDVTList VTs = getVTList(VT);
6277   SDValue Ops[] = {N1, N2};
6278   if (VT != MVT::Glue) {
6279     FoldingSetNodeID ID;
6280     AddNodeIDNode(ID, Opcode, VTs, Ops);
6281     void *IP = nullptr;
6282     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6283       E->intersectFlagsWith(Flags);
6284       return SDValue(E, 0);
6285     }
6286 
6287     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6288     N->setFlags(Flags);
6289     createOperands(N, Ops);
6290     CSEMap.InsertNode(N, IP);
6291   } else {
6292     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6293     createOperands(N, Ops);
6294   }
6295 
6296   InsertNode(N);
6297   SDValue V = SDValue(N, 0);
6298   NewSDValueDbgMsg(V, "Creating new node: ", this);
6299   return V;
6300 }
6301 
6302 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6303                               SDValue N1, SDValue N2, SDValue N3) {
6304   SDNodeFlags Flags;
6305   if (Inserter)
6306     Flags = Inserter->getFlags();
6307   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6308 }
6309 
6310 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6311                               SDValue N1, SDValue N2, SDValue N3,
6312                               const SDNodeFlags Flags) {
6313   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6314          N2.getOpcode() != ISD::DELETED_NODE &&
6315          N3.getOpcode() != ISD::DELETED_NODE &&
6316          "Operand is DELETED_NODE!");
6317   // Perform various simplifications.
6318   switch (Opcode) {
6319   case ISD::FMA: {
6320     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6321     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6322            N3.getValueType() == VT && "FMA types must match!");
6323     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6324     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6325     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6326     if (N1CFP && N2CFP && N3CFP) {
6327       APFloat  V1 = N1CFP->getValueAPF();
6328       const APFloat &V2 = N2CFP->getValueAPF();
6329       const APFloat &V3 = N3CFP->getValueAPF();
6330       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6331       return getConstantFP(V1, DL, VT);
6332     }
6333     break;
6334   }
6335   case ISD::BUILD_VECTOR: {
6336     // Attempt to simplify BUILD_VECTOR.
6337     SDValue Ops[] = {N1, N2, N3};
6338     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6339       return V;
6340     break;
6341   }
6342   case ISD::CONCAT_VECTORS: {
6343     SDValue Ops[] = {N1, N2, N3};
6344     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6345       return V;
6346     break;
6347   }
6348   case ISD::SETCC: {
6349     assert(VT.isInteger() && "SETCC result type must be an integer!");
6350     assert(N1.getValueType() == N2.getValueType() &&
6351            "SETCC operands must have the same type!");
6352     assert(VT.isVector() == N1.getValueType().isVector() &&
6353            "SETCC type should be vector iff the operand type is vector!");
6354     assert((!VT.isVector() || VT.getVectorElementCount() ==
6355                                   N1.getValueType().getVectorElementCount()) &&
6356            "SETCC vector element counts must match!");
6357     // Use FoldSetCC to simplify SETCC's.
6358     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6359       return V;
6360     // Vector constant folding.
6361     SDValue Ops[] = {N1, N2, N3};
6362     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6363       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6364       return V;
6365     }
6366     break;
6367   }
6368   case ISD::SELECT:
6369   case ISD::VSELECT:
6370     if (SDValue V = simplifySelect(N1, N2, N3))
6371       return V;
6372     break;
6373   case ISD::VECTOR_SHUFFLE:
6374     llvm_unreachable("should use getVectorShuffle constructor!");
6375   case ISD::VECTOR_SPLICE: {
6376     if (cast<ConstantSDNode>(N3)->isNullValue())
6377       return N1;
6378     break;
6379   }
6380   case ISD::INSERT_VECTOR_ELT: {
6381     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6382     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6383     // for scalable vectors where we will generate appropriate code to
6384     // deal with out-of-bounds cases correctly.
6385     if (N3C && N1.getValueType().isFixedLengthVector() &&
6386         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6387       return getUNDEF(VT);
6388 
6389     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6390     if (N3.isUndef())
6391       return getUNDEF(VT);
6392 
6393     // If the inserted element is an UNDEF, just use the input vector.
6394     if (N2.isUndef())
6395       return N1;
6396 
6397     break;
6398   }
6399   case ISD::INSERT_SUBVECTOR: {
6400     // Inserting undef into undef is still undef.
6401     if (N1.isUndef() && N2.isUndef())
6402       return getUNDEF(VT);
6403 
6404     EVT N2VT = N2.getValueType();
6405     assert(VT == N1.getValueType() &&
6406            "Dest and insert subvector source types must match!");
6407     assert(VT.isVector() && N2VT.isVector() &&
6408            "Insert subvector VTs must be vectors!");
6409     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6410            "Cannot insert a scalable vector into a fixed length vector!");
6411     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6412             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6413            "Insert subvector must be from smaller vector to larger vector!");
6414     assert(isa<ConstantSDNode>(N3) &&
6415            "Insert subvector index must be constant");
6416     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6417             (N2VT.getVectorMinNumElements() +
6418              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6419                 VT.getVectorMinNumElements()) &&
6420            "Insert subvector overflow!");
6421     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6422                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6423            "Constant index for INSERT_SUBVECTOR has an invalid size");
6424 
6425     // Trivial insertion.
6426     if (VT == N2VT)
6427       return N2;
6428 
6429     // If this is an insert of an extracted vector into an undef vector, we
6430     // can just use the input to the extract.
6431     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6432         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6433       return N2.getOperand(0);
6434     break;
6435   }
6436   case ISD::BITCAST:
6437     // Fold bit_convert nodes from a type to themselves.
6438     if (N1.getValueType() == VT)
6439       return N1;
6440     break;
6441   }
6442 
6443   // Memoize node if it doesn't produce a flag.
6444   SDNode *N;
6445   SDVTList VTs = getVTList(VT);
6446   SDValue Ops[] = {N1, N2, N3};
6447   if (VT != MVT::Glue) {
6448     FoldingSetNodeID ID;
6449     AddNodeIDNode(ID, Opcode, VTs, Ops);
6450     void *IP = nullptr;
6451     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6452       E->intersectFlagsWith(Flags);
6453       return SDValue(E, 0);
6454     }
6455 
6456     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6457     N->setFlags(Flags);
6458     createOperands(N, Ops);
6459     CSEMap.InsertNode(N, IP);
6460   } else {
6461     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6462     createOperands(N, Ops);
6463   }
6464 
6465   InsertNode(N);
6466   SDValue V = SDValue(N, 0);
6467   NewSDValueDbgMsg(V, "Creating new node: ", this);
6468   return V;
6469 }
6470 
6471 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6472                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6473   SDValue Ops[] = { N1, N2, N3, N4 };
6474   return getNode(Opcode, DL, VT, Ops);
6475 }
6476 
6477 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6478                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6479                               SDValue N5) {
6480   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6481   return getNode(Opcode, DL, VT, Ops);
6482 }
6483 
6484 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6485 /// the incoming stack arguments to be loaded from the stack.
6486 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6487   SmallVector<SDValue, 8> ArgChains;
6488 
6489   // Include the original chain at the beginning of the list. When this is
6490   // used by target LowerCall hooks, this helps legalize find the
6491   // CALLSEQ_BEGIN node.
6492   ArgChains.push_back(Chain);
6493 
6494   // Add a chain value for each stack argument.
6495   for (SDNode *U : getEntryNode().getNode()->uses())
6496     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6497       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6498         if (FI->getIndex() < 0)
6499           ArgChains.push_back(SDValue(L, 1));
6500 
6501   // Build a tokenfactor for all the chains.
6502   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6503 }
6504 
6505 /// getMemsetValue - Vectorized representation of the memset value
6506 /// operand.
6507 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6508                               const SDLoc &dl) {
6509   assert(!Value.isUndef());
6510 
6511   unsigned NumBits = VT.getScalarSizeInBits();
6512   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6513     assert(C->getAPIntValue().getBitWidth() == 8);
6514     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6515     if (VT.isInteger()) {
6516       bool IsOpaque = VT.getSizeInBits() > 64 ||
6517           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6518       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6519     }
6520     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6521                              VT);
6522   }
6523 
6524   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6525   EVT IntVT = VT.getScalarType();
6526   if (!IntVT.isInteger())
6527     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6528 
6529   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6530   if (NumBits > 8) {
6531     // Use a multiplication with 0x010101... to extend the input to the
6532     // required length.
6533     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6534     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6535                         DAG.getConstant(Magic, dl, IntVT));
6536   }
6537 
6538   if (VT != Value.getValueType() && !VT.isInteger())
6539     Value = DAG.getBitcast(VT.getScalarType(), Value);
6540   if (VT != Value.getValueType())
6541     Value = DAG.getSplatBuildVector(VT, dl, Value);
6542 
6543   return Value;
6544 }
6545 
6546 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6547 /// used when a memcpy is turned into a memset when the source is a constant
6548 /// string ptr.
6549 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6550                                   const TargetLowering &TLI,
6551                                   const ConstantDataArraySlice &Slice) {
6552   // Handle vector with all elements zero.
6553   if (Slice.Array == nullptr) {
6554     if (VT.isInteger())
6555       return DAG.getConstant(0, dl, VT);
6556     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6557       return DAG.getConstantFP(0.0, dl, VT);
6558     if (VT.isVector()) {
6559       unsigned NumElts = VT.getVectorNumElements();
6560       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6561       return DAG.getNode(ISD::BITCAST, dl, VT,
6562                          DAG.getConstant(0, dl,
6563                                          EVT::getVectorVT(*DAG.getContext(),
6564                                                           EltVT, NumElts)));
6565     }
6566     llvm_unreachable("Expected type!");
6567   }
6568 
6569   assert(!VT.isVector() && "Can't handle vector type here!");
6570   unsigned NumVTBits = VT.getSizeInBits();
6571   unsigned NumVTBytes = NumVTBits / 8;
6572   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6573 
6574   APInt Val(NumVTBits, 0);
6575   if (DAG.getDataLayout().isLittleEndian()) {
6576     for (unsigned i = 0; i != NumBytes; ++i)
6577       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6578   } else {
6579     for (unsigned i = 0; i != NumBytes; ++i)
6580       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6581   }
6582 
6583   // If the "cost" of materializing the integer immediate is less than the cost
6584   // of a load, then it is cost effective to turn the load into the immediate.
6585   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6586   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6587     return DAG.getConstant(Val, dl, VT);
6588   return SDValue();
6589 }
6590 
6591 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6592                                            const SDLoc &DL,
6593                                            const SDNodeFlags Flags) {
6594   EVT VT = Base.getValueType();
6595   SDValue Index;
6596 
6597   if (Offset.isScalable())
6598     Index = getVScale(DL, Base.getValueType(),
6599                       APInt(Base.getValueSizeInBits().getFixedSize(),
6600                             Offset.getKnownMinSize()));
6601   else
6602     Index = getConstant(Offset.getFixedSize(), DL, VT);
6603 
6604   return getMemBasePlusOffset(Base, Index, DL, Flags);
6605 }
6606 
6607 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6608                                            const SDLoc &DL,
6609                                            const SDNodeFlags Flags) {
6610   assert(Offset.getValueType().isInteger());
6611   EVT BasePtrVT = Ptr.getValueType();
6612   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6613 }
6614 
6615 /// Returns true if memcpy source is constant data.
6616 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6617   uint64_t SrcDelta = 0;
6618   GlobalAddressSDNode *G = nullptr;
6619   if (Src.getOpcode() == ISD::GlobalAddress)
6620     G = cast<GlobalAddressSDNode>(Src);
6621   else if (Src.getOpcode() == ISD::ADD &&
6622            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6623            Src.getOperand(1).getOpcode() == ISD::Constant) {
6624     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6625     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6626   }
6627   if (!G)
6628     return false;
6629 
6630   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6631                                   SrcDelta + G->getOffset());
6632 }
6633 
6634 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6635                                       SelectionDAG &DAG) {
6636   // On Darwin, -Os means optimize for size without hurting performance, so
6637   // only really optimize for size when -Oz (MinSize) is used.
6638   if (MF.getTarget().getTargetTriple().isOSDarwin())
6639     return MF.getFunction().hasMinSize();
6640   return DAG.shouldOptForSize();
6641 }
6642 
6643 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6644                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6645                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6646                           SmallVector<SDValue, 16> &OutStoreChains) {
6647   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6648   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6649   SmallVector<SDValue, 16> GluedLoadChains;
6650   for (unsigned i = From; i < To; ++i) {
6651     OutChains.push_back(OutLoadChains[i]);
6652     GluedLoadChains.push_back(OutLoadChains[i]);
6653   }
6654 
6655   // Chain for all loads.
6656   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6657                                   GluedLoadChains);
6658 
6659   for (unsigned i = From; i < To; ++i) {
6660     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6661     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6662                                   ST->getBasePtr(), ST->getMemoryVT(),
6663                                   ST->getMemOperand());
6664     OutChains.push_back(NewStore);
6665   }
6666 }
6667 
6668 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6669                                        SDValue Chain, SDValue Dst, SDValue Src,
6670                                        uint64_t Size, Align Alignment,
6671                                        bool isVol, bool AlwaysInline,
6672                                        MachinePointerInfo DstPtrInfo,
6673                                        MachinePointerInfo SrcPtrInfo,
6674                                        const AAMDNodes &AAInfo) {
6675   // Turn a memcpy of undef to nop.
6676   // FIXME: We need to honor volatile even is Src is undef.
6677   if (Src.isUndef())
6678     return Chain;
6679 
6680   // Expand memcpy to a series of load and store ops if the size operand falls
6681   // below a certain threshold.
6682   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6683   // rather than maybe a humongous number of loads and stores.
6684   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6685   const DataLayout &DL = DAG.getDataLayout();
6686   LLVMContext &C = *DAG.getContext();
6687   std::vector<EVT> MemOps;
6688   bool DstAlignCanChange = false;
6689   MachineFunction &MF = DAG.getMachineFunction();
6690   MachineFrameInfo &MFI = MF.getFrameInfo();
6691   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6692   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6693   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6694     DstAlignCanChange = true;
6695   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6696   if (!SrcAlign || Alignment > *SrcAlign)
6697     SrcAlign = Alignment;
6698   assert(SrcAlign && "SrcAlign must be set");
6699   ConstantDataArraySlice Slice;
6700   // If marked as volatile, perform a copy even when marked as constant.
6701   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6702   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6703   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6704   const MemOp Op = isZeroConstant
6705                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6706                                     /*IsZeroMemset*/ true, isVol)
6707                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6708                                      *SrcAlign, isVol, CopyFromConstant);
6709   if (!TLI.findOptimalMemOpLowering(
6710           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6711           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6712     return SDValue();
6713 
6714   if (DstAlignCanChange) {
6715     Type *Ty = MemOps[0].getTypeForEVT(C);
6716     Align NewAlign = DL.getABITypeAlign(Ty);
6717 
6718     // Don't promote to an alignment that would require dynamic stack
6719     // realignment.
6720     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6721     if (!TRI->hasStackRealignment(MF))
6722       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6723         NewAlign = NewAlign / 2;
6724 
6725     if (NewAlign > Alignment) {
6726       // Give the stack frame object a larger alignment if needed.
6727       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6728         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6729       Alignment = NewAlign;
6730     }
6731   }
6732 
6733   // Prepare AAInfo for loads/stores after lowering this memcpy.
6734   AAMDNodes NewAAInfo = AAInfo;
6735   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6736 
6737   MachineMemOperand::Flags MMOFlags =
6738       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6739   SmallVector<SDValue, 16> OutLoadChains;
6740   SmallVector<SDValue, 16> OutStoreChains;
6741   SmallVector<SDValue, 32> OutChains;
6742   unsigned NumMemOps = MemOps.size();
6743   uint64_t SrcOff = 0, DstOff = 0;
6744   for (unsigned i = 0; i != NumMemOps; ++i) {
6745     EVT VT = MemOps[i];
6746     unsigned VTSize = VT.getSizeInBits() / 8;
6747     SDValue Value, Store;
6748 
6749     if (VTSize > Size) {
6750       // Issuing an unaligned load / store pair  that overlaps with the previous
6751       // pair. Adjust the offset accordingly.
6752       assert(i == NumMemOps-1 && i != 0);
6753       SrcOff -= VTSize - Size;
6754       DstOff -= VTSize - Size;
6755     }
6756 
6757     if (CopyFromConstant &&
6758         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6759       // It's unlikely a store of a vector immediate can be done in a single
6760       // instruction. It would require a load from a constantpool first.
6761       // We only handle zero vectors here.
6762       // FIXME: Handle other cases where store of vector immediate is done in
6763       // a single instruction.
6764       ConstantDataArraySlice SubSlice;
6765       if (SrcOff < Slice.Length) {
6766         SubSlice = Slice;
6767         SubSlice.move(SrcOff);
6768       } else {
6769         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6770         SubSlice.Array = nullptr;
6771         SubSlice.Offset = 0;
6772         SubSlice.Length = VTSize;
6773       }
6774       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6775       if (Value.getNode()) {
6776         Store = DAG.getStore(
6777             Chain, dl, Value,
6778             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6779             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6780         OutChains.push_back(Store);
6781       }
6782     }
6783 
6784     if (!Store.getNode()) {
6785       // The type might not be legal for the target.  This should only happen
6786       // if the type is smaller than a legal type, as on PPC, so the right
6787       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6788       // to Load/Store if NVT==VT.
6789       // FIXME does the case above also need this?
6790       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6791       assert(NVT.bitsGE(VT));
6792 
6793       bool isDereferenceable =
6794         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6795       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6796       if (isDereferenceable)
6797         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6798 
6799       Value = DAG.getExtLoad(
6800           ISD::EXTLOAD, dl, NVT, Chain,
6801           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6802           SrcPtrInfo.getWithOffset(SrcOff), VT,
6803           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6804       OutLoadChains.push_back(Value.getValue(1));
6805 
6806       Store = DAG.getTruncStore(
6807           Chain, dl, Value,
6808           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6809           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6810       OutStoreChains.push_back(Store);
6811     }
6812     SrcOff += VTSize;
6813     DstOff += VTSize;
6814     Size -= VTSize;
6815   }
6816 
6817   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6818                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6819   unsigned NumLdStInMemcpy = OutStoreChains.size();
6820 
6821   if (NumLdStInMemcpy) {
6822     // It may be that memcpy might be converted to memset if it's memcpy
6823     // of constants. In such a case, we won't have loads and stores, but
6824     // just stores. In the absence of loads, there is nothing to gang up.
6825     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6826       // If target does not care, just leave as it.
6827       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6828         OutChains.push_back(OutLoadChains[i]);
6829         OutChains.push_back(OutStoreChains[i]);
6830       }
6831     } else {
6832       // Ld/St less than/equal limit set by target.
6833       if (NumLdStInMemcpy <= GluedLdStLimit) {
6834           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6835                                         NumLdStInMemcpy, OutLoadChains,
6836                                         OutStoreChains);
6837       } else {
6838         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6839         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6840         unsigned GlueIter = 0;
6841 
6842         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6843           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6844           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6845 
6846           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6847                                        OutLoadChains, OutStoreChains);
6848           GlueIter += GluedLdStLimit;
6849         }
6850 
6851         // Residual ld/st.
6852         if (RemainingLdStInMemcpy) {
6853           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6854                                         RemainingLdStInMemcpy, OutLoadChains,
6855                                         OutStoreChains);
6856         }
6857       }
6858     }
6859   }
6860   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6861 }
6862 
6863 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6864                                         SDValue Chain, SDValue Dst, SDValue Src,
6865                                         uint64_t Size, Align Alignment,
6866                                         bool isVol, bool AlwaysInline,
6867                                         MachinePointerInfo DstPtrInfo,
6868                                         MachinePointerInfo SrcPtrInfo,
6869                                         const AAMDNodes &AAInfo) {
6870   // Turn a memmove of undef to nop.
6871   // FIXME: We need to honor volatile even is Src is undef.
6872   if (Src.isUndef())
6873     return Chain;
6874 
6875   // Expand memmove to a series of load and store ops if the size operand falls
6876   // below a certain threshold.
6877   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6878   const DataLayout &DL = DAG.getDataLayout();
6879   LLVMContext &C = *DAG.getContext();
6880   std::vector<EVT> MemOps;
6881   bool DstAlignCanChange = false;
6882   MachineFunction &MF = DAG.getMachineFunction();
6883   MachineFrameInfo &MFI = MF.getFrameInfo();
6884   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6885   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6886   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6887     DstAlignCanChange = true;
6888   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6889   if (!SrcAlign || Alignment > *SrcAlign)
6890     SrcAlign = Alignment;
6891   assert(SrcAlign && "SrcAlign must be set");
6892   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6893   if (!TLI.findOptimalMemOpLowering(
6894           MemOps, Limit,
6895           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6896                       /*IsVolatile*/ true),
6897           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6898           MF.getFunction().getAttributes()))
6899     return SDValue();
6900 
6901   if (DstAlignCanChange) {
6902     Type *Ty = MemOps[0].getTypeForEVT(C);
6903     Align NewAlign = DL.getABITypeAlign(Ty);
6904     if (NewAlign > Alignment) {
6905       // Give the stack frame object a larger alignment if needed.
6906       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6907         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6908       Alignment = NewAlign;
6909     }
6910   }
6911 
6912   // Prepare AAInfo for loads/stores after lowering this memmove.
6913   AAMDNodes NewAAInfo = AAInfo;
6914   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6915 
6916   MachineMemOperand::Flags MMOFlags =
6917       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6918   uint64_t SrcOff = 0, DstOff = 0;
6919   SmallVector<SDValue, 8> LoadValues;
6920   SmallVector<SDValue, 8> LoadChains;
6921   SmallVector<SDValue, 8> OutChains;
6922   unsigned NumMemOps = MemOps.size();
6923   for (unsigned i = 0; i < NumMemOps; i++) {
6924     EVT VT = MemOps[i];
6925     unsigned VTSize = VT.getSizeInBits() / 8;
6926     SDValue Value;
6927 
6928     bool isDereferenceable =
6929       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6930     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6931     if (isDereferenceable)
6932       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6933 
6934     Value = DAG.getLoad(
6935         VT, dl, Chain,
6936         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6937         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6938     LoadValues.push_back(Value);
6939     LoadChains.push_back(Value.getValue(1));
6940     SrcOff += VTSize;
6941   }
6942   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6943   OutChains.clear();
6944   for (unsigned i = 0; i < NumMemOps; i++) {
6945     EVT VT = MemOps[i];
6946     unsigned VTSize = VT.getSizeInBits() / 8;
6947     SDValue Store;
6948 
6949     Store = DAG.getStore(
6950         Chain, dl, LoadValues[i],
6951         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6952         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6953     OutChains.push_back(Store);
6954     DstOff += VTSize;
6955   }
6956 
6957   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6958 }
6959 
6960 /// Lower the call to 'memset' intrinsic function into a series of store
6961 /// operations.
6962 ///
6963 /// \param DAG Selection DAG where lowered code is placed.
6964 /// \param dl Link to corresponding IR location.
6965 /// \param Chain Control flow dependency.
6966 /// \param Dst Pointer to destination memory location.
6967 /// \param Src Value of byte to write into the memory.
6968 /// \param Size Number of bytes to write.
6969 /// \param Alignment Alignment of the destination in bytes.
6970 /// \param isVol True if destination is volatile.
6971 /// \param DstPtrInfo IR information on the memory pointer.
6972 /// \returns New head in the control flow, if lowering was successful, empty
6973 /// SDValue otherwise.
6974 ///
6975 /// The function tries to replace 'llvm.memset' intrinsic with several store
6976 /// operations and value calculation code. This is usually profitable for small
6977 /// memory size.
6978 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6979                                SDValue Chain, SDValue Dst, SDValue Src,
6980                                uint64_t Size, Align Alignment, bool isVol,
6981                                MachinePointerInfo DstPtrInfo,
6982                                const AAMDNodes &AAInfo) {
6983   // Turn a memset of undef to nop.
6984   // FIXME: We need to honor volatile even is Src is undef.
6985   if (Src.isUndef())
6986     return Chain;
6987 
6988   // Expand memset to a series of load/store ops if the size operand
6989   // falls below a certain threshold.
6990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6991   std::vector<EVT> MemOps;
6992   bool DstAlignCanChange = false;
6993   MachineFunction &MF = DAG.getMachineFunction();
6994   MachineFrameInfo &MFI = MF.getFrameInfo();
6995   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6996   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6997   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6998     DstAlignCanChange = true;
6999   bool IsZeroVal =
7000       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
7001   if (!TLI.findOptimalMemOpLowering(
7002           MemOps, TLI.getMaxStoresPerMemset(OptSize),
7003           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
7004           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
7005     return SDValue();
7006 
7007   if (DstAlignCanChange) {
7008     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
7009     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
7010     if (NewAlign > Alignment) {
7011       // Give the stack frame object a larger alignment if needed.
7012       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7013         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7014       Alignment = NewAlign;
7015     }
7016   }
7017 
7018   SmallVector<SDValue, 8> OutChains;
7019   uint64_t DstOff = 0;
7020   unsigned NumMemOps = MemOps.size();
7021 
7022   // Find the largest store and generate the bit pattern for it.
7023   EVT LargestVT = MemOps[0];
7024   for (unsigned i = 1; i < NumMemOps; i++)
7025     if (MemOps[i].bitsGT(LargestVT))
7026       LargestVT = MemOps[i];
7027   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
7028 
7029   // Prepare AAInfo for loads/stores after lowering this memset.
7030   AAMDNodes NewAAInfo = AAInfo;
7031   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7032 
7033   for (unsigned i = 0; i < NumMemOps; i++) {
7034     EVT VT = MemOps[i];
7035     unsigned VTSize = VT.getSizeInBits() / 8;
7036     if (VTSize > Size) {
7037       // Issuing an unaligned load / store pair  that overlaps with the previous
7038       // pair. Adjust the offset accordingly.
7039       assert(i == NumMemOps-1 && i != 0);
7040       DstOff -= VTSize - Size;
7041     }
7042 
7043     // If this store is smaller than the largest store see whether we can get
7044     // the smaller value for free with a truncate.
7045     SDValue Value = MemSetValue;
7046     if (VT.bitsLT(LargestVT)) {
7047       if (!LargestVT.isVector() && !VT.isVector() &&
7048           TLI.isTruncateFree(LargestVT, VT))
7049         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
7050       else
7051         Value = getMemsetValue(Src, VT, DAG, dl);
7052     }
7053     assert(Value.getValueType() == VT && "Value with wrong type.");
7054     SDValue Store = DAG.getStore(
7055         Chain, dl, Value,
7056         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7057         DstPtrInfo.getWithOffset(DstOff), Alignment,
7058         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
7059         NewAAInfo);
7060     OutChains.push_back(Store);
7061     DstOff += VT.getSizeInBits() / 8;
7062     Size -= VTSize;
7063   }
7064 
7065   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7066 }
7067 
7068 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
7069                                             unsigned AS) {
7070   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
7071   // pointer operands can be losslessly bitcasted to pointers of address space 0
7072   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
7073     report_fatal_error("cannot lower memory intrinsic in address space " +
7074                        Twine(AS));
7075   }
7076 }
7077 
7078 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
7079                                 SDValue Src, SDValue Size, Align Alignment,
7080                                 bool isVol, bool AlwaysInline, bool isTailCall,
7081                                 MachinePointerInfo DstPtrInfo,
7082                                 MachinePointerInfo SrcPtrInfo,
7083                                 const AAMDNodes &AAInfo) {
7084   // Check to see if we should lower the memcpy to loads and stores first.
7085   // For cases within the target-specified limits, this is the best choice.
7086   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7087   if (ConstantSize) {
7088     // Memcpy with size zero? Just return the original chain.
7089     if (ConstantSize->isZero())
7090       return Chain;
7091 
7092     SDValue Result = getMemcpyLoadsAndStores(
7093         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7094         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7095     if (Result.getNode())
7096       return Result;
7097   }
7098 
7099   // Then check to see if we should lower the memcpy with target-specific
7100   // code. If the target chooses to do this, this is the next best.
7101   if (TSI) {
7102     SDValue Result = TSI->EmitTargetCodeForMemcpy(
7103         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
7104         DstPtrInfo, SrcPtrInfo);
7105     if (Result.getNode())
7106       return Result;
7107   }
7108 
7109   // If we really need inline code and the target declined to provide it,
7110   // use a (potentially long) sequence of loads and stores.
7111   if (AlwaysInline) {
7112     assert(ConstantSize && "AlwaysInline requires a constant size!");
7113     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
7114                                    ConstantSize->getZExtValue(), Alignment,
7115                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
7116   }
7117 
7118   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7119   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7120 
7121   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
7122   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
7123   // respect volatile, so they may do things like read or write memory
7124   // beyond the given memory regions. But fixing this isn't easy, and most
7125   // people don't care.
7126 
7127   // Emit a library call.
7128   TargetLowering::ArgListTy Args;
7129   TargetLowering::ArgListEntry Entry;
7130   Entry.Ty = Type::getInt8PtrTy(*getContext());
7131   Entry.Node = Dst; Args.push_back(Entry);
7132   Entry.Node = Src; Args.push_back(Entry);
7133 
7134   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7135   Entry.Node = Size; Args.push_back(Entry);
7136   // FIXME: pass in SDLoc
7137   TargetLowering::CallLoweringInfo CLI(*this);
7138   CLI.setDebugLoc(dl)
7139       .setChain(Chain)
7140       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7141                     Dst.getValueType().getTypeForEVT(*getContext()),
7142                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7143                                       TLI->getPointerTy(getDataLayout())),
7144                     std::move(Args))
7145       .setDiscardResult()
7146       .setTailCall(isTailCall);
7147 
7148   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7149   return CallResult.second;
7150 }
7151 
7152 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7153                                       SDValue Dst, unsigned DstAlign,
7154                                       SDValue Src, unsigned SrcAlign,
7155                                       SDValue Size, Type *SizeTy,
7156                                       unsigned ElemSz, bool isTailCall,
7157                                       MachinePointerInfo DstPtrInfo,
7158                                       MachinePointerInfo SrcPtrInfo) {
7159   // Emit a library call.
7160   TargetLowering::ArgListTy Args;
7161   TargetLowering::ArgListEntry Entry;
7162   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7163   Entry.Node = Dst;
7164   Args.push_back(Entry);
7165 
7166   Entry.Node = Src;
7167   Args.push_back(Entry);
7168 
7169   Entry.Ty = SizeTy;
7170   Entry.Node = Size;
7171   Args.push_back(Entry);
7172 
7173   RTLIB::Libcall LibraryCall =
7174       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7175   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7176     report_fatal_error("Unsupported element size");
7177 
7178   TargetLowering::CallLoweringInfo CLI(*this);
7179   CLI.setDebugLoc(dl)
7180       .setChain(Chain)
7181       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7182                     Type::getVoidTy(*getContext()),
7183                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7184                                       TLI->getPointerTy(getDataLayout())),
7185                     std::move(Args))
7186       .setDiscardResult()
7187       .setTailCall(isTailCall);
7188 
7189   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7190   return CallResult.second;
7191 }
7192 
7193 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7194                                  SDValue Src, SDValue Size, Align Alignment,
7195                                  bool isVol, bool isTailCall,
7196                                  MachinePointerInfo DstPtrInfo,
7197                                  MachinePointerInfo SrcPtrInfo,
7198                                  const AAMDNodes &AAInfo) {
7199   // Check to see if we should lower the memmove to loads and stores first.
7200   // For cases within the target-specified limits, this is the best choice.
7201   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7202   if (ConstantSize) {
7203     // Memmove with size zero? Just return the original chain.
7204     if (ConstantSize->isZero())
7205       return Chain;
7206 
7207     SDValue Result = getMemmoveLoadsAndStores(
7208         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7209         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7210     if (Result.getNode())
7211       return Result;
7212   }
7213 
7214   // Then check to see if we should lower the memmove with target-specific
7215   // code. If the target chooses to do this, this is the next best.
7216   if (TSI) {
7217     SDValue Result =
7218         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7219                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7220     if (Result.getNode())
7221       return Result;
7222   }
7223 
7224   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7225   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7226 
7227   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7228   // not be safe.  See memcpy above for more details.
7229 
7230   // Emit a library call.
7231   TargetLowering::ArgListTy Args;
7232   TargetLowering::ArgListEntry Entry;
7233   Entry.Ty = Type::getInt8PtrTy(*getContext());
7234   Entry.Node = Dst; Args.push_back(Entry);
7235   Entry.Node = Src; Args.push_back(Entry);
7236 
7237   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7238   Entry.Node = Size; Args.push_back(Entry);
7239   // FIXME:  pass in SDLoc
7240   TargetLowering::CallLoweringInfo CLI(*this);
7241   CLI.setDebugLoc(dl)
7242       .setChain(Chain)
7243       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7244                     Dst.getValueType().getTypeForEVT(*getContext()),
7245                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7246                                       TLI->getPointerTy(getDataLayout())),
7247                     std::move(Args))
7248       .setDiscardResult()
7249       .setTailCall(isTailCall);
7250 
7251   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7252   return CallResult.second;
7253 }
7254 
7255 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7256                                        SDValue Dst, unsigned DstAlign,
7257                                        SDValue Src, unsigned SrcAlign,
7258                                        SDValue Size, Type *SizeTy,
7259                                        unsigned ElemSz, bool isTailCall,
7260                                        MachinePointerInfo DstPtrInfo,
7261                                        MachinePointerInfo SrcPtrInfo) {
7262   // Emit a library call.
7263   TargetLowering::ArgListTy Args;
7264   TargetLowering::ArgListEntry Entry;
7265   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7266   Entry.Node = Dst;
7267   Args.push_back(Entry);
7268 
7269   Entry.Node = Src;
7270   Args.push_back(Entry);
7271 
7272   Entry.Ty = SizeTy;
7273   Entry.Node = Size;
7274   Args.push_back(Entry);
7275 
7276   RTLIB::Libcall LibraryCall =
7277       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7278   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7279     report_fatal_error("Unsupported element size");
7280 
7281   TargetLowering::CallLoweringInfo CLI(*this);
7282   CLI.setDebugLoc(dl)
7283       .setChain(Chain)
7284       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7285                     Type::getVoidTy(*getContext()),
7286                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7287                                       TLI->getPointerTy(getDataLayout())),
7288                     std::move(Args))
7289       .setDiscardResult()
7290       .setTailCall(isTailCall);
7291 
7292   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7293   return CallResult.second;
7294 }
7295 
7296 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7297                                 SDValue Src, SDValue Size, Align Alignment,
7298                                 bool isVol, bool isTailCall,
7299                                 MachinePointerInfo DstPtrInfo,
7300                                 const AAMDNodes &AAInfo) {
7301   // Check to see if we should lower the memset to stores first.
7302   // For cases within the target-specified limits, this is the best choice.
7303   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7304   if (ConstantSize) {
7305     // Memset with size zero? Just return the original chain.
7306     if (ConstantSize->isZero())
7307       return Chain;
7308 
7309     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7310                                      ConstantSize->getZExtValue(), Alignment,
7311                                      isVol, DstPtrInfo, AAInfo);
7312 
7313     if (Result.getNode())
7314       return Result;
7315   }
7316 
7317   // Then check to see if we should lower the memset with target-specific
7318   // code. If the target chooses to do this, this is the next best.
7319   if (TSI) {
7320     SDValue Result = TSI->EmitTargetCodeForMemset(
7321         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7322     if (Result.getNode())
7323       return Result;
7324   }
7325 
7326   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7327 
7328   // Emit a library call.
7329   TargetLowering::ArgListTy Args;
7330   TargetLowering::ArgListEntry Entry;
7331   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7332   Args.push_back(Entry);
7333   Entry.Node = Src;
7334   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7335   Args.push_back(Entry);
7336   Entry.Node = Size;
7337   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7338   Args.push_back(Entry);
7339 
7340   // FIXME: pass in SDLoc
7341   TargetLowering::CallLoweringInfo CLI(*this);
7342   CLI.setDebugLoc(dl)
7343       .setChain(Chain)
7344       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7345                     Dst.getValueType().getTypeForEVT(*getContext()),
7346                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7347                                       TLI->getPointerTy(getDataLayout())),
7348                     std::move(Args))
7349       .setDiscardResult()
7350       .setTailCall(isTailCall);
7351 
7352   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7353   return CallResult.second;
7354 }
7355 
7356 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7357                                       SDValue Dst, unsigned DstAlign,
7358                                       SDValue Value, SDValue Size, Type *SizeTy,
7359                                       unsigned ElemSz, bool isTailCall,
7360                                       MachinePointerInfo DstPtrInfo) {
7361   // Emit a library call.
7362   TargetLowering::ArgListTy Args;
7363   TargetLowering::ArgListEntry Entry;
7364   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7365   Entry.Node = Dst;
7366   Args.push_back(Entry);
7367 
7368   Entry.Ty = Type::getInt8Ty(*getContext());
7369   Entry.Node = Value;
7370   Args.push_back(Entry);
7371 
7372   Entry.Ty = SizeTy;
7373   Entry.Node = Size;
7374   Args.push_back(Entry);
7375 
7376   RTLIB::Libcall LibraryCall =
7377       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7378   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7379     report_fatal_error("Unsupported element size");
7380 
7381   TargetLowering::CallLoweringInfo CLI(*this);
7382   CLI.setDebugLoc(dl)
7383       .setChain(Chain)
7384       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7385                     Type::getVoidTy(*getContext()),
7386                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7387                                       TLI->getPointerTy(getDataLayout())),
7388                     std::move(Args))
7389       .setDiscardResult()
7390       .setTailCall(isTailCall);
7391 
7392   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7393   return CallResult.second;
7394 }
7395 
7396 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7397                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7398                                 MachineMemOperand *MMO) {
7399   FoldingSetNodeID ID;
7400   ID.AddInteger(MemVT.getRawBits());
7401   AddNodeIDNode(ID, Opcode, VTList, Ops);
7402   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7403   ID.AddInteger(MMO->getFlags());
7404   void* IP = nullptr;
7405   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7406     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7407     return SDValue(E, 0);
7408   }
7409 
7410   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7411                                     VTList, MemVT, MMO);
7412   createOperands(N, Ops);
7413 
7414   CSEMap.InsertNode(N, IP);
7415   InsertNode(N);
7416   return SDValue(N, 0);
7417 }
7418 
7419 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7420                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7421                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7422                                        MachineMemOperand *MMO) {
7423   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7424          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7425   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7426 
7427   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7428   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7429 }
7430 
7431 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7432                                 SDValue Chain, SDValue Ptr, SDValue Val,
7433                                 MachineMemOperand *MMO) {
7434   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7435           Opcode == ISD::ATOMIC_LOAD_SUB ||
7436           Opcode == ISD::ATOMIC_LOAD_AND ||
7437           Opcode == ISD::ATOMIC_LOAD_CLR ||
7438           Opcode == ISD::ATOMIC_LOAD_OR ||
7439           Opcode == ISD::ATOMIC_LOAD_XOR ||
7440           Opcode == ISD::ATOMIC_LOAD_NAND ||
7441           Opcode == ISD::ATOMIC_LOAD_MIN ||
7442           Opcode == ISD::ATOMIC_LOAD_MAX ||
7443           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7444           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7445           Opcode == ISD::ATOMIC_LOAD_FADD ||
7446           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7447           Opcode == ISD::ATOMIC_SWAP ||
7448           Opcode == ISD::ATOMIC_STORE) &&
7449          "Invalid Atomic Op");
7450 
7451   EVT VT = Val.getValueType();
7452 
7453   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7454                                                getVTList(VT, MVT::Other);
7455   SDValue Ops[] = {Chain, Ptr, Val};
7456   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7457 }
7458 
7459 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7460                                 EVT VT, SDValue Chain, SDValue Ptr,
7461                                 MachineMemOperand *MMO) {
7462   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7463 
7464   SDVTList VTs = getVTList(VT, MVT::Other);
7465   SDValue Ops[] = {Chain, Ptr};
7466   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7467 }
7468 
7469 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7470 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7471   if (Ops.size() == 1)
7472     return Ops[0];
7473 
7474   SmallVector<EVT, 4> VTs;
7475   VTs.reserve(Ops.size());
7476   for (const SDValue &Op : Ops)
7477     VTs.push_back(Op.getValueType());
7478   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7479 }
7480 
7481 SDValue SelectionDAG::getMemIntrinsicNode(
7482     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7483     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7484     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7485   if (!Size && MemVT.isScalableVector())
7486     Size = MemoryLocation::UnknownSize;
7487   else if (!Size)
7488     Size = MemVT.getStoreSize();
7489 
7490   MachineFunction &MF = getMachineFunction();
7491   MachineMemOperand *MMO =
7492       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7493 
7494   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7495 }
7496 
7497 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7498                                           SDVTList VTList,
7499                                           ArrayRef<SDValue> Ops, EVT MemVT,
7500                                           MachineMemOperand *MMO) {
7501   assert((Opcode == ISD::INTRINSIC_VOID ||
7502           Opcode == ISD::INTRINSIC_W_CHAIN ||
7503           Opcode == ISD::PREFETCH ||
7504           ((int)Opcode <= std::numeric_limits<int>::max() &&
7505            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7506          "Opcode is not a memory-accessing opcode!");
7507 
7508   // Memoize the node unless it returns a flag.
7509   MemIntrinsicSDNode *N;
7510   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7511     FoldingSetNodeID ID;
7512     AddNodeIDNode(ID, Opcode, VTList, Ops);
7513     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7514         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7515     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7516     ID.AddInteger(MMO->getFlags());
7517     void *IP = nullptr;
7518     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7519       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7520       return SDValue(E, 0);
7521     }
7522 
7523     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7524                                       VTList, MemVT, MMO);
7525     createOperands(N, Ops);
7526 
7527   CSEMap.InsertNode(N, IP);
7528   } else {
7529     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7530                                       VTList, MemVT, MMO);
7531     createOperands(N, Ops);
7532   }
7533   InsertNode(N);
7534   SDValue V(N, 0);
7535   NewSDValueDbgMsg(V, "Creating new node: ", this);
7536   return V;
7537 }
7538 
7539 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7540                                       SDValue Chain, int FrameIndex,
7541                                       int64_t Size, int64_t Offset) {
7542   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7543   const auto VTs = getVTList(MVT::Other);
7544   SDValue Ops[2] = {
7545       Chain,
7546       getFrameIndex(FrameIndex,
7547                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7548                     true)};
7549 
7550   FoldingSetNodeID ID;
7551   AddNodeIDNode(ID, Opcode, VTs, Ops);
7552   ID.AddInteger(FrameIndex);
7553   ID.AddInteger(Size);
7554   ID.AddInteger(Offset);
7555   void *IP = nullptr;
7556   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7557     return SDValue(E, 0);
7558 
7559   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7560       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7561   createOperands(N, Ops);
7562   CSEMap.InsertNode(N, IP);
7563   InsertNode(N);
7564   SDValue V(N, 0);
7565   NewSDValueDbgMsg(V, "Creating new node: ", this);
7566   return V;
7567 }
7568 
7569 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7570                                          uint64_t Guid, uint64_t Index,
7571                                          uint32_t Attr) {
7572   const unsigned Opcode = ISD::PSEUDO_PROBE;
7573   const auto VTs = getVTList(MVT::Other);
7574   SDValue Ops[] = {Chain};
7575   FoldingSetNodeID ID;
7576   AddNodeIDNode(ID, Opcode, VTs, Ops);
7577   ID.AddInteger(Guid);
7578   ID.AddInteger(Index);
7579   void *IP = nullptr;
7580   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7581     return SDValue(E, 0);
7582 
7583   auto *N = newSDNode<PseudoProbeSDNode>(
7584       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7585   createOperands(N, Ops);
7586   CSEMap.InsertNode(N, IP);
7587   InsertNode(N);
7588   SDValue V(N, 0);
7589   NewSDValueDbgMsg(V, "Creating new node: ", this);
7590   return V;
7591 }
7592 
7593 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7594 /// MachinePointerInfo record from it.  This is particularly useful because the
7595 /// code generator has many cases where it doesn't bother passing in a
7596 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7597 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7598                                            SelectionDAG &DAG, SDValue Ptr,
7599                                            int64_t Offset = 0) {
7600   // If this is FI+Offset, we can model it.
7601   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7602     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7603                                              FI->getIndex(), Offset);
7604 
7605   // If this is (FI+Offset1)+Offset2, we can model it.
7606   if (Ptr.getOpcode() != ISD::ADD ||
7607       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7608       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7609     return Info;
7610 
7611   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7612   return MachinePointerInfo::getFixedStack(
7613       DAG.getMachineFunction(), FI,
7614       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7615 }
7616 
7617 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7618 /// MachinePointerInfo record from it.  This is particularly useful because the
7619 /// code generator has many cases where it doesn't bother passing in a
7620 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7621 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7622                                            SelectionDAG &DAG, SDValue Ptr,
7623                                            SDValue OffsetOp) {
7624   // If the 'Offset' value isn't a constant, we can't handle this.
7625   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7626     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7627   if (OffsetOp.isUndef())
7628     return InferPointerInfo(Info, DAG, Ptr);
7629   return Info;
7630 }
7631 
7632 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7633                               EVT VT, const SDLoc &dl, SDValue Chain,
7634                               SDValue Ptr, SDValue Offset,
7635                               MachinePointerInfo PtrInfo, EVT MemVT,
7636                               Align Alignment,
7637                               MachineMemOperand::Flags MMOFlags,
7638                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7639   assert(Chain.getValueType() == MVT::Other &&
7640         "Invalid chain type");
7641 
7642   MMOFlags |= MachineMemOperand::MOLoad;
7643   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7644   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7645   // clients.
7646   if (PtrInfo.V.isNull())
7647     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7648 
7649   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7650   MachineFunction &MF = getMachineFunction();
7651   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7652                                                    Alignment, AAInfo, Ranges);
7653   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7654 }
7655 
7656 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7657                               EVT VT, const SDLoc &dl, SDValue Chain,
7658                               SDValue Ptr, SDValue Offset, EVT MemVT,
7659                               MachineMemOperand *MMO) {
7660   if (VT == MemVT) {
7661     ExtType = ISD::NON_EXTLOAD;
7662   } else if (ExtType == ISD::NON_EXTLOAD) {
7663     assert(VT == MemVT && "Non-extending load from different memory type!");
7664   } else {
7665     // Extending load.
7666     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7667            "Should only be an extending load, not truncating!");
7668     assert(VT.isInteger() == MemVT.isInteger() &&
7669            "Cannot convert from FP to Int or Int -> FP!");
7670     assert(VT.isVector() == MemVT.isVector() &&
7671            "Cannot use an ext load to convert to or from a vector!");
7672     assert((!VT.isVector() ||
7673             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7674            "Cannot use an ext load to change the number of vector elements!");
7675   }
7676 
7677   bool Indexed = AM != ISD::UNINDEXED;
7678   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7679 
7680   SDVTList VTs = Indexed ?
7681     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7682   SDValue Ops[] = { Chain, Ptr, Offset };
7683   FoldingSetNodeID ID;
7684   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7685   ID.AddInteger(MemVT.getRawBits());
7686   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7687       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7688   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7689   ID.AddInteger(MMO->getFlags());
7690   void *IP = nullptr;
7691   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7692     cast<LoadSDNode>(E)->refineAlignment(MMO);
7693     return SDValue(E, 0);
7694   }
7695   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7696                                   ExtType, MemVT, MMO);
7697   createOperands(N, Ops);
7698 
7699   CSEMap.InsertNode(N, IP);
7700   InsertNode(N);
7701   SDValue V(N, 0);
7702   NewSDValueDbgMsg(V, "Creating new node: ", this);
7703   return V;
7704 }
7705 
7706 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7707                               SDValue Ptr, MachinePointerInfo PtrInfo,
7708                               MaybeAlign Alignment,
7709                               MachineMemOperand::Flags MMOFlags,
7710                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7711   SDValue Undef = getUNDEF(Ptr.getValueType());
7712   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7713                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7714 }
7715 
7716 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7717                               SDValue Ptr, MachineMemOperand *MMO) {
7718   SDValue Undef = getUNDEF(Ptr.getValueType());
7719   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7720                  VT, MMO);
7721 }
7722 
7723 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7724                                  EVT VT, SDValue Chain, SDValue Ptr,
7725                                  MachinePointerInfo PtrInfo, EVT MemVT,
7726                                  MaybeAlign Alignment,
7727                                  MachineMemOperand::Flags MMOFlags,
7728                                  const AAMDNodes &AAInfo) {
7729   SDValue Undef = getUNDEF(Ptr.getValueType());
7730   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7731                  MemVT, Alignment, MMOFlags, AAInfo);
7732 }
7733 
7734 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7735                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7736                                  MachineMemOperand *MMO) {
7737   SDValue Undef = getUNDEF(Ptr.getValueType());
7738   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7739                  MemVT, MMO);
7740 }
7741 
7742 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7743                                      SDValue Base, SDValue Offset,
7744                                      ISD::MemIndexedMode AM) {
7745   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7746   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7747   // Don't propagate the invariant or dereferenceable flags.
7748   auto MMOFlags =
7749       LD->getMemOperand()->getFlags() &
7750       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7751   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7752                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7753                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7754 }
7755 
7756 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7757                                SDValue Ptr, MachinePointerInfo PtrInfo,
7758                                Align Alignment,
7759                                MachineMemOperand::Flags MMOFlags,
7760                                const AAMDNodes &AAInfo) {
7761   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7762 
7763   MMOFlags |= MachineMemOperand::MOStore;
7764   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7765 
7766   if (PtrInfo.V.isNull())
7767     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7768 
7769   MachineFunction &MF = getMachineFunction();
7770   uint64_t Size =
7771       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7772   MachineMemOperand *MMO =
7773       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7774   return getStore(Chain, dl, Val, Ptr, MMO);
7775 }
7776 
7777 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7778                                SDValue Ptr, MachineMemOperand *MMO) {
7779   assert(Chain.getValueType() == MVT::Other &&
7780         "Invalid chain type");
7781   EVT VT = Val.getValueType();
7782   SDVTList VTs = getVTList(MVT::Other);
7783   SDValue Undef = getUNDEF(Ptr.getValueType());
7784   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7785   FoldingSetNodeID ID;
7786   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7787   ID.AddInteger(VT.getRawBits());
7788   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7789       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7790   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7791   ID.AddInteger(MMO->getFlags());
7792   void *IP = nullptr;
7793   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7794     cast<StoreSDNode>(E)->refineAlignment(MMO);
7795     return SDValue(E, 0);
7796   }
7797   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7798                                    ISD::UNINDEXED, false, VT, MMO);
7799   createOperands(N, Ops);
7800 
7801   CSEMap.InsertNode(N, IP);
7802   InsertNode(N);
7803   SDValue V(N, 0);
7804   NewSDValueDbgMsg(V, "Creating new node: ", this);
7805   return V;
7806 }
7807 
7808 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7809                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7810                                     EVT SVT, Align Alignment,
7811                                     MachineMemOperand::Flags MMOFlags,
7812                                     const AAMDNodes &AAInfo) {
7813   assert(Chain.getValueType() == MVT::Other &&
7814         "Invalid chain type");
7815 
7816   MMOFlags |= MachineMemOperand::MOStore;
7817   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7818 
7819   if (PtrInfo.V.isNull())
7820     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7821 
7822   MachineFunction &MF = getMachineFunction();
7823   MachineMemOperand *MMO = MF.getMachineMemOperand(
7824       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7825       Alignment, AAInfo);
7826   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7827 }
7828 
7829 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7830                                     SDValue Ptr, EVT SVT,
7831                                     MachineMemOperand *MMO) {
7832   EVT VT = Val.getValueType();
7833 
7834   assert(Chain.getValueType() == MVT::Other &&
7835         "Invalid chain type");
7836   if (VT == SVT)
7837     return getStore(Chain, dl, Val, Ptr, MMO);
7838 
7839   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7840          "Should only be a truncating store, not extending!");
7841   assert(VT.isInteger() == SVT.isInteger() &&
7842          "Can't do FP-INT conversion!");
7843   assert(VT.isVector() == SVT.isVector() &&
7844          "Cannot use trunc store to convert to or from a vector!");
7845   assert((!VT.isVector() ||
7846           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7847          "Cannot use trunc store to change the number of vector elements!");
7848 
7849   SDVTList VTs = getVTList(MVT::Other);
7850   SDValue Undef = getUNDEF(Ptr.getValueType());
7851   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7852   FoldingSetNodeID ID;
7853   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7854   ID.AddInteger(SVT.getRawBits());
7855   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7856       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7857   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7858   ID.AddInteger(MMO->getFlags());
7859   void *IP = nullptr;
7860   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7861     cast<StoreSDNode>(E)->refineAlignment(MMO);
7862     return SDValue(E, 0);
7863   }
7864   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7865                                    ISD::UNINDEXED, true, SVT, MMO);
7866   createOperands(N, Ops);
7867 
7868   CSEMap.InsertNode(N, IP);
7869   InsertNode(N);
7870   SDValue V(N, 0);
7871   NewSDValueDbgMsg(V, "Creating new node: ", this);
7872   return V;
7873 }
7874 
7875 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7876                                       SDValue Base, SDValue Offset,
7877                                       ISD::MemIndexedMode AM) {
7878   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7879   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7880   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7881   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7882   FoldingSetNodeID ID;
7883   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7884   ID.AddInteger(ST->getMemoryVT().getRawBits());
7885   ID.AddInteger(ST->getRawSubclassData());
7886   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7887   ID.AddInteger(ST->getMemOperand()->getFlags());
7888   void *IP = nullptr;
7889   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7890     return SDValue(E, 0);
7891 
7892   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7893                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7894                                    ST->getMemOperand());
7895   createOperands(N, Ops);
7896 
7897   CSEMap.InsertNode(N, IP);
7898   InsertNode(N);
7899   SDValue V(N, 0);
7900   NewSDValueDbgMsg(V, "Creating new node: ", this);
7901   return V;
7902 }
7903 
7904 SDValue SelectionDAG::getLoadVP(
7905     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7906     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7907     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7908     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7909     const MDNode *Ranges, bool IsExpanding) {
7910   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7911 
7912   MMOFlags |= MachineMemOperand::MOLoad;
7913   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7914   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7915   // clients.
7916   if (PtrInfo.V.isNull())
7917     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7918 
7919   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7920   MachineFunction &MF = getMachineFunction();
7921   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7922                                                    Alignment, AAInfo, Ranges);
7923   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7924                    MMO, IsExpanding);
7925 }
7926 
7927 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7928                                 ISD::LoadExtType ExtType, EVT VT,
7929                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7930                                 SDValue Offset, SDValue Mask, SDValue EVL,
7931                                 EVT MemVT, MachineMemOperand *MMO,
7932                                 bool IsExpanding) {
7933   bool Indexed = AM != ISD::UNINDEXED;
7934   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7935 
7936   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7937                          : getVTList(VT, MVT::Other);
7938   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7939   FoldingSetNodeID ID;
7940   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7941   ID.AddInteger(VT.getRawBits());
7942   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7943       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7944   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7945   ID.AddInteger(MMO->getFlags());
7946   void *IP = nullptr;
7947   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7948     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7949     return SDValue(E, 0);
7950   }
7951   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7952                                     ExtType, IsExpanding, MemVT, MMO);
7953   createOperands(N, Ops);
7954 
7955   CSEMap.InsertNode(N, IP);
7956   InsertNode(N);
7957   SDValue V(N, 0);
7958   NewSDValueDbgMsg(V, "Creating new node: ", this);
7959   return V;
7960 }
7961 
7962 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7963                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7964                                 MachinePointerInfo PtrInfo,
7965                                 MaybeAlign Alignment,
7966                                 MachineMemOperand::Flags MMOFlags,
7967                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7968                                 bool IsExpanding) {
7969   SDValue Undef = getUNDEF(Ptr.getValueType());
7970   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7971                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7972                    IsExpanding);
7973 }
7974 
7975 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7976                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7977                                 MachineMemOperand *MMO, bool IsExpanding) {
7978   SDValue Undef = getUNDEF(Ptr.getValueType());
7979   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7980                    Mask, EVL, VT, MMO, IsExpanding);
7981 }
7982 
7983 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7984                                    EVT VT, SDValue Chain, SDValue Ptr,
7985                                    SDValue Mask, SDValue EVL,
7986                                    MachinePointerInfo PtrInfo, EVT MemVT,
7987                                    MaybeAlign Alignment,
7988                                    MachineMemOperand::Flags MMOFlags,
7989                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7990   SDValue Undef = getUNDEF(Ptr.getValueType());
7991   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7992                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7993                    IsExpanding);
7994 }
7995 
7996 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7997                                    EVT VT, SDValue Chain, SDValue Ptr,
7998                                    SDValue Mask, SDValue EVL, EVT MemVT,
7999                                    MachineMemOperand *MMO, bool IsExpanding) {
8000   SDValue Undef = getUNDEF(Ptr.getValueType());
8001   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8002                    EVL, MemVT, MMO, IsExpanding);
8003 }
8004 
8005 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
8006                                        SDValue Base, SDValue Offset,
8007                                        ISD::MemIndexedMode AM) {
8008   auto *LD = cast<VPLoadSDNode>(OrigLoad);
8009   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
8010   // Don't propagate the invariant or dereferenceable flags.
8011   auto MMOFlags =
8012       LD->getMemOperand()->getFlags() &
8013       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8014   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
8015                    LD->getChain(), Base, Offset, LD->getMask(),
8016                    LD->getVectorLength(), LD->getPointerInfo(),
8017                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
8018                    nullptr, LD->isExpandingLoad());
8019 }
8020 
8021 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
8022                                  SDValue Ptr, SDValue Offset, SDValue Mask,
8023                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
8024                                  ISD::MemIndexedMode AM, bool IsTruncating,
8025                                  bool IsCompressing) {
8026   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8027   bool Indexed = AM != ISD::UNINDEXED;
8028   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8029   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8030                          : getVTList(MVT::Other);
8031   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
8032   FoldingSetNodeID ID;
8033   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8034   ID.AddInteger(MemVT.getRawBits());
8035   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8036       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8037   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8038   ID.AddInteger(MMO->getFlags());
8039   void *IP = nullptr;
8040   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8041     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8042     return SDValue(E, 0);
8043   }
8044   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8045                                      IsTruncating, IsCompressing, MemVT, MMO);
8046   createOperands(N, Ops);
8047 
8048   CSEMap.InsertNode(N, IP);
8049   InsertNode(N);
8050   SDValue V(N, 0);
8051   NewSDValueDbgMsg(V, "Creating new node: ", this);
8052   return V;
8053 }
8054 
8055 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8056                                       SDValue Val, SDValue Ptr, SDValue Mask,
8057                                       SDValue EVL, MachinePointerInfo PtrInfo,
8058                                       EVT SVT, Align Alignment,
8059                                       MachineMemOperand::Flags MMOFlags,
8060                                       const AAMDNodes &AAInfo,
8061                                       bool IsCompressing) {
8062   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8063 
8064   MMOFlags |= MachineMemOperand::MOStore;
8065   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8066 
8067   if (PtrInfo.V.isNull())
8068     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8069 
8070   MachineFunction &MF = getMachineFunction();
8071   MachineMemOperand *MMO = MF.getMachineMemOperand(
8072       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8073       Alignment, AAInfo);
8074   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
8075                          IsCompressing);
8076 }
8077 
8078 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8079                                       SDValue Val, SDValue Ptr, SDValue Mask,
8080                                       SDValue EVL, EVT SVT,
8081                                       MachineMemOperand *MMO,
8082                                       bool IsCompressing) {
8083   EVT VT = Val.getValueType();
8084 
8085   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8086   if (VT == SVT)
8087     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
8088                       EVL, VT, MMO, ISD::UNINDEXED,
8089                       /*IsTruncating*/ false, IsCompressing);
8090 
8091   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8092          "Should only be a truncating store, not extending!");
8093   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8094   assert(VT.isVector() == SVT.isVector() &&
8095          "Cannot use trunc store to convert to or from a vector!");
8096   assert((!VT.isVector() ||
8097           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8098          "Cannot use trunc store to change the number of vector elements!");
8099 
8100   SDVTList VTs = getVTList(MVT::Other);
8101   SDValue Undef = getUNDEF(Ptr.getValueType());
8102   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
8103   FoldingSetNodeID ID;
8104   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8105   ID.AddInteger(SVT.getRawBits());
8106   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8107       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8108   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8109   ID.AddInteger(MMO->getFlags());
8110   void *IP = nullptr;
8111   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8112     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8113     return SDValue(E, 0);
8114   }
8115   auto *N =
8116       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8117                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
8118   createOperands(N, Ops);
8119 
8120   CSEMap.InsertNode(N, IP);
8121   InsertNode(N);
8122   SDValue V(N, 0);
8123   NewSDValueDbgMsg(V, "Creating new node: ", this);
8124   return V;
8125 }
8126 
8127 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
8128                                         SDValue Base, SDValue Offset,
8129                                         ISD::MemIndexedMode AM) {
8130   auto *ST = cast<VPStoreSDNode>(OrigStore);
8131   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
8132   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8133   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
8134                    Offset,         ST->getMask(),  ST->getVectorLength()};
8135   FoldingSetNodeID ID;
8136   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8137   ID.AddInteger(ST->getMemoryVT().getRawBits());
8138   ID.AddInteger(ST->getRawSubclassData());
8139   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8140   ID.AddInteger(ST->getMemOperand()->getFlags());
8141   void *IP = nullptr;
8142   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8143     return SDValue(E, 0);
8144 
8145   auto *N = newSDNode<VPStoreSDNode>(
8146       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
8147       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
8148   createOperands(N, Ops);
8149 
8150   CSEMap.InsertNode(N, IP);
8151   InsertNode(N);
8152   SDValue V(N, 0);
8153   NewSDValueDbgMsg(V, "Creating new node: ", this);
8154   return V;
8155 }
8156 
8157 SDValue SelectionDAG::getStridedLoadVP(
8158     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8159     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8160     SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8161     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8162     const MDNode *Ranges, bool IsExpanding) {
8163   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8164 
8165   MMOFlags |= MachineMemOperand::MOLoad;
8166   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8167   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8168   // clients.
8169   if (PtrInfo.V.isNull())
8170     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8171 
8172   uint64_t Size = MemoryLocation::UnknownSize;
8173   MachineFunction &MF = getMachineFunction();
8174   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8175                                                    Alignment, AAInfo, Ranges);
8176   return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
8177                           EVL, MemVT, MMO, IsExpanding);
8178 }
8179 
8180 SDValue SelectionDAG::getStridedLoadVP(
8181     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8182     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8183     SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
8184   bool Indexed = AM != ISD::UNINDEXED;
8185   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8186 
8187   SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
8188   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8189                          : getVTList(VT, MVT::Other);
8190   FoldingSetNodeID ID;
8191   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
8192   ID.AddInteger(VT.getRawBits());
8193   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
8194       DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8195   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8196 
8197   void *IP = nullptr;
8198   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8199     cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
8200     return SDValue(E, 0);
8201   }
8202 
8203   auto *N =
8204       newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
8205                                      ExtType, IsExpanding, MemVT, MMO);
8206   createOperands(N, Ops);
8207   CSEMap.InsertNode(N, IP);
8208   InsertNode(N);
8209   SDValue V(N, 0);
8210   NewSDValueDbgMsg(V, "Creating new node: ", this);
8211   return V;
8212 }
8213 
8214 SDValue SelectionDAG::getStridedLoadVP(
8215     EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
8216     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
8217     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8218     const MDNode *Ranges, bool IsExpanding) {
8219   SDValue Undef = getUNDEF(Ptr.getValueType());
8220   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8221                           Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
8222                           MMOFlags, AAInfo, Ranges, IsExpanding);
8223 }
8224 
8225 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
8226                                        SDValue Ptr, SDValue Stride,
8227                                        SDValue Mask, SDValue EVL,
8228                                        MachineMemOperand *MMO,
8229                                        bool IsExpanding) {
8230   SDValue Undef = getUNDEF(Ptr.getValueType());
8231   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8232                           Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
8233 }
8234 
8235 SDValue SelectionDAG::getExtStridedLoadVP(
8236     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8237     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
8238     MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
8239     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8240     bool IsExpanding) {
8241   SDValue Undef = getUNDEF(Ptr.getValueType());
8242   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8243                           Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
8244                           MMOFlags, AAInfo, nullptr, IsExpanding);
8245 }
8246 
8247 SDValue SelectionDAG::getExtStridedLoadVP(
8248     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8249     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
8250     MachineMemOperand *MMO, bool IsExpanding) {
8251   SDValue Undef = getUNDEF(Ptr.getValueType());
8252   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8253                           Stride, Mask, EVL, MemVT, MMO, IsExpanding);
8254 }
8255 
8256 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
8257                                               SDValue Base, SDValue Offset,
8258                                               ISD::MemIndexedMode AM) {
8259   auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
8260   assert(SLD->getOffset().isUndef() &&
8261          "Strided load is already a indexed load!");
8262   // Don't propagate the invariant or dereferenceable flags.
8263   auto MMOFlags =
8264       SLD->getMemOperand()->getFlags() &
8265       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8266   return getStridedLoadVP(
8267       AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
8268       Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
8269       SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
8270       SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
8271 }
8272 
8273 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
8274                                         SDValue Val, SDValue Ptr,
8275                                         SDValue Offset, SDValue Stride,
8276                                         SDValue Mask, SDValue EVL, EVT MemVT,
8277                                         MachineMemOperand *MMO,
8278                                         ISD::MemIndexedMode AM,
8279                                         bool IsTruncating, bool IsCompressing) {
8280   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8281   bool Indexed = AM != ISD::UNINDEXED;
8282   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8283   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8284                          : getVTList(MVT::Other);
8285   SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
8286   FoldingSetNodeID ID;
8287   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8288   ID.AddInteger(MemVT.getRawBits());
8289   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8290       DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8291   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8292   void *IP = nullptr;
8293   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8294     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8295     return SDValue(E, 0);
8296   }
8297   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8298                                             VTs, AM, IsTruncating,
8299                                             IsCompressing, MemVT, MMO);
8300   createOperands(N, Ops);
8301 
8302   CSEMap.InsertNode(N, IP);
8303   InsertNode(N);
8304   SDValue V(N, 0);
8305   NewSDValueDbgMsg(V, "Creating new node: ", this);
8306   return V;
8307 }
8308 
8309 SDValue SelectionDAG::getTruncStridedStoreVP(
8310     SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
8311     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
8312     Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8313     bool IsCompressing) {
8314   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8315 
8316   MMOFlags |= MachineMemOperand::MOStore;
8317   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8318 
8319   if (PtrInfo.V.isNull())
8320     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8321 
8322   MachineFunction &MF = getMachineFunction();
8323   MachineMemOperand *MMO = MF.getMachineMemOperand(
8324       PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
8325   return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
8326                                 MMO, IsCompressing);
8327 }
8328 
8329 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
8330                                              SDValue Val, SDValue Ptr,
8331                                              SDValue Stride, SDValue Mask,
8332                                              SDValue EVL, EVT SVT,
8333                                              MachineMemOperand *MMO,
8334                                              bool IsCompressing) {
8335   EVT VT = Val.getValueType();
8336 
8337   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8338   if (VT == SVT)
8339     return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
8340                              Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
8341                              /*IsTruncating*/ false, IsCompressing);
8342 
8343   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8344          "Should only be a truncating store, not extending!");
8345   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8346   assert(VT.isVector() == SVT.isVector() &&
8347          "Cannot use trunc store to convert to or from a vector!");
8348   assert((!VT.isVector() ||
8349           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8350          "Cannot use trunc store to change the number of vector elements!");
8351 
8352   SDVTList VTs = getVTList(MVT::Other);
8353   SDValue Undef = getUNDEF(Ptr.getValueType());
8354   SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
8355   FoldingSetNodeID ID;
8356   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8357   ID.AddInteger(SVT.getRawBits());
8358   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8359       DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8360   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8361   void *IP = nullptr;
8362   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8363     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8364     return SDValue(E, 0);
8365   }
8366   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8367                                             VTs, ISD::UNINDEXED, true,
8368                                             IsCompressing, SVT, MMO);
8369   createOperands(N, Ops);
8370 
8371   CSEMap.InsertNode(N, IP);
8372   InsertNode(N);
8373   SDValue V(N, 0);
8374   NewSDValueDbgMsg(V, "Creating new node: ", this);
8375   return V;
8376 }
8377 
8378 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
8379                                                const SDLoc &DL, SDValue Base,
8380                                                SDValue Offset,
8381                                                ISD::MemIndexedMode AM) {
8382   auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
8383   assert(SST->getOffset().isUndef() &&
8384          "Strided store is already an indexed store!");
8385   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8386   SDValue Ops[] = {
8387       SST->getChain(), SST->getValue(),       Base, Offset, SST->getStride(),
8388       SST->getMask(),  SST->getVectorLength()};
8389   FoldingSetNodeID ID;
8390   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8391   ID.AddInteger(SST->getMemoryVT().getRawBits());
8392   ID.AddInteger(SST->getRawSubclassData());
8393   ID.AddInteger(SST->getPointerInfo().getAddrSpace());
8394   void *IP = nullptr;
8395   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8396     return SDValue(E, 0);
8397 
8398   auto *N = newSDNode<VPStridedStoreSDNode>(
8399       DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
8400       SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
8401   createOperands(N, Ops);
8402 
8403   CSEMap.InsertNode(N, IP);
8404   InsertNode(N);
8405   SDValue V(N, 0);
8406   NewSDValueDbgMsg(V, "Creating new node: ", this);
8407   return V;
8408 }
8409 
8410 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8411                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
8412                                   ISD::MemIndexType IndexType) {
8413   assert(Ops.size() == 6 && "Incompatible number of operands");
8414 
8415   FoldingSetNodeID ID;
8416   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
8417   ID.AddInteger(VT.getRawBits());
8418   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
8419       dl.getIROrder(), VTs, VT, MMO, IndexType));
8420   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8421   ID.AddInteger(MMO->getFlags());
8422   void *IP = nullptr;
8423   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8424     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
8425     return SDValue(E, 0);
8426   }
8427 
8428   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8429                                       VT, MMO, IndexType);
8430   createOperands(N, Ops);
8431 
8432   assert(N->getMask().getValueType().getVectorElementCount() ==
8433              N->getValueType(0).getVectorElementCount() &&
8434          "Vector width mismatch between mask and data");
8435   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8436              N->getValueType(0).getVectorElementCount().isScalable() &&
8437          "Scalable flags of index and data do not match");
8438   assert(ElementCount::isKnownGE(
8439              N->getIndex().getValueType().getVectorElementCount(),
8440              N->getValueType(0).getVectorElementCount()) &&
8441          "Vector width mismatch between index and data");
8442   assert(isa<ConstantSDNode>(N->getScale()) &&
8443          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8444          "Scale should be a constant power of 2");
8445 
8446   CSEMap.InsertNode(N, IP);
8447   InsertNode(N);
8448   SDValue V(N, 0);
8449   NewSDValueDbgMsg(V, "Creating new node: ", this);
8450   return V;
8451 }
8452 
8453 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8454                                    ArrayRef<SDValue> Ops,
8455                                    MachineMemOperand *MMO,
8456                                    ISD::MemIndexType IndexType) {
8457   assert(Ops.size() == 7 && "Incompatible number of operands");
8458 
8459   FoldingSetNodeID ID;
8460   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8461   ID.AddInteger(VT.getRawBits());
8462   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8463       dl.getIROrder(), VTs, VT, MMO, IndexType));
8464   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8465   ID.AddInteger(MMO->getFlags());
8466   void *IP = nullptr;
8467   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8468     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8469     return SDValue(E, 0);
8470   }
8471   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8472                                        VT, MMO, IndexType);
8473   createOperands(N, Ops);
8474 
8475   assert(N->getMask().getValueType().getVectorElementCount() ==
8476              N->getValue().getValueType().getVectorElementCount() &&
8477          "Vector width mismatch between mask and data");
8478   assert(
8479       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8480           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8481       "Scalable flags of index and data do not match");
8482   assert(ElementCount::isKnownGE(
8483              N->getIndex().getValueType().getVectorElementCount(),
8484              N->getValue().getValueType().getVectorElementCount()) &&
8485          "Vector width mismatch between index and data");
8486   assert(isa<ConstantSDNode>(N->getScale()) &&
8487          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8488          "Scale should be a constant power of 2");
8489 
8490   CSEMap.InsertNode(N, IP);
8491   InsertNode(N);
8492   SDValue V(N, 0);
8493   NewSDValueDbgMsg(V, "Creating new node: ", this);
8494   return V;
8495 }
8496 
8497 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8498                                     SDValue Base, SDValue Offset, SDValue Mask,
8499                                     SDValue PassThru, EVT MemVT,
8500                                     MachineMemOperand *MMO,
8501                                     ISD::MemIndexedMode AM,
8502                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8503   bool Indexed = AM != ISD::UNINDEXED;
8504   assert((Indexed || Offset.isUndef()) &&
8505          "Unindexed masked load with an offset!");
8506   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8507                          : getVTList(VT, MVT::Other);
8508   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8509   FoldingSetNodeID ID;
8510   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8511   ID.AddInteger(MemVT.getRawBits());
8512   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8513       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8514   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8515   ID.AddInteger(MMO->getFlags());
8516   void *IP = nullptr;
8517   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8518     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8519     return SDValue(E, 0);
8520   }
8521   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8522                                         AM, ExtTy, isExpanding, MemVT, MMO);
8523   createOperands(N, Ops);
8524 
8525   CSEMap.InsertNode(N, IP);
8526   InsertNode(N);
8527   SDValue V(N, 0);
8528   NewSDValueDbgMsg(V, "Creating new node: ", this);
8529   return V;
8530 }
8531 
8532 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8533                                            SDValue Base, SDValue Offset,
8534                                            ISD::MemIndexedMode AM) {
8535   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8536   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8537   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8538                        Offset, LD->getMask(), LD->getPassThru(),
8539                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8540                        LD->getExtensionType(), LD->isExpandingLoad());
8541 }
8542 
8543 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8544                                      SDValue Val, SDValue Base, SDValue Offset,
8545                                      SDValue Mask, EVT MemVT,
8546                                      MachineMemOperand *MMO,
8547                                      ISD::MemIndexedMode AM, bool IsTruncating,
8548                                      bool IsCompressing) {
8549   assert(Chain.getValueType() == MVT::Other &&
8550         "Invalid chain type");
8551   bool Indexed = AM != ISD::UNINDEXED;
8552   assert((Indexed || Offset.isUndef()) &&
8553          "Unindexed masked store with an offset!");
8554   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8555                          : getVTList(MVT::Other);
8556   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8557   FoldingSetNodeID ID;
8558   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8559   ID.AddInteger(MemVT.getRawBits());
8560   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8561       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8562   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8563   ID.AddInteger(MMO->getFlags());
8564   void *IP = nullptr;
8565   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8566     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8567     return SDValue(E, 0);
8568   }
8569   auto *N =
8570       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8571                                    IsTruncating, IsCompressing, MemVT, MMO);
8572   createOperands(N, Ops);
8573 
8574   CSEMap.InsertNode(N, IP);
8575   InsertNode(N);
8576   SDValue V(N, 0);
8577   NewSDValueDbgMsg(V, "Creating new node: ", this);
8578   return V;
8579 }
8580 
8581 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8582                                             SDValue Base, SDValue Offset,
8583                                             ISD::MemIndexedMode AM) {
8584   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8585   assert(ST->getOffset().isUndef() &&
8586          "Masked store is already a indexed store!");
8587   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8588                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8589                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8590 }
8591 
8592 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8593                                       ArrayRef<SDValue> Ops,
8594                                       MachineMemOperand *MMO,
8595                                       ISD::MemIndexType IndexType,
8596                                       ISD::LoadExtType ExtTy) {
8597   assert(Ops.size() == 6 && "Incompatible number of operands");
8598 
8599   FoldingSetNodeID ID;
8600   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8601   ID.AddInteger(MemVT.getRawBits());
8602   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8603       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8604   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8605   ID.AddInteger(MMO->getFlags());
8606   void *IP = nullptr;
8607   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8608     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8609     return SDValue(E, 0);
8610   }
8611 
8612   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8613                                           VTs, MemVT, MMO, IndexType, ExtTy);
8614   createOperands(N, Ops);
8615 
8616   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8617          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8618   assert(N->getMask().getValueType().getVectorElementCount() ==
8619              N->getValueType(0).getVectorElementCount() &&
8620          "Vector width mismatch between mask and data");
8621   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8622              N->getValueType(0).getVectorElementCount().isScalable() &&
8623          "Scalable flags of index and data do not match");
8624   assert(ElementCount::isKnownGE(
8625              N->getIndex().getValueType().getVectorElementCount(),
8626              N->getValueType(0).getVectorElementCount()) &&
8627          "Vector width mismatch between index and data");
8628   assert(isa<ConstantSDNode>(N->getScale()) &&
8629          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8630          "Scale should be a constant power of 2");
8631 
8632   CSEMap.InsertNode(N, IP);
8633   InsertNode(N);
8634   SDValue V(N, 0);
8635   NewSDValueDbgMsg(V, "Creating new node: ", this);
8636   return V;
8637 }
8638 
8639 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8640                                        ArrayRef<SDValue> Ops,
8641                                        MachineMemOperand *MMO,
8642                                        ISD::MemIndexType IndexType,
8643                                        bool IsTrunc) {
8644   assert(Ops.size() == 6 && "Incompatible number of operands");
8645 
8646   FoldingSetNodeID ID;
8647   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8648   ID.AddInteger(MemVT.getRawBits());
8649   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8650       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8651   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8652   ID.AddInteger(MMO->getFlags());
8653   void *IP = nullptr;
8654   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8655     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8656     return SDValue(E, 0);
8657   }
8658 
8659   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8660                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8661   createOperands(N, Ops);
8662 
8663   assert(N->getMask().getValueType().getVectorElementCount() ==
8664              N->getValue().getValueType().getVectorElementCount() &&
8665          "Vector width mismatch between mask and data");
8666   assert(
8667       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8668           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8669       "Scalable flags of index and data do not match");
8670   assert(ElementCount::isKnownGE(
8671              N->getIndex().getValueType().getVectorElementCount(),
8672              N->getValue().getValueType().getVectorElementCount()) &&
8673          "Vector width mismatch between index and data");
8674   assert(isa<ConstantSDNode>(N->getScale()) &&
8675          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8676          "Scale should be a constant power of 2");
8677 
8678   CSEMap.InsertNode(N, IP);
8679   InsertNode(N);
8680   SDValue V(N, 0);
8681   NewSDValueDbgMsg(V, "Creating new node: ", this);
8682   return V;
8683 }
8684 
8685 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8686   // select undef, T, F --> T (if T is a constant), otherwise F
8687   // select, ?, undef, F --> F
8688   // select, ?, T, undef --> T
8689   if (Cond.isUndef())
8690     return isConstantValueOfAnyType(T) ? T : F;
8691   if (T.isUndef())
8692     return F;
8693   if (F.isUndef())
8694     return T;
8695 
8696   // select true, T, F --> T
8697   // select false, T, F --> F
8698   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8699     return CondC->isZero() ? F : T;
8700 
8701   // TODO: This should simplify VSELECT with constant condition using something
8702   // like this (but check boolean contents to be complete?):
8703   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8704   //    return T;
8705   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8706   //    return F;
8707 
8708   // select ?, T, T --> T
8709   if (T == F)
8710     return T;
8711 
8712   return SDValue();
8713 }
8714 
8715 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8716   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8717   if (X.isUndef())
8718     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8719   // shift X, undef --> undef (because it may shift by the bitwidth)
8720   if (Y.isUndef())
8721     return getUNDEF(X.getValueType());
8722 
8723   // shift 0, Y --> 0
8724   // shift X, 0 --> X
8725   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8726     return X;
8727 
8728   // shift X, C >= bitwidth(X) --> undef
8729   // All vector elements must be too big (or undef) to avoid partial undefs.
8730   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8731     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8732   };
8733   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8734     return getUNDEF(X.getValueType());
8735 
8736   return SDValue();
8737 }
8738 
8739 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8740                                       SDNodeFlags Flags) {
8741   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8742   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8743   // operation is poison. That result can be relaxed to undef.
8744   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8745   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8746   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8747                 (YC && YC->getValueAPF().isNaN());
8748   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8749                 (YC && YC->getValueAPF().isInfinity());
8750 
8751   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8752     return getUNDEF(X.getValueType());
8753 
8754   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8755     return getUNDEF(X.getValueType());
8756 
8757   if (!YC)
8758     return SDValue();
8759 
8760   // X + -0.0 --> X
8761   if (Opcode == ISD::FADD)
8762     if (YC->getValueAPF().isNegZero())
8763       return X;
8764 
8765   // X - +0.0 --> X
8766   if (Opcode == ISD::FSUB)
8767     if (YC->getValueAPF().isPosZero())
8768       return X;
8769 
8770   // X * 1.0 --> X
8771   // X / 1.0 --> X
8772   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8773     if (YC->getValueAPF().isExactlyValue(1.0))
8774       return X;
8775 
8776   // X * 0.0 --> 0.0
8777   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8778     if (YC->getValueAPF().isZero())
8779       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8780 
8781   return SDValue();
8782 }
8783 
8784 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8785                                SDValue Ptr, SDValue SV, unsigned Align) {
8786   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8787   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8788 }
8789 
8790 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8791                               ArrayRef<SDUse> Ops) {
8792   switch (Ops.size()) {
8793   case 0: return getNode(Opcode, DL, VT);
8794   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8795   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8796   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8797   default: break;
8798   }
8799 
8800   // Copy from an SDUse array into an SDValue array for use with
8801   // the regular getNode logic.
8802   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8803   return getNode(Opcode, DL, VT, NewOps);
8804 }
8805 
8806 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8807                               ArrayRef<SDValue> Ops) {
8808   SDNodeFlags Flags;
8809   if (Inserter)
8810     Flags = Inserter->getFlags();
8811   return getNode(Opcode, DL, VT, Ops, Flags);
8812 }
8813 
8814 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8815                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8816   unsigned NumOps = Ops.size();
8817   switch (NumOps) {
8818   case 0: return getNode(Opcode, DL, VT);
8819   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8820   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8821   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8822   default: break;
8823   }
8824 
8825 #ifndef NDEBUG
8826   for (auto &Op : Ops)
8827     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8828            "Operand is DELETED_NODE!");
8829 #endif
8830 
8831   switch (Opcode) {
8832   default: break;
8833   case ISD::BUILD_VECTOR:
8834     // Attempt to simplify BUILD_VECTOR.
8835     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8836       return V;
8837     break;
8838   case ISD::CONCAT_VECTORS:
8839     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8840       return V;
8841     break;
8842   case ISD::SELECT_CC:
8843     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8844     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8845            "LHS and RHS of condition must have same type!");
8846     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8847            "True and False arms of SelectCC must have same type!");
8848     assert(Ops[2].getValueType() == VT &&
8849            "select_cc node must be of same type as true and false value!");
8850     break;
8851   case ISD::BR_CC:
8852     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8853     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8854            "LHS/RHS of comparison should match types!");
8855     break;
8856   case ISD::VP_ADD:
8857   case ISD::VP_SUB:
8858     // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
8859     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
8860       Opcode = ISD::VP_XOR;
8861     break;
8862   case ISD::VP_MUL:
8863     // If it is VP_MUL mask operation then turn it to VP_AND
8864     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
8865       Opcode = ISD::VP_AND;
8866     break;
8867   case ISD::VP_REDUCE_MUL:
8868     // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
8869     if (VT == MVT::i1)
8870       Opcode = ISD::VP_REDUCE_AND;
8871     break;
8872   case ISD::VP_REDUCE_ADD:
8873     // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
8874     if (VT == MVT::i1)
8875       Opcode = ISD::VP_REDUCE_XOR;
8876     break;
8877   case ISD::VP_REDUCE_SMAX:
8878   case ISD::VP_REDUCE_UMIN:
8879     // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
8880     // VP_REDUCE_AND.
8881     if (VT == MVT::i1)
8882       Opcode = ISD::VP_REDUCE_AND;
8883     break;
8884   case ISD::VP_REDUCE_SMIN:
8885   case ISD::VP_REDUCE_UMAX:
8886     // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
8887     // VP_REDUCE_OR.
8888     if (VT == MVT::i1)
8889       Opcode = ISD::VP_REDUCE_OR;
8890     break;
8891   }
8892 
8893   // Memoize nodes.
8894   SDNode *N;
8895   SDVTList VTs = getVTList(VT);
8896 
8897   if (VT != MVT::Glue) {
8898     FoldingSetNodeID ID;
8899     AddNodeIDNode(ID, Opcode, VTs, Ops);
8900     void *IP = nullptr;
8901 
8902     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8903       return SDValue(E, 0);
8904 
8905     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8906     createOperands(N, Ops);
8907 
8908     CSEMap.InsertNode(N, IP);
8909   } else {
8910     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8911     createOperands(N, Ops);
8912   }
8913 
8914   N->setFlags(Flags);
8915   InsertNode(N);
8916   SDValue V(N, 0);
8917   NewSDValueDbgMsg(V, "Creating new node: ", this);
8918   return V;
8919 }
8920 
8921 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8922                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8923   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8924 }
8925 
8926 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8927                               ArrayRef<SDValue> Ops) {
8928   SDNodeFlags Flags;
8929   if (Inserter)
8930     Flags = Inserter->getFlags();
8931   return getNode(Opcode, DL, VTList, Ops, Flags);
8932 }
8933 
8934 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8935                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8936   if (VTList.NumVTs == 1)
8937     return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
8938 
8939 #ifndef NDEBUG
8940   for (auto &Op : Ops)
8941     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8942            "Operand is DELETED_NODE!");
8943 #endif
8944 
8945   switch (Opcode) {
8946   case ISD::STRICT_FP_EXTEND:
8947     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8948            "Invalid STRICT_FP_EXTEND!");
8949     assert(VTList.VTs[0].isFloatingPoint() &&
8950            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8951     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8952            "STRICT_FP_EXTEND result type should be vector iff the operand "
8953            "type is vector!");
8954     assert((!VTList.VTs[0].isVector() ||
8955             VTList.VTs[0].getVectorNumElements() ==
8956             Ops[1].getValueType().getVectorNumElements()) &&
8957            "Vector element count mismatch!");
8958     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8959            "Invalid fpext node, dst <= src!");
8960     break;
8961   case ISD::STRICT_FP_ROUND:
8962     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8963     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8964            "STRICT_FP_ROUND result type should be vector iff the operand "
8965            "type is vector!");
8966     assert((!VTList.VTs[0].isVector() ||
8967             VTList.VTs[0].getVectorNumElements() ==
8968             Ops[1].getValueType().getVectorNumElements()) &&
8969            "Vector element count mismatch!");
8970     assert(VTList.VTs[0].isFloatingPoint() &&
8971            Ops[1].getValueType().isFloatingPoint() &&
8972            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8973            isa<ConstantSDNode>(Ops[2]) &&
8974            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8975             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8976            "Invalid STRICT_FP_ROUND!");
8977     break;
8978 #if 0
8979   // FIXME: figure out how to safely handle things like
8980   // int foo(int x) { return 1 << (x & 255); }
8981   // int bar() { return foo(256); }
8982   case ISD::SRA_PARTS:
8983   case ISD::SRL_PARTS:
8984   case ISD::SHL_PARTS:
8985     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8986         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8987       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8988     else if (N3.getOpcode() == ISD::AND)
8989       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8990         // If the and is only masking out bits that cannot effect the shift,
8991         // eliminate the and.
8992         unsigned NumBits = VT.getScalarSizeInBits()*2;
8993         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8994           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8995       }
8996     break;
8997 #endif
8998   }
8999 
9000   // Memoize the node unless it returns a flag.
9001   SDNode *N;
9002   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9003     FoldingSetNodeID ID;
9004     AddNodeIDNode(ID, Opcode, VTList, Ops);
9005     void *IP = nullptr;
9006     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9007       return SDValue(E, 0);
9008 
9009     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
9010     createOperands(N, Ops);
9011     CSEMap.InsertNode(N, IP);
9012   } else {
9013     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
9014     createOperands(N, Ops);
9015   }
9016 
9017   N->setFlags(Flags);
9018   InsertNode(N);
9019   SDValue V(N, 0);
9020   NewSDValueDbgMsg(V, "Creating new node: ", this);
9021   return V;
9022 }
9023 
9024 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
9025                               SDVTList VTList) {
9026   return getNode(Opcode, DL, VTList, None);
9027 }
9028 
9029 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9030                               SDValue N1) {
9031   SDValue Ops[] = { N1 };
9032   return getNode(Opcode, DL, VTList, Ops);
9033 }
9034 
9035 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9036                               SDValue N1, SDValue N2) {
9037   SDValue Ops[] = { N1, N2 };
9038   return getNode(Opcode, DL, VTList, Ops);
9039 }
9040 
9041 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9042                               SDValue N1, SDValue N2, SDValue N3) {
9043   SDValue Ops[] = { N1, N2, N3 };
9044   return getNode(Opcode, DL, VTList, Ops);
9045 }
9046 
9047 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9048                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
9049   SDValue Ops[] = { N1, N2, N3, N4 };
9050   return getNode(Opcode, DL, VTList, Ops);
9051 }
9052 
9053 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9054                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
9055                               SDValue N5) {
9056   SDValue Ops[] = { N1, N2, N3, N4, N5 };
9057   return getNode(Opcode, DL, VTList, Ops);
9058 }
9059 
9060 SDVTList SelectionDAG::getVTList(EVT VT) {
9061   return makeVTList(SDNode::getValueTypeList(VT), 1);
9062 }
9063 
9064 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
9065   FoldingSetNodeID ID;
9066   ID.AddInteger(2U);
9067   ID.AddInteger(VT1.getRawBits());
9068   ID.AddInteger(VT2.getRawBits());
9069 
9070   void *IP = nullptr;
9071   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9072   if (!Result) {
9073     EVT *Array = Allocator.Allocate<EVT>(2);
9074     Array[0] = VT1;
9075     Array[1] = VT2;
9076     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
9077     VTListMap.InsertNode(Result, IP);
9078   }
9079   return Result->getSDVTList();
9080 }
9081 
9082 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
9083   FoldingSetNodeID ID;
9084   ID.AddInteger(3U);
9085   ID.AddInteger(VT1.getRawBits());
9086   ID.AddInteger(VT2.getRawBits());
9087   ID.AddInteger(VT3.getRawBits());
9088 
9089   void *IP = nullptr;
9090   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9091   if (!Result) {
9092     EVT *Array = Allocator.Allocate<EVT>(3);
9093     Array[0] = VT1;
9094     Array[1] = VT2;
9095     Array[2] = VT3;
9096     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
9097     VTListMap.InsertNode(Result, IP);
9098   }
9099   return Result->getSDVTList();
9100 }
9101 
9102 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
9103   FoldingSetNodeID ID;
9104   ID.AddInteger(4U);
9105   ID.AddInteger(VT1.getRawBits());
9106   ID.AddInteger(VT2.getRawBits());
9107   ID.AddInteger(VT3.getRawBits());
9108   ID.AddInteger(VT4.getRawBits());
9109 
9110   void *IP = nullptr;
9111   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9112   if (!Result) {
9113     EVT *Array = Allocator.Allocate<EVT>(4);
9114     Array[0] = VT1;
9115     Array[1] = VT2;
9116     Array[2] = VT3;
9117     Array[3] = VT4;
9118     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
9119     VTListMap.InsertNode(Result, IP);
9120   }
9121   return Result->getSDVTList();
9122 }
9123 
9124 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
9125   unsigned NumVTs = VTs.size();
9126   FoldingSetNodeID ID;
9127   ID.AddInteger(NumVTs);
9128   for (unsigned index = 0; index < NumVTs; index++) {
9129     ID.AddInteger(VTs[index].getRawBits());
9130   }
9131 
9132   void *IP = nullptr;
9133   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9134   if (!Result) {
9135     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
9136     llvm::copy(VTs, Array);
9137     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
9138     VTListMap.InsertNode(Result, IP);
9139   }
9140   return Result->getSDVTList();
9141 }
9142 
9143 
9144 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
9145 /// specified operands.  If the resultant node already exists in the DAG,
9146 /// this does not modify the specified node, instead it returns the node that
9147 /// already exists.  If the resultant node does not exist in the DAG, the
9148 /// input node is returned.  As a degenerate case, if you specify the same
9149 /// input operands as the node already has, the input node is returned.
9150 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
9151   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
9152 
9153   // Check to see if there is no change.
9154   if (Op == N->getOperand(0)) return N;
9155 
9156   // See if the modified node already exists.
9157   void *InsertPos = nullptr;
9158   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
9159     return Existing;
9160 
9161   // Nope it doesn't.  Remove the node from its current place in the maps.
9162   if (InsertPos)
9163     if (!RemoveNodeFromCSEMaps(N))
9164       InsertPos = nullptr;
9165 
9166   // Now we update the operands.
9167   N->OperandList[0].set(Op);
9168 
9169   updateDivergence(N);
9170   // If this gets put into a CSE map, add it.
9171   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9172   return N;
9173 }
9174 
9175 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
9176   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
9177 
9178   // Check to see if there is no change.
9179   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
9180     return N;   // No operands changed, just return the input node.
9181 
9182   // See if the modified node already exists.
9183   void *InsertPos = nullptr;
9184   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
9185     return Existing;
9186 
9187   // Nope it doesn't.  Remove the node from its current place in the maps.
9188   if (InsertPos)
9189     if (!RemoveNodeFromCSEMaps(N))
9190       InsertPos = nullptr;
9191 
9192   // Now we update the operands.
9193   if (N->OperandList[0] != Op1)
9194     N->OperandList[0].set(Op1);
9195   if (N->OperandList[1] != Op2)
9196     N->OperandList[1].set(Op2);
9197 
9198   updateDivergence(N);
9199   // If this gets put into a CSE map, add it.
9200   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9201   return N;
9202 }
9203 
9204 SDNode *SelectionDAG::
9205 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
9206   SDValue Ops[] = { Op1, Op2, Op3 };
9207   return UpdateNodeOperands(N, Ops);
9208 }
9209 
9210 SDNode *SelectionDAG::
9211 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9212                    SDValue Op3, SDValue Op4) {
9213   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
9214   return UpdateNodeOperands(N, Ops);
9215 }
9216 
9217 SDNode *SelectionDAG::
9218 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9219                    SDValue Op3, SDValue Op4, SDValue Op5) {
9220   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
9221   return UpdateNodeOperands(N, Ops);
9222 }
9223 
9224 SDNode *SelectionDAG::
9225 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
9226   unsigned NumOps = Ops.size();
9227   assert(N->getNumOperands() == NumOps &&
9228          "Update with wrong number of operands");
9229 
9230   // If no operands changed just return the input node.
9231   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
9232     return N;
9233 
9234   // See if the modified node already exists.
9235   void *InsertPos = nullptr;
9236   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
9237     return Existing;
9238 
9239   // Nope it doesn't.  Remove the node from its current place in the maps.
9240   if (InsertPos)
9241     if (!RemoveNodeFromCSEMaps(N))
9242       InsertPos = nullptr;
9243 
9244   // Now we update the operands.
9245   for (unsigned i = 0; i != NumOps; ++i)
9246     if (N->OperandList[i] != Ops[i])
9247       N->OperandList[i].set(Ops[i]);
9248 
9249   updateDivergence(N);
9250   // If this gets put into a CSE map, add it.
9251   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9252   return N;
9253 }
9254 
9255 /// DropOperands - Release the operands and set this node to have
9256 /// zero operands.
9257 void SDNode::DropOperands() {
9258   // Unlike the code in MorphNodeTo that does this, we don't need to
9259   // watch for dead nodes here.
9260   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
9261     SDUse &Use = *I++;
9262     Use.set(SDValue());
9263   }
9264 }
9265 
9266 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
9267                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
9268   if (NewMemRefs.empty()) {
9269     N->clearMemRefs();
9270     return;
9271   }
9272 
9273   // Check if we can avoid allocating by storing a single reference directly.
9274   if (NewMemRefs.size() == 1) {
9275     N->MemRefs = NewMemRefs[0];
9276     N->NumMemRefs = 1;
9277     return;
9278   }
9279 
9280   MachineMemOperand **MemRefsBuffer =
9281       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
9282   llvm::copy(NewMemRefs, MemRefsBuffer);
9283   N->MemRefs = MemRefsBuffer;
9284   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
9285 }
9286 
9287 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
9288 /// machine opcode.
9289 ///
9290 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9291                                    EVT VT) {
9292   SDVTList VTs = getVTList(VT);
9293   return SelectNodeTo(N, MachineOpc, VTs, None);
9294 }
9295 
9296 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9297                                    EVT VT, SDValue Op1) {
9298   SDVTList VTs = getVTList(VT);
9299   SDValue Ops[] = { Op1 };
9300   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9301 }
9302 
9303 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9304                                    EVT VT, SDValue Op1,
9305                                    SDValue Op2) {
9306   SDVTList VTs = getVTList(VT);
9307   SDValue Ops[] = { Op1, Op2 };
9308   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9309 }
9310 
9311 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9312                                    EVT VT, SDValue Op1,
9313                                    SDValue Op2, SDValue Op3) {
9314   SDVTList VTs = getVTList(VT);
9315   SDValue Ops[] = { Op1, Op2, Op3 };
9316   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9317 }
9318 
9319 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9320                                    EVT VT, ArrayRef<SDValue> Ops) {
9321   SDVTList VTs = getVTList(VT);
9322   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9323 }
9324 
9325 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9326                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
9327   SDVTList VTs = getVTList(VT1, VT2);
9328   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9329 }
9330 
9331 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9332                                    EVT VT1, EVT VT2) {
9333   SDVTList VTs = getVTList(VT1, VT2);
9334   return SelectNodeTo(N, MachineOpc, VTs, None);
9335 }
9336 
9337 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9338                                    EVT VT1, EVT VT2, EVT VT3,
9339                                    ArrayRef<SDValue> Ops) {
9340   SDVTList VTs = getVTList(VT1, VT2, VT3);
9341   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9342 }
9343 
9344 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9345                                    EVT VT1, EVT VT2,
9346                                    SDValue Op1, SDValue Op2) {
9347   SDVTList VTs = getVTList(VT1, VT2);
9348   SDValue Ops[] = { Op1, Op2 };
9349   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9350 }
9351 
9352 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9353                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
9354   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
9355   // Reset the NodeID to -1.
9356   New->setNodeId(-1);
9357   if (New != N) {
9358     ReplaceAllUsesWith(N, New);
9359     RemoveDeadNode(N);
9360   }
9361   return New;
9362 }
9363 
9364 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
9365 /// the line number information on the merged node since it is not possible to
9366 /// preserve the information that operation is associated with multiple lines.
9367 /// This will make the debugger working better at -O0, were there is a higher
9368 /// probability having other instructions associated with that line.
9369 ///
9370 /// For IROrder, we keep the smaller of the two
9371 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
9372   DebugLoc NLoc = N->getDebugLoc();
9373   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
9374     N->setDebugLoc(DebugLoc());
9375   }
9376   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
9377   N->setIROrder(Order);
9378   return N;
9379 }
9380 
9381 /// MorphNodeTo - This *mutates* the specified node to have the specified
9382 /// return type, opcode, and operands.
9383 ///
9384 /// Note that MorphNodeTo returns the resultant node.  If there is already a
9385 /// node of the specified opcode and operands, it returns that node instead of
9386 /// the current one.  Note that the SDLoc need not be the same.
9387 ///
9388 /// Using MorphNodeTo is faster than creating a new node and swapping it in
9389 /// with ReplaceAllUsesWith both because it often avoids allocating a new
9390 /// node, and because it doesn't require CSE recalculation for any of
9391 /// the node's users.
9392 ///
9393 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
9394 /// As a consequence it isn't appropriate to use from within the DAG combiner or
9395 /// the legalizer which maintain worklists that would need to be updated when
9396 /// deleting things.
9397 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
9398                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
9399   // If an identical node already exists, use it.
9400   void *IP = nullptr;
9401   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
9402     FoldingSetNodeID ID;
9403     AddNodeIDNode(ID, Opc, VTs, Ops);
9404     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
9405       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
9406   }
9407 
9408   if (!RemoveNodeFromCSEMaps(N))
9409     IP = nullptr;
9410 
9411   // Start the morphing.
9412   N->NodeType = Opc;
9413   N->ValueList = VTs.VTs;
9414   N->NumValues = VTs.NumVTs;
9415 
9416   // Clear the operands list, updating used nodes to remove this from their
9417   // use list.  Keep track of any operands that become dead as a result.
9418   SmallPtrSet<SDNode*, 16> DeadNodeSet;
9419   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
9420     SDUse &Use = *I++;
9421     SDNode *Used = Use.getNode();
9422     Use.set(SDValue());
9423     if (Used->use_empty())
9424       DeadNodeSet.insert(Used);
9425   }
9426 
9427   // For MachineNode, initialize the memory references information.
9428   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
9429     MN->clearMemRefs();
9430 
9431   // Swap for an appropriately sized array from the recycler.
9432   removeOperands(N);
9433   createOperands(N, Ops);
9434 
9435   // Delete any nodes that are still dead after adding the uses for the
9436   // new operands.
9437   if (!DeadNodeSet.empty()) {
9438     SmallVector<SDNode *, 16> DeadNodes;
9439     for (SDNode *N : DeadNodeSet)
9440       if (N->use_empty())
9441         DeadNodes.push_back(N);
9442     RemoveDeadNodes(DeadNodes);
9443   }
9444 
9445   if (IP)
9446     CSEMap.InsertNode(N, IP);   // Memoize the new node.
9447   return N;
9448 }
9449 
9450 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
9451   unsigned OrigOpc = Node->getOpcode();
9452   unsigned NewOpc;
9453   switch (OrigOpc) {
9454   default:
9455     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
9456 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9457   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
9458 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9459   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
9460 #include "llvm/IR/ConstrainedOps.def"
9461   }
9462 
9463   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
9464 
9465   // We're taking this node out of the chain, so we need to re-link things.
9466   SDValue InputChain = Node->getOperand(0);
9467   SDValue OutputChain = SDValue(Node, 1);
9468   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
9469 
9470   SmallVector<SDValue, 3> Ops;
9471   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
9472     Ops.push_back(Node->getOperand(i));
9473 
9474   SDVTList VTs = getVTList(Node->getValueType(0));
9475   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9476 
9477   // MorphNodeTo can operate in two ways: if an existing node with the
9478   // specified operands exists, it can just return it.  Otherwise, it
9479   // updates the node in place to have the requested operands.
9480   if (Res == Node) {
9481     // If we updated the node in place, reset the node ID.  To the isel,
9482     // this should be just like a newly allocated machine node.
9483     Res->setNodeId(-1);
9484   } else {
9485     ReplaceAllUsesWith(Node, Res);
9486     RemoveDeadNode(Node);
9487   }
9488 
9489   return Res;
9490 }
9491 
9492 /// getMachineNode - These are used for target selectors to create a new node
9493 /// with specified return type(s), MachineInstr opcode, and operands.
9494 ///
9495 /// Note that getMachineNode returns the resultant node.  If there is already a
9496 /// node of the specified opcode and operands, it returns that node instead of
9497 /// the current one.
9498 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9499                                             EVT VT) {
9500   SDVTList VTs = getVTList(VT);
9501   return getMachineNode(Opcode, dl, VTs, None);
9502 }
9503 
9504 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9505                                             EVT VT, SDValue Op1) {
9506   SDVTList VTs = getVTList(VT);
9507   SDValue Ops[] = { Op1 };
9508   return getMachineNode(Opcode, dl, VTs, Ops);
9509 }
9510 
9511 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9512                                             EVT VT, SDValue Op1, SDValue Op2) {
9513   SDVTList VTs = getVTList(VT);
9514   SDValue Ops[] = { Op1, Op2 };
9515   return getMachineNode(Opcode, dl, VTs, Ops);
9516 }
9517 
9518 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9519                                             EVT VT, SDValue Op1, SDValue Op2,
9520                                             SDValue Op3) {
9521   SDVTList VTs = getVTList(VT);
9522   SDValue Ops[] = { Op1, Op2, Op3 };
9523   return getMachineNode(Opcode, dl, VTs, Ops);
9524 }
9525 
9526 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9527                                             EVT VT, ArrayRef<SDValue> Ops) {
9528   SDVTList VTs = getVTList(VT);
9529   return getMachineNode(Opcode, dl, VTs, Ops);
9530 }
9531 
9532 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9533                                             EVT VT1, EVT VT2, SDValue Op1,
9534                                             SDValue Op2) {
9535   SDVTList VTs = getVTList(VT1, VT2);
9536   SDValue Ops[] = { Op1, Op2 };
9537   return getMachineNode(Opcode, dl, VTs, Ops);
9538 }
9539 
9540 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9541                                             EVT VT1, EVT VT2, SDValue Op1,
9542                                             SDValue Op2, SDValue Op3) {
9543   SDVTList VTs = getVTList(VT1, VT2);
9544   SDValue Ops[] = { Op1, Op2, Op3 };
9545   return getMachineNode(Opcode, dl, VTs, Ops);
9546 }
9547 
9548 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9549                                             EVT VT1, EVT VT2,
9550                                             ArrayRef<SDValue> Ops) {
9551   SDVTList VTs = getVTList(VT1, VT2);
9552   return getMachineNode(Opcode, dl, VTs, Ops);
9553 }
9554 
9555 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9556                                             EVT VT1, EVT VT2, EVT VT3,
9557                                             SDValue Op1, SDValue Op2) {
9558   SDVTList VTs = getVTList(VT1, VT2, VT3);
9559   SDValue Ops[] = { Op1, Op2 };
9560   return getMachineNode(Opcode, dl, VTs, Ops);
9561 }
9562 
9563 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9564                                             EVT VT1, EVT VT2, EVT VT3,
9565                                             SDValue Op1, SDValue Op2,
9566                                             SDValue Op3) {
9567   SDVTList VTs = getVTList(VT1, VT2, VT3);
9568   SDValue Ops[] = { Op1, Op2, Op3 };
9569   return getMachineNode(Opcode, dl, VTs, Ops);
9570 }
9571 
9572 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9573                                             EVT VT1, EVT VT2, EVT VT3,
9574                                             ArrayRef<SDValue> Ops) {
9575   SDVTList VTs = getVTList(VT1, VT2, VT3);
9576   return getMachineNode(Opcode, dl, VTs, Ops);
9577 }
9578 
9579 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9580                                             ArrayRef<EVT> ResultTys,
9581                                             ArrayRef<SDValue> Ops) {
9582   SDVTList VTs = getVTList(ResultTys);
9583   return getMachineNode(Opcode, dl, VTs, Ops);
9584 }
9585 
9586 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9587                                             SDVTList VTs,
9588                                             ArrayRef<SDValue> Ops) {
9589   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9590   MachineSDNode *N;
9591   void *IP = nullptr;
9592 
9593   if (DoCSE) {
9594     FoldingSetNodeID ID;
9595     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9596     IP = nullptr;
9597     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9598       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9599     }
9600   }
9601 
9602   // Allocate a new MachineSDNode.
9603   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9604   createOperands(N, Ops);
9605 
9606   if (DoCSE)
9607     CSEMap.InsertNode(N, IP);
9608 
9609   InsertNode(N);
9610   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9611   return N;
9612 }
9613 
9614 /// getTargetExtractSubreg - A convenience function for creating
9615 /// TargetOpcode::EXTRACT_SUBREG nodes.
9616 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9617                                              SDValue Operand) {
9618   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9619   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9620                                   VT, Operand, SRIdxVal);
9621   return SDValue(Subreg, 0);
9622 }
9623 
9624 /// getTargetInsertSubreg - A convenience function for creating
9625 /// TargetOpcode::INSERT_SUBREG nodes.
9626 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9627                                             SDValue Operand, SDValue Subreg) {
9628   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9629   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9630                                   VT, Operand, Subreg, SRIdxVal);
9631   return SDValue(Result, 0);
9632 }
9633 
9634 /// getNodeIfExists - Get the specified node if it's already available, or
9635 /// else return NULL.
9636 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9637                                       ArrayRef<SDValue> Ops) {
9638   SDNodeFlags Flags;
9639   if (Inserter)
9640     Flags = Inserter->getFlags();
9641   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9642 }
9643 
9644 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9645                                       ArrayRef<SDValue> Ops,
9646                                       const SDNodeFlags Flags) {
9647   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9648     FoldingSetNodeID ID;
9649     AddNodeIDNode(ID, Opcode, VTList, Ops);
9650     void *IP = nullptr;
9651     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9652       E->intersectFlagsWith(Flags);
9653       return E;
9654     }
9655   }
9656   return nullptr;
9657 }
9658 
9659 /// doesNodeExist - Check if a node exists without modifying its flags.
9660 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9661                                  ArrayRef<SDValue> Ops) {
9662   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9663     FoldingSetNodeID ID;
9664     AddNodeIDNode(ID, Opcode, VTList, Ops);
9665     void *IP = nullptr;
9666     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9667       return true;
9668   }
9669   return false;
9670 }
9671 
9672 /// getDbgValue - Creates a SDDbgValue node.
9673 ///
9674 /// SDNode
9675 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9676                                       SDNode *N, unsigned R, bool IsIndirect,
9677                                       const DebugLoc &DL, unsigned O) {
9678   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9679          "Expected inlined-at fields to agree");
9680   return new (DbgInfo->getAlloc())
9681       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9682                  {}, IsIndirect, DL, O,
9683                  /*IsVariadic=*/false);
9684 }
9685 
9686 /// Constant
9687 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9688                                               DIExpression *Expr,
9689                                               const Value *C,
9690                                               const DebugLoc &DL, unsigned O) {
9691   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9692          "Expected inlined-at fields to agree");
9693   return new (DbgInfo->getAlloc())
9694       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9695                  /*IsIndirect=*/false, DL, O,
9696                  /*IsVariadic=*/false);
9697 }
9698 
9699 /// FrameIndex
9700 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9701                                                 DIExpression *Expr, unsigned FI,
9702                                                 bool IsIndirect,
9703                                                 const DebugLoc &DL,
9704                                                 unsigned O) {
9705   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9706          "Expected inlined-at fields to agree");
9707   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9708 }
9709 
9710 /// FrameIndex with dependencies
9711 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9712                                                 DIExpression *Expr, unsigned FI,
9713                                                 ArrayRef<SDNode *> Dependencies,
9714                                                 bool IsIndirect,
9715                                                 const DebugLoc &DL,
9716                                                 unsigned O) {
9717   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9718          "Expected inlined-at fields to agree");
9719   return new (DbgInfo->getAlloc())
9720       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9721                  Dependencies, IsIndirect, DL, O,
9722                  /*IsVariadic=*/false);
9723 }
9724 
9725 /// VReg
9726 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9727                                           unsigned VReg, bool IsIndirect,
9728                                           const DebugLoc &DL, unsigned O) {
9729   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9730          "Expected inlined-at fields to agree");
9731   return new (DbgInfo->getAlloc())
9732       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9733                  {}, IsIndirect, DL, O,
9734                  /*IsVariadic=*/false);
9735 }
9736 
9737 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9738                                           ArrayRef<SDDbgOperand> Locs,
9739                                           ArrayRef<SDNode *> Dependencies,
9740                                           bool IsIndirect, const DebugLoc &DL,
9741                                           unsigned O, bool IsVariadic) {
9742   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9743          "Expected inlined-at fields to agree");
9744   return new (DbgInfo->getAlloc())
9745       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9746                  DL, O, IsVariadic);
9747 }
9748 
9749 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9750                                      unsigned OffsetInBits, unsigned SizeInBits,
9751                                      bool InvalidateDbg) {
9752   SDNode *FromNode = From.getNode();
9753   SDNode *ToNode = To.getNode();
9754   assert(FromNode && ToNode && "Can't modify dbg values");
9755 
9756   // PR35338
9757   // TODO: assert(From != To && "Redundant dbg value transfer");
9758   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9759   if (From == To || FromNode == ToNode)
9760     return;
9761 
9762   if (!FromNode->getHasDebugValue())
9763     return;
9764 
9765   SDDbgOperand FromLocOp =
9766       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9767   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9768 
9769   SmallVector<SDDbgValue *, 2> ClonedDVs;
9770   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9771     if (Dbg->isInvalidated())
9772       continue;
9773 
9774     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9775 
9776     // Create a new location ops vector that is equal to the old vector, but
9777     // with each instance of FromLocOp replaced with ToLocOp.
9778     bool Changed = false;
9779     auto NewLocOps = Dbg->copyLocationOps();
9780     std::replace_if(
9781         NewLocOps.begin(), NewLocOps.end(),
9782         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9783           bool Match = Op == FromLocOp;
9784           Changed |= Match;
9785           return Match;
9786         },
9787         ToLocOp);
9788     // Ignore this SDDbgValue if we didn't find a matching location.
9789     if (!Changed)
9790       continue;
9791 
9792     DIVariable *Var = Dbg->getVariable();
9793     auto *Expr = Dbg->getExpression();
9794     // If a fragment is requested, update the expression.
9795     if (SizeInBits) {
9796       // When splitting a larger (e.g., sign-extended) value whose
9797       // lower bits are described with an SDDbgValue, do not attempt
9798       // to transfer the SDDbgValue to the upper bits.
9799       if (auto FI = Expr->getFragmentInfo())
9800         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9801           continue;
9802       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9803                                                              SizeInBits);
9804       if (!Fragment)
9805         continue;
9806       Expr = *Fragment;
9807     }
9808 
9809     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9810     // Clone the SDDbgValue and move it to To.
9811     SDDbgValue *Clone = getDbgValueList(
9812         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9813         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9814         Dbg->isVariadic());
9815     ClonedDVs.push_back(Clone);
9816 
9817     if (InvalidateDbg) {
9818       // Invalidate value and indicate the SDDbgValue should not be emitted.
9819       Dbg->setIsInvalidated();
9820       Dbg->setIsEmitted();
9821     }
9822   }
9823 
9824   for (SDDbgValue *Dbg : ClonedDVs) {
9825     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9826            "Transferred DbgValues should depend on the new SDNode");
9827     AddDbgValue(Dbg, false);
9828   }
9829 }
9830 
9831 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9832   if (!N.getHasDebugValue())
9833     return;
9834 
9835   SmallVector<SDDbgValue *, 2> ClonedDVs;
9836   for (auto DV : GetDbgValues(&N)) {
9837     if (DV->isInvalidated())
9838       continue;
9839     switch (N.getOpcode()) {
9840     default:
9841       break;
9842     case ISD::ADD:
9843       SDValue N0 = N.getOperand(0);
9844       SDValue N1 = N.getOperand(1);
9845       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9846           isConstantIntBuildVectorOrConstantInt(N1)) {
9847         uint64_t Offset = N.getConstantOperandVal(1);
9848 
9849         // Rewrite an ADD constant node into a DIExpression. Since we are
9850         // performing arithmetic to compute the variable's *value* in the
9851         // DIExpression, we need to mark the expression with a
9852         // DW_OP_stack_value.
9853         auto *DIExpr = DV->getExpression();
9854         auto NewLocOps = DV->copyLocationOps();
9855         bool Changed = false;
9856         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9857           // We're not given a ResNo to compare against because the whole
9858           // node is going away. We know that any ISD::ADD only has one
9859           // result, so we can assume any node match is using the result.
9860           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9861               NewLocOps[i].getSDNode() != &N)
9862             continue;
9863           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9864           SmallVector<uint64_t, 3> ExprOps;
9865           DIExpression::appendOffset(ExprOps, Offset);
9866           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9867           Changed = true;
9868         }
9869         (void)Changed;
9870         assert(Changed && "Salvage target doesn't use N");
9871 
9872         auto AdditionalDependencies = DV->getAdditionalDependencies();
9873         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9874                                             NewLocOps, AdditionalDependencies,
9875                                             DV->isIndirect(), DV->getDebugLoc(),
9876                                             DV->getOrder(), DV->isVariadic());
9877         ClonedDVs.push_back(Clone);
9878         DV->setIsInvalidated();
9879         DV->setIsEmitted();
9880         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9881                    N0.getNode()->dumprFull(this);
9882                    dbgs() << " into " << *DIExpr << '\n');
9883       }
9884     }
9885   }
9886 
9887   for (SDDbgValue *Dbg : ClonedDVs) {
9888     assert(!Dbg->getSDNodes().empty() &&
9889            "Salvaged DbgValue should depend on a new SDNode");
9890     AddDbgValue(Dbg, false);
9891   }
9892 }
9893 
9894 /// Creates a SDDbgLabel node.
9895 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9896                                       const DebugLoc &DL, unsigned O) {
9897   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9898          "Expected inlined-at fields to agree");
9899   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9900 }
9901 
9902 namespace {
9903 
9904 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9905 /// pointed to by a use iterator is deleted, increment the use iterator
9906 /// so that it doesn't dangle.
9907 ///
9908 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9909   SDNode::use_iterator &UI;
9910   SDNode::use_iterator &UE;
9911 
9912   void NodeDeleted(SDNode *N, SDNode *E) override {
9913     // Increment the iterator as needed.
9914     while (UI != UE && N == *UI)
9915       ++UI;
9916   }
9917 
9918 public:
9919   RAUWUpdateListener(SelectionDAG &d,
9920                      SDNode::use_iterator &ui,
9921                      SDNode::use_iterator &ue)
9922     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9923 };
9924 
9925 } // end anonymous namespace
9926 
9927 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9928 /// This can cause recursive merging of nodes in the DAG.
9929 ///
9930 /// This version assumes From has a single result value.
9931 ///
9932 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9933   SDNode *From = FromN.getNode();
9934   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9935          "Cannot replace with this method!");
9936   assert(From != To.getNode() && "Cannot replace uses of with self");
9937 
9938   // Preserve Debug Values
9939   transferDbgValues(FromN, To);
9940 
9941   // Iterate over all the existing uses of From. New uses will be added
9942   // to the beginning of the use list, which we avoid visiting.
9943   // This specifically avoids visiting uses of From that arise while the
9944   // replacement is happening, because any such uses would be the result
9945   // of CSE: If an existing node looks like From after one of its operands
9946   // is replaced by To, we don't want to replace of all its users with To
9947   // too. See PR3018 for more info.
9948   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9949   RAUWUpdateListener Listener(*this, UI, UE);
9950   while (UI != UE) {
9951     SDNode *User = *UI;
9952 
9953     // This node is about to morph, remove its old self from the CSE maps.
9954     RemoveNodeFromCSEMaps(User);
9955 
9956     // A user can appear in a use list multiple times, and when this
9957     // happens the uses are usually next to each other in the list.
9958     // To help reduce the number of CSE recomputations, process all
9959     // the uses of this user that we can find this way.
9960     do {
9961       SDUse &Use = UI.getUse();
9962       ++UI;
9963       Use.set(To);
9964       if (To->isDivergent() != From->isDivergent())
9965         updateDivergence(User);
9966     } while (UI != UE && *UI == User);
9967     // Now that we have modified User, add it back to the CSE maps.  If it
9968     // already exists there, recursively merge the results together.
9969     AddModifiedNodeToCSEMaps(User);
9970   }
9971 
9972   // If we just RAUW'd the root, take note.
9973   if (FromN == getRoot())
9974     setRoot(To);
9975 }
9976 
9977 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9978 /// This can cause recursive merging of nodes in the DAG.
9979 ///
9980 /// This version assumes that for each value of From, there is a
9981 /// corresponding value in To in the same position with the same type.
9982 ///
9983 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9984 #ifndef NDEBUG
9985   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9986     assert((!From->hasAnyUseOfValue(i) ||
9987             From->getValueType(i) == To->getValueType(i)) &&
9988            "Cannot use this version of ReplaceAllUsesWith!");
9989 #endif
9990 
9991   // Handle the trivial case.
9992   if (From == To)
9993     return;
9994 
9995   // Preserve Debug Info. Only do this if there's a use.
9996   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9997     if (From->hasAnyUseOfValue(i)) {
9998       assert((i < To->getNumValues()) && "Invalid To location");
9999       transferDbgValues(SDValue(From, i), SDValue(To, i));
10000     }
10001 
10002   // Iterate over just the existing users of From. See the comments in
10003   // the ReplaceAllUsesWith above.
10004   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10005   RAUWUpdateListener Listener(*this, UI, UE);
10006   while (UI != UE) {
10007     SDNode *User = *UI;
10008 
10009     // This node is about to morph, remove its old self from the CSE maps.
10010     RemoveNodeFromCSEMaps(User);
10011 
10012     // A user can appear in a use list multiple times, and when this
10013     // happens the uses are usually next to each other in the list.
10014     // To help reduce the number of CSE recomputations, process all
10015     // the uses of this user that we can find this way.
10016     do {
10017       SDUse &Use = UI.getUse();
10018       ++UI;
10019       Use.setNode(To);
10020       if (To->isDivergent() != From->isDivergent())
10021         updateDivergence(User);
10022     } while (UI != UE && *UI == User);
10023 
10024     // Now that we have modified User, add it back to the CSE maps.  If it
10025     // already exists there, recursively merge the results together.
10026     AddModifiedNodeToCSEMaps(User);
10027   }
10028 
10029   // If we just RAUW'd the root, take note.
10030   if (From == getRoot().getNode())
10031     setRoot(SDValue(To, getRoot().getResNo()));
10032 }
10033 
10034 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10035 /// This can cause recursive merging of nodes in the DAG.
10036 ///
10037 /// This version can replace From with any result values.  To must match the
10038 /// number and types of values returned by From.
10039 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
10040   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
10041     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
10042 
10043   // Preserve Debug Info.
10044   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10045     transferDbgValues(SDValue(From, i), To[i]);
10046 
10047   // Iterate over just the existing users of From. See the comments in
10048   // the ReplaceAllUsesWith above.
10049   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10050   RAUWUpdateListener Listener(*this, UI, UE);
10051   while (UI != UE) {
10052     SDNode *User = *UI;
10053 
10054     // This node is about to morph, remove its old self from the CSE maps.
10055     RemoveNodeFromCSEMaps(User);
10056 
10057     // A user can appear in a use list multiple times, and when this happens the
10058     // uses are usually next to each other in the list.  To help reduce the
10059     // number of CSE and divergence recomputations, process all the uses of this
10060     // user that we can find this way.
10061     bool To_IsDivergent = false;
10062     do {
10063       SDUse &Use = UI.getUse();
10064       const SDValue &ToOp = To[Use.getResNo()];
10065       ++UI;
10066       Use.set(ToOp);
10067       To_IsDivergent |= ToOp->isDivergent();
10068     } while (UI != UE && *UI == User);
10069 
10070     if (To_IsDivergent != From->isDivergent())
10071       updateDivergence(User);
10072 
10073     // Now that we have modified User, add it back to the CSE maps.  If it
10074     // already exists there, recursively merge the results together.
10075     AddModifiedNodeToCSEMaps(User);
10076   }
10077 
10078   // If we just RAUW'd the root, take note.
10079   if (From == getRoot().getNode())
10080     setRoot(SDValue(To[getRoot().getResNo()]));
10081 }
10082 
10083 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
10084 /// uses of other values produced by From.getNode() alone.  The Deleted
10085 /// vector is handled the same way as for ReplaceAllUsesWith.
10086 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
10087   // Handle the really simple, really trivial case efficiently.
10088   if (From == To) return;
10089 
10090   // Handle the simple, trivial, case efficiently.
10091   if (From.getNode()->getNumValues() == 1) {
10092     ReplaceAllUsesWith(From, To);
10093     return;
10094   }
10095 
10096   // Preserve Debug Info.
10097   transferDbgValues(From, To);
10098 
10099   // Iterate over just the existing users of From. See the comments in
10100   // the ReplaceAllUsesWith above.
10101   SDNode::use_iterator UI = From.getNode()->use_begin(),
10102                        UE = From.getNode()->use_end();
10103   RAUWUpdateListener Listener(*this, UI, UE);
10104   while (UI != UE) {
10105     SDNode *User = *UI;
10106     bool UserRemovedFromCSEMaps = false;
10107 
10108     // A user can appear in a use list multiple times, and when this
10109     // happens the uses are usually next to each other in the list.
10110     // To help reduce the number of CSE recomputations, process all
10111     // the uses of this user that we can find this way.
10112     do {
10113       SDUse &Use = UI.getUse();
10114 
10115       // Skip uses of different values from the same node.
10116       if (Use.getResNo() != From.getResNo()) {
10117         ++UI;
10118         continue;
10119       }
10120 
10121       // If this node hasn't been modified yet, it's still in the CSE maps,
10122       // so remove its old self from the CSE maps.
10123       if (!UserRemovedFromCSEMaps) {
10124         RemoveNodeFromCSEMaps(User);
10125         UserRemovedFromCSEMaps = true;
10126       }
10127 
10128       ++UI;
10129       Use.set(To);
10130       if (To->isDivergent() != From->isDivergent())
10131         updateDivergence(User);
10132     } while (UI != UE && *UI == User);
10133     // We are iterating over all uses of the From node, so if a use
10134     // doesn't use the specific value, no changes are made.
10135     if (!UserRemovedFromCSEMaps)
10136       continue;
10137 
10138     // Now that we have modified User, add it back to the CSE maps.  If it
10139     // already exists there, recursively merge the results together.
10140     AddModifiedNodeToCSEMaps(User);
10141   }
10142 
10143   // If we just RAUW'd the root, take note.
10144   if (From == getRoot())
10145     setRoot(To);
10146 }
10147 
10148 namespace {
10149 
10150 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
10151 /// to record information about a use.
10152 struct UseMemo {
10153   SDNode *User;
10154   unsigned Index;
10155   SDUse *Use;
10156 };
10157 
10158 /// operator< - Sort Memos by User.
10159 bool operator<(const UseMemo &L, const UseMemo &R) {
10160   return (intptr_t)L.User < (intptr_t)R.User;
10161 }
10162 
10163 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
10164 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
10165 /// the node already has been taken care of recursively.
10166 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
10167   SmallVector<UseMemo, 4> &Uses;
10168 
10169   void NodeDeleted(SDNode *N, SDNode *E) override {
10170     for (UseMemo &Memo : Uses)
10171       if (Memo.User == N)
10172         Memo.User = nullptr;
10173   }
10174 
10175 public:
10176   RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
10177       : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
10178 };
10179 
10180 } // end anonymous namespace
10181 
10182 bool SelectionDAG::calculateDivergence(SDNode *N) {
10183   if (TLI->isSDNodeAlwaysUniform(N)) {
10184     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
10185            "Conflicting divergence information!");
10186     return false;
10187   }
10188   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
10189     return true;
10190   for (auto &Op : N->ops()) {
10191     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
10192       return true;
10193   }
10194   return false;
10195 }
10196 
10197 void SelectionDAG::updateDivergence(SDNode *N) {
10198   SmallVector<SDNode *, 16> Worklist(1, N);
10199   do {
10200     N = Worklist.pop_back_val();
10201     bool IsDivergent = calculateDivergence(N);
10202     if (N->SDNodeBits.IsDivergent != IsDivergent) {
10203       N->SDNodeBits.IsDivergent = IsDivergent;
10204       llvm::append_range(Worklist, N->uses());
10205     }
10206   } while (!Worklist.empty());
10207 }
10208 
10209 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
10210   DenseMap<SDNode *, unsigned> Degree;
10211   Order.reserve(AllNodes.size());
10212   for (auto &N : allnodes()) {
10213     unsigned NOps = N.getNumOperands();
10214     Degree[&N] = NOps;
10215     if (0 == NOps)
10216       Order.push_back(&N);
10217   }
10218   for (size_t I = 0; I != Order.size(); ++I) {
10219     SDNode *N = Order[I];
10220     for (auto U : N->uses()) {
10221       unsigned &UnsortedOps = Degree[U];
10222       if (0 == --UnsortedOps)
10223         Order.push_back(U);
10224     }
10225   }
10226 }
10227 
10228 #ifndef NDEBUG
10229 void SelectionDAG::VerifyDAGDivergence() {
10230   std::vector<SDNode *> TopoOrder;
10231   CreateTopologicalOrder(TopoOrder);
10232   for (auto *N : TopoOrder) {
10233     assert(calculateDivergence(N) == N->isDivergent() &&
10234            "Divergence bit inconsistency detected");
10235   }
10236 }
10237 #endif
10238 
10239 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
10240 /// uses of other values produced by From.getNode() alone.  The same value
10241 /// may appear in both the From and To list.  The Deleted vector is
10242 /// handled the same way as for ReplaceAllUsesWith.
10243 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
10244                                               const SDValue *To,
10245                                               unsigned Num){
10246   // Handle the simple, trivial case efficiently.
10247   if (Num == 1)
10248     return ReplaceAllUsesOfValueWith(*From, *To);
10249 
10250   transferDbgValues(*From, *To);
10251 
10252   // Read up all the uses and make records of them. This helps
10253   // processing new uses that are introduced during the
10254   // replacement process.
10255   SmallVector<UseMemo, 4> Uses;
10256   for (unsigned i = 0; i != Num; ++i) {
10257     unsigned FromResNo = From[i].getResNo();
10258     SDNode *FromNode = From[i].getNode();
10259     for (SDNode::use_iterator UI = FromNode->use_begin(),
10260          E = FromNode->use_end(); UI != E; ++UI) {
10261       SDUse &Use = UI.getUse();
10262       if (Use.getResNo() == FromResNo) {
10263         UseMemo Memo = { *UI, i, &Use };
10264         Uses.push_back(Memo);
10265       }
10266     }
10267   }
10268 
10269   // Sort the uses, so that all the uses from a given User are together.
10270   llvm::sort(Uses);
10271   RAUOVWUpdateListener Listener(*this, Uses);
10272 
10273   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
10274        UseIndex != UseIndexEnd; ) {
10275     // We know that this user uses some value of From.  If it is the right
10276     // value, update it.
10277     SDNode *User = Uses[UseIndex].User;
10278     // If the node has been deleted by recursive CSE updates when updating
10279     // another node, then just skip this entry.
10280     if (User == nullptr) {
10281       ++UseIndex;
10282       continue;
10283     }
10284 
10285     // This node is about to morph, remove its old self from the CSE maps.
10286     RemoveNodeFromCSEMaps(User);
10287 
10288     // The Uses array is sorted, so all the uses for a given User
10289     // are next to each other in the list.
10290     // To help reduce the number of CSE recomputations, process all
10291     // the uses of this user that we can find this way.
10292     do {
10293       unsigned i = Uses[UseIndex].Index;
10294       SDUse &Use = *Uses[UseIndex].Use;
10295       ++UseIndex;
10296 
10297       Use.set(To[i]);
10298     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
10299 
10300     // Now that we have modified User, add it back to the CSE maps.  If it
10301     // already exists there, recursively merge the results together.
10302     AddModifiedNodeToCSEMaps(User);
10303   }
10304 }
10305 
10306 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
10307 /// based on their topological order. It returns the maximum id and a vector
10308 /// of the SDNodes* in assigned order by reference.
10309 unsigned SelectionDAG::AssignTopologicalOrder() {
10310   unsigned DAGSize = 0;
10311 
10312   // SortedPos tracks the progress of the algorithm. Nodes before it are
10313   // sorted, nodes after it are unsorted. When the algorithm completes
10314   // it is at the end of the list.
10315   allnodes_iterator SortedPos = allnodes_begin();
10316 
10317   // Visit all the nodes. Move nodes with no operands to the front of
10318   // the list immediately. Annotate nodes that do have operands with their
10319   // operand count. Before we do this, the Node Id fields of the nodes
10320   // may contain arbitrary values. After, the Node Id fields for nodes
10321   // before SortedPos will contain the topological sort index, and the
10322   // Node Id fields for nodes At SortedPos and after will contain the
10323   // count of outstanding operands.
10324   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
10325     checkForCycles(&N, this);
10326     unsigned Degree = N.getNumOperands();
10327     if (Degree == 0) {
10328       // A node with no uses, add it to the result array immediately.
10329       N.setNodeId(DAGSize++);
10330       allnodes_iterator Q(&N);
10331       if (Q != SortedPos)
10332         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
10333       assert(SortedPos != AllNodes.end() && "Overran node list");
10334       ++SortedPos;
10335     } else {
10336       // Temporarily use the Node Id as scratch space for the degree count.
10337       N.setNodeId(Degree);
10338     }
10339   }
10340 
10341   // Visit all the nodes. As we iterate, move nodes into sorted order,
10342   // such that by the time the end is reached all nodes will be sorted.
10343   for (SDNode &Node : allnodes()) {
10344     SDNode *N = &Node;
10345     checkForCycles(N, this);
10346     // N is in sorted position, so all its uses have one less operand
10347     // that needs to be sorted.
10348     for (SDNode *P : N->uses()) {
10349       unsigned Degree = P->getNodeId();
10350       assert(Degree != 0 && "Invalid node degree");
10351       --Degree;
10352       if (Degree == 0) {
10353         // All of P's operands are sorted, so P may sorted now.
10354         P->setNodeId(DAGSize++);
10355         if (P->getIterator() != SortedPos)
10356           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
10357         assert(SortedPos != AllNodes.end() && "Overran node list");
10358         ++SortedPos;
10359       } else {
10360         // Update P's outstanding operand count.
10361         P->setNodeId(Degree);
10362       }
10363     }
10364     if (Node.getIterator() == SortedPos) {
10365 #ifndef NDEBUG
10366       allnodes_iterator I(N);
10367       SDNode *S = &*++I;
10368       dbgs() << "Overran sorted position:\n";
10369       S->dumprFull(this); dbgs() << "\n";
10370       dbgs() << "Checking if this is due to cycles\n";
10371       checkForCycles(this, true);
10372 #endif
10373       llvm_unreachable(nullptr);
10374     }
10375   }
10376 
10377   assert(SortedPos == AllNodes.end() &&
10378          "Topological sort incomplete!");
10379   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
10380          "First node in topological sort is not the entry token!");
10381   assert(AllNodes.front().getNodeId() == 0 &&
10382          "First node in topological sort has non-zero id!");
10383   assert(AllNodes.front().getNumOperands() == 0 &&
10384          "First node in topological sort has operands!");
10385   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
10386          "Last node in topologic sort has unexpected id!");
10387   assert(AllNodes.back().use_empty() &&
10388          "Last node in topologic sort has users!");
10389   assert(DAGSize == allnodes_size() && "Node count mismatch!");
10390   return DAGSize;
10391 }
10392 
10393 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
10394 /// value is produced by SD.
10395 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
10396   for (SDNode *SD : DB->getSDNodes()) {
10397     if (!SD)
10398       continue;
10399     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
10400     SD->setHasDebugValue(true);
10401   }
10402   DbgInfo->add(DB, isParameter);
10403 }
10404 
10405 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
10406 
10407 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
10408                                                    SDValue NewMemOpChain) {
10409   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
10410   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
10411   // The new memory operation must have the same position as the old load in
10412   // terms of memory dependency. Create a TokenFactor for the old load and new
10413   // memory operation and update uses of the old load's output chain to use that
10414   // TokenFactor.
10415   if (OldChain == NewMemOpChain || OldChain.use_empty())
10416     return NewMemOpChain;
10417 
10418   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
10419                                 OldChain, NewMemOpChain);
10420   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
10421   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
10422   return TokenFactor;
10423 }
10424 
10425 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
10426                                                    SDValue NewMemOp) {
10427   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
10428   SDValue OldChain = SDValue(OldLoad, 1);
10429   SDValue NewMemOpChain = NewMemOp.getValue(1);
10430   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
10431 }
10432 
10433 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
10434                                                      Function **OutFunction) {
10435   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
10436 
10437   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10438   auto *Module = MF->getFunction().getParent();
10439   auto *Function = Module->getFunction(Symbol);
10440 
10441   if (OutFunction != nullptr)
10442       *OutFunction = Function;
10443 
10444   if (Function != nullptr) {
10445     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
10446     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
10447   }
10448 
10449   std::string ErrorStr;
10450   raw_string_ostream ErrorFormatter(ErrorStr);
10451   ErrorFormatter << "Undefined external symbol ";
10452   ErrorFormatter << '"' << Symbol << '"';
10453   report_fatal_error(Twine(ErrorFormatter.str()));
10454 }
10455 
10456 //===----------------------------------------------------------------------===//
10457 //                              SDNode Class
10458 //===----------------------------------------------------------------------===//
10459 
10460 bool llvm::isNullConstant(SDValue V) {
10461   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10462   return Const != nullptr && Const->isZero();
10463 }
10464 
10465 bool llvm::isNullFPConstant(SDValue V) {
10466   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
10467   return Const != nullptr && Const->isZero() && !Const->isNegative();
10468 }
10469 
10470 bool llvm::isAllOnesConstant(SDValue V) {
10471   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10472   return Const != nullptr && Const->isAllOnes();
10473 }
10474 
10475 bool llvm::isOneConstant(SDValue V) {
10476   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10477   return Const != nullptr && Const->isOne();
10478 }
10479 
10480 bool llvm::isMinSignedConstant(SDValue V) {
10481   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10482   return Const != nullptr && Const->isMinSignedValue();
10483 }
10484 
10485 SDValue llvm::peekThroughBitcasts(SDValue V) {
10486   while (V.getOpcode() == ISD::BITCAST)
10487     V = V.getOperand(0);
10488   return V;
10489 }
10490 
10491 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
10492   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
10493     V = V.getOperand(0);
10494   return V;
10495 }
10496 
10497 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
10498   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
10499     V = V.getOperand(0);
10500   return V;
10501 }
10502 
10503 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10504   if (V.getOpcode() != ISD::XOR)
10505     return false;
10506   V = peekThroughBitcasts(V.getOperand(1));
10507   unsigned NumBits = V.getScalarValueSizeInBits();
10508   ConstantSDNode *C =
10509       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10510   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10511 }
10512 
10513 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10514                                           bool AllowTruncation) {
10515   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10516     return CN;
10517 
10518   // SplatVectors can truncate their operands. Ignore that case here unless
10519   // AllowTruncation is set.
10520   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10521     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10522     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10523       EVT CVT = CN->getValueType(0);
10524       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10525       if (AllowTruncation || CVT == VecEltVT)
10526         return CN;
10527     }
10528   }
10529 
10530   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10531     BitVector UndefElements;
10532     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10533 
10534     // BuildVectors can truncate their operands. Ignore that case here unless
10535     // AllowTruncation is set.
10536     if (CN && (UndefElements.none() || AllowUndefs)) {
10537       EVT CVT = CN->getValueType(0);
10538       EVT NSVT = N.getValueType().getScalarType();
10539       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10540       if (AllowTruncation || (CVT == NSVT))
10541         return CN;
10542     }
10543   }
10544 
10545   return nullptr;
10546 }
10547 
10548 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10549                                           bool AllowUndefs,
10550                                           bool AllowTruncation) {
10551   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10552     return CN;
10553 
10554   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10555     BitVector UndefElements;
10556     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10557 
10558     // BuildVectors can truncate their operands. Ignore that case here unless
10559     // AllowTruncation is set.
10560     if (CN && (UndefElements.none() || AllowUndefs)) {
10561       EVT CVT = CN->getValueType(0);
10562       EVT NSVT = N.getValueType().getScalarType();
10563       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10564       if (AllowTruncation || (CVT == NSVT))
10565         return CN;
10566     }
10567   }
10568 
10569   return nullptr;
10570 }
10571 
10572 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10573   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10574     return CN;
10575 
10576   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10577     BitVector UndefElements;
10578     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10579     if (CN && (UndefElements.none() || AllowUndefs))
10580       return CN;
10581   }
10582 
10583   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10584     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10585       return CN;
10586 
10587   return nullptr;
10588 }
10589 
10590 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10591                                               const APInt &DemandedElts,
10592                                               bool AllowUndefs) {
10593   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10594     return CN;
10595 
10596   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10597     BitVector UndefElements;
10598     ConstantFPSDNode *CN =
10599         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10600     if (CN && (UndefElements.none() || AllowUndefs))
10601       return CN;
10602   }
10603 
10604   return nullptr;
10605 }
10606 
10607 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10608   // TODO: may want to use peekThroughBitcast() here.
10609   ConstantSDNode *C =
10610       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10611   return C && C->isZero();
10612 }
10613 
10614 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10615   // TODO: may want to use peekThroughBitcast() here.
10616   unsigned BitWidth = N.getScalarValueSizeInBits();
10617   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10618   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10619 }
10620 
10621 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10622   N = peekThroughBitcasts(N);
10623   unsigned BitWidth = N.getScalarValueSizeInBits();
10624   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10625   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10626 }
10627 
10628 HandleSDNode::~HandleSDNode() {
10629   DropOperands();
10630 }
10631 
10632 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10633                                          const DebugLoc &DL,
10634                                          const GlobalValue *GA, EVT VT,
10635                                          int64_t o, unsigned TF)
10636     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10637   TheGlobal = GA;
10638 }
10639 
10640 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10641                                          EVT VT, unsigned SrcAS,
10642                                          unsigned DestAS)
10643     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10644       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10645 
10646 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10647                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10648     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10649   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10650   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10651   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10652   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10653 
10654   // We check here that the size of the memory operand fits within the size of
10655   // the MMO. This is because the MMO might indicate only a possible address
10656   // range instead of specifying the affected memory addresses precisely.
10657   // TODO: Make MachineMemOperands aware of scalable vectors.
10658   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10659          "Size mismatch!");
10660 }
10661 
10662 /// Profile - Gather unique data for the node.
10663 ///
10664 void SDNode::Profile(FoldingSetNodeID &ID) const {
10665   AddNodeIDNode(ID, this);
10666 }
10667 
10668 namespace {
10669 
10670   struct EVTArray {
10671     std::vector<EVT> VTs;
10672 
10673     EVTArray() {
10674       VTs.reserve(MVT::VALUETYPE_SIZE);
10675       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10676         VTs.push_back(MVT((MVT::SimpleValueType)i));
10677     }
10678   };
10679 
10680 } // end anonymous namespace
10681 
10682 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10683 static ManagedStatic<EVTArray> SimpleVTArray;
10684 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10685 
10686 /// getValueTypeList - Return a pointer to the specified value type.
10687 ///
10688 const EVT *SDNode::getValueTypeList(EVT VT) {
10689   if (VT.isExtended()) {
10690     sys::SmartScopedLock<true> Lock(*VTMutex);
10691     return &(*EVTs->insert(VT).first);
10692   }
10693   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10694   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10695 }
10696 
10697 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10698 /// indicated value.  This method ignores uses of other values defined by this
10699 /// operation.
10700 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10701   assert(Value < getNumValues() && "Bad value!");
10702 
10703   // TODO: Only iterate over uses of a given value of the node
10704   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10705     if (UI.getUse().getResNo() == Value) {
10706       if (NUses == 0)
10707         return false;
10708       --NUses;
10709     }
10710   }
10711 
10712   // Found exactly the right number of uses?
10713   return NUses == 0;
10714 }
10715 
10716 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10717 /// value. This method ignores uses of other values defined by this operation.
10718 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10719   assert(Value < getNumValues() && "Bad value!");
10720 
10721   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10722     if (UI.getUse().getResNo() == Value)
10723       return true;
10724 
10725   return false;
10726 }
10727 
10728 /// isOnlyUserOf - Return true if this node is the only use of N.
10729 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10730   bool Seen = false;
10731   for (const SDNode *User : N->uses()) {
10732     if (User == this)
10733       Seen = true;
10734     else
10735       return false;
10736   }
10737 
10738   return Seen;
10739 }
10740 
10741 /// Return true if the only users of N are contained in Nodes.
10742 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10743   bool Seen = false;
10744   for (const SDNode *User : N->uses()) {
10745     if (llvm::is_contained(Nodes, User))
10746       Seen = true;
10747     else
10748       return false;
10749   }
10750 
10751   return Seen;
10752 }
10753 
10754 /// isOperand - Return true if this node is an operand of N.
10755 bool SDValue::isOperandOf(const SDNode *N) const {
10756   return is_contained(N->op_values(), *this);
10757 }
10758 
10759 bool SDNode::isOperandOf(const SDNode *N) const {
10760   return any_of(N->op_values(),
10761                 [this](SDValue Op) { return this == Op.getNode(); });
10762 }
10763 
10764 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10765 /// be a chain) reaches the specified operand without crossing any
10766 /// side-effecting instructions on any chain path.  In practice, this looks
10767 /// through token factors and non-volatile loads.  In order to remain efficient,
10768 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10769 ///
10770 /// Note that we only need to examine chains when we're searching for
10771 /// side-effects; SelectionDAG requires that all side-effects are represented
10772 /// by chains, even if another operand would force a specific ordering. This
10773 /// constraint is necessary to allow transformations like splitting loads.
10774 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10775                                              unsigned Depth) const {
10776   if (*this == Dest) return true;
10777 
10778   // Don't search too deeply, we just want to be able to see through
10779   // TokenFactor's etc.
10780   if (Depth == 0) return false;
10781 
10782   // If this is a token factor, all inputs to the TF happen in parallel.
10783   if (getOpcode() == ISD::TokenFactor) {
10784     // First, try a shallow search.
10785     if (is_contained((*this)->ops(), Dest)) {
10786       // We found the chain we want as an operand of this TokenFactor.
10787       // Essentially, we reach the chain without side-effects if we could
10788       // serialize the TokenFactor into a simple chain of operations with
10789       // Dest as the last operation. This is automatically true if the
10790       // chain has one use: there are no other ordering constraints.
10791       // If the chain has more than one use, we give up: some other
10792       // use of Dest might force a side-effect between Dest and the current
10793       // node.
10794       if (Dest.hasOneUse())
10795         return true;
10796     }
10797     // Next, try a deep search: check whether every operand of the TokenFactor
10798     // reaches Dest.
10799     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10800       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10801     });
10802   }
10803 
10804   // Loads don't have side effects, look through them.
10805   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10806     if (Ld->isUnordered())
10807       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10808   }
10809   return false;
10810 }
10811 
10812 bool SDNode::hasPredecessor(const SDNode *N) const {
10813   SmallPtrSet<const SDNode *, 32> Visited;
10814   SmallVector<const SDNode *, 16> Worklist;
10815   Worklist.push_back(this);
10816   return hasPredecessorHelper(N, Visited, Worklist);
10817 }
10818 
10819 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10820   this->Flags.intersectWith(Flags);
10821 }
10822 
10823 SDValue
10824 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10825                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10826                                   bool AllowPartials) {
10827   // The pattern must end in an extract from index 0.
10828   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10829       !isNullConstant(Extract->getOperand(1)))
10830     return SDValue();
10831 
10832   // Match against one of the candidate binary ops.
10833   SDValue Op = Extract->getOperand(0);
10834   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10835         return Op.getOpcode() == unsigned(BinOp);
10836       }))
10837     return SDValue();
10838 
10839   // Floating-point reductions may require relaxed constraints on the final step
10840   // of the reduction because they may reorder intermediate operations.
10841   unsigned CandidateBinOp = Op.getOpcode();
10842   if (Op.getValueType().isFloatingPoint()) {
10843     SDNodeFlags Flags = Op->getFlags();
10844     switch (CandidateBinOp) {
10845     case ISD::FADD:
10846       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10847         return SDValue();
10848       break;
10849     default:
10850       llvm_unreachable("Unhandled FP opcode for binop reduction");
10851     }
10852   }
10853 
10854   // Matching failed - attempt to see if we did enough stages that a partial
10855   // reduction from a subvector is possible.
10856   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10857     if (!AllowPartials || !Op)
10858       return SDValue();
10859     EVT OpVT = Op.getValueType();
10860     EVT OpSVT = OpVT.getScalarType();
10861     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10862     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10863       return SDValue();
10864     BinOp = (ISD::NodeType)CandidateBinOp;
10865     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10866                    getVectorIdxConstant(0, SDLoc(Op)));
10867   };
10868 
10869   // At each stage, we're looking for something that looks like:
10870   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10871   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10872   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10873   // %a = binop <8 x i32> %op, %s
10874   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10875   // we expect something like:
10876   // <4,5,6,7,u,u,u,u>
10877   // <2,3,u,u,u,u,u,u>
10878   // <1,u,u,u,u,u,u,u>
10879   // While a partial reduction match would be:
10880   // <2,3,u,u,u,u,u,u>
10881   // <1,u,u,u,u,u,u,u>
10882   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10883   SDValue PrevOp;
10884   for (unsigned i = 0; i < Stages; ++i) {
10885     unsigned MaskEnd = (1 << i);
10886 
10887     if (Op.getOpcode() != CandidateBinOp)
10888       return PartialReduction(PrevOp, MaskEnd);
10889 
10890     SDValue Op0 = Op.getOperand(0);
10891     SDValue Op1 = Op.getOperand(1);
10892 
10893     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10894     if (Shuffle) {
10895       Op = Op1;
10896     } else {
10897       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10898       Op = Op0;
10899     }
10900 
10901     // The first operand of the shuffle should be the same as the other operand
10902     // of the binop.
10903     if (!Shuffle || Shuffle->getOperand(0) != Op)
10904       return PartialReduction(PrevOp, MaskEnd);
10905 
10906     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10907     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10908       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10909         return PartialReduction(PrevOp, MaskEnd);
10910 
10911     PrevOp = Op;
10912   }
10913 
10914   // Handle subvector reductions, which tend to appear after the shuffle
10915   // reduction stages.
10916   while (Op.getOpcode() == CandidateBinOp) {
10917     unsigned NumElts = Op.getValueType().getVectorNumElements();
10918     SDValue Op0 = Op.getOperand(0);
10919     SDValue Op1 = Op.getOperand(1);
10920     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10921         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10922         Op0.getOperand(0) != Op1.getOperand(0))
10923       break;
10924     SDValue Src = Op0.getOperand(0);
10925     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10926     if (NumSrcElts != (2 * NumElts))
10927       break;
10928     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10929           Op1.getConstantOperandAPInt(1) == NumElts) &&
10930         !(Op1.getConstantOperandAPInt(1) == 0 &&
10931           Op0.getConstantOperandAPInt(1) == NumElts))
10932       break;
10933     Op = Src;
10934   }
10935 
10936   BinOp = (ISD::NodeType)CandidateBinOp;
10937   return Op;
10938 }
10939 
10940 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10941   assert(N->getNumValues() == 1 &&
10942          "Can't unroll a vector with multiple results!");
10943 
10944   EVT VT = N->getValueType(0);
10945   unsigned NE = VT.getVectorNumElements();
10946   EVT EltVT = VT.getVectorElementType();
10947   SDLoc dl(N);
10948 
10949   SmallVector<SDValue, 8> Scalars;
10950   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10951 
10952   // If ResNE is 0, fully unroll the vector op.
10953   if (ResNE == 0)
10954     ResNE = NE;
10955   else if (NE > ResNE)
10956     NE = ResNE;
10957 
10958   unsigned i;
10959   for (i= 0; i != NE; ++i) {
10960     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10961       SDValue Operand = N->getOperand(j);
10962       EVT OperandVT = Operand.getValueType();
10963       if (OperandVT.isVector()) {
10964         // A vector operand; extract a single element.
10965         EVT OperandEltVT = OperandVT.getVectorElementType();
10966         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10967                               Operand, getVectorIdxConstant(i, dl));
10968       } else {
10969         // A scalar operand; just use it as is.
10970         Operands[j] = Operand;
10971       }
10972     }
10973 
10974     switch (N->getOpcode()) {
10975     default: {
10976       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10977                                 N->getFlags()));
10978       break;
10979     }
10980     case ISD::VSELECT:
10981       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10982       break;
10983     case ISD::SHL:
10984     case ISD::SRA:
10985     case ISD::SRL:
10986     case ISD::ROTL:
10987     case ISD::ROTR:
10988       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10989                                getShiftAmountOperand(Operands[0].getValueType(),
10990                                                      Operands[1])));
10991       break;
10992     case ISD::SIGN_EXTEND_INREG: {
10993       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10994       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10995                                 Operands[0],
10996                                 getValueType(ExtVT)));
10997     }
10998     }
10999   }
11000 
11001   for (; i < ResNE; ++i)
11002     Scalars.push_back(getUNDEF(EltVT));
11003 
11004   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
11005   return getBuildVector(VecVT, dl, Scalars);
11006 }
11007 
11008 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
11009     SDNode *N, unsigned ResNE) {
11010   unsigned Opcode = N->getOpcode();
11011   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
11012           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
11013           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
11014          "Expected an overflow opcode");
11015 
11016   EVT ResVT = N->getValueType(0);
11017   EVT OvVT = N->getValueType(1);
11018   EVT ResEltVT = ResVT.getVectorElementType();
11019   EVT OvEltVT = OvVT.getVectorElementType();
11020   SDLoc dl(N);
11021 
11022   // If ResNE is 0, fully unroll the vector op.
11023   unsigned NE = ResVT.getVectorNumElements();
11024   if (ResNE == 0)
11025     ResNE = NE;
11026   else if (NE > ResNE)
11027     NE = ResNE;
11028 
11029   SmallVector<SDValue, 8> LHSScalars;
11030   SmallVector<SDValue, 8> RHSScalars;
11031   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
11032   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
11033 
11034   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
11035   SDVTList VTs = getVTList(ResEltVT, SVT);
11036   SmallVector<SDValue, 8> ResScalars;
11037   SmallVector<SDValue, 8> OvScalars;
11038   for (unsigned i = 0; i < NE; ++i) {
11039     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
11040     SDValue Ov =
11041         getSelect(dl, OvEltVT, Res.getValue(1),
11042                   getBoolConstant(true, dl, OvEltVT, ResVT),
11043                   getConstant(0, dl, OvEltVT));
11044 
11045     ResScalars.push_back(Res);
11046     OvScalars.push_back(Ov);
11047   }
11048 
11049   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
11050   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
11051 
11052   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
11053   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
11054   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
11055                         getBuildVector(NewOvVT, dl, OvScalars));
11056 }
11057 
11058 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
11059                                                   LoadSDNode *Base,
11060                                                   unsigned Bytes,
11061                                                   int Dist) const {
11062   if (LD->isVolatile() || Base->isVolatile())
11063     return false;
11064   // TODO: probably too restrictive for atomics, revisit
11065   if (!LD->isSimple())
11066     return false;
11067   if (LD->isIndexed() || Base->isIndexed())
11068     return false;
11069   if (LD->getChain() != Base->getChain())
11070     return false;
11071   EVT VT = LD->getValueType(0);
11072   if (VT.getSizeInBits() / 8 != Bytes)
11073     return false;
11074 
11075   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
11076   auto LocDecomp = BaseIndexOffset::match(LD, *this);
11077 
11078   int64_t Offset = 0;
11079   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
11080     return (Dist * Bytes == Offset);
11081   return false;
11082 }
11083 
11084 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
11085 /// if it cannot be inferred.
11086 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
11087   // If this is a GlobalAddress + cst, return the alignment.
11088   const GlobalValue *GV = nullptr;
11089   int64_t GVOffset = 0;
11090   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
11091     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
11092     KnownBits Known(PtrWidth);
11093     llvm::computeKnownBits(GV, Known, getDataLayout());
11094     unsigned AlignBits = Known.countMinTrailingZeros();
11095     if (AlignBits)
11096       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
11097   }
11098 
11099   // If this is a direct reference to a stack slot, use information about the
11100   // stack slot's alignment.
11101   int FrameIdx = INT_MIN;
11102   int64_t FrameOffset = 0;
11103   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
11104     FrameIdx = FI->getIndex();
11105   } else if (isBaseWithConstantOffset(Ptr) &&
11106              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
11107     // Handle FI+Cst
11108     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
11109     FrameOffset = Ptr.getConstantOperandVal(1);
11110   }
11111 
11112   if (FrameIdx != INT_MIN) {
11113     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
11114     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
11115   }
11116 
11117   return None;
11118 }
11119 
11120 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
11121 /// which is split (or expanded) into two not necessarily identical pieces.
11122 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
11123   // Currently all types are split in half.
11124   EVT LoVT, HiVT;
11125   if (!VT.isVector())
11126     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
11127   else
11128     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
11129 
11130   return std::make_pair(LoVT, HiVT);
11131 }
11132 
11133 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
11134 /// type, dependent on an enveloping VT that has been split into two identical
11135 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
11136 std::pair<EVT, EVT>
11137 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
11138                                        bool *HiIsEmpty) const {
11139   EVT EltTp = VT.getVectorElementType();
11140   // Examples:
11141   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
11142   //   custom VL=9  with enveloping VL=8/8 yields 8/1
11143   //   custom VL=10 with enveloping VL=8/8 yields 8/2
11144   //   etc.
11145   ElementCount VTNumElts = VT.getVectorElementCount();
11146   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
11147   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
11148          "Mixing fixed width and scalable vectors when enveloping a type");
11149   EVT LoVT, HiVT;
11150   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
11151     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11152     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
11153     *HiIsEmpty = false;
11154   } else {
11155     // Flag that hi type has zero storage size, but return split envelop type
11156     // (this would be easier if vector types with zero elements were allowed).
11157     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
11158     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11159     *HiIsEmpty = true;
11160   }
11161   return std::make_pair(LoVT, HiVT);
11162 }
11163 
11164 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
11165 /// low/high part.
11166 std::pair<SDValue, SDValue>
11167 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
11168                           const EVT &HiVT) {
11169   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
11170          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
11171          "Splitting vector with an invalid mixture of fixed and scalable "
11172          "vector types");
11173   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
11174              N.getValueType().getVectorMinNumElements() &&
11175          "More vector elements requested than available!");
11176   SDValue Lo, Hi;
11177   Lo =
11178       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
11179   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
11180   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
11181   // IDX with the runtime scaling factor of the result vector type. For
11182   // fixed-width result vectors, that runtime scaling factor is 1.
11183   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
11184                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
11185   return std::make_pair(Lo, Hi);
11186 }
11187 
11188 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
11189                                                    const SDLoc &DL) {
11190   // Split the vector length parameter.
11191   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
11192   EVT VT = N.getValueType();
11193   assert(VecVT.getVectorElementCount().isKnownEven() &&
11194          "Expecting the mask to be an evenly-sized vector");
11195   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
11196   SDValue HalfNumElts =
11197       VecVT.isFixedLengthVector()
11198           ? getConstant(HalfMinNumElts, DL, VT)
11199           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
11200   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
11201   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
11202   return std::make_pair(Lo, Hi);
11203 }
11204 
11205 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
11206 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
11207   EVT VT = N.getValueType();
11208   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
11209                                 NextPowerOf2(VT.getVectorNumElements()));
11210   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
11211                  getVectorIdxConstant(0, DL));
11212 }
11213 
11214 void SelectionDAG::ExtractVectorElements(SDValue Op,
11215                                          SmallVectorImpl<SDValue> &Args,
11216                                          unsigned Start, unsigned Count,
11217                                          EVT EltVT) {
11218   EVT VT = Op.getValueType();
11219   if (Count == 0)
11220     Count = VT.getVectorNumElements();
11221   if (EltVT == EVT())
11222     EltVT = VT.getVectorElementType();
11223   SDLoc SL(Op);
11224   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
11225     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
11226                            getVectorIdxConstant(i, SL)));
11227   }
11228 }
11229 
11230 // getAddressSpace - Return the address space this GlobalAddress belongs to.
11231 unsigned GlobalAddressSDNode::getAddressSpace() const {
11232   return getGlobal()->getType()->getAddressSpace();
11233 }
11234 
11235 Type *ConstantPoolSDNode::getType() const {
11236   if (isMachineConstantPoolEntry())
11237     return Val.MachineCPVal->getType();
11238   return Val.ConstVal->getType();
11239 }
11240 
11241 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
11242                                         unsigned &SplatBitSize,
11243                                         bool &HasAnyUndefs,
11244                                         unsigned MinSplatBits,
11245                                         bool IsBigEndian) const {
11246   EVT VT = getValueType(0);
11247   assert(VT.isVector() && "Expected a vector type");
11248   unsigned VecWidth = VT.getSizeInBits();
11249   if (MinSplatBits > VecWidth)
11250     return false;
11251 
11252   // FIXME: The widths are based on this node's type, but build vectors can
11253   // truncate their operands.
11254   SplatValue = APInt(VecWidth, 0);
11255   SplatUndef = APInt(VecWidth, 0);
11256 
11257   // Get the bits. Bits with undefined values (when the corresponding element
11258   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
11259   // in SplatValue. If any of the values are not constant, give up and return
11260   // false.
11261   unsigned int NumOps = getNumOperands();
11262   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
11263   unsigned EltWidth = VT.getScalarSizeInBits();
11264 
11265   for (unsigned j = 0; j < NumOps; ++j) {
11266     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
11267     SDValue OpVal = getOperand(i);
11268     unsigned BitPos = j * EltWidth;
11269 
11270     if (OpVal.isUndef())
11271       SplatUndef.setBits(BitPos, BitPos + EltWidth);
11272     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
11273       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
11274     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
11275       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
11276     else
11277       return false;
11278   }
11279 
11280   // The build_vector is all constants or undefs. Find the smallest element
11281   // size that splats the vector.
11282   HasAnyUndefs = (SplatUndef != 0);
11283 
11284   // FIXME: This does not work for vectors with elements less than 8 bits.
11285   while (VecWidth > 8) {
11286     unsigned HalfSize = VecWidth / 2;
11287     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
11288     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
11289     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
11290     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
11291 
11292     // If the two halves do not match (ignoring undef bits), stop here.
11293     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
11294         MinSplatBits > HalfSize)
11295       break;
11296 
11297     SplatValue = HighValue | LowValue;
11298     SplatUndef = HighUndef & LowUndef;
11299 
11300     VecWidth = HalfSize;
11301   }
11302 
11303   SplatBitSize = VecWidth;
11304   return true;
11305 }
11306 
11307 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
11308                                          BitVector *UndefElements) const {
11309   unsigned NumOps = getNumOperands();
11310   if (UndefElements) {
11311     UndefElements->clear();
11312     UndefElements->resize(NumOps);
11313   }
11314   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11315   if (!DemandedElts)
11316     return SDValue();
11317   SDValue Splatted;
11318   for (unsigned i = 0; i != NumOps; ++i) {
11319     if (!DemandedElts[i])
11320       continue;
11321     SDValue Op = getOperand(i);
11322     if (Op.isUndef()) {
11323       if (UndefElements)
11324         (*UndefElements)[i] = true;
11325     } else if (!Splatted) {
11326       Splatted = Op;
11327     } else if (Splatted != Op) {
11328       return SDValue();
11329     }
11330   }
11331 
11332   if (!Splatted) {
11333     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
11334     assert(getOperand(FirstDemandedIdx).isUndef() &&
11335            "Can only have a splat without a constant for all undefs.");
11336     return getOperand(FirstDemandedIdx);
11337   }
11338 
11339   return Splatted;
11340 }
11341 
11342 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
11343   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11344   return getSplatValue(DemandedElts, UndefElements);
11345 }
11346 
11347 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
11348                                             SmallVectorImpl<SDValue> &Sequence,
11349                                             BitVector *UndefElements) const {
11350   unsigned NumOps = getNumOperands();
11351   Sequence.clear();
11352   if (UndefElements) {
11353     UndefElements->clear();
11354     UndefElements->resize(NumOps);
11355   }
11356   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11357   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
11358     return false;
11359 
11360   // Set the undefs even if we don't find a sequence (like getSplatValue).
11361   if (UndefElements)
11362     for (unsigned I = 0; I != NumOps; ++I)
11363       if (DemandedElts[I] && getOperand(I).isUndef())
11364         (*UndefElements)[I] = true;
11365 
11366   // Iteratively widen the sequence length looking for repetitions.
11367   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
11368     Sequence.append(SeqLen, SDValue());
11369     for (unsigned I = 0; I != NumOps; ++I) {
11370       if (!DemandedElts[I])
11371         continue;
11372       SDValue &SeqOp = Sequence[I % SeqLen];
11373       SDValue Op = getOperand(I);
11374       if (Op.isUndef()) {
11375         if (!SeqOp)
11376           SeqOp = Op;
11377         continue;
11378       }
11379       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
11380         Sequence.clear();
11381         break;
11382       }
11383       SeqOp = Op;
11384     }
11385     if (!Sequence.empty())
11386       return true;
11387   }
11388 
11389   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
11390   return false;
11391 }
11392 
11393 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
11394                                             BitVector *UndefElements) const {
11395   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11396   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
11397 }
11398 
11399 ConstantSDNode *
11400 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
11401                                         BitVector *UndefElements) const {
11402   return dyn_cast_or_null<ConstantSDNode>(
11403       getSplatValue(DemandedElts, UndefElements));
11404 }
11405 
11406 ConstantSDNode *
11407 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
11408   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
11409 }
11410 
11411 ConstantFPSDNode *
11412 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
11413                                           BitVector *UndefElements) const {
11414   return dyn_cast_or_null<ConstantFPSDNode>(
11415       getSplatValue(DemandedElts, UndefElements));
11416 }
11417 
11418 ConstantFPSDNode *
11419 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
11420   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
11421 }
11422 
11423 int32_t
11424 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
11425                                                    uint32_t BitWidth) const {
11426   if (ConstantFPSDNode *CN =
11427           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
11428     bool IsExact;
11429     APSInt IntVal(BitWidth);
11430     const APFloat &APF = CN->getValueAPF();
11431     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
11432             APFloat::opOK ||
11433         !IsExact)
11434       return -1;
11435 
11436     return IntVal.exactLogBase2();
11437   }
11438   return -1;
11439 }
11440 
11441 bool BuildVectorSDNode::getConstantRawBits(
11442     bool IsLittleEndian, unsigned DstEltSizeInBits,
11443     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
11444   // Early-out if this contains anything but Undef/Constant/ConstantFP.
11445   if (!isConstant())
11446     return false;
11447 
11448   unsigned NumSrcOps = getNumOperands();
11449   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
11450   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11451          "Invalid bitcast scale");
11452 
11453   // Extract raw src bits.
11454   SmallVector<APInt> SrcBitElements(NumSrcOps,
11455                                     APInt::getNullValue(SrcEltSizeInBits));
11456   BitVector SrcUndeElements(NumSrcOps, false);
11457 
11458   for (unsigned I = 0; I != NumSrcOps; ++I) {
11459     SDValue Op = getOperand(I);
11460     if (Op.isUndef()) {
11461       SrcUndeElements.set(I);
11462       continue;
11463     }
11464     auto *CInt = dyn_cast<ConstantSDNode>(Op);
11465     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
11466     assert((CInt || CFP) && "Unknown constant");
11467     SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
11468                              : CFP->getValueAPF().bitcastToAPInt();
11469   }
11470 
11471   // Recast to dst width.
11472   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
11473                 SrcBitElements, UndefElements, SrcUndeElements);
11474   return true;
11475 }
11476 
11477 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
11478                                       unsigned DstEltSizeInBits,
11479                                       SmallVectorImpl<APInt> &DstBitElements,
11480                                       ArrayRef<APInt> SrcBitElements,
11481                                       BitVector &DstUndefElements,
11482                                       const BitVector &SrcUndefElements) {
11483   unsigned NumSrcOps = SrcBitElements.size();
11484   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
11485   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11486          "Invalid bitcast scale");
11487   assert(NumSrcOps == SrcUndefElements.size() &&
11488          "Vector size mismatch");
11489 
11490   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
11491   DstUndefElements.clear();
11492   DstUndefElements.resize(NumDstOps, false);
11493   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
11494 
11495   // Concatenate src elements constant bits together into dst element.
11496   if (SrcEltSizeInBits <= DstEltSizeInBits) {
11497     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
11498     for (unsigned I = 0; I != NumDstOps; ++I) {
11499       DstUndefElements.set(I);
11500       APInt &DstBits = DstBitElements[I];
11501       for (unsigned J = 0; J != Scale; ++J) {
11502         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11503         if (SrcUndefElements[Idx])
11504           continue;
11505         DstUndefElements.reset(I);
11506         const APInt &SrcBits = SrcBitElements[Idx];
11507         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11508                "Illegal constant bitwidths");
11509         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11510       }
11511     }
11512     return;
11513   }
11514 
11515   // Split src element constant bits into dst elements.
11516   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11517   for (unsigned I = 0; I != NumSrcOps; ++I) {
11518     if (SrcUndefElements[I]) {
11519       DstUndefElements.set(I * Scale, (I + 1) * Scale);
11520       continue;
11521     }
11522     const APInt &SrcBits = SrcBitElements[I];
11523     for (unsigned J = 0; J != Scale; ++J) {
11524       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11525       APInt &DstBits = DstBitElements[Idx];
11526       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11527     }
11528   }
11529 }
11530 
11531 bool BuildVectorSDNode::isConstant() const {
11532   for (const SDValue &Op : op_values()) {
11533     unsigned Opc = Op.getOpcode();
11534     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11535       return false;
11536   }
11537   return true;
11538 }
11539 
11540 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11541   // Find the first non-undef value in the shuffle mask.
11542   unsigned i, e;
11543   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11544     /* search */;
11545 
11546   // If all elements are undefined, this shuffle can be considered a splat
11547   // (although it should eventually get simplified away completely).
11548   if (i == e)
11549     return true;
11550 
11551   // Make sure all remaining elements are either undef or the same as the first
11552   // non-undef value.
11553   for (int Idx = Mask[i]; i != e; ++i)
11554     if (Mask[i] >= 0 && Mask[i] != Idx)
11555       return false;
11556   return true;
11557 }
11558 
11559 // Returns the SDNode if it is a constant integer BuildVector
11560 // or constant integer.
11561 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11562   if (isa<ConstantSDNode>(N))
11563     return N.getNode();
11564   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11565     return N.getNode();
11566   // Treat a GlobalAddress supporting constant offset folding as a
11567   // constant integer.
11568   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11569     if (GA->getOpcode() == ISD::GlobalAddress &&
11570         TLI->isOffsetFoldingLegal(GA))
11571       return GA;
11572   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11573       isa<ConstantSDNode>(N.getOperand(0)))
11574     return N.getNode();
11575   return nullptr;
11576 }
11577 
11578 // Returns the SDNode if it is a constant float BuildVector
11579 // or constant float.
11580 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11581   if (isa<ConstantFPSDNode>(N))
11582     return N.getNode();
11583 
11584   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11585     return N.getNode();
11586 
11587   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11588       isa<ConstantFPSDNode>(N.getOperand(0)))
11589     return N.getNode();
11590 
11591   return nullptr;
11592 }
11593 
11594 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11595   assert(!Node->OperandList && "Node already has operands");
11596   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11597          "too many operands to fit into SDNode");
11598   SDUse *Ops = OperandRecycler.allocate(
11599       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11600 
11601   bool IsDivergent = false;
11602   for (unsigned I = 0; I != Vals.size(); ++I) {
11603     Ops[I].setUser(Node);
11604     Ops[I].setInitial(Vals[I]);
11605     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11606       IsDivergent |= Ops[I].getNode()->isDivergent();
11607   }
11608   Node->NumOperands = Vals.size();
11609   Node->OperandList = Ops;
11610   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11611     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11612     Node->SDNodeBits.IsDivergent = IsDivergent;
11613   }
11614   checkForCycles(Node);
11615 }
11616 
11617 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11618                                      SmallVectorImpl<SDValue> &Vals) {
11619   size_t Limit = SDNode::getMaxNumOperands();
11620   while (Vals.size() > Limit) {
11621     unsigned SliceIdx = Vals.size() - Limit;
11622     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11623     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11624     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11625     Vals.emplace_back(NewTF);
11626   }
11627   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11628 }
11629 
11630 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11631                                         EVT VT, SDNodeFlags Flags) {
11632   switch (Opcode) {
11633   default:
11634     return SDValue();
11635   case ISD::ADD:
11636   case ISD::OR:
11637   case ISD::XOR:
11638   case ISD::UMAX:
11639     return getConstant(0, DL, VT);
11640   case ISD::MUL:
11641     return getConstant(1, DL, VT);
11642   case ISD::AND:
11643   case ISD::UMIN:
11644     return getAllOnesConstant(DL, VT);
11645   case ISD::SMAX:
11646     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11647   case ISD::SMIN:
11648     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11649   case ISD::FADD:
11650     return getConstantFP(-0.0, DL, VT);
11651   case ISD::FMUL:
11652     return getConstantFP(1.0, DL, VT);
11653   case ISD::FMINNUM:
11654   case ISD::FMAXNUM: {
11655     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11656     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11657     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11658                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11659                         APFloat::getLargest(Semantics);
11660     if (Opcode == ISD::FMAXNUM)
11661       NeutralAF.changeSign();
11662 
11663     return getConstantFP(NeutralAF, DL, VT);
11664   }
11665   }
11666 }
11667 
11668 #ifndef NDEBUG
11669 static void checkForCyclesHelper(const SDNode *N,
11670                                  SmallPtrSetImpl<const SDNode*> &Visited,
11671                                  SmallPtrSetImpl<const SDNode*> &Checked,
11672                                  const llvm::SelectionDAG *DAG) {
11673   // If this node has already been checked, don't check it again.
11674   if (Checked.count(N))
11675     return;
11676 
11677   // If a node has already been visited on this depth-first walk, reject it as
11678   // a cycle.
11679   if (!Visited.insert(N).second) {
11680     errs() << "Detected cycle in SelectionDAG\n";
11681     dbgs() << "Offending node:\n";
11682     N->dumprFull(DAG); dbgs() << "\n";
11683     abort();
11684   }
11685 
11686   for (const SDValue &Op : N->op_values())
11687     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11688 
11689   Checked.insert(N);
11690   Visited.erase(N);
11691 }
11692 #endif
11693 
11694 void llvm::checkForCycles(const llvm::SDNode *N,
11695                           const llvm::SelectionDAG *DAG,
11696                           bool force) {
11697 #ifndef NDEBUG
11698   bool check = force;
11699 #ifdef EXPENSIVE_CHECKS
11700   check = true;
11701 #endif  // EXPENSIVE_CHECKS
11702   if (check) {
11703     assert(N && "Checking nonexistent SDNode");
11704     SmallPtrSet<const SDNode*, 32> visited;
11705     SmallPtrSet<const SDNode*, 32> checked;
11706     checkForCyclesHelper(N, visited, checked, DAG);
11707   }
11708 #endif  // !NDEBUG
11709 }
11710 
11711 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11712   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11713 }
11714