1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 case ISD::VP_REDUCE_FADD: 377 case ISD::VP_REDUCE_SEQ_FADD: 378 return ISD::FADD; 379 case ISD::VECREDUCE_FMUL: 380 case ISD::VECREDUCE_SEQ_FMUL: 381 case ISD::VP_REDUCE_FMUL: 382 case ISD::VP_REDUCE_SEQ_FMUL: 383 return ISD::FMUL; 384 case ISD::VECREDUCE_ADD: 385 case ISD::VP_REDUCE_ADD: 386 return ISD::ADD; 387 case ISD::VECREDUCE_MUL: 388 case ISD::VP_REDUCE_MUL: 389 return ISD::MUL; 390 case ISD::VECREDUCE_AND: 391 case ISD::VP_REDUCE_AND: 392 return ISD::AND; 393 case ISD::VECREDUCE_OR: 394 case ISD::VP_REDUCE_OR: 395 return ISD::OR; 396 case ISD::VECREDUCE_XOR: 397 case ISD::VP_REDUCE_XOR: 398 return ISD::XOR; 399 case ISD::VECREDUCE_SMAX: 400 case ISD::VP_REDUCE_SMAX: 401 return ISD::SMAX; 402 case ISD::VECREDUCE_SMIN: 403 case ISD::VP_REDUCE_SMIN: 404 return ISD::SMIN; 405 case ISD::VECREDUCE_UMAX: 406 case ISD::VP_REDUCE_UMAX: 407 return ISD::UMAX; 408 case ISD::VECREDUCE_UMIN: 409 case ISD::VP_REDUCE_UMIN: 410 return ISD::UMIN; 411 case ISD::VECREDUCE_FMAX: 412 case ISD::VP_REDUCE_FMAX: 413 return ISD::FMAXNUM; 414 case ISD::VECREDUCE_FMIN: 415 case ISD::VP_REDUCE_FMIN: 416 return ISD::FMINNUM; 417 } 418 } 419 420 bool ISD::isVPOpcode(unsigned Opcode) { 421 switch (Opcode) { 422 default: 423 return false; 424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 425 case ISD::VPSD: \ 426 return true; 427 #include "llvm/IR/VPIntrinsics.def" 428 } 429 } 430 431 bool ISD::isVPBinaryOp(unsigned Opcode) { 432 switch (Opcode) { 433 default: 434 break; 435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 436 #define VP_PROPERTY_BINARYOP return true; 437 #define END_REGISTER_VP_SDNODE(VPSD) break; 438 #include "llvm/IR/VPIntrinsics.def" 439 } 440 return false; 441 } 442 443 bool ISD::isVPReduction(unsigned Opcode) { 444 switch (Opcode) { 445 default: 446 break; 447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 449 #define END_REGISTER_VP_SDNODE(VPSD) break; 450 #include "llvm/IR/VPIntrinsics.def" 451 } 452 return false; 453 } 454 455 /// The operand position of the vector mask. 456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 457 switch (Opcode) { 458 default: 459 return None; 460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 461 case ISD::VPSD: \ 462 return MASKPOS; 463 #include "llvm/IR/VPIntrinsics.def" 464 } 465 } 466 467 /// The operand position of the explicit vector length parameter. 468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 469 switch (Opcode) { 470 default: 471 return None; 472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 473 case ISD::VPSD: \ 474 return EVLPOS; 475 #include "llvm/IR/VPIntrinsics.def" 476 } 477 } 478 479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 480 switch (ExtType) { 481 case ISD::EXTLOAD: 482 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 483 case ISD::SEXTLOAD: 484 return ISD::SIGN_EXTEND; 485 case ISD::ZEXTLOAD: 486 return ISD::ZERO_EXTEND; 487 default: 488 break; 489 } 490 491 llvm_unreachable("Invalid LoadExtType"); 492 } 493 494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 495 // To perform this operation, we just need to swap the L and G bits of the 496 // operation. 497 unsigned OldL = (Operation >> 2) & 1; 498 unsigned OldG = (Operation >> 1) & 1; 499 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 500 (OldL << 1) | // New G bit 501 (OldG << 2)); // New L bit. 502 } 503 504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 505 unsigned Operation = Op; 506 if (isIntegerLike) 507 Operation ^= 7; // Flip L, G, E bits, but not U. 508 else 509 Operation ^= 15; // Flip all of the condition bits. 510 511 if (Operation > ISD::SETTRUE2) 512 Operation &= ~8; // Don't let N and U bits get set. 513 514 return ISD::CondCode(Operation); 515 } 516 517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 518 return getSetCCInverseImpl(Op, Type.isInteger()); 519 } 520 521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 522 bool isIntegerLike) { 523 return getSetCCInverseImpl(Op, isIntegerLike); 524 } 525 526 /// For an integer comparison, return 1 if the comparison is a signed operation 527 /// and 2 if the result is an unsigned comparison. Return zero if the operation 528 /// does not depend on the sign of the input (setne and seteq). 529 static int isSignedOp(ISD::CondCode Opcode) { 530 switch (Opcode) { 531 default: llvm_unreachable("Illegal integer setcc operation!"); 532 case ISD::SETEQ: 533 case ISD::SETNE: return 0; 534 case ISD::SETLT: 535 case ISD::SETLE: 536 case ISD::SETGT: 537 case ISD::SETGE: return 1; 538 case ISD::SETULT: 539 case ISD::SETULE: 540 case ISD::SETUGT: 541 case ISD::SETUGE: return 2; 542 } 543 } 544 545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 546 EVT Type) { 547 bool IsInteger = Type.isInteger(); 548 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 549 // Cannot fold a signed integer setcc with an unsigned integer setcc. 550 return ISD::SETCC_INVALID; 551 552 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 553 554 // If the N and U bits get set, then the resultant comparison DOES suddenly 555 // care about orderedness, and it is true when ordered. 556 if (Op > ISD::SETTRUE2) 557 Op &= ~16; // Clear the U bit if the N bit is set. 558 559 // Canonicalize illegal integer setcc's. 560 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 561 Op = ISD::SETNE; 562 563 return ISD::CondCode(Op); 564 } 565 566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 567 EVT Type) { 568 bool IsInteger = Type.isInteger(); 569 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 570 // Cannot fold a signed setcc with an unsigned setcc. 571 return ISD::SETCC_INVALID; 572 573 // Combine all of the condition bits. 574 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 575 576 // Canonicalize illegal integer setcc's. 577 if (IsInteger) { 578 switch (Result) { 579 default: break; 580 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 581 case ISD::SETOEQ: // SETEQ & SETU[LG]E 582 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 583 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 584 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 585 } 586 } 587 588 return Result; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SDNode Profile Support 593 //===----------------------------------------------------------------------===// 594 595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 597 ID.AddInteger(OpC); 598 } 599 600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 601 /// solely with their pointer. 602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 603 ID.AddPointer(VTList.VTs); 604 } 605 606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 607 static void AddNodeIDOperands(FoldingSetNodeID &ID, 608 ArrayRef<SDValue> Ops) { 609 for (auto& Op : Ops) { 610 ID.AddPointer(Op.getNode()); 611 ID.AddInteger(Op.getResNo()); 612 } 613 } 614 615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 616 static void AddNodeIDOperands(FoldingSetNodeID &ID, 617 ArrayRef<SDUse> Ops) { 618 for (auto& Op : Ops) { 619 ID.AddPointer(Op.getNode()); 620 ID.AddInteger(Op.getResNo()); 621 } 622 } 623 624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 625 SDVTList VTList, ArrayRef<SDValue> OpList) { 626 AddNodeIDOpcode(ID, OpC); 627 AddNodeIDValueTypes(ID, VTList); 628 AddNodeIDOperands(ID, OpList); 629 } 630 631 /// If this is an SDNode with special info, add this info to the NodeID data. 632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 633 switch (N->getOpcode()) { 634 case ISD::TargetExternalSymbol: 635 case ISD::ExternalSymbol: 636 case ISD::MCSymbol: 637 llvm_unreachable("Should only be used on nodes with operands"); 638 default: break; // Normal nodes don't need extra info. 639 case ISD::TargetConstant: 640 case ISD::Constant: { 641 const ConstantSDNode *C = cast<ConstantSDNode>(N); 642 ID.AddPointer(C->getConstantIntValue()); 643 ID.AddBoolean(C->isOpaque()); 644 break; 645 } 646 case ISD::TargetConstantFP: 647 case ISD::ConstantFP: 648 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 649 break; 650 case ISD::TargetGlobalAddress: 651 case ISD::GlobalAddress: 652 case ISD::TargetGlobalTLSAddress: 653 case ISD::GlobalTLSAddress: { 654 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 655 ID.AddPointer(GA->getGlobal()); 656 ID.AddInteger(GA->getOffset()); 657 ID.AddInteger(GA->getTargetFlags()); 658 break; 659 } 660 case ISD::BasicBlock: 661 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 662 break; 663 case ISD::Register: 664 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 665 break; 666 case ISD::RegisterMask: 667 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 668 break; 669 case ISD::SRCVALUE: 670 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 671 break; 672 case ISD::FrameIndex: 673 case ISD::TargetFrameIndex: 674 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 675 break; 676 case ISD::LIFETIME_START: 677 case ISD::LIFETIME_END: 678 if (cast<LifetimeSDNode>(N)->hasOffset()) { 679 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 680 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 681 } 682 break; 683 case ISD::PSEUDO_PROBE: 684 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 685 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 686 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 687 break; 688 case ISD::JumpTable: 689 case ISD::TargetJumpTable: 690 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 691 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 692 break; 693 case ISD::ConstantPool: 694 case ISD::TargetConstantPool: { 695 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 696 ID.AddInteger(CP->getAlign().value()); 697 ID.AddInteger(CP->getOffset()); 698 if (CP->isMachineConstantPoolEntry()) 699 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 700 else 701 ID.AddPointer(CP->getConstVal()); 702 ID.AddInteger(CP->getTargetFlags()); 703 break; 704 } 705 case ISD::TargetIndex: { 706 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 707 ID.AddInteger(TI->getIndex()); 708 ID.AddInteger(TI->getOffset()); 709 ID.AddInteger(TI->getTargetFlags()); 710 break; 711 } 712 case ISD::LOAD: { 713 const LoadSDNode *LD = cast<LoadSDNode>(N); 714 ID.AddInteger(LD->getMemoryVT().getRawBits()); 715 ID.AddInteger(LD->getRawSubclassData()); 716 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 717 break; 718 } 719 case ISD::STORE: { 720 const StoreSDNode *ST = cast<StoreSDNode>(N); 721 ID.AddInteger(ST->getMemoryVT().getRawBits()); 722 ID.AddInteger(ST->getRawSubclassData()); 723 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 724 break; 725 } 726 case ISD::VP_LOAD: { 727 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 728 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 729 ID.AddInteger(ELD->getRawSubclassData()); 730 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 break; 739 } 740 case ISD::VP_GATHER: { 741 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 742 ID.AddInteger(EG->getMemoryVT().getRawBits()); 743 ID.AddInteger(EG->getRawSubclassData()); 744 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 745 break; 746 } 747 case ISD::VP_SCATTER: { 748 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 749 ID.AddInteger(ES->getMemoryVT().getRawBits()); 750 ID.AddInteger(ES->getRawSubclassData()); 751 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 752 break; 753 } 754 case ISD::MLOAD: { 755 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 756 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 757 ID.AddInteger(MLD->getRawSubclassData()); 758 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 759 break; 760 } 761 case ISD::MSTORE: { 762 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 763 ID.AddInteger(MST->getMemoryVT().getRawBits()); 764 ID.AddInteger(MST->getRawSubclassData()); 765 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 766 break; 767 } 768 case ISD::MGATHER: { 769 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 770 ID.AddInteger(MG->getMemoryVT().getRawBits()); 771 ID.AddInteger(MG->getRawSubclassData()); 772 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 773 break; 774 } 775 case ISD::MSCATTER: { 776 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 777 ID.AddInteger(MS->getMemoryVT().getRawBits()); 778 ID.AddInteger(MS->getRawSubclassData()); 779 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 780 break; 781 } 782 case ISD::ATOMIC_CMP_SWAP: 783 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 784 case ISD::ATOMIC_SWAP: 785 case ISD::ATOMIC_LOAD_ADD: 786 case ISD::ATOMIC_LOAD_SUB: 787 case ISD::ATOMIC_LOAD_AND: 788 case ISD::ATOMIC_LOAD_CLR: 789 case ISD::ATOMIC_LOAD_OR: 790 case ISD::ATOMIC_LOAD_XOR: 791 case ISD::ATOMIC_LOAD_NAND: 792 case ISD::ATOMIC_LOAD_MIN: 793 case ISD::ATOMIC_LOAD_MAX: 794 case ISD::ATOMIC_LOAD_UMIN: 795 case ISD::ATOMIC_LOAD_UMAX: 796 case ISD::ATOMIC_LOAD: 797 case ISD::ATOMIC_STORE: { 798 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 799 ID.AddInteger(AT->getMemoryVT().getRawBits()); 800 ID.AddInteger(AT->getRawSubclassData()); 801 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 802 break; 803 } 804 case ISD::PREFETCH: { 805 const MemSDNode *PF = cast<MemSDNode>(N); 806 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 807 break; 808 } 809 case ISD::VECTOR_SHUFFLE: { 810 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 811 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 812 i != e; ++i) 813 ID.AddInteger(SVN->getMaskElt(i)); 814 break; 815 } 816 case ISD::TargetBlockAddress: 817 case ISD::BlockAddress: { 818 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 819 ID.AddPointer(BA->getBlockAddress()); 820 ID.AddInteger(BA->getOffset()); 821 ID.AddInteger(BA->getTargetFlags()); 822 break; 823 } 824 } // end switch (N->getOpcode()) 825 826 // Target specific memory nodes could also have address spaces to check. 827 if (N->isTargetMemoryOpcode()) 828 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 829 } 830 831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 832 /// data. 833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 834 AddNodeIDOpcode(ID, N->getOpcode()); 835 // Add the return value info. 836 AddNodeIDValueTypes(ID, N->getVTList()); 837 // Add the operand info. 838 AddNodeIDOperands(ID, N->ops()); 839 840 // Handle SDNode leafs with special info. 841 AddNodeIDCustom(ID, N); 842 } 843 844 //===----------------------------------------------------------------------===// 845 // SelectionDAG Class 846 //===----------------------------------------------------------------------===// 847 848 /// doNotCSE - Return true if CSE should not be performed for this node. 849 static bool doNotCSE(SDNode *N) { 850 if (N->getValueType(0) == MVT::Glue) 851 return true; // Never CSE anything that produces a flag. 852 853 switch (N->getOpcode()) { 854 default: break; 855 case ISD::HANDLENODE: 856 case ISD::EH_LABEL: 857 return true; // Never CSE these nodes. 858 } 859 860 // Check that remaining values produced are not flags. 861 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 862 if (N->getValueType(i) == MVT::Glue) 863 return true; // Never CSE anything that produces a flag. 864 865 return false; 866 } 867 868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 869 /// SelectionDAG. 870 void SelectionDAG::RemoveDeadNodes() { 871 // Create a dummy node (which is not added to allnodes), that adds a reference 872 // to the root node, preventing it from being deleted. 873 HandleSDNode Dummy(getRoot()); 874 875 SmallVector<SDNode*, 128> DeadNodes; 876 877 // Add all obviously-dead nodes to the DeadNodes worklist. 878 for (SDNode &Node : allnodes()) 879 if (Node.use_empty()) 880 DeadNodes.push_back(&Node); 881 882 RemoveDeadNodes(DeadNodes); 883 884 // If the root changed (e.g. it was a dead load, update the root). 885 setRoot(Dummy.getValue()); 886 } 887 888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 889 /// given list, and any nodes that become unreachable as a result. 890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 891 892 // Process the worklist, deleting the nodes and adding their uses to the 893 // worklist. 894 while (!DeadNodes.empty()) { 895 SDNode *N = DeadNodes.pop_back_val(); 896 // Skip to next node if we've already managed to delete the node. This could 897 // happen if replacing a node causes a node previously added to the node to 898 // be deleted. 899 if (N->getOpcode() == ISD::DELETED_NODE) 900 continue; 901 902 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 903 DUL->NodeDeleted(N, nullptr); 904 905 // Take the node out of the appropriate CSE map. 906 RemoveNodeFromCSEMaps(N); 907 908 // Next, brutally remove the operand list. This is safe to do, as there are 909 // no cycles in the graph. 910 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 911 SDUse &Use = *I++; 912 SDNode *Operand = Use.getNode(); 913 Use.set(SDValue()); 914 915 // Now that we removed this operand, see if there are no uses of it left. 916 if (Operand->use_empty()) 917 DeadNodes.push_back(Operand); 918 } 919 920 DeallocateNode(N); 921 } 922 } 923 924 void SelectionDAG::RemoveDeadNode(SDNode *N){ 925 SmallVector<SDNode*, 16> DeadNodes(1, N); 926 927 // Create a dummy node that adds a reference to the root node, preventing 928 // it from being deleted. (This matters if the root is an operand of the 929 // dead node.) 930 HandleSDNode Dummy(getRoot()); 931 932 RemoveDeadNodes(DeadNodes); 933 } 934 935 void SelectionDAG::DeleteNode(SDNode *N) { 936 // First take this out of the appropriate CSE map. 937 RemoveNodeFromCSEMaps(N); 938 939 // Finally, remove uses due to operands of this node, remove from the 940 // AllNodes list, and delete the node. 941 DeleteNodeNotInCSEMaps(N); 942 } 943 944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 945 assert(N->getIterator() != AllNodes.begin() && 946 "Cannot delete the entry node!"); 947 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 948 949 // Drop all of the operands and decrement used node's use counts. 950 N->DropOperands(); 951 952 DeallocateNode(N); 953 } 954 955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 956 assert(!(V->isVariadic() && isParameter)); 957 if (isParameter) 958 ByvalParmDbgValues.push_back(V); 959 else 960 DbgValues.push_back(V); 961 for (const SDNode *Node : V->getSDNodes()) 962 if (Node) 963 DbgValMap[Node].push_back(V); 964 } 965 966 void SDDbgInfo::erase(const SDNode *Node) { 967 DbgValMapType::iterator I = DbgValMap.find(Node); 968 if (I == DbgValMap.end()) 969 return; 970 for (auto &Val: I->second) 971 Val->setIsInvalidated(); 972 DbgValMap.erase(I); 973 } 974 975 void SelectionDAG::DeallocateNode(SDNode *N) { 976 // If we have operands, deallocate them. 977 removeOperands(N); 978 979 NodeAllocator.Deallocate(AllNodes.remove(N)); 980 981 // Set the opcode to DELETED_NODE to help catch bugs when node 982 // memory is reallocated. 983 // FIXME: There are places in SDag that have grown a dependency on the opcode 984 // value in the released node. 985 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 986 N->NodeType = ISD::DELETED_NODE; 987 988 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 989 // them and forget about that node. 990 DbgInfo->erase(N); 991 } 992 993 #ifndef NDEBUG 994 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 995 static void VerifySDNode(SDNode *N) { 996 switch (N->getOpcode()) { 997 default: 998 break; 999 case ISD::BUILD_PAIR: { 1000 EVT VT = N->getValueType(0); 1001 assert(N->getNumValues() == 1 && "Too many results!"); 1002 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1003 "Wrong return type!"); 1004 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1005 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1006 "Mismatched operand types!"); 1007 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1008 "Wrong operand type!"); 1009 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1010 "Wrong return type size"); 1011 break; 1012 } 1013 case ISD::BUILD_VECTOR: { 1014 assert(N->getNumValues() == 1 && "Too many results!"); 1015 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1016 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1017 "Wrong number of operands!"); 1018 EVT EltVT = N->getValueType(0).getVectorElementType(); 1019 for (const SDUse &Op : N->ops()) { 1020 assert((Op.getValueType() == EltVT || 1021 (EltVT.isInteger() && Op.getValueType().isInteger() && 1022 EltVT.bitsLE(Op.getValueType()))) && 1023 "Wrong operand type!"); 1024 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1025 "Operands must all have the same type"); 1026 } 1027 break; 1028 } 1029 } 1030 } 1031 #endif // NDEBUG 1032 1033 /// Insert a newly allocated node into the DAG. 1034 /// 1035 /// Handles insertion into the all nodes list and CSE map, as well as 1036 /// verification and other common operations when a new node is allocated. 1037 void SelectionDAG::InsertNode(SDNode *N) { 1038 AllNodes.push_back(N); 1039 #ifndef NDEBUG 1040 N->PersistentId = NextPersistentId++; 1041 VerifySDNode(N); 1042 #endif 1043 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1044 DUL->NodeInserted(N); 1045 } 1046 1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1048 /// correspond to it. This is useful when we're about to delete or repurpose 1049 /// the node. We don't want future request for structurally identical nodes 1050 /// to return N anymore. 1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1052 bool Erased = false; 1053 switch (N->getOpcode()) { 1054 case ISD::HANDLENODE: return false; // noop. 1055 case ISD::CONDCODE: 1056 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1057 "Cond code doesn't exist!"); 1058 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1059 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1060 break; 1061 case ISD::ExternalSymbol: 1062 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1063 break; 1064 case ISD::TargetExternalSymbol: { 1065 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1066 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1067 ESN->getSymbol(), ESN->getTargetFlags())); 1068 break; 1069 } 1070 case ISD::MCSymbol: { 1071 auto *MCSN = cast<MCSymbolSDNode>(N); 1072 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1073 break; 1074 } 1075 case ISD::VALUETYPE: { 1076 EVT VT = cast<VTSDNode>(N)->getVT(); 1077 if (VT.isExtended()) { 1078 Erased = ExtendedValueTypeNodes.erase(VT); 1079 } else { 1080 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1081 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1082 } 1083 break; 1084 } 1085 default: 1086 // Remove it from the CSE Map. 1087 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1088 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1089 Erased = CSEMap.RemoveNode(N); 1090 break; 1091 } 1092 #ifndef NDEBUG 1093 // Verify that the node was actually in one of the CSE maps, unless it has a 1094 // flag result (which cannot be CSE'd) or is one of the special cases that are 1095 // not subject to CSE. 1096 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1097 !N->isMachineOpcode() && !doNotCSE(N)) { 1098 N->dump(this); 1099 dbgs() << "\n"; 1100 llvm_unreachable("Node is not in map!"); 1101 } 1102 #endif 1103 return Erased; 1104 } 1105 1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1108 /// node already exists, in which case transfer all its users to the existing 1109 /// node. This transfer can potentially trigger recursive merging. 1110 void 1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1112 // For node types that aren't CSE'd, just act as if no identical node 1113 // already exists. 1114 if (!doNotCSE(N)) { 1115 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1116 if (Existing != N) { 1117 // If there was already an existing matching node, use ReplaceAllUsesWith 1118 // to replace the dead one with the existing one. This can cause 1119 // recursive merging of other unrelated nodes down the line. 1120 ReplaceAllUsesWith(N, Existing); 1121 1122 // N is now dead. Inform the listeners and delete it. 1123 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1124 DUL->NodeDeleted(N, Existing); 1125 DeleteNodeNotInCSEMaps(N); 1126 return; 1127 } 1128 } 1129 1130 // If the node doesn't already exist, we updated it. Inform listeners. 1131 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1132 DUL->NodeUpdated(N); 1133 } 1134 1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1136 /// were replaced with those specified. If this node is never memoized, 1137 /// return null, otherwise return a pointer to the slot it would take. If a 1138 /// node already exists with these operands, the slot will be non-null. 1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1140 void *&InsertPos) { 1141 if (doNotCSE(N)) 1142 return nullptr; 1143 1144 SDValue Ops[] = { Op }; 1145 FoldingSetNodeID ID; 1146 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1147 AddNodeIDCustom(ID, N); 1148 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1149 if (Node) 1150 Node->intersectFlagsWith(N->getFlags()); 1151 return Node; 1152 } 1153 1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1155 /// were replaced with those specified. If this node is never memoized, 1156 /// return null, otherwise return a pointer to the slot it would take. If a 1157 /// node already exists with these operands, the slot will be non-null. 1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1159 SDValue Op1, SDValue Op2, 1160 void *&InsertPos) { 1161 if (doNotCSE(N)) 1162 return nullptr; 1163 1164 SDValue Ops[] = { Op1, Op2 }; 1165 FoldingSetNodeID ID; 1166 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1167 AddNodeIDCustom(ID, N); 1168 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1169 if (Node) 1170 Node->intersectFlagsWith(N->getFlags()); 1171 return Node; 1172 } 1173 1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1175 /// were replaced with those specified. If this node is never memoized, 1176 /// return null, otherwise return a pointer to the slot it would take. If a 1177 /// node already exists with these operands, the slot will be non-null. 1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1179 void *&InsertPos) { 1180 if (doNotCSE(N)) 1181 return nullptr; 1182 1183 FoldingSetNodeID ID; 1184 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1185 AddNodeIDCustom(ID, N); 1186 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1187 if (Node) 1188 Node->intersectFlagsWith(N->getFlags()); 1189 return Node; 1190 } 1191 1192 Align SelectionDAG::getEVTAlign(EVT VT) const { 1193 Type *Ty = VT == MVT::iPTR ? 1194 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1195 VT.getTypeForEVT(*getContext()); 1196 1197 return getDataLayout().getABITypeAlign(Ty); 1198 } 1199 1200 // EntryNode could meaningfully have debug info if we can find it... 1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1202 : TM(tm), OptLevel(OL), 1203 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1204 Root(getEntryNode()) { 1205 InsertNode(&EntryNode); 1206 DbgInfo = new SDDbgInfo(); 1207 } 1208 1209 void SelectionDAG::init(MachineFunction &NewMF, 1210 OptimizationRemarkEmitter &NewORE, 1211 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1212 LegacyDivergenceAnalysis * Divergence, 1213 ProfileSummaryInfo *PSIin, 1214 BlockFrequencyInfo *BFIin) { 1215 MF = &NewMF; 1216 SDAGISelPass = PassPtr; 1217 ORE = &NewORE; 1218 TLI = getSubtarget().getTargetLowering(); 1219 TSI = getSubtarget().getSelectionDAGInfo(); 1220 LibInfo = LibraryInfo; 1221 Context = &MF->getFunction().getContext(); 1222 DA = Divergence; 1223 PSI = PSIin; 1224 BFI = BFIin; 1225 } 1226 1227 SelectionDAG::~SelectionDAG() { 1228 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1229 allnodes_clear(); 1230 OperandRecycler.clear(OperandAllocator); 1231 delete DbgInfo; 1232 } 1233 1234 bool SelectionDAG::shouldOptForSize() const { 1235 return MF->getFunction().hasOptSize() || 1236 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1237 } 1238 1239 void SelectionDAG::allnodes_clear() { 1240 assert(&*AllNodes.begin() == &EntryNode); 1241 AllNodes.remove(AllNodes.begin()); 1242 while (!AllNodes.empty()) 1243 DeallocateNode(&AllNodes.front()); 1244 #ifndef NDEBUG 1245 NextPersistentId = 0; 1246 #endif 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 default: break; 1255 case ISD::Constant: 1256 case ISD::ConstantFP: 1257 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1258 "debug location. Use another overload."); 1259 } 1260 } 1261 return N; 1262 } 1263 1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1265 const SDLoc &DL, void *&InsertPos) { 1266 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1267 if (N) { 1268 switch (N->getOpcode()) { 1269 case ISD::Constant: 1270 case ISD::ConstantFP: 1271 // Erase debug location from the node if the node is used at several 1272 // different places. Do not propagate one location to all uses as it 1273 // will cause a worse single stepping debugging experience. 1274 if (N->getDebugLoc() != DL.getDebugLoc()) 1275 N->setDebugLoc(DebugLoc()); 1276 break; 1277 default: 1278 // When the node's point of use is located earlier in the instruction 1279 // sequence than its prior point of use, update its debug info to the 1280 // earlier location. 1281 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1282 N->setDebugLoc(DL.getDebugLoc()); 1283 break; 1284 } 1285 } 1286 return N; 1287 } 1288 1289 void SelectionDAG::clear() { 1290 allnodes_clear(); 1291 OperandRecycler.clear(OperandAllocator); 1292 OperandAllocator.Reset(); 1293 CSEMap.clear(); 1294 1295 ExtendedValueTypeNodes.clear(); 1296 ExternalSymbols.clear(); 1297 TargetExternalSymbols.clear(); 1298 MCSymbols.clear(); 1299 SDCallSiteDbgInfo.clear(); 1300 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1301 static_cast<CondCodeSDNode*>(nullptr)); 1302 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1303 static_cast<SDNode*>(nullptr)); 1304 1305 EntryNode.UseList = nullptr; 1306 InsertNode(&EntryNode); 1307 Root = getEntryNode(); 1308 DbgInfo->clear(); 1309 } 1310 1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1312 return VT.bitsGT(Op.getValueType()) 1313 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1314 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1315 } 1316 1317 std::pair<SDValue, SDValue> 1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1319 const SDLoc &DL, EVT VT) { 1320 assert(!VT.bitsEq(Op.getValueType()) && 1321 "Strict no-op FP extend/round not allowed."); 1322 SDValue Res = 1323 VT.bitsGT(Op.getValueType()) 1324 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1325 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1326 {Chain, Op, getIntPtrConstant(0, DL)}); 1327 1328 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1329 } 1330 1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1332 return VT.bitsGT(Op.getValueType()) ? 1333 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1334 getNode(ISD::TRUNCATE, DL, VT, Op); 1335 } 1336 1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1338 return VT.bitsGT(Op.getValueType()) ? 1339 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1340 getNode(ISD::TRUNCATE, DL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1344 return VT.bitsGT(Op.getValueType()) ? 1345 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1346 getNode(ISD::TRUNCATE, DL, VT, Op); 1347 } 1348 1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1350 EVT OpVT) { 1351 if (VT.bitsLE(Op.getValueType())) 1352 return getNode(ISD::TRUNCATE, SL, VT, Op); 1353 1354 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1355 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1356 } 1357 1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1359 EVT OpVT = Op.getValueType(); 1360 assert(VT.isInteger() && OpVT.isInteger() && 1361 "Cannot getZeroExtendInReg FP types"); 1362 assert(VT.isVector() == OpVT.isVector() && 1363 "getZeroExtendInReg type should be vector iff the operand " 1364 "type is vector!"); 1365 assert((!VT.isVector() || 1366 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1367 "Vector element counts must match in getZeroExtendInReg"); 1368 assert(VT.bitsLE(OpVT) && "Not extending!"); 1369 if (OpVT == VT) 1370 return Op; 1371 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1372 VT.getScalarSizeInBits()); 1373 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1374 } 1375 1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1377 // Only unsigned pointer semantics are supported right now. In the future this 1378 // might delegate to TLI to check pointer signedness. 1379 return getZExtOrTrunc(Op, DL, VT); 1380 } 1381 1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1383 // Only unsigned pointer semantics are supported right now. In the future this 1384 // might delegate to TLI to check pointer signedness. 1385 return getZeroExtendInReg(Op, DL, VT); 1386 } 1387 1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1390 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1391 } 1392 1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1394 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1395 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1396 } 1397 1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1399 EVT OpVT) { 1400 if (!V) 1401 return getConstant(0, DL, VT); 1402 1403 switch (TLI->getBooleanContents(OpVT)) { 1404 case TargetLowering::ZeroOrOneBooleanContent: 1405 case TargetLowering::UndefinedBooleanContent: 1406 return getConstant(1, DL, VT); 1407 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1408 return getAllOnesConstant(DL, VT); 1409 } 1410 llvm_unreachable("Unexpected boolean content enum!"); 1411 } 1412 1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1414 bool isT, bool isO) { 1415 EVT EltVT = VT.getScalarType(); 1416 assert((EltVT.getSizeInBits() >= 64 || 1417 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1418 "getConstant with a uint64_t value that doesn't fit in the type!"); 1419 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1420 } 1421 1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1423 bool isT, bool isO) { 1424 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1425 } 1426 1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1428 EVT VT, bool isT, bool isO) { 1429 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1430 1431 EVT EltVT = VT.getScalarType(); 1432 const ConstantInt *Elt = &Val; 1433 1434 // In some cases the vector type is legal but the element type is illegal and 1435 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1436 // inserted value (the type does not need to match the vector element type). 1437 // Any extra bits introduced will be truncated away. 1438 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1439 TargetLowering::TypePromoteInteger) { 1440 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1441 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1442 Elt = ConstantInt::get(*getContext(), NewVal); 1443 } 1444 // In other cases the element type is illegal and needs to be expanded, for 1445 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1446 // the value into n parts and use a vector type with n-times the elements. 1447 // Then bitcast to the type requested. 1448 // Legalizing constants too early makes the DAGCombiner's job harder so we 1449 // only legalize if the DAG tells us we must produce legal types. 1450 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1451 TLI->getTypeAction(*getContext(), EltVT) == 1452 TargetLowering::TypeExpandInteger) { 1453 const APInt &NewVal = Elt->getValue(); 1454 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1455 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1456 1457 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1458 if (VT.isScalableVector()) { 1459 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1460 "Can only handle an even split!"); 1461 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1462 1463 SmallVector<SDValue, 2> ScalarParts; 1464 for (unsigned i = 0; i != Parts; ++i) 1465 ScalarParts.push_back(getConstant( 1466 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1467 ViaEltVT, isT, isO)); 1468 1469 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1470 } 1471 1472 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1473 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1474 1475 // Check the temporary vector is the correct size. If this fails then 1476 // getTypeToTransformTo() probably returned a type whose size (in bits) 1477 // isn't a power-of-2 factor of the requested type size. 1478 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1479 1480 SmallVector<SDValue, 2> EltParts; 1481 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1482 EltParts.push_back(getConstant( 1483 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1484 ViaEltVT, isT, isO)); 1485 1486 // EltParts is currently in little endian order. If we actually want 1487 // big-endian order then reverse it now. 1488 if (getDataLayout().isBigEndian()) 1489 std::reverse(EltParts.begin(), EltParts.end()); 1490 1491 // The elements must be reversed when the element order is different 1492 // to the endianness of the elements (because the BITCAST is itself a 1493 // vector shuffle in this situation). However, we do not need any code to 1494 // perform this reversal because getConstant() is producing a vector 1495 // splat. 1496 // This situation occurs in MIPS MSA. 1497 1498 SmallVector<SDValue, 8> Ops; 1499 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1500 llvm::append_range(Ops, EltParts); 1501 1502 SDValue V = 1503 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1504 return V; 1505 } 1506 1507 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1508 "APInt size does not match type size!"); 1509 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1510 FoldingSetNodeID ID; 1511 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1512 ID.AddPointer(Elt); 1513 ID.AddBoolean(isO); 1514 void *IP = nullptr; 1515 SDNode *N = nullptr; 1516 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1517 if (!VT.isVector()) 1518 return SDValue(N, 0); 1519 1520 if (!N) { 1521 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1525 } 1526 1527 SDValue Result(N, 0); 1528 if (VT.isScalableVector()) 1529 Result = getSplatVector(VT, DL, Result); 1530 else if (VT.isVector()) 1531 Result = getSplatBuildVector(VT, DL, Result); 1532 1533 return Result; 1534 } 1535 1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1537 bool isTarget) { 1538 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1539 } 1540 1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1542 const SDLoc &DL, bool LegalTypes) { 1543 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1544 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1545 return getConstant(Val, DL, ShiftVT); 1546 } 1547 1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1549 bool isTarget) { 1550 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1551 } 1552 1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1554 bool isTarget) { 1555 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1556 } 1557 1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1559 EVT VT, bool isTarget) { 1560 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1561 1562 EVT EltVT = VT.getScalarType(); 1563 1564 // Do the map lookup using the actual bit pattern for the floating point 1565 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1566 // we don't have issues with SNANs. 1567 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1568 FoldingSetNodeID ID; 1569 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1570 ID.AddPointer(&V); 1571 void *IP = nullptr; 1572 SDNode *N = nullptr; 1573 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1574 if (!VT.isVector()) 1575 return SDValue(N, 0); 1576 1577 if (!N) { 1578 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1579 CSEMap.InsertNode(N, IP); 1580 InsertNode(N); 1581 } 1582 1583 SDValue Result(N, 0); 1584 if (VT.isScalableVector()) 1585 Result = getSplatVector(VT, DL, Result); 1586 else if (VT.isVector()) 1587 Result = getSplatBuildVector(VT, DL, Result); 1588 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1589 return Result; 1590 } 1591 1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1593 bool isTarget) { 1594 EVT EltVT = VT.getScalarType(); 1595 if (EltVT == MVT::f32) 1596 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1597 if (EltVT == MVT::f64) 1598 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1599 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1600 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1601 bool Ignored; 1602 APFloat APF = APFloat(Val); 1603 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1604 &Ignored); 1605 return getConstantFP(APF, DL, VT, isTarget); 1606 } 1607 llvm_unreachable("Unsupported type in getConstantFP"); 1608 } 1609 1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1611 EVT VT, int64_t Offset, bool isTargetGA, 1612 unsigned TargetFlags) { 1613 assert((TargetFlags == 0 || isTargetGA) && 1614 "Cannot set target flags on target-independent globals"); 1615 1616 // Truncate (with sign-extension) the offset value to the pointer size. 1617 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1618 if (BitWidth < 64) 1619 Offset = SignExtend64(Offset, BitWidth); 1620 1621 unsigned Opc; 1622 if (GV->isThreadLocal()) 1623 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1624 else 1625 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1626 1627 FoldingSetNodeID ID; 1628 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1629 ID.AddPointer(GV); 1630 ID.AddInteger(Offset); 1631 ID.AddInteger(TargetFlags); 1632 void *IP = nullptr; 1633 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1634 return SDValue(E, 0); 1635 1636 auto *N = newSDNode<GlobalAddressSDNode>( 1637 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1644 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1645 FoldingSetNodeID ID; 1646 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1647 ID.AddInteger(FI); 1648 void *IP = nullptr; 1649 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1650 return SDValue(E, 0); 1651 1652 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1653 CSEMap.InsertNode(N, IP); 1654 InsertNode(N); 1655 return SDValue(N, 0); 1656 } 1657 1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1659 unsigned TargetFlags) { 1660 assert((TargetFlags == 0 || isTarget) && 1661 "Cannot set target flags on target-independent jump tables"); 1662 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddInteger(JTI); 1666 ID.AddInteger(TargetFlags); 1667 void *IP = nullptr; 1668 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1669 return SDValue(E, 0); 1670 1671 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1672 CSEMap.InsertNode(N, IP); 1673 InsertNode(N); 1674 return SDValue(N, 0); 1675 } 1676 1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1678 MaybeAlign Alignment, int Offset, 1679 bool isTarget, unsigned TargetFlags) { 1680 assert((TargetFlags == 0 || isTarget) && 1681 "Cannot set target flags on target-independent globals"); 1682 if (!Alignment) 1683 Alignment = shouldOptForSize() 1684 ? getDataLayout().getABITypeAlign(C->getType()) 1685 : getDataLayout().getPrefTypeAlign(C->getType()); 1686 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1687 FoldingSetNodeID ID; 1688 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1689 ID.AddInteger(Alignment->value()); 1690 ID.AddInteger(Offset); 1691 ID.AddPointer(C); 1692 ID.AddInteger(TargetFlags); 1693 void *IP = nullptr; 1694 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1695 return SDValue(E, 0); 1696 1697 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1698 TargetFlags); 1699 CSEMap.InsertNode(N, IP); 1700 InsertNode(N); 1701 SDValue V = SDValue(N, 0); 1702 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1703 return V; 1704 } 1705 1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1707 MaybeAlign Alignment, int Offset, 1708 bool isTarget, unsigned TargetFlags) { 1709 assert((TargetFlags == 0 || isTarget) && 1710 "Cannot set target flags on target-independent globals"); 1711 if (!Alignment) 1712 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1713 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1714 FoldingSetNodeID ID; 1715 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1716 ID.AddInteger(Alignment->value()); 1717 ID.AddInteger(Offset); 1718 C->addSelectionDAGCSEId(ID); 1719 ID.AddInteger(TargetFlags); 1720 void *IP = nullptr; 1721 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1722 return SDValue(E, 0); 1723 1724 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1725 TargetFlags); 1726 CSEMap.InsertNode(N, IP); 1727 InsertNode(N); 1728 return SDValue(N, 0); 1729 } 1730 1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1732 unsigned TargetFlags) { 1733 FoldingSetNodeID ID; 1734 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1735 ID.AddInteger(Index); 1736 ID.AddInteger(Offset); 1737 ID.AddInteger(TargetFlags); 1738 void *IP = nullptr; 1739 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1740 return SDValue(E, 0); 1741 1742 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1743 CSEMap.InsertNode(N, IP); 1744 InsertNode(N); 1745 return SDValue(N, 0); 1746 } 1747 1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1749 FoldingSetNodeID ID; 1750 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1751 ID.AddPointer(MBB); 1752 void *IP = nullptr; 1753 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1754 return SDValue(E, 0); 1755 1756 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1757 CSEMap.InsertNode(N, IP); 1758 InsertNode(N); 1759 return SDValue(N, 0); 1760 } 1761 1762 SDValue SelectionDAG::getValueType(EVT VT) { 1763 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1764 ValueTypeNodes.size()) 1765 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1766 1767 SDNode *&N = VT.isExtended() ? 1768 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1769 1770 if (N) return SDValue(N, 0); 1771 N = newSDNode<VTSDNode>(VT); 1772 InsertNode(N); 1773 return SDValue(N, 0); 1774 } 1775 1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1777 SDNode *&N = ExternalSymbols[Sym]; 1778 if (N) return SDValue(N, 0); 1779 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1785 SDNode *&N = MCSymbols[Sym]; 1786 if (N) 1787 return SDValue(N, 0); 1788 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1789 InsertNode(N); 1790 return SDValue(N, 0); 1791 } 1792 1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1794 unsigned TargetFlags) { 1795 SDNode *&N = 1796 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1797 if (N) return SDValue(N, 0); 1798 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1804 if ((unsigned)Cond >= CondCodeNodes.size()) 1805 CondCodeNodes.resize(Cond+1); 1806 1807 if (!CondCodeNodes[Cond]) { 1808 auto *N = newSDNode<CondCodeSDNode>(Cond); 1809 CondCodeNodes[Cond] = N; 1810 InsertNode(N); 1811 } 1812 1813 return SDValue(CondCodeNodes[Cond], 0); 1814 } 1815 1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1817 APInt One(ResVT.getScalarSizeInBits(), 1); 1818 return getStepVector(DL, ResVT, One); 1819 } 1820 1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1822 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1823 if (ResVT.isScalableVector()) 1824 return getNode( 1825 ISD::STEP_VECTOR, DL, ResVT, 1826 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1827 1828 SmallVector<SDValue, 16> OpsStepConstants; 1829 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1830 OpsStepConstants.push_back( 1831 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1832 return getBuildVector(ResVT, DL, OpsStepConstants); 1833 } 1834 1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1838 std::swap(N1, N2); 1839 ShuffleVectorSDNode::commuteMask(M); 1840 } 1841 1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1843 SDValue N2, ArrayRef<int> Mask) { 1844 assert(VT.getVectorNumElements() == Mask.size() && 1845 "Must have the same number of vector elements as mask elements!"); 1846 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1847 "Invalid VECTOR_SHUFFLE"); 1848 1849 // Canonicalize shuffle undef, undef -> undef 1850 if (N1.isUndef() && N2.isUndef()) 1851 return getUNDEF(VT); 1852 1853 // Validate that all indices in Mask are within the range of the elements 1854 // input to the shuffle. 1855 int NElts = Mask.size(); 1856 assert(llvm::all_of(Mask, 1857 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1858 "Index out of range"); 1859 1860 // Copy the mask so we can do any needed cleanup. 1861 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1862 1863 // Canonicalize shuffle v, v -> v, undef 1864 if (N1 == N2) { 1865 N2 = getUNDEF(VT); 1866 for (int i = 0; i != NElts; ++i) 1867 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1868 } 1869 1870 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1871 if (N1.isUndef()) 1872 commuteShuffle(N1, N2, MaskVec); 1873 1874 if (TLI->hasVectorBlend()) { 1875 // If shuffling a splat, try to blend the splat instead. We do this here so 1876 // that even when this arises during lowering we don't have to re-handle it. 1877 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1878 BitVector UndefElements; 1879 SDValue Splat = BV->getSplatValue(&UndefElements); 1880 if (!Splat) 1881 return; 1882 1883 for (int i = 0; i < NElts; ++i) { 1884 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1885 continue; 1886 1887 // If this input comes from undef, mark it as such. 1888 if (UndefElements[MaskVec[i] - Offset]) { 1889 MaskVec[i] = -1; 1890 continue; 1891 } 1892 1893 // If we can blend a non-undef lane, use that instead. 1894 if (!UndefElements[i]) 1895 MaskVec[i] = i + Offset; 1896 } 1897 }; 1898 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1899 BlendSplat(N1BV, 0); 1900 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1901 BlendSplat(N2BV, NElts); 1902 } 1903 1904 // Canonicalize all index into lhs, -> shuffle lhs, undef 1905 // Canonicalize all index into rhs, -> shuffle rhs, undef 1906 bool AllLHS = true, AllRHS = true; 1907 bool N2Undef = N2.isUndef(); 1908 for (int i = 0; i != NElts; ++i) { 1909 if (MaskVec[i] >= NElts) { 1910 if (N2Undef) 1911 MaskVec[i] = -1; 1912 else 1913 AllLHS = false; 1914 } else if (MaskVec[i] >= 0) { 1915 AllRHS = false; 1916 } 1917 } 1918 if (AllLHS && AllRHS) 1919 return getUNDEF(VT); 1920 if (AllLHS && !N2Undef) 1921 N2 = getUNDEF(VT); 1922 if (AllRHS) { 1923 N1 = getUNDEF(VT); 1924 commuteShuffle(N1, N2, MaskVec); 1925 } 1926 // Reset our undef status after accounting for the mask. 1927 N2Undef = N2.isUndef(); 1928 // Re-check whether both sides ended up undef. 1929 if (N1.isUndef() && N2Undef) 1930 return getUNDEF(VT); 1931 1932 // If Identity shuffle return that node. 1933 bool Identity = true, AllSame = true; 1934 for (int i = 0; i != NElts; ++i) { 1935 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1936 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1937 } 1938 if (Identity && NElts) 1939 return N1; 1940 1941 // Shuffling a constant splat doesn't change the result. 1942 if (N2Undef) { 1943 SDValue V = N1; 1944 1945 // Look through any bitcasts. We check that these don't change the number 1946 // (and size) of elements and just changes their types. 1947 while (V.getOpcode() == ISD::BITCAST) 1948 V = V->getOperand(0); 1949 1950 // A splat should always show up as a build vector node. 1951 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1952 BitVector UndefElements; 1953 SDValue Splat = BV->getSplatValue(&UndefElements); 1954 // If this is a splat of an undef, shuffling it is also undef. 1955 if (Splat && Splat.isUndef()) 1956 return getUNDEF(VT); 1957 1958 bool SameNumElts = 1959 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1960 1961 // We only have a splat which can skip shuffles if there is a splatted 1962 // value and no undef lanes rearranged by the shuffle. 1963 if (Splat && UndefElements.none()) { 1964 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1965 // number of elements match or the value splatted is a zero constant. 1966 if (SameNumElts) 1967 return N1; 1968 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1969 if (C->isZero()) 1970 return N1; 1971 } 1972 1973 // If the shuffle itself creates a splat, build the vector directly. 1974 if (AllSame && SameNumElts) { 1975 EVT BuildVT = BV->getValueType(0); 1976 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1977 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1978 1979 // We may have jumped through bitcasts, so the type of the 1980 // BUILD_VECTOR may not match the type of the shuffle. 1981 if (BuildVT != VT) 1982 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1983 return NewBV; 1984 } 1985 } 1986 } 1987 1988 FoldingSetNodeID ID; 1989 SDValue Ops[2] = { N1, N2 }; 1990 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1991 for (int i = 0; i != NElts; ++i) 1992 ID.AddInteger(MaskVec[i]); 1993 1994 void* IP = nullptr; 1995 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1996 return SDValue(E, 0); 1997 1998 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1999 // SDNode doesn't have access to it. This memory will be "leaked" when 2000 // the node is deallocated, but recovered when the NodeAllocator is released. 2001 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2002 llvm::copy(MaskVec, MaskAlloc); 2003 2004 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2005 dl.getDebugLoc(), MaskAlloc); 2006 createOperands(N, Ops); 2007 2008 CSEMap.InsertNode(N, IP); 2009 InsertNode(N); 2010 SDValue V = SDValue(N, 0); 2011 NewSDValueDbgMsg(V, "Creating new node: ", this); 2012 return V; 2013 } 2014 2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2016 EVT VT = SV.getValueType(0); 2017 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2018 ShuffleVectorSDNode::commuteMask(MaskVec); 2019 2020 SDValue Op0 = SV.getOperand(0); 2021 SDValue Op1 = SV.getOperand(1); 2022 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2023 } 2024 2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2028 ID.AddInteger(RegNo); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2034 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2041 FoldingSetNodeID ID; 2042 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2043 ID.AddPointer(RegMask); 2044 void *IP = nullptr; 2045 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2046 return SDValue(E, 0); 2047 2048 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2049 CSEMap.InsertNode(N, IP); 2050 InsertNode(N); 2051 return SDValue(N, 0); 2052 } 2053 2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2055 MCSymbol *Label) { 2056 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2057 } 2058 2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2060 SDValue Root, MCSymbol *Label) { 2061 FoldingSetNodeID ID; 2062 SDValue Ops[] = { Root }; 2063 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2064 ID.AddPointer(Label); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = 2070 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2071 createOperands(N, Ops); 2072 2073 CSEMap.InsertNode(N, IP); 2074 InsertNode(N); 2075 return SDValue(N, 0); 2076 } 2077 2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2079 int64_t Offset, bool isTarget, 2080 unsigned TargetFlags) { 2081 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2082 2083 FoldingSetNodeID ID; 2084 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2085 ID.AddPointer(BA); 2086 ID.AddInteger(Offset); 2087 ID.AddInteger(TargetFlags); 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getSrcValue(const Value *V) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2101 ID.AddPointer(V); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<SrcValueSDNode>(V); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2114 FoldingSetNodeID ID; 2115 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2116 ID.AddPointer(MD); 2117 2118 void *IP = nullptr; 2119 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2120 return SDValue(E, 0); 2121 2122 auto *N = newSDNode<MDNodeSDNode>(MD); 2123 CSEMap.InsertNode(N, IP); 2124 InsertNode(N); 2125 return SDValue(N, 0); 2126 } 2127 2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2129 if (VT == V.getValueType()) 2130 return V; 2131 2132 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2133 } 2134 2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2136 unsigned SrcAS, unsigned DestAS) { 2137 SDValue Ops[] = {Ptr}; 2138 FoldingSetNodeID ID; 2139 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2140 ID.AddInteger(SrcAS); 2141 ID.AddInteger(DestAS); 2142 2143 void *IP = nullptr; 2144 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2145 return SDValue(E, 0); 2146 2147 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2148 VT, SrcAS, DestAS); 2149 createOperands(N, Ops); 2150 2151 CSEMap.InsertNode(N, IP); 2152 InsertNode(N); 2153 return SDValue(N, 0); 2154 } 2155 2156 SDValue SelectionDAG::getFreeze(SDValue V) { 2157 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2158 } 2159 2160 /// getShiftAmountOperand - Return the specified value casted to 2161 /// the target's desired shift amount type. 2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2163 EVT OpTy = Op.getValueType(); 2164 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2165 if (OpTy == ShTy || OpTy.isVector()) return Op; 2166 2167 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2168 } 2169 2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2171 SDLoc dl(Node); 2172 const TargetLowering &TLI = getTargetLoweringInfo(); 2173 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2174 EVT VT = Node->getValueType(0); 2175 SDValue Tmp1 = Node->getOperand(0); 2176 SDValue Tmp2 = Node->getOperand(1); 2177 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2178 2179 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2180 Tmp2, MachinePointerInfo(V)); 2181 SDValue VAList = VAListLoad; 2182 2183 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2184 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2185 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2186 2187 VAList = 2188 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2189 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2190 } 2191 2192 // Increment the pointer, VAList, to the next vaarg 2193 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2194 getConstant(getDataLayout().getTypeAllocSize( 2195 VT.getTypeForEVT(*getContext())), 2196 dl, VAList.getValueType())); 2197 // Store the incremented VAList to the legalized pointer 2198 Tmp1 = 2199 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2200 // Load the actual argument out of the pointer VAList 2201 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2202 } 2203 2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2205 SDLoc dl(Node); 2206 const TargetLowering &TLI = getTargetLoweringInfo(); 2207 // This defaults to loading a pointer from the input and storing it to the 2208 // output, returning the chain. 2209 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2210 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2211 SDValue Tmp1 = 2212 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2213 Node->getOperand(2), MachinePointerInfo(VS)); 2214 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2215 MachinePointerInfo(VD)); 2216 } 2217 2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2219 const DataLayout &DL = getDataLayout(); 2220 Type *Ty = VT.getTypeForEVT(*getContext()); 2221 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2222 2223 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2224 return RedAlign; 2225 2226 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2227 const Align StackAlign = TFI->getStackAlign(); 2228 2229 // See if we can choose a smaller ABI alignment in cases where it's an 2230 // illegal vector type that will get broken down. 2231 if (RedAlign > StackAlign) { 2232 EVT IntermediateVT; 2233 MVT RegisterVT; 2234 unsigned NumIntermediates; 2235 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2236 NumIntermediates, RegisterVT); 2237 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2238 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2239 if (RedAlign2 < RedAlign) 2240 RedAlign = RedAlign2; 2241 } 2242 2243 return RedAlign; 2244 } 2245 2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2247 MachineFrameInfo &MFI = MF->getFrameInfo(); 2248 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2249 int StackID = 0; 2250 if (Bytes.isScalable()) 2251 StackID = TFI->getStackIDForScalableVectors(); 2252 // The stack id gives an indication of whether the object is scalable or 2253 // not, so it's safe to pass in the minimum size here. 2254 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2255 false, nullptr, StackID); 2256 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2257 } 2258 2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2260 Type *Ty = VT.getTypeForEVT(*getContext()); 2261 Align StackAlign = 2262 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2263 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2264 } 2265 2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2267 TypeSize VT1Size = VT1.getStoreSize(); 2268 TypeSize VT2Size = VT2.getStoreSize(); 2269 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2270 "Don't know how to choose the maximum size when creating a stack " 2271 "temporary"); 2272 TypeSize Bytes = 2273 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2274 2275 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2276 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2277 const DataLayout &DL = getDataLayout(); 2278 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2279 return CreateStackTemporary(Bytes, Align); 2280 } 2281 2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2283 ISD::CondCode Cond, const SDLoc &dl) { 2284 EVT OpVT = N1.getValueType(); 2285 2286 // These setcc operations always fold. 2287 switch (Cond) { 2288 default: break; 2289 case ISD::SETFALSE: 2290 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2291 case ISD::SETTRUE: 2292 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2293 2294 case ISD::SETOEQ: 2295 case ISD::SETOGT: 2296 case ISD::SETOGE: 2297 case ISD::SETOLT: 2298 case ISD::SETOLE: 2299 case ISD::SETONE: 2300 case ISD::SETO: 2301 case ISD::SETUO: 2302 case ISD::SETUEQ: 2303 case ISD::SETUNE: 2304 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2305 break; 2306 } 2307 2308 if (OpVT.isInteger()) { 2309 // For EQ and NE, we can always pick a value for the undef to make the 2310 // predicate pass or fail, so we can return undef. 2311 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2312 // icmp eq/ne X, undef -> undef. 2313 if ((N1.isUndef() || N2.isUndef()) && 2314 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2315 return getUNDEF(VT); 2316 2317 // If both operands are undef, we can return undef for int comparison. 2318 // icmp undef, undef -> undef. 2319 if (N1.isUndef() && N2.isUndef()) 2320 return getUNDEF(VT); 2321 2322 // icmp X, X -> true/false 2323 // icmp X, undef -> true/false because undef could be X. 2324 if (N1 == N2) 2325 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2326 } 2327 2328 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2329 const APInt &C2 = N2C->getAPIntValue(); 2330 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2331 const APInt &C1 = N1C->getAPIntValue(); 2332 2333 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2334 dl, VT, OpVT); 2335 } 2336 } 2337 2338 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2339 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2340 2341 if (N1CFP && N2CFP) { 2342 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2343 switch (Cond) { 2344 default: break; 2345 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2346 return getUNDEF(VT); 2347 LLVM_FALLTHROUGH; 2348 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2349 OpVT); 2350 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2351 return getUNDEF(VT); 2352 LLVM_FALLTHROUGH; 2353 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2354 R==APFloat::cmpLessThan, dl, VT, 2355 OpVT); 2356 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2357 return getUNDEF(VT); 2358 LLVM_FALLTHROUGH; 2359 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2360 OpVT); 2361 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2362 return getUNDEF(VT); 2363 LLVM_FALLTHROUGH; 2364 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2365 VT, OpVT); 2366 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2367 return getUNDEF(VT); 2368 LLVM_FALLTHROUGH; 2369 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2370 R==APFloat::cmpEqual, dl, VT, 2371 OpVT); 2372 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2373 return getUNDEF(VT); 2374 LLVM_FALLTHROUGH; 2375 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2376 R==APFloat::cmpEqual, dl, VT, OpVT); 2377 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2378 OpVT); 2379 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2380 OpVT); 2381 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2382 R==APFloat::cmpEqual, dl, VT, 2383 OpVT); 2384 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2387 R==APFloat::cmpLessThan, dl, VT, 2388 OpVT); 2389 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpUnordered, dl, VT, 2391 OpVT); 2392 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2393 VT, OpVT); 2394 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2395 OpVT); 2396 } 2397 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2398 // Ensure that the constant occurs on the RHS. 2399 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2400 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2401 return SDValue(); 2402 return getSetCC(dl, VT, N2, N1, SwappedCond); 2403 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2404 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2405 // If an operand is known to be a nan (or undef that could be a nan), we can 2406 // fold it. 2407 // Choosing NaN for the undef will always make unordered comparison succeed 2408 // and ordered comparison fails. 2409 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2410 switch (ISD::getUnorderedFlavor(Cond)) { 2411 default: 2412 llvm_unreachable("Unknown flavor!"); 2413 case 0: // Known false. 2414 return getBoolConstant(false, dl, VT, OpVT); 2415 case 1: // Known true. 2416 return getBoolConstant(true, dl, VT, OpVT); 2417 case 2: // Undefined. 2418 return getUNDEF(VT); 2419 } 2420 } 2421 2422 // Could not fold it. 2423 return SDValue(); 2424 } 2425 2426 /// See if the specified operand can be simplified with the knowledge that only 2427 /// the bits specified by DemandedBits are used. 2428 /// TODO: really we should be making this into the DAG equivalent of 2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2431 EVT VT = V.getValueType(); 2432 2433 if (VT.isScalableVector()) 2434 return SDValue(); 2435 2436 APInt DemandedElts = VT.isVector() 2437 ? APInt::getAllOnes(VT.getVectorNumElements()) 2438 : APInt(1, 1); 2439 return GetDemandedBits(V, DemandedBits, DemandedElts); 2440 } 2441 2442 /// See if the specified operand can be simplified with the knowledge that only 2443 /// the bits specified by DemandedBits are used in the elements specified by 2444 /// DemandedElts. 2445 /// TODO: really we should be making this into the DAG equivalent of 2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2448 const APInt &DemandedElts) { 2449 switch (V.getOpcode()) { 2450 default: 2451 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2452 *this, 0); 2453 case ISD::Constant: { 2454 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2455 APInt NewVal = CVal & DemandedBits; 2456 if (NewVal != CVal) 2457 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2458 break; 2459 } 2460 case ISD::SRL: 2461 // Only look at single-use SRLs. 2462 if (!V.getNode()->hasOneUse()) 2463 break; 2464 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2465 // See if we can recursively simplify the LHS. 2466 unsigned Amt = RHSC->getZExtValue(); 2467 2468 // Watch out for shift count overflow though. 2469 if (Amt >= DemandedBits.getBitWidth()) 2470 break; 2471 APInt SrcDemandedBits = DemandedBits << Amt; 2472 if (SDValue SimplifyLHS = 2473 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2474 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2475 V.getOperand(1)); 2476 } 2477 break; 2478 } 2479 return SDValue(); 2480 } 2481 2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2483 /// use this predicate to simplify operations downstream. 2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2485 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2486 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2487 } 2488 2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2490 /// this predicate to simplify operations downstream. Mask is known to be zero 2491 /// for bits that V cannot have. 2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2495 } 2496 2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2498 /// DemandedElts. We use this predicate to simplify operations downstream. 2499 /// Mask is known to be zero for bits that V cannot have. 2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2501 const APInt &DemandedElts, 2502 unsigned Depth) const { 2503 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2504 } 2505 2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2508 unsigned Depth) const { 2509 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2510 } 2511 2512 /// isSplatValue - Return true if the vector V has the same value 2513 /// across all DemandedElts. For scalable vectors it does not make 2514 /// sense to specify which elements are demanded or undefined, therefore 2515 /// they are simply ignored. 2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2517 APInt &UndefElts, unsigned Depth) const { 2518 unsigned Opcode = V.getOpcode(); 2519 EVT VT = V.getValueType(); 2520 assert(VT.isVector() && "Vector type expected"); 2521 2522 if (!VT.isScalableVector() && !DemandedElts) 2523 return false; // No demanded elts, better to assume we don't know anything. 2524 2525 if (Depth >= MaxRecursionDepth) 2526 return false; // Limit search depth. 2527 2528 // Deal with some common cases here that work for both fixed and scalable 2529 // vector types. 2530 switch (Opcode) { 2531 case ISD::SPLAT_VECTOR: 2532 UndefElts = V.getOperand(0).isUndef() 2533 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2534 : APInt(DemandedElts.getBitWidth(), 0); 2535 return true; 2536 case ISD::ADD: 2537 case ISD::SUB: 2538 case ISD::AND: 2539 case ISD::XOR: 2540 case ISD::OR: { 2541 APInt UndefLHS, UndefRHS; 2542 SDValue LHS = V.getOperand(0); 2543 SDValue RHS = V.getOperand(1); 2544 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2545 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2546 UndefElts = UndefLHS | UndefRHS; 2547 return true; 2548 } 2549 return false; 2550 } 2551 case ISD::ABS: 2552 case ISD::TRUNCATE: 2553 case ISD::SIGN_EXTEND: 2554 case ISD::ZERO_EXTEND: 2555 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2556 default: 2557 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2558 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2559 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2560 break; 2561 } 2562 2563 // We don't support other cases than those above for scalable vectors at 2564 // the moment. 2565 if (VT.isScalableVector()) 2566 return false; 2567 2568 unsigned NumElts = VT.getVectorNumElements(); 2569 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2570 UndefElts = APInt::getZero(NumElts); 2571 2572 switch (Opcode) { 2573 case ISD::BUILD_VECTOR: { 2574 SDValue Scl; 2575 for (unsigned i = 0; i != NumElts; ++i) { 2576 SDValue Op = V.getOperand(i); 2577 if (Op.isUndef()) { 2578 UndefElts.setBit(i); 2579 continue; 2580 } 2581 if (!DemandedElts[i]) 2582 continue; 2583 if (Scl && Scl != Op) 2584 return false; 2585 Scl = Op; 2586 } 2587 return true; 2588 } 2589 case ISD::VECTOR_SHUFFLE: { 2590 // Check if this is a shuffle node doing a splat. 2591 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2592 int SplatIndex = -1; 2593 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2594 for (int i = 0; i != (int)NumElts; ++i) { 2595 int M = Mask[i]; 2596 if (M < 0) { 2597 UndefElts.setBit(i); 2598 continue; 2599 } 2600 if (!DemandedElts[i]) 2601 continue; 2602 if (0 <= SplatIndex && SplatIndex != M) 2603 return false; 2604 SplatIndex = M; 2605 } 2606 return true; 2607 } 2608 case ISD::EXTRACT_SUBVECTOR: { 2609 // Offset the demanded elts by the subvector index. 2610 SDValue Src = V.getOperand(0); 2611 // We don't support scalable vectors at the moment. 2612 if (Src.getValueType().isScalableVector()) 2613 return false; 2614 uint64_t Idx = V.getConstantOperandVal(1); 2615 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2616 APInt UndefSrcElts; 2617 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2618 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2619 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2620 return true; 2621 } 2622 break; 2623 } 2624 case ISD::ANY_EXTEND_VECTOR_INREG: 2625 case ISD::SIGN_EXTEND_VECTOR_INREG: 2626 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2627 // Widen the demanded elts by the src element count. 2628 SDValue Src = V.getOperand(0); 2629 // We don't support scalable vectors at the moment. 2630 if (Src.getValueType().isScalableVector()) 2631 return false; 2632 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2633 APInt UndefSrcElts; 2634 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2635 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2636 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2637 return true; 2638 } 2639 break; 2640 } 2641 } 2642 2643 return false; 2644 } 2645 2646 /// Helper wrapper to main isSplatValue function. 2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2648 EVT VT = V.getValueType(); 2649 assert(VT.isVector() && "Vector type expected"); 2650 2651 APInt UndefElts; 2652 APInt DemandedElts; 2653 2654 // For now we don't support this with scalable vectors. 2655 if (!VT.isScalableVector()) 2656 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2657 return isSplatValue(V, DemandedElts, UndefElts) && 2658 (AllowUndefs || !UndefElts); 2659 } 2660 2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2662 V = peekThroughExtractSubvectors(V); 2663 2664 EVT VT = V.getValueType(); 2665 unsigned Opcode = V.getOpcode(); 2666 switch (Opcode) { 2667 default: { 2668 APInt UndefElts; 2669 APInt DemandedElts; 2670 2671 if (!VT.isScalableVector()) 2672 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2673 2674 if (isSplatValue(V, DemandedElts, UndefElts)) { 2675 if (VT.isScalableVector()) { 2676 // DemandedElts and UndefElts are ignored for scalable vectors, since 2677 // the only supported cases are SPLAT_VECTOR nodes. 2678 SplatIdx = 0; 2679 } else { 2680 // Handle case where all demanded elements are UNDEF. 2681 if (DemandedElts.isSubsetOf(UndefElts)) { 2682 SplatIdx = 0; 2683 return getUNDEF(VT); 2684 } 2685 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2686 } 2687 return V; 2688 } 2689 break; 2690 } 2691 case ISD::SPLAT_VECTOR: 2692 SplatIdx = 0; 2693 return V; 2694 case ISD::VECTOR_SHUFFLE: { 2695 if (VT.isScalableVector()) 2696 return SDValue(); 2697 2698 // Check if this is a shuffle node doing a splat. 2699 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2700 // getTargetVShiftNode currently struggles without the splat source. 2701 auto *SVN = cast<ShuffleVectorSDNode>(V); 2702 if (!SVN->isSplat()) 2703 break; 2704 int Idx = SVN->getSplatIndex(); 2705 int NumElts = V.getValueType().getVectorNumElements(); 2706 SplatIdx = Idx % NumElts; 2707 return V.getOperand(Idx / NumElts); 2708 } 2709 } 2710 2711 return SDValue(); 2712 } 2713 2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2715 int SplatIdx; 2716 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2717 EVT SVT = SrcVector.getValueType().getScalarType(); 2718 EVT LegalSVT = SVT; 2719 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2720 if (!SVT.isInteger()) 2721 return SDValue(); 2722 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2723 if (LegalSVT.bitsLT(SVT)) 2724 return SDValue(); 2725 } 2726 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2727 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2728 } 2729 return SDValue(); 2730 } 2731 2732 const APInt * 2733 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2734 const APInt &DemandedElts) const { 2735 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2736 V.getOpcode() == ISD::SRA) && 2737 "Unknown shift node"); 2738 unsigned BitWidth = V.getScalarValueSizeInBits(); 2739 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2740 // Shifting more than the bitwidth is not valid. 2741 const APInt &ShAmt = SA->getAPIntValue(); 2742 if (ShAmt.ult(BitWidth)) 2743 return &ShAmt; 2744 } 2745 return nullptr; 2746 } 2747 2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2749 SDValue V, const APInt &DemandedElts) const { 2750 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2751 V.getOpcode() == ISD::SRA) && 2752 "Unknown shift node"); 2753 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2754 return ValidAmt; 2755 unsigned BitWidth = V.getScalarValueSizeInBits(); 2756 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2757 if (!BV) 2758 return nullptr; 2759 const APInt *MinShAmt = nullptr; 2760 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2761 if (!DemandedElts[i]) 2762 continue; 2763 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2764 if (!SA) 2765 return nullptr; 2766 // Shifting more than the bitwidth is not valid. 2767 const APInt &ShAmt = SA->getAPIntValue(); 2768 if (ShAmt.uge(BitWidth)) 2769 return nullptr; 2770 if (MinShAmt && MinShAmt->ule(ShAmt)) 2771 continue; 2772 MinShAmt = &ShAmt; 2773 } 2774 return MinShAmt; 2775 } 2776 2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2778 SDValue V, const APInt &DemandedElts) const { 2779 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2780 V.getOpcode() == ISD::SRA) && 2781 "Unknown shift node"); 2782 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2783 return ValidAmt; 2784 unsigned BitWidth = V.getScalarValueSizeInBits(); 2785 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2786 if (!BV) 2787 return nullptr; 2788 const APInt *MaxShAmt = nullptr; 2789 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2790 if (!DemandedElts[i]) 2791 continue; 2792 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2793 if (!SA) 2794 return nullptr; 2795 // Shifting more than the bitwidth is not valid. 2796 const APInt &ShAmt = SA->getAPIntValue(); 2797 if (ShAmt.uge(BitWidth)) 2798 return nullptr; 2799 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2800 continue; 2801 MaxShAmt = &ShAmt; 2802 } 2803 return MaxShAmt; 2804 } 2805 2806 /// Determine which bits of Op are known to be either zero or one and return 2807 /// them in Known. For vectors, the known bits are those that are shared by 2808 /// every vector element. 2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2810 EVT VT = Op.getValueType(); 2811 2812 // TOOD: Until we have a plan for how to represent demanded elements for 2813 // scalable vectors, we can just bail out for now. 2814 if (Op.getValueType().isScalableVector()) { 2815 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2816 return KnownBits(BitWidth); 2817 } 2818 2819 APInt DemandedElts = VT.isVector() 2820 ? APInt::getAllOnes(VT.getVectorNumElements()) 2821 : APInt(1, 1); 2822 return computeKnownBits(Op, DemandedElts, Depth); 2823 } 2824 2825 /// Determine which bits of Op are known to be either zero or one and return 2826 /// them in Known. The DemandedElts argument allows us to only collect the known 2827 /// bits that are shared by the requested vector elements. 2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2829 unsigned Depth) const { 2830 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2831 2832 KnownBits Known(BitWidth); // Don't know anything. 2833 2834 // TOOD: Until we have a plan for how to represent demanded elements for 2835 // scalable vectors, we can just bail out for now. 2836 if (Op.getValueType().isScalableVector()) 2837 return Known; 2838 2839 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2840 // We know all of the bits for a constant! 2841 return KnownBits::makeConstant(C->getAPIntValue()); 2842 } 2843 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2844 // We know all of the bits for a constant fp! 2845 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2846 } 2847 2848 if (Depth >= MaxRecursionDepth) 2849 return Known; // Limit search depth. 2850 2851 KnownBits Known2; 2852 unsigned NumElts = DemandedElts.getBitWidth(); 2853 assert((!Op.getValueType().isVector() || 2854 NumElts == Op.getValueType().getVectorNumElements()) && 2855 "Unexpected vector size"); 2856 2857 if (!DemandedElts) 2858 return Known; // No demanded elts, better to assume we don't know anything. 2859 2860 unsigned Opcode = Op.getOpcode(); 2861 switch (Opcode) { 2862 case ISD::BUILD_VECTOR: 2863 // Collect the known bits that are shared by every demanded vector element. 2864 Known.Zero.setAllBits(); Known.One.setAllBits(); 2865 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2866 if (!DemandedElts[i]) 2867 continue; 2868 2869 SDValue SrcOp = Op.getOperand(i); 2870 Known2 = computeKnownBits(SrcOp, Depth + 1); 2871 2872 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2873 if (SrcOp.getValueSizeInBits() != BitWidth) { 2874 assert(SrcOp.getValueSizeInBits() > BitWidth && 2875 "Expected BUILD_VECTOR implicit truncation"); 2876 Known2 = Known2.trunc(BitWidth); 2877 } 2878 2879 // Known bits are the values that are shared by every demanded element. 2880 Known = KnownBits::commonBits(Known, Known2); 2881 2882 // If we don't know any bits, early out. 2883 if (Known.isUnknown()) 2884 break; 2885 } 2886 break; 2887 case ISD::VECTOR_SHUFFLE: { 2888 // Collect the known bits that are shared by every vector element referenced 2889 // by the shuffle. 2890 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2891 Known.Zero.setAllBits(); Known.One.setAllBits(); 2892 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2893 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2894 for (unsigned i = 0; i != NumElts; ++i) { 2895 if (!DemandedElts[i]) 2896 continue; 2897 2898 int M = SVN->getMaskElt(i); 2899 if (M < 0) { 2900 // For UNDEF elements, we don't know anything about the common state of 2901 // the shuffle result. 2902 Known.resetAll(); 2903 DemandedLHS.clearAllBits(); 2904 DemandedRHS.clearAllBits(); 2905 break; 2906 } 2907 2908 if ((unsigned)M < NumElts) 2909 DemandedLHS.setBit((unsigned)M % NumElts); 2910 else 2911 DemandedRHS.setBit((unsigned)M % NumElts); 2912 } 2913 // Known bits are the values that are shared by every demanded element. 2914 if (!!DemandedLHS) { 2915 SDValue LHS = Op.getOperand(0); 2916 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2917 Known = KnownBits::commonBits(Known, Known2); 2918 } 2919 // If we don't know any bits, early out. 2920 if (Known.isUnknown()) 2921 break; 2922 if (!!DemandedRHS) { 2923 SDValue RHS = Op.getOperand(1); 2924 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2925 Known = KnownBits::commonBits(Known, Known2); 2926 } 2927 break; 2928 } 2929 case ISD::CONCAT_VECTORS: { 2930 // Split DemandedElts and test each of the demanded subvectors. 2931 Known.Zero.setAllBits(); Known.One.setAllBits(); 2932 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2933 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2934 unsigned NumSubVectors = Op.getNumOperands(); 2935 for (unsigned i = 0; i != NumSubVectors; ++i) { 2936 APInt DemandedSub = 2937 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2938 if (!!DemandedSub) { 2939 SDValue Sub = Op.getOperand(i); 2940 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2941 Known = KnownBits::commonBits(Known, Known2); 2942 } 2943 // If we don't know any bits, early out. 2944 if (Known.isUnknown()) 2945 break; 2946 } 2947 break; 2948 } 2949 case ISD::INSERT_SUBVECTOR: { 2950 // Demand any elements from the subvector and the remainder from the src its 2951 // inserted into. 2952 SDValue Src = Op.getOperand(0); 2953 SDValue Sub = Op.getOperand(1); 2954 uint64_t Idx = Op.getConstantOperandVal(2); 2955 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2956 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2957 APInt DemandedSrcElts = DemandedElts; 2958 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2959 2960 Known.One.setAllBits(); 2961 Known.Zero.setAllBits(); 2962 if (!!DemandedSubElts) { 2963 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2964 if (Known.isUnknown()) 2965 break; // early-out. 2966 } 2967 if (!!DemandedSrcElts) { 2968 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2969 Known = KnownBits::commonBits(Known, Known2); 2970 } 2971 break; 2972 } 2973 case ISD::EXTRACT_SUBVECTOR: { 2974 // Offset the demanded elts by the subvector index. 2975 SDValue Src = Op.getOperand(0); 2976 // Bail until we can represent demanded elements for scalable vectors. 2977 if (Src.getValueType().isScalableVector()) 2978 break; 2979 uint64_t Idx = Op.getConstantOperandVal(1); 2980 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2981 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2982 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2983 break; 2984 } 2985 case ISD::SCALAR_TO_VECTOR: { 2986 // We know about scalar_to_vector as much as we know about it source, 2987 // which becomes the first element of otherwise unknown vector. 2988 if (DemandedElts != 1) 2989 break; 2990 2991 SDValue N0 = Op.getOperand(0); 2992 Known = computeKnownBits(N0, Depth + 1); 2993 if (N0.getValueSizeInBits() != BitWidth) 2994 Known = Known.trunc(BitWidth); 2995 2996 break; 2997 } 2998 case ISD::BITCAST: { 2999 SDValue N0 = Op.getOperand(0); 3000 EVT SubVT = N0.getValueType(); 3001 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3002 3003 // Ignore bitcasts from unsupported types. 3004 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3005 break; 3006 3007 // Fast handling of 'identity' bitcasts. 3008 if (BitWidth == SubBitWidth) { 3009 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3010 break; 3011 } 3012 3013 bool IsLE = getDataLayout().isLittleEndian(); 3014 3015 // Bitcast 'small element' vector to 'large element' scalar/vector. 3016 if ((BitWidth % SubBitWidth) == 0) { 3017 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3018 3019 // Collect known bits for the (larger) output by collecting the known 3020 // bits from each set of sub elements and shift these into place. 3021 // We need to separately call computeKnownBits for each set of 3022 // sub elements as the knownbits for each is likely to be different. 3023 unsigned SubScale = BitWidth / SubBitWidth; 3024 APInt SubDemandedElts(NumElts * SubScale, 0); 3025 for (unsigned i = 0; i != NumElts; ++i) 3026 if (DemandedElts[i]) 3027 SubDemandedElts.setBit(i * SubScale); 3028 3029 for (unsigned i = 0; i != SubScale; ++i) { 3030 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3031 Depth + 1); 3032 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3033 Known.insertBits(Known2, SubBitWidth * Shifts); 3034 } 3035 } 3036 3037 // Bitcast 'large element' scalar/vector to 'small element' vector. 3038 if ((SubBitWidth % BitWidth) == 0) { 3039 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3040 3041 // Collect known bits for the (smaller) output by collecting the known 3042 // bits from the overlapping larger input elements and extracting the 3043 // sub sections we actually care about. 3044 unsigned SubScale = SubBitWidth / BitWidth; 3045 APInt SubDemandedElts = 3046 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3047 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3048 3049 Known.Zero.setAllBits(); Known.One.setAllBits(); 3050 for (unsigned i = 0; i != NumElts; ++i) 3051 if (DemandedElts[i]) { 3052 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3053 unsigned Offset = (Shifts % SubScale) * BitWidth; 3054 Known = KnownBits::commonBits(Known, 3055 Known2.extractBits(BitWidth, Offset)); 3056 // If we don't know any bits, early out. 3057 if (Known.isUnknown()) 3058 break; 3059 } 3060 } 3061 break; 3062 } 3063 case ISD::AND: 3064 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3065 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3066 3067 Known &= Known2; 3068 break; 3069 case ISD::OR: 3070 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3071 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3072 3073 Known |= Known2; 3074 break; 3075 case ISD::XOR: 3076 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3077 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3078 3079 Known ^= Known2; 3080 break; 3081 case ISD::MUL: { 3082 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3083 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3084 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3085 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3086 break; 3087 } 3088 case ISD::MULHU: { 3089 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3090 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3091 Known = KnownBits::mulhu(Known, Known2); 3092 break; 3093 } 3094 case ISD::MULHS: { 3095 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3096 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3097 Known = KnownBits::mulhs(Known, Known2); 3098 break; 3099 } 3100 case ISD::UMUL_LOHI: { 3101 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3102 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3103 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3104 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3105 if (Op.getResNo() == 0) 3106 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3107 else 3108 Known = KnownBits::mulhu(Known, Known2); 3109 break; 3110 } 3111 case ISD::SMUL_LOHI: { 3112 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3113 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3114 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3115 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3116 if (Op.getResNo() == 0) 3117 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3118 else 3119 Known = KnownBits::mulhs(Known, Known2); 3120 break; 3121 } 3122 case ISD::UDIV: { 3123 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3124 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3125 Known = KnownBits::udiv(Known, Known2); 3126 break; 3127 } 3128 case ISD::SELECT: 3129 case ISD::VSELECT: 3130 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3131 // If we don't know any bits, early out. 3132 if (Known.isUnknown()) 3133 break; 3134 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3135 3136 // Only known if known in both the LHS and RHS. 3137 Known = KnownBits::commonBits(Known, Known2); 3138 break; 3139 case ISD::SELECT_CC: 3140 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3141 // If we don't know any bits, early out. 3142 if (Known.isUnknown()) 3143 break; 3144 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3145 3146 // Only known if known in both the LHS and RHS. 3147 Known = KnownBits::commonBits(Known, Known2); 3148 break; 3149 case ISD::SMULO: 3150 case ISD::UMULO: 3151 if (Op.getResNo() != 1) 3152 break; 3153 // The boolean result conforms to getBooleanContents. 3154 // If we know the result of a setcc has the top bits zero, use this info. 3155 // We know that we have an integer-based boolean since these operations 3156 // are only available for integer. 3157 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3158 TargetLowering::ZeroOrOneBooleanContent && 3159 BitWidth > 1) 3160 Known.Zero.setBitsFrom(1); 3161 break; 3162 case ISD::SETCC: 3163 case ISD::STRICT_FSETCC: 3164 case ISD::STRICT_FSETCCS: { 3165 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3166 // If we know the result of a setcc has the top bits zero, use this info. 3167 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3168 TargetLowering::ZeroOrOneBooleanContent && 3169 BitWidth > 1) 3170 Known.Zero.setBitsFrom(1); 3171 break; 3172 } 3173 case ISD::SHL: 3174 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3175 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3176 Known = KnownBits::shl(Known, Known2); 3177 3178 // Minimum shift low bits are known zero. 3179 if (const APInt *ShMinAmt = 3180 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3181 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3182 break; 3183 case ISD::SRL: 3184 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3185 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3186 Known = KnownBits::lshr(Known, Known2); 3187 3188 // Minimum shift high bits are known zero. 3189 if (const APInt *ShMinAmt = 3190 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3191 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3192 break; 3193 case ISD::SRA: 3194 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3195 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3196 Known = KnownBits::ashr(Known, Known2); 3197 // TODO: Add minimum shift high known sign bits. 3198 break; 3199 case ISD::FSHL: 3200 case ISD::FSHR: 3201 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3202 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3203 3204 // For fshl, 0-shift returns the 1st arg. 3205 // For fshr, 0-shift returns the 2nd arg. 3206 if (Amt == 0) { 3207 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3208 DemandedElts, Depth + 1); 3209 break; 3210 } 3211 3212 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3213 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3214 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3215 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3216 if (Opcode == ISD::FSHL) { 3217 Known.One <<= Amt; 3218 Known.Zero <<= Amt; 3219 Known2.One.lshrInPlace(BitWidth - Amt); 3220 Known2.Zero.lshrInPlace(BitWidth - Amt); 3221 } else { 3222 Known.One <<= BitWidth - Amt; 3223 Known.Zero <<= BitWidth - Amt; 3224 Known2.One.lshrInPlace(Amt); 3225 Known2.Zero.lshrInPlace(Amt); 3226 } 3227 Known.One |= Known2.One; 3228 Known.Zero |= Known2.Zero; 3229 } 3230 break; 3231 case ISD::SIGN_EXTEND_INREG: { 3232 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3233 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3234 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3235 break; 3236 } 3237 case ISD::CTTZ: 3238 case ISD::CTTZ_ZERO_UNDEF: { 3239 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3240 // If we have a known 1, its position is our upper bound. 3241 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3242 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3243 Known.Zero.setBitsFrom(LowBits); 3244 break; 3245 } 3246 case ISD::CTLZ: 3247 case ISD::CTLZ_ZERO_UNDEF: { 3248 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3249 // If we have a known 1, its position is our upper bound. 3250 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3251 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3252 Known.Zero.setBitsFrom(LowBits); 3253 break; 3254 } 3255 case ISD::CTPOP: { 3256 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3257 // If we know some of the bits are zero, they can't be one. 3258 unsigned PossibleOnes = Known2.countMaxPopulation(); 3259 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3260 break; 3261 } 3262 case ISD::PARITY: { 3263 // Parity returns 0 everywhere but the LSB. 3264 Known.Zero.setBitsFrom(1); 3265 break; 3266 } 3267 case ISD::LOAD: { 3268 LoadSDNode *LD = cast<LoadSDNode>(Op); 3269 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3270 if (ISD::isNON_EXTLoad(LD) && Cst) { 3271 // Determine any common known bits from the loaded constant pool value. 3272 Type *CstTy = Cst->getType(); 3273 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3274 // If its a vector splat, then we can (quickly) reuse the scalar path. 3275 // NOTE: We assume all elements match and none are UNDEF. 3276 if (CstTy->isVectorTy()) { 3277 if (const Constant *Splat = Cst->getSplatValue()) { 3278 Cst = Splat; 3279 CstTy = Cst->getType(); 3280 } 3281 } 3282 // TODO - do we need to handle different bitwidths? 3283 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3284 // Iterate across all vector elements finding common known bits. 3285 Known.One.setAllBits(); 3286 Known.Zero.setAllBits(); 3287 for (unsigned i = 0; i != NumElts; ++i) { 3288 if (!DemandedElts[i]) 3289 continue; 3290 if (Constant *Elt = Cst->getAggregateElement(i)) { 3291 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3292 const APInt &Value = CInt->getValue(); 3293 Known.One &= Value; 3294 Known.Zero &= ~Value; 3295 continue; 3296 } 3297 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3298 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3299 Known.One &= Value; 3300 Known.Zero &= ~Value; 3301 continue; 3302 } 3303 } 3304 Known.One.clearAllBits(); 3305 Known.Zero.clearAllBits(); 3306 break; 3307 } 3308 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3309 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3310 Known = KnownBits::makeConstant(CInt->getValue()); 3311 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3312 Known = 3313 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3314 } 3315 } 3316 } 3317 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3318 // If this is a ZEXTLoad and we are looking at the loaded value. 3319 EVT VT = LD->getMemoryVT(); 3320 unsigned MemBits = VT.getScalarSizeInBits(); 3321 Known.Zero.setBitsFrom(MemBits); 3322 } else if (const MDNode *Ranges = LD->getRanges()) { 3323 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3324 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3325 } 3326 break; 3327 } 3328 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3329 EVT InVT = Op.getOperand(0).getValueType(); 3330 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3331 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3332 Known = Known.zext(BitWidth); 3333 break; 3334 } 3335 case ISD::ZERO_EXTEND: { 3336 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3337 Known = Known.zext(BitWidth); 3338 break; 3339 } 3340 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3341 EVT InVT = Op.getOperand(0).getValueType(); 3342 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3343 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3344 // If the sign bit is known to be zero or one, then sext will extend 3345 // it to the top bits, else it will just zext. 3346 Known = Known.sext(BitWidth); 3347 break; 3348 } 3349 case ISD::SIGN_EXTEND: { 3350 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 // If the sign bit is known to be zero or one, then sext will extend 3352 // it to the top bits, else it will just zext. 3353 Known = Known.sext(BitWidth); 3354 break; 3355 } 3356 case ISD::ANY_EXTEND_VECTOR_INREG: { 3357 EVT InVT = Op.getOperand(0).getValueType(); 3358 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3359 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3360 Known = Known.anyext(BitWidth); 3361 break; 3362 } 3363 case ISD::ANY_EXTEND: { 3364 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3365 Known = Known.anyext(BitWidth); 3366 break; 3367 } 3368 case ISD::TRUNCATE: { 3369 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3370 Known = Known.trunc(BitWidth); 3371 break; 3372 } 3373 case ISD::AssertZext: { 3374 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3375 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3376 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3377 Known.Zero |= (~InMask); 3378 Known.One &= (~Known.Zero); 3379 break; 3380 } 3381 case ISD::AssertAlign: { 3382 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3383 assert(LogOfAlign != 0); 3384 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3385 // well as clearing one bits. 3386 Known.Zero.setLowBits(LogOfAlign); 3387 Known.One.clearLowBits(LogOfAlign); 3388 break; 3389 } 3390 case ISD::FGETSIGN: 3391 // All bits are zero except the low bit. 3392 Known.Zero.setBitsFrom(1); 3393 break; 3394 case ISD::USUBO: 3395 case ISD::SSUBO: 3396 if (Op.getResNo() == 1) { 3397 // If we know the result of a setcc has the top bits zero, use this info. 3398 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3399 TargetLowering::ZeroOrOneBooleanContent && 3400 BitWidth > 1) 3401 Known.Zero.setBitsFrom(1); 3402 break; 3403 } 3404 LLVM_FALLTHROUGH; 3405 case ISD::SUB: 3406 case ISD::SUBC: { 3407 assert(Op.getResNo() == 0 && 3408 "We only compute knownbits for the difference here."); 3409 3410 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3411 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3412 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3413 Known, Known2); 3414 break; 3415 } 3416 case ISD::UADDO: 3417 case ISD::SADDO: 3418 case ISD::ADDCARRY: 3419 if (Op.getResNo() == 1) { 3420 // If we know the result of a setcc has the top bits zero, use this info. 3421 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3422 TargetLowering::ZeroOrOneBooleanContent && 3423 BitWidth > 1) 3424 Known.Zero.setBitsFrom(1); 3425 break; 3426 } 3427 LLVM_FALLTHROUGH; 3428 case ISD::ADD: 3429 case ISD::ADDC: 3430 case ISD::ADDE: { 3431 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3432 3433 // With ADDE and ADDCARRY, a carry bit may be added in. 3434 KnownBits Carry(1); 3435 if (Opcode == ISD::ADDE) 3436 // Can't track carry from glue, set carry to unknown. 3437 Carry.resetAll(); 3438 else if (Opcode == ISD::ADDCARRY) 3439 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3440 // the trouble (how often will we find a known carry bit). And I haven't 3441 // tested this very much yet, but something like this might work: 3442 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3443 // Carry = Carry.zextOrTrunc(1, false); 3444 Carry.resetAll(); 3445 else 3446 Carry.setAllZero(); 3447 3448 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3449 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3450 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3451 break; 3452 } 3453 case ISD::SREM: { 3454 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3455 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3456 Known = KnownBits::srem(Known, Known2); 3457 break; 3458 } 3459 case ISD::UREM: { 3460 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3461 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3462 Known = KnownBits::urem(Known, Known2); 3463 break; 3464 } 3465 case ISD::EXTRACT_ELEMENT: { 3466 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3467 const unsigned Index = Op.getConstantOperandVal(1); 3468 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3469 3470 // Remove low part of known bits mask 3471 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3472 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3473 3474 // Remove high part of known bit mask 3475 Known = Known.trunc(EltBitWidth); 3476 break; 3477 } 3478 case ISD::EXTRACT_VECTOR_ELT: { 3479 SDValue InVec = Op.getOperand(0); 3480 SDValue EltNo = Op.getOperand(1); 3481 EVT VecVT = InVec.getValueType(); 3482 // computeKnownBits not yet implemented for scalable vectors. 3483 if (VecVT.isScalableVector()) 3484 break; 3485 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3486 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3487 3488 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3489 // anything about the extended bits. 3490 if (BitWidth > EltBitWidth) 3491 Known = Known.trunc(EltBitWidth); 3492 3493 // If we know the element index, just demand that vector element, else for 3494 // an unknown element index, ignore DemandedElts and demand them all. 3495 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3496 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3497 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3498 DemandedSrcElts = 3499 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3500 3501 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3502 if (BitWidth > EltBitWidth) 3503 Known = Known.anyext(BitWidth); 3504 break; 3505 } 3506 case ISD::INSERT_VECTOR_ELT: { 3507 // If we know the element index, split the demand between the 3508 // source vector and the inserted element, otherwise assume we need 3509 // the original demanded vector elements and the value. 3510 SDValue InVec = Op.getOperand(0); 3511 SDValue InVal = Op.getOperand(1); 3512 SDValue EltNo = Op.getOperand(2); 3513 bool DemandedVal = true; 3514 APInt DemandedVecElts = DemandedElts; 3515 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3516 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3517 unsigned EltIdx = CEltNo->getZExtValue(); 3518 DemandedVal = !!DemandedElts[EltIdx]; 3519 DemandedVecElts.clearBit(EltIdx); 3520 } 3521 Known.One.setAllBits(); 3522 Known.Zero.setAllBits(); 3523 if (DemandedVal) { 3524 Known2 = computeKnownBits(InVal, Depth + 1); 3525 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3526 } 3527 if (!!DemandedVecElts) { 3528 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3529 Known = KnownBits::commonBits(Known, Known2); 3530 } 3531 break; 3532 } 3533 case ISD::BITREVERSE: { 3534 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3535 Known = Known2.reverseBits(); 3536 break; 3537 } 3538 case ISD::BSWAP: { 3539 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3540 Known = Known2.byteSwap(); 3541 break; 3542 } 3543 case ISD::ABS: { 3544 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3545 Known = Known2.abs(); 3546 break; 3547 } 3548 case ISD::USUBSAT: { 3549 // The result of usubsat will never be larger than the LHS. 3550 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3551 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3552 break; 3553 } 3554 case ISD::UMIN: { 3555 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3556 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3557 Known = KnownBits::umin(Known, Known2); 3558 break; 3559 } 3560 case ISD::UMAX: { 3561 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3562 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3563 Known = KnownBits::umax(Known, Known2); 3564 break; 3565 } 3566 case ISD::SMIN: 3567 case ISD::SMAX: { 3568 // If we have a clamp pattern, we know that the number of sign bits will be 3569 // the minimum of the clamp min/max range. 3570 bool IsMax = (Opcode == ISD::SMAX); 3571 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3572 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3573 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3574 CstHigh = 3575 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3576 if (CstLow && CstHigh) { 3577 if (!IsMax) 3578 std::swap(CstLow, CstHigh); 3579 3580 const APInt &ValueLow = CstLow->getAPIntValue(); 3581 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3582 if (ValueLow.sle(ValueHigh)) { 3583 unsigned LowSignBits = ValueLow.getNumSignBits(); 3584 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3585 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3586 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3587 Known.One.setHighBits(MinSignBits); 3588 break; 3589 } 3590 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3591 Known.Zero.setHighBits(MinSignBits); 3592 break; 3593 } 3594 } 3595 } 3596 3597 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3598 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3599 if (IsMax) 3600 Known = KnownBits::smax(Known, Known2); 3601 else 3602 Known = KnownBits::smin(Known, Known2); 3603 break; 3604 } 3605 case ISD::FP_TO_UINT_SAT: { 3606 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3607 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3608 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3609 break; 3610 } 3611 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3612 if (Op.getResNo() == 1) { 3613 // The boolean result conforms to getBooleanContents. 3614 // If we know the result of a setcc has the top bits zero, use this info. 3615 // We know that we have an integer-based boolean since these operations 3616 // are only available for integer. 3617 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3618 TargetLowering::ZeroOrOneBooleanContent && 3619 BitWidth > 1) 3620 Known.Zero.setBitsFrom(1); 3621 break; 3622 } 3623 LLVM_FALLTHROUGH; 3624 case ISD::ATOMIC_CMP_SWAP: 3625 case ISD::ATOMIC_SWAP: 3626 case ISD::ATOMIC_LOAD_ADD: 3627 case ISD::ATOMIC_LOAD_SUB: 3628 case ISD::ATOMIC_LOAD_AND: 3629 case ISD::ATOMIC_LOAD_CLR: 3630 case ISD::ATOMIC_LOAD_OR: 3631 case ISD::ATOMIC_LOAD_XOR: 3632 case ISD::ATOMIC_LOAD_NAND: 3633 case ISD::ATOMIC_LOAD_MIN: 3634 case ISD::ATOMIC_LOAD_MAX: 3635 case ISD::ATOMIC_LOAD_UMIN: 3636 case ISD::ATOMIC_LOAD_UMAX: 3637 case ISD::ATOMIC_LOAD: { 3638 unsigned MemBits = 3639 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3640 // If we are looking at the loaded value. 3641 if (Op.getResNo() == 0) { 3642 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3643 Known.Zero.setBitsFrom(MemBits); 3644 } 3645 break; 3646 } 3647 case ISD::FrameIndex: 3648 case ISD::TargetFrameIndex: 3649 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3650 Known, getMachineFunction()); 3651 break; 3652 3653 default: 3654 if (Opcode < ISD::BUILTIN_OP_END) 3655 break; 3656 LLVM_FALLTHROUGH; 3657 case ISD::INTRINSIC_WO_CHAIN: 3658 case ISD::INTRINSIC_W_CHAIN: 3659 case ISD::INTRINSIC_VOID: 3660 // Allow the target to implement this method for its nodes. 3661 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3662 break; 3663 } 3664 3665 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3666 return Known; 3667 } 3668 3669 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3670 SDValue N1) const { 3671 // X + 0 never overflow 3672 if (isNullConstant(N1)) 3673 return OFK_Never; 3674 3675 KnownBits N1Known = computeKnownBits(N1); 3676 if (N1Known.Zero.getBoolValue()) { 3677 KnownBits N0Known = computeKnownBits(N0); 3678 3679 bool overflow; 3680 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3681 if (!overflow) 3682 return OFK_Never; 3683 } 3684 3685 // mulhi + 1 never overflow 3686 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3687 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3688 return OFK_Never; 3689 3690 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3691 KnownBits N0Known = computeKnownBits(N0); 3692 3693 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3694 return OFK_Never; 3695 } 3696 3697 return OFK_Sometime; 3698 } 3699 3700 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3701 EVT OpVT = Val.getValueType(); 3702 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3703 3704 // Is the constant a known power of 2? 3705 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3706 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3707 3708 // A left-shift of a constant one will have exactly one bit set because 3709 // shifting the bit off the end is undefined. 3710 if (Val.getOpcode() == ISD::SHL) { 3711 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3712 if (C && C->getAPIntValue() == 1) 3713 return true; 3714 } 3715 3716 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3717 // one bit set. 3718 if (Val.getOpcode() == ISD::SRL) { 3719 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3720 if (C && C->getAPIntValue().isSignMask()) 3721 return true; 3722 } 3723 3724 // Are all operands of a build vector constant powers of two? 3725 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3726 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3727 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3728 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3729 return false; 3730 })) 3731 return true; 3732 3733 // Is the operand of a splat vector a constant power of two? 3734 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3735 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3736 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3737 return true; 3738 3739 // More could be done here, though the above checks are enough 3740 // to handle some common cases. 3741 3742 // Fall back to computeKnownBits to catch other known cases. 3743 KnownBits Known = computeKnownBits(Val); 3744 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3745 } 3746 3747 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3748 EVT VT = Op.getValueType(); 3749 3750 // TODO: Assume we don't know anything for now. 3751 if (VT.isScalableVector()) 3752 return 1; 3753 3754 APInt DemandedElts = VT.isVector() 3755 ? APInt::getAllOnes(VT.getVectorNumElements()) 3756 : APInt(1, 1); 3757 return ComputeNumSignBits(Op, DemandedElts, Depth); 3758 } 3759 3760 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3761 unsigned Depth) const { 3762 EVT VT = Op.getValueType(); 3763 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3764 unsigned VTBits = VT.getScalarSizeInBits(); 3765 unsigned NumElts = DemandedElts.getBitWidth(); 3766 unsigned Tmp, Tmp2; 3767 unsigned FirstAnswer = 1; 3768 3769 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3770 const APInt &Val = C->getAPIntValue(); 3771 return Val.getNumSignBits(); 3772 } 3773 3774 if (Depth >= MaxRecursionDepth) 3775 return 1; // Limit search depth. 3776 3777 if (!DemandedElts || VT.isScalableVector()) 3778 return 1; // No demanded elts, better to assume we don't know anything. 3779 3780 unsigned Opcode = Op.getOpcode(); 3781 switch (Opcode) { 3782 default: break; 3783 case ISD::AssertSext: 3784 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3785 return VTBits-Tmp+1; 3786 case ISD::AssertZext: 3787 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3788 return VTBits-Tmp; 3789 3790 case ISD::BUILD_VECTOR: 3791 Tmp = VTBits; 3792 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3793 if (!DemandedElts[i]) 3794 continue; 3795 3796 SDValue SrcOp = Op.getOperand(i); 3797 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3798 3799 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3800 if (SrcOp.getValueSizeInBits() != VTBits) { 3801 assert(SrcOp.getValueSizeInBits() > VTBits && 3802 "Expected BUILD_VECTOR implicit truncation"); 3803 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3804 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3805 } 3806 Tmp = std::min(Tmp, Tmp2); 3807 } 3808 return Tmp; 3809 3810 case ISD::VECTOR_SHUFFLE: { 3811 // Collect the minimum number of sign bits that are shared by every vector 3812 // element referenced by the shuffle. 3813 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3814 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3815 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3816 for (unsigned i = 0; i != NumElts; ++i) { 3817 int M = SVN->getMaskElt(i); 3818 if (!DemandedElts[i]) 3819 continue; 3820 // For UNDEF elements, we don't know anything about the common state of 3821 // the shuffle result. 3822 if (M < 0) 3823 return 1; 3824 if ((unsigned)M < NumElts) 3825 DemandedLHS.setBit((unsigned)M % NumElts); 3826 else 3827 DemandedRHS.setBit((unsigned)M % NumElts); 3828 } 3829 Tmp = std::numeric_limits<unsigned>::max(); 3830 if (!!DemandedLHS) 3831 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3832 if (!!DemandedRHS) { 3833 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3834 Tmp = std::min(Tmp, Tmp2); 3835 } 3836 // If we don't know anything, early out and try computeKnownBits fall-back. 3837 if (Tmp == 1) 3838 break; 3839 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3840 return Tmp; 3841 } 3842 3843 case ISD::BITCAST: { 3844 SDValue N0 = Op.getOperand(0); 3845 EVT SrcVT = N0.getValueType(); 3846 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3847 3848 // Ignore bitcasts from unsupported types.. 3849 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3850 break; 3851 3852 // Fast handling of 'identity' bitcasts. 3853 if (VTBits == SrcBits) 3854 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3855 3856 bool IsLE = getDataLayout().isLittleEndian(); 3857 3858 // Bitcast 'large element' scalar/vector to 'small element' vector. 3859 if ((SrcBits % VTBits) == 0) { 3860 assert(VT.isVector() && "Expected bitcast to vector"); 3861 3862 unsigned Scale = SrcBits / VTBits; 3863 APInt SrcDemandedElts = 3864 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3865 3866 // Fast case - sign splat can be simply split across the small elements. 3867 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3868 if (Tmp == SrcBits) 3869 return VTBits; 3870 3871 // Slow case - determine how far the sign extends into each sub-element. 3872 Tmp2 = VTBits; 3873 for (unsigned i = 0; i != NumElts; ++i) 3874 if (DemandedElts[i]) { 3875 unsigned SubOffset = i % Scale; 3876 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3877 SubOffset = SubOffset * VTBits; 3878 if (Tmp <= SubOffset) 3879 return 1; 3880 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3881 } 3882 return Tmp2; 3883 } 3884 break; 3885 } 3886 3887 case ISD::FP_TO_SINT_SAT: 3888 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 3889 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3890 return VTBits - Tmp + 1; 3891 case ISD::SIGN_EXTEND: 3892 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3893 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3894 case ISD::SIGN_EXTEND_INREG: 3895 // Max of the input and what this extends. 3896 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3897 Tmp = VTBits-Tmp+1; 3898 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3899 return std::max(Tmp, Tmp2); 3900 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3901 SDValue Src = Op.getOperand(0); 3902 EVT SrcVT = Src.getValueType(); 3903 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3904 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3905 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3906 } 3907 case ISD::SRA: 3908 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3909 // SRA X, C -> adds C sign bits. 3910 if (const APInt *ShAmt = 3911 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3912 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3913 return Tmp; 3914 case ISD::SHL: 3915 if (const APInt *ShAmt = 3916 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3917 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3918 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3919 if (ShAmt->ult(Tmp)) 3920 return Tmp - ShAmt->getZExtValue(); 3921 } 3922 break; 3923 case ISD::AND: 3924 case ISD::OR: 3925 case ISD::XOR: // NOT is handled here. 3926 // Logical binary ops preserve the number of sign bits at the worst. 3927 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3928 if (Tmp != 1) { 3929 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3930 FirstAnswer = std::min(Tmp, Tmp2); 3931 // We computed what we know about the sign bits as our first 3932 // answer. Now proceed to the generic code that uses 3933 // computeKnownBits, and pick whichever answer is better. 3934 } 3935 break; 3936 3937 case ISD::SELECT: 3938 case ISD::VSELECT: 3939 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3940 if (Tmp == 1) return 1; // Early out. 3941 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3942 return std::min(Tmp, Tmp2); 3943 case ISD::SELECT_CC: 3944 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3945 if (Tmp == 1) return 1; // Early out. 3946 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3947 return std::min(Tmp, Tmp2); 3948 3949 case ISD::SMIN: 3950 case ISD::SMAX: { 3951 // If we have a clamp pattern, we know that the number of sign bits will be 3952 // the minimum of the clamp min/max range. 3953 bool IsMax = (Opcode == ISD::SMAX); 3954 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3955 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3956 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3957 CstHigh = 3958 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3959 if (CstLow && CstHigh) { 3960 if (!IsMax) 3961 std::swap(CstLow, CstHigh); 3962 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3963 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3964 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3965 return std::min(Tmp, Tmp2); 3966 } 3967 } 3968 3969 // Fallback - just get the minimum number of sign bits of the operands. 3970 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3971 if (Tmp == 1) 3972 return 1; // Early out. 3973 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3974 return std::min(Tmp, Tmp2); 3975 } 3976 case ISD::UMIN: 3977 case ISD::UMAX: 3978 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3979 if (Tmp == 1) 3980 return 1; // Early out. 3981 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3982 return std::min(Tmp, Tmp2); 3983 case ISD::SADDO: 3984 case ISD::UADDO: 3985 case ISD::SSUBO: 3986 case ISD::USUBO: 3987 case ISD::SMULO: 3988 case ISD::UMULO: 3989 if (Op.getResNo() != 1) 3990 break; 3991 // The boolean result conforms to getBooleanContents. Fall through. 3992 // If setcc returns 0/-1, all bits are sign bits. 3993 // We know that we have an integer-based boolean since these operations 3994 // are only available for integer. 3995 if (TLI->getBooleanContents(VT.isVector(), false) == 3996 TargetLowering::ZeroOrNegativeOneBooleanContent) 3997 return VTBits; 3998 break; 3999 case ISD::SETCC: 4000 case ISD::STRICT_FSETCC: 4001 case ISD::STRICT_FSETCCS: { 4002 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4003 // If setcc returns 0/-1, all bits are sign bits. 4004 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4005 TargetLowering::ZeroOrNegativeOneBooleanContent) 4006 return VTBits; 4007 break; 4008 } 4009 case ISD::ROTL: 4010 case ISD::ROTR: 4011 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4012 4013 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4014 if (Tmp == VTBits) 4015 return VTBits; 4016 4017 if (ConstantSDNode *C = 4018 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4019 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4020 4021 // Handle rotate right by N like a rotate left by 32-N. 4022 if (Opcode == ISD::ROTR) 4023 RotAmt = (VTBits - RotAmt) % VTBits; 4024 4025 // If we aren't rotating out all of the known-in sign bits, return the 4026 // number that are left. This handles rotl(sext(x), 1) for example. 4027 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4028 } 4029 break; 4030 case ISD::ADD: 4031 case ISD::ADDC: 4032 // Add can have at most one carry bit. Thus we know that the output 4033 // is, at worst, one more bit than the inputs. 4034 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4035 if (Tmp == 1) return 1; // Early out. 4036 4037 // Special case decrementing a value (ADD X, -1): 4038 if (ConstantSDNode *CRHS = 4039 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4040 if (CRHS->isAllOnes()) { 4041 KnownBits Known = 4042 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4043 4044 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4045 // sign bits set. 4046 if ((Known.Zero | 1).isAllOnes()) 4047 return VTBits; 4048 4049 // If we are subtracting one from a positive number, there is no carry 4050 // out of the result. 4051 if (Known.isNonNegative()) 4052 return Tmp; 4053 } 4054 4055 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4056 if (Tmp2 == 1) return 1; // Early out. 4057 return std::min(Tmp, Tmp2) - 1; 4058 case ISD::SUB: 4059 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4060 if (Tmp2 == 1) return 1; // Early out. 4061 4062 // Handle NEG. 4063 if (ConstantSDNode *CLHS = 4064 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4065 if (CLHS->isZero()) { 4066 KnownBits Known = 4067 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4068 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4069 // sign bits set. 4070 if ((Known.Zero | 1).isAllOnes()) 4071 return VTBits; 4072 4073 // If the input is known to be positive (the sign bit is known clear), 4074 // the output of the NEG has the same number of sign bits as the input. 4075 if (Known.isNonNegative()) 4076 return Tmp2; 4077 4078 // Otherwise, we treat this like a SUB. 4079 } 4080 4081 // Sub can have at most one carry bit. Thus we know that the output 4082 // is, at worst, one more bit than the inputs. 4083 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4084 if (Tmp == 1) return 1; // Early out. 4085 return std::min(Tmp, Tmp2) - 1; 4086 case ISD::MUL: { 4087 // The output of the Mul can be at most twice the valid bits in the inputs. 4088 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4089 if (SignBitsOp0 == 1) 4090 break; 4091 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4092 if (SignBitsOp1 == 1) 4093 break; 4094 unsigned OutValidBits = 4095 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4096 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4097 } 4098 case ISD::SREM: 4099 // The sign bit is the LHS's sign bit, except when the result of the 4100 // remainder is zero. The magnitude of the result should be less than or 4101 // equal to the magnitude of the LHS. Therefore, the result should have 4102 // at least as many sign bits as the left hand side. 4103 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4104 case ISD::TRUNCATE: { 4105 // Check if the sign bits of source go down as far as the truncated value. 4106 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4107 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4108 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4109 return NumSrcSignBits - (NumSrcBits - VTBits); 4110 break; 4111 } 4112 case ISD::EXTRACT_ELEMENT: { 4113 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4114 const int BitWidth = Op.getValueSizeInBits(); 4115 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4116 4117 // Get reverse index (starting from 1), Op1 value indexes elements from 4118 // little end. Sign starts at big end. 4119 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4120 4121 // If the sign portion ends in our element the subtraction gives correct 4122 // result. Otherwise it gives either negative or > bitwidth result 4123 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4124 } 4125 case ISD::INSERT_VECTOR_ELT: { 4126 // If we know the element index, split the demand between the 4127 // source vector and the inserted element, otherwise assume we need 4128 // the original demanded vector elements and the value. 4129 SDValue InVec = Op.getOperand(0); 4130 SDValue InVal = Op.getOperand(1); 4131 SDValue EltNo = Op.getOperand(2); 4132 bool DemandedVal = true; 4133 APInt DemandedVecElts = DemandedElts; 4134 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4135 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4136 unsigned EltIdx = CEltNo->getZExtValue(); 4137 DemandedVal = !!DemandedElts[EltIdx]; 4138 DemandedVecElts.clearBit(EltIdx); 4139 } 4140 Tmp = std::numeric_limits<unsigned>::max(); 4141 if (DemandedVal) { 4142 // TODO - handle implicit truncation of inserted elements. 4143 if (InVal.getScalarValueSizeInBits() != VTBits) 4144 break; 4145 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4146 Tmp = std::min(Tmp, Tmp2); 4147 } 4148 if (!!DemandedVecElts) { 4149 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4150 Tmp = std::min(Tmp, Tmp2); 4151 } 4152 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4153 return Tmp; 4154 } 4155 case ISD::EXTRACT_VECTOR_ELT: { 4156 SDValue InVec = Op.getOperand(0); 4157 SDValue EltNo = Op.getOperand(1); 4158 EVT VecVT = InVec.getValueType(); 4159 // ComputeNumSignBits not yet implemented for scalable vectors. 4160 if (VecVT.isScalableVector()) 4161 break; 4162 const unsigned BitWidth = Op.getValueSizeInBits(); 4163 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4164 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4165 4166 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4167 // anything about sign bits. But if the sizes match we can derive knowledge 4168 // about sign bits from the vector operand. 4169 if (BitWidth != EltBitWidth) 4170 break; 4171 4172 // If we know the element index, just demand that vector element, else for 4173 // an unknown element index, ignore DemandedElts and demand them all. 4174 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4175 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4176 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4177 DemandedSrcElts = 4178 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4179 4180 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4181 } 4182 case ISD::EXTRACT_SUBVECTOR: { 4183 // Offset the demanded elts by the subvector index. 4184 SDValue Src = Op.getOperand(0); 4185 // Bail until we can represent demanded elements for scalable vectors. 4186 if (Src.getValueType().isScalableVector()) 4187 break; 4188 uint64_t Idx = Op.getConstantOperandVal(1); 4189 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4190 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4191 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4192 } 4193 case ISD::CONCAT_VECTORS: { 4194 // Determine the minimum number of sign bits across all demanded 4195 // elts of the input vectors. Early out if the result is already 1. 4196 Tmp = std::numeric_limits<unsigned>::max(); 4197 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4198 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4199 unsigned NumSubVectors = Op.getNumOperands(); 4200 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4201 APInt DemandedSub = 4202 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4203 if (!DemandedSub) 4204 continue; 4205 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4206 Tmp = std::min(Tmp, Tmp2); 4207 } 4208 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4209 return Tmp; 4210 } 4211 case ISD::INSERT_SUBVECTOR: { 4212 // Demand any elements from the subvector and the remainder from the src its 4213 // inserted into. 4214 SDValue Src = Op.getOperand(0); 4215 SDValue Sub = Op.getOperand(1); 4216 uint64_t Idx = Op.getConstantOperandVal(2); 4217 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4218 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4219 APInt DemandedSrcElts = DemandedElts; 4220 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4221 4222 Tmp = std::numeric_limits<unsigned>::max(); 4223 if (!!DemandedSubElts) { 4224 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4225 if (Tmp == 1) 4226 return 1; // early-out 4227 } 4228 if (!!DemandedSrcElts) { 4229 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4230 Tmp = std::min(Tmp, Tmp2); 4231 } 4232 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4233 return Tmp; 4234 } 4235 case ISD::ATOMIC_CMP_SWAP: 4236 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4237 case ISD::ATOMIC_SWAP: 4238 case ISD::ATOMIC_LOAD_ADD: 4239 case ISD::ATOMIC_LOAD_SUB: 4240 case ISD::ATOMIC_LOAD_AND: 4241 case ISD::ATOMIC_LOAD_CLR: 4242 case ISD::ATOMIC_LOAD_OR: 4243 case ISD::ATOMIC_LOAD_XOR: 4244 case ISD::ATOMIC_LOAD_NAND: 4245 case ISD::ATOMIC_LOAD_MIN: 4246 case ISD::ATOMIC_LOAD_MAX: 4247 case ISD::ATOMIC_LOAD_UMIN: 4248 case ISD::ATOMIC_LOAD_UMAX: 4249 case ISD::ATOMIC_LOAD: { 4250 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4251 // If we are looking at the loaded value. 4252 if (Op.getResNo() == 0) { 4253 if (Tmp == VTBits) 4254 return 1; // early-out 4255 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4256 return VTBits - Tmp + 1; 4257 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4258 return VTBits - Tmp; 4259 } 4260 break; 4261 } 4262 } 4263 4264 // If we are looking at the loaded value of the SDNode. 4265 if (Op.getResNo() == 0) { 4266 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4267 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4268 unsigned ExtType = LD->getExtensionType(); 4269 switch (ExtType) { 4270 default: break; 4271 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4272 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4273 return VTBits - Tmp + 1; 4274 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4275 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4276 return VTBits - Tmp; 4277 case ISD::NON_EXTLOAD: 4278 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4279 // We only need to handle vectors - computeKnownBits should handle 4280 // scalar cases. 4281 Type *CstTy = Cst->getType(); 4282 if (CstTy->isVectorTy() && 4283 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4284 Tmp = VTBits; 4285 for (unsigned i = 0; i != NumElts; ++i) { 4286 if (!DemandedElts[i]) 4287 continue; 4288 if (Constant *Elt = Cst->getAggregateElement(i)) { 4289 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4290 const APInt &Value = CInt->getValue(); 4291 Tmp = std::min(Tmp, Value.getNumSignBits()); 4292 continue; 4293 } 4294 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4295 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4296 Tmp = std::min(Tmp, Value.getNumSignBits()); 4297 continue; 4298 } 4299 } 4300 // Unknown type. Conservatively assume no bits match sign bit. 4301 return 1; 4302 } 4303 return Tmp; 4304 } 4305 } 4306 break; 4307 } 4308 } 4309 } 4310 4311 // Allow the target to implement this method for its nodes. 4312 if (Opcode >= ISD::BUILTIN_OP_END || 4313 Opcode == ISD::INTRINSIC_WO_CHAIN || 4314 Opcode == ISD::INTRINSIC_W_CHAIN || 4315 Opcode == ISD::INTRINSIC_VOID) { 4316 unsigned NumBits = 4317 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4318 if (NumBits > 1) 4319 FirstAnswer = std::max(FirstAnswer, NumBits); 4320 } 4321 4322 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4323 // use this information. 4324 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4325 return std::max(FirstAnswer, Known.countMinSignBits()); 4326 } 4327 4328 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4329 unsigned Depth) const { 4330 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4331 return Op.getScalarValueSizeInBits() - SignBits + 1; 4332 } 4333 4334 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4335 const APInt &DemandedElts, 4336 unsigned Depth) const { 4337 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4338 return Op.getScalarValueSizeInBits() - SignBits + 1; 4339 } 4340 4341 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4342 unsigned Depth) const { 4343 // Early out for FREEZE. 4344 if (Op.getOpcode() == ISD::FREEZE) 4345 return true; 4346 4347 // TODO: Assume we don't know anything for now. 4348 EVT VT = Op.getValueType(); 4349 if (VT.isScalableVector()) 4350 return false; 4351 4352 APInt DemandedElts = VT.isVector() 4353 ? APInt::getAllOnes(VT.getVectorNumElements()) 4354 : APInt(1, 1); 4355 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4356 } 4357 4358 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4359 const APInt &DemandedElts, 4360 bool PoisonOnly, 4361 unsigned Depth) const { 4362 unsigned Opcode = Op.getOpcode(); 4363 4364 // Early out for FREEZE. 4365 if (Opcode == ISD::FREEZE) 4366 return true; 4367 4368 if (Depth >= MaxRecursionDepth) 4369 return false; // Limit search depth. 4370 4371 if (isIntOrFPConstant(Op)) 4372 return true; 4373 4374 switch (Opcode) { 4375 case ISD::UNDEF: 4376 return PoisonOnly; 4377 4378 case ISD::BUILD_VECTOR: 4379 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4380 // this shouldn't affect the result. 4381 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4382 if (!DemandedElts[i]) 4383 continue; 4384 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4385 Depth + 1)) 4386 return false; 4387 } 4388 return true; 4389 4390 // TODO: Search for noundef attributes from library functions. 4391 4392 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4393 4394 default: 4395 // Allow the target to implement this method for its nodes. 4396 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4397 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4398 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4399 Op, DemandedElts, *this, PoisonOnly, Depth); 4400 break; 4401 } 4402 4403 return false; 4404 } 4405 4406 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4407 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4408 !isa<ConstantSDNode>(Op.getOperand(1))) 4409 return false; 4410 4411 if (Op.getOpcode() == ISD::OR && 4412 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4413 return false; 4414 4415 return true; 4416 } 4417 4418 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4419 // If we're told that NaNs won't happen, assume they won't. 4420 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4421 return true; 4422 4423 if (Depth >= MaxRecursionDepth) 4424 return false; // Limit search depth. 4425 4426 // TODO: Handle vectors. 4427 // If the value is a constant, we can obviously see if it is a NaN or not. 4428 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4429 return !C->getValueAPF().isNaN() || 4430 (SNaN && !C->getValueAPF().isSignaling()); 4431 } 4432 4433 unsigned Opcode = Op.getOpcode(); 4434 switch (Opcode) { 4435 case ISD::FADD: 4436 case ISD::FSUB: 4437 case ISD::FMUL: 4438 case ISD::FDIV: 4439 case ISD::FREM: 4440 case ISD::FSIN: 4441 case ISD::FCOS: { 4442 if (SNaN) 4443 return true; 4444 // TODO: Need isKnownNeverInfinity 4445 return false; 4446 } 4447 case ISD::FCANONICALIZE: 4448 case ISD::FEXP: 4449 case ISD::FEXP2: 4450 case ISD::FTRUNC: 4451 case ISD::FFLOOR: 4452 case ISD::FCEIL: 4453 case ISD::FROUND: 4454 case ISD::FROUNDEVEN: 4455 case ISD::FRINT: 4456 case ISD::FNEARBYINT: { 4457 if (SNaN) 4458 return true; 4459 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4460 } 4461 case ISD::FABS: 4462 case ISD::FNEG: 4463 case ISD::FCOPYSIGN: { 4464 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4465 } 4466 case ISD::SELECT: 4467 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4468 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4469 case ISD::FP_EXTEND: 4470 case ISD::FP_ROUND: { 4471 if (SNaN) 4472 return true; 4473 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4474 } 4475 case ISD::SINT_TO_FP: 4476 case ISD::UINT_TO_FP: 4477 return true; 4478 case ISD::FMA: 4479 case ISD::FMAD: { 4480 if (SNaN) 4481 return true; 4482 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4483 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4484 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4485 } 4486 case ISD::FSQRT: // Need is known positive 4487 case ISD::FLOG: 4488 case ISD::FLOG2: 4489 case ISD::FLOG10: 4490 case ISD::FPOWI: 4491 case ISD::FPOW: { 4492 if (SNaN) 4493 return true; 4494 // TODO: Refine on operand 4495 return false; 4496 } 4497 case ISD::FMINNUM: 4498 case ISD::FMAXNUM: { 4499 // Only one needs to be known not-nan, since it will be returned if the 4500 // other ends up being one. 4501 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4502 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4503 } 4504 case ISD::FMINNUM_IEEE: 4505 case ISD::FMAXNUM_IEEE: { 4506 if (SNaN) 4507 return true; 4508 // This can return a NaN if either operand is an sNaN, or if both operands 4509 // are NaN. 4510 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4511 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4512 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4513 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4514 } 4515 case ISD::FMINIMUM: 4516 case ISD::FMAXIMUM: { 4517 // TODO: Does this quiet or return the origina NaN as-is? 4518 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4519 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4520 } 4521 case ISD::EXTRACT_VECTOR_ELT: { 4522 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4523 } 4524 default: 4525 if (Opcode >= ISD::BUILTIN_OP_END || 4526 Opcode == ISD::INTRINSIC_WO_CHAIN || 4527 Opcode == ISD::INTRINSIC_W_CHAIN || 4528 Opcode == ISD::INTRINSIC_VOID) { 4529 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4530 } 4531 4532 return false; 4533 } 4534 } 4535 4536 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4537 assert(Op.getValueType().isFloatingPoint() && 4538 "Floating point type expected"); 4539 4540 // If the value is a constant, we can obviously see if it is a zero or not. 4541 // TODO: Add BuildVector support. 4542 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4543 return !C->isZero(); 4544 return false; 4545 } 4546 4547 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4548 assert(!Op.getValueType().isFloatingPoint() && 4549 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4550 4551 // If the value is a constant, we can obviously see if it is a zero or not. 4552 if (ISD::matchUnaryPredicate(Op, 4553 [](ConstantSDNode *C) { return !C->isZero(); })) 4554 return true; 4555 4556 // TODO: Recognize more cases here. 4557 switch (Op.getOpcode()) { 4558 default: break; 4559 case ISD::OR: 4560 if (isKnownNeverZero(Op.getOperand(1)) || 4561 isKnownNeverZero(Op.getOperand(0))) 4562 return true; 4563 break; 4564 } 4565 4566 return false; 4567 } 4568 4569 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4570 // Check the obvious case. 4571 if (A == B) return true; 4572 4573 // For for negative and positive zero. 4574 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4575 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4576 if (CA->isZero() && CB->isZero()) return true; 4577 4578 // Otherwise they may not be equal. 4579 return false; 4580 } 4581 4582 // FIXME: unify with llvm::haveNoCommonBitsSet. 4583 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4584 assert(A.getValueType() == B.getValueType() && 4585 "Values must have the same type"); 4586 // Match masked merge pattern (X & ~M) op (Y & M) 4587 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4588 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4589 if (isBitwiseNot(NotM, true)) { 4590 SDValue NotOperand = NotM->getOperand(0); 4591 return NotOperand == And->getOperand(0) || 4592 NotOperand == And->getOperand(1); 4593 } 4594 return false; 4595 }; 4596 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4597 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4598 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4599 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4600 return true; 4601 } 4602 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4603 computeKnownBits(B)); 4604 } 4605 4606 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4607 SelectionDAG &DAG) { 4608 if (cast<ConstantSDNode>(Step)->isZero()) 4609 return DAG.getConstant(0, DL, VT); 4610 4611 return SDValue(); 4612 } 4613 4614 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4615 ArrayRef<SDValue> Ops, 4616 SelectionDAG &DAG) { 4617 int NumOps = Ops.size(); 4618 assert(NumOps != 0 && "Can't build an empty vector!"); 4619 assert(!VT.isScalableVector() && 4620 "BUILD_VECTOR cannot be used with scalable types"); 4621 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4622 "Incorrect element count in BUILD_VECTOR!"); 4623 4624 // BUILD_VECTOR of UNDEFs is UNDEF. 4625 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4626 return DAG.getUNDEF(VT); 4627 4628 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4629 SDValue IdentitySrc; 4630 bool IsIdentity = true; 4631 for (int i = 0; i != NumOps; ++i) { 4632 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4633 Ops[i].getOperand(0).getValueType() != VT || 4634 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4635 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4636 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4637 IsIdentity = false; 4638 break; 4639 } 4640 IdentitySrc = Ops[i].getOperand(0); 4641 } 4642 if (IsIdentity) 4643 return IdentitySrc; 4644 4645 return SDValue(); 4646 } 4647 4648 /// Try to simplify vector concatenation to an input value, undef, or build 4649 /// vector. 4650 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4651 ArrayRef<SDValue> Ops, 4652 SelectionDAG &DAG) { 4653 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4654 assert(llvm::all_of(Ops, 4655 [Ops](SDValue Op) { 4656 return Ops[0].getValueType() == Op.getValueType(); 4657 }) && 4658 "Concatenation of vectors with inconsistent value types!"); 4659 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4660 VT.getVectorElementCount() && 4661 "Incorrect element count in vector concatenation!"); 4662 4663 if (Ops.size() == 1) 4664 return Ops[0]; 4665 4666 // Concat of UNDEFs is UNDEF. 4667 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4668 return DAG.getUNDEF(VT); 4669 4670 // Scan the operands and look for extract operations from a single source 4671 // that correspond to insertion at the same location via this concatenation: 4672 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4673 SDValue IdentitySrc; 4674 bool IsIdentity = true; 4675 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4676 SDValue Op = Ops[i]; 4677 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4678 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4679 Op.getOperand(0).getValueType() != VT || 4680 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4681 Op.getConstantOperandVal(1) != IdentityIndex) { 4682 IsIdentity = false; 4683 break; 4684 } 4685 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4686 "Unexpected identity source vector for concat of extracts"); 4687 IdentitySrc = Op.getOperand(0); 4688 } 4689 if (IsIdentity) { 4690 assert(IdentitySrc && "Failed to set source vector of extracts"); 4691 return IdentitySrc; 4692 } 4693 4694 // The code below this point is only designed to work for fixed width 4695 // vectors, so we bail out for now. 4696 if (VT.isScalableVector()) 4697 return SDValue(); 4698 4699 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4700 // simplified to one big BUILD_VECTOR. 4701 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4702 EVT SVT = VT.getScalarType(); 4703 SmallVector<SDValue, 16> Elts; 4704 for (SDValue Op : Ops) { 4705 EVT OpVT = Op.getValueType(); 4706 if (Op.isUndef()) 4707 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4708 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4709 Elts.append(Op->op_begin(), Op->op_end()); 4710 else 4711 return SDValue(); 4712 } 4713 4714 // BUILD_VECTOR requires all inputs to be of the same type, find the 4715 // maximum type and extend them all. 4716 for (SDValue Op : Elts) 4717 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4718 4719 if (SVT.bitsGT(VT.getScalarType())) { 4720 for (SDValue &Op : Elts) { 4721 if (Op.isUndef()) 4722 Op = DAG.getUNDEF(SVT); 4723 else 4724 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4725 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4726 : DAG.getSExtOrTrunc(Op, DL, SVT); 4727 } 4728 } 4729 4730 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4731 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4732 return V; 4733 } 4734 4735 /// Gets or creates the specified node. 4736 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4737 FoldingSetNodeID ID; 4738 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4739 void *IP = nullptr; 4740 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4741 return SDValue(E, 0); 4742 4743 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4744 getVTList(VT)); 4745 CSEMap.InsertNode(N, IP); 4746 4747 InsertNode(N); 4748 SDValue V = SDValue(N, 0); 4749 NewSDValueDbgMsg(V, "Creating new node: ", this); 4750 return V; 4751 } 4752 4753 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4754 SDValue Operand) { 4755 SDNodeFlags Flags; 4756 if (Inserter) 4757 Flags = Inserter->getFlags(); 4758 return getNode(Opcode, DL, VT, Operand, Flags); 4759 } 4760 4761 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4762 SDValue Operand, const SDNodeFlags Flags) { 4763 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4764 "Operand is DELETED_NODE!"); 4765 // Constant fold unary operations with an integer constant operand. Even 4766 // opaque constant will be folded, because the folding of unary operations 4767 // doesn't create new constants with different values. Nevertheless, the 4768 // opaque flag is preserved during folding to prevent future folding with 4769 // other constants. 4770 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4771 const APInt &Val = C->getAPIntValue(); 4772 switch (Opcode) { 4773 default: break; 4774 case ISD::SIGN_EXTEND: 4775 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4776 C->isTargetOpcode(), C->isOpaque()); 4777 case ISD::TRUNCATE: 4778 if (C->isOpaque()) 4779 break; 4780 LLVM_FALLTHROUGH; 4781 case ISD::ZERO_EXTEND: 4782 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4783 C->isTargetOpcode(), C->isOpaque()); 4784 case ISD::ANY_EXTEND: 4785 // Some targets like RISCV prefer to sign extend some types. 4786 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4787 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4788 C->isTargetOpcode(), C->isOpaque()); 4789 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4790 C->isTargetOpcode(), C->isOpaque()); 4791 case ISD::UINT_TO_FP: 4792 case ISD::SINT_TO_FP: { 4793 APFloat apf(EVTToAPFloatSemantics(VT), 4794 APInt::getZero(VT.getSizeInBits())); 4795 (void)apf.convertFromAPInt(Val, 4796 Opcode==ISD::SINT_TO_FP, 4797 APFloat::rmNearestTiesToEven); 4798 return getConstantFP(apf, DL, VT); 4799 } 4800 case ISD::BITCAST: 4801 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4802 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4803 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4804 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4805 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4806 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4807 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4808 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4809 break; 4810 case ISD::ABS: 4811 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4812 C->isOpaque()); 4813 case ISD::BITREVERSE: 4814 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4815 C->isOpaque()); 4816 case ISD::BSWAP: 4817 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4818 C->isOpaque()); 4819 case ISD::CTPOP: 4820 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4821 C->isOpaque()); 4822 case ISD::CTLZ: 4823 case ISD::CTLZ_ZERO_UNDEF: 4824 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4825 C->isOpaque()); 4826 case ISD::CTTZ: 4827 case ISD::CTTZ_ZERO_UNDEF: 4828 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4829 C->isOpaque()); 4830 case ISD::FP16_TO_FP: { 4831 bool Ignored; 4832 APFloat FPV(APFloat::IEEEhalf(), 4833 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4834 4835 // This can return overflow, underflow, or inexact; we don't care. 4836 // FIXME need to be more flexible about rounding mode. 4837 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4838 APFloat::rmNearestTiesToEven, &Ignored); 4839 return getConstantFP(FPV, DL, VT); 4840 } 4841 case ISD::STEP_VECTOR: { 4842 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4843 return V; 4844 break; 4845 } 4846 } 4847 } 4848 4849 // Constant fold unary operations with a floating point constant operand. 4850 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4851 APFloat V = C->getValueAPF(); // make copy 4852 switch (Opcode) { 4853 case ISD::FNEG: 4854 V.changeSign(); 4855 return getConstantFP(V, DL, VT); 4856 case ISD::FABS: 4857 V.clearSign(); 4858 return getConstantFP(V, DL, VT); 4859 case ISD::FCEIL: { 4860 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4861 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4862 return getConstantFP(V, DL, VT); 4863 break; 4864 } 4865 case ISD::FTRUNC: { 4866 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4867 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4868 return getConstantFP(V, DL, VT); 4869 break; 4870 } 4871 case ISD::FFLOOR: { 4872 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4873 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4874 return getConstantFP(V, DL, VT); 4875 break; 4876 } 4877 case ISD::FP_EXTEND: { 4878 bool ignored; 4879 // This can return overflow, underflow, or inexact; we don't care. 4880 // FIXME need to be more flexible about rounding mode. 4881 (void)V.convert(EVTToAPFloatSemantics(VT), 4882 APFloat::rmNearestTiesToEven, &ignored); 4883 return getConstantFP(V, DL, VT); 4884 } 4885 case ISD::FP_TO_SINT: 4886 case ISD::FP_TO_UINT: { 4887 bool ignored; 4888 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4889 // FIXME need to be more flexible about rounding mode. 4890 APFloat::opStatus s = 4891 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4892 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4893 break; 4894 return getConstant(IntVal, DL, VT); 4895 } 4896 case ISD::BITCAST: 4897 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4898 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4899 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4900 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4901 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4902 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4903 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4904 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4905 break; 4906 case ISD::FP_TO_FP16: { 4907 bool Ignored; 4908 // This can return overflow, underflow, or inexact; we don't care. 4909 // FIXME need to be more flexible about rounding mode. 4910 (void)V.convert(APFloat::IEEEhalf(), 4911 APFloat::rmNearestTiesToEven, &Ignored); 4912 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4913 } 4914 } 4915 } 4916 4917 // Constant fold unary operations with a vector integer or float operand. 4918 switch (Opcode) { 4919 default: 4920 // FIXME: Entirely reasonable to perform folding of other unary 4921 // operations here as the need arises. 4922 break; 4923 case ISD::FNEG: 4924 case ISD::FABS: 4925 case ISD::FCEIL: 4926 case ISD::FTRUNC: 4927 case ISD::FFLOOR: 4928 case ISD::FP_EXTEND: 4929 case ISD::FP_TO_SINT: 4930 case ISD::FP_TO_UINT: 4931 case ISD::TRUNCATE: 4932 case ISD::ANY_EXTEND: 4933 case ISD::ZERO_EXTEND: 4934 case ISD::SIGN_EXTEND: 4935 case ISD::UINT_TO_FP: 4936 case ISD::SINT_TO_FP: 4937 case ISD::ABS: 4938 case ISD::BITREVERSE: 4939 case ISD::BSWAP: 4940 case ISD::CTLZ: 4941 case ISD::CTLZ_ZERO_UNDEF: 4942 case ISD::CTTZ: 4943 case ISD::CTTZ_ZERO_UNDEF: 4944 case ISD::CTPOP: { 4945 SDValue Ops = {Operand}; 4946 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4947 return Fold; 4948 } 4949 } 4950 4951 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4952 switch (Opcode) { 4953 case ISD::STEP_VECTOR: 4954 assert(VT.isScalableVector() && 4955 "STEP_VECTOR can only be used with scalable types"); 4956 assert(OpOpcode == ISD::TargetConstant && 4957 VT.getVectorElementType() == Operand.getValueType() && 4958 "Unexpected step operand"); 4959 break; 4960 case ISD::FREEZE: 4961 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4962 break; 4963 case ISD::TokenFactor: 4964 case ISD::MERGE_VALUES: 4965 case ISD::CONCAT_VECTORS: 4966 return Operand; // Factor, merge or concat of one node? No need. 4967 case ISD::BUILD_VECTOR: { 4968 // Attempt to simplify BUILD_VECTOR. 4969 SDValue Ops[] = {Operand}; 4970 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4971 return V; 4972 break; 4973 } 4974 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4975 case ISD::FP_EXTEND: 4976 assert(VT.isFloatingPoint() && 4977 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4978 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4979 assert((!VT.isVector() || 4980 VT.getVectorElementCount() == 4981 Operand.getValueType().getVectorElementCount()) && 4982 "Vector element count mismatch!"); 4983 assert(Operand.getValueType().bitsLT(VT) && 4984 "Invalid fpext node, dst < src!"); 4985 if (Operand.isUndef()) 4986 return getUNDEF(VT); 4987 break; 4988 case ISD::FP_TO_SINT: 4989 case ISD::FP_TO_UINT: 4990 if (Operand.isUndef()) 4991 return getUNDEF(VT); 4992 break; 4993 case ISD::SINT_TO_FP: 4994 case ISD::UINT_TO_FP: 4995 // [us]itofp(undef) = 0, because the result value is bounded. 4996 if (Operand.isUndef()) 4997 return getConstantFP(0.0, DL, VT); 4998 break; 4999 case ISD::SIGN_EXTEND: 5000 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5001 "Invalid SIGN_EXTEND!"); 5002 assert(VT.isVector() == Operand.getValueType().isVector() && 5003 "SIGN_EXTEND result type type should be vector iff the operand " 5004 "type is vector!"); 5005 if (Operand.getValueType() == VT) return Operand; // noop extension 5006 assert((!VT.isVector() || 5007 VT.getVectorElementCount() == 5008 Operand.getValueType().getVectorElementCount()) && 5009 "Vector element count mismatch!"); 5010 assert(Operand.getValueType().bitsLT(VT) && 5011 "Invalid sext node, dst < src!"); 5012 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5013 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5014 if (OpOpcode == ISD::UNDEF) 5015 // sext(undef) = 0, because the top bits will all be the same. 5016 return getConstant(0, DL, VT); 5017 break; 5018 case ISD::ZERO_EXTEND: 5019 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5020 "Invalid ZERO_EXTEND!"); 5021 assert(VT.isVector() == Operand.getValueType().isVector() && 5022 "ZERO_EXTEND result type type should be vector iff the operand " 5023 "type is vector!"); 5024 if (Operand.getValueType() == VT) return Operand; // noop extension 5025 assert((!VT.isVector() || 5026 VT.getVectorElementCount() == 5027 Operand.getValueType().getVectorElementCount()) && 5028 "Vector element count mismatch!"); 5029 assert(Operand.getValueType().bitsLT(VT) && 5030 "Invalid zext node, dst < src!"); 5031 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5032 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5033 if (OpOpcode == ISD::UNDEF) 5034 // zext(undef) = 0, because the top bits will be zero. 5035 return getConstant(0, DL, VT); 5036 break; 5037 case ISD::ANY_EXTEND: 5038 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5039 "Invalid ANY_EXTEND!"); 5040 assert(VT.isVector() == Operand.getValueType().isVector() && 5041 "ANY_EXTEND result type type should be vector iff the operand " 5042 "type is vector!"); 5043 if (Operand.getValueType() == VT) return Operand; // noop extension 5044 assert((!VT.isVector() || 5045 VT.getVectorElementCount() == 5046 Operand.getValueType().getVectorElementCount()) && 5047 "Vector element count mismatch!"); 5048 assert(Operand.getValueType().bitsLT(VT) && 5049 "Invalid anyext node, dst < src!"); 5050 5051 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5052 OpOpcode == ISD::ANY_EXTEND) 5053 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5054 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5055 if (OpOpcode == ISD::UNDEF) 5056 return getUNDEF(VT); 5057 5058 // (ext (trunc x)) -> x 5059 if (OpOpcode == ISD::TRUNCATE) { 5060 SDValue OpOp = Operand.getOperand(0); 5061 if (OpOp.getValueType() == VT) { 5062 transferDbgValues(Operand, OpOp); 5063 return OpOp; 5064 } 5065 } 5066 break; 5067 case ISD::TRUNCATE: 5068 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5069 "Invalid TRUNCATE!"); 5070 assert(VT.isVector() == Operand.getValueType().isVector() && 5071 "TRUNCATE result type type should be vector iff the operand " 5072 "type is vector!"); 5073 if (Operand.getValueType() == VT) return Operand; // noop truncate 5074 assert((!VT.isVector() || 5075 VT.getVectorElementCount() == 5076 Operand.getValueType().getVectorElementCount()) && 5077 "Vector element count mismatch!"); 5078 assert(Operand.getValueType().bitsGT(VT) && 5079 "Invalid truncate node, src < dst!"); 5080 if (OpOpcode == ISD::TRUNCATE) 5081 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5082 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5083 OpOpcode == ISD::ANY_EXTEND) { 5084 // If the source is smaller than the dest, we still need an extend. 5085 if (Operand.getOperand(0).getValueType().getScalarType() 5086 .bitsLT(VT.getScalarType())) 5087 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5088 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5089 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5090 return Operand.getOperand(0); 5091 } 5092 if (OpOpcode == ISD::UNDEF) 5093 return getUNDEF(VT); 5094 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5095 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5096 break; 5097 case ISD::ANY_EXTEND_VECTOR_INREG: 5098 case ISD::ZERO_EXTEND_VECTOR_INREG: 5099 case ISD::SIGN_EXTEND_VECTOR_INREG: 5100 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5101 assert(Operand.getValueType().bitsLE(VT) && 5102 "The input must be the same size or smaller than the result."); 5103 assert(VT.getVectorMinNumElements() < 5104 Operand.getValueType().getVectorMinNumElements() && 5105 "The destination vector type must have fewer lanes than the input."); 5106 break; 5107 case ISD::ABS: 5108 assert(VT.isInteger() && VT == Operand.getValueType() && 5109 "Invalid ABS!"); 5110 if (OpOpcode == ISD::UNDEF) 5111 return getUNDEF(VT); 5112 break; 5113 case ISD::BSWAP: 5114 assert(VT.isInteger() && VT == Operand.getValueType() && 5115 "Invalid BSWAP!"); 5116 assert((VT.getScalarSizeInBits() % 16 == 0) && 5117 "BSWAP types must be a multiple of 16 bits!"); 5118 if (OpOpcode == ISD::UNDEF) 5119 return getUNDEF(VT); 5120 break; 5121 case ISD::BITREVERSE: 5122 assert(VT.isInteger() && VT == Operand.getValueType() && 5123 "Invalid BITREVERSE!"); 5124 if (OpOpcode == ISD::UNDEF) 5125 return getUNDEF(VT); 5126 break; 5127 case ISD::BITCAST: 5128 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5129 "Cannot BITCAST between types of different sizes!"); 5130 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5131 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5132 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5133 if (OpOpcode == ISD::UNDEF) 5134 return getUNDEF(VT); 5135 break; 5136 case ISD::SCALAR_TO_VECTOR: 5137 assert(VT.isVector() && !Operand.getValueType().isVector() && 5138 (VT.getVectorElementType() == Operand.getValueType() || 5139 (VT.getVectorElementType().isInteger() && 5140 Operand.getValueType().isInteger() && 5141 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5142 "Illegal SCALAR_TO_VECTOR node!"); 5143 if (OpOpcode == ISD::UNDEF) 5144 return getUNDEF(VT); 5145 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5146 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5147 isa<ConstantSDNode>(Operand.getOperand(1)) && 5148 Operand.getConstantOperandVal(1) == 0 && 5149 Operand.getOperand(0).getValueType() == VT) 5150 return Operand.getOperand(0); 5151 break; 5152 case ISD::FNEG: 5153 // Negation of an unknown bag of bits is still completely undefined. 5154 if (OpOpcode == ISD::UNDEF) 5155 return getUNDEF(VT); 5156 5157 if (OpOpcode == ISD::FNEG) // --X -> X 5158 return Operand.getOperand(0); 5159 break; 5160 case ISD::FABS: 5161 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5162 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5163 break; 5164 case ISD::VSCALE: 5165 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5166 break; 5167 case ISD::CTPOP: 5168 if (Operand.getValueType().getScalarType() == MVT::i1) 5169 return Operand; 5170 break; 5171 case ISD::CTLZ: 5172 case ISD::CTTZ: 5173 if (Operand.getValueType().getScalarType() == MVT::i1) 5174 return getNOT(DL, Operand, Operand.getValueType()); 5175 break; 5176 case ISD::VECREDUCE_SMIN: 5177 case ISD::VECREDUCE_UMAX: 5178 if (Operand.getValueType().getScalarType() == MVT::i1) 5179 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5180 break; 5181 case ISD::VECREDUCE_SMAX: 5182 case ISD::VECREDUCE_UMIN: 5183 if (Operand.getValueType().getScalarType() == MVT::i1) 5184 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5185 break; 5186 } 5187 5188 SDNode *N; 5189 SDVTList VTs = getVTList(VT); 5190 SDValue Ops[] = {Operand}; 5191 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5192 FoldingSetNodeID ID; 5193 AddNodeIDNode(ID, Opcode, VTs, Ops); 5194 void *IP = nullptr; 5195 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5196 E->intersectFlagsWith(Flags); 5197 return SDValue(E, 0); 5198 } 5199 5200 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5201 N->setFlags(Flags); 5202 createOperands(N, Ops); 5203 CSEMap.InsertNode(N, IP); 5204 } else { 5205 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5206 createOperands(N, Ops); 5207 } 5208 5209 InsertNode(N); 5210 SDValue V = SDValue(N, 0); 5211 NewSDValueDbgMsg(V, "Creating new node: ", this); 5212 return V; 5213 } 5214 5215 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5216 const APInt &C2) { 5217 switch (Opcode) { 5218 case ISD::ADD: return C1 + C2; 5219 case ISD::SUB: return C1 - C2; 5220 case ISD::MUL: return C1 * C2; 5221 case ISD::AND: return C1 & C2; 5222 case ISD::OR: return C1 | C2; 5223 case ISD::XOR: return C1 ^ C2; 5224 case ISD::SHL: return C1 << C2; 5225 case ISD::SRL: return C1.lshr(C2); 5226 case ISD::SRA: return C1.ashr(C2); 5227 case ISD::ROTL: return C1.rotl(C2); 5228 case ISD::ROTR: return C1.rotr(C2); 5229 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5230 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5231 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5232 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5233 case ISD::SADDSAT: return C1.sadd_sat(C2); 5234 case ISD::UADDSAT: return C1.uadd_sat(C2); 5235 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5236 case ISD::USUBSAT: return C1.usub_sat(C2); 5237 case ISD::UDIV: 5238 if (!C2.getBoolValue()) 5239 break; 5240 return C1.udiv(C2); 5241 case ISD::UREM: 5242 if (!C2.getBoolValue()) 5243 break; 5244 return C1.urem(C2); 5245 case ISD::SDIV: 5246 if (!C2.getBoolValue()) 5247 break; 5248 return C1.sdiv(C2); 5249 case ISD::SREM: 5250 if (!C2.getBoolValue()) 5251 break; 5252 return C1.srem(C2); 5253 case ISD::MULHS: { 5254 unsigned FullWidth = C1.getBitWidth() * 2; 5255 APInt C1Ext = C1.sext(FullWidth); 5256 APInt C2Ext = C2.sext(FullWidth); 5257 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5258 } 5259 case ISD::MULHU: { 5260 unsigned FullWidth = C1.getBitWidth() * 2; 5261 APInt C1Ext = C1.zext(FullWidth); 5262 APInt C2Ext = C2.zext(FullWidth); 5263 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5264 } 5265 } 5266 return llvm::None; 5267 } 5268 5269 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5270 const GlobalAddressSDNode *GA, 5271 const SDNode *N2) { 5272 if (GA->getOpcode() != ISD::GlobalAddress) 5273 return SDValue(); 5274 if (!TLI->isOffsetFoldingLegal(GA)) 5275 return SDValue(); 5276 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5277 if (!C2) 5278 return SDValue(); 5279 int64_t Offset = C2->getSExtValue(); 5280 switch (Opcode) { 5281 case ISD::ADD: break; 5282 case ISD::SUB: Offset = -uint64_t(Offset); break; 5283 default: return SDValue(); 5284 } 5285 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5286 GA->getOffset() + uint64_t(Offset)); 5287 } 5288 5289 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5290 switch (Opcode) { 5291 case ISD::SDIV: 5292 case ISD::UDIV: 5293 case ISD::SREM: 5294 case ISD::UREM: { 5295 // If a divisor is zero/undef or any element of a divisor vector is 5296 // zero/undef, the whole op is undef. 5297 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5298 SDValue Divisor = Ops[1]; 5299 if (Divisor.isUndef() || isNullConstant(Divisor)) 5300 return true; 5301 5302 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5303 llvm::any_of(Divisor->op_values(), 5304 [](SDValue V) { return V.isUndef() || 5305 isNullConstant(V); }); 5306 // TODO: Handle signed overflow. 5307 } 5308 // TODO: Handle oversized shifts. 5309 default: 5310 return false; 5311 } 5312 } 5313 5314 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5315 EVT VT, ArrayRef<SDValue> Ops) { 5316 // If the opcode is a target-specific ISD node, there's nothing we can 5317 // do here and the operand rules may not line up with the below, so 5318 // bail early. 5319 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5320 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5321 // foldCONCAT_VECTORS in getNode before this is called. 5322 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5323 return SDValue(); 5324 5325 unsigned NumOps = Ops.size(); 5326 if (NumOps == 0) 5327 return SDValue(); 5328 5329 if (isUndef(Opcode, Ops)) 5330 return getUNDEF(VT); 5331 5332 // Handle binops special cases. 5333 if (NumOps == 2) { 5334 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5335 return CFP; 5336 5337 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5338 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5339 if (C1->isOpaque() || C2->isOpaque()) 5340 return SDValue(); 5341 5342 Optional<APInt> FoldAttempt = 5343 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5344 if (!FoldAttempt) 5345 return SDValue(); 5346 5347 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5348 assert((!Folded || !VT.isVector()) && 5349 "Can't fold vectors ops with scalar operands"); 5350 return Folded; 5351 } 5352 } 5353 5354 // fold (add Sym, c) -> Sym+c 5355 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5356 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5357 if (TLI->isCommutativeBinOp(Opcode)) 5358 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5359 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5360 } 5361 5362 // This is for vector folding only from here on. 5363 if (!VT.isVector()) 5364 return SDValue(); 5365 5366 ElementCount NumElts = VT.getVectorElementCount(); 5367 5368 // See if we can fold through bitcasted integer ops. 5369 // TODO: Can we handle undef elements? 5370 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5371 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5372 Ops[0].getOpcode() == ISD::BITCAST && 5373 Ops[1].getOpcode() == ISD::BITCAST) { 5374 SDValue N1 = peekThroughBitcasts(Ops[0]); 5375 SDValue N2 = peekThroughBitcasts(Ops[1]); 5376 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5377 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5378 EVT BVVT = N1.getValueType(); 5379 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5380 bool IsLE = getDataLayout().isLittleEndian(); 5381 unsigned EltBits = VT.getScalarSizeInBits(); 5382 SmallVector<APInt> RawBits1, RawBits2; 5383 BitVector UndefElts1, UndefElts2; 5384 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5385 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5386 UndefElts1.none() && UndefElts2.none()) { 5387 SmallVector<APInt> RawBits; 5388 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5389 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5390 if (!Fold) 5391 break; 5392 RawBits.push_back(Fold.getValue()); 5393 } 5394 if (RawBits.size() == NumElts.getFixedValue()) { 5395 // We have constant folded, but we need to cast this again back to 5396 // the original (possibly legalized) type. 5397 SmallVector<APInt> DstBits; 5398 BitVector DstUndefs; 5399 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5400 DstBits, RawBits, DstUndefs, 5401 BitVector(RawBits.size(), false)); 5402 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5403 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5404 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5405 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5406 if (DstUndefs[I]) 5407 continue; 5408 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5409 } 5410 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5411 } 5412 } 5413 } 5414 } 5415 5416 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5417 return !Op.getValueType().isVector() || 5418 Op.getValueType().getVectorElementCount() == NumElts; 5419 }; 5420 5421 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5422 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5423 Op.getOpcode() == ISD::BUILD_VECTOR || 5424 Op.getOpcode() == ISD::SPLAT_VECTOR; 5425 }; 5426 5427 // All operands must be vector types with the same number of elements as 5428 // the result type and must be either UNDEF or a build/splat vector 5429 // or UNDEF scalars. 5430 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5431 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5432 return SDValue(); 5433 5434 // If we are comparing vectors, then the result needs to be a i1 boolean 5435 // that is then sign-extended back to the legal result type. 5436 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5437 5438 // Find legal integer scalar type for constant promotion and 5439 // ensure that its scalar size is at least as large as source. 5440 EVT LegalSVT = VT.getScalarType(); 5441 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5442 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5443 if (LegalSVT.bitsLT(VT.getScalarType())) 5444 return SDValue(); 5445 } 5446 5447 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5448 // only have one operand to check. For fixed-length vector types we may have 5449 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5450 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5451 5452 // Constant fold each scalar lane separately. 5453 SmallVector<SDValue, 4> ScalarResults; 5454 for (unsigned I = 0; I != NumVectorElts; I++) { 5455 SmallVector<SDValue, 4> ScalarOps; 5456 for (SDValue Op : Ops) { 5457 EVT InSVT = Op.getValueType().getScalarType(); 5458 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5459 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5460 if (Op.isUndef()) 5461 ScalarOps.push_back(getUNDEF(InSVT)); 5462 else 5463 ScalarOps.push_back(Op); 5464 continue; 5465 } 5466 5467 SDValue ScalarOp = 5468 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5469 EVT ScalarVT = ScalarOp.getValueType(); 5470 5471 // Build vector (integer) scalar operands may need implicit 5472 // truncation - do this before constant folding. 5473 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5474 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5475 5476 ScalarOps.push_back(ScalarOp); 5477 } 5478 5479 // Constant fold the scalar operands. 5480 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5481 5482 // Legalize the (integer) scalar constant if necessary. 5483 if (LegalSVT != SVT) 5484 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5485 5486 // Scalar folding only succeeded if the result is a constant or UNDEF. 5487 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5488 ScalarResult.getOpcode() != ISD::ConstantFP) 5489 return SDValue(); 5490 ScalarResults.push_back(ScalarResult); 5491 } 5492 5493 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5494 : getBuildVector(VT, DL, ScalarResults); 5495 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5496 return V; 5497 } 5498 5499 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5500 EVT VT, SDValue N1, SDValue N2) { 5501 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5502 // should. That will require dealing with a potentially non-default 5503 // rounding mode, checking the "opStatus" return value from the APFloat 5504 // math calculations, and possibly other variations. 5505 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5506 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5507 if (N1CFP && N2CFP) { 5508 APFloat C1 = N1CFP->getValueAPF(); // make copy 5509 const APFloat &C2 = N2CFP->getValueAPF(); 5510 switch (Opcode) { 5511 case ISD::FADD: 5512 C1.add(C2, APFloat::rmNearestTiesToEven); 5513 return getConstantFP(C1, DL, VT); 5514 case ISD::FSUB: 5515 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5516 return getConstantFP(C1, DL, VT); 5517 case ISD::FMUL: 5518 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5519 return getConstantFP(C1, DL, VT); 5520 case ISD::FDIV: 5521 C1.divide(C2, APFloat::rmNearestTiesToEven); 5522 return getConstantFP(C1, DL, VT); 5523 case ISD::FREM: 5524 C1.mod(C2); 5525 return getConstantFP(C1, DL, VT); 5526 case ISD::FCOPYSIGN: 5527 C1.copySign(C2); 5528 return getConstantFP(C1, DL, VT); 5529 case ISD::FMINNUM: 5530 return getConstantFP(minnum(C1, C2), DL, VT); 5531 case ISD::FMAXNUM: 5532 return getConstantFP(maxnum(C1, C2), DL, VT); 5533 case ISD::FMINIMUM: 5534 return getConstantFP(minimum(C1, C2), DL, VT); 5535 case ISD::FMAXIMUM: 5536 return getConstantFP(maximum(C1, C2), DL, VT); 5537 default: break; 5538 } 5539 } 5540 if (N1CFP && Opcode == ISD::FP_ROUND) { 5541 APFloat C1 = N1CFP->getValueAPF(); // make copy 5542 bool Unused; 5543 // This can return overflow, underflow, or inexact; we don't care. 5544 // FIXME need to be more flexible about rounding mode. 5545 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5546 &Unused); 5547 return getConstantFP(C1, DL, VT); 5548 } 5549 5550 switch (Opcode) { 5551 case ISD::FSUB: 5552 // -0.0 - undef --> undef (consistent with "fneg undef") 5553 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5554 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5555 return getUNDEF(VT); 5556 LLVM_FALLTHROUGH; 5557 5558 case ISD::FADD: 5559 case ISD::FMUL: 5560 case ISD::FDIV: 5561 case ISD::FREM: 5562 // If both operands are undef, the result is undef. If 1 operand is undef, 5563 // the result is NaN. This should match the behavior of the IR optimizer. 5564 if (N1.isUndef() && N2.isUndef()) 5565 return getUNDEF(VT); 5566 if (N1.isUndef() || N2.isUndef()) 5567 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5568 } 5569 return SDValue(); 5570 } 5571 5572 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5573 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5574 5575 // There's no need to assert on a byte-aligned pointer. All pointers are at 5576 // least byte aligned. 5577 if (A == Align(1)) 5578 return Val; 5579 5580 FoldingSetNodeID ID; 5581 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5582 ID.AddInteger(A.value()); 5583 5584 void *IP = nullptr; 5585 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5586 return SDValue(E, 0); 5587 5588 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5589 Val.getValueType(), A); 5590 createOperands(N, {Val}); 5591 5592 CSEMap.InsertNode(N, IP); 5593 InsertNode(N); 5594 5595 SDValue V(N, 0); 5596 NewSDValueDbgMsg(V, "Creating new node: ", this); 5597 return V; 5598 } 5599 5600 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5601 SDValue N1, SDValue N2) { 5602 SDNodeFlags Flags; 5603 if (Inserter) 5604 Flags = Inserter->getFlags(); 5605 return getNode(Opcode, DL, VT, N1, N2, Flags); 5606 } 5607 5608 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5609 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5610 assert(N1.getOpcode() != ISD::DELETED_NODE && 5611 N2.getOpcode() != ISD::DELETED_NODE && 5612 "Operand is DELETED_NODE!"); 5613 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5614 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5615 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5616 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5617 5618 // Canonicalize constant to RHS if commutative. 5619 if (TLI->isCommutativeBinOp(Opcode)) { 5620 if (N1C && !N2C) { 5621 std::swap(N1C, N2C); 5622 std::swap(N1, N2); 5623 } else if (N1CFP && !N2CFP) { 5624 std::swap(N1CFP, N2CFP); 5625 std::swap(N1, N2); 5626 } 5627 } 5628 5629 switch (Opcode) { 5630 default: break; 5631 case ISD::TokenFactor: 5632 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5633 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5634 // Fold trivial token factors. 5635 if (N1.getOpcode() == ISD::EntryToken) return N2; 5636 if (N2.getOpcode() == ISD::EntryToken) return N1; 5637 if (N1 == N2) return N1; 5638 break; 5639 case ISD::BUILD_VECTOR: { 5640 // Attempt to simplify BUILD_VECTOR. 5641 SDValue Ops[] = {N1, N2}; 5642 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5643 return V; 5644 break; 5645 } 5646 case ISD::CONCAT_VECTORS: { 5647 SDValue Ops[] = {N1, N2}; 5648 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5649 return V; 5650 break; 5651 } 5652 case ISD::AND: 5653 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5654 assert(N1.getValueType() == N2.getValueType() && 5655 N1.getValueType() == VT && "Binary operator types must match!"); 5656 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5657 // worth handling here. 5658 if (N2C && N2C->isZero()) 5659 return N2; 5660 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5661 return N1; 5662 break; 5663 case ISD::OR: 5664 case ISD::XOR: 5665 case ISD::ADD: 5666 case ISD::SUB: 5667 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5668 assert(N1.getValueType() == N2.getValueType() && 5669 N1.getValueType() == VT && "Binary operator types must match!"); 5670 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5671 // it's worth handling here. 5672 if (N2C && N2C->isZero()) 5673 return N1; 5674 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5675 VT.getVectorElementType() == MVT::i1) 5676 return getNode(ISD::XOR, DL, VT, N1, N2); 5677 break; 5678 case ISD::MUL: 5679 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5680 assert(N1.getValueType() == N2.getValueType() && 5681 N1.getValueType() == VT && "Binary operator types must match!"); 5682 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5683 return getNode(ISD::AND, DL, VT, N1, N2); 5684 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5685 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5686 const APInt &N2CImm = N2C->getAPIntValue(); 5687 return getVScale(DL, VT, MulImm * N2CImm); 5688 } 5689 break; 5690 case ISD::UDIV: 5691 case ISD::UREM: 5692 case ISD::MULHU: 5693 case ISD::MULHS: 5694 case ISD::SDIV: 5695 case ISD::SREM: 5696 case ISD::SADDSAT: 5697 case ISD::SSUBSAT: 5698 case ISD::UADDSAT: 5699 case ISD::USUBSAT: 5700 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5701 assert(N1.getValueType() == N2.getValueType() && 5702 N1.getValueType() == VT && "Binary operator types must match!"); 5703 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5704 // fold (add_sat x, y) -> (or x, y) for bool types. 5705 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5706 return getNode(ISD::OR, DL, VT, N1, N2); 5707 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5708 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5709 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5710 } 5711 break; 5712 case ISD::SMIN: 5713 case ISD::UMAX: 5714 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5715 assert(N1.getValueType() == N2.getValueType() && 5716 N1.getValueType() == VT && "Binary operator types must match!"); 5717 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5718 return getNode(ISD::OR, DL, VT, N1, N2); 5719 break; 5720 case ISD::SMAX: 5721 case ISD::UMIN: 5722 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5723 assert(N1.getValueType() == N2.getValueType() && 5724 N1.getValueType() == VT && "Binary operator types must match!"); 5725 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5726 return getNode(ISD::AND, DL, VT, N1, N2); 5727 break; 5728 case ISD::FADD: 5729 case ISD::FSUB: 5730 case ISD::FMUL: 5731 case ISD::FDIV: 5732 case ISD::FREM: 5733 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5734 assert(N1.getValueType() == N2.getValueType() && 5735 N1.getValueType() == VT && "Binary operator types must match!"); 5736 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5737 return V; 5738 break; 5739 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5740 assert(N1.getValueType() == VT && 5741 N1.getValueType().isFloatingPoint() && 5742 N2.getValueType().isFloatingPoint() && 5743 "Invalid FCOPYSIGN!"); 5744 break; 5745 case ISD::SHL: 5746 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5747 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5748 const APInt &ShiftImm = N2C->getAPIntValue(); 5749 return getVScale(DL, VT, MulImm << ShiftImm); 5750 } 5751 LLVM_FALLTHROUGH; 5752 case ISD::SRA: 5753 case ISD::SRL: 5754 if (SDValue V = simplifyShift(N1, N2)) 5755 return V; 5756 LLVM_FALLTHROUGH; 5757 case ISD::ROTL: 5758 case ISD::ROTR: 5759 assert(VT == N1.getValueType() && 5760 "Shift operators return type must be the same as their first arg"); 5761 assert(VT.isInteger() && N2.getValueType().isInteger() && 5762 "Shifts only work on integers"); 5763 assert((!VT.isVector() || VT == N2.getValueType()) && 5764 "Vector shift amounts must be in the same as their first arg"); 5765 // Verify that the shift amount VT is big enough to hold valid shift 5766 // amounts. This catches things like trying to shift an i1024 value by an 5767 // i8, which is easy to fall into in generic code that uses 5768 // TLI.getShiftAmount(). 5769 assert(N2.getValueType().getScalarSizeInBits() >= 5770 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5771 "Invalid use of small shift amount with oversized value!"); 5772 5773 // Always fold shifts of i1 values so the code generator doesn't need to 5774 // handle them. Since we know the size of the shift has to be less than the 5775 // size of the value, the shift/rotate count is guaranteed to be zero. 5776 if (VT == MVT::i1) 5777 return N1; 5778 if (N2C && N2C->isZero()) 5779 return N1; 5780 break; 5781 case ISD::FP_ROUND: 5782 assert(VT.isFloatingPoint() && 5783 N1.getValueType().isFloatingPoint() && 5784 VT.bitsLE(N1.getValueType()) && 5785 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5786 "Invalid FP_ROUND!"); 5787 if (N1.getValueType() == VT) return N1; // noop conversion. 5788 break; 5789 case ISD::AssertSext: 5790 case ISD::AssertZext: { 5791 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5792 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5793 assert(VT.isInteger() && EVT.isInteger() && 5794 "Cannot *_EXTEND_INREG FP types"); 5795 assert(!EVT.isVector() && 5796 "AssertSExt/AssertZExt type should be the vector element type " 5797 "rather than the vector type!"); 5798 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5799 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5800 break; 5801 } 5802 case ISD::SIGN_EXTEND_INREG: { 5803 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5804 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5805 assert(VT.isInteger() && EVT.isInteger() && 5806 "Cannot *_EXTEND_INREG FP types"); 5807 assert(EVT.isVector() == VT.isVector() && 5808 "SIGN_EXTEND_INREG type should be vector iff the operand " 5809 "type is vector!"); 5810 assert((!EVT.isVector() || 5811 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5812 "Vector element counts must match in SIGN_EXTEND_INREG"); 5813 assert(EVT.bitsLE(VT) && "Not extending!"); 5814 if (EVT == VT) return N1; // Not actually extending 5815 5816 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5817 unsigned FromBits = EVT.getScalarSizeInBits(); 5818 Val <<= Val.getBitWidth() - FromBits; 5819 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5820 return getConstant(Val, DL, ConstantVT); 5821 }; 5822 5823 if (N1C) { 5824 const APInt &Val = N1C->getAPIntValue(); 5825 return SignExtendInReg(Val, VT); 5826 } 5827 5828 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5829 SmallVector<SDValue, 8> Ops; 5830 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5831 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5832 SDValue Op = N1.getOperand(i); 5833 if (Op.isUndef()) { 5834 Ops.push_back(getUNDEF(OpVT)); 5835 continue; 5836 } 5837 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5838 APInt Val = C->getAPIntValue(); 5839 Ops.push_back(SignExtendInReg(Val, OpVT)); 5840 } 5841 return getBuildVector(VT, DL, Ops); 5842 } 5843 break; 5844 } 5845 case ISD::FP_TO_SINT_SAT: 5846 case ISD::FP_TO_UINT_SAT: { 5847 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5848 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5849 assert(N1.getValueType().isVector() == VT.isVector() && 5850 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5851 "vector!"); 5852 assert((!VT.isVector() || VT.getVectorNumElements() == 5853 N1.getValueType().getVectorNumElements()) && 5854 "Vector element counts must match in FP_TO_*INT_SAT"); 5855 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5856 "Type to saturate to must be a scalar."); 5857 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5858 "Not extending!"); 5859 break; 5860 } 5861 case ISD::EXTRACT_VECTOR_ELT: 5862 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5863 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5864 element type of the vector."); 5865 5866 // Extract from an undefined value or using an undefined index is undefined. 5867 if (N1.isUndef() || N2.isUndef()) 5868 return getUNDEF(VT); 5869 5870 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5871 // vectors. For scalable vectors we will provide appropriate support for 5872 // dealing with arbitrary indices. 5873 if (N2C && N1.getValueType().isFixedLengthVector() && 5874 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5875 return getUNDEF(VT); 5876 5877 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5878 // expanding copies of large vectors from registers. This only works for 5879 // fixed length vectors, since we need to know the exact number of 5880 // elements. 5881 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5882 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5883 unsigned Factor = 5884 N1.getOperand(0).getValueType().getVectorNumElements(); 5885 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5886 N1.getOperand(N2C->getZExtValue() / Factor), 5887 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5888 } 5889 5890 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5891 // lowering is expanding large vector constants. 5892 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5893 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5894 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5895 N1.getValueType().isFixedLengthVector()) && 5896 "BUILD_VECTOR used for scalable vectors"); 5897 unsigned Index = 5898 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5899 SDValue Elt = N1.getOperand(Index); 5900 5901 if (VT != Elt.getValueType()) 5902 // If the vector element type is not legal, the BUILD_VECTOR operands 5903 // are promoted and implicitly truncated, and the result implicitly 5904 // extended. Make that explicit here. 5905 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5906 5907 return Elt; 5908 } 5909 5910 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5911 // operations are lowered to scalars. 5912 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5913 // If the indices are the same, return the inserted element else 5914 // if the indices are known different, extract the element from 5915 // the original vector. 5916 SDValue N1Op2 = N1.getOperand(2); 5917 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5918 5919 if (N1Op2C && N2C) { 5920 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5921 if (VT == N1.getOperand(1).getValueType()) 5922 return N1.getOperand(1); 5923 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5924 } 5925 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5926 } 5927 } 5928 5929 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5930 // when vector types are scalarized and v1iX is legal. 5931 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5932 // Here we are completely ignoring the extract element index (N2), 5933 // which is fine for fixed width vectors, since any index other than 0 5934 // is undefined anyway. However, this cannot be ignored for scalable 5935 // vectors - in theory we could support this, but we don't want to do this 5936 // without a profitability check. 5937 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5938 N1.getValueType().isFixedLengthVector() && 5939 N1.getValueType().getVectorNumElements() == 1) { 5940 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5941 N1.getOperand(1)); 5942 } 5943 break; 5944 case ISD::EXTRACT_ELEMENT: 5945 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5946 assert(!N1.getValueType().isVector() && !VT.isVector() && 5947 (N1.getValueType().isInteger() == VT.isInteger()) && 5948 N1.getValueType() != VT && 5949 "Wrong types for EXTRACT_ELEMENT!"); 5950 5951 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5952 // 64-bit integers into 32-bit parts. Instead of building the extract of 5953 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5954 if (N1.getOpcode() == ISD::BUILD_PAIR) 5955 return N1.getOperand(N2C->getZExtValue()); 5956 5957 // EXTRACT_ELEMENT of a constant int is also very common. 5958 if (N1C) { 5959 unsigned ElementSize = VT.getSizeInBits(); 5960 unsigned Shift = ElementSize * N2C->getZExtValue(); 5961 const APInt &Val = N1C->getAPIntValue(); 5962 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5963 } 5964 break; 5965 case ISD::EXTRACT_SUBVECTOR: { 5966 EVT N1VT = N1.getValueType(); 5967 assert(VT.isVector() && N1VT.isVector() && 5968 "Extract subvector VTs must be vectors!"); 5969 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5970 "Extract subvector VTs must have the same element type!"); 5971 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5972 "Cannot extract a scalable vector from a fixed length vector!"); 5973 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5974 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5975 "Extract subvector must be from larger vector to smaller vector!"); 5976 assert(N2C && "Extract subvector index must be a constant"); 5977 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5978 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5979 N1VT.getVectorMinNumElements()) && 5980 "Extract subvector overflow!"); 5981 assert(N2C->getAPIntValue().getBitWidth() == 5982 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5983 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5984 5985 // Trivial extraction. 5986 if (VT == N1VT) 5987 return N1; 5988 5989 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5990 if (N1.isUndef()) 5991 return getUNDEF(VT); 5992 5993 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5994 // the concat have the same type as the extract. 5995 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5996 VT == N1.getOperand(0).getValueType()) { 5997 unsigned Factor = VT.getVectorMinNumElements(); 5998 return N1.getOperand(N2C->getZExtValue() / Factor); 5999 } 6000 6001 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6002 // during shuffle legalization. 6003 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6004 VT == N1.getOperand(1).getValueType()) 6005 return N1.getOperand(1); 6006 break; 6007 } 6008 } 6009 6010 // Perform trivial constant folding. 6011 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6012 return SV; 6013 6014 // Canonicalize an UNDEF to the RHS, even over a constant. 6015 if (N1.isUndef()) { 6016 if (TLI->isCommutativeBinOp(Opcode)) { 6017 std::swap(N1, N2); 6018 } else { 6019 switch (Opcode) { 6020 case ISD::SIGN_EXTEND_INREG: 6021 case ISD::SUB: 6022 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6023 case ISD::UDIV: 6024 case ISD::SDIV: 6025 case ISD::UREM: 6026 case ISD::SREM: 6027 case ISD::SSUBSAT: 6028 case ISD::USUBSAT: 6029 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6030 } 6031 } 6032 } 6033 6034 // Fold a bunch of operators when the RHS is undef. 6035 if (N2.isUndef()) { 6036 switch (Opcode) { 6037 case ISD::XOR: 6038 if (N1.isUndef()) 6039 // Handle undef ^ undef -> 0 special case. This is a common 6040 // idiom (misuse). 6041 return getConstant(0, DL, VT); 6042 LLVM_FALLTHROUGH; 6043 case ISD::ADD: 6044 case ISD::SUB: 6045 case ISD::UDIV: 6046 case ISD::SDIV: 6047 case ISD::UREM: 6048 case ISD::SREM: 6049 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6050 case ISD::MUL: 6051 case ISD::AND: 6052 case ISD::SSUBSAT: 6053 case ISD::USUBSAT: 6054 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6055 case ISD::OR: 6056 case ISD::SADDSAT: 6057 case ISD::UADDSAT: 6058 return getAllOnesConstant(DL, VT); 6059 } 6060 } 6061 6062 // Memoize this node if possible. 6063 SDNode *N; 6064 SDVTList VTs = getVTList(VT); 6065 SDValue Ops[] = {N1, N2}; 6066 if (VT != MVT::Glue) { 6067 FoldingSetNodeID ID; 6068 AddNodeIDNode(ID, Opcode, VTs, Ops); 6069 void *IP = nullptr; 6070 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6071 E->intersectFlagsWith(Flags); 6072 return SDValue(E, 0); 6073 } 6074 6075 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6076 N->setFlags(Flags); 6077 createOperands(N, Ops); 6078 CSEMap.InsertNode(N, IP); 6079 } else { 6080 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6081 createOperands(N, Ops); 6082 } 6083 6084 InsertNode(N); 6085 SDValue V = SDValue(N, 0); 6086 NewSDValueDbgMsg(V, "Creating new node: ", this); 6087 return V; 6088 } 6089 6090 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6091 SDValue N1, SDValue N2, SDValue N3) { 6092 SDNodeFlags Flags; 6093 if (Inserter) 6094 Flags = Inserter->getFlags(); 6095 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6096 } 6097 6098 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6099 SDValue N1, SDValue N2, SDValue N3, 6100 const SDNodeFlags Flags) { 6101 assert(N1.getOpcode() != ISD::DELETED_NODE && 6102 N2.getOpcode() != ISD::DELETED_NODE && 6103 N3.getOpcode() != ISD::DELETED_NODE && 6104 "Operand is DELETED_NODE!"); 6105 // Perform various simplifications. 6106 switch (Opcode) { 6107 case ISD::FMA: { 6108 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6109 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6110 N3.getValueType() == VT && "FMA types must match!"); 6111 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6112 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6113 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6114 if (N1CFP && N2CFP && N3CFP) { 6115 APFloat V1 = N1CFP->getValueAPF(); 6116 const APFloat &V2 = N2CFP->getValueAPF(); 6117 const APFloat &V3 = N3CFP->getValueAPF(); 6118 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6119 return getConstantFP(V1, DL, VT); 6120 } 6121 break; 6122 } 6123 case ISD::BUILD_VECTOR: { 6124 // Attempt to simplify BUILD_VECTOR. 6125 SDValue Ops[] = {N1, N2, N3}; 6126 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6127 return V; 6128 break; 6129 } 6130 case ISD::CONCAT_VECTORS: { 6131 SDValue Ops[] = {N1, N2, N3}; 6132 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6133 return V; 6134 break; 6135 } 6136 case ISD::SETCC: { 6137 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6138 assert(N1.getValueType() == N2.getValueType() && 6139 "SETCC operands must have the same type!"); 6140 assert(VT.isVector() == N1.getValueType().isVector() && 6141 "SETCC type should be vector iff the operand type is vector!"); 6142 assert((!VT.isVector() || VT.getVectorElementCount() == 6143 N1.getValueType().getVectorElementCount()) && 6144 "SETCC vector element counts must match!"); 6145 // Use FoldSetCC to simplify SETCC's. 6146 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6147 return V; 6148 // Vector constant folding. 6149 SDValue Ops[] = {N1, N2, N3}; 6150 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6151 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6152 return V; 6153 } 6154 break; 6155 } 6156 case ISD::SELECT: 6157 case ISD::VSELECT: 6158 if (SDValue V = simplifySelect(N1, N2, N3)) 6159 return V; 6160 break; 6161 case ISD::VECTOR_SHUFFLE: 6162 llvm_unreachable("should use getVectorShuffle constructor!"); 6163 case ISD::VECTOR_SPLICE: { 6164 if (cast<ConstantSDNode>(N3)->isNullValue()) 6165 return N1; 6166 break; 6167 } 6168 case ISD::INSERT_VECTOR_ELT: { 6169 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6170 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6171 // for scalable vectors where we will generate appropriate code to 6172 // deal with out-of-bounds cases correctly. 6173 if (N3C && N1.getValueType().isFixedLengthVector() && 6174 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6175 return getUNDEF(VT); 6176 6177 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6178 if (N3.isUndef()) 6179 return getUNDEF(VT); 6180 6181 // If the inserted element is an UNDEF, just use the input vector. 6182 if (N2.isUndef()) 6183 return N1; 6184 6185 break; 6186 } 6187 case ISD::INSERT_SUBVECTOR: { 6188 // Inserting undef into undef is still undef. 6189 if (N1.isUndef() && N2.isUndef()) 6190 return getUNDEF(VT); 6191 6192 EVT N2VT = N2.getValueType(); 6193 assert(VT == N1.getValueType() && 6194 "Dest and insert subvector source types must match!"); 6195 assert(VT.isVector() && N2VT.isVector() && 6196 "Insert subvector VTs must be vectors!"); 6197 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6198 "Cannot insert a scalable vector into a fixed length vector!"); 6199 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6200 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6201 "Insert subvector must be from smaller vector to larger vector!"); 6202 assert(isa<ConstantSDNode>(N3) && 6203 "Insert subvector index must be constant"); 6204 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6205 (N2VT.getVectorMinNumElements() + 6206 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6207 VT.getVectorMinNumElements()) && 6208 "Insert subvector overflow!"); 6209 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6210 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6211 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6212 6213 // Trivial insertion. 6214 if (VT == N2VT) 6215 return N2; 6216 6217 // If this is an insert of an extracted vector into an undef vector, we 6218 // can just use the input to the extract. 6219 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6220 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6221 return N2.getOperand(0); 6222 break; 6223 } 6224 case ISD::BITCAST: 6225 // Fold bit_convert nodes from a type to themselves. 6226 if (N1.getValueType() == VT) 6227 return N1; 6228 break; 6229 } 6230 6231 // Memoize node if it doesn't produce a flag. 6232 SDNode *N; 6233 SDVTList VTs = getVTList(VT); 6234 SDValue Ops[] = {N1, N2, N3}; 6235 if (VT != MVT::Glue) { 6236 FoldingSetNodeID ID; 6237 AddNodeIDNode(ID, Opcode, VTs, Ops); 6238 void *IP = nullptr; 6239 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6240 E->intersectFlagsWith(Flags); 6241 return SDValue(E, 0); 6242 } 6243 6244 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6245 N->setFlags(Flags); 6246 createOperands(N, Ops); 6247 CSEMap.InsertNode(N, IP); 6248 } else { 6249 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6250 createOperands(N, Ops); 6251 } 6252 6253 InsertNode(N); 6254 SDValue V = SDValue(N, 0); 6255 NewSDValueDbgMsg(V, "Creating new node: ", this); 6256 return V; 6257 } 6258 6259 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6260 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6261 SDValue Ops[] = { N1, N2, N3, N4 }; 6262 return getNode(Opcode, DL, VT, Ops); 6263 } 6264 6265 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6266 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6267 SDValue N5) { 6268 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6269 return getNode(Opcode, DL, VT, Ops); 6270 } 6271 6272 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6273 /// the incoming stack arguments to be loaded from the stack. 6274 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6275 SmallVector<SDValue, 8> ArgChains; 6276 6277 // Include the original chain at the beginning of the list. When this is 6278 // used by target LowerCall hooks, this helps legalize find the 6279 // CALLSEQ_BEGIN node. 6280 ArgChains.push_back(Chain); 6281 6282 // Add a chain value for each stack argument. 6283 for (SDNode *U : getEntryNode().getNode()->uses()) 6284 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6285 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6286 if (FI->getIndex() < 0) 6287 ArgChains.push_back(SDValue(L, 1)); 6288 6289 // Build a tokenfactor for all the chains. 6290 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6291 } 6292 6293 /// getMemsetValue - Vectorized representation of the memset value 6294 /// operand. 6295 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6296 const SDLoc &dl) { 6297 assert(!Value.isUndef()); 6298 6299 unsigned NumBits = VT.getScalarSizeInBits(); 6300 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6301 assert(C->getAPIntValue().getBitWidth() == 8); 6302 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6303 if (VT.isInteger()) { 6304 bool IsOpaque = VT.getSizeInBits() > 64 || 6305 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6306 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6307 } 6308 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6309 VT); 6310 } 6311 6312 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6313 EVT IntVT = VT.getScalarType(); 6314 if (!IntVT.isInteger()) 6315 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6316 6317 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6318 if (NumBits > 8) { 6319 // Use a multiplication with 0x010101... to extend the input to the 6320 // required length. 6321 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6322 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6323 DAG.getConstant(Magic, dl, IntVT)); 6324 } 6325 6326 if (VT != Value.getValueType() && !VT.isInteger()) 6327 Value = DAG.getBitcast(VT.getScalarType(), Value); 6328 if (VT != Value.getValueType()) 6329 Value = DAG.getSplatBuildVector(VT, dl, Value); 6330 6331 return Value; 6332 } 6333 6334 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6335 /// used when a memcpy is turned into a memset when the source is a constant 6336 /// string ptr. 6337 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6338 const TargetLowering &TLI, 6339 const ConstantDataArraySlice &Slice) { 6340 // Handle vector with all elements zero. 6341 if (Slice.Array == nullptr) { 6342 if (VT.isInteger()) 6343 return DAG.getConstant(0, dl, VT); 6344 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6345 return DAG.getConstantFP(0.0, dl, VT); 6346 if (VT.isVector()) { 6347 unsigned NumElts = VT.getVectorNumElements(); 6348 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6349 return DAG.getNode(ISD::BITCAST, dl, VT, 6350 DAG.getConstant(0, dl, 6351 EVT::getVectorVT(*DAG.getContext(), 6352 EltVT, NumElts))); 6353 } 6354 llvm_unreachable("Expected type!"); 6355 } 6356 6357 assert(!VT.isVector() && "Can't handle vector type here!"); 6358 unsigned NumVTBits = VT.getSizeInBits(); 6359 unsigned NumVTBytes = NumVTBits / 8; 6360 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6361 6362 APInt Val(NumVTBits, 0); 6363 if (DAG.getDataLayout().isLittleEndian()) { 6364 for (unsigned i = 0; i != NumBytes; ++i) 6365 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6366 } else { 6367 for (unsigned i = 0; i != NumBytes; ++i) 6368 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6369 } 6370 6371 // If the "cost" of materializing the integer immediate is less than the cost 6372 // of a load, then it is cost effective to turn the load into the immediate. 6373 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6374 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6375 return DAG.getConstant(Val, dl, VT); 6376 return SDValue(); 6377 } 6378 6379 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6380 const SDLoc &DL, 6381 const SDNodeFlags Flags) { 6382 EVT VT = Base.getValueType(); 6383 SDValue Index; 6384 6385 if (Offset.isScalable()) 6386 Index = getVScale(DL, Base.getValueType(), 6387 APInt(Base.getValueSizeInBits().getFixedSize(), 6388 Offset.getKnownMinSize())); 6389 else 6390 Index = getConstant(Offset.getFixedSize(), DL, VT); 6391 6392 return getMemBasePlusOffset(Base, Index, DL, Flags); 6393 } 6394 6395 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6396 const SDLoc &DL, 6397 const SDNodeFlags Flags) { 6398 assert(Offset.getValueType().isInteger()); 6399 EVT BasePtrVT = Ptr.getValueType(); 6400 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6401 } 6402 6403 /// Returns true if memcpy source is constant data. 6404 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6405 uint64_t SrcDelta = 0; 6406 GlobalAddressSDNode *G = nullptr; 6407 if (Src.getOpcode() == ISD::GlobalAddress) 6408 G = cast<GlobalAddressSDNode>(Src); 6409 else if (Src.getOpcode() == ISD::ADD && 6410 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6411 Src.getOperand(1).getOpcode() == ISD::Constant) { 6412 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6413 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6414 } 6415 if (!G) 6416 return false; 6417 6418 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6419 SrcDelta + G->getOffset()); 6420 } 6421 6422 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6423 SelectionDAG &DAG) { 6424 // On Darwin, -Os means optimize for size without hurting performance, so 6425 // only really optimize for size when -Oz (MinSize) is used. 6426 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6427 return MF.getFunction().hasMinSize(); 6428 return DAG.shouldOptForSize(); 6429 } 6430 6431 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6432 SmallVector<SDValue, 32> &OutChains, unsigned From, 6433 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6434 SmallVector<SDValue, 16> &OutStoreChains) { 6435 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6436 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6437 SmallVector<SDValue, 16> GluedLoadChains; 6438 for (unsigned i = From; i < To; ++i) { 6439 OutChains.push_back(OutLoadChains[i]); 6440 GluedLoadChains.push_back(OutLoadChains[i]); 6441 } 6442 6443 // Chain for all loads. 6444 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6445 GluedLoadChains); 6446 6447 for (unsigned i = From; i < To; ++i) { 6448 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6449 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6450 ST->getBasePtr(), ST->getMemoryVT(), 6451 ST->getMemOperand()); 6452 OutChains.push_back(NewStore); 6453 } 6454 } 6455 6456 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6457 SDValue Chain, SDValue Dst, SDValue Src, 6458 uint64_t Size, Align Alignment, 6459 bool isVol, bool AlwaysInline, 6460 MachinePointerInfo DstPtrInfo, 6461 MachinePointerInfo SrcPtrInfo, 6462 const AAMDNodes &AAInfo) { 6463 // Turn a memcpy of undef to nop. 6464 // FIXME: We need to honor volatile even is Src is undef. 6465 if (Src.isUndef()) 6466 return Chain; 6467 6468 // Expand memcpy to a series of load and store ops if the size operand falls 6469 // below a certain threshold. 6470 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6471 // rather than maybe a humongous number of loads and stores. 6472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6473 const DataLayout &DL = DAG.getDataLayout(); 6474 LLVMContext &C = *DAG.getContext(); 6475 std::vector<EVT> MemOps; 6476 bool DstAlignCanChange = false; 6477 MachineFunction &MF = DAG.getMachineFunction(); 6478 MachineFrameInfo &MFI = MF.getFrameInfo(); 6479 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6480 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6481 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6482 DstAlignCanChange = true; 6483 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6484 if (!SrcAlign || Alignment > *SrcAlign) 6485 SrcAlign = Alignment; 6486 assert(SrcAlign && "SrcAlign must be set"); 6487 ConstantDataArraySlice Slice; 6488 // If marked as volatile, perform a copy even when marked as constant. 6489 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6490 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6491 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6492 const MemOp Op = isZeroConstant 6493 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6494 /*IsZeroMemset*/ true, isVol) 6495 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6496 *SrcAlign, isVol, CopyFromConstant); 6497 if (!TLI.findOptimalMemOpLowering( 6498 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6499 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6500 return SDValue(); 6501 6502 if (DstAlignCanChange) { 6503 Type *Ty = MemOps[0].getTypeForEVT(C); 6504 Align NewAlign = DL.getABITypeAlign(Ty); 6505 6506 // Don't promote to an alignment that would require dynamic stack 6507 // realignment. 6508 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6509 if (!TRI->hasStackRealignment(MF)) 6510 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6511 NewAlign = NewAlign / 2; 6512 6513 if (NewAlign > Alignment) { 6514 // Give the stack frame object a larger alignment if needed. 6515 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6516 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6517 Alignment = NewAlign; 6518 } 6519 } 6520 6521 // Prepare AAInfo for loads/stores after lowering this memcpy. 6522 AAMDNodes NewAAInfo = AAInfo; 6523 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6524 6525 MachineMemOperand::Flags MMOFlags = 6526 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6527 SmallVector<SDValue, 16> OutLoadChains; 6528 SmallVector<SDValue, 16> OutStoreChains; 6529 SmallVector<SDValue, 32> OutChains; 6530 unsigned NumMemOps = MemOps.size(); 6531 uint64_t SrcOff = 0, DstOff = 0; 6532 for (unsigned i = 0; i != NumMemOps; ++i) { 6533 EVT VT = MemOps[i]; 6534 unsigned VTSize = VT.getSizeInBits() / 8; 6535 SDValue Value, Store; 6536 6537 if (VTSize > Size) { 6538 // Issuing an unaligned load / store pair that overlaps with the previous 6539 // pair. Adjust the offset accordingly. 6540 assert(i == NumMemOps-1 && i != 0); 6541 SrcOff -= VTSize - Size; 6542 DstOff -= VTSize - Size; 6543 } 6544 6545 if (CopyFromConstant && 6546 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6547 // It's unlikely a store of a vector immediate can be done in a single 6548 // instruction. It would require a load from a constantpool first. 6549 // We only handle zero vectors here. 6550 // FIXME: Handle other cases where store of vector immediate is done in 6551 // a single instruction. 6552 ConstantDataArraySlice SubSlice; 6553 if (SrcOff < Slice.Length) { 6554 SubSlice = Slice; 6555 SubSlice.move(SrcOff); 6556 } else { 6557 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6558 SubSlice.Array = nullptr; 6559 SubSlice.Offset = 0; 6560 SubSlice.Length = VTSize; 6561 } 6562 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6563 if (Value.getNode()) { 6564 Store = DAG.getStore( 6565 Chain, dl, Value, 6566 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6567 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6568 OutChains.push_back(Store); 6569 } 6570 } 6571 6572 if (!Store.getNode()) { 6573 // The type might not be legal for the target. This should only happen 6574 // if the type is smaller than a legal type, as on PPC, so the right 6575 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6576 // to Load/Store if NVT==VT. 6577 // FIXME does the case above also need this? 6578 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6579 assert(NVT.bitsGE(VT)); 6580 6581 bool isDereferenceable = 6582 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6583 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6584 if (isDereferenceable) 6585 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6586 6587 Value = DAG.getExtLoad( 6588 ISD::EXTLOAD, dl, NVT, Chain, 6589 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6590 SrcPtrInfo.getWithOffset(SrcOff), VT, 6591 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6592 OutLoadChains.push_back(Value.getValue(1)); 6593 6594 Store = DAG.getTruncStore( 6595 Chain, dl, Value, 6596 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6597 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6598 OutStoreChains.push_back(Store); 6599 } 6600 SrcOff += VTSize; 6601 DstOff += VTSize; 6602 Size -= VTSize; 6603 } 6604 6605 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6606 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6607 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6608 6609 if (NumLdStInMemcpy) { 6610 // It may be that memcpy might be converted to memset if it's memcpy 6611 // of constants. In such a case, we won't have loads and stores, but 6612 // just stores. In the absence of loads, there is nothing to gang up. 6613 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6614 // If target does not care, just leave as it. 6615 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6616 OutChains.push_back(OutLoadChains[i]); 6617 OutChains.push_back(OutStoreChains[i]); 6618 } 6619 } else { 6620 // Ld/St less than/equal limit set by target. 6621 if (NumLdStInMemcpy <= GluedLdStLimit) { 6622 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6623 NumLdStInMemcpy, OutLoadChains, 6624 OutStoreChains); 6625 } else { 6626 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6627 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6628 unsigned GlueIter = 0; 6629 6630 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6631 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6632 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6633 6634 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6635 OutLoadChains, OutStoreChains); 6636 GlueIter += GluedLdStLimit; 6637 } 6638 6639 // Residual ld/st. 6640 if (RemainingLdStInMemcpy) { 6641 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6642 RemainingLdStInMemcpy, OutLoadChains, 6643 OutStoreChains); 6644 } 6645 } 6646 } 6647 } 6648 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6649 } 6650 6651 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6652 SDValue Chain, SDValue Dst, SDValue Src, 6653 uint64_t Size, Align Alignment, 6654 bool isVol, bool AlwaysInline, 6655 MachinePointerInfo DstPtrInfo, 6656 MachinePointerInfo SrcPtrInfo, 6657 const AAMDNodes &AAInfo) { 6658 // Turn a memmove of undef to nop. 6659 // FIXME: We need to honor volatile even is Src is undef. 6660 if (Src.isUndef()) 6661 return Chain; 6662 6663 // Expand memmove to a series of load and store ops if the size operand falls 6664 // below a certain threshold. 6665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6666 const DataLayout &DL = DAG.getDataLayout(); 6667 LLVMContext &C = *DAG.getContext(); 6668 std::vector<EVT> MemOps; 6669 bool DstAlignCanChange = false; 6670 MachineFunction &MF = DAG.getMachineFunction(); 6671 MachineFrameInfo &MFI = MF.getFrameInfo(); 6672 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6673 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6674 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6675 DstAlignCanChange = true; 6676 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6677 if (!SrcAlign || Alignment > *SrcAlign) 6678 SrcAlign = Alignment; 6679 assert(SrcAlign && "SrcAlign must be set"); 6680 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6681 if (!TLI.findOptimalMemOpLowering( 6682 MemOps, Limit, 6683 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6684 /*IsVolatile*/ true), 6685 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6686 MF.getFunction().getAttributes())) 6687 return SDValue(); 6688 6689 if (DstAlignCanChange) { 6690 Type *Ty = MemOps[0].getTypeForEVT(C); 6691 Align NewAlign = DL.getABITypeAlign(Ty); 6692 if (NewAlign > Alignment) { 6693 // Give the stack frame object a larger alignment if needed. 6694 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6695 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6696 Alignment = NewAlign; 6697 } 6698 } 6699 6700 // Prepare AAInfo for loads/stores after lowering this memmove. 6701 AAMDNodes NewAAInfo = AAInfo; 6702 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6703 6704 MachineMemOperand::Flags MMOFlags = 6705 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6706 uint64_t SrcOff = 0, DstOff = 0; 6707 SmallVector<SDValue, 8> LoadValues; 6708 SmallVector<SDValue, 8> LoadChains; 6709 SmallVector<SDValue, 8> OutChains; 6710 unsigned NumMemOps = MemOps.size(); 6711 for (unsigned i = 0; i < NumMemOps; i++) { 6712 EVT VT = MemOps[i]; 6713 unsigned VTSize = VT.getSizeInBits() / 8; 6714 SDValue Value; 6715 6716 bool isDereferenceable = 6717 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6718 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6719 if (isDereferenceable) 6720 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6721 6722 Value = DAG.getLoad( 6723 VT, dl, Chain, 6724 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6725 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6726 LoadValues.push_back(Value); 6727 LoadChains.push_back(Value.getValue(1)); 6728 SrcOff += VTSize; 6729 } 6730 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6731 OutChains.clear(); 6732 for (unsigned i = 0; i < NumMemOps; i++) { 6733 EVT VT = MemOps[i]; 6734 unsigned VTSize = VT.getSizeInBits() / 8; 6735 SDValue Store; 6736 6737 Store = DAG.getStore( 6738 Chain, dl, LoadValues[i], 6739 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6740 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6741 OutChains.push_back(Store); 6742 DstOff += VTSize; 6743 } 6744 6745 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6746 } 6747 6748 /// Lower the call to 'memset' intrinsic function into a series of store 6749 /// operations. 6750 /// 6751 /// \param DAG Selection DAG where lowered code is placed. 6752 /// \param dl Link to corresponding IR location. 6753 /// \param Chain Control flow dependency. 6754 /// \param Dst Pointer to destination memory location. 6755 /// \param Src Value of byte to write into the memory. 6756 /// \param Size Number of bytes to write. 6757 /// \param Alignment Alignment of the destination in bytes. 6758 /// \param isVol True if destination is volatile. 6759 /// \param DstPtrInfo IR information on the memory pointer. 6760 /// \returns New head in the control flow, if lowering was successful, empty 6761 /// SDValue otherwise. 6762 /// 6763 /// The function tries to replace 'llvm.memset' intrinsic with several store 6764 /// operations and value calculation code. This is usually profitable for small 6765 /// memory size. 6766 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6767 SDValue Chain, SDValue Dst, SDValue Src, 6768 uint64_t Size, Align Alignment, bool isVol, 6769 MachinePointerInfo DstPtrInfo, 6770 const AAMDNodes &AAInfo) { 6771 // Turn a memset of undef to nop. 6772 // FIXME: We need to honor volatile even is Src is undef. 6773 if (Src.isUndef()) 6774 return Chain; 6775 6776 // Expand memset to a series of load/store ops if the size operand 6777 // falls below a certain threshold. 6778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6779 std::vector<EVT> MemOps; 6780 bool DstAlignCanChange = false; 6781 MachineFunction &MF = DAG.getMachineFunction(); 6782 MachineFrameInfo &MFI = MF.getFrameInfo(); 6783 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6784 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6785 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6786 DstAlignCanChange = true; 6787 bool IsZeroVal = 6788 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6789 if (!TLI.findOptimalMemOpLowering( 6790 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6791 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6792 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6793 return SDValue(); 6794 6795 if (DstAlignCanChange) { 6796 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6797 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6798 if (NewAlign > Alignment) { 6799 // Give the stack frame object a larger alignment if needed. 6800 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6801 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6802 Alignment = NewAlign; 6803 } 6804 } 6805 6806 SmallVector<SDValue, 8> OutChains; 6807 uint64_t DstOff = 0; 6808 unsigned NumMemOps = MemOps.size(); 6809 6810 // Find the largest store and generate the bit pattern for it. 6811 EVT LargestVT = MemOps[0]; 6812 for (unsigned i = 1; i < NumMemOps; i++) 6813 if (MemOps[i].bitsGT(LargestVT)) 6814 LargestVT = MemOps[i]; 6815 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6816 6817 // Prepare AAInfo for loads/stores after lowering this memset. 6818 AAMDNodes NewAAInfo = AAInfo; 6819 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6820 6821 for (unsigned i = 0; i < NumMemOps; i++) { 6822 EVT VT = MemOps[i]; 6823 unsigned VTSize = VT.getSizeInBits() / 8; 6824 if (VTSize > Size) { 6825 // Issuing an unaligned load / store pair that overlaps with the previous 6826 // pair. Adjust the offset accordingly. 6827 assert(i == NumMemOps-1 && i != 0); 6828 DstOff -= VTSize - Size; 6829 } 6830 6831 // If this store is smaller than the largest store see whether we can get 6832 // the smaller value for free with a truncate. 6833 SDValue Value = MemSetValue; 6834 if (VT.bitsLT(LargestVT)) { 6835 if (!LargestVT.isVector() && !VT.isVector() && 6836 TLI.isTruncateFree(LargestVT, VT)) 6837 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6838 else 6839 Value = getMemsetValue(Src, VT, DAG, dl); 6840 } 6841 assert(Value.getValueType() == VT && "Value with wrong type."); 6842 SDValue Store = DAG.getStore( 6843 Chain, dl, Value, 6844 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6845 DstPtrInfo.getWithOffset(DstOff), Alignment, 6846 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6847 NewAAInfo); 6848 OutChains.push_back(Store); 6849 DstOff += VT.getSizeInBits() / 8; 6850 Size -= VTSize; 6851 } 6852 6853 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6854 } 6855 6856 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6857 unsigned AS) { 6858 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6859 // pointer operands can be losslessly bitcasted to pointers of address space 0 6860 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6861 report_fatal_error("cannot lower memory intrinsic in address space " + 6862 Twine(AS)); 6863 } 6864 } 6865 6866 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6867 SDValue Src, SDValue Size, Align Alignment, 6868 bool isVol, bool AlwaysInline, bool isTailCall, 6869 MachinePointerInfo DstPtrInfo, 6870 MachinePointerInfo SrcPtrInfo, 6871 const AAMDNodes &AAInfo) { 6872 // Check to see if we should lower the memcpy to loads and stores first. 6873 // For cases within the target-specified limits, this is the best choice. 6874 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6875 if (ConstantSize) { 6876 // Memcpy with size zero? Just return the original chain. 6877 if (ConstantSize->isZero()) 6878 return Chain; 6879 6880 SDValue Result = getMemcpyLoadsAndStores( 6881 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6882 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6883 if (Result.getNode()) 6884 return Result; 6885 } 6886 6887 // Then check to see if we should lower the memcpy with target-specific 6888 // code. If the target chooses to do this, this is the next best. 6889 if (TSI) { 6890 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6891 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6892 DstPtrInfo, SrcPtrInfo); 6893 if (Result.getNode()) 6894 return Result; 6895 } 6896 6897 // If we really need inline code and the target declined to provide it, 6898 // use a (potentially long) sequence of loads and stores. 6899 if (AlwaysInline) { 6900 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6901 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6902 ConstantSize->getZExtValue(), Alignment, 6903 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6904 } 6905 6906 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6907 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6908 6909 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6910 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6911 // respect volatile, so they may do things like read or write memory 6912 // beyond the given memory regions. But fixing this isn't easy, and most 6913 // people don't care. 6914 6915 // Emit a library call. 6916 TargetLowering::ArgListTy Args; 6917 TargetLowering::ArgListEntry Entry; 6918 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6919 Entry.Node = Dst; Args.push_back(Entry); 6920 Entry.Node = Src; Args.push_back(Entry); 6921 6922 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6923 Entry.Node = Size; Args.push_back(Entry); 6924 // FIXME: pass in SDLoc 6925 TargetLowering::CallLoweringInfo CLI(*this); 6926 CLI.setDebugLoc(dl) 6927 .setChain(Chain) 6928 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6929 Dst.getValueType().getTypeForEVT(*getContext()), 6930 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6931 TLI->getPointerTy(getDataLayout())), 6932 std::move(Args)) 6933 .setDiscardResult() 6934 .setTailCall(isTailCall); 6935 6936 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6937 return CallResult.second; 6938 } 6939 6940 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6941 SDValue Dst, unsigned DstAlign, 6942 SDValue Src, unsigned SrcAlign, 6943 SDValue Size, Type *SizeTy, 6944 unsigned ElemSz, bool isTailCall, 6945 MachinePointerInfo DstPtrInfo, 6946 MachinePointerInfo SrcPtrInfo) { 6947 // Emit a library call. 6948 TargetLowering::ArgListTy Args; 6949 TargetLowering::ArgListEntry Entry; 6950 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6951 Entry.Node = Dst; 6952 Args.push_back(Entry); 6953 6954 Entry.Node = Src; 6955 Args.push_back(Entry); 6956 6957 Entry.Ty = SizeTy; 6958 Entry.Node = Size; 6959 Args.push_back(Entry); 6960 6961 RTLIB::Libcall LibraryCall = 6962 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6963 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6964 report_fatal_error("Unsupported element size"); 6965 6966 TargetLowering::CallLoweringInfo CLI(*this); 6967 CLI.setDebugLoc(dl) 6968 .setChain(Chain) 6969 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6970 Type::getVoidTy(*getContext()), 6971 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6972 TLI->getPointerTy(getDataLayout())), 6973 std::move(Args)) 6974 .setDiscardResult() 6975 .setTailCall(isTailCall); 6976 6977 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6978 return CallResult.second; 6979 } 6980 6981 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6982 SDValue Src, SDValue Size, Align Alignment, 6983 bool isVol, bool isTailCall, 6984 MachinePointerInfo DstPtrInfo, 6985 MachinePointerInfo SrcPtrInfo, 6986 const AAMDNodes &AAInfo) { 6987 // Check to see if we should lower the memmove to loads and stores first. 6988 // For cases within the target-specified limits, this is the best choice. 6989 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6990 if (ConstantSize) { 6991 // Memmove with size zero? Just return the original chain. 6992 if (ConstantSize->isZero()) 6993 return Chain; 6994 6995 SDValue Result = getMemmoveLoadsAndStores( 6996 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6997 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6998 if (Result.getNode()) 6999 return Result; 7000 } 7001 7002 // Then check to see if we should lower the memmove with target-specific 7003 // code. If the target chooses to do this, this is the next best. 7004 if (TSI) { 7005 SDValue Result = 7006 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7007 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7008 if (Result.getNode()) 7009 return Result; 7010 } 7011 7012 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7013 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7014 7015 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7016 // not be safe. See memcpy above for more details. 7017 7018 // Emit a library call. 7019 TargetLowering::ArgListTy Args; 7020 TargetLowering::ArgListEntry Entry; 7021 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7022 Entry.Node = Dst; Args.push_back(Entry); 7023 Entry.Node = Src; Args.push_back(Entry); 7024 7025 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7026 Entry.Node = Size; Args.push_back(Entry); 7027 // FIXME: pass in SDLoc 7028 TargetLowering::CallLoweringInfo CLI(*this); 7029 CLI.setDebugLoc(dl) 7030 .setChain(Chain) 7031 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7032 Dst.getValueType().getTypeForEVT(*getContext()), 7033 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7034 TLI->getPointerTy(getDataLayout())), 7035 std::move(Args)) 7036 .setDiscardResult() 7037 .setTailCall(isTailCall); 7038 7039 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7040 return CallResult.second; 7041 } 7042 7043 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7044 SDValue Dst, unsigned DstAlign, 7045 SDValue Src, unsigned SrcAlign, 7046 SDValue Size, Type *SizeTy, 7047 unsigned ElemSz, bool isTailCall, 7048 MachinePointerInfo DstPtrInfo, 7049 MachinePointerInfo SrcPtrInfo) { 7050 // Emit a library call. 7051 TargetLowering::ArgListTy Args; 7052 TargetLowering::ArgListEntry Entry; 7053 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7054 Entry.Node = Dst; 7055 Args.push_back(Entry); 7056 7057 Entry.Node = Src; 7058 Args.push_back(Entry); 7059 7060 Entry.Ty = SizeTy; 7061 Entry.Node = Size; 7062 Args.push_back(Entry); 7063 7064 RTLIB::Libcall LibraryCall = 7065 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7066 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7067 report_fatal_error("Unsupported element size"); 7068 7069 TargetLowering::CallLoweringInfo CLI(*this); 7070 CLI.setDebugLoc(dl) 7071 .setChain(Chain) 7072 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7073 Type::getVoidTy(*getContext()), 7074 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7075 TLI->getPointerTy(getDataLayout())), 7076 std::move(Args)) 7077 .setDiscardResult() 7078 .setTailCall(isTailCall); 7079 7080 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7081 return CallResult.second; 7082 } 7083 7084 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7085 SDValue Src, SDValue Size, Align Alignment, 7086 bool isVol, bool isTailCall, 7087 MachinePointerInfo DstPtrInfo, 7088 const AAMDNodes &AAInfo) { 7089 // Check to see if we should lower the memset to stores first. 7090 // For cases within the target-specified limits, this is the best choice. 7091 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7092 if (ConstantSize) { 7093 // Memset with size zero? Just return the original chain. 7094 if (ConstantSize->isZero()) 7095 return Chain; 7096 7097 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7098 ConstantSize->getZExtValue(), Alignment, 7099 isVol, DstPtrInfo, AAInfo); 7100 7101 if (Result.getNode()) 7102 return Result; 7103 } 7104 7105 // Then check to see if we should lower the memset with target-specific 7106 // code. If the target chooses to do this, this is the next best. 7107 if (TSI) { 7108 SDValue Result = TSI->EmitTargetCodeForMemset( 7109 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7110 if (Result.getNode()) 7111 return Result; 7112 } 7113 7114 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7115 7116 // Emit a library call. 7117 TargetLowering::ArgListTy Args; 7118 TargetLowering::ArgListEntry Entry; 7119 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7120 Args.push_back(Entry); 7121 Entry.Node = Src; 7122 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7123 Args.push_back(Entry); 7124 Entry.Node = Size; 7125 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7126 Args.push_back(Entry); 7127 7128 // FIXME: pass in SDLoc 7129 TargetLowering::CallLoweringInfo CLI(*this); 7130 CLI.setDebugLoc(dl) 7131 .setChain(Chain) 7132 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7133 Dst.getValueType().getTypeForEVT(*getContext()), 7134 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7135 TLI->getPointerTy(getDataLayout())), 7136 std::move(Args)) 7137 .setDiscardResult() 7138 .setTailCall(isTailCall); 7139 7140 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7141 return CallResult.second; 7142 } 7143 7144 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7145 SDValue Dst, unsigned DstAlign, 7146 SDValue Value, SDValue Size, Type *SizeTy, 7147 unsigned ElemSz, bool isTailCall, 7148 MachinePointerInfo DstPtrInfo) { 7149 // Emit a library call. 7150 TargetLowering::ArgListTy Args; 7151 TargetLowering::ArgListEntry Entry; 7152 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7153 Entry.Node = Dst; 7154 Args.push_back(Entry); 7155 7156 Entry.Ty = Type::getInt8Ty(*getContext()); 7157 Entry.Node = Value; 7158 Args.push_back(Entry); 7159 7160 Entry.Ty = SizeTy; 7161 Entry.Node = Size; 7162 Args.push_back(Entry); 7163 7164 RTLIB::Libcall LibraryCall = 7165 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7166 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7167 report_fatal_error("Unsupported element size"); 7168 7169 TargetLowering::CallLoweringInfo CLI(*this); 7170 CLI.setDebugLoc(dl) 7171 .setChain(Chain) 7172 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7173 Type::getVoidTy(*getContext()), 7174 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7175 TLI->getPointerTy(getDataLayout())), 7176 std::move(Args)) 7177 .setDiscardResult() 7178 .setTailCall(isTailCall); 7179 7180 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7181 return CallResult.second; 7182 } 7183 7184 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7185 SDVTList VTList, ArrayRef<SDValue> Ops, 7186 MachineMemOperand *MMO) { 7187 FoldingSetNodeID ID; 7188 ID.AddInteger(MemVT.getRawBits()); 7189 AddNodeIDNode(ID, Opcode, VTList, Ops); 7190 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7191 void* IP = nullptr; 7192 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7193 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7194 return SDValue(E, 0); 7195 } 7196 7197 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7198 VTList, MemVT, MMO); 7199 createOperands(N, Ops); 7200 7201 CSEMap.InsertNode(N, IP); 7202 InsertNode(N); 7203 return SDValue(N, 0); 7204 } 7205 7206 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7207 EVT MemVT, SDVTList VTs, SDValue Chain, 7208 SDValue Ptr, SDValue Cmp, SDValue Swp, 7209 MachineMemOperand *MMO) { 7210 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7211 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7212 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7213 7214 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7215 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7216 } 7217 7218 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7219 SDValue Chain, SDValue Ptr, SDValue Val, 7220 MachineMemOperand *MMO) { 7221 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7222 Opcode == ISD::ATOMIC_LOAD_SUB || 7223 Opcode == ISD::ATOMIC_LOAD_AND || 7224 Opcode == ISD::ATOMIC_LOAD_CLR || 7225 Opcode == ISD::ATOMIC_LOAD_OR || 7226 Opcode == ISD::ATOMIC_LOAD_XOR || 7227 Opcode == ISD::ATOMIC_LOAD_NAND || 7228 Opcode == ISD::ATOMIC_LOAD_MIN || 7229 Opcode == ISD::ATOMIC_LOAD_MAX || 7230 Opcode == ISD::ATOMIC_LOAD_UMIN || 7231 Opcode == ISD::ATOMIC_LOAD_UMAX || 7232 Opcode == ISD::ATOMIC_LOAD_FADD || 7233 Opcode == ISD::ATOMIC_LOAD_FSUB || 7234 Opcode == ISD::ATOMIC_SWAP || 7235 Opcode == ISD::ATOMIC_STORE) && 7236 "Invalid Atomic Op"); 7237 7238 EVT VT = Val.getValueType(); 7239 7240 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7241 getVTList(VT, MVT::Other); 7242 SDValue Ops[] = {Chain, Ptr, Val}; 7243 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7244 } 7245 7246 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7247 EVT VT, SDValue Chain, SDValue Ptr, 7248 MachineMemOperand *MMO) { 7249 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7250 7251 SDVTList VTs = getVTList(VT, MVT::Other); 7252 SDValue Ops[] = {Chain, Ptr}; 7253 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7254 } 7255 7256 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7257 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7258 if (Ops.size() == 1) 7259 return Ops[0]; 7260 7261 SmallVector<EVT, 4> VTs; 7262 VTs.reserve(Ops.size()); 7263 for (const SDValue &Op : Ops) 7264 VTs.push_back(Op.getValueType()); 7265 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7266 } 7267 7268 SDValue SelectionDAG::getMemIntrinsicNode( 7269 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7270 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7271 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7272 if (!Size && MemVT.isScalableVector()) 7273 Size = MemoryLocation::UnknownSize; 7274 else if (!Size) 7275 Size = MemVT.getStoreSize(); 7276 7277 MachineFunction &MF = getMachineFunction(); 7278 MachineMemOperand *MMO = 7279 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7280 7281 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7282 } 7283 7284 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7285 SDVTList VTList, 7286 ArrayRef<SDValue> Ops, EVT MemVT, 7287 MachineMemOperand *MMO) { 7288 assert((Opcode == ISD::INTRINSIC_VOID || 7289 Opcode == ISD::INTRINSIC_W_CHAIN || 7290 Opcode == ISD::PREFETCH || 7291 ((int)Opcode <= std::numeric_limits<int>::max() && 7292 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7293 "Opcode is not a memory-accessing opcode!"); 7294 7295 // Memoize the node unless it returns a flag. 7296 MemIntrinsicSDNode *N; 7297 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7298 FoldingSetNodeID ID; 7299 AddNodeIDNode(ID, Opcode, VTList, Ops); 7300 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7301 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7302 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7303 void *IP = nullptr; 7304 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7305 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7306 return SDValue(E, 0); 7307 } 7308 7309 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7310 VTList, MemVT, MMO); 7311 createOperands(N, Ops); 7312 7313 CSEMap.InsertNode(N, IP); 7314 } else { 7315 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7316 VTList, MemVT, MMO); 7317 createOperands(N, Ops); 7318 } 7319 InsertNode(N); 7320 SDValue V(N, 0); 7321 NewSDValueDbgMsg(V, "Creating new node: ", this); 7322 return V; 7323 } 7324 7325 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7326 SDValue Chain, int FrameIndex, 7327 int64_t Size, int64_t Offset) { 7328 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7329 const auto VTs = getVTList(MVT::Other); 7330 SDValue Ops[2] = { 7331 Chain, 7332 getFrameIndex(FrameIndex, 7333 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7334 true)}; 7335 7336 FoldingSetNodeID ID; 7337 AddNodeIDNode(ID, Opcode, VTs, Ops); 7338 ID.AddInteger(FrameIndex); 7339 ID.AddInteger(Size); 7340 ID.AddInteger(Offset); 7341 void *IP = nullptr; 7342 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7343 return SDValue(E, 0); 7344 7345 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7346 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7347 createOperands(N, Ops); 7348 CSEMap.InsertNode(N, IP); 7349 InsertNode(N); 7350 SDValue V(N, 0); 7351 NewSDValueDbgMsg(V, "Creating new node: ", this); 7352 return V; 7353 } 7354 7355 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7356 uint64_t Guid, uint64_t Index, 7357 uint32_t Attr) { 7358 const unsigned Opcode = ISD::PSEUDO_PROBE; 7359 const auto VTs = getVTList(MVT::Other); 7360 SDValue Ops[] = {Chain}; 7361 FoldingSetNodeID ID; 7362 AddNodeIDNode(ID, Opcode, VTs, Ops); 7363 ID.AddInteger(Guid); 7364 ID.AddInteger(Index); 7365 void *IP = nullptr; 7366 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7367 return SDValue(E, 0); 7368 7369 auto *N = newSDNode<PseudoProbeSDNode>( 7370 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7371 createOperands(N, Ops); 7372 CSEMap.InsertNode(N, IP); 7373 InsertNode(N); 7374 SDValue V(N, 0); 7375 NewSDValueDbgMsg(V, "Creating new node: ", this); 7376 return V; 7377 } 7378 7379 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7380 /// MachinePointerInfo record from it. This is particularly useful because the 7381 /// code generator has many cases where it doesn't bother passing in a 7382 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7383 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7384 SelectionDAG &DAG, SDValue Ptr, 7385 int64_t Offset = 0) { 7386 // If this is FI+Offset, we can model it. 7387 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7388 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7389 FI->getIndex(), Offset); 7390 7391 // If this is (FI+Offset1)+Offset2, we can model it. 7392 if (Ptr.getOpcode() != ISD::ADD || 7393 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7394 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7395 return Info; 7396 7397 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7398 return MachinePointerInfo::getFixedStack( 7399 DAG.getMachineFunction(), FI, 7400 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7401 } 7402 7403 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7404 /// MachinePointerInfo record from it. This is particularly useful because the 7405 /// code generator has many cases where it doesn't bother passing in a 7406 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7407 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7408 SelectionDAG &DAG, SDValue Ptr, 7409 SDValue OffsetOp) { 7410 // If the 'Offset' value isn't a constant, we can't handle this. 7411 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7412 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7413 if (OffsetOp.isUndef()) 7414 return InferPointerInfo(Info, DAG, Ptr); 7415 return Info; 7416 } 7417 7418 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7419 EVT VT, const SDLoc &dl, SDValue Chain, 7420 SDValue Ptr, SDValue Offset, 7421 MachinePointerInfo PtrInfo, EVT MemVT, 7422 Align Alignment, 7423 MachineMemOperand::Flags MMOFlags, 7424 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7425 assert(Chain.getValueType() == MVT::Other && 7426 "Invalid chain type"); 7427 7428 MMOFlags |= MachineMemOperand::MOLoad; 7429 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7430 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7431 // clients. 7432 if (PtrInfo.V.isNull()) 7433 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7434 7435 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7436 MachineFunction &MF = getMachineFunction(); 7437 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7438 Alignment, AAInfo, Ranges); 7439 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7440 } 7441 7442 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7443 EVT VT, const SDLoc &dl, SDValue Chain, 7444 SDValue Ptr, SDValue Offset, EVT MemVT, 7445 MachineMemOperand *MMO) { 7446 if (VT == MemVT) { 7447 ExtType = ISD::NON_EXTLOAD; 7448 } else if (ExtType == ISD::NON_EXTLOAD) { 7449 assert(VT == MemVT && "Non-extending load from different memory type!"); 7450 } else { 7451 // Extending load. 7452 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7453 "Should only be an extending load, not truncating!"); 7454 assert(VT.isInteger() == MemVT.isInteger() && 7455 "Cannot convert from FP to Int or Int -> FP!"); 7456 assert(VT.isVector() == MemVT.isVector() && 7457 "Cannot use an ext load to convert to or from a vector!"); 7458 assert((!VT.isVector() || 7459 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7460 "Cannot use an ext load to change the number of vector elements!"); 7461 } 7462 7463 bool Indexed = AM != ISD::UNINDEXED; 7464 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7465 7466 SDVTList VTs = Indexed ? 7467 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7468 SDValue Ops[] = { Chain, Ptr, Offset }; 7469 FoldingSetNodeID ID; 7470 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7471 ID.AddInteger(MemVT.getRawBits()); 7472 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7473 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7474 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7475 void *IP = nullptr; 7476 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7477 cast<LoadSDNode>(E)->refineAlignment(MMO); 7478 return SDValue(E, 0); 7479 } 7480 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7481 ExtType, MemVT, MMO); 7482 createOperands(N, Ops); 7483 7484 CSEMap.InsertNode(N, IP); 7485 InsertNode(N); 7486 SDValue V(N, 0); 7487 NewSDValueDbgMsg(V, "Creating new node: ", this); 7488 return V; 7489 } 7490 7491 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7492 SDValue Ptr, MachinePointerInfo PtrInfo, 7493 MaybeAlign Alignment, 7494 MachineMemOperand::Flags MMOFlags, 7495 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7496 SDValue Undef = getUNDEF(Ptr.getValueType()); 7497 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7498 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7499 } 7500 7501 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7502 SDValue Ptr, MachineMemOperand *MMO) { 7503 SDValue Undef = getUNDEF(Ptr.getValueType()); 7504 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7505 VT, MMO); 7506 } 7507 7508 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7509 EVT VT, SDValue Chain, SDValue Ptr, 7510 MachinePointerInfo PtrInfo, EVT MemVT, 7511 MaybeAlign Alignment, 7512 MachineMemOperand::Flags MMOFlags, 7513 const AAMDNodes &AAInfo) { 7514 SDValue Undef = getUNDEF(Ptr.getValueType()); 7515 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7516 MemVT, Alignment, MMOFlags, AAInfo); 7517 } 7518 7519 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7520 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7521 MachineMemOperand *MMO) { 7522 SDValue Undef = getUNDEF(Ptr.getValueType()); 7523 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7524 MemVT, MMO); 7525 } 7526 7527 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7528 SDValue Base, SDValue Offset, 7529 ISD::MemIndexedMode AM) { 7530 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7531 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7532 // Don't propagate the invariant or dereferenceable flags. 7533 auto MMOFlags = 7534 LD->getMemOperand()->getFlags() & 7535 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7536 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7537 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7538 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7539 } 7540 7541 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7542 SDValue Ptr, MachinePointerInfo PtrInfo, 7543 Align Alignment, 7544 MachineMemOperand::Flags MMOFlags, 7545 const AAMDNodes &AAInfo) { 7546 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7547 7548 MMOFlags |= MachineMemOperand::MOStore; 7549 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7550 7551 if (PtrInfo.V.isNull()) 7552 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7553 7554 MachineFunction &MF = getMachineFunction(); 7555 uint64_t Size = 7556 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7557 MachineMemOperand *MMO = 7558 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7559 return getStore(Chain, dl, Val, Ptr, MMO); 7560 } 7561 7562 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7563 SDValue Ptr, MachineMemOperand *MMO) { 7564 assert(Chain.getValueType() == MVT::Other && 7565 "Invalid chain type"); 7566 EVT VT = Val.getValueType(); 7567 SDVTList VTs = getVTList(MVT::Other); 7568 SDValue Undef = getUNDEF(Ptr.getValueType()); 7569 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7570 FoldingSetNodeID ID; 7571 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7572 ID.AddInteger(VT.getRawBits()); 7573 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7574 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7575 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7576 void *IP = nullptr; 7577 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7578 cast<StoreSDNode>(E)->refineAlignment(MMO); 7579 return SDValue(E, 0); 7580 } 7581 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7582 ISD::UNINDEXED, false, VT, MMO); 7583 createOperands(N, Ops); 7584 7585 CSEMap.InsertNode(N, IP); 7586 InsertNode(N); 7587 SDValue V(N, 0); 7588 NewSDValueDbgMsg(V, "Creating new node: ", this); 7589 return V; 7590 } 7591 7592 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7593 SDValue Ptr, MachinePointerInfo PtrInfo, 7594 EVT SVT, Align Alignment, 7595 MachineMemOperand::Flags MMOFlags, 7596 const AAMDNodes &AAInfo) { 7597 assert(Chain.getValueType() == MVT::Other && 7598 "Invalid chain type"); 7599 7600 MMOFlags |= MachineMemOperand::MOStore; 7601 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7602 7603 if (PtrInfo.V.isNull()) 7604 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7605 7606 MachineFunction &MF = getMachineFunction(); 7607 MachineMemOperand *MMO = MF.getMachineMemOperand( 7608 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7609 Alignment, AAInfo); 7610 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7611 } 7612 7613 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7614 SDValue Ptr, EVT SVT, 7615 MachineMemOperand *MMO) { 7616 EVT VT = Val.getValueType(); 7617 7618 assert(Chain.getValueType() == MVT::Other && 7619 "Invalid chain type"); 7620 if (VT == SVT) 7621 return getStore(Chain, dl, Val, Ptr, MMO); 7622 7623 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7624 "Should only be a truncating store, not extending!"); 7625 assert(VT.isInteger() == SVT.isInteger() && 7626 "Can't do FP-INT conversion!"); 7627 assert(VT.isVector() == SVT.isVector() && 7628 "Cannot use trunc store to convert to or from a vector!"); 7629 assert((!VT.isVector() || 7630 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7631 "Cannot use trunc store to change the number of vector elements!"); 7632 7633 SDVTList VTs = getVTList(MVT::Other); 7634 SDValue Undef = getUNDEF(Ptr.getValueType()); 7635 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7636 FoldingSetNodeID ID; 7637 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7638 ID.AddInteger(SVT.getRawBits()); 7639 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7640 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7641 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7642 void *IP = nullptr; 7643 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7644 cast<StoreSDNode>(E)->refineAlignment(MMO); 7645 return SDValue(E, 0); 7646 } 7647 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7648 ISD::UNINDEXED, true, SVT, MMO); 7649 createOperands(N, Ops); 7650 7651 CSEMap.InsertNode(N, IP); 7652 InsertNode(N); 7653 SDValue V(N, 0); 7654 NewSDValueDbgMsg(V, "Creating new node: ", this); 7655 return V; 7656 } 7657 7658 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7659 SDValue Base, SDValue Offset, 7660 ISD::MemIndexedMode AM) { 7661 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7662 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7663 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7664 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7665 FoldingSetNodeID ID; 7666 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7667 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7668 ID.AddInteger(ST->getRawSubclassData()); 7669 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7670 void *IP = nullptr; 7671 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7672 return SDValue(E, 0); 7673 7674 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7675 ST->isTruncatingStore(), ST->getMemoryVT(), 7676 ST->getMemOperand()); 7677 createOperands(N, Ops); 7678 7679 CSEMap.InsertNode(N, IP); 7680 InsertNode(N); 7681 SDValue V(N, 0); 7682 NewSDValueDbgMsg(V, "Creating new node: ", this); 7683 return V; 7684 } 7685 7686 SDValue SelectionDAG::getLoadVP( 7687 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7688 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7689 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7690 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7691 const MDNode *Ranges, bool IsExpanding) { 7692 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7693 7694 MMOFlags |= MachineMemOperand::MOLoad; 7695 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7696 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7697 // clients. 7698 if (PtrInfo.V.isNull()) 7699 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7700 7701 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7702 MachineFunction &MF = getMachineFunction(); 7703 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7704 Alignment, AAInfo, Ranges); 7705 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7706 MMO, IsExpanding); 7707 } 7708 7709 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7710 ISD::LoadExtType ExtType, EVT VT, 7711 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7712 SDValue Offset, SDValue Mask, SDValue EVL, 7713 EVT MemVT, MachineMemOperand *MMO, 7714 bool IsExpanding) { 7715 bool Indexed = AM != ISD::UNINDEXED; 7716 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7717 7718 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7719 : getVTList(VT, MVT::Other); 7720 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7721 FoldingSetNodeID ID; 7722 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7723 ID.AddInteger(VT.getRawBits()); 7724 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7725 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7726 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7727 void *IP = nullptr; 7728 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7729 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7730 return SDValue(E, 0); 7731 } 7732 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7733 ExtType, IsExpanding, MemVT, MMO); 7734 createOperands(N, Ops); 7735 7736 CSEMap.InsertNode(N, IP); 7737 InsertNode(N); 7738 SDValue V(N, 0); 7739 NewSDValueDbgMsg(V, "Creating new node: ", this); 7740 return V; 7741 } 7742 7743 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7744 SDValue Ptr, SDValue Mask, SDValue EVL, 7745 MachinePointerInfo PtrInfo, 7746 MaybeAlign Alignment, 7747 MachineMemOperand::Flags MMOFlags, 7748 const AAMDNodes &AAInfo, const MDNode *Ranges, 7749 bool IsExpanding) { 7750 SDValue Undef = getUNDEF(Ptr.getValueType()); 7751 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7752 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7753 IsExpanding); 7754 } 7755 7756 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7757 SDValue Ptr, SDValue Mask, SDValue EVL, 7758 MachineMemOperand *MMO, bool IsExpanding) { 7759 SDValue Undef = getUNDEF(Ptr.getValueType()); 7760 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7761 Mask, EVL, VT, MMO, IsExpanding); 7762 } 7763 7764 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7765 EVT VT, SDValue Chain, SDValue Ptr, 7766 SDValue Mask, SDValue EVL, 7767 MachinePointerInfo PtrInfo, EVT MemVT, 7768 MaybeAlign Alignment, 7769 MachineMemOperand::Flags MMOFlags, 7770 const AAMDNodes &AAInfo, bool IsExpanding) { 7771 SDValue Undef = getUNDEF(Ptr.getValueType()); 7772 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7773 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7774 IsExpanding); 7775 } 7776 7777 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7778 EVT VT, SDValue Chain, SDValue Ptr, 7779 SDValue Mask, SDValue EVL, EVT MemVT, 7780 MachineMemOperand *MMO, bool IsExpanding) { 7781 SDValue Undef = getUNDEF(Ptr.getValueType()); 7782 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7783 EVL, MemVT, MMO, IsExpanding); 7784 } 7785 7786 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7787 SDValue Base, SDValue Offset, 7788 ISD::MemIndexedMode AM) { 7789 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7790 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7791 // Don't propagate the invariant or dereferenceable flags. 7792 auto MMOFlags = 7793 LD->getMemOperand()->getFlags() & 7794 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7795 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7796 LD->getChain(), Base, Offset, LD->getMask(), 7797 LD->getVectorLength(), LD->getPointerInfo(), 7798 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7799 nullptr, LD->isExpandingLoad()); 7800 } 7801 7802 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7803 SDValue Ptr, SDValue Offset, SDValue Mask, 7804 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 7805 ISD::MemIndexedMode AM, bool IsTruncating, 7806 bool IsCompressing) { 7807 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7808 bool Indexed = AM != ISD::UNINDEXED; 7809 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 7810 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 7811 : getVTList(MVT::Other); 7812 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 7813 FoldingSetNodeID ID; 7814 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7815 ID.AddInteger(MemVT.getRawBits()); 7816 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7817 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7818 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7819 void *IP = nullptr; 7820 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7821 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7822 return SDValue(E, 0); 7823 } 7824 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7825 IsTruncating, IsCompressing, MemVT, MMO); 7826 createOperands(N, Ops); 7827 7828 CSEMap.InsertNode(N, IP); 7829 InsertNode(N); 7830 SDValue V(N, 0); 7831 NewSDValueDbgMsg(V, "Creating new node: ", this); 7832 return V; 7833 } 7834 7835 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7836 SDValue Val, SDValue Ptr, SDValue Mask, 7837 SDValue EVL, MachinePointerInfo PtrInfo, 7838 EVT SVT, Align Alignment, 7839 MachineMemOperand::Flags MMOFlags, 7840 const AAMDNodes &AAInfo, 7841 bool IsCompressing) { 7842 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7843 7844 MMOFlags |= MachineMemOperand::MOStore; 7845 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7846 7847 if (PtrInfo.V.isNull()) 7848 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7849 7850 MachineFunction &MF = getMachineFunction(); 7851 MachineMemOperand *MMO = MF.getMachineMemOperand( 7852 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7853 Alignment, AAInfo); 7854 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7855 IsCompressing); 7856 } 7857 7858 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7859 SDValue Val, SDValue Ptr, SDValue Mask, 7860 SDValue EVL, EVT SVT, 7861 MachineMemOperand *MMO, 7862 bool IsCompressing) { 7863 EVT VT = Val.getValueType(); 7864 7865 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7866 if (VT == SVT) 7867 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 7868 EVL, VT, MMO, ISD::UNINDEXED, 7869 /*IsTruncating*/ false, IsCompressing); 7870 7871 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7872 "Should only be a truncating store, not extending!"); 7873 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7874 assert(VT.isVector() == SVT.isVector() && 7875 "Cannot use trunc store to convert to or from a vector!"); 7876 assert((!VT.isVector() || 7877 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7878 "Cannot use trunc store to change the number of vector elements!"); 7879 7880 SDVTList VTs = getVTList(MVT::Other); 7881 SDValue Undef = getUNDEF(Ptr.getValueType()); 7882 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7883 FoldingSetNodeID ID; 7884 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7885 ID.AddInteger(SVT.getRawBits()); 7886 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7887 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7888 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7889 void *IP = nullptr; 7890 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7891 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7892 return SDValue(E, 0); 7893 } 7894 auto *N = 7895 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7896 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7897 createOperands(N, Ops); 7898 7899 CSEMap.InsertNode(N, IP); 7900 InsertNode(N); 7901 SDValue V(N, 0); 7902 NewSDValueDbgMsg(V, "Creating new node: ", this); 7903 return V; 7904 } 7905 7906 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7907 SDValue Base, SDValue Offset, 7908 ISD::MemIndexedMode AM) { 7909 auto *ST = cast<VPStoreSDNode>(OrigStore); 7910 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7911 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7912 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7913 Offset, ST->getMask(), ST->getVectorLength()}; 7914 FoldingSetNodeID ID; 7915 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7916 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7917 ID.AddInteger(ST->getRawSubclassData()); 7918 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7919 void *IP = nullptr; 7920 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7921 return SDValue(E, 0); 7922 7923 auto *N = newSDNode<VPStoreSDNode>( 7924 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7925 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7926 createOperands(N, Ops); 7927 7928 CSEMap.InsertNode(N, IP); 7929 InsertNode(N); 7930 SDValue V(N, 0); 7931 NewSDValueDbgMsg(V, "Creating new node: ", this); 7932 return V; 7933 } 7934 7935 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7936 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7937 ISD::MemIndexType IndexType) { 7938 assert(Ops.size() == 6 && "Incompatible number of operands"); 7939 7940 FoldingSetNodeID ID; 7941 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7942 ID.AddInteger(VT.getRawBits()); 7943 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7944 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7945 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7946 void *IP = nullptr; 7947 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7948 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7949 return SDValue(E, 0); 7950 } 7951 7952 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7953 VT, MMO, IndexType); 7954 createOperands(N, Ops); 7955 7956 assert(N->getMask().getValueType().getVectorElementCount() == 7957 N->getValueType(0).getVectorElementCount() && 7958 "Vector width mismatch between mask and data"); 7959 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7960 N->getValueType(0).getVectorElementCount().isScalable() && 7961 "Scalable flags of index and data do not match"); 7962 assert(ElementCount::isKnownGE( 7963 N->getIndex().getValueType().getVectorElementCount(), 7964 N->getValueType(0).getVectorElementCount()) && 7965 "Vector width mismatch between index and data"); 7966 assert(isa<ConstantSDNode>(N->getScale()) && 7967 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7968 "Scale should be a constant power of 2"); 7969 7970 CSEMap.InsertNode(N, IP); 7971 InsertNode(N); 7972 SDValue V(N, 0); 7973 NewSDValueDbgMsg(V, "Creating new node: ", this); 7974 return V; 7975 } 7976 7977 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7978 ArrayRef<SDValue> Ops, 7979 MachineMemOperand *MMO, 7980 ISD::MemIndexType IndexType) { 7981 assert(Ops.size() == 7 && "Incompatible number of operands"); 7982 7983 FoldingSetNodeID ID; 7984 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7985 ID.AddInteger(VT.getRawBits()); 7986 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 7987 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7988 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7989 void *IP = nullptr; 7990 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7991 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 7992 return SDValue(E, 0); 7993 } 7994 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7995 VT, MMO, IndexType); 7996 createOperands(N, Ops); 7997 7998 assert(N->getMask().getValueType().getVectorElementCount() == 7999 N->getValue().getValueType().getVectorElementCount() && 8000 "Vector width mismatch between mask and data"); 8001 assert( 8002 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8003 N->getValue().getValueType().getVectorElementCount().isScalable() && 8004 "Scalable flags of index and data do not match"); 8005 assert(ElementCount::isKnownGE( 8006 N->getIndex().getValueType().getVectorElementCount(), 8007 N->getValue().getValueType().getVectorElementCount()) && 8008 "Vector width mismatch between index and data"); 8009 assert(isa<ConstantSDNode>(N->getScale()) && 8010 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8011 "Scale should be a constant power of 2"); 8012 8013 CSEMap.InsertNode(N, IP); 8014 InsertNode(N); 8015 SDValue V(N, 0); 8016 NewSDValueDbgMsg(V, "Creating new node: ", this); 8017 return V; 8018 } 8019 8020 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8021 SDValue Base, SDValue Offset, SDValue Mask, 8022 SDValue PassThru, EVT MemVT, 8023 MachineMemOperand *MMO, 8024 ISD::MemIndexedMode AM, 8025 ISD::LoadExtType ExtTy, bool isExpanding) { 8026 bool Indexed = AM != ISD::UNINDEXED; 8027 assert((Indexed || Offset.isUndef()) && 8028 "Unindexed masked load with an offset!"); 8029 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8030 : getVTList(VT, MVT::Other); 8031 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8032 FoldingSetNodeID ID; 8033 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8034 ID.AddInteger(MemVT.getRawBits()); 8035 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8036 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8037 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8038 void *IP = nullptr; 8039 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8040 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8041 return SDValue(E, 0); 8042 } 8043 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8044 AM, ExtTy, isExpanding, MemVT, MMO); 8045 createOperands(N, Ops); 8046 8047 CSEMap.InsertNode(N, IP); 8048 InsertNode(N); 8049 SDValue V(N, 0); 8050 NewSDValueDbgMsg(V, "Creating new node: ", this); 8051 return V; 8052 } 8053 8054 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8055 SDValue Base, SDValue Offset, 8056 ISD::MemIndexedMode AM) { 8057 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8058 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8059 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8060 Offset, LD->getMask(), LD->getPassThru(), 8061 LD->getMemoryVT(), LD->getMemOperand(), AM, 8062 LD->getExtensionType(), LD->isExpandingLoad()); 8063 } 8064 8065 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8066 SDValue Val, SDValue Base, SDValue Offset, 8067 SDValue Mask, EVT MemVT, 8068 MachineMemOperand *MMO, 8069 ISD::MemIndexedMode AM, bool IsTruncating, 8070 bool IsCompressing) { 8071 assert(Chain.getValueType() == MVT::Other && 8072 "Invalid chain type"); 8073 bool Indexed = AM != ISD::UNINDEXED; 8074 assert((Indexed || Offset.isUndef()) && 8075 "Unindexed masked store with an offset!"); 8076 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8077 : getVTList(MVT::Other); 8078 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8079 FoldingSetNodeID ID; 8080 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8081 ID.AddInteger(MemVT.getRawBits()); 8082 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8083 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8084 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8085 void *IP = nullptr; 8086 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8087 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8088 return SDValue(E, 0); 8089 } 8090 auto *N = 8091 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8092 IsTruncating, IsCompressing, MemVT, MMO); 8093 createOperands(N, Ops); 8094 8095 CSEMap.InsertNode(N, IP); 8096 InsertNode(N); 8097 SDValue V(N, 0); 8098 NewSDValueDbgMsg(V, "Creating new node: ", this); 8099 return V; 8100 } 8101 8102 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8103 SDValue Base, SDValue Offset, 8104 ISD::MemIndexedMode AM) { 8105 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8106 assert(ST->getOffset().isUndef() && 8107 "Masked store is already a indexed store!"); 8108 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8109 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8110 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8111 } 8112 8113 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8114 ArrayRef<SDValue> Ops, 8115 MachineMemOperand *MMO, 8116 ISD::MemIndexType IndexType, 8117 ISD::LoadExtType ExtTy) { 8118 assert(Ops.size() == 6 && "Incompatible number of operands"); 8119 8120 FoldingSetNodeID ID; 8121 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8122 ID.AddInteger(MemVT.getRawBits()); 8123 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8124 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8125 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8126 void *IP = nullptr; 8127 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8128 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8129 return SDValue(E, 0); 8130 } 8131 8132 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8133 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8134 VTs, MemVT, MMO, IndexType, ExtTy); 8135 createOperands(N, Ops); 8136 8137 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8138 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8139 assert(N->getMask().getValueType().getVectorElementCount() == 8140 N->getValueType(0).getVectorElementCount() && 8141 "Vector width mismatch between mask and data"); 8142 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8143 N->getValueType(0).getVectorElementCount().isScalable() && 8144 "Scalable flags of index and data do not match"); 8145 assert(ElementCount::isKnownGE( 8146 N->getIndex().getValueType().getVectorElementCount(), 8147 N->getValueType(0).getVectorElementCount()) && 8148 "Vector width mismatch between index and data"); 8149 assert(isa<ConstantSDNode>(N->getScale()) && 8150 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8151 "Scale should be a constant power of 2"); 8152 8153 CSEMap.InsertNode(N, IP); 8154 InsertNode(N); 8155 SDValue V(N, 0); 8156 NewSDValueDbgMsg(V, "Creating new node: ", this); 8157 return V; 8158 } 8159 8160 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8161 ArrayRef<SDValue> Ops, 8162 MachineMemOperand *MMO, 8163 ISD::MemIndexType IndexType, 8164 bool IsTrunc) { 8165 assert(Ops.size() == 6 && "Incompatible number of operands"); 8166 8167 FoldingSetNodeID ID; 8168 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8169 ID.AddInteger(MemVT.getRawBits()); 8170 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8171 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8172 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8173 void *IP = nullptr; 8174 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8175 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8176 return SDValue(E, 0); 8177 } 8178 8179 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8180 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8181 VTs, MemVT, MMO, IndexType, IsTrunc); 8182 createOperands(N, Ops); 8183 8184 assert(N->getMask().getValueType().getVectorElementCount() == 8185 N->getValue().getValueType().getVectorElementCount() && 8186 "Vector width mismatch between mask and data"); 8187 assert( 8188 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8189 N->getValue().getValueType().getVectorElementCount().isScalable() && 8190 "Scalable flags of index and data do not match"); 8191 assert(ElementCount::isKnownGE( 8192 N->getIndex().getValueType().getVectorElementCount(), 8193 N->getValue().getValueType().getVectorElementCount()) && 8194 "Vector width mismatch between index and data"); 8195 assert(isa<ConstantSDNode>(N->getScale()) && 8196 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8197 "Scale should be a constant power of 2"); 8198 8199 CSEMap.InsertNode(N, IP); 8200 InsertNode(N); 8201 SDValue V(N, 0); 8202 NewSDValueDbgMsg(V, "Creating new node: ", this); 8203 return V; 8204 } 8205 8206 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8207 // select undef, T, F --> T (if T is a constant), otherwise F 8208 // select, ?, undef, F --> F 8209 // select, ?, T, undef --> T 8210 if (Cond.isUndef()) 8211 return isConstantValueOfAnyType(T) ? T : F; 8212 if (T.isUndef()) 8213 return F; 8214 if (F.isUndef()) 8215 return T; 8216 8217 // select true, T, F --> T 8218 // select false, T, F --> F 8219 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8220 return CondC->isZero() ? F : T; 8221 8222 // TODO: This should simplify VSELECT with constant condition using something 8223 // like this (but check boolean contents to be complete?): 8224 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8225 // return T; 8226 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8227 // return F; 8228 8229 // select ?, T, T --> T 8230 if (T == F) 8231 return T; 8232 8233 return SDValue(); 8234 } 8235 8236 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8237 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8238 if (X.isUndef()) 8239 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8240 // shift X, undef --> undef (because it may shift by the bitwidth) 8241 if (Y.isUndef()) 8242 return getUNDEF(X.getValueType()); 8243 8244 // shift 0, Y --> 0 8245 // shift X, 0 --> X 8246 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8247 return X; 8248 8249 // shift X, C >= bitwidth(X) --> undef 8250 // All vector elements must be too big (or undef) to avoid partial undefs. 8251 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8252 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8253 }; 8254 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8255 return getUNDEF(X.getValueType()); 8256 8257 return SDValue(); 8258 } 8259 8260 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8261 SDNodeFlags Flags) { 8262 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8263 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8264 // operation is poison. That result can be relaxed to undef. 8265 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8266 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8267 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8268 (YC && YC->getValueAPF().isNaN()); 8269 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8270 (YC && YC->getValueAPF().isInfinity()); 8271 8272 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8273 return getUNDEF(X.getValueType()); 8274 8275 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8276 return getUNDEF(X.getValueType()); 8277 8278 if (!YC) 8279 return SDValue(); 8280 8281 // X + -0.0 --> X 8282 if (Opcode == ISD::FADD) 8283 if (YC->getValueAPF().isNegZero()) 8284 return X; 8285 8286 // X - +0.0 --> X 8287 if (Opcode == ISD::FSUB) 8288 if (YC->getValueAPF().isPosZero()) 8289 return X; 8290 8291 // X * 1.0 --> X 8292 // X / 1.0 --> X 8293 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8294 if (YC->getValueAPF().isExactlyValue(1.0)) 8295 return X; 8296 8297 // X * 0.0 --> 0.0 8298 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8299 if (YC->getValueAPF().isZero()) 8300 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8301 8302 return SDValue(); 8303 } 8304 8305 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8306 SDValue Ptr, SDValue SV, unsigned Align) { 8307 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8308 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8309 } 8310 8311 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8312 ArrayRef<SDUse> Ops) { 8313 switch (Ops.size()) { 8314 case 0: return getNode(Opcode, DL, VT); 8315 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8316 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8317 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8318 default: break; 8319 } 8320 8321 // Copy from an SDUse array into an SDValue array for use with 8322 // the regular getNode logic. 8323 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8324 return getNode(Opcode, DL, VT, NewOps); 8325 } 8326 8327 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8328 ArrayRef<SDValue> Ops) { 8329 SDNodeFlags Flags; 8330 if (Inserter) 8331 Flags = Inserter->getFlags(); 8332 return getNode(Opcode, DL, VT, Ops, Flags); 8333 } 8334 8335 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8336 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8337 unsigned NumOps = Ops.size(); 8338 switch (NumOps) { 8339 case 0: return getNode(Opcode, DL, VT); 8340 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8341 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8342 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8343 default: break; 8344 } 8345 8346 #ifndef NDEBUG 8347 for (auto &Op : Ops) 8348 assert(Op.getOpcode() != ISD::DELETED_NODE && 8349 "Operand is DELETED_NODE!"); 8350 #endif 8351 8352 switch (Opcode) { 8353 default: break; 8354 case ISD::BUILD_VECTOR: 8355 // Attempt to simplify BUILD_VECTOR. 8356 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8357 return V; 8358 break; 8359 case ISD::CONCAT_VECTORS: 8360 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8361 return V; 8362 break; 8363 case ISD::SELECT_CC: 8364 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8365 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8366 "LHS and RHS of condition must have same type!"); 8367 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8368 "True and False arms of SelectCC must have same type!"); 8369 assert(Ops[2].getValueType() == VT && 8370 "select_cc node must be of same type as true and false value!"); 8371 break; 8372 case ISD::BR_CC: 8373 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8374 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8375 "LHS/RHS of comparison should match types!"); 8376 break; 8377 } 8378 8379 // Memoize nodes. 8380 SDNode *N; 8381 SDVTList VTs = getVTList(VT); 8382 8383 if (VT != MVT::Glue) { 8384 FoldingSetNodeID ID; 8385 AddNodeIDNode(ID, Opcode, VTs, Ops); 8386 void *IP = nullptr; 8387 8388 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8389 return SDValue(E, 0); 8390 8391 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8392 createOperands(N, Ops); 8393 8394 CSEMap.InsertNode(N, IP); 8395 } else { 8396 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8397 createOperands(N, Ops); 8398 } 8399 8400 N->setFlags(Flags); 8401 InsertNode(N); 8402 SDValue V(N, 0); 8403 NewSDValueDbgMsg(V, "Creating new node: ", this); 8404 return V; 8405 } 8406 8407 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8408 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8409 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8410 } 8411 8412 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8413 ArrayRef<SDValue> Ops) { 8414 SDNodeFlags Flags; 8415 if (Inserter) 8416 Flags = Inserter->getFlags(); 8417 return getNode(Opcode, DL, VTList, Ops, Flags); 8418 } 8419 8420 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8421 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8422 if (VTList.NumVTs == 1) 8423 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8424 8425 #ifndef NDEBUG 8426 for (auto &Op : Ops) 8427 assert(Op.getOpcode() != ISD::DELETED_NODE && 8428 "Operand is DELETED_NODE!"); 8429 #endif 8430 8431 switch (Opcode) { 8432 case ISD::STRICT_FP_EXTEND: 8433 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8434 "Invalid STRICT_FP_EXTEND!"); 8435 assert(VTList.VTs[0].isFloatingPoint() && 8436 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8437 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8438 "STRICT_FP_EXTEND result type should be vector iff the operand " 8439 "type is vector!"); 8440 assert((!VTList.VTs[0].isVector() || 8441 VTList.VTs[0].getVectorNumElements() == 8442 Ops[1].getValueType().getVectorNumElements()) && 8443 "Vector element count mismatch!"); 8444 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8445 "Invalid fpext node, dst <= src!"); 8446 break; 8447 case ISD::STRICT_FP_ROUND: 8448 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8449 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8450 "STRICT_FP_ROUND result type should be vector iff the operand " 8451 "type is vector!"); 8452 assert((!VTList.VTs[0].isVector() || 8453 VTList.VTs[0].getVectorNumElements() == 8454 Ops[1].getValueType().getVectorNumElements()) && 8455 "Vector element count mismatch!"); 8456 assert(VTList.VTs[0].isFloatingPoint() && 8457 Ops[1].getValueType().isFloatingPoint() && 8458 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8459 isa<ConstantSDNode>(Ops[2]) && 8460 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8461 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8462 "Invalid STRICT_FP_ROUND!"); 8463 break; 8464 #if 0 8465 // FIXME: figure out how to safely handle things like 8466 // int foo(int x) { return 1 << (x & 255); } 8467 // int bar() { return foo(256); } 8468 case ISD::SRA_PARTS: 8469 case ISD::SRL_PARTS: 8470 case ISD::SHL_PARTS: 8471 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8472 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8473 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8474 else if (N3.getOpcode() == ISD::AND) 8475 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8476 // If the and is only masking out bits that cannot effect the shift, 8477 // eliminate the and. 8478 unsigned NumBits = VT.getScalarSizeInBits()*2; 8479 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8480 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8481 } 8482 break; 8483 #endif 8484 } 8485 8486 // Memoize the node unless it returns a flag. 8487 SDNode *N; 8488 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8489 FoldingSetNodeID ID; 8490 AddNodeIDNode(ID, Opcode, VTList, Ops); 8491 void *IP = nullptr; 8492 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8493 return SDValue(E, 0); 8494 8495 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8496 createOperands(N, Ops); 8497 CSEMap.InsertNode(N, IP); 8498 } else { 8499 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8500 createOperands(N, Ops); 8501 } 8502 8503 N->setFlags(Flags); 8504 InsertNode(N); 8505 SDValue V(N, 0); 8506 NewSDValueDbgMsg(V, "Creating new node: ", this); 8507 return V; 8508 } 8509 8510 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8511 SDVTList VTList) { 8512 return getNode(Opcode, DL, VTList, None); 8513 } 8514 8515 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8516 SDValue N1) { 8517 SDValue Ops[] = { N1 }; 8518 return getNode(Opcode, DL, VTList, Ops); 8519 } 8520 8521 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8522 SDValue N1, SDValue N2) { 8523 SDValue Ops[] = { N1, N2 }; 8524 return getNode(Opcode, DL, VTList, Ops); 8525 } 8526 8527 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8528 SDValue N1, SDValue N2, SDValue N3) { 8529 SDValue Ops[] = { N1, N2, N3 }; 8530 return getNode(Opcode, DL, VTList, Ops); 8531 } 8532 8533 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8534 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8535 SDValue Ops[] = { N1, N2, N3, N4 }; 8536 return getNode(Opcode, DL, VTList, Ops); 8537 } 8538 8539 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8540 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8541 SDValue N5) { 8542 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8543 return getNode(Opcode, DL, VTList, Ops); 8544 } 8545 8546 SDVTList SelectionDAG::getVTList(EVT VT) { 8547 return makeVTList(SDNode::getValueTypeList(VT), 1); 8548 } 8549 8550 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8551 FoldingSetNodeID ID; 8552 ID.AddInteger(2U); 8553 ID.AddInteger(VT1.getRawBits()); 8554 ID.AddInteger(VT2.getRawBits()); 8555 8556 void *IP = nullptr; 8557 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8558 if (!Result) { 8559 EVT *Array = Allocator.Allocate<EVT>(2); 8560 Array[0] = VT1; 8561 Array[1] = VT2; 8562 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8563 VTListMap.InsertNode(Result, IP); 8564 } 8565 return Result->getSDVTList(); 8566 } 8567 8568 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8569 FoldingSetNodeID ID; 8570 ID.AddInteger(3U); 8571 ID.AddInteger(VT1.getRawBits()); 8572 ID.AddInteger(VT2.getRawBits()); 8573 ID.AddInteger(VT3.getRawBits()); 8574 8575 void *IP = nullptr; 8576 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8577 if (!Result) { 8578 EVT *Array = Allocator.Allocate<EVT>(3); 8579 Array[0] = VT1; 8580 Array[1] = VT2; 8581 Array[2] = VT3; 8582 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8583 VTListMap.InsertNode(Result, IP); 8584 } 8585 return Result->getSDVTList(); 8586 } 8587 8588 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8589 FoldingSetNodeID ID; 8590 ID.AddInteger(4U); 8591 ID.AddInteger(VT1.getRawBits()); 8592 ID.AddInteger(VT2.getRawBits()); 8593 ID.AddInteger(VT3.getRawBits()); 8594 ID.AddInteger(VT4.getRawBits()); 8595 8596 void *IP = nullptr; 8597 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8598 if (!Result) { 8599 EVT *Array = Allocator.Allocate<EVT>(4); 8600 Array[0] = VT1; 8601 Array[1] = VT2; 8602 Array[2] = VT3; 8603 Array[3] = VT4; 8604 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8605 VTListMap.InsertNode(Result, IP); 8606 } 8607 return Result->getSDVTList(); 8608 } 8609 8610 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8611 unsigned NumVTs = VTs.size(); 8612 FoldingSetNodeID ID; 8613 ID.AddInteger(NumVTs); 8614 for (unsigned index = 0; index < NumVTs; index++) { 8615 ID.AddInteger(VTs[index].getRawBits()); 8616 } 8617 8618 void *IP = nullptr; 8619 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8620 if (!Result) { 8621 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8622 llvm::copy(VTs, Array); 8623 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8624 VTListMap.InsertNode(Result, IP); 8625 } 8626 return Result->getSDVTList(); 8627 } 8628 8629 8630 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8631 /// specified operands. If the resultant node already exists in the DAG, 8632 /// this does not modify the specified node, instead it returns the node that 8633 /// already exists. If the resultant node does not exist in the DAG, the 8634 /// input node is returned. As a degenerate case, if you specify the same 8635 /// input operands as the node already has, the input node is returned. 8636 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8637 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8638 8639 // Check to see if there is no change. 8640 if (Op == N->getOperand(0)) return N; 8641 8642 // See if the modified node already exists. 8643 void *InsertPos = nullptr; 8644 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8645 return Existing; 8646 8647 // Nope it doesn't. Remove the node from its current place in the maps. 8648 if (InsertPos) 8649 if (!RemoveNodeFromCSEMaps(N)) 8650 InsertPos = nullptr; 8651 8652 // Now we update the operands. 8653 N->OperandList[0].set(Op); 8654 8655 updateDivergence(N); 8656 // If this gets put into a CSE map, add it. 8657 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8658 return N; 8659 } 8660 8661 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8662 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8663 8664 // Check to see if there is no change. 8665 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8666 return N; // No operands changed, just return the input node. 8667 8668 // See if the modified node already exists. 8669 void *InsertPos = nullptr; 8670 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8671 return Existing; 8672 8673 // Nope it doesn't. Remove the node from its current place in the maps. 8674 if (InsertPos) 8675 if (!RemoveNodeFromCSEMaps(N)) 8676 InsertPos = nullptr; 8677 8678 // Now we update the operands. 8679 if (N->OperandList[0] != Op1) 8680 N->OperandList[0].set(Op1); 8681 if (N->OperandList[1] != Op2) 8682 N->OperandList[1].set(Op2); 8683 8684 updateDivergence(N); 8685 // If this gets put into a CSE map, add it. 8686 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8687 return N; 8688 } 8689 8690 SDNode *SelectionDAG:: 8691 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8692 SDValue Ops[] = { Op1, Op2, Op3 }; 8693 return UpdateNodeOperands(N, Ops); 8694 } 8695 8696 SDNode *SelectionDAG:: 8697 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8698 SDValue Op3, SDValue Op4) { 8699 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8700 return UpdateNodeOperands(N, Ops); 8701 } 8702 8703 SDNode *SelectionDAG:: 8704 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8705 SDValue Op3, SDValue Op4, SDValue Op5) { 8706 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8707 return UpdateNodeOperands(N, Ops); 8708 } 8709 8710 SDNode *SelectionDAG:: 8711 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8712 unsigned NumOps = Ops.size(); 8713 assert(N->getNumOperands() == NumOps && 8714 "Update with wrong number of operands"); 8715 8716 // If no operands changed just return the input node. 8717 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8718 return N; 8719 8720 // See if the modified node already exists. 8721 void *InsertPos = nullptr; 8722 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8723 return Existing; 8724 8725 // Nope it doesn't. Remove the node from its current place in the maps. 8726 if (InsertPos) 8727 if (!RemoveNodeFromCSEMaps(N)) 8728 InsertPos = nullptr; 8729 8730 // Now we update the operands. 8731 for (unsigned i = 0; i != NumOps; ++i) 8732 if (N->OperandList[i] != Ops[i]) 8733 N->OperandList[i].set(Ops[i]); 8734 8735 updateDivergence(N); 8736 // If this gets put into a CSE map, add it. 8737 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8738 return N; 8739 } 8740 8741 /// DropOperands - Release the operands and set this node to have 8742 /// zero operands. 8743 void SDNode::DropOperands() { 8744 // Unlike the code in MorphNodeTo that does this, we don't need to 8745 // watch for dead nodes here. 8746 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8747 SDUse &Use = *I++; 8748 Use.set(SDValue()); 8749 } 8750 } 8751 8752 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8753 ArrayRef<MachineMemOperand *> NewMemRefs) { 8754 if (NewMemRefs.empty()) { 8755 N->clearMemRefs(); 8756 return; 8757 } 8758 8759 // Check if we can avoid allocating by storing a single reference directly. 8760 if (NewMemRefs.size() == 1) { 8761 N->MemRefs = NewMemRefs[0]; 8762 N->NumMemRefs = 1; 8763 return; 8764 } 8765 8766 MachineMemOperand **MemRefsBuffer = 8767 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8768 llvm::copy(NewMemRefs, MemRefsBuffer); 8769 N->MemRefs = MemRefsBuffer; 8770 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8771 } 8772 8773 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8774 /// machine opcode. 8775 /// 8776 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8777 EVT VT) { 8778 SDVTList VTs = getVTList(VT); 8779 return SelectNodeTo(N, MachineOpc, VTs, None); 8780 } 8781 8782 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8783 EVT VT, SDValue Op1) { 8784 SDVTList VTs = getVTList(VT); 8785 SDValue Ops[] = { Op1 }; 8786 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8787 } 8788 8789 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8790 EVT VT, SDValue Op1, 8791 SDValue Op2) { 8792 SDVTList VTs = getVTList(VT); 8793 SDValue Ops[] = { Op1, Op2 }; 8794 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8795 } 8796 8797 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8798 EVT VT, SDValue Op1, 8799 SDValue Op2, SDValue Op3) { 8800 SDVTList VTs = getVTList(VT); 8801 SDValue Ops[] = { Op1, Op2, Op3 }; 8802 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8803 } 8804 8805 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8806 EVT VT, ArrayRef<SDValue> Ops) { 8807 SDVTList VTs = getVTList(VT); 8808 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8809 } 8810 8811 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8812 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8813 SDVTList VTs = getVTList(VT1, VT2); 8814 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8815 } 8816 8817 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8818 EVT VT1, EVT VT2) { 8819 SDVTList VTs = getVTList(VT1, VT2); 8820 return SelectNodeTo(N, MachineOpc, VTs, None); 8821 } 8822 8823 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8824 EVT VT1, EVT VT2, EVT VT3, 8825 ArrayRef<SDValue> Ops) { 8826 SDVTList VTs = getVTList(VT1, VT2, VT3); 8827 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8828 } 8829 8830 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8831 EVT VT1, EVT VT2, 8832 SDValue Op1, SDValue Op2) { 8833 SDVTList VTs = getVTList(VT1, VT2); 8834 SDValue Ops[] = { Op1, Op2 }; 8835 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8836 } 8837 8838 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8839 SDVTList VTs,ArrayRef<SDValue> Ops) { 8840 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8841 // Reset the NodeID to -1. 8842 New->setNodeId(-1); 8843 if (New != N) { 8844 ReplaceAllUsesWith(N, New); 8845 RemoveDeadNode(N); 8846 } 8847 return New; 8848 } 8849 8850 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8851 /// the line number information on the merged node since it is not possible to 8852 /// preserve the information that operation is associated with multiple lines. 8853 /// This will make the debugger working better at -O0, were there is a higher 8854 /// probability having other instructions associated with that line. 8855 /// 8856 /// For IROrder, we keep the smaller of the two 8857 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8858 DebugLoc NLoc = N->getDebugLoc(); 8859 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8860 N->setDebugLoc(DebugLoc()); 8861 } 8862 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8863 N->setIROrder(Order); 8864 return N; 8865 } 8866 8867 /// MorphNodeTo - This *mutates* the specified node to have the specified 8868 /// return type, opcode, and operands. 8869 /// 8870 /// Note that MorphNodeTo returns the resultant node. If there is already a 8871 /// node of the specified opcode and operands, it returns that node instead of 8872 /// the current one. Note that the SDLoc need not be the same. 8873 /// 8874 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8875 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8876 /// node, and because it doesn't require CSE recalculation for any of 8877 /// the node's users. 8878 /// 8879 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8880 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8881 /// the legalizer which maintain worklists that would need to be updated when 8882 /// deleting things. 8883 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8884 SDVTList VTs, ArrayRef<SDValue> Ops) { 8885 // If an identical node already exists, use it. 8886 void *IP = nullptr; 8887 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8888 FoldingSetNodeID ID; 8889 AddNodeIDNode(ID, Opc, VTs, Ops); 8890 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8891 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8892 } 8893 8894 if (!RemoveNodeFromCSEMaps(N)) 8895 IP = nullptr; 8896 8897 // Start the morphing. 8898 N->NodeType = Opc; 8899 N->ValueList = VTs.VTs; 8900 N->NumValues = VTs.NumVTs; 8901 8902 // Clear the operands list, updating used nodes to remove this from their 8903 // use list. Keep track of any operands that become dead as a result. 8904 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8905 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8906 SDUse &Use = *I++; 8907 SDNode *Used = Use.getNode(); 8908 Use.set(SDValue()); 8909 if (Used->use_empty()) 8910 DeadNodeSet.insert(Used); 8911 } 8912 8913 // For MachineNode, initialize the memory references information. 8914 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8915 MN->clearMemRefs(); 8916 8917 // Swap for an appropriately sized array from the recycler. 8918 removeOperands(N); 8919 createOperands(N, Ops); 8920 8921 // Delete any nodes that are still dead after adding the uses for the 8922 // new operands. 8923 if (!DeadNodeSet.empty()) { 8924 SmallVector<SDNode *, 16> DeadNodes; 8925 for (SDNode *N : DeadNodeSet) 8926 if (N->use_empty()) 8927 DeadNodes.push_back(N); 8928 RemoveDeadNodes(DeadNodes); 8929 } 8930 8931 if (IP) 8932 CSEMap.InsertNode(N, IP); // Memoize the new node. 8933 return N; 8934 } 8935 8936 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8937 unsigned OrigOpc = Node->getOpcode(); 8938 unsigned NewOpc; 8939 switch (OrigOpc) { 8940 default: 8941 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8942 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8943 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8944 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8945 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8946 #include "llvm/IR/ConstrainedOps.def" 8947 } 8948 8949 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8950 8951 // We're taking this node out of the chain, so we need to re-link things. 8952 SDValue InputChain = Node->getOperand(0); 8953 SDValue OutputChain = SDValue(Node, 1); 8954 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8955 8956 SmallVector<SDValue, 3> Ops; 8957 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8958 Ops.push_back(Node->getOperand(i)); 8959 8960 SDVTList VTs = getVTList(Node->getValueType(0)); 8961 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8962 8963 // MorphNodeTo can operate in two ways: if an existing node with the 8964 // specified operands exists, it can just return it. Otherwise, it 8965 // updates the node in place to have the requested operands. 8966 if (Res == Node) { 8967 // If we updated the node in place, reset the node ID. To the isel, 8968 // this should be just like a newly allocated machine node. 8969 Res->setNodeId(-1); 8970 } else { 8971 ReplaceAllUsesWith(Node, Res); 8972 RemoveDeadNode(Node); 8973 } 8974 8975 return Res; 8976 } 8977 8978 /// getMachineNode - These are used for target selectors to create a new node 8979 /// with specified return type(s), MachineInstr opcode, and operands. 8980 /// 8981 /// Note that getMachineNode returns the resultant node. If there is already a 8982 /// node of the specified opcode and operands, it returns that node instead of 8983 /// the current one. 8984 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8985 EVT VT) { 8986 SDVTList VTs = getVTList(VT); 8987 return getMachineNode(Opcode, dl, VTs, None); 8988 } 8989 8990 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8991 EVT VT, SDValue Op1) { 8992 SDVTList VTs = getVTList(VT); 8993 SDValue Ops[] = { Op1 }; 8994 return getMachineNode(Opcode, dl, VTs, Ops); 8995 } 8996 8997 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8998 EVT VT, SDValue Op1, SDValue Op2) { 8999 SDVTList VTs = getVTList(VT); 9000 SDValue Ops[] = { Op1, Op2 }; 9001 return getMachineNode(Opcode, dl, VTs, Ops); 9002 } 9003 9004 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9005 EVT VT, SDValue Op1, SDValue Op2, 9006 SDValue Op3) { 9007 SDVTList VTs = getVTList(VT); 9008 SDValue Ops[] = { Op1, Op2, Op3 }; 9009 return getMachineNode(Opcode, dl, VTs, Ops); 9010 } 9011 9012 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9013 EVT VT, ArrayRef<SDValue> Ops) { 9014 SDVTList VTs = getVTList(VT); 9015 return getMachineNode(Opcode, dl, VTs, Ops); 9016 } 9017 9018 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9019 EVT VT1, EVT VT2, SDValue Op1, 9020 SDValue Op2) { 9021 SDVTList VTs = getVTList(VT1, VT2); 9022 SDValue Ops[] = { Op1, Op2 }; 9023 return getMachineNode(Opcode, dl, VTs, Ops); 9024 } 9025 9026 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9027 EVT VT1, EVT VT2, SDValue Op1, 9028 SDValue Op2, SDValue Op3) { 9029 SDVTList VTs = getVTList(VT1, VT2); 9030 SDValue Ops[] = { Op1, Op2, Op3 }; 9031 return getMachineNode(Opcode, dl, VTs, Ops); 9032 } 9033 9034 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9035 EVT VT1, EVT VT2, 9036 ArrayRef<SDValue> Ops) { 9037 SDVTList VTs = getVTList(VT1, VT2); 9038 return getMachineNode(Opcode, dl, VTs, Ops); 9039 } 9040 9041 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9042 EVT VT1, EVT VT2, EVT VT3, 9043 SDValue Op1, SDValue Op2) { 9044 SDVTList VTs = getVTList(VT1, VT2, VT3); 9045 SDValue Ops[] = { Op1, Op2 }; 9046 return getMachineNode(Opcode, dl, VTs, Ops); 9047 } 9048 9049 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9050 EVT VT1, EVT VT2, EVT VT3, 9051 SDValue Op1, SDValue Op2, 9052 SDValue Op3) { 9053 SDVTList VTs = getVTList(VT1, VT2, VT3); 9054 SDValue Ops[] = { Op1, Op2, Op3 }; 9055 return getMachineNode(Opcode, dl, VTs, Ops); 9056 } 9057 9058 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9059 EVT VT1, EVT VT2, EVT VT3, 9060 ArrayRef<SDValue> Ops) { 9061 SDVTList VTs = getVTList(VT1, VT2, VT3); 9062 return getMachineNode(Opcode, dl, VTs, Ops); 9063 } 9064 9065 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9066 ArrayRef<EVT> ResultTys, 9067 ArrayRef<SDValue> Ops) { 9068 SDVTList VTs = getVTList(ResultTys); 9069 return getMachineNode(Opcode, dl, VTs, Ops); 9070 } 9071 9072 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9073 SDVTList VTs, 9074 ArrayRef<SDValue> Ops) { 9075 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9076 MachineSDNode *N; 9077 void *IP = nullptr; 9078 9079 if (DoCSE) { 9080 FoldingSetNodeID ID; 9081 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9082 IP = nullptr; 9083 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9084 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9085 } 9086 } 9087 9088 // Allocate a new MachineSDNode. 9089 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9090 createOperands(N, Ops); 9091 9092 if (DoCSE) 9093 CSEMap.InsertNode(N, IP); 9094 9095 InsertNode(N); 9096 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9097 return N; 9098 } 9099 9100 /// getTargetExtractSubreg - A convenience function for creating 9101 /// TargetOpcode::EXTRACT_SUBREG nodes. 9102 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9103 SDValue Operand) { 9104 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9105 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9106 VT, Operand, SRIdxVal); 9107 return SDValue(Subreg, 0); 9108 } 9109 9110 /// getTargetInsertSubreg - A convenience function for creating 9111 /// TargetOpcode::INSERT_SUBREG nodes. 9112 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9113 SDValue Operand, SDValue Subreg) { 9114 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9115 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9116 VT, Operand, Subreg, SRIdxVal); 9117 return SDValue(Result, 0); 9118 } 9119 9120 /// getNodeIfExists - Get the specified node if it's already available, or 9121 /// else return NULL. 9122 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9123 ArrayRef<SDValue> Ops) { 9124 SDNodeFlags Flags; 9125 if (Inserter) 9126 Flags = Inserter->getFlags(); 9127 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9128 } 9129 9130 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9131 ArrayRef<SDValue> Ops, 9132 const SDNodeFlags Flags) { 9133 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9134 FoldingSetNodeID ID; 9135 AddNodeIDNode(ID, Opcode, VTList, Ops); 9136 void *IP = nullptr; 9137 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9138 E->intersectFlagsWith(Flags); 9139 return E; 9140 } 9141 } 9142 return nullptr; 9143 } 9144 9145 /// doesNodeExist - Check if a node exists without modifying its flags. 9146 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9147 ArrayRef<SDValue> Ops) { 9148 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9149 FoldingSetNodeID ID; 9150 AddNodeIDNode(ID, Opcode, VTList, Ops); 9151 void *IP = nullptr; 9152 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9153 return true; 9154 } 9155 return false; 9156 } 9157 9158 /// getDbgValue - Creates a SDDbgValue node. 9159 /// 9160 /// SDNode 9161 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9162 SDNode *N, unsigned R, bool IsIndirect, 9163 const DebugLoc &DL, unsigned O) { 9164 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9165 "Expected inlined-at fields to agree"); 9166 return new (DbgInfo->getAlloc()) 9167 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9168 {}, IsIndirect, DL, O, 9169 /*IsVariadic=*/false); 9170 } 9171 9172 /// Constant 9173 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9174 DIExpression *Expr, 9175 const Value *C, 9176 const DebugLoc &DL, unsigned O) { 9177 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9178 "Expected inlined-at fields to agree"); 9179 return new (DbgInfo->getAlloc()) 9180 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9181 /*IsIndirect=*/false, DL, O, 9182 /*IsVariadic=*/false); 9183 } 9184 9185 /// FrameIndex 9186 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9187 DIExpression *Expr, unsigned FI, 9188 bool IsIndirect, 9189 const DebugLoc &DL, 9190 unsigned O) { 9191 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9192 "Expected inlined-at fields to agree"); 9193 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9194 } 9195 9196 /// FrameIndex with dependencies 9197 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9198 DIExpression *Expr, unsigned FI, 9199 ArrayRef<SDNode *> Dependencies, 9200 bool IsIndirect, 9201 const DebugLoc &DL, 9202 unsigned O) { 9203 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9204 "Expected inlined-at fields to agree"); 9205 return new (DbgInfo->getAlloc()) 9206 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9207 Dependencies, IsIndirect, DL, O, 9208 /*IsVariadic=*/false); 9209 } 9210 9211 /// VReg 9212 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9213 unsigned VReg, bool IsIndirect, 9214 const DebugLoc &DL, unsigned O) { 9215 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9216 "Expected inlined-at fields to agree"); 9217 return new (DbgInfo->getAlloc()) 9218 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9219 {}, IsIndirect, DL, O, 9220 /*IsVariadic=*/false); 9221 } 9222 9223 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9224 ArrayRef<SDDbgOperand> Locs, 9225 ArrayRef<SDNode *> Dependencies, 9226 bool IsIndirect, const DebugLoc &DL, 9227 unsigned O, bool IsVariadic) { 9228 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9229 "Expected inlined-at fields to agree"); 9230 return new (DbgInfo->getAlloc()) 9231 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9232 DL, O, IsVariadic); 9233 } 9234 9235 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9236 unsigned OffsetInBits, unsigned SizeInBits, 9237 bool InvalidateDbg) { 9238 SDNode *FromNode = From.getNode(); 9239 SDNode *ToNode = To.getNode(); 9240 assert(FromNode && ToNode && "Can't modify dbg values"); 9241 9242 // PR35338 9243 // TODO: assert(From != To && "Redundant dbg value transfer"); 9244 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9245 if (From == To || FromNode == ToNode) 9246 return; 9247 9248 if (!FromNode->getHasDebugValue()) 9249 return; 9250 9251 SDDbgOperand FromLocOp = 9252 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9253 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9254 9255 SmallVector<SDDbgValue *, 2> ClonedDVs; 9256 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9257 if (Dbg->isInvalidated()) 9258 continue; 9259 9260 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9261 9262 // Create a new location ops vector that is equal to the old vector, but 9263 // with each instance of FromLocOp replaced with ToLocOp. 9264 bool Changed = false; 9265 auto NewLocOps = Dbg->copyLocationOps(); 9266 std::replace_if( 9267 NewLocOps.begin(), NewLocOps.end(), 9268 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9269 bool Match = Op == FromLocOp; 9270 Changed |= Match; 9271 return Match; 9272 }, 9273 ToLocOp); 9274 // Ignore this SDDbgValue if we didn't find a matching location. 9275 if (!Changed) 9276 continue; 9277 9278 DIVariable *Var = Dbg->getVariable(); 9279 auto *Expr = Dbg->getExpression(); 9280 // If a fragment is requested, update the expression. 9281 if (SizeInBits) { 9282 // When splitting a larger (e.g., sign-extended) value whose 9283 // lower bits are described with an SDDbgValue, do not attempt 9284 // to transfer the SDDbgValue to the upper bits. 9285 if (auto FI = Expr->getFragmentInfo()) 9286 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9287 continue; 9288 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9289 SizeInBits); 9290 if (!Fragment) 9291 continue; 9292 Expr = *Fragment; 9293 } 9294 9295 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9296 // Clone the SDDbgValue and move it to To. 9297 SDDbgValue *Clone = getDbgValueList( 9298 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9299 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9300 Dbg->isVariadic()); 9301 ClonedDVs.push_back(Clone); 9302 9303 if (InvalidateDbg) { 9304 // Invalidate value and indicate the SDDbgValue should not be emitted. 9305 Dbg->setIsInvalidated(); 9306 Dbg->setIsEmitted(); 9307 } 9308 } 9309 9310 for (SDDbgValue *Dbg : ClonedDVs) { 9311 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9312 "Transferred DbgValues should depend on the new SDNode"); 9313 AddDbgValue(Dbg, false); 9314 } 9315 } 9316 9317 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9318 if (!N.getHasDebugValue()) 9319 return; 9320 9321 SmallVector<SDDbgValue *, 2> ClonedDVs; 9322 for (auto DV : GetDbgValues(&N)) { 9323 if (DV->isInvalidated()) 9324 continue; 9325 switch (N.getOpcode()) { 9326 default: 9327 break; 9328 case ISD::ADD: 9329 SDValue N0 = N.getOperand(0); 9330 SDValue N1 = N.getOperand(1); 9331 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9332 isConstantIntBuildVectorOrConstantInt(N1)) { 9333 uint64_t Offset = N.getConstantOperandVal(1); 9334 9335 // Rewrite an ADD constant node into a DIExpression. Since we are 9336 // performing arithmetic to compute the variable's *value* in the 9337 // DIExpression, we need to mark the expression with a 9338 // DW_OP_stack_value. 9339 auto *DIExpr = DV->getExpression(); 9340 auto NewLocOps = DV->copyLocationOps(); 9341 bool Changed = false; 9342 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9343 // We're not given a ResNo to compare against because the whole 9344 // node is going away. We know that any ISD::ADD only has one 9345 // result, so we can assume any node match is using the result. 9346 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9347 NewLocOps[i].getSDNode() != &N) 9348 continue; 9349 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9350 SmallVector<uint64_t, 3> ExprOps; 9351 DIExpression::appendOffset(ExprOps, Offset); 9352 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9353 Changed = true; 9354 } 9355 (void)Changed; 9356 assert(Changed && "Salvage target doesn't use N"); 9357 9358 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9359 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9360 NewLocOps, AdditionalDependencies, 9361 DV->isIndirect(), DV->getDebugLoc(), 9362 DV->getOrder(), DV->isVariadic()); 9363 ClonedDVs.push_back(Clone); 9364 DV->setIsInvalidated(); 9365 DV->setIsEmitted(); 9366 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9367 N0.getNode()->dumprFull(this); 9368 dbgs() << " into " << *DIExpr << '\n'); 9369 } 9370 } 9371 } 9372 9373 for (SDDbgValue *Dbg : ClonedDVs) { 9374 assert(!Dbg->getSDNodes().empty() && 9375 "Salvaged DbgValue should depend on a new SDNode"); 9376 AddDbgValue(Dbg, false); 9377 } 9378 } 9379 9380 /// Creates a SDDbgLabel node. 9381 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9382 const DebugLoc &DL, unsigned O) { 9383 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9384 "Expected inlined-at fields to agree"); 9385 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9386 } 9387 9388 namespace { 9389 9390 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9391 /// pointed to by a use iterator is deleted, increment the use iterator 9392 /// so that it doesn't dangle. 9393 /// 9394 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9395 SDNode::use_iterator &UI; 9396 SDNode::use_iterator &UE; 9397 9398 void NodeDeleted(SDNode *N, SDNode *E) override { 9399 // Increment the iterator as needed. 9400 while (UI != UE && N == *UI) 9401 ++UI; 9402 } 9403 9404 public: 9405 RAUWUpdateListener(SelectionDAG &d, 9406 SDNode::use_iterator &ui, 9407 SDNode::use_iterator &ue) 9408 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9409 }; 9410 9411 } // end anonymous namespace 9412 9413 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9414 /// This can cause recursive merging of nodes in the DAG. 9415 /// 9416 /// This version assumes From has a single result value. 9417 /// 9418 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9419 SDNode *From = FromN.getNode(); 9420 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9421 "Cannot replace with this method!"); 9422 assert(From != To.getNode() && "Cannot replace uses of with self"); 9423 9424 // Preserve Debug Values 9425 transferDbgValues(FromN, To); 9426 9427 // Iterate over all the existing uses of From. New uses will be added 9428 // to the beginning of the use list, which we avoid visiting. 9429 // This specifically avoids visiting uses of From that arise while the 9430 // replacement is happening, because any such uses would be the result 9431 // of CSE: If an existing node looks like From after one of its operands 9432 // is replaced by To, we don't want to replace of all its users with To 9433 // too. See PR3018 for more info. 9434 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9435 RAUWUpdateListener Listener(*this, UI, UE); 9436 while (UI != UE) { 9437 SDNode *User = *UI; 9438 9439 // This node is about to morph, remove its old self from the CSE maps. 9440 RemoveNodeFromCSEMaps(User); 9441 9442 // A user can appear in a use list multiple times, and when this 9443 // happens the uses are usually next to each other in the list. 9444 // To help reduce the number of CSE recomputations, process all 9445 // the uses of this user that we can find this way. 9446 do { 9447 SDUse &Use = UI.getUse(); 9448 ++UI; 9449 Use.set(To); 9450 if (To->isDivergent() != From->isDivergent()) 9451 updateDivergence(User); 9452 } while (UI != UE && *UI == User); 9453 // Now that we have modified User, add it back to the CSE maps. If it 9454 // already exists there, recursively merge the results together. 9455 AddModifiedNodeToCSEMaps(User); 9456 } 9457 9458 // If we just RAUW'd the root, take note. 9459 if (FromN == getRoot()) 9460 setRoot(To); 9461 } 9462 9463 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9464 /// This can cause recursive merging of nodes in the DAG. 9465 /// 9466 /// This version assumes that for each value of From, there is a 9467 /// corresponding value in To in the same position with the same type. 9468 /// 9469 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9470 #ifndef NDEBUG 9471 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9472 assert((!From->hasAnyUseOfValue(i) || 9473 From->getValueType(i) == To->getValueType(i)) && 9474 "Cannot use this version of ReplaceAllUsesWith!"); 9475 #endif 9476 9477 // Handle the trivial case. 9478 if (From == To) 9479 return; 9480 9481 // Preserve Debug Info. Only do this if there's a use. 9482 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9483 if (From->hasAnyUseOfValue(i)) { 9484 assert((i < To->getNumValues()) && "Invalid To location"); 9485 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9486 } 9487 9488 // Iterate over just the existing users of From. See the comments in 9489 // the ReplaceAllUsesWith above. 9490 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9491 RAUWUpdateListener Listener(*this, UI, UE); 9492 while (UI != UE) { 9493 SDNode *User = *UI; 9494 9495 // This node is about to morph, remove its old self from the CSE maps. 9496 RemoveNodeFromCSEMaps(User); 9497 9498 // A user can appear in a use list multiple times, and when this 9499 // happens the uses are usually next to each other in the list. 9500 // To help reduce the number of CSE recomputations, process all 9501 // the uses of this user that we can find this way. 9502 do { 9503 SDUse &Use = UI.getUse(); 9504 ++UI; 9505 Use.setNode(To); 9506 if (To->isDivergent() != From->isDivergent()) 9507 updateDivergence(User); 9508 } while (UI != UE && *UI == User); 9509 9510 // Now that we have modified User, add it back to the CSE maps. If it 9511 // already exists there, recursively merge the results together. 9512 AddModifiedNodeToCSEMaps(User); 9513 } 9514 9515 // If we just RAUW'd the root, take note. 9516 if (From == getRoot().getNode()) 9517 setRoot(SDValue(To, getRoot().getResNo())); 9518 } 9519 9520 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9521 /// This can cause recursive merging of nodes in the DAG. 9522 /// 9523 /// This version can replace From with any result values. To must match the 9524 /// number and types of values returned by From. 9525 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9526 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9527 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9528 9529 // Preserve Debug Info. 9530 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9531 transferDbgValues(SDValue(From, i), To[i]); 9532 9533 // Iterate over just the existing users of From. See the comments in 9534 // the ReplaceAllUsesWith above. 9535 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9536 RAUWUpdateListener Listener(*this, UI, UE); 9537 while (UI != UE) { 9538 SDNode *User = *UI; 9539 9540 // This node is about to morph, remove its old self from the CSE maps. 9541 RemoveNodeFromCSEMaps(User); 9542 9543 // A user can appear in a use list multiple times, and when this happens the 9544 // uses are usually next to each other in the list. To help reduce the 9545 // number of CSE and divergence recomputations, process all the uses of this 9546 // user that we can find this way. 9547 bool To_IsDivergent = false; 9548 do { 9549 SDUse &Use = UI.getUse(); 9550 const SDValue &ToOp = To[Use.getResNo()]; 9551 ++UI; 9552 Use.set(ToOp); 9553 To_IsDivergent |= ToOp->isDivergent(); 9554 } while (UI != UE && *UI == User); 9555 9556 if (To_IsDivergent != From->isDivergent()) 9557 updateDivergence(User); 9558 9559 // Now that we have modified User, add it back to the CSE maps. If it 9560 // already exists there, recursively merge the results together. 9561 AddModifiedNodeToCSEMaps(User); 9562 } 9563 9564 // If we just RAUW'd the root, take note. 9565 if (From == getRoot().getNode()) 9566 setRoot(SDValue(To[getRoot().getResNo()])); 9567 } 9568 9569 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9570 /// uses of other values produced by From.getNode() alone. The Deleted 9571 /// vector is handled the same way as for ReplaceAllUsesWith. 9572 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9573 // Handle the really simple, really trivial case efficiently. 9574 if (From == To) return; 9575 9576 // Handle the simple, trivial, case efficiently. 9577 if (From.getNode()->getNumValues() == 1) { 9578 ReplaceAllUsesWith(From, To); 9579 return; 9580 } 9581 9582 // Preserve Debug Info. 9583 transferDbgValues(From, To); 9584 9585 // Iterate over just the existing users of From. See the comments in 9586 // the ReplaceAllUsesWith above. 9587 SDNode::use_iterator UI = From.getNode()->use_begin(), 9588 UE = From.getNode()->use_end(); 9589 RAUWUpdateListener Listener(*this, UI, UE); 9590 while (UI != UE) { 9591 SDNode *User = *UI; 9592 bool UserRemovedFromCSEMaps = false; 9593 9594 // A user can appear in a use list multiple times, and when this 9595 // happens the uses are usually next to each other in the list. 9596 // To help reduce the number of CSE recomputations, process all 9597 // the uses of this user that we can find this way. 9598 do { 9599 SDUse &Use = UI.getUse(); 9600 9601 // Skip uses of different values from the same node. 9602 if (Use.getResNo() != From.getResNo()) { 9603 ++UI; 9604 continue; 9605 } 9606 9607 // If this node hasn't been modified yet, it's still in the CSE maps, 9608 // so remove its old self from the CSE maps. 9609 if (!UserRemovedFromCSEMaps) { 9610 RemoveNodeFromCSEMaps(User); 9611 UserRemovedFromCSEMaps = true; 9612 } 9613 9614 ++UI; 9615 Use.set(To); 9616 if (To->isDivergent() != From->isDivergent()) 9617 updateDivergence(User); 9618 } while (UI != UE && *UI == User); 9619 // We are iterating over all uses of the From node, so if a use 9620 // doesn't use the specific value, no changes are made. 9621 if (!UserRemovedFromCSEMaps) 9622 continue; 9623 9624 // Now that we have modified User, add it back to the CSE maps. If it 9625 // already exists there, recursively merge the results together. 9626 AddModifiedNodeToCSEMaps(User); 9627 } 9628 9629 // If we just RAUW'd the root, take note. 9630 if (From == getRoot()) 9631 setRoot(To); 9632 } 9633 9634 namespace { 9635 9636 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9637 /// to record information about a use. 9638 struct UseMemo { 9639 SDNode *User; 9640 unsigned Index; 9641 SDUse *Use; 9642 }; 9643 9644 /// operator< - Sort Memos by User. 9645 bool operator<(const UseMemo &L, const UseMemo &R) { 9646 return (intptr_t)L.User < (intptr_t)R.User; 9647 } 9648 9649 } // end anonymous namespace 9650 9651 bool SelectionDAG::calculateDivergence(SDNode *N) { 9652 if (TLI->isSDNodeAlwaysUniform(N)) { 9653 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9654 "Conflicting divergence information!"); 9655 return false; 9656 } 9657 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9658 return true; 9659 for (auto &Op : N->ops()) { 9660 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9661 return true; 9662 } 9663 return false; 9664 } 9665 9666 void SelectionDAG::updateDivergence(SDNode *N) { 9667 SmallVector<SDNode *, 16> Worklist(1, N); 9668 do { 9669 N = Worklist.pop_back_val(); 9670 bool IsDivergent = calculateDivergence(N); 9671 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9672 N->SDNodeBits.IsDivergent = IsDivergent; 9673 llvm::append_range(Worklist, N->uses()); 9674 } 9675 } while (!Worklist.empty()); 9676 } 9677 9678 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9679 DenseMap<SDNode *, unsigned> Degree; 9680 Order.reserve(AllNodes.size()); 9681 for (auto &N : allnodes()) { 9682 unsigned NOps = N.getNumOperands(); 9683 Degree[&N] = NOps; 9684 if (0 == NOps) 9685 Order.push_back(&N); 9686 } 9687 for (size_t I = 0; I != Order.size(); ++I) { 9688 SDNode *N = Order[I]; 9689 for (auto U : N->uses()) { 9690 unsigned &UnsortedOps = Degree[U]; 9691 if (0 == --UnsortedOps) 9692 Order.push_back(U); 9693 } 9694 } 9695 } 9696 9697 #ifndef NDEBUG 9698 void SelectionDAG::VerifyDAGDivergence() { 9699 std::vector<SDNode *> TopoOrder; 9700 CreateTopologicalOrder(TopoOrder); 9701 for (auto *N : TopoOrder) { 9702 assert(calculateDivergence(N) == N->isDivergent() && 9703 "Divergence bit inconsistency detected"); 9704 } 9705 } 9706 #endif 9707 9708 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9709 /// uses of other values produced by From.getNode() alone. The same value 9710 /// may appear in both the From and To list. The Deleted vector is 9711 /// handled the same way as for ReplaceAllUsesWith. 9712 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9713 const SDValue *To, 9714 unsigned Num){ 9715 // Handle the simple, trivial case efficiently. 9716 if (Num == 1) 9717 return ReplaceAllUsesOfValueWith(*From, *To); 9718 9719 transferDbgValues(*From, *To); 9720 9721 // Read up all the uses and make records of them. This helps 9722 // processing new uses that are introduced during the 9723 // replacement process. 9724 SmallVector<UseMemo, 4> Uses; 9725 for (unsigned i = 0; i != Num; ++i) { 9726 unsigned FromResNo = From[i].getResNo(); 9727 SDNode *FromNode = From[i].getNode(); 9728 for (SDNode::use_iterator UI = FromNode->use_begin(), 9729 E = FromNode->use_end(); UI != E; ++UI) { 9730 SDUse &Use = UI.getUse(); 9731 if (Use.getResNo() == FromResNo) { 9732 UseMemo Memo = { *UI, i, &Use }; 9733 Uses.push_back(Memo); 9734 } 9735 } 9736 } 9737 9738 // Sort the uses, so that all the uses from a given User are together. 9739 llvm::sort(Uses); 9740 9741 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9742 UseIndex != UseIndexEnd; ) { 9743 // We know that this user uses some value of From. If it is the right 9744 // value, update it. 9745 SDNode *User = Uses[UseIndex].User; 9746 9747 // This node is about to morph, remove its old self from the CSE maps. 9748 RemoveNodeFromCSEMaps(User); 9749 9750 // The Uses array is sorted, so all the uses for a given User 9751 // are next to each other in the list. 9752 // To help reduce the number of CSE recomputations, process all 9753 // the uses of this user that we can find this way. 9754 do { 9755 unsigned i = Uses[UseIndex].Index; 9756 SDUse &Use = *Uses[UseIndex].Use; 9757 ++UseIndex; 9758 9759 Use.set(To[i]); 9760 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9761 9762 // Now that we have modified User, add it back to the CSE maps. If it 9763 // already exists there, recursively merge the results together. 9764 AddModifiedNodeToCSEMaps(User); 9765 } 9766 } 9767 9768 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9769 /// based on their topological order. It returns the maximum id and a vector 9770 /// of the SDNodes* in assigned order by reference. 9771 unsigned SelectionDAG::AssignTopologicalOrder() { 9772 unsigned DAGSize = 0; 9773 9774 // SortedPos tracks the progress of the algorithm. Nodes before it are 9775 // sorted, nodes after it are unsorted. When the algorithm completes 9776 // it is at the end of the list. 9777 allnodes_iterator SortedPos = allnodes_begin(); 9778 9779 // Visit all the nodes. Move nodes with no operands to the front of 9780 // the list immediately. Annotate nodes that do have operands with their 9781 // operand count. Before we do this, the Node Id fields of the nodes 9782 // may contain arbitrary values. After, the Node Id fields for nodes 9783 // before SortedPos will contain the topological sort index, and the 9784 // Node Id fields for nodes At SortedPos and after will contain the 9785 // count of outstanding operands. 9786 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9787 checkForCycles(&N, this); 9788 unsigned Degree = N.getNumOperands(); 9789 if (Degree == 0) { 9790 // A node with no uses, add it to the result array immediately. 9791 N.setNodeId(DAGSize++); 9792 allnodes_iterator Q(&N); 9793 if (Q != SortedPos) 9794 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9795 assert(SortedPos != AllNodes.end() && "Overran node list"); 9796 ++SortedPos; 9797 } else { 9798 // Temporarily use the Node Id as scratch space for the degree count. 9799 N.setNodeId(Degree); 9800 } 9801 } 9802 9803 // Visit all the nodes. As we iterate, move nodes into sorted order, 9804 // such that by the time the end is reached all nodes will be sorted. 9805 for (SDNode &Node : allnodes()) { 9806 SDNode *N = &Node; 9807 checkForCycles(N, this); 9808 // N is in sorted position, so all its uses have one less operand 9809 // that needs to be sorted. 9810 for (SDNode *P : N->uses()) { 9811 unsigned Degree = P->getNodeId(); 9812 assert(Degree != 0 && "Invalid node degree"); 9813 --Degree; 9814 if (Degree == 0) { 9815 // All of P's operands are sorted, so P may sorted now. 9816 P->setNodeId(DAGSize++); 9817 if (P->getIterator() != SortedPos) 9818 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9819 assert(SortedPos != AllNodes.end() && "Overran node list"); 9820 ++SortedPos; 9821 } else { 9822 // Update P's outstanding operand count. 9823 P->setNodeId(Degree); 9824 } 9825 } 9826 if (Node.getIterator() == SortedPos) { 9827 #ifndef NDEBUG 9828 allnodes_iterator I(N); 9829 SDNode *S = &*++I; 9830 dbgs() << "Overran sorted position:\n"; 9831 S->dumprFull(this); dbgs() << "\n"; 9832 dbgs() << "Checking if this is due to cycles\n"; 9833 checkForCycles(this, true); 9834 #endif 9835 llvm_unreachable(nullptr); 9836 } 9837 } 9838 9839 assert(SortedPos == AllNodes.end() && 9840 "Topological sort incomplete!"); 9841 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9842 "First node in topological sort is not the entry token!"); 9843 assert(AllNodes.front().getNodeId() == 0 && 9844 "First node in topological sort has non-zero id!"); 9845 assert(AllNodes.front().getNumOperands() == 0 && 9846 "First node in topological sort has operands!"); 9847 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9848 "Last node in topologic sort has unexpected id!"); 9849 assert(AllNodes.back().use_empty() && 9850 "Last node in topologic sort has users!"); 9851 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9852 return DAGSize; 9853 } 9854 9855 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9856 /// value is produced by SD. 9857 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9858 for (SDNode *SD : DB->getSDNodes()) { 9859 if (!SD) 9860 continue; 9861 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9862 SD->setHasDebugValue(true); 9863 } 9864 DbgInfo->add(DB, isParameter); 9865 } 9866 9867 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9868 9869 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9870 SDValue NewMemOpChain) { 9871 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9872 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9873 // The new memory operation must have the same position as the old load in 9874 // terms of memory dependency. Create a TokenFactor for the old load and new 9875 // memory operation and update uses of the old load's output chain to use that 9876 // TokenFactor. 9877 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9878 return NewMemOpChain; 9879 9880 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9881 OldChain, NewMemOpChain); 9882 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9883 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9884 return TokenFactor; 9885 } 9886 9887 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9888 SDValue NewMemOp) { 9889 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9890 SDValue OldChain = SDValue(OldLoad, 1); 9891 SDValue NewMemOpChain = NewMemOp.getValue(1); 9892 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9893 } 9894 9895 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9896 Function **OutFunction) { 9897 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9898 9899 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9900 auto *Module = MF->getFunction().getParent(); 9901 auto *Function = Module->getFunction(Symbol); 9902 9903 if (OutFunction != nullptr) 9904 *OutFunction = Function; 9905 9906 if (Function != nullptr) { 9907 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9908 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9909 } 9910 9911 std::string ErrorStr; 9912 raw_string_ostream ErrorFormatter(ErrorStr); 9913 ErrorFormatter << "Undefined external symbol "; 9914 ErrorFormatter << '"' << Symbol << '"'; 9915 report_fatal_error(Twine(ErrorFormatter.str())); 9916 } 9917 9918 //===----------------------------------------------------------------------===// 9919 // SDNode Class 9920 //===----------------------------------------------------------------------===// 9921 9922 bool llvm::isNullConstant(SDValue V) { 9923 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9924 return Const != nullptr && Const->isZero(); 9925 } 9926 9927 bool llvm::isNullFPConstant(SDValue V) { 9928 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9929 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9930 } 9931 9932 bool llvm::isAllOnesConstant(SDValue V) { 9933 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9934 return Const != nullptr && Const->isAllOnes(); 9935 } 9936 9937 bool llvm::isOneConstant(SDValue V) { 9938 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9939 return Const != nullptr && Const->isOne(); 9940 } 9941 9942 SDValue llvm::peekThroughBitcasts(SDValue V) { 9943 while (V.getOpcode() == ISD::BITCAST) 9944 V = V.getOperand(0); 9945 return V; 9946 } 9947 9948 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9949 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9950 V = V.getOperand(0); 9951 return V; 9952 } 9953 9954 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9955 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9956 V = V.getOperand(0); 9957 return V; 9958 } 9959 9960 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9961 if (V.getOpcode() != ISD::XOR) 9962 return false; 9963 V = peekThroughBitcasts(V.getOperand(1)); 9964 unsigned NumBits = V.getScalarValueSizeInBits(); 9965 ConstantSDNode *C = 9966 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9967 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9968 } 9969 9970 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9971 bool AllowTruncation) { 9972 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9973 return CN; 9974 9975 // SplatVectors can truncate their operands. Ignore that case here unless 9976 // AllowTruncation is set. 9977 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9978 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9979 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9980 EVT CVT = CN->getValueType(0); 9981 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9982 if (AllowTruncation || CVT == VecEltVT) 9983 return CN; 9984 } 9985 } 9986 9987 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9988 BitVector UndefElements; 9989 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9990 9991 // BuildVectors can truncate their operands. Ignore that case here unless 9992 // AllowTruncation is set. 9993 if (CN && (UndefElements.none() || AllowUndefs)) { 9994 EVT CVT = CN->getValueType(0); 9995 EVT NSVT = N.getValueType().getScalarType(); 9996 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9997 if (AllowTruncation || (CVT == NSVT)) 9998 return CN; 9999 } 10000 } 10001 10002 return nullptr; 10003 } 10004 10005 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10006 bool AllowUndefs, 10007 bool AllowTruncation) { 10008 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10009 return CN; 10010 10011 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10012 BitVector UndefElements; 10013 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10014 10015 // BuildVectors can truncate their operands. Ignore that case here unless 10016 // AllowTruncation is set. 10017 if (CN && (UndefElements.none() || AllowUndefs)) { 10018 EVT CVT = CN->getValueType(0); 10019 EVT NSVT = N.getValueType().getScalarType(); 10020 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10021 if (AllowTruncation || (CVT == NSVT)) 10022 return CN; 10023 } 10024 } 10025 10026 return nullptr; 10027 } 10028 10029 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10030 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10031 return CN; 10032 10033 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10034 BitVector UndefElements; 10035 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10036 if (CN && (UndefElements.none() || AllowUndefs)) 10037 return CN; 10038 } 10039 10040 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10041 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10042 return CN; 10043 10044 return nullptr; 10045 } 10046 10047 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10048 const APInt &DemandedElts, 10049 bool AllowUndefs) { 10050 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10051 return CN; 10052 10053 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10054 BitVector UndefElements; 10055 ConstantFPSDNode *CN = 10056 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10057 if (CN && (UndefElements.none() || AllowUndefs)) 10058 return CN; 10059 } 10060 10061 return nullptr; 10062 } 10063 10064 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10065 // TODO: may want to use peekThroughBitcast() here. 10066 ConstantSDNode *C = 10067 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10068 return C && C->isZero(); 10069 } 10070 10071 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10072 // TODO: may want to use peekThroughBitcast() here. 10073 unsigned BitWidth = N.getScalarValueSizeInBits(); 10074 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10075 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10076 } 10077 10078 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10079 N = peekThroughBitcasts(N); 10080 unsigned BitWidth = N.getScalarValueSizeInBits(); 10081 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10082 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10083 } 10084 10085 HandleSDNode::~HandleSDNode() { 10086 DropOperands(); 10087 } 10088 10089 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10090 const DebugLoc &DL, 10091 const GlobalValue *GA, EVT VT, 10092 int64_t o, unsigned TF) 10093 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10094 TheGlobal = GA; 10095 } 10096 10097 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10098 EVT VT, unsigned SrcAS, 10099 unsigned DestAS) 10100 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10101 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10102 10103 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10104 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10105 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10106 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10107 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10108 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10109 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10110 10111 // We check here that the size of the memory operand fits within the size of 10112 // the MMO. This is because the MMO might indicate only a possible address 10113 // range instead of specifying the affected memory addresses precisely. 10114 // TODO: Make MachineMemOperands aware of scalable vectors. 10115 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10116 "Size mismatch!"); 10117 } 10118 10119 /// Profile - Gather unique data for the node. 10120 /// 10121 void SDNode::Profile(FoldingSetNodeID &ID) const { 10122 AddNodeIDNode(ID, this); 10123 } 10124 10125 namespace { 10126 10127 struct EVTArray { 10128 std::vector<EVT> VTs; 10129 10130 EVTArray() { 10131 VTs.reserve(MVT::VALUETYPE_SIZE); 10132 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10133 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10134 } 10135 }; 10136 10137 } // end anonymous namespace 10138 10139 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10140 static ManagedStatic<EVTArray> SimpleVTArray; 10141 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10142 10143 /// getValueTypeList - Return a pointer to the specified value type. 10144 /// 10145 const EVT *SDNode::getValueTypeList(EVT VT) { 10146 if (VT.isExtended()) { 10147 sys::SmartScopedLock<true> Lock(*VTMutex); 10148 return &(*EVTs->insert(VT).first); 10149 } 10150 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10151 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10152 } 10153 10154 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10155 /// indicated value. This method ignores uses of other values defined by this 10156 /// operation. 10157 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10158 assert(Value < getNumValues() && "Bad value!"); 10159 10160 // TODO: Only iterate over uses of a given value of the node 10161 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10162 if (UI.getUse().getResNo() == Value) { 10163 if (NUses == 0) 10164 return false; 10165 --NUses; 10166 } 10167 } 10168 10169 // Found exactly the right number of uses? 10170 return NUses == 0; 10171 } 10172 10173 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10174 /// value. This method ignores uses of other values defined by this operation. 10175 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10176 assert(Value < getNumValues() && "Bad value!"); 10177 10178 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10179 if (UI.getUse().getResNo() == Value) 10180 return true; 10181 10182 return false; 10183 } 10184 10185 /// isOnlyUserOf - Return true if this node is the only use of N. 10186 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10187 bool Seen = false; 10188 for (const SDNode *User : N->uses()) { 10189 if (User == this) 10190 Seen = true; 10191 else 10192 return false; 10193 } 10194 10195 return Seen; 10196 } 10197 10198 /// Return true if the only users of N are contained in Nodes. 10199 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10200 bool Seen = false; 10201 for (const SDNode *User : N->uses()) { 10202 if (llvm::is_contained(Nodes, User)) 10203 Seen = true; 10204 else 10205 return false; 10206 } 10207 10208 return Seen; 10209 } 10210 10211 /// isOperand - Return true if this node is an operand of N. 10212 bool SDValue::isOperandOf(const SDNode *N) const { 10213 return is_contained(N->op_values(), *this); 10214 } 10215 10216 bool SDNode::isOperandOf(const SDNode *N) const { 10217 return any_of(N->op_values(), 10218 [this](SDValue Op) { return this == Op.getNode(); }); 10219 } 10220 10221 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10222 /// be a chain) reaches the specified operand without crossing any 10223 /// side-effecting instructions on any chain path. In practice, this looks 10224 /// through token factors and non-volatile loads. In order to remain efficient, 10225 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10226 /// 10227 /// Note that we only need to examine chains when we're searching for 10228 /// side-effects; SelectionDAG requires that all side-effects are represented 10229 /// by chains, even if another operand would force a specific ordering. This 10230 /// constraint is necessary to allow transformations like splitting loads. 10231 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10232 unsigned Depth) const { 10233 if (*this == Dest) return true; 10234 10235 // Don't search too deeply, we just want to be able to see through 10236 // TokenFactor's etc. 10237 if (Depth == 0) return false; 10238 10239 // If this is a token factor, all inputs to the TF happen in parallel. 10240 if (getOpcode() == ISD::TokenFactor) { 10241 // First, try a shallow search. 10242 if (is_contained((*this)->ops(), Dest)) { 10243 // We found the chain we want as an operand of this TokenFactor. 10244 // Essentially, we reach the chain without side-effects if we could 10245 // serialize the TokenFactor into a simple chain of operations with 10246 // Dest as the last operation. This is automatically true if the 10247 // chain has one use: there are no other ordering constraints. 10248 // If the chain has more than one use, we give up: some other 10249 // use of Dest might force a side-effect between Dest and the current 10250 // node. 10251 if (Dest.hasOneUse()) 10252 return true; 10253 } 10254 // Next, try a deep search: check whether every operand of the TokenFactor 10255 // reaches Dest. 10256 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10257 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10258 }); 10259 } 10260 10261 // Loads don't have side effects, look through them. 10262 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10263 if (Ld->isUnordered()) 10264 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10265 } 10266 return false; 10267 } 10268 10269 bool SDNode::hasPredecessor(const SDNode *N) const { 10270 SmallPtrSet<const SDNode *, 32> Visited; 10271 SmallVector<const SDNode *, 16> Worklist; 10272 Worklist.push_back(this); 10273 return hasPredecessorHelper(N, Visited, Worklist); 10274 } 10275 10276 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10277 this->Flags.intersectWith(Flags); 10278 } 10279 10280 SDValue 10281 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10282 ArrayRef<ISD::NodeType> CandidateBinOps, 10283 bool AllowPartials) { 10284 // The pattern must end in an extract from index 0. 10285 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10286 !isNullConstant(Extract->getOperand(1))) 10287 return SDValue(); 10288 10289 // Match against one of the candidate binary ops. 10290 SDValue Op = Extract->getOperand(0); 10291 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10292 return Op.getOpcode() == unsigned(BinOp); 10293 })) 10294 return SDValue(); 10295 10296 // Floating-point reductions may require relaxed constraints on the final step 10297 // of the reduction because they may reorder intermediate operations. 10298 unsigned CandidateBinOp = Op.getOpcode(); 10299 if (Op.getValueType().isFloatingPoint()) { 10300 SDNodeFlags Flags = Op->getFlags(); 10301 switch (CandidateBinOp) { 10302 case ISD::FADD: 10303 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10304 return SDValue(); 10305 break; 10306 default: 10307 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10308 } 10309 } 10310 10311 // Matching failed - attempt to see if we did enough stages that a partial 10312 // reduction from a subvector is possible. 10313 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10314 if (!AllowPartials || !Op) 10315 return SDValue(); 10316 EVT OpVT = Op.getValueType(); 10317 EVT OpSVT = OpVT.getScalarType(); 10318 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10319 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10320 return SDValue(); 10321 BinOp = (ISD::NodeType)CandidateBinOp; 10322 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10323 getVectorIdxConstant(0, SDLoc(Op))); 10324 }; 10325 10326 // At each stage, we're looking for something that looks like: 10327 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10328 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10329 // i32 undef, i32 undef, i32 undef, i32 undef> 10330 // %a = binop <8 x i32> %op, %s 10331 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10332 // we expect something like: 10333 // <4,5,6,7,u,u,u,u> 10334 // <2,3,u,u,u,u,u,u> 10335 // <1,u,u,u,u,u,u,u> 10336 // While a partial reduction match would be: 10337 // <2,3,u,u,u,u,u,u> 10338 // <1,u,u,u,u,u,u,u> 10339 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10340 SDValue PrevOp; 10341 for (unsigned i = 0; i < Stages; ++i) { 10342 unsigned MaskEnd = (1 << i); 10343 10344 if (Op.getOpcode() != CandidateBinOp) 10345 return PartialReduction(PrevOp, MaskEnd); 10346 10347 SDValue Op0 = Op.getOperand(0); 10348 SDValue Op1 = Op.getOperand(1); 10349 10350 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10351 if (Shuffle) { 10352 Op = Op1; 10353 } else { 10354 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10355 Op = Op0; 10356 } 10357 10358 // The first operand of the shuffle should be the same as the other operand 10359 // of the binop. 10360 if (!Shuffle || Shuffle->getOperand(0) != Op) 10361 return PartialReduction(PrevOp, MaskEnd); 10362 10363 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10364 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10365 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10366 return PartialReduction(PrevOp, MaskEnd); 10367 10368 PrevOp = Op; 10369 } 10370 10371 // Handle subvector reductions, which tend to appear after the shuffle 10372 // reduction stages. 10373 while (Op.getOpcode() == CandidateBinOp) { 10374 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10375 SDValue Op0 = Op.getOperand(0); 10376 SDValue Op1 = Op.getOperand(1); 10377 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10378 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10379 Op0.getOperand(0) != Op1.getOperand(0)) 10380 break; 10381 SDValue Src = Op0.getOperand(0); 10382 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10383 if (NumSrcElts != (2 * NumElts)) 10384 break; 10385 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10386 Op1.getConstantOperandAPInt(1) == NumElts) && 10387 !(Op1.getConstantOperandAPInt(1) == 0 && 10388 Op0.getConstantOperandAPInt(1) == NumElts)) 10389 break; 10390 Op = Src; 10391 } 10392 10393 BinOp = (ISD::NodeType)CandidateBinOp; 10394 return Op; 10395 } 10396 10397 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10398 assert(N->getNumValues() == 1 && 10399 "Can't unroll a vector with multiple results!"); 10400 10401 EVT VT = N->getValueType(0); 10402 unsigned NE = VT.getVectorNumElements(); 10403 EVT EltVT = VT.getVectorElementType(); 10404 SDLoc dl(N); 10405 10406 SmallVector<SDValue, 8> Scalars; 10407 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10408 10409 // If ResNE is 0, fully unroll the vector op. 10410 if (ResNE == 0) 10411 ResNE = NE; 10412 else if (NE > ResNE) 10413 NE = ResNE; 10414 10415 unsigned i; 10416 for (i= 0; i != NE; ++i) { 10417 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10418 SDValue Operand = N->getOperand(j); 10419 EVT OperandVT = Operand.getValueType(); 10420 if (OperandVT.isVector()) { 10421 // A vector operand; extract a single element. 10422 EVT OperandEltVT = OperandVT.getVectorElementType(); 10423 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10424 Operand, getVectorIdxConstant(i, dl)); 10425 } else { 10426 // A scalar operand; just use it as is. 10427 Operands[j] = Operand; 10428 } 10429 } 10430 10431 switch (N->getOpcode()) { 10432 default: { 10433 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10434 N->getFlags())); 10435 break; 10436 } 10437 case ISD::VSELECT: 10438 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10439 break; 10440 case ISD::SHL: 10441 case ISD::SRA: 10442 case ISD::SRL: 10443 case ISD::ROTL: 10444 case ISD::ROTR: 10445 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10446 getShiftAmountOperand(Operands[0].getValueType(), 10447 Operands[1]))); 10448 break; 10449 case ISD::SIGN_EXTEND_INREG: { 10450 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10451 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10452 Operands[0], 10453 getValueType(ExtVT))); 10454 } 10455 } 10456 } 10457 10458 for (; i < ResNE; ++i) 10459 Scalars.push_back(getUNDEF(EltVT)); 10460 10461 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10462 return getBuildVector(VecVT, dl, Scalars); 10463 } 10464 10465 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10466 SDNode *N, unsigned ResNE) { 10467 unsigned Opcode = N->getOpcode(); 10468 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10469 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10470 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10471 "Expected an overflow opcode"); 10472 10473 EVT ResVT = N->getValueType(0); 10474 EVT OvVT = N->getValueType(1); 10475 EVT ResEltVT = ResVT.getVectorElementType(); 10476 EVT OvEltVT = OvVT.getVectorElementType(); 10477 SDLoc dl(N); 10478 10479 // If ResNE is 0, fully unroll the vector op. 10480 unsigned NE = ResVT.getVectorNumElements(); 10481 if (ResNE == 0) 10482 ResNE = NE; 10483 else if (NE > ResNE) 10484 NE = ResNE; 10485 10486 SmallVector<SDValue, 8> LHSScalars; 10487 SmallVector<SDValue, 8> RHSScalars; 10488 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10489 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10490 10491 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10492 SDVTList VTs = getVTList(ResEltVT, SVT); 10493 SmallVector<SDValue, 8> ResScalars; 10494 SmallVector<SDValue, 8> OvScalars; 10495 for (unsigned i = 0; i < NE; ++i) { 10496 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10497 SDValue Ov = 10498 getSelect(dl, OvEltVT, Res.getValue(1), 10499 getBoolConstant(true, dl, OvEltVT, ResVT), 10500 getConstant(0, dl, OvEltVT)); 10501 10502 ResScalars.push_back(Res); 10503 OvScalars.push_back(Ov); 10504 } 10505 10506 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10507 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10508 10509 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10510 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10511 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10512 getBuildVector(NewOvVT, dl, OvScalars)); 10513 } 10514 10515 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10516 LoadSDNode *Base, 10517 unsigned Bytes, 10518 int Dist) const { 10519 if (LD->isVolatile() || Base->isVolatile()) 10520 return false; 10521 // TODO: probably too restrictive for atomics, revisit 10522 if (!LD->isSimple()) 10523 return false; 10524 if (LD->isIndexed() || Base->isIndexed()) 10525 return false; 10526 if (LD->getChain() != Base->getChain()) 10527 return false; 10528 EVT VT = LD->getValueType(0); 10529 if (VT.getSizeInBits() / 8 != Bytes) 10530 return false; 10531 10532 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10533 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10534 10535 int64_t Offset = 0; 10536 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10537 return (Dist * Bytes == Offset); 10538 return false; 10539 } 10540 10541 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10542 /// if it cannot be inferred. 10543 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10544 // If this is a GlobalAddress + cst, return the alignment. 10545 const GlobalValue *GV = nullptr; 10546 int64_t GVOffset = 0; 10547 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10548 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10549 KnownBits Known(PtrWidth); 10550 llvm::computeKnownBits(GV, Known, getDataLayout()); 10551 unsigned AlignBits = Known.countMinTrailingZeros(); 10552 if (AlignBits) 10553 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10554 } 10555 10556 // If this is a direct reference to a stack slot, use information about the 10557 // stack slot's alignment. 10558 int FrameIdx = INT_MIN; 10559 int64_t FrameOffset = 0; 10560 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10561 FrameIdx = FI->getIndex(); 10562 } else if (isBaseWithConstantOffset(Ptr) && 10563 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10564 // Handle FI+Cst 10565 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10566 FrameOffset = Ptr.getConstantOperandVal(1); 10567 } 10568 10569 if (FrameIdx != INT_MIN) { 10570 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10571 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10572 } 10573 10574 return None; 10575 } 10576 10577 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10578 /// which is split (or expanded) into two not necessarily identical pieces. 10579 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10580 // Currently all types are split in half. 10581 EVT LoVT, HiVT; 10582 if (!VT.isVector()) 10583 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10584 else 10585 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10586 10587 return std::make_pair(LoVT, HiVT); 10588 } 10589 10590 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10591 /// type, dependent on an enveloping VT that has been split into two identical 10592 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10593 std::pair<EVT, EVT> 10594 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10595 bool *HiIsEmpty) const { 10596 EVT EltTp = VT.getVectorElementType(); 10597 // Examples: 10598 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10599 // custom VL=9 with enveloping VL=8/8 yields 8/1 10600 // custom VL=10 with enveloping VL=8/8 yields 8/2 10601 // etc. 10602 ElementCount VTNumElts = VT.getVectorElementCount(); 10603 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10604 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10605 "Mixing fixed width and scalable vectors when enveloping a type"); 10606 EVT LoVT, HiVT; 10607 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10608 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10609 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10610 *HiIsEmpty = false; 10611 } else { 10612 // Flag that hi type has zero storage size, but return split envelop type 10613 // (this would be easier if vector types with zero elements were allowed). 10614 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10615 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10616 *HiIsEmpty = true; 10617 } 10618 return std::make_pair(LoVT, HiVT); 10619 } 10620 10621 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10622 /// low/high part. 10623 std::pair<SDValue, SDValue> 10624 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10625 const EVT &HiVT) { 10626 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10627 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10628 "Splitting vector with an invalid mixture of fixed and scalable " 10629 "vector types"); 10630 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10631 N.getValueType().getVectorMinNumElements() && 10632 "More vector elements requested than available!"); 10633 SDValue Lo, Hi; 10634 Lo = 10635 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10636 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10637 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10638 // IDX with the runtime scaling factor of the result vector type. For 10639 // fixed-width result vectors, that runtime scaling factor is 1. 10640 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10641 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10642 return std::make_pair(Lo, Hi); 10643 } 10644 10645 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 10646 const SDLoc &DL) { 10647 // Split the vector length parameter. 10648 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 10649 EVT VT = N.getValueType(); 10650 assert(VecVT.getVectorElementCount().isKnownEven() && 10651 "Expecting the mask to be an evenly-sized vector"); 10652 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 10653 SDValue HalfNumElts = 10654 VecVT.isFixedLengthVector() 10655 ? getConstant(HalfMinNumElts, DL, VT) 10656 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 10657 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 10658 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 10659 return std::make_pair(Lo, Hi); 10660 } 10661 10662 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10663 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10664 EVT VT = N.getValueType(); 10665 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10666 NextPowerOf2(VT.getVectorNumElements())); 10667 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10668 getVectorIdxConstant(0, DL)); 10669 } 10670 10671 void SelectionDAG::ExtractVectorElements(SDValue Op, 10672 SmallVectorImpl<SDValue> &Args, 10673 unsigned Start, unsigned Count, 10674 EVT EltVT) { 10675 EVT VT = Op.getValueType(); 10676 if (Count == 0) 10677 Count = VT.getVectorNumElements(); 10678 if (EltVT == EVT()) 10679 EltVT = VT.getVectorElementType(); 10680 SDLoc SL(Op); 10681 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10682 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10683 getVectorIdxConstant(i, SL))); 10684 } 10685 } 10686 10687 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10688 unsigned GlobalAddressSDNode::getAddressSpace() const { 10689 return getGlobal()->getType()->getAddressSpace(); 10690 } 10691 10692 Type *ConstantPoolSDNode::getType() const { 10693 if (isMachineConstantPoolEntry()) 10694 return Val.MachineCPVal->getType(); 10695 return Val.ConstVal->getType(); 10696 } 10697 10698 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10699 unsigned &SplatBitSize, 10700 bool &HasAnyUndefs, 10701 unsigned MinSplatBits, 10702 bool IsBigEndian) const { 10703 EVT VT = getValueType(0); 10704 assert(VT.isVector() && "Expected a vector type"); 10705 unsigned VecWidth = VT.getSizeInBits(); 10706 if (MinSplatBits > VecWidth) 10707 return false; 10708 10709 // FIXME: The widths are based on this node's type, but build vectors can 10710 // truncate their operands. 10711 SplatValue = APInt(VecWidth, 0); 10712 SplatUndef = APInt(VecWidth, 0); 10713 10714 // Get the bits. Bits with undefined values (when the corresponding element 10715 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10716 // in SplatValue. If any of the values are not constant, give up and return 10717 // false. 10718 unsigned int NumOps = getNumOperands(); 10719 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10720 unsigned EltWidth = VT.getScalarSizeInBits(); 10721 10722 for (unsigned j = 0; j < NumOps; ++j) { 10723 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10724 SDValue OpVal = getOperand(i); 10725 unsigned BitPos = j * EltWidth; 10726 10727 if (OpVal.isUndef()) 10728 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10729 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10730 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10731 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10732 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10733 else 10734 return false; 10735 } 10736 10737 // The build_vector is all constants or undefs. Find the smallest element 10738 // size that splats the vector. 10739 HasAnyUndefs = (SplatUndef != 0); 10740 10741 // FIXME: This does not work for vectors with elements less than 8 bits. 10742 while (VecWidth > 8) { 10743 unsigned HalfSize = VecWidth / 2; 10744 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10745 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10746 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10747 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10748 10749 // If the two halves do not match (ignoring undef bits), stop here. 10750 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10751 MinSplatBits > HalfSize) 10752 break; 10753 10754 SplatValue = HighValue | LowValue; 10755 SplatUndef = HighUndef & LowUndef; 10756 10757 VecWidth = HalfSize; 10758 } 10759 10760 SplatBitSize = VecWidth; 10761 return true; 10762 } 10763 10764 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10765 BitVector *UndefElements) const { 10766 unsigned NumOps = getNumOperands(); 10767 if (UndefElements) { 10768 UndefElements->clear(); 10769 UndefElements->resize(NumOps); 10770 } 10771 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10772 if (!DemandedElts) 10773 return SDValue(); 10774 SDValue Splatted; 10775 for (unsigned i = 0; i != NumOps; ++i) { 10776 if (!DemandedElts[i]) 10777 continue; 10778 SDValue Op = getOperand(i); 10779 if (Op.isUndef()) { 10780 if (UndefElements) 10781 (*UndefElements)[i] = true; 10782 } else if (!Splatted) { 10783 Splatted = Op; 10784 } else if (Splatted != Op) { 10785 return SDValue(); 10786 } 10787 } 10788 10789 if (!Splatted) { 10790 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10791 assert(getOperand(FirstDemandedIdx).isUndef() && 10792 "Can only have a splat without a constant for all undefs."); 10793 return getOperand(FirstDemandedIdx); 10794 } 10795 10796 return Splatted; 10797 } 10798 10799 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10800 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10801 return getSplatValue(DemandedElts, UndefElements); 10802 } 10803 10804 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10805 SmallVectorImpl<SDValue> &Sequence, 10806 BitVector *UndefElements) const { 10807 unsigned NumOps = getNumOperands(); 10808 Sequence.clear(); 10809 if (UndefElements) { 10810 UndefElements->clear(); 10811 UndefElements->resize(NumOps); 10812 } 10813 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10814 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10815 return false; 10816 10817 // Set the undefs even if we don't find a sequence (like getSplatValue). 10818 if (UndefElements) 10819 for (unsigned I = 0; I != NumOps; ++I) 10820 if (DemandedElts[I] && getOperand(I).isUndef()) 10821 (*UndefElements)[I] = true; 10822 10823 // Iteratively widen the sequence length looking for repetitions. 10824 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10825 Sequence.append(SeqLen, SDValue()); 10826 for (unsigned I = 0; I != NumOps; ++I) { 10827 if (!DemandedElts[I]) 10828 continue; 10829 SDValue &SeqOp = Sequence[I % SeqLen]; 10830 SDValue Op = getOperand(I); 10831 if (Op.isUndef()) { 10832 if (!SeqOp) 10833 SeqOp = Op; 10834 continue; 10835 } 10836 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10837 Sequence.clear(); 10838 break; 10839 } 10840 SeqOp = Op; 10841 } 10842 if (!Sequence.empty()) 10843 return true; 10844 } 10845 10846 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10847 return false; 10848 } 10849 10850 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10851 BitVector *UndefElements) const { 10852 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10853 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10854 } 10855 10856 ConstantSDNode * 10857 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10858 BitVector *UndefElements) const { 10859 return dyn_cast_or_null<ConstantSDNode>( 10860 getSplatValue(DemandedElts, UndefElements)); 10861 } 10862 10863 ConstantSDNode * 10864 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10865 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10866 } 10867 10868 ConstantFPSDNode * 10869 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10870 BitVector *UndefElements) const { 10871 return dyn_cast_or_null<ConstantFPSDNode>( 10872 getSplatValue(DemandedElts, UndefElements)); 10873 } 10874 10875 ConstantFPSDNode * 10876 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10877 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10878 } 10879 10880 int32_t 10881 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10882 uint32_t BitWidth) const { 10883 if (ConstantFPSDNode *CN = 10884 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10885 bool IsExact; 10886 APSInt IntVal(BitWidth); 10887 const APFloat &APF = CN->getValueAPF(); 10888 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10889 APFloat::opOK || 10890 !IsExact) 10891 return -1; 10892 10893 return IntVal.exactLogBase2(); 10894 } 10895 return -1; 10896 } 10897 10898 bool BuildVectorSDNode::getConstantRawBits( 10899 bool IsLittleEndian, unsigned DstEltSizeInBits, 10900 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10901 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10902 if (!isConstant()) 10903 return false; 10904 10905 unsigned NumSrcOps = getNumOperands(); 10906 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10907 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10908 "Invalid bitcast scale"); 10909 10910 // Extract raw src bits. 10911 SmallVector<APInt> SrcBitElements(NumSrcOps, 10912 APInt::getNullValue(SrcEltSizeInBits)); 10913 BitVector SrcUndeElements(NumSrcOps, false); 10914 10915 for (unsigned I = 0; I != NumSrcOps; ++I) { 10916 SDValue Op = getOperand(I); 10917 if (Op.isUndef()) { 10918 SrcUndeElements.set(I); 10919 continue; 10920 } 10921 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10922 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10923 assert((CInt || CFP) && "Unknown constant"); 10924 SrcBitElements[I] = 10925 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10926 : CFP->getValueAPF().bitcastToAPInt(); 10927 } 10928 10929 // Recast to dst width. 10930 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10931 SrcBitElements, UndefElements, SrcUndeElements); 10932 return true; 10933 } 10934 10935 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10936 unsigned DstEltSizeInBits, 10937 SmallVectorImpl<APInt> &DstBitElements, 10938 ArrayRef<APInt> SrcBitElements, 10939 BitVector &DstUndefElements, 10940 const BitVector &SrcUndefElements) { 10941 unsigned NumSrcOps = SrcBitElements.size(); 10942 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10943 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10944 "Invalid bitcast scale"); 10945 assert(NumSrcOps == SrcUndefElements.size() && 10946 "Vector size mismatch"); 10947 10948 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10949 DstUndefElements.clear(); 10950 DstUndefElements.resize(NumDstOps, false); 10951 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10952 10953 // Concatenate src elements constant bits together into dst element. 10954 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10955 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10956 for (unsigned I = 0; I != NumDstOps; ++I) { 10957 DstUndefElements.set(I); 10958 APInt &DstBits = DstBitElements[I]; 10959 for (unsigned J = 0; J != Scale; ++J) { 10960 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10961 if (SrcUndefElements[Idx]) 10962 continue; 10963 DstUndefElements.reset(I); 10964 const APInt &SrcBits = SrcBitElements[Idx]; 10965 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10966 "Illegal constant bitwidths"); 10967 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10968 } 10969 } 10970 return; 10971 } 10972 10973 // Split src element constant bits into dst elements. 10974 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10975 for (unsigned I = 0; I != NumSrcOps; ++I) { 10976 if (SrcUndefElements[I]) { 10977 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10978 continue; 10979 } 10980 const APInt &SrcBits = SrcBitElements[I]; 10981 for (unsigned J = 0; J != Scale; ++J) { 10982 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10983 APInt &DstBits = DstBitElements[Idx]; 10984 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 10985 } 10986 } 10987 } 10988 10989 bool BuildVectorSDNode::isConstant() const { 10990 for (const SDValue &Op : op_values()) { 10991 unsigned Opc = Op.getOpcode(); 10992 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10993 return false; 10994 } 10995 return true; 10996 } 10997 10998 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10999 // Find the first non-undef value in the shuffle mask. 11000 unsigned i, e; 11001 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11002 /* search */; 11003 11004 // If all elements are undefined, this shuffle can be considered a splat 11005 // (although it should eventually get simplified away completely). 11006 if (i == e) 11007 return true; 11008 11009 // Make sure all remaining elements are either undef or the same as the first 11010 // non-undef value. 11011 for (int Idx = Mask[i]; i != e; ++i) 11012 if (Mask[i] >= 0 && Mask[i] != Idx) 11013 return false; 11014 return true; 11015 } 11016 11017 // Returns the SDNode if it is a constant integer BuildVector 11018 // or constant integer. 11019 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11020 if (isa<ConstantSDNode>(N)) 11021 return N.getNode(); 11022 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11023 return N.getNode(); 11024 // Treat a GlobalAddress supporting constant offset folding as a 11025 // constant integer. 11026 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11027 if (GA->getOpcode() == ISD::GlobalAddress && 11028 TLI->isOffsetFoldingLegal(GA)) 11029 return GA; 11030 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11031 isa<ConstantSDNode>(N.getOperand(0))) 11032 return N.getNode(); 11033 return nullptr; 11034 } 11035 11036 // Returns the SDNode if it is a constant float BuildVector 11037 // or constant float. 11038 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11039 if (isa<ConstantFPSDNode>(N)) 11040 return N.getNode(); 11041 11042 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11043 return N.getNode(); 11044 11045 return nullptr; 11046 } 11047 11048 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11049 assert(!Node->OperandList && "Node already has operands"); 11050 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11051 "too many operands to fit into SDNode"); 11052 SDUse *Ops = OperandRecycler.allocate( 11053 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11054 11055 bool IsDivergent = false; 11056 for (unsigned I = 0; I != Vals.size(); ++I) { 11057 Ops[I].setUser(Node); 11058 Ops[I].setInitial(Vals[I]); 11059 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11060 IsDivergent |= Ops[I].getNode()->isDivergent(); 11061 } 11062 Node->NumOperands = Vals.size(); 11063 Node->OperandList = Ops; 11064 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11065 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11066 Node->SDNodeBits.IsDivergent = IsDivergent; 11067 } 11068 checkForCycles(Node); 11069 } 11070 11071 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11072 SmallVectorImpl<SDValue> &Vals) { 11073 size_t Limit = SDNode::getMaxNumOperands(); 11074 while (Vals.size() > Limit) { 11075 unsigned SliceIdx = Vals.size() - Limit; 11076 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11077 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11078 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11079 Vals.emplace_back(NewTF); 11080 } 11081 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11082 } 11083 11084 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11085 EVT VT, SDNodeFlags Flags) { 11086 switch (Opcode) { 11087 default: 11088 return SDValue(); 11089 case ISD::ADD: 11090 case ISD::OR: 11091 case ISD::XOR: 11092 case ISD::UMAX: 11093 return getConstant(0, DL, VT); 11094 case ISD::MUL: 11095 return getConstant(1, DL, VT); 11096 case ISD::AND: 11097 case ISD::UMIN: 11098 return getAllOnesConstant(DL, VT); 11099 case ISD::SMAX: 11100 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11101 case ISD::SMIN: 11102 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11103 case ISD::FADD: 11104 return getConstantFP(-0.0, DL, VT); 11105 case ISD::FMUL: 11106 return getConstantFP(1.0, DL, VT); 11107 case ISD::FMINNUM: 11108 case ISD::FMAXNUM: { 11109 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11110 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11111 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11112 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11113 APFloat::getLargest(Semantics); 11114 if (Opcode == ISD::FMAXNUM) 11115 NeutralAF.changeSign(); 11116 11117 return getConstantFP(NeutralAF, DL, VT); 11118 } 11119 } 11120 } 11121 11122 #ifndef NDEBUG 11123 static void checkForCyclesHelper(const SDNode *N, 11124 SmallPtrSetImpl<const SDNode*> &Visited, 11125 SmallPtrSetImpl<const SDNode*> &Checked, 11126 const llvm::SelectionDAG *DAG) { 11127 // If this node has already been checked, don't check it again. 11128 if (Checked.count(N)) 11129 return; 11130 11131 // If a node has already been visited on this depth-first walk, reject it as 11132 // a cycle. 11133 if (!Visited.insert(N).second) { 11134 errs() << "Detected cycle in SelectionDAG\n"; 11135 dbgs() << "Offending node:\n"; 11136 N->dumprFull(DAG); dbgs() << "\n"; 11137 abort(); 11138 } 11139 11140 for (const SDValue &Op : N->op_values()) 11141 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11142 11143 Checked.insert(N); 11144 Visited.erase(N); 11145 } 11146 #endif 11147 11148 void llvm::checkForCycles(const llvm::SDNode *N, 11149 const llvm::SelectionDAG *DAG, 11150 bool force) { 11151 #ifndef NDEBUG 11152 bool check = force; 11153 #ifdef EXPENSIVE_CHECKS 11154 check = true; 11155 #endif // EXPENSIVE_CHECKS 11156 if (check) { 11157 assert(N && "Checking nonexistent SDNode"); 11158 SmallPtrSet<const SDNode*, 32> visited; 11159 SmallPtrSet<const SDNode*, 32> checked; 11160 checkForCyclesHelper(N, visited, checked, DAG); 11161 } 11162 #endif // !NDEBUG 11163 } 11164 11165 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11166 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11167 } 11168