1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/ManagedStatic.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Mutex.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetIntrinsicInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Target/TargetRegisterInfo.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 #include <cmath>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 /// makeVTList - Return an instance of the SDVTList struct initialized with the
57 /// specified members.
58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59   SDVTList Res = {VTs, NumVTs};
60   return Res;
61 }
62 
63 // Default null implementations of the callbacks.
64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
66 
67 //===----------------------------------------------------------------------===//
68 //                              ConstantFPSDNode Class
69 //===----------------------------------------------------------------------===//
70 
71 /// isExactlyValue - We don't rely on operator== working on double values, as
72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73 /// As such, this method can be used to do an exact bit-for-bit comparison of
74 /// two floating point values.
75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76   return getValueAPF().bitwiseIsEqual(V);
77 }
78 
79 bool ConstantFPSDNode::isValueValidForType(EVT VT,
80                                            const APFloat& Val) {
81   assert(VT.isFloatingPoint() && "Can only convert between FP types");
82 
83   // convert modifies in place, so make a copy.
84   APFloat Val2 = APFloat(Val);
85   bool losesInfo;
86   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
87                       APFloat::rmNearestTiesToEven,
88                       &losesInfo);
89   return !losesInfo;
90 }
91 
92 //===----------------------------------------------------------------------===//
93 //                              ISD Namespace
94 //===----------------------------------------------------------------------===//
95 
96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
97   auto *BV = dyn_cast<BuildVectorSDNode>(N);
98   if (!BV)
99     return false;
100 
101   APInt SplatUndef;
102   unsigned SplatBitSize;
103   bool HasUndefs;
104   EVT EltVT = N->getValueType(0).getVectorElementType();
105   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) &&
106          EltVT.getSizeInBits() >= SplatBitSize;
107 }
108 
109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
110 // specializations of the more general isConstantSplatVector()?
111 
112 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113   // Look through a bit convert.
114   while (N->getOpcode() == ISD::BITCAST)
115     N = N->getOperand(0).getNode();
116 
117   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118 
119   unsigned i = 0, e = N->getNumOperands();
120 
121   // Skip over all of the undef values.
122   while (i != e && N->getOperand(i).isUndef())
123     ++i;
124 
125   // Do not accept an all-undef vector.
126   if (i == e) return false;
127 
128   // Do not accept build_vectors that aren't all constants or which have non-~0
129   // elements. We have to be a bit careful here, as the type of the constant
130   // may not be the same as the type of the vector elements due to type
131   // legalization (the elements are promoted to a legal type for the target and
132   // a vector of a type may be legal when the base element type is not).
133   // We only want to check enough bits to cover the vector elements, because
134   // we care if the resultant vector is all ones, not whether the individual
135   // constants are.
136   SDValue NotZero = N->getOperand(i);
137   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
138   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
139     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
140       return false;
141   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
142     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
143       return false;
144   } else
145     return false;
146 
147   // Okay, we have at least one ~0 value, check to see if the rest match or are
148   // undefs. Even with the above element type twiddling, this should be OK, as
149   // the same type legalization should have applied to all the elements.
150   for (++i; i != e; ++i)
151     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
152       return false;
153   return true;
154 }
155 
156 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   bool IsAllUndef = true;
164   for (const SDValue &Op : N->op_values()) {
165     if (Op.isUndef())
166       continue;
167     IsAllUndef = false;
168     // Do not accept build_vectors that aren't all constants or which have non-0
169     // elements. We have to be a bit careful here, as the type of the constant
170     // may not be the same as the type of the vector elements due to type
171     // legalization (the elements are promoted to a legal type for the target
172     // and a vector of a type may be legal when the base element type is not).
173     // We only want to check enough bits to cover the vector elements, because
174     // we care if the resultant vector is all zeros, not whether the individual
175     // constants are.
176     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
177     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
178       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
179         return false;
180     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
181       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
182         return false;
183     } else
184       return false;
185   }
186 
187   // Do not accept an all-undef vector.
188   if (IsAllUndef)
189     return false;
190   return true;
191 }
192 
193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
194   if (N->getOpcode() != ISD::BUILD_VECTOR)
195     return false;
196 
197   for (const SDValue &Op : N->op_values()) {
198     if (Op.isUndef())
199       continue;
200     if (!isa<ConstantSDNode>(Op))
201       return false;
202   }
203   return true;
204 }
205 
206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
207   if (N->getOpcode() != ISD::BUILD_VECTOR)
208     return false;
209 
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     if (!isa<ConstantFPSDNode>(Op))
214       return false;
215   }
216   return true;
217 }
218 
219 bool ISD::allOperandsUndef(const SDNode *N) {
220   // Return false if the node has no operands.
221   // This is "logically inconsistent" with the definition of "all" but
222   // is probably the desired behavior.
223   if (N->getNumOperands() == 0)
224     return false;
225 
226   for (const SDValue &Op : N->op_values())
227     if (!Op.isUndef())
228       return false;
229 
230   return true;
231 }
232 
233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
234   switch (ExtType) {
235   case ISD::EXTLOAD:
236     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
237   case ISD::SEXTLOAD:
238     return ISD::SIGN_EXTEND;
239   case ISD::ZEXTLOAD:
240     return ISD::ZERO_EXTEND;
241   default:
242     break;
243   }
244 
245   llvm_unreachable("Invalid LoadExtType");
246 }
247 
248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
249   // To perform this operation, we just need to swap the L and G bits of the
250   // operation.
251   unsigned OldL = (Operation >> 2) & 1;
252   unsigned OldG = (Operation >> 1) & 1;
253   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
254                        (OldL << 1) |       // New G bit
255                        (OldG << 2));       // New L bit.
256 }
257 
258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
259   unsigned Operation = Op;
260   if (isInteger)
261     Operation ^= 7;   // Flip L, G, E bits, but not U.
262   else
263     Operation ^= 15;  // Flip all of the condition bits.
264 
265   if (Operation > ISD::SETTRUE2)
266     Operation &= ~8;  // Don't let N and U bits get set.
267 
268   return ISD::CondCode(Operation);
269 }
270 
271 
272 /// For an integer comparison, return 1 if the comparison is a signed operation
273 /// and 2 if the result is an unsigned comparison. Return zero if the operation
274 /// does not depend on the sign of the input (setne and seteq).
275 static int isSignedOp(ISD::CondCode Opcode) {
276   switch (Opcode) {
277   default: llvm_unreachable("Illegal integer setcc operation!");
278   case ISD::SETEQ:
279   case ISD::SETNE: return 0;
280   case ISD::SETLT:
281   case ISD::SETLE:
282   case ISD::SETGT:
283   case ISD::SETGE: return 1;
284   case ISD::SETULT:
285   case ISD::SETULE:
286   case ISD::SETUGT:
287   case ISD::SETUGE: return 2;
288   }
289 }
290 
291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
292                                        bool isInteger) {
293   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
294     // Cannot fold a signed integer setcc with an unsigned integer setcc.
295     return ISD::SETCC_INVALID;
296 
297   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
298 
299   // If the N and U bits get set then the resultant comparison DOES suddenly
300   // care about orderedness, and is true when ordered.
301   if (Op > ISD::SETTRUE2)
302     Op &= ~16;     // Clear the U bit if the N bit is set.
303 
304   // Canonicalize illegal integer setcc's.
305   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
306     Op = ISD::SETNE;
307 
308   return ISD::CondCode(Op);
309 }
310 
311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
312                                         bool isInteger) {
313   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
314     // Cannot fold a signed setcc with an unsigned setcc.
315     return ISD::SETCC_INVALID;
316 
317   // Combine all of the condition bits.
318   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
319 
320   // Canonicalize illegal integer setcc's.
321   if (isInteger) {
322     switch (Result) {
323     default: break;
324     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
325     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
326     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
327     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
328     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
329     }
330   }
331 
332   return Result;
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //                           SDNode Profile Support
337 //===----------------------------------------------------------------------===//
338 
339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
340 ///
341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
342   ID.AddInteger(OpC);
343 }
344 
345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
346 /// solely with their pointer.
347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
348   ID.AddPointer(VTList.VTs);
349 }
350 
351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
352 ///
353 static void AddNodeIDOperands(FoldingSetNodeID &ID,
354                               ArrayRef<SDValue> Ops) {
355   for (auto& Op : Ops) {
356     ID.AddPointer(Op.getNode());
357     ID.AddInteger(Op.getResNo());
358   }
359 }
360 
361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
362 ///
363 static void AddNodeIDOperands(FoldingSetNodeID &ID,
364                               ArrayRef<SDUse> Ops) {
365   for (auto& Op : Ops) {
366     ID.AddPointer(Op.getNode());
367     ID.AddInteger(Op.getResNo());
368   }
369 }
370 
371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
372                           SDVTList VTList, ArrayRef<SDValue> OpList) {
373   AddNodeIDOpcode(ID, OpC);
374   AddNodeIDValueTypes(ID, VTList);
375   AddNodeIDOperands(ID, OpList);
376 }
377 
378 /// If this is an SDNode with special info, add this info to the NodeID data.
379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
380   switch (N->getOpcode()) {
381   case ISD::TargetExternalSymbol:
382   case ISD::ExternalSymbol:
383   case ISD::MCSymbol:
384     llvm_unreachable("Should only be used on nodes with operands");
385   default: break;  // Normal nodes don't need extra info.
386   case ISD::TargetConstant:
387   case ISD::Constant: {
388     const ConstantSDNode *C = cast<ConstantSDNode>(N);
389     ID.AddPointer(C->getConstantIntValue());
390     ID.AddBoolean(C->isOpaque());
391     break;
392   }
393   case ISD::TargetConstantFP:
394   case ISD::ConstantFP: {
395     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
396     break;
397   }
398   case ISD::TargetGlobalAddress:
399   case ISD::GlobalAddress:
400   case ISD::TargetGlobalTLSAddress:
401   case ISD::GlobalTLSAddress: {
402     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
403     ID.AddPointer(GA->getGlobal());
404     ID.AddInteger(GA->getOffset());
405     ID.AddInteger(GA->getTargetFlags());
406     break;
407   }
408   case ISD::BasicBlock:
409     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
410     break;
411   case ISD::Register:
412     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
413     break;
414   case ISD::RegisterMask:
415     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
416     break;
417   case ISD::SRCVALUE:
418     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
419     break;
420   case ISD::FrameIndex:
421   case ISD::TargetFrameIndex:
422     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
423     break;
424   case ISD::JumpTable:
425   case ISD::TargetJumpTable:
426     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
427     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
428     break;
429   case ISD::ConstantPool:
430   case ISD::TargetConstantPool: {
431     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
432     ID.AddInteger(CP->getAlignment());
433     ID.AddInteger(CP->getOffset());
434     if (CP->isMachineConstantPoolEntry())
435       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
436     else
437       ID.AddPointer(CP->getConstVal());
438     ID.AddInteger(CP->getTargetFlags());
439     break;
440   }
441   case ISD::TargetIndex: {
442     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
443     ID.AddInteger(TI->getIndex());
444     ID.AddInteger(TI->getOffset());
445     ID.AddInteger(TI->getTargetFlags());
446     break;
447   }
448   case ISD::LOAD: {
449     const LoadSDNode *LD = cast<LoadSDNode>(N);
450     ID.AddInteger(LD->getMemoryVT().getRawBits());
451     ID.AddInteger(LD->getRawSubclassData());
452     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
453     break;
454   }
455   case ISD::STORE: {
456     const StoreSDNode *ST = cast<StoreSDNode>(N);
457     ID.AddInteger(ST->getMemoryVT().getRawBits());
458     ID.AddInteger(ST->getRawSubclassData());
459     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
460     break;
461   }
462   case ISD::ATOMIC_CMP_SWAP:
463   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
464   case ISD::ATOMIC_SWAP:
465   case ISD::ATOMIC_LOAD_ADD:
466   case ISD::ATOMIC_LOAD_SUB:
467   case ISD::ATOMIC_LOAD_AND:
468   case ISD::ATOMIC_LOAD_OR:
469   case ISD::ATOMIC_LOAD_XOR:
470   case ISD::ATOMIC_LOAD_NAND:
471   case ISD::ATOMIC_LOAD_MIN:
472   case ISD::ATOMIC_LOAD_MAX:
473   case ISD::ATOMIC_LOAD_UMIN:
474   case ISD::ATOMIC_LOAD_UMAX:
475   case ISD::ATOMIC_LOAD:
476   case ISD::ATOMIC_STORE: {
477     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
478     ID.AddInteger(AT->getMemoryVT().getRawBits());
479     ID.AddInteger(AT->getRawSubclassData());
480     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
481     break;
482   }
483   case ISD::PREFETCH: {
484     const MemSDNode *PF = cast<MemSDNode>(N);
485     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
486     break;
487   }
488   case ISD::VECTOR_SHUFFLE: {
489     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
490     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
491          i != e; ++i)
492       ID.AddInteger(SVN->getMaskElt(i));
493     break;
494   }
495   case ISD::TargetBlockAddress:
496   case ISD::BlockAddress: {
497     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
498     ID.AddPointer(BA->getBlockAddress());
499     ID.AddInteger(BA->getOffset());
500     ID.AddInteger(BA->getTargetFlags());
501     break;
502   }
503   } // end switch (N->getOpcode())
504 
505   // Target specific memory nodes could also have address spaces to check.
506   if (N->isTargetMemoryOpcode())
507     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
508 }
509 
510 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
511 /// data.
512 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
513   AddNodeIDOpcode(ID, N->getOpcode());
514   // Add the return value info.
515   AddNodeIDValueTypes(ID, N->getVTList());
516   // Add the operand info.
517   AddNodeIDOperands(ID, N->ops());
518 
519   // Handle SDNode leafs with special info.
520   AddNodeIDCustom(ID, N);
521 }
522 
523 //===----------------------------------------------------------------------===//
524 //                              SelectionDAG Class
525 //===----------------------------------------------------------------------===//
526 
527 /// doNotCSE - Return true if CSE should not be performed for this node.
528 static bool doNotCSE(SDNode *N) {
529   if (N->getValueType(0) == MVT::Glue)
530     return true; // Never CSE anything that produces a flag.
531 
532   switch (N->getOpcode()) {
533   default: break;
534   case ISD::HANDLENODE:
535   case ISD::EH_LABEL:
536     return true;   // Never CSE these nodes.
537   }
538 
539   // Check that remaining values produced are not flags.
540   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
541     if (N->getValueType(i) == MVT::Glue)
542       return true; // Never CSE anything that produces a flag.
543 
544   return false;
545 }
546 
547 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
548 /// SelectionDAG.
549 void SelectionDAG::RemoveDeadNodes() {
550   // Create a dummy node (which is not added to allnodes), that adds a reference
551   // to the root node, preventing it from being deleted.
552   HandleSDNode Dummy(getRoot());
553 
554   SmallVector<SDNode*, 128> DeadNodes;
555 
556   // Add all obviously-dead nodes to the DeadNodes worklist.
557   for (SDNode &Node : allnodes())
558     if (Node.use_empty())
559       DeadNodes.push_back(&Node);
560 
561   RemoveDeadNodes(DeadNodes);
562 
563   // If the root changed (e.g. it was a dead load, update the root).
564   setRoot(Dummy.getValue());
565 }
566 
567 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
568 /// given list, and any nodes that become unreachable as a result.
569 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
570 
571   // Process the worklist, deleting the nodes and adding their uses to the
572   // worklist.
573   while (!DeadNodes.empty()) {
574     SDNode *N = DeadNodes.pop_back_val();
575 
576     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
577       DUL->NodeDeleted(N, nullptr);
578 
579     // Take the node out of the appropriate CSE map.
580     RemoveNodeFromCSEMaps(N);
581 
582     // Next, brutally remove the operand list.  This is safe to do, as there are
583     // no cycles in the graph.
584     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
585       SDUse &Use = *I++;
586       SDNode *Operand = Use.getNode();
587       Use.set(SDValue());
588 
589       // Now that we removed this operand, see if there are no uses of it left.
590       if (Operand->use_empty())
591         DeadNodes.push_back(Operand);
592     }
593 
594     DeallocateNode(N);
595   }
596 }
597 
598 void SelectionDAG::RemoveDeadNode(SDNode *N){
599   SmallVector<SDNode*, 16> DeadNodes(1, N);
600 
601   // Create a dummy node that adds a reference to the root node, preventing
602   // it from being deleted.  (This matters if the root is an operand of the
603   // dead node.)
604   HandleSDNode Dummy(getRoot());
605 
606   RemoveDeadNodes(DeadNodes);
607 }
608 
609 void SelectionDAG::DeleteNode(SDNode *N) {
610   // First take this out of the appropriate CSE map.
611   RemoveNodeFromCSEMaps(N);
612 
613   // Finally, remove uses due to operands of this node, remove from the
614   // AllNodes list, and delete the node.
615   DeleteNodeNotInCSEMaps(N);
616 }
617 
618 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
619   assert(N->getIterator() != AllNodes.begin() &&
620          "Cannot delete the entry node!");
621   assert(N->use_empty() && "Cannot delete a node that is not dead!");
622 
623   // Drop all of the operands and decrement used node's use counts.
624   N->DropOperands();
625 
626   DeallocateNode(N);
627 }
628 
629 void SDDbgInfo::erase(const SDNode *Node) {
630   DbgValMapType::iterator I = DbgValMap.find(Node);
631   if (I == DbgValMap.end())
632     return;
633   for (auto &Val: I->second)
634     Val->setIsInvalidated();
635   DbgValMap.erase(I);
636 }
637 
638 void SelectionDAG::DeallocateNode(SDNode *N) {
639   // If we have operands, deallocate them.
640   removeOperands(N);
641 
642   // Set the opcode to DELETED_NODE to help catch bugs when node
643   // memory is reallocated.
644   N->NodeType = ISD::DELETED_NODE;
645 
646   NodeAllocator.Deallocate(AllNodes.remove(N));
647 
648   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
649   // them and forget about that node.
650   DbgInfo->erase(N);
651 }
652 
653 #ifndef NDEBUG
654 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
655 static void VerifySDNode(SDNode *N) {
656   switch (N->getOpcode()) {
657   default:
658     break;
659   case ISD::BUILD_PAIR: {
660     EVT VT = N->getValueType(0);
661     assert(N->getNumValues() == 1 && "Too many results!");
662     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
663            "Wrong return type!");
664     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
665     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
666            "Mismatched operand types!");
667     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
668            "Wrong operand type!");
669     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
670            "Wrong return type size");
671     break;
672   }
673   case ISD::BUILD_VECTOR: {
674     assert(N->getNumValues() == 1 && "Too many results!");
675     assert(N->getValueType(0).isVector() && "Wrong return type!");
676     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
677            "Wrong number of operands!");
678     EVT EltVT = N->getValueType(0).getVectorElementType();
679     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
680       assert((I->getValueType() == EltVT ||
681              (EltVT.isInteger() && I->getValueType().isInteger() &&
682               EltVT.bitsLE(I->getValueType()))) &&
683             "Wrong operand type!");
684       assert(I->getValueType() == N->getOperand(0).getValueType() &&
685              "Operands must all have the same type");
686     }
687     break;
688   }
689   }
690 }
691 #endif // NDEBUG
692 
693 /// \brief Insert a newly allocated node into the DAG.
694 ///
695 /// Handles insertion into the all nodes list and CSE map, as well as
696 /// verification and other common operations when a new node is allocated.
697 void SelectionDAG::InsertNode(SDNode *N) {
698   AllNodes.push_back(N);
699 #ifndef NDEBUG
700   N->PersistentId = NextPersistentId++;
701   VerifySDNode(N);
702 #endif
703 }
704 
705 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
706 /// correspond to it.  This is useful when we're about to delete or repurpose
707 /// the node.  We don't want future request for structurally identical nodes
708 /// to return N anymore.
709 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
710   bool Erased = false;
711   switch (N->getOpcode()) {
712   case ISD::HANDLENODE: return false;  // noop.
713   case ISD::CONDCODE:
714     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
715            "Cond code doesn't exist!");
716     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
717     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
718     break;
719   case ISD::ExternalSymbol:
720     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
721     break;
722   case ISD::TargetExternalSymbol: {
723     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
724     Erased = TargetExternalSymbols.erase(
725                std::pair<std::string,unsigned char>(ESN->getSymbol(),
726                                                     ESN->getTargetFlags()));
727     break;
728   }
729   case ISD::MCSymbol: {
730     auto *MCSN = cast<MCSymbolSDNode>(N);
731     Erased = MCSymbols.erase(MCSN->getMCSymbol());
732     break;
733   }
734   case ISD::VALUETYPE: {
735     EVT VT = cast<VTSDNode>(N)->getVT();
736     if (VT.isExtended()) {
737       Erased = ExtendedValueTypeNodes.erase(VT);
738     } else {
739       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
740       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
741     }
742     break;
743   }
744   default:
745     // Remove it from the CSE Map.
746     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
747     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
748     Erased = CSEMap.RemoveNode(N);
749     break;
750   }
751 #ifndef NDEBUG
752   // Verify that the node was actually in one of the CSE maps, unless it has a
753   // flag result (which cannot be CSE'd) or is one of the special cases that are
754   // not subject to CSE.
755   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
756       !N->isMachineOpcode() && !doNotCSE(N)) {
757     N->dump(this);
758     dbgs() << "\n";
759     llvm_unreachable("Node is not in map!");
760   }
761 #endif
762   return Erased;
763 }
764 
765 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
766 /// maps and modified in place. Add it back to the CSE maps, unless an identical
767 /// node already exists, in which case transfer all its users to the existing
768 /// node. This transfer can potentially trigger recursive merging.
769 ///
770 void
771 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
772   // For node types that aren't CSE'd, just act as if no identical node
773   // already exists.
774   if (!doNotCSE(N)) {
775     SDNode *Existing = CSEMap.GetOrInsertNode(N);
776     if (Existing != N) {
777       // If there was already an existing matching node, use ReplaceAllUsesWith
778       // to replace the dead one with the existing one.  This can cause
779       // recursive merging of other unrelated nodes down the line.
780       ReplaceAllUsesWith(N, Existing);
781 
782       // N is now dead. Inform the listeners and delete it.
783       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
784         DUL->NodeDeleted(N, Existing);
785       DeleteNodeNotInCSEMaps(N);
786       return;
787     }
788   }
789 
790   // If the node doesn't already exist, we updated it.  Inform listeners.
791   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
792     DUL->NodeUpdated(N);
793 }
794 
795 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
796 /// were replaced with those specified.  If this node is never memoized,
797 /// return null, otherwise return a pointer to the slot it would take.  If a
798 /// node already exists with these operands, the slot will be non-null.
799 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
800                                            void *&InsertPos) {
801   if (doNotCSE(N))
802     return nullptr;
803 
804   SDValue Ops[] = { Op };
805   FoldingSetNodeID ID;
806   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
807   AddNodeIDCustom(ID, N);
808   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
809   if (Node)
810     if (const SDNodeFlags *Flags = N->getFlags())
811       Node->intersectFlagsWith(Flags);
812   return Node;
813 }
814 
815 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
816 /// were replaced with those specified.  If this node is never memoized,
817 /// return null, otherwise return a pointer to the slot it would take.  If a
818 /// node already exists with these operands, the slot will be non-null.
819 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
820                                            SDValue Op1, SDValue Op2,
821                                            void *&InsertPos) {
822   if (doNotCSE(N))
823     return nullptr;
824 
825   SDValue Ops[] = { Op1, Op2 };
826   FoldingSetNodeID ID;
827   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
828   AddNodeIDCustom(ID, N);
829   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
830   if (Node)
831     if (const SDNodeFlags *Flags = N->getFlags())
832       Node->intersectFlagsWith(Flags);
833   return Node;
834 }
835 
836 
837 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
838 /// were replaced with those specified.  If this node is never memoized,
839 /// return null, otherwise return a pointer to the slot it would take.  If a
840 /// node already exists with these operands, the slot will be non-null.
841 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
842                                            void *&InsertPos) {
843   if (doNotCSE(N))
844     return nullptr;
845 
846   FoldingSetNodeID ID;
847   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
848   AddNodeIDCustom(ID, N);
849   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
850   if (Node)
851     if (const SDNodeFlags *Flags = N->getFlags())
852       Node->intersectFlagsWith(Flags);
853   return Node;
854 }
855 
856 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
857   Type *Ty = VT == MVT::iPTR ?
858                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
859                    VT.getTypeForEVT(*getContext());
860 
861   return getDataLayout().getABITypeAlignment(Ty);
862 }
863 
864 // EntryNode could meaningfully have debug info if we can find it...
865 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
866     : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL),
867       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
868       Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
869       UpdateListeners(nullptr) {
870   InsertNode(&EntryNode);
871   DbgInfo = new SDDbgInfo();
872 }
873 
874 void SelectionDAG::init(MachineFunction &mf) {
875   MF = &mf;
876   TLI = getSubtarget().getTargetLowering();
877   TSI = getSubtarget().getSelectionDAGInfo();
878   Context = &mf.getFunction()->getContext();
879 }
880 
881 SelectionDAG::~SelectionDAG() {
882   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
883   allnodes_clear();
884   OperandRecycler.clear(OperandAllocator);
885   delete DbgInfo;
886 }
887 
888 void SelectionDAG::allnodes_clear() {
889   assert(&*AllNodes.begin() == &EntryNode);
890   AllNodes.remove(AllNodes.begin());
891   while (!AllNodes.empty())
892     DeallocateNode(&AllNodes.front());
893 #ifndef NDEBUG
894   NextPersistentId = 0;
895 #endif
896 }
897 
898 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL,
899                                       SDVTList VTs, SDValue N1, SDValue N2,
900                                       const SDNodeFlags *Flags) {
901   SDValue Ops[] = {N1, N2};
902 
903   if (isBinOpWithFlags(Opcode)) {
904     // If no flags were passed in, use a default flags object.
905     SDNodeFlags F;
906     if (Flags == nullptr)
907       Flags = &F;
908 
909     auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(),
910                                                 DL.getDebugLoc(), VTs, *Flags);
911     createOperands(FN, Ops);
912 
913     return FN;
914   }
915 
916   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
917   createOperands(N, Ops);
918   return N;
919 }
920 
921 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
922                                           void *&InsertPos) {
923   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
924   if (N) {
925     switch (N->getOpcode()) {
926     default: break;
927     case ISD::Constant:
928     case ISD::ConstantFP:
929       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
930                        "debug location.  Use another overload.");
931     }
932   }
933   return N;
934 }
935 
936 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
937                                           const SDLoc &DL, void *&InsertPos) {
938   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
939   if (N) {
940     switch (N->getOpcode()) {
941     case ISD::Constant:
942     case ISD::ConstantFP:
943       // Erase debug location from the node if the node is used at several
944       // different places. Do not propagate one location to all uses as it
945       // will cause a worse single stepping debugging experience.
946       if (N->getDebugLoc() != DL.getDebugLoc())
947         N->setDebugLoc(DebugLoc());
948       break;
949     default:
950       // When the node's point of use is located earlier in the instruction
951       // sequence than its prior point of use, update its debug info to the
952       // earlier location.
953       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
954         N->setDebugLoc(DL.getDebugLoc());
955       break;
956     }
957   }
958   return N;
959 }
960 
961 void SelectionDAG::clear() {
962   allnodes_clear();
963   OperandRecycler.clear(OperandAllocator);
964   OperandAllocator.Reset();
965   CSEMap.clear();
966 
967   ExtendedValueTypeNodes.clear();
968   ExternalSymbols.clear();
969   TargetExternalSymbols.clear();
970   MCSymbols.clear();
971   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
972             static_cast<CondCodeSDNode*>(nullptr));
973   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
974             static_cast<SDNode*>(nullptr));
975 
976   EntryNode.UseList = nullptr;
977   InsertNode(&EntryNode);
978   Root = getEntryNode();
979   DbgInfo->clear();
980 }
981 
982 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
983   return VT.bitsGT(Op.getValueType()) ?
984     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
985     getNode(ISD::TRUNCATE, DL, VT, Op);
986 }
987 
988 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
989   return VT.bitsGT(Op.getValueType()) ?
990     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
991     getNode(ISD::TRUNCATE, DL, VT, Op);
992 }
993 
994 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
995   return VT.bitsGT(Op.getValueType()) ?
996     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
997     getNode(ISD::TRUNCATE, DL, VT, Op);
998 }
999 
1000 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1001                                         EVT OpVT) {
1002   if (VT.bitsLE(Op.getValueType()))
1003     return getNode(ISD::TRUNCATE, SL, VT, Op);
1004 
1005   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1006   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1007 }
1008 
1009 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1010   assert(!VT.isVector() &&
1011          "getZeroExtendInReg should use the vector element type instead of "
1012          "the vector type!");
1013   if (Op.getValueType() == VT) return Op;
1014   unsigned BitWidth = Op.getScalarValueSizeInBits();
1015   APInt Imm = APInt::getLowBitsSet(BitWidth,
1016                                    VT.getSizeInBits());
1017   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1018                  getConstant(Imm, DL, Op.getValueType()));
1019 }
1020 
1021 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1022                                               EVT VT) {
1023   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1024   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1025          "The sizes of the input and result must match in order to perform the "
1026          "extend in-register.");
1027   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1028          "The destination vector type must have fewer lanes than the input.");
1029   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1030 }
1031 
1032 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1033                                                EVT VT) {
1034   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1035   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1036          "The sizes of the input and result must match in order to perform the "
1037          "extend in-register.");
1038   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1039          "The destination vector type must have fewer lanes than the input.");
1040   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1041 }
1042 
1043 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1044                                                EVT VT) {
1045   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1046   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1047          "The sizes of the input and result must match in order to perform the "
1048          "extend in-register.");
1049   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1050          "The destination vector type must have fewer lanes than the input.");
1051   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1052 }
1053 
1054 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1055 ///
1056 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1057   EVT EltVT = VT.getScalarType();
1058   SDValue NegOne =
1059     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1060   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1061 }
1062 
1063 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1064   EVT EltVT = VT.getScalarType();
1065   SDValue TrueValue;
1066   switch (TLI->getBooleanContents(VT)) {
1067     case TargetLowering::ZeroOrOneBooleanContent:
1068     case TargetLowering::UndefinedBooleanContent:
1069       TrueValue = getConstant(1, DL, VT);
1070       break;
1071     case TargetLowering::ZeroOrNegativeOneBooleanContent:
1072       TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
1073                               VT);
1074       break;
1075   }
1076   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1077 }
1078 
1079 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1080                                   bool isT, bool isO) {
1081   EVT EltVT = VT.getScalarType();
1082   assert((EltVT.getSizeInBits() >= 64 ||
1083          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1084          "getConstant with a uint64_t value that doesn't fit in the type!");
1085   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1086 }
1087 
1088 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1089                                   bool isT, bool isO) {
1090   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1091 }
1092 
1093 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1094                                   EVT VT, bool isT, bool isO) {
1095   assert(VT.isInteger() && "Cannot create FP integer constant!");
1096 
1097   EVT EltVT = VT.getScalarType();
1098   const ConstantInt *Elt = &Val;
1099 
1100   // In some cases the vector type is legal but the element type is illegal and
1101   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1102   // inserted value (the type does not need to match the vector element type).
1103   // Any extra bits introduced will be truncated away.
1104   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1105       TargetLowering::TypePromoteInteger) {
1106    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1107    APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
1108    Elt = ConstantInt::get(*getContext(), NewVal);
1109   }
1110   // In other cases the element type is illegal and needs to be expanded, for
1111   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1112   // the value into n parts and use a vector type with n-times the elements.
1113   // Then bitcast to the type requested.
1114   // Legalizing constants too early makes the DAGCombiner's job harder so we
1115   // only legalize if the DAG tells us we must produce legal types.
1116   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1117            TLI->getTypeAction(*getContext(), EltVT) ==
1118            TargetLowering::TypeExpandInteger) {
1119     const APInt &NewVal = Elt->getValue();
1120     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1121     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1122     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1123     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1124 
1125     // Check the temporary vector is the correct size. If this fails then
1126     // getTypeToTransformTo() probably returned a type whose size (in bits)
1127     // isn't a power-of-2 factor of the requested type size.
1128     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1129 
1130     SmallVector<SDValue, 2> EltParts;
1131     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1132       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1133                                            .trunc(ViaEltSizeInBits), DL,
1134                                      ViaEltVT, isT, isO));
1135     }
1136 
1137     // EltParts is currently in little endian order. If we actually want
1138     // big-endian order then reverse it now.
1139     if (getDataLayout().isBigEndian())
1140       std::reverse(EltParts.begin(), EltParts.end());
1141 
1142     // The elements must be reversed when the element order is different
1143     // to the endianness of the elements (because the BITCAST is itself a
1144     // vector shuffle in this situation). However, we do not need any code to
1145     // perform this reversal because getConstant() is producing a vector
1146     // splat.
1147     // This situation occurs in MIPS MSA.
1148 
1149     SmallVector<SDValue, 8> Ops;
1150     for (unsigned i = 0; i < VT.getVectorNumElements(); ++i)
1151       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1152 
1153     SDValue Result = getNode(ISD::BITCAST, DL, VT,
1154                              getNode(ISD::BUILD_VECTOR, DL, ViaVecVT, Ops));
1155     return Result;
1156   }
1157 
1158   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1159          "APInt size does not match type size!");
1160   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1161   FoldingSetNodeID ID;
1162   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1163   ID.AddPointer(Elt);
1164   ID.AddBoolean(isO);
1165   void *IP = nullptr;
1166   SDNode *N = nullptr;
1167   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1168     if (!VT.isVector())
1169       return SDValue(N, 0);
1170 
1171   if (!N) {
1172     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
1173     CSEMap.InsertNode(N, IP);
1174     InsertNode(N);
1175   }
1176 
1177   SDValue Result(N, 0);
1178   if (VT.isVector())
1179     Result = getSplatBuildVector(VT, DL, Result);
1180   return Result;
1181 }
1182 
1183 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1184                                         bool isTarget) {
1185   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1186 }
1187 
1188 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1189                                     bool isTarget) {
1190   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1191 }
1192 
1193 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1194                                     EVT VT, bool isTarget) {
1195   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1196 
1197   EVT EltVT = VT.getScalarType();
1198 
1199   // Do the map lookup using the actual bit pattern for the floating point
1200   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1201   // we don't have issues with SNANs.
1202   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1203   FoldingSetNodeID ID;
1204   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1205   ID.AddPointer(&V);
1206   void *IP = nullptr;
1207   SDNode *N = nullptr;
1208   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1209     if (!VT.isVector())
1210       return SDValue(N, 0);
1211 
1212   if (!N) {
1213     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
1214     CSEMap.InsertNode(N, IP);
1215     InsertNode(N);
1216   }
1217 
1218   SDValue Result(N, 0);
1219   if (VT.isVector())
1220     Result = getSplatBuildVector(VT, DL, Result);
1221   return Result;
1222 }
1223 
1224 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1225                                     bool isTarget) {
1226   EVT EltVT = VT.getScalarType();
1227   if (EltVT == MVT::f32)
1228     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1229   else if (EltVT == MVT::f64)
1230     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1231   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1232            EltVT == MVT::f16) {
1233     bool Ignored;
1234     APFloat APF = APFloat(Val);
1235     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1236                 &Ignored);
1237     return getConstantFP(APF, DL, VT, isTarget);
1238   } else
1239     llvm_unreachable("Unsupported type in getConstantFP");
1240 }
1241 
1242 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1243                                        EVT VT, int64_t Offset, bool isTargetGA,
1244                                        unsigned char TargetFlags) {
1245   assert((TargetFlags == 0 || isTargetGA) &&
1246          "Cannot set target flags on target-independent globals");
1247 
1248   // Truncate (with sign-extension) the offset value to the pointer size.
1249   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1250   if (BitWidth < 64)
1251     Offset = SignExtend64(Offset, BitWidth);
1252 
1253   unsigned Opc;
1254   if (GV->isThreadLocal())
1255     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1256   else
1257     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1258 
1259   FoldingSetNodeID ID;
1260   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1261   ID.AddPointer(GV);
1262   ID.AddInteger(Offset);
1263   ID.AddInteger(TargetFlags);
1264   void *IP = nullptr;
1265   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1266     return SDValue(E, 0);
1267 
1268   auto *N = newSDNode<GlobalAddressSDNode>(
1269       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1270   CSEMap.InsertNode(N, IP);
1271     InsertNode(N);
1272   return SDValue(N, 0);
1273 }
1274 
1275 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1276   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1277   FoldingSetNodeID ID;
1278   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1279   ID.AddInteger(FI);
1280   void *IP = nullptr;
1281   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1282     return SDValue(E, 0);
1283 
1284   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1285   CSEMap.InsertNode(N, IP);
1286   InsertNode(N);
1287   return SDValue(N, 0);
1288 }
1289 
1290 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1291                                    unsigned char TargetFlags) {
1292   assert((TargetFlags == 0 || isTarget) &&
1293          "Cannot set target flags on target-independent jump tables");
1294   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1295   FoldingSetNodeID ID;
1296   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1297   ID.AddInteger(JTI);
1298   ID.AddInteger(TargetFlags);
1299   void *IP = nullptr;
1300   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1301     return SDValue(E, 0);
1302 
1303   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1304   CSEMap.InsertNode(N, IP);
1305   InsertNode(N);
1306   return SDValue(N, 0);
1307 }
1308 
1309 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1310                                       unsigned Alignment, int Offset,
1311                                       bool isTarget,
1312                                       unsigned char TargetFlags) {
1313   assert((TargetFlags == 0 || isTarget) &&
1314          "Cannot set target flags on target-independent globals");
1315   if (Alignment == 0)
1316     Alignment = MF->getFunction()->optForSize()
1317                     ? getDataLayout().getABITypeAlignment(C->getType())
1318                     : getDataLayout().getPrefTypeAlignment(C->getType());
1319   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1320   FoldingSetNodeID ID;
1321   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1322   ID.AddInteger(Alignment);
1323   ID.AddInteger(Offset);
1324   ID.AddPointer(C);
1325   ID.AddInteger(TargetFlags);
1326   void *IP = nullptr;
1327   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1328     return SDValue(E, 0);
1329 
1330   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1331                                           TargetFlags);
1332   CSEMap.InsertNode(N, IP);
1333   InsertNode(N);
1334   return SDValue(N, 0);
1335 }
1336 
1337 
1338 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1339                                       unsigned Alignment, int Offset,
1340                                       bool isTarget,
1341                                       unsigned char TargetFlags) {
1342   assert((TargetFlags == 0 || isTarget) &&
1343          "Cannot set target flags on target-independent globals");
1344   if (Alignment == 0)
1345     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1346   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1347   FoldingSetNodeID ID;
1348   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1349   ID.AddInteger(Alignment);
1350   ID.AddInteger(Offset);
1351   C->addSelectionDAGCSEId(ID);
1352   ID.AddInteger(TargetFlags);
1353   void *IP = nullptr;
1354   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1355     return SDValue(E, 0);
1356 
1357   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1358                                           TargetFlags);
1359   CSEMap.InsertNode(N, IP);
1360   InsertNode(N);
1361   return SDValue(N, 0);
1362 }
1363 
1364 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1365                                      unsigned char TargetFlags) {
1366   FoldingSetNodeID ID;
1367   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1368   ID.AddInteger(Index);
1369   ID.AddInteger(Offset);
1370   ID.AddInteger(TargetFlags);
1371   void *IP = nullptr;
1372   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1373     return SDValue(E, 0);
1374 
1375   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1376   CSEMap.InsertNode(N, IP);
1377   InsertNode(N);
1378   return SDValue(N, 0);
1379 }
1380 
1381 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1382   FoldingSetNodeID ID;
1383   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1384   ID.AddPointer(MBB);
1385   void *IP = nullptr;
1386   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1387     return SDValue(E, 0);
1388 
1389   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1390   CSEMap.InsertNode(N, IP);
1391   InsertNode(N);
1392   return SDValue(N, 0);
1393 }
1394 
1395 SDValue SelectionDAG::getValueType(EVT VT) {
1396   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1397       ValueTypeNodes.size())
1398     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1399 
1400   SDNode *&N = VT.isExtended() ?
1401     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1402 
1403   if (N) return SDValue(N, 0);
1404   N = newSDNode<VTSDNode>(VT);
1405   InsertNode(N);
1406   return SDValue(N, 0);
1407 }
1408 
1409 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1410   SDNode *&N = ExternalSymbols[Sym];
1411   if (N) return SDValue(N, 0);
1412   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1413   InsertNode(N);
1414   return SDValue(N, 0);
1415 }
1416 
1417 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1418   SDNode *&N = MCSymbols[Sym];
1419   if (N)
1420     return SDValue(N, 0);
1421   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1422   InsertNode(N);
1423   return SDValue(N, 0);
1424 }
1425 
1426 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1427                                               unsigned char TargetFlags) {
1428   SDNode *&N =
1429     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1430                                                                TargetFlags)];
1431   if (N) return SDValue(N, 0);
1432   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1433   InsertNode(N);
1434   return SDValue(N, 0);
1435 }
1436 
1437 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1438   if ((unsigned)Cond >= CondCodeNodes.size())
1439     CondCodeNodes.resize(Cond+1);
1440 
1441   if (!CondCodeNodes[Cond]) {
1442     auto *N = newSDNode<CondCodeSDNode>(Cond);
1443     CondCodeNodes[Cond] = N;
1444     InsertNode(N);
1445   }
1446 
1447   return SDValue(CondCodeNodes[Cond], 0);
1448 }
1449 
1450 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1451 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1452 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1453   std::swap(N1, N2);
1454   ShuffleVectorSDNode::commuteMask(M);
1455 }
1456 
1457 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1458                                        SDValue N2, ArrayRef<int> Mask) {
1459   assert(VT.getVectorNumElements() == Mask.size() &&
1460            "Must have the same number of vector elements as mask elements!");
1461   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1462          "Invalid VECTOR_SHUFFLE");
1463 
1464   // Canonicalize shuffle undef, undef -> undef
1465   if (N1.isUndef() && N2.isUndef())
1466     return getUNDEF(VT);
1467 
1468   // Validate that all indices in Mask are within the range of the elements
1469   // input to the shuffle.
1470   int NElts = Mask.size();
1471   assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) &&
1472          "Index out of range");
1473 
1474   // Copy the mask so we can do any needed cleanup.
1475   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1476 
1477   // Canonicalize shuffle v, v -> v, undef
1478   if (N1 == N2) {
1479     N2 = getUNDEF(VT);
1480     for (int i = 0; i != NElts; ++i)
1481       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1482   }
1483 
1484   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1485   if (N1.isUndef())
1486     commuteShuffle(N1, N2, MaskVec);
1487 
1488   // If shuffling a splat, try to blend the splat instead. We do this here so
1489   // that even when this arises during lowering we don't have to re-handle it.
1490   auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1491     BitVector UndefElements;
1492     SDValue Splat = BV->getSplatValue(&UndefElements);
1493     if (!Splat)
1494       return;
1495 
1496     for (int i = 0; i < NElts; ++i) {
1497       if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1498         continue;
1499 
1500       // If this input comes from undef, mark it as such.
1501       if (UndefElements[MaskVec[i] - Offset]) {
1502         MaskVec[i] = -1;
1503         continue;
1504       }
1505 
1506       // If we can blend a non-undef lane, use that instead.
1507       if (!UndefElements[i])
1508         MaskVec[i] = i + Offset;
1509     }
1510   };
1511   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1512     BlendSplat(N1BV, 0);
1513   if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1514     BlendSplat(N2BV, NElts);
1515 
1516   // Canonicalize all index into lhs, -> shuffle lhs, undef
1517   // Canonicalize all index into rhs, -> shuffle rhs, undef
1518   bool AllLHS = true, AllRHS = true;
1519   bool N2Undef = N2.isUndef();
1520   for (int i = 0; i != NElts; ++i) {
1521     if (MaskVec[i] >= NElts) {
1522       if (N2Undef)
1523         MaskVec[i] = -1;
1524       else
1525         AllLHS = false;
1526     } else if (MaskVec[i] >= 0) {
1527       AllRHS = false;
1528     }
1529   }
1530   if (AllLHS && AllRHS)
1531     return getUNDEF(VT);
1532   if (AllLHS && !N2Undef)
1533     N2 = getUNDEF(VT);
1534   if (AllRHS) {
1535     N1 = getUNDEF(VT);
1536     commuteShuffle(N1, N2, MaskVec);
1537   }
1538   // Reset our undef status after accounting for the mask.
1539   N2Undef = N2.isUndef();
1540   // Re-check whether both sides ended up undef.
1541   if (N1.isUndef() && N2Undef)
1542     return getUNDEF(VT);
1543 
1544   // If Identity shuffle return that node.
1545   bool Identity = true, AllSame = true;
1546   for (int i = 0; i != NElts; ++i) {
1547     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1548     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1549   }
1550   if (Identity && NElts)
1551     return N1;
1552 
1553   // Shuffling a constant splat doesn't change the result.
1554   if (N2Undef) {
1555     SDValue V = N1;
1556 
1557     // Look through any bitcasts. We check that these don't change the number
1558     // (and size) of elements and just changes their types.
1559     while (V.getOpcode() == ISD::BITCAST)
1560       V = V->getOperand(0);
1561 
1562     // A splat should always show up as a build vector node.
1563     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1564       BitVector UndefElements;
1565       SDValue Splat = BV->getSplatValue(&UndefElements);
1566       // If this is a splat of an undef, shuffling it is also undef.
1567       if (Splat && Splat.isUndef())
1568         return getUNDEF(VT);
1569 
1570       bool SameNumElts =
1571           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1572 
1573       // We only have a splat which can skip shuffles if there is a splatted
1574       // value and no undef lanes rearranged by the shuffle.
1575       if (Splat && UndefElements.none()) {
1576         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1577         // number of elements match or the value splatted is a zero constant.
1578         if (SameNumElts)
1579           return N1;
1580         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1581           if (C->isNullValue())
1582             return N1;
1583       }
1584 
1585       // If the shuffle itself creates a splat, build the vector directly.
1586       if (AllSame && SameNumElts) {
1587         EVT BuildVT = BV->getValueType(0);
1588         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1589         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1590 
1591         // We may have jumped through bitcasts, so the type of the
1592         // BUILD_VECTOR may not match the type of the shuffle.
1593         if (BuildVT != VT)
1594           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1595         return NewBV;
1596       }
1597     }
1598   }
1599 
1600   FoldingSetNodeID ID;
1601   SDValue Ops[2] = { N1, N2 };
1602   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1603   for (int i = 0; i != NElts; ++i)
1604     ID.AddInteger(MaskVec[i]);
1605 
1606   void* IP = nullptr;
1607   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1608     return SDValue(E, 0);
1609 
1610   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1611   // SDNode doesn't have access to it.  This memory will be "leaked" when
1612   // the node is deallocated, but recovered when the NodeAllocator is released.
1613   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1614   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1615 
1616   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1617                                            dl.getDebugLoc(), MaskAlloc);
1618   createOperands(N, Ops);
1619 
1620   CSEMap.InsertNode(N, IP);
1621   InsertNode(N);
1622   return SDValue(N, 0);
1623 }
1624 
1625 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1626   MVT VT = SV.getSimpleValueType(0);
1627   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1628   ShuffleVectorSDNode::commuteMask(MaskVec);
1629 
1630   SDValue Op0 = SV.getOperand(0);
1631   SDValue Op1 = SV.getOperand(1);
1632   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1633 }
1634 
1635 SDValue SelectionDAG::getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val,
1636                                        SDValue DTy, SDValue STy, SDValue Rnd,
1637                                        SDValue Sat, ISD::CvtCode Code) {
1638   // If the src and dest types are the same and the conversion is between
1639   // integer types of the same sign or two floats, no conversion is necessary.
1640   if (DTy == STy &&
1641       (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1642     return Val;
1643 
1644   FoldingSetNodeID ID;
1645   SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1646   AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops);
1647   void* IP = nullptr;
1648   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1649     return SDValue(E, 0);
1650 
1651   auto *N =
1652       newSDNode<CvtRndSatSDNode>(VT, dl.getIROrder(), dl.getDebugLoc(), Code);
1653   createOperands(N, Ops);
1654 
1655   CSEMap.InsertNode(N, IP);
1656   InsertNode(N);
1657   return SDValue(N, 0);
1658 }
1659 
1660 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1661   FoldingSetNodeID ID;
1662   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1663   ID.AddInteger(RegNo);
1664   void *IP = nullptr;
1665   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1666     return SDValue(E, 0);
1667 
1668   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1669   CSEMap.InsertNode(N, IP);
1670   InsertNode(N);
1671   return SDValue(N, 0);
1672 }
1673 
1674 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1675   FoldingSetNodeID ID;
1676   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1677   ID.AddPointer(RegMask);
1678   void *IP = nullptr;
1679   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1680     return SDValue(E, 0);
1681 
1682   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1683   CSEMap.InsertNode(N, IP);
1684   InsertNode(N);
1685   return SDValue(N, 0);
1686 }
1687 
1688 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1689                                  MCSymbol *Label) {
1690   FoldingSetNodeID ID;
1691   SDValue Ops[] = { Root };
1692   AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops);
1693   ID.AddPointer(Label);
1694   void *IP = nullptr;
1695   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1696     return SDValue(E, 0);
1697 
1698   auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1699   createOperands(N, Ops);
1700 
1701   CSEMap.InsertNode(N, IP);
1702   InsertNode(N);
1703   return SDValue(N, 0);
1704 }
1705 
1706 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1707                                       int64_t Offset,
1708                                       bool isTarget,
1709                                       unsigned char TargetFlags) {
1710   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1711 
1712   FoldingSetNodeID ID;
1713   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1714   ID.AddPointer(BA);
1715   ID.AddInteger(Offset);
1716   ID.AddInteger(TargetFlags);
1717   void *IP = nullptr;
1718   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1719     return SDValue(E, 0);
1720 
1721   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1722   CSEMap.InsertNode(N, IP);
1723   InsertNode(N);
1724   return SDValue(N, 0);
1725 }
1726 
1727 SDValue SelectionDAG::getSrcValue(const Value *V) {
1728   assert((!V || V->getType()->isPointerTy()) &&
1729          "SrcValue is not a pointer?");
1730 
1731   FoldingSetNodeID ID;
1732   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1733   ID.AddPointer(V);
1734 
1735   void *IP = nullptr;
1736   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1737     return SDValue(E, 0);
1738 
1739   auto *N = newSDNode<SrcValueSDNode>(V);
1740   CSEMap.InsertNode(N, IP);
1741   InsertNode(N);
1742   return SDValue(N, 0);
1743 }
1744 
1745 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1746   FoldingSetNodeID ID;
1747   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1748   ID.AddPointer(MD);
1749 
1750   void *IP = nullptr;
1751   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1752     return SDValue(E, 0);
1753 
1754   auto *N = newSDNode<MDNodeSDNode>(MD);
1755   CSEMap.InsertNode(N, IP);
1756   InsertNode(N);
1757   return SDValue(N, 0);
1758 }
1759 
1760 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1761   if (VT == V.getValueType())
1762     return V;
1763 
1764   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1765 }
1766 
1767 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1768                                        unsigned SrcAS, unsigned DestAS) {
1769   SDValue Ops[] = {Ptr};
1770   FoldingSetNodeID ID;
1771   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1772   ID.AddInteger(SrcAS);
1773   ID.AddInteger(DestAS);
1774 
1775   void *IP = nullptr;
1776   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1777     return SDValue(E, 0);
1778 
1779   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1780                                            VT, SrcAS, DestAS);
1781   createOperands(N, Ops);
1782 
1783   CSEMap.InsertNode(N, IP);
1784   InsertNode(N);
1785   return SDValue(N, 0);
1786 }
1787 
1788 /// getShiftAmountOperand - Return the specified value casted to
1789 /// the target's desired shift amount type.
1790 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1791   EVT OpTy = Op.getValueType();
1792   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1793   if (OpTy == ShTy || OpTy.isVector()) return Op;
1794 
1795   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1796 }
1797 
1798 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1799   SDLoc dl(Node);
1800   const TargetLowering &TLI = getTargetLoweringInfo();
1801   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1802   EVT VT = Node->getValueType(0);
1803   SDValue Tmp1 = Node->getOperand(0);
1804   SDValue Tmp2 = Node->getOperand(1);
1805   unsigned Align = Node->getConstantOperandVal(3);
1806 
1807   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1808                                Tmp2, MachinePointerInfo(V));
1809   SDValue VAList = VAListLoad;
1810 
1811   if (Align > TLI.getMinStackArgumentAlignment()) {
1812     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1813 
1814     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1815                      getConstant(Align - 1, dl, VAList.getValueType()));
1816 
1817     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1818                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1819   }
1820 
1821   // Increment the pointer, VAList, to the next vaarg
1822   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1823                  getConstant(getDataLayout().getTypeAllocSize(
1824                                                VT.getTypeForEVT(*getContext())),
1825                              dl, VAList.getValueType()));
1826   // Store the incremented VAList to the legalized pointer
1827   Tmp1 =
1828       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1829   // Load the actual argument out of the pointer VAList
1830   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1831 }
1832 
1833 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1834   SDLoc dl(Node);
1835   const TargetLowering &TLI = getTargetLoweringInfo();
1836   // This defaults to loading a pointer from the input and storing it to the
1837   // output, returning the chain.
1838   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1839   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1840   SDValue Tmp1 =
1841       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1842               Node->getOperand(2), MachinePointerInfo(VS));
1843   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1844                   MachinePointerInfo(VD));
1845 }
1846 
1847 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1848   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1849   unsigned ByteSize = VT.getStoreSize();
1850   Type *Ty = VT.getTypeForEVT(*getContext());
1851   unsigned StackAlign =
1852       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1853 
1854   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1855   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1856 }
1857 
1858 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1859   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1860   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1861   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1862   const DataLayout &DL = getDataLayout();
1863   unsigned Align =
1864       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1865 
1866   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1867   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1868   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1869 }
1870 
1871 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1872                                 ISD::CondCode Cond, const SDLoc &dl) {
1873   // These setcc operations always fold.
1874   switch (Cond) {
1875   default: break;
1876   case ISD::SETFALSE:
1877   case ISD::SETFALSE2: return getConstant(0, dl, VT);
1878   case ISD::SETTRUE:
1879   case ISD::SETTRUE2: {
1880     TargetLowering::BooleanContent Cnt =
1881         TLI->getBooleanContents(N1->getValueType(0));
1882     return getConstant(
1883         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1884         VT);
1885   }
1886 
1887   case ISD::SETOEQ:
1888   case ISD::SETOGT:
1889   case ISD::SETOGE:
1890   case ISD::SETOLT:
1891   case ISD::SETOLE:
1892   case ISD::SETONE:
1893   case ISD::SETO:
1894   case ISD::SETUO:
1895   case ISD::SETUEQ:
1896   case ISD::SETUNE:
1897     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1898     break;
1899   }
1900 
1901   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1902     const APInt &C2 = N2C->getAPIntValue();
1903     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1904       const APInt &C1 = N1C->getAPIntValue();
1905 
1906       switch (Cond) {
1907       default: llvm_unreachable("Unknown integer setcc!");
1908       case ISD::SETEQ:  return getConstant(C1 == C2, dl, VT);
1909       case ISD::SETNE:  return getConstant(C1 != C2, dl, VT);
1910       case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
1911       case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
1912       case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
1913       case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
1914       case ISD::SETLT:  return getConstant(C1.slt(C2), dl, VT);
1915       case ISD::SETGT:  return getConstant(C1.sgt(C2), dl, VT);
1916       case ISD::SETLE:  return getConstant(C1.sle(C2), dl, VT);
1917       case ISD::SETGE:  return getConstant(C1.sge(C2), dl, VT);
1918       }
1919     }
1920   }
1921   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1922     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1923       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1924       switch (Cond) {
1925       default: break;
1926       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1927                           return getUNDEF(VT);
1928                         LLVM_FALLTHROUGH;
1929       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
1930       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1931                           return getUNDEF(VT);
1932                         LLVM_FALLTHROUGH;
1933       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1934                                            R==APFloat::cmpLessThan, dl, VT);
1935       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1936                           return getUNDEF(VT);
1937                         LLVM_FALLTHROUGH;
1938       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
1939       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1940                           return getUNDEF(VT);
1941                         LLVM_FALLTHROUGH;
1942       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
1943       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1944                           return getUNDEF(VT);
1945                         LLVM_FALLTHROUGH;
1946       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1947                                            R==APFloat::cmpEqual, dl, VT);
1948       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1949                           return getUNDEF(VT);
1950                         LLVM_FALLTHROUGH;
1951       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1952                                            R==APFloat::cmpEqual, dl, VT);
1953       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, dl, VT);
1954       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, dl, VT);
1955       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1956                                            R==APFloat::cmpEqual, dl, VT);
1957       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
1958       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1959                                            R==APFloat::cmpLessThan, dl, VT);
1960       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1961                                            R==APFloat::cmpUnordered, dl, VT);
1962       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
1963       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
1964       }
1965     } else {
1966       // Ensure that the constant occurs on the RHS.
1967       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
1968       MVT CompVT = N1.getValueType().getSimpleVT();
1969       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
1970         return SDValue();
1971 
1972       return getSetCC(dl, VT, N2, N1, SwappedCond);
1973     }
1974   }
1975 
1976   // Could not fold it.
1977   return SDValue();
1978 }
1979 
1980 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1981 /// use this predicate to simplify operations downstream.
1982 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1983   unsigned BitWidth = Op.getScalarValueSizeInBits();
1984   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1985 }
1986 
1987 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1988 /// this predicate to simplify operations downstream.  Mask is known to be zero
1989 /// for bits that V cannot have.
1990 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1991                                      unsigned Depth) const {
1992   APInt KnownZero, KnownOne;
1993   computeKnownBits(Op, KnownZero, KnownOne, Depth);
1994   return (KnownZero & Mask) == Mask;
1995 }
1996 
1997 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
1998 /// is less than the element bit-width of the shift node, return it.
1999 static const APInt *getValidShiftAmountConstant(SDValue V) {
2000   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2001     // Shifting more than the bitwidth is not valid.
2002     const APInt &ShAmt = SA->getAPIntValue();
2003     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2004       return &ShAmt;
2005   }
2006   return nullptr;
2007 }
2008 
2009 /// Determine which bits of Op are known to be either zero or one and return
2010 /// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are
2011 /// those that are shared by every vector element.
2012 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
2013                                     APInt &KnownOne, unsigned Depth) const {
2014   EVT VT = Op.getValueType();
2015   APInt DemandedElts = VT.isVector()
2016                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2017                            : APInt(1, 1);
2018   computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth);
2019 }
2020 
2021 /// Determine which bits of Op are known to be either zero or one and return
2022 /// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows
2023 /// us to only collect the known bits that are shared by the requested vector
2024 /// elements.
2025 /// TODO: We only support DemandedElts on a few opcodes so far, the remainder
2026 /// should be added when they become necessary.
2027 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
2028                                     APInt &KnownOne, const APInt &DemandedElts,
2029                                     unsigned Depth) const {
2030   unsigned BitWidth = Op.getScalarValueSizeInBits();
2031 
2032   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
2033   if (Depth == 6)
2034     return;  // Limit search depth.
2035 
2036   APInt KnownZero2, KnownOne2;
2037   unsigned NumElts = DemandedElts.getBitWidth();
2038 
2039   if (!DemandedElts)
2040     return;  // No demanded elts, better to assume we don't know anything.
2041 
2042   switch (Op.getOpcode()) {
2043   case ISD::Constant:
2044     // We know all of the bits for a constant!
2045     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
2046     KnownZero = ~KnownOne;
2047     break;
2048   case ISD::BUILD_VECTOR:
2049     // Collect the known bits that are shared by every demanded vector element.
2050     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2051            "Unexpected vector size");
2052     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2053     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2054       if (!DemandedElts[i])
2055         continue;
2056 
2057       SDValue SrcOp = Op.getOperand(i);
2058       computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1);
2059 
2060       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2061       if (SrcOp.getValueSizeInBits() != BitWidth) {
2062         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2063                "Expected BUILD_VECTOR implicit truncation");
2064         KnownOne2 = KnownOne2.trunc(BitWidth);
2065         KnownZero2 = KnownZero2.trunc(BitWidth);
2066       }
2067 
2068       // Known bits are the values that are shared by every demanded element.
2069       KnownOne &= KnownOne2;
2070       KnownZero &= KnownZero2;
2071 
2072       // If we don't know any bits, early out.
2073       if (!KnownOne && !KnownZero)
2074         break;
2075     }
2076     break;
2077   case ISD::VECTOR_SHUFFLE: {
2078     // Collect the known bits that are shared by every vector element referenced
2079     // by the shuffle.
2080     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2081     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2082     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2083     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2084     for (unsigned i = 0; i != NumElts; ++i) {
2085       int M = SVN->getMaskElt(i);
2086       if (M < 0) {
2087         // For UNDEF elements, we don't know anything about the common state of
2088         // the shuffle result.
2089         // FIXME: Is this too pessimistic?
2090         KnownZero = KnownOne = APInt(BitWidth, 0);
2091         break;
2092       }
2093       if (!DemandedElts[i])
2094         continue;
2095 
2096       if ((unsigned)M < NumElts)
2097         DemandedLHS.setBit((unsigned)M % NumElts);
2098       else
2099         DemandedRHS.setBit((unsigned)M % NumElts);
2100     }
2101     // Known bits are the values that are shared by every demanded element.
2102     if (!!DemandedLHS) {
2103       SDValue LHS = Op.getOperand(0);
2104       computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1);
2105       KnownOne &= KnownOne2;
2106       KnownZero &= KnownZero2;
2107     }
2108     if (!!DemandedRHS) {
2109       SDValue RHS = Op.getOperand(1);
2110       computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1);
2111       KnownOne &= KnownOne2;
2112       KnownZero &= KnownZero2;
2113     }
2114     break;
2115   }
2116   case ISD::CONCAT_VECTORS: {
2117     // Split DemandedElts and test each of the demanded subvectors.
2118     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2119     EVT SubVectorVT = Op.getOperand(0).getValueType();
2120     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2121     unsigned NumSubVectors = Op.getNumOperands();
2122     for (unsigned i = 0; i != NumSubVectors; ++i) {
2123       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2124       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2125       if (!!DemandedSub) {
2126         SDValue Sub = Op.getOperand(i);
2127         computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1);
2128         KnownOne &= KnownOne2;
2129         KnownZero &= KnownZero2;
2130       }
2131     }
2132     break;
2133   }
2134   case ISD::EXTRACT_SUBVECTOR: {
2135     // If we know the element index, just demand that subvector elements,
2136     // otherwise demand them all.
2137     SDValue Src = Op.getOperand(0);
2138     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2139     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2140     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2141       // Offset the demanded elts by the subvector index.
2142       uint64_t Idx = SubIdx->getZExtValue();
2143       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
2144       computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1);
2145     } else {
2146       computeKnownBits(Src, KnownZero, KnownOne, Depth + 1);
2147     }
2148     break;
2149   }
2150   case ISD::AND:
2151     // If either the LHS or the RHS are Zero, the result is zero.
2152     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2153                      Depth + 1);
2154     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2155                      Depth + 1);
2156 
2157     // Output known-1 bits are only known if set in both the LHS & RHS.
2158     KnownOne &= KnownOne2;
2159     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2160     KnownZero |= KnownZero2;
2161     break;
2162   case ISD::OR:
2163     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2164                      Depth + 1);
2165     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2166                      Depth + 1);
2167 
2168     // Output known-0 bits are only known if clear in both the LHS & RHS.
2169     KnownZero &= KnownZero2;
2170     // Output known-1 are known to be set if set in either the LHS | RHS.
2171     KnownOne |= KnownOne2;
2172     break;
2173   case ISD::XOR: {
2174     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2175                      Depth + 1);
2176     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2177                      Depth + 1);
2178 
2179     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2180     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
2181     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2182     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
2183     KnownZero = KnownZeroOut;
2184     break;
2185   }
2186   case ISD::MUL: {
2187     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2188                      Depth + 1);
2189     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2190                      Depth + 1);
2191 
2192     // If low bits are zero in either operand, output low known-0 bits.
2193     // Also compute a conservative estimate for high known-0 bits.
2194     // More trickiness is possible, but this is sufficient for the
2195     // interesting case of alignment computation.
2196     KnownOne.clearAllBits();
2197     unsigned TrailZ = KnownZero.countTrailingOnes() +
2198                       KnownZero2.countTrailingOnes();
2199     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
2200                                KnownZero2.countLeadingOnes(),
2201                                BitWidth) - BitWidth;
2202 
2203     TrailZ = std::min(TrailZ, BitWidth);
2204     LeadZ = std::min(LeadZ, BitWidth);
2205     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
2206                 APInt::getHighBitsSet(BitWidth, LeadZ);
2207     break;
2208   }
2209   case ISD::UDIV: {
2210     // For the purposes of computing leading zeros we can conservatively
2211     // treat a udiv as a logical right shift by the power of 2 known to
2212     // be less than the denominator.
2213     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2214                      Depth + 1);
2215     unsigned LeadZ = KnownZero2.countLeadingOnes();
2216 
2217     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2218                      Depth + 1);
2219     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
2220     if (RHSUnknownLeadingOnes != BitWidth)
2221       LeadZ = std::min(BitWidth,
2222                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
2223 
2224     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
2225     break;
2226   }
2227   case ISD::SELECT:
2228     computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
2229     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2230 
2231     // Only known if known in both the LHS and RHS.
2232     KnownOne &= KnownOne2;
2233     KnownZero &= KnownZero2;
2234     break;
2235   case ISD::SELECT_CC:
2236     computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
2237     computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
2238 
2239     // Only known if known in both the LHS and RHS.
2240     KnownOne &= KnownOne2;
2241     KnownZero &= KnownZero2;
2242     break;
2243   case ISD::SADDO:
2244   case ISD::UADDO:
2245   case ISD::SSUBO:
2246   case ISD::USUBO:
2247   case ISD::SMULO:
2248   case ISD::UMULO:
2249     if (Op.getResNo() != 1)
2250       break;
2251     // The boolean result conforms to getBooleanContents.
2252     // If we know the result of a setcc has the top bits zero, use this info.
2253     // We know that we have an integer-based boolean since these operations
2254     // are only available for integer.
2255     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2256             TargetLowering::ZeroOrOneBooleanContent &&
2257         BitWidth > 1)
2258       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2259     break;
2260   case ISD::SETCC:
2261     // If we know the result of a setcc has the top bits zero, use this info.
2262     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2263             TargetLowering::ZeroOrOneBooleanContent &&
2264         BitWidth > 1)
2265       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2266     break;
2267   case ISD::SHL:
2268     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2269       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2270                        Depth + 1);
2271       KnownZero = KnownZero << *ShAmt;
2272       KnownOne = KnownOne << *ShAmt;
2273       // Low bits are known zero.
2274       KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt->getZExtValue());
2275     }
2276     break;
2277   case ISD::SRL:
2278     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2279       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2280                        Depth + 1);
2281       KnownZero = KnownZero.lshr(*ShAmt);
2282       KnownOne  = KnownOne.lshr(*ShAmt);
2283       // High bits are known zero.
2284       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue());
2285       KnownZero |= HighBits;
2286     }
2287     break;
2288   case ISD::SRA:
2289     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2290       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2291                        Depth + 1);
2292       KnownZero = KnownZero.lshr(*ShAmt);
2293       KnownOne  = KnownOne.lshr(*ShAmt);
2294       // If we know the value of the sign bit, then we know it is copied across
2295       // the high bits by the shift amount.
2296       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue());
2297       APInt SignBit = APInt::getSignBit(BitWidth);
2298       SignBit = SignBit.lshr(*ShAmt);  // Adjust to where it is now in the mask.
2299       if (KnownZero.intersects(SignBit)) {
2300         KnownZero |= HighBits;  // New bits are known zero.
2301       } else if (KnownOne.intersects(SignBit)) {
2302         KnownOne  |= HighBits;  // New bits are known one.
2303       }
2304     }
2305     break;
2306   case ISD::SIGN_EXTEND_INREG: {
2307     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2308     unsigned EBits = EVT.getScalarSizeInBits();
2309 
2310     // Sign extension.  Compute the demanded bits in the result that are not
2311     // present in the input.
2312     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2313 
2314     APInt InSignBit = APInt::getSignBit(EBits);
2315     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2316 
2317     // If the sign extended bits are demanded, we know that the sign
2318     // bit is demanded.
2319     InSignBit = InSignBit.zext(BitWidth);
2320     if (NewBits.getBoolValue())
2321       InputDemandedBits |= InSignBit;
2322 
2323     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2324                      Depth + 1);
2325     KnownOne &= InputDemandedBits;
2326     KnownZero &= InputDemandedBits;
2327 
2328     // If the sign bit of the input is known set or clear, then we know the
2329     // top bits of the result.
2330     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
2331       KnownZero |= NewBits;
2332       KnownOne  &= ~NewBits;
2333     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
2334       KnownOne  |= NewBits;
2335       KnownZero &= ~NewBits;
2336     } else {                              // Input sign bit unknown
2337       KnownZero &= ~NewBits;
2338       KnownOne  &= ~NewBits;
2339     }
2340     break;
2341   }
2342   case ISD::CTTZ:
2343   case ISD::CTTZ_ZERO_UNDEF:
2344   case ISD::CTLZ:
2345   case ISD::CTLZ_ZERO_UNDEF:
2346   case ISD::CTPOP: {
2347     unsigned LowBits = Log2_32(BitWidth)+1;
2348     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
2349     KnownOne.clearAllBits();
2350     break;
2351   }
2352   case ISD::LOAD: {
2353     LoadSDNode *LD = cast<LoadSDNode>(Op);
2354     // If this is a ZEXTLoad and we are looking at the loaded value.
2355     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2356       EVT VT = LD->getMemoryVT();
2357       unsigned MemBits = VT.getScalarSizeInBits();
2358       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
2359     } else if (const MDNode *Ranges = LD->getRanges()) {
2360       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2361         computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne);
2362     }
2363     break;
2364   }
2365   case ISD::ZERO_EXTEND: {
2366     EVT InVT = Op.getOperand(0).getValueType();
2367     unsigned InBits = InVT.getScalarSizeInBits();
2368     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
2369     KnownZero = KnownZero.trunc(InBits);
2370     KnownOne = KnownOne.trunc(InBits);
2371     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2372                      Depth + 1);
2373     KnownZero = KnownZero.zext(BitWidth);
2374     KnownOne = KnownOne.zext(BitWidth);
2375     KnownZero |= NewBits;
2376     break;
2377   }
2378   case ISD::SIGN_EXTEND: {
2379     EVT InVT = Op.getOperand(0).getValueType();
2380     unsigned InBits = InVT.getScalarSizeInBits();
2381     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
2382 
2383     KnownZero = KnownZero.trunc(InBits);
2384     KnownOne = KnownOne.trunc(InBits);
2385     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2386                      Depth + 1);
2387 
2388     // Note if the sign bit is known to be zero or one.
2389     bool SignBitKnownZero = KnownZero.isNegative();
2390     bool SignBitKnownOne  = KnownOne.isNegative();
2391 
2392     KnownZero = KnownZero.zext(BitWidth);
2393     KnownOne = KnownOne.zext(BitWidth);
2394 
2395     // If the sign bit is known zero or one, the top bits match.
2396     if (SignBitKnownZero)
2397       KnownZero |= NewBits;
2398     else if (SignBitKnownOne)
2399       KnownOne  |= NewBits;
2400     break;
2401   }
2402   case ISD::ANY_EXTEND: {
2403     EVT InVT = Op.getOperand(0).getValueType();
2404     unsigned InBits = InVT.getScalarSizeInBits();
2405     KnownZero = KnownZero.trunc(InBits);
2406     KnownOne = KnownOne.trunc(InBits);
2407     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2408     KnownZero = KnownZero.zext(BitWidth);
2409     KnownOne = KnownOne.zext(BitWidth);
2410     break;
2411   }
2412   case ISD::TRUNCATE: {
2413     EVT InVT = Op.getOperand(0).getValueType();
2414     unsigned InBits = InVT.getScalarSizeInBits();
2415     KnownZero = KnownZero.zext(InBits);
2416     KnownOne = KnownOne.zext(InBits);
2417     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2418                      Depth + 1);
2419     KnownZero = KnownZero.trunc(BitWidth);
2420     KnownOne = KnownOne.trunc(BitWidth);
2421     break;
2422   }
2423   case ISD::AssertZext: {
2424     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2425     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2426     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2427     KnownZero |= (~InMask);
2428     KnownOne  &= (~KnownZero);
2429     break;
2430   }
2431   case ISD::FGETSIGN:
2432     // All bits are zero except the low bit.
2433     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2434     break;
2435 
2436   case ISD::SUB: {
2437     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2438       // We know that the top bits of C-X are clear if X contains less bits
2439       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2440       // positive if we can prove that X is >= 0 and < 16.
2441       if (CLHS->getAPIntValue().isNonNegative()) {
2442         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2443         // NLZ can't be BitWidth with no sign bit
2444         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2445         computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2446                          Depth + 1);
2447 
2448         // If all of the MaskV bits are known to be zero, then we know the
2449         // output top bits are zero, because we now know that the output is
2450         // from [0-C].
2451         if ((KnownZero2 & MaskV) == MaskV) {
2452           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2453           // Top bits known zero.
2454           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2455         }
2456       }
2457     }
2458     LLVM_FALLTHROUGH;
2459   }
2460   case ISD::ADD:
2461   case ISD::ADDE: {
2462     // Output known-0 bits are known if clear or set in both the low clear bits
2463     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2464     // low 3 bits clear.
2465     // Output known-0 bits are also known if the top bits of each input are
2466     // known to be clear. For example, if one input has the top 10 bits clear
2467     // and the other has the top 8 bits clear, we know the top 7 bits of the
2468     // output must be clear.
2469     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2470                      Depth + 1);
2471     unsigned KnownZeroHigh = KnownZero2.countLeadingOnes();
2472     unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
2473 
2474     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2475                      Depth + 1);
2476     KnownZeroHigh = std::min(KnownZeroHigh,
2477                              KnownZero2.countLeadingOnes());
2478     KnownZeroLow = std::min(KnownZeroLow,
2479                             KnownZero2.countTrailingOnes());
2480 
2481     if (Op.getOpcode() == ISD::ADD) {
2482       KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow);
2483       if (KnownZeroHigh > 1)
2484         KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1);
2485       break;
2486     }
2487 
2488     // With ADDE, a carry bit may be added in, so we can only use this
2489     // information if we know (at least) that the low two bits are clear.  We
2490     // then return to the caller that the low bit is unknown but that other bits
2491     // are known zero.
2492     if (KnownZeroLow >= 2) // ADDE
2493       KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow);
2494     break;
2495   }
2496   case ISD::SREM:
2497     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2498       const APInt &RA = Rem->getAPIntValue().abs();
2499       if (RA.isPowerOf2()) {
2500         APInt LowBits = RA - 1;
2501         computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2502                          Depth + 1);
2503 
2504         // The low bits of the first operand are unchanged by the srem.
2505         KnownZero = KnownZero2 & LowBits;
2506         KnownOne = KnownOne2 & LowBits;
2507 
2508         // If the first operand is non-negative or has all low bits zero, then
2509         // the upper bits are all zero.
2510         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2511           KnownZero |= ~LowBits;
2512 
2513         // If the first operand is negative and not all low bits are zero, then
2514         // the upper bits are all one.
2515         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2516           KnownOne |= ~LowBits;
2517         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2518       }
2519     }
2520     break;
2521   case ISD::UREM: {
2522     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2523       const APInt &RA = Rem->getAPIntValue();
2524       if (RA.isPowerOf2()) {
2525         APInt LowBits = (RA - 1);
2526         computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2527                          Depth + 1);
2528 
2529         // The upper bits are all zero, the lower ones are unchanged.
2530         KnownZero = KnownZero2 | ~LowBits;
2531         KnownOne = KnownOne2 & LowBits;
2532         break;
2533       }
2534     }
2535 
2536     // Since the result is less than or equal to either operand, any leading
2537     // zero bits in either operand must also exist in the result.
2538     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2539                      Depth + 1);
2540     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2541                      Depth + 1);
2542 
2543     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2544                                 KnownZero2.countLeadingOnes());
2545     KnownOne.clearAllBits();
2546     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2547     break;
2548   }
2549   case ISD::EXTRACT_ELEMENT: {
2550     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2551     const unsigned Index = Op.getConstantOperandVal(1);
2552     const unsigned BitWidth = Op.getValueSizeInBits();
2553 
2554     // Remove low part of known bits mask
2555     KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
2556     KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth);
2557 
2558     // Remove high part of known bit mask
2559     KnownZero = KnownZero.trunc(BitWidth);
2560     KnownOne = KnownOne.trunc(BitWidth);
2561     break;
2562   }
2563   case ISD::EXTRACT_VECTOR_ELT: {
2564     // At the moment we keep this simple and skip tracking the specific
2565     // element. This way we get the lowest common denominator for all elements
2566     // of the vector.
2567     SDValue InVec = Op.getOperand(0);
2568     SDValue EltNo = Op.getOperand(1);
2569     EVT VecVT = InVec.getValueType();
2570     const unsigned BitWidth = Op.getValueSizeInBits();
2571     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2572     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2573     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2574     // anything about the extended bits.
2575     if (BitWidth > EltBitWidth) {
2576       KnownZero = KnownZero.trunc(EltBitWidth);
2577       KnownOne = KnownOne.trunc(EltBitWidth);
2578     }
2579     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2580     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2581       // If we know the element index, just demand that vector element.
2582       unsigned Idx = ConstEltNo->getZExtValue();
2583       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2584       computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1);
2585     } else {
2586       // Unknown element index, so ignore DemandedElts and demand them all.
2587       computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
2588     }
2589     if (BitWidth > EltBitWidth) {
2590       KnownZero = KnownZero.zext(BitWidth);
2591       KnownOne = KnownOne.zext(BitWidth);
2592     }
2593     break;
2594   }
2595   case ISD::BSWAP: {
2596     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2597                      Depth + 1);
2598     KnownZero = KnownZero2.byteSwap();
2599     KnownOne = KnownOne2.byteSwap();
2600     break;
2601   }
2602   case ISD::SMIN:
2603   case ISD::SMAX:
2604   case ISD::UMIN:
2605   case ISD::UMAX: {
2606     APInt Op0Zero, Op0One;
2607     APInt Op1Zero, Op1One;
2608     computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth+1);
2609     computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth+1);
2610 
2611     KnownZero = Op0Zero & Op1Zero;
2612     KnownOne = Op0One & Op1One;
2613     break;
2614   }
2615   case ISD::FrameIndex:
2616   case ISD::TargetFrameIndex:
2617     if (unsigned Align = InferPtrAlignment(Op)) {
2618       // The low bits are known zero if the pointer is aligned.
2619       KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2620       break;
2621     }
2622     break;
2623 
2624   default:
2625     if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2626       break;
2627     LLVM_FALLTHROUGH;
2628   case ISD::INTRINSIC_WO_CHAIN:
2629   case ISD::INTRINSIC_W_CHAIN:
2630   case ISD::INTRINSIC_VOID:
2631     // Allow the target to implement this method for its nodes.
2632     TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2633     break;
2634   }
2635 
2636   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
2637 }
2638 
2639 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
2640   // A left-shift of a constant one will have exactly one bit set because
2641   // shifting the bit off the end is undefined.
2642   if (Val.getOpcode() == ISD::SHL) {
2643     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2644     if (C && C->getAPIntValue() == 1)
2645       return true;
2646   }
2647 
2648   // Similarly, a logical right-shift of a constant sign-bit will have exactly
2649   // one bit set.
2650   if (Val.getOpcode() == ISD::SRL) {
2651     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2652     if (C && C->getAPIntValue().isSignBit())
2653       return true;
2654   }
2655 
2656   // More could be done here, though the above checks are enough
2657   // to handle some common cases.
2658 
2659   // Fall back to computeKnownBits to catch other known cases.
2660   EVT OpVT = Val.getValueType();
2661   unsigned BitWidth = OpVT.getScalarSizeInBits();
2662   APInt KnownZero, KnownOne;
2663   computeKnownBits(Val, KnownZero, KnownOne);
2664   return (KnownZero.countPopulation() == BitWidth - 1) &&
2665          (KnownOne.countPopulation() == 1);
2666 }
2667 
2668 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
2669   EVT VT = Op.getValueType();
2670   assert(VT.isInteger() && "Invalid VT!");
2671   unsigned VTBits = VT.getScalarSizeInBits();
2672   unsigned Tmp, Tmp2;
2673   unsigned FirstAnswer = 1;
2674 
2675   if (Depth == 6)
2676     return 1;  // Limit search depth.
2677 
2678   switch (Op.getOpcode()) {
2679   default: break;
2680   case ISD::AssertSext:
2681     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2682     return VTBits-Tmp+1;
2683   case ISD::AssertZext:
2684     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2685     return VTBits-Tmp;
2686 
2687   case ISD::Constant: {
2688     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2689     return Val.getNumSignBits();
2690   }
2691 
2692   case ISD::SIGN_EXTEND:
2693     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
2694     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2695 
2696   case ISD::SIGN_EXTEND_INREG:
2697     // Max of the input and what this extends.
2698     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
2699     Tmp = VTBits-Tmp+1;
2700 
2701     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2702     return std::max(Tmp, Tmp2);
2703 
2704   case ISD::SRA:
2705     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2706     // SRA X, C   -> adds C sign bits.
2707     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
2708       APInt ShiftVal = C->getAPIntValue();
2709       ShiftVal += Tmp;
2710       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
2711     }
2712     return Tmp;
2713   case ISD::SHL:
2714     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
2715       // shl destroys sign bits.
2716       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2717       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
2718           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
2719       return Tmp - C->getZExtValue();
2720     }
2721     break;
2722   case ISD::AND:
2723   case ISD::OR:
2724   case ISD::XOR:    // NOT is handled here.
2725     // Logical binary ops preserve the number of sign bits at the worst.
2726     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2727     if (Tmp != 1) {
2728       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2729       FirstAnswer = std::min(Tmp, Tmp2);
2730       // We computed what we know about the sign bits as our first
2731       // answer. Now proceed to the generic code that uses
2732       // computeKnownBits, and pick whichever answer is better.
2733     }
2734     break;
2735 
2736   case ISD::SELECT:
2737     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2738     if (Tmp == 1) return 1;  // Early out.
2739     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2740     return std::min(Tmp, Tmp2);
2741   case ISD::SELECT_CC:
2742     Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2743     if (Tmp == 1) return 1;  // Early out.
2744     Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1);
2745     return std::min(Tmp, Tmp2);
2746   case ISD::SMIN:
2747   case ISD::SMAX:
2748   case ISD::UMIN:
2749   case ISD::UMAX:
2750     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2751     if (Tmp == 1)
2752       return 1;  // Early out.
2753     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
2754     return std::min(Tmp, Tmp2);
2755   case ISD::SADDO:
2756   case ISD::UADDO:
2757   case ISD::SSUBO:
2758   case ISD::USUBO:
2759   case ISD::SMULO:
2760   case ISD::UMULO:
2761     if (Op.getResNo() != 1)
2762       break;
2763     // The boolean result conforms to getBooleanContents.  Fall through.
2764     // If setcc returns 0/-1, all bits are sign bits.
2765     // We know that we have an integer-based boolean since these operations
2766     // are only available for integer.
2767     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2768         TargetLowering::ZeroOrNegativeOneBooleanContent)
2769       return VTBits;
2770     break;
2771   case ISD::SETCC:
2772     // If setcc returns 0/-1, all bits are sign bits.
2773     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2774         TargetLowering::ZeroOrNegativeOneBooleanContent)
2775       return VTBits;
2776     break;
2777   case ISD::ROTL:
2778   case ISD::ROTR:
2779     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2780       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2781 
2782       // Handle rotate right by N like a rotate left by 32-N.
2783       if (Op.getOpcode() == ISD::ROTR)
2784         RotAmt = (VTBits-RotAmt) & (VTBits-1);
2785 
2786       // If we aren't rotating out all of the known-in sign bits, return the
2787       // number that are left.  This handles rotl(sext(x), 1) for example.
2788       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2789       if (Tmp > RotAmt+1) return Tmp-RotAmt;
2790     }
2791     break;
2792   case ISD::ADD:
2793     // Add can have at most one carry bit.  Thus we know that the output
2794     // is, at worst, one more bit than the inputs.
2795     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2796     if (Tmp == 1) return 1;  // Early out.
2797 
2798     // Special case decrementing a value (ADD X, -1):
2799     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2800       if (CRHS->isAllOnesValue()) {
2801         APInt KnownZero, KnownOne;
2802         computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2803 
2804         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2805         // sign bits set.
2806         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2807           return VTBits;
2808 
2809         // If we are subtracting one from a positive number, there is no carry
2810         // out of the result.
2811         if (KnownZero.isNegative())
2812           return Tmp;
2813       }
2814 
2815     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2816     if (Tmp2 == 1) return 1;
2817     return std::min(Tmp, Tmp2)-1;
2818 
2819   case ISD::SUB:
2820     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2821     if (Tmp2 == 1) return 1;
2822 
2823     // Handle NEG.
2824     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
2825       if (CLHS->isNullValue()) {
2826         APInt KnownZero, KnownOne;
2827         computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2828         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2829         // sign bits set.
2830         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2831           return VTBits;
2832 
2833         // If the input is known to be positive (the sign bit is known clear),
2834         // the output of the NEG has the same number of sign bits as the input.
2835         if (KnownZero.isNegative())
2836           return Tmp2;
2837 
2838         // Otherwise, we treat this like a SUB.
2839       }
2840 
2841     // Sub can have at most one carry bit.  Thus we know that the output
2842     // is, at worst, one more bit than the inputs.
2843     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2844     if (Tmp == 1) return 1;  // Early out.
2845     return std::min(Tmp, Tmp2)-1;
2846   case ISD::TRUNCATE: {
2847     // Check if the sign bits of source go down as far as the truncated value.
2848     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
2849     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2850     if (NumSrcSignBits > (NumSrcBits - VTBits))
2851       return NumSrcSignBits - (NumSrcBits - VTBits);
2852     break;
2853   }
2854   case ISD::EXTRACT_ELEMENT: {
2855     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2856     const int BitWidth = Op.getValueSizeInBits();
2857     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
2858 
2859     // Get reverse index (starting from 1), Op1 value indexes elements from
2860     // little end. Sign starts at big end.
2861     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
2862 
2863     // If the sign portion ends in our element the subtraction gives correct
2864     // result. Otherwise it gives either negative or > bitwidth result
2865     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
2866   }
2867   case ISD::EXTRACT_VECTOR_ELT: {
2868     // At the moment we keep this simple and skip tracking the specific
2869     // element. This way we get the lowest common denominator for all elements
2870     // of the vector.
2871     // TODO: get information for given vector element
2872     const unsigned BitWidth = Op.getValueSizeInBits();
2873     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
2874     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
2875     // anything about sign bits. But if the sizes match we can derive knowledge
2876     // about sign bits from the vector operand.
2877     if (BitWidth == EltBitWidth)
2878       return ComputeNumSignBits(Op.getOperand(0), Depth+1);
2879     break;
2880   }
2881   case ISD::CONCAT_VECTORS:
2882     // Determine the minimum number of sign bits across all input vectors.
2883     // Early out if the result is already 1.
2884     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2885     for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i)
2886       Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1));
2887     return Tmp;
2888   }
2889 
2890   // If we are looking at the loaded value of the SDNode.
2891   if (Op.getResNo() == 0) {
2892     // Handle LOADX separately here. EXTLOAD case will fallthrough.
2893     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
2894       unsigned ExtType = LD->getExtensionType();
2895       switch (ExtType) {
2896         default: break;
2897         case ISD::SEXTLOAD:    // '17' bits known
2898           Tmp = LD->getMemoryVT().getScalarSizeInBits();
2899           return VTBits-Tmp+1;
2900         case ISD::ZEXTLOAD:    // '16' bits known
2901           Tmp = LD->getMemoryVT().getScalarSizeInBits();
2902           return VTBits-Tmp;
2903       }
2904     }
2905   }
2906 
2907   // Allow the target to implement this method for its nodes.
2908   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2909       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2910       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2911       Op.getOpcode() == ISD::INTRINSIC_VOID) {
2912     unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth);
2913     if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2914   }
2915 
2916   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2917   // use this information.
2918   APInt KnownZero, KnownOne;
2919   computeKnownBits(Op, KnownZero, KnownOne, Depth);
2920 
2921   APInt Mask;
2922   if (KnownZero.isNegative()) {        // sign bit is 0
2923     Mask = KnownZero;
2924   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2925     Mask = KnownOne;
2926   } else {
2927     // Nothing known.
2928     return FirstAnswer;
2929   }
2930 
2931   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2932   // the number of identical bits in the top of the input value.
2933   Mask = ~Mask;
2934   Mask <<= Mask.getBitWidth()-VTBits;
2935   // Return # leading zeros.  We use 'min' here in case Val was zero before
2936   // shifting.  We don't want to return '64' as for an i32 "0".
2937   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2938 }
2939 
2940 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2941   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2942       !isa<ConstantSDNode>(Op.getOperand(1)))
2943     return false;
2944 
2945   if (Op.getOpcode() == ISD::OR &&
2946       !MaskedValueIsZero(Op.getOperand(0),
2947                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2948     return false;
2949 
2950   return true;
2951 }
2952 
2953 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2954   // If we're told that NaNs won't happen, assume they won't.
2955   if (getTarget().Options.NoNaNsFPMath)
2956     return true;
2957 
2958   // If the value is a constant, we can obviously see if it is a NaN or not.
2959   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2960     return !C->getValueAPF().isNaN();
2961 
2962   // TODO: Recognize more cases here.
2963 
2964   return false;
2965 }
2966 
2967 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2968   // If the value is a constant, we can obviously see if it is a zero or not.
2969   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2970     return !C->isZero();
2971 
2972   // TODO: Recognize more cases here.
2973   switch (Op.getOpcode()) {
2974   default: break;
2975   case ISD::OR:
2976     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2977       return !C->isNullValue();
2978     break;
2979   }
2980 
2981   return false;
2982 }
2983 
2984 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2985   // Check the obvious case.
2986   if (A == B) return true;
2987 
2988   // For for negative and positive zero.
2989   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2990     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2991       if (CA->isZero() && CB->isZero()) return true;
2992 
2993   // Otherwise they may not be equal.
2994   return false;
2995 }
2996 
2997 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
2998   assert(A.getValueType() == B.getValueType() &&
2999          "Values must have the same type");
3000   APInt AZero, AOne;
3001   APInt BZero, BOne;
3002   computeKnownBits(A, AZero, AOne);
3003   computeKnownBits(B, BZero, BOne);
3004   return (AZero | BZero).isAllOnesValue();
3005 }
3006 
3007 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3008                                   ArrayRef<SDValue> Ops,
3009                                   llvm::SelectionDAG &DAG) {
3010   if (Ops.size() == 1)
3011     return Ops[0];
3012 
3013   // Concat of UNDEFs is UNDEF.
3014   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3015     return DAG.getUNDEF(VT);
3016 
3017   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3018   // simplified to one big BUILD_VECTOR.
3019   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3020   EVT SVT = VT.getScalarType();
3021   SmallVector<SDValue, 16> Elts;
3022   for (SDValue Op : Ops) {
3023     EVT OpVT = Op.getValueType();
3024     if (Op.isUndef())
3025       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3026     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3027       Elts.append(Op->op_begin(), Op->op_end());
3028     else
3029       return SDValue();
3030   }
3031 
3032   // BUILD_VECTOR requires all inputs to be of the same type, find the
3033   // maximum type and extend them all.
3034   for (SDValue Op : Elts)
3035     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3036 
3037   if (SVT.bitsGT(VT.getScalarType()))
3038     for (SDValue &Op : Elts)
3039       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3040                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3041                : DAG.getSExtOrTrunc(Op, DL, SVT);
3042 
3043   return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts);
3044 }
3045 
3046 /// Gets or creates the specified node.
3047 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3048   FoldingSetNodeID ID;
3049   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3050   void *IP = nullptr;
3051   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3052     return SDValue(E, 0);
3053 
3054   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3055                               getVTList(VT));
3056   CSEMap.InsertNode(N, IP);
3057 
3058   InsertNode(N);
3059   return SDValue(N, 0);
3060 }
3061 
3062 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3063                               SDValue Operand) {
3064   // Constant fold unary operations with an integer constant operand. Even
3065   // opaque constant will be folded, because the folding of unary operations
3066   // doesn't create new constants with different values. Nevertheless, the
3067   // opaque flag is preserved during folding to prevent future folding with
3068   // other constants.
3069   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3070     const APInt &Val = C->getAPIntValue();
3071     switch (Opcode) {
3072     default: break;
3073     case ISD::SIGN_EXTEND:
3074       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3075                          C->isTargetOpcode(), C->isOpaque());
3076     case ISD::ANY_EXTEND:
3077     case ISD::ZERO_EXTEND:
3078     case ISD::TRUNCATE:
3079       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3080                          C->isTargetOpcode(), C->isOpaque());
3081     case ISD::UINT_TO_FP:
3082     case ISD::SINT_TO_FP: {
3083       APFloat apf(EVTToAPFloatSemantics(VT),
3084                   APInt::getNullValue(VT.getSizeInBits()));
3085       (void)apf.convertFromAPInt(Val,
3086                                  Opcode==ISD::SINT_TO_FP,
3087                                  APFloat::rmNearestTiesToEven);
3088       return getConstantFP(apf, DL, VT);
3089     }
3090     case ISD::BITCAST:
3091       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3092         return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT);
3093       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3094         return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT);
3095       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3096         return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT);
3097       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3098         return getConstantFP(APFloat(APFloat::IEEEquad, Val), DL, VT);
3099       break;
3100     case ISD::BSWAP:
3101       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3102                          C->isOpaque());
3103     case ISD::CTPOP:
3104       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3105                          C->isOpaque());
3106     case ISD::CTLZ:
3107     case ISD::CTLZ_ZERO_UNDEF:
3108       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3109                          C->isOpaque());
3110     case ISD::CTTZ:
3111     case ISD::CTTZ_ZERO_UNDEF:
3112       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3113                          C->isOpaque());
3114     }
3115   }
3116 
3117   // Constant fold unary operations with a floating point constant operand.
3118   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3119     APFloat V = C->getValueAPF();    // make copy
3120     switch (Opcode) {
3121     case ISD::FNEG:
3122       V.changeSign();
3123       return getConstantFP(V, DL, VT);
3124     case ISD::FABS:
3125       V.clearSign();
3126       return getConstantFP(V, DL, VT);
3127     case ISD::FCEIL: {
3128       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3129       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3130         return getConstantFP(V, DL, VT);
3131       break;
3132     }
3133     case ISD::FTRUNC: {
3134       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3135       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3136         return getConstantFP(V, DL, VT);
3137       break;
3138     }
3139     case ISD::FFLOOR: {
3140       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3141       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3142         return getConstantFP(V, DL, VT);
3143       break;
3144     }
3145     case ISD::FP_EXTEND: {
3146       bool ignored;
3147       // This can return overflow, underflow, or inexact; we don't care.
3148       // FIXME need to be more flexible about rounding mode.
3149       (void)V.convert(EVTToAPFloatSemantics(VT),
3150                       APFloat::rmNearestTiesToEven, &ignored);
3151       return getConstantFP(V, DL, VT);
3152     }
3153     case ISD::FP_TO_SINT:
3154     case ISD::FP_TO_UINT: {
3155       integerPart x[2];
3156       bool ignored;
3157       static_assert(integerPartWidth >= 64, "APFloat parts too small!");
3158       // FIXME need to be more flexible about rounding mode.
3159       APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
3160                             Opcode==ISD::FP_TO_SINT,
3161                             APFloat::rmTowardZero, &ignored);
3162       if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
3163         break;
3164       APInt api(VT.getSizeInBits(), x);
3165       return getConstant(api, DL, VT);
3166     }
3167     case ISD::BITCAST:
3168       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3169         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3170       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3171         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3172       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3173         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3174       break;
3175     }
3176   }
3177 
3178   // Constant fold unary operations with a vector integer or float operand.
3179   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3180     if (BV->isConstant()) {
3181       switch (Opcode) {
3182       default:
3183         // FIXME: Entirely reasonable to perform folding of other unary
3184         // operations here as the need arises.
3185         break;
3186       case ISD::FNEG:
3187       case ISD::FABS:
3188       case ISD::FCEIL:
3189       case ISD::FTRUNC:
3190       case ISD::FFLOOR:
3191       case ISD::FP_EXTEND:
3192       case ISD::FP_TO_SINT:
3193       case ISD::FP_TO_UINT:
3194       case ISD::TRUNCATE:
3195       case ISD::UINT_TO_FP:
3196       case ISD::SINT_TO_FP:
3197       case ISD::BSWAP:
3198       case ISD::CTLZ:
3199       case ISD::CTLZ_ZERO_UNDEF:
3200       case ISD::CTTZ:
3201       case ISD::CTTZ_ZERO_UNDEF:
3202       case ISD::CTPOP: {
3203         SDValue Ops = { Operand };
3204         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3205           return Fold;
3206       }
3207       }
3208     }
3209   }
3210 
3211   unsigned OpOpcode = Operand.getNode()->getOpcode();
3212   switch (Opcode) {
3213   case ISD::TokenFactor:
3214   case ISD::MERGE_VALUES:
3215   case ISD::CONCAT_VECTORS:
3216     return Operand;         // Factor, merge or concat of one node?  No need.
3217   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3218   case ISD::FP_EXTEND:
3219     assert(VT.isFloatingPoint() &&
3220            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3221     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3222     assert((!VT.isVector() ||
3223             VT.getVectorNumElements() ==
3224             Operand.getValueType().getVectorNumElements()) &&
3225            "Vector element count mismatch!");
3226     assert(Operand.getValueType().bitsLT(VT) &&
3227            "Invalid fpext node, dst < src!");
3228     if (Operand.isUndef())
3229       return getUNDEF(VT);
3230     break;
3231   case ISD::SIGN_EXTEND:
3232     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3233            "Invalid SIGN_EXTEND!");
3234     if (Operand.getValueType() == VT) return Operand;   // noop extension
3235     assert((!VT.isVector() ||
3236             VT.getVectorNumElements() ==
3237             Operand.getValueType().getVectorNumElements()) &&
3238            "Vector element count mismatch!");
3239     assert(Operand.getValueType().bitsLT(VT) &&
3240            "Invalid sext node, dst < src!");
3241     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3242       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3243     else if (OpOpcode == ISD::UNDEF)
3244       // sext(undef) = 0, because the top bits will all be the same.
3245       return getConstant(0, DL, VT);
3246     break;
3247   case ISD::ZERO_EXTEND:
3248     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3249            "Invalid ZERO_EXTEND!");
3250     if (Operand.getValueType() == VT) return Operand;   // noop extension
3251     assert((!VT.isVector() ||
3252             VT.getVectorNumElements() ==
3253             Operand.getValueType().getVectorNumElements()) &&
3254            "Vector element count mismatch!");
3255     assert(Operand.getValueType().bitsLT(VT) &&
3256            "Invalid zext node, dst < src!");
3257     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3258       return getNode(ISD::ZERO_EXTEND, DL, VT,
3259                      Operand.getNode()->getOperand(0));
3260     else if (OpOpcode == ISD::UNDEF)
3261       // zext(undef) = 0, because the top bits will be zero.
3262       return getConstant(0, DL, VT);
3263     break;
3264   case ISD::ANY_EXTEND:
3265     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3266            "Invalid ANY_EXTEND!");
3267     if (Operand.getValueType() == VT) return Operand;   // noop extension
3268     assert((!VT.isVector() ||
3269             VT.getVectorNumElements() ==
3270             Operand.getValueType().getVectorNumElements()) &&
3271            "Vector element count mismatch!");
3272     assert(Operand.getValueType().bitsLT(VT) &&
3273            "Invalid anyext node, dst < src!");
3274 
3275     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3276         OpOpcode == ISD::ANY_EXTEND)
3277       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
3278       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3279     else if (OpOpcode == ISD::UNDEF)
3280       return getUNDEF(VT);
3281 
3282     // (ext (trunx x)) -> x
3283     if (OpOpcode == ISD::TRUNCATE) {
3284       SDValue OpOp = Operand.getNode()->getOperand(0);
3285       if (OpOp.getValueType() == VT)
3286         return OpOp;
3287     }
3288     break;
3289   case ISD::TRUNCATE:
3290     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3291            "Invalid TRUNCATE!");
3292     if (Operand.getValueType() == VT) return Operand;   // noop truncate
3293     assert((!VT.isVector() ||
3294             VT.getVectorNumElements() ==
3295             Operand.getValueType().getVectorNumElements()) &&
3296            "Vector element count mismatch!");
3297     assert(Operand.getValueType().bitsGT(VT) &&
3298            "Invalid truncate node, src < dst!");
3299     if (OpOpcode == ISD::TRUNCATE)
3300       return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3301     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3302         OpOpcode == ISD::ANY_EXTEND) {
3303       // If the source is smaller than the dest, we still need an extend.
3304       if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
3305             .bitsLT(VT.getScalarType()))
3306         return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3307       if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
3308         return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3309       return Operand.getNode()->getOperand(0);
3310     }
3311     if (OpOpcode == ISD::UNDEF)
3312       return getUNDEF(VT);
3313     break;
3314   case ISD::BSWAP:
3315     assert(VT.isInteger() && VT == Operand.getValueType() &&
3316            "Invalid BSWAP!");
3317     assert((VT.getScalarSizeInBits() % 16 == 0) &&
3318            "BSWAP types must be a multiple of 16 bits!");
3319     if (OpOpcode == ISD::UNDEF)
3320       return getUNDEF(VT);
3321     break;
3322   case ISD::BITREVERSE:
3323     assert(VT.isInteger() && VT == Operand.getValueType() &&
3324            "Invalid BITREVERSE!");
3325     if (OpOpcode == ISD::UNDEF)
3326       return getUNDEF(VT);
3327     break;
3328   case ISD::BITCAST:
3329     // Basic sanity checking.
3330     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
3331            "Cannot BITCAST between types of different sizes!");
3332     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
3333     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
3334       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
3335     if (OpOpcode == ISD::UNDEF)
3336       return getUNDEF(VT);
3337     break;
3338   case ISD::SCALAR_TO_VECTOR:
3339     assert(VT.isVector() && !Operand.getValueType().isVector() &&
3340            (VT.getVectorElementType() == Operand.getValueType() ||
3341             (VT.getVectorElementType().isInteger() &&
3342              Operand.getValueType().isInteger() &&
3343              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
3344            "Illegal SCALAR_TO_VECTOR node!");
3345     if (OpOpcode == ISD::UNDEF)
3346       return getUNDEF(VT);
3347     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
3348     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
3349         isa<ConstantSDNode>(Operand.getOperand(1)) &&
3350         Operand.getConstantOperandVal(1) == 0 &&
3351         Operand.getOperand(0).getValueType() == VT)
3352       return Operand.getOperand(0);
3353     break;
3354   case ISD::FNEG:
3355     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
3356     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
3357       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
3358       return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
3359                        Operand.getNode()->getOperand(0),
3360                        &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags);
3361     if (OpOpcode == ISD::FNEG)  // --X -> X
3362       return Operand.getNode()->getOperand(0);
3363     break;
3364   case ISD::FABS:
3365     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
3366       return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
3367     break;
3368   }
3369 
3370   SDNode *N;
3371   SDVTList VTs = getVTList(VT);
3372   SDValue Ops[] = {Operand};
3373   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
3374     FoldingSetNodeID ID;
3375     AddNodeIDNode(ID, Opcode, VTs, Ops);
3376     void *IP = nullptr;
3377     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3378       return SDValue(E, 0);
3379 
3380     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3381     createOperands(N, Ops);
3382     CSEMap.InsertNode(N, IP);
3383   } else {
3384     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3385     createOperands(N, Ops);
3386   }
3387 
3388   InsertNode(N);
3389   return SDValue(N, 0);
3390 }
3391 
3392 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
3393                                         const APInt &C2) {
3394   switch (Opcode) {
3395   case ISD::ADD:  return std::make_pair(C1 + C2, true);
3396   case ISD::SUB:  return std::make_pair(C1 - C2, true);
3397   case ISD::MUL:  return std::make_pair(C1 * C2, true);
3398   case ISD::AND:  return std::make_pair(C1 & C2, true);
3399   case ISD::OR:   return std::make_pair(C1 | C2, true);
3400   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
3401   case ISD::SHL:  return std::make_pair(C1 << C2, true);
3402   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
3403   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
3404   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
3405   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
3406   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
3407   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
3408   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
3409   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
3410   case ISD::UDIV:
3411     if (!C2.getBoolValue())
3412       break;
3413     return std::make_pair(C1.udiv(C2), true);
3414   case ISD::UREM:
3415     if (!C2.getBoolValue())
3416       break;
3417     return std::make_pair(C1.urem(C2), true);
3418   case ISD::SDIV:
3419     if (!C2.getBoolValue())
3420       break;
3421     return std::make_pair(C1.sdiv(C2), true);
3422   case ISD::SREM:
3423     if (!C2.getBoolValue())
3424       break;
3425     return std::make_pair(C1.srem(C2), true);
3426   }
3427   return std::make_pair(APInt(1, 0), false);
3428 }
3429 
3430 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3431                                              EVT VT, const ConstantSDNode *Cst1,
3432                                              const ConstantSDNode *Cst2) {
3433   if (Cst1->isOpaque() || Cst2->isOpaque())
3434     return SDValue();
3435 
3436   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
3437                                             Cst2->getAPIntValue());
3438   if (!Folded.second)
3439     return SDValue();
3440   return getConstant(Folded.first, DL, VT);
3441 }
3442 
3443 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
3444                                        const GlobalAddressSDNode *GA,
3445                                        const SDNode *N2) {
3446   if (GA->getOpcode() != ISD::GlobalAddress)
3447     return SDValue();
3448   if (!TLI->isOffsetFoldingLegal(GA))
3449     return SDValue();
3450   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
3451   if (!Cst2)
3452     return SDValue();
3453   int64_t Offset = Cst2->getSExtValue();
3454   switch (Opcode) {
3455   case ISD::ADD: break;
3456   case ISD::SUB: Offset = -uint64_t(Offset); break;
3457   default: return SDValue();
3458   }
3459   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
3460                           GA->getOffset() + uint64_t(Offset));
3461 }
3462 
3463 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3464                                              EVT VT, SDNode *Cst1,
3465                                              SDNode *Cst2) {
3466   // If the opcode is a target-specific ISD node, there's nothing we can
3467   // do here and the operand rules may not line up with the below, so
3468   // bail early.
3469   if (Opcode >= ISD::BUILTIN_OP_END)
3470     return SDValue();
3471 
3472   // Handle the case of two scalars.
3473   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
3474     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
3475       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
3476       assert((!Folded || !VT.isVector()) &&
3477              "Can't fold vectors ops with scalar operands");
3478       return Folded;
3479     }
3480   }
3481 
3482   // fold (add Sym, c) -> Sym+c
3483   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
3484     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
3485   if (isCommutativeBinOp(Opcode))
3486     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
3487       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
3488 
3489   // For vectors extract each constant element into Inputs so we can constant
3490   // fold them individually.
3491   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
3492   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
3493   if (!BV1 || !BV2)
3494     return SDValue();
3495 
3496   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
3497 
3498   EVT SVT = VT.getScalarType();
3499   SmallVector<SDValue, 4> Outputs;
3500   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
3501     SDValue V1 = BV1->getOperand(I);
3502     SDValue V2 = BV2->getOperand(I);
3503 
3504     // Avoid BUILD_VECTOR nodes that perform implicit truncation.
3505     // FIXME: This is valid and could be handled by truncation.
3506     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
3507       return SDValue();
3508 
3509     // Fold one vector element.
3510     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
3511 
3512     // Scalar folding only succeeded if the result is a constant or UNDEF.
3513     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
3514         ScalarResult.getOpcode() != ISD::ConstantFP)
3515       return SDValue();
3516     Outputs.push_back(ScalarResult);
3517   }
3518 
3519   assert(VT.getVectorNumElements() == Outputs.size() &&
3520          "Vector size mismatch!");
3521 
3522   // We may have a vector type but a scalar result. Create a splat.
3523   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
3524 
3525   // Build a big vector out of the scalar elements we generated.
3526   return getBuildVector(VT, SDLoc(), Outputs);
3527 }
3528 
3529 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
3530                                                    const SDLoc &DL, EVT VT,
3531                                                    ArrayRef<SDValue> Ops,
3532                                                    const SDNodeFlags *Flags) {
3533   // If the opcode is a target-specific ISD node, there's nothing we can
3534   // do here and the operand rules may not line up with the below, so
3535   // bail early.
3536   if (Opcode >= ISD::BUILTIN_OP_END)
3537     return SDValue();
3538 
3539   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
3540   if (!VT.isVector())
3541     return SDValue();
3542 
3543   unsigned NumElts = VT.getVectorNumElements();
3544 
3545   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
3546     return !Op.getValueType().isVector() ||
3547            Op.getValueType().getVectorNumElements() == NumElts;
3548   };
3549 
3550   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
3551     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
3552     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
3553            (BV && BV->isConstant());
3554   };
3555 
3556   // All operands must be vector types with the same number of elements as
3557   // the result type and must be either UNDEF or a build vector of constant
3558   // or UNDEF scalars.
3559   if (!all_of(Ops, IsConstantBuildVectorOrUndef) ||
3560       !all_of(Ops, IsScalarOrSameVectorSize))
3561     return SDValue();
3562 
3563   // If we are comparing vectors, then the result needs to be a i1 boolean
3564   // that is then sign-extended back to the legal result type.
3565   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
3566 
3567   // Find legal integer scalar type for constant promotion and
3568   // ensure that its scalar size is at least as large as source.
3569   EVT LegalSVT = VT.getScalarType();
3570   if (LegalSVT.isInteger()) {
3571     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3572     if (LegalSVT.bitsLT(VT.getScalarType()))
3573       return SDValue();
3574   }
3575 
3576   // Constant fold each scalar lane separately.
3577   SmallVector<SDValue, 4> ScalarResults;
3578   for (unsigned i = 0; i != NumElts; i++) {
3579     SmallVector<SDValue, 4> ScalarOps;
3580     for (SDValue Op : Ops) {
3581       EVT InSVT = Op.getValueType().getScalarType();
3582       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
3583       if (!InBV) {
3584         // We've checked that this is UNDEF or a constant of some kind.
3585         if (Op.isUndef())
3586           ScalarOps.push_back(getUNDEF(InSVT));
3587         else
3588           ScalarOps.push_back(Op);
3589         continue;
3590       }
3591 
3592       SDValue ScalarOp = InBV->getOperand(i);
3593       EVT ScalarVT = ScalarOp.getValueType();
3594 
3595       // Build vector (integer) scalar operands may need implicit
3596       // truncation - do this before constant folding.
3597       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
3598         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
3599 
3600       ScalarOps.push_back(ScalarOp);
3601     }
3602 
3603     // Constant fold the scalar operands.
3604     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
3605 
3606     // Legalize the (integer) scalar constant if necessary.
3607     if (LegalSVT != SVT)
3608       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
3609 
3610     // Scalar folding only succeeded if the result is a constant or UNDEF.
3611     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
3612         ScalarResult.getOpcode() != ISD::ConstantFP)
3613       return SDValue();
3614     ScalarResults.push_back(ScalarResult);
3615   }
3616 
3617   return getBuildVector(VT, DL, ScalarResults);
3618 }
3619 
3620 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3621                               SDValue N1, SDValue N2,
3622                               const SDNodeFlags *Flags) {
3623   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3624   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
3625   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3626   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
3627 
3628   // Canonicalize constant to RHS if commutative.
3629   if (isCommutativeBinOp(Opcode)) {
3630     if (N1C && !N2C) {
3631       std::swap(N1C, N2C);
3632       std::swap(N1, N2);
3633     } else if (N1CFP && !N2CFP) {
3634       std::swap(N1CFP, N2CFP);
3635       std::swap(N1, N2);
3636     }
3637   }
3638 
3639   switch (Opcode) {
3640   default: break;
3641   case ISD::TokenFactor:
3642     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
3643            N2.getValueType() == MVT::Other && "Invalid token factor!");
3644     // Fold trivial token factors.
3645     if (N1.getOpcode() == ISD::EntryToken) return N2;
3646     if (N2.getOpcode() == ISD::EntryToken) return N1;
3647     if (N1 == N2) return N1;
3648     break;
3649   case ISD::CONCAT_VECTORS: {
3650     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
3651     SDValue Ops[] = {N1, N2};
3652     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
3653       return V;
3654     break;
3655   }
3656   case ISD::AND:
3657     assert(VT.isInteger() && "This operator does not apply to FP types!");
3658     assert(N1.getValueType() == N2.getValueType() &&
3659            N1.getValueType() == VT && "Binary operator types must match!");
3660     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
3661     // worth handling here.
3662     if (N2C && N2C->isNullValue())
3663       return N2;
3664     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
3665       return N1;
3666     break;
3667   case ISD::OR:
3668   case ISD::XOR:
3669   case ISD::ADD:
3670   case ISD::SUB:
3671     assert(VT.isInteger() && "This operator does not apply to FP types!");
3672     assert(N1.getValueType() == N2.getValueType() &&
3673            N1.getValueType() == VT && "Binary operator types must match!");
3674     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
3675     // it's worth handling here.
3676     if (N2C && N2C->isNullValue())
3677       return N1;
3678     break;
3679   case ISD::UDIV:
3680   case ISD::UREM:
3681   case ISD::MULHU:
3682   case ISD::MULHS:
3683   case ISD::MUL:
3684   case ISD::SDIV:
3685   case ISD::SREM:
3686   case ISD::SMIN:
3687   case ISD::SMAX:
3688   case ISD::UMIN:
3689   case ISD::UMAX:
3690     assert(VT.isInteger() && "This operator does not apply to FP types!");
3691     assert(N1.getValueType() == N2.getValueType() &&
3692            N1.getValueType() == VT && "Binary operator types must match!");
3693     break;
3694   case ISD::FADD:
3695   case ISD::FSUB:
3696   case ISD::FMUL:
3697   case ISD::FDIV:
3698   case ISD::FREM:
3699     if (getTarget().Options.UnsafeFPMath) {
3700       if (Opcode == ISD::FADD) {
3701         // x+0 --> x
3702         if (N2CFP && N2CFP->getValueAPF().isZero())
3703           return N1;
3704       } else if (Opcode == ISD::FSUB) {
3705         // x-0 --> x
3706         if (N2CFP && N2CFP->getValueAPF().isZero())
3707           return N1;
3708       } else if (Opcode == ISD::FMUL) {
3709         // x*0 --> 0
3710         if (N2CFP && N2CFP->isZero())
3711           return N2;
3712         // x*1 --> x
3713         if (N2CFP && N2CFP->isExactlyValue(1.0))
3714           return N1;
3715       }
3716     }
3717     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
3718     assert(N1.getValueType() == N2.getValueType() &&
3719            N1.getValueType() == VT && "Binary operator types must match!");
3720     break;
3721   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
3722     assert(N1.getValueType() == VT &&
3723            N1.getValueType().isFloatingPoint() &&
3724            N2.getValueType().isFloatingPoint() &&
3725            "Invalid FCOPYSIGN!");
3726     break;
3727   case ISD::SHL:
3728   case ISD::SRA:
3729   case ISD::SRL:
3730   case ISD::ROTL:
3731   case ISD::ROTR:
3732     assert(VT == N1.getValueType() &&
3733            "Shift operators return type must be the same as their first arg");
3734     assert(VT.isInteger() && N2.getValueType().isInteger() &&
3735            "Shifts only work on integers");
3736     assert((!VT.isVector() || VT == N2.getValueType()) &&
3737            "Vector shift amounts must be in the same as their first arg");
3738     // Verify that the shift amount VT is bit enough to hold valid shift
3739     // amounts.  This catches things like trying to shift an i1024 value by an
3740     // i8, which is easy to fall into in generic code that uses
3741     // TLI.getShiftAmount().
3742     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
3743            "Invalid use of small shift amount with oversized value!");
3744 
3745     // Always fold shifts of i1 values so the code generator doesn't need to
3746     // handle them.  Since we know the size of the shift has to be less than the
3747     // size of the value, the shift/rotate count is guaranteed to be zero.
3748     if (VT == MVT::i1)
3749       return N1;
3750     if (N2C && N2C->isNullValue())
3751       return N1;
3752     break;
3753   case ISD::FP_ROUND_INREG: {
3754     EVT EVT = cast<VTSDNode>(N2)->getVT();
3755     assert(VT == N1.getValueType() && "Not an inreg round!");
3756     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
3757            "Cannot FP_ROUND_INREG integer types");
3758     assert(EVT.isVector() == VT.isVector() &&
3759            "FP_ROUND_INREG type should be vector iff the operand "
3760            "type is vector!");
3761     assert((!EVT.isVector() ||
3762             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
3763            "Vector element counts must match in FP_ROUND_INREG");
3764     assert(EVT.bitsLE(VT) && "Not rounding down!");
3765     (void)EVT;
3766     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
3767     break;
3768   }
3769   case ISD::FP_ROUND:
3770     assert(VT.isFloatingPoint() &&
3771            N1.getValueType().isFloatingPoint() &&
3772            VT.bitsLE(N1.getValueType()) &&
3773            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
3774            "Invalid FP_ROUND!");
3775     if (N1.getValueType() == VT) return N1;  // noop conversion.
3776     break;
3777   case ISD::AssertSext:
3778   case ISD::AssertZext: {
3779     EVT EVT = cast<VTSDNode>(N2)->getVT();
3780     assert(VT == N1.getValueType() && "Not an inreg extend!");
3781     assert(VT.isInteger() && EVT.isInteger() &&
3782            "Cannot *_EXTEND_INREG FP types");
3783     assert(!EVT.isVector() &&
3784            "AssertSExt/AssertZExt type should be the vector element type "
3785            "rather than the vector type!");
3786     assert(EVT.bitsLE(VT) && "Not extending!");
3787     if (VT == EVT) return N1; // noop assertion.
3788     break;
3789   }
3790   case ISD::SIGN_EXTEND_INREG: {
3791     EVT EVT = cast<VTSDNode>(N2)->getVT();
3792     assert(VT == N1.getValueType() && "Not an inreg extend!");
3793     assert(VT.isInteger() && EVT.isInteger() &&
3794            "Cannot *_EXTEND_INREG FP types");
3795     assert(EVT.isVector() == VT.isVector() &&
3796            "SIGN_EXTEND_INREG type should be vector iff the operand "
3797            "type is vector!");
3798     assert((!EVT.isVector() ||
3799             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
3800            "Vector element counts must match in SIGN_EXTEND_INREG");
3801     assert(EVT.bitsLE(VT) && "Not extending!");
3802     if (EVT == VT) return N1;  // Not actually extending
3803 
3804     auto SignExtendInReg = [&](APInt Val) {
3805       unsigned FromBits = EVT.getScalarSizeInBits();
3806       Val <<= Val.getBitWidth() - FromBits;
3807       Val = Val.ashr(Val.getBitWidth() - FromBits);
3808       return getConstant(Val, DL, VT.getScalarType());
3809     };
3810 
3811     if (N1C) {
3812       const APInt &Val = N1C->getAPIntValue();
3813       return SignExtendInReg(Val);
3814     }
3815     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
3816       SmallVector<SDValue, 8> Ops;
3817       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3818         SDValue Op = N1.getOperand(i);
3819         if (Op.isUndef()) {
3820           Ops.push_back(getUNDEF(VT.getScalarType()));
3821           continue;
3822         }
3823         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3824           APInt Val = C->getAPIntValue();
3825           Val = Val.zextOrTrunc(VT.getScalarSizeInBits());
3826           Ops.push_back(SignExtendInReg(Val));
3827           continue;
3828         }
3829         break;
3830       }
3831       if (Ops.size() == VT.getVectorNumElements())
3832         return getBuildVector(VT, DL, Ops);
3833     }
3834     break;
3835   }
3836   case ISD::EXTRACT_VECTOR_ELT:
3837     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
3838     if (N1.isUndef())
3839       return getUNDEF(VT);
3840 
3841     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
3842     if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements())
3843       return getUNDEF(VT);
3844 
3845     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
3846     // expanding copies of large vectors from registers.
3847     if (N2C &&
3848         N1.getOpcode() == ISD::CONCAT_VECTORS &&
3849         N1.getNumOperands() > 0) {
3850       unsigned Factor =
3851         N1.getOperand(0).getValueType().getVectorNumElements();
3852       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
3853                      N1.getOperand(N2C->getZExtValue() / Factor),
3854                      getConstant(N2C->getZExtValue() % Factor, DL,
3855                                  N2.getValueType()));
3856     }
3857 
3858     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
3859     // expanding large vector constants.
3860     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
3861       SDValue Elt = N1.getOperand(N2C->getZExtValue());
3862 
3863       if (VT != Elt.getValueType())
3864         // If the vector element type is not legal, the BUILD_VECTOR operands
3865         // are promoted and implicitly truncated, and the result implicitly
3866         // extended. Make that explicit here.
3867         Elt = getAnyExtOrTrunc(Elt, DL, VT);
3868 
3869       return Elt;
3870     }
3871 
3872     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
3873     // operations are lowered to scalars.
3874     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
3875       // If the indices are the same, return the inserted element else
3876       // if the indices are known different, extract the element from
3877       // the original vector.
3878       SDValue N1Op2 = N1.getOperand(2);
3879       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
3880 
3881       if (N1Op2C && N2C) {
3882         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
3883           if (VT == N1.getOperand(1).getValueType())
3884             return N1.getOperand(1);
3885           else
3886             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
3887         }
3888 
3889         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
3890       }
3891     }
3892     break;
3893   case ISD::EXTRACT_ELEMENT:
3894     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
3895     assert(!N1.getValueType().isVector() && !VT.isVector() &&
3896            (N1.getValueType().isInteger() == VT.isInteger()) &&
3897            N1.getValueType() != VT &&
3898            "Wrong types for EXTRACT_ELEMENT!");
3899 
3900     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
3901     // 64-bit integers into 32-bit parts.  Instead of building the extract of
3902     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
3903     if (N1.getOpcode() == ISD::BUILD_PAIR)
3904       return N1.getOperand(N2C->getZExtValue());
3905 
3906     // EXTRACT_ELEMENT of a constant int is also very common.
3907     if (N1C) {
3908       unsigned ElementSize = VT.getSizeInBits();
3909       unsigned Shift = ElementSize * N2C->getZExtValue();
3910       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
3911       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
3912     }
3913     break;
3914   case ISD::EXTRACT_SUBVECTOR:
3915     if (VT.isSimple() && N1.getValueType().isSimple()) {
3916       assert(VT.isVector() && N1.getValueType().isVector() &&
3917              "Extract subvector VTs must be a vectors!");
3918       assert(VT.getVectorElementType() ==
3919              N1.getValueType().getVectorElementType() &&
3920              "Extract subvector VTs must have the same element type!");
3921       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
3922              "Extract subvector must be from larger vector to smaller vector!");
3923 
3924       if (N2C) {
3925         assert((VT.getVectorNumElements() + N2C->getZExtValue()
3926                 <= N1.getValueType().getVectorNumElements())
3927                && "Extract subvector overflow!");
3928       }
3929 
3930       // Trivial extraction.
3931       if (VT.getSimpleVT() == N1.getSimpleValueType())
3932         return N1;
3933 
3934       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
3935       // during shuffle legalization.
3936       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
3937           VT == N1.getOperand(1).getValueType())
3938         return N1.getOperand(1);
3939     }
3940     break;
3941   }
3942 
3943   // Perform trivial constant folding.
3944   if (SDValue SV =
3945           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
3946     return SV;
3947 
3948   // Constant fold FP operations.
3949   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
3950   if (N1CFP) {
3951     if (N2CFP) {
3952       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
3953       APFloat::opStatus s;
3954       switch (Opcode) {
3955       case ISD::FADD:
3956         s = V1.add(V2, APFloat::rmNearestTiesToEven);
3957         if (!HasFPExceptions || s != APFloat::opInvalidOp)
3958           return getConstantFP(V1, DL, VT);
3959         break;
3960       case ISD::FSUB:
3961         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
3962         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
3963           return getConstantFP(V1, DL, VT);
3964         break;
3965       case ISD::FMUL:
3966         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
3967         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
3968           return getConstantFP(V1, DL, VT);
3969         break;
3970       case ISD::FDIV:
3971         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
3972         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
3973                                  s!=APFloat::opDivByZero)) {
3974           return getConstantFP(V1, DL, VT);
3975         }
3976         break;
3977       case ISD::FREM :
3978         s = V1.mod(V2);
3979         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
3980                                  s!=APFloat::opDivByZero)) {
3981           return getConstantFP(V1, DL, VT);
3982         }
3983         break;
3984       case ISD::FCOPYSIGN:
3985         V1.copySign(V2);
3986         return getConstantFP(V1, DL, VT);
3987       default: break;
3988       }
3989     }
3990 
3991     if (Opcode == ISD::FP_ROUND) {
3992       APFloat V = N1CFP->getValueAPF();    // make copy
3993       bool ignored;
3994       // This can return overflow, underflow, or inexact; we don't care.
3995       // FIXME need to be more flexible about rounding mode.
3996       (void)V.convert(EVTToAPFloatSemantics(VT),
3997                       APFloat::rmNearestTiesToEven, &ignored);
3998       return getConstantFP(V, DL, VT);
3999     }
4000   }
4001 
4002   // Canonicalize an UNDEF to the RHS, even over a constant.
4003   if (N1.isUndef()) {
4004     if (isCommutativeBinOp(Opcode)) {
4005       std::swap(N1, N2);
4006     } else {
4007       switch (Opcode) {
4008       case ISD::FP_ROUND_INREG:
4009       case ISD::SIGN_EXTEND_INREG:
4010       case ISD::SUB:
4011       case ISD::FSUB:
4012       case ISD::FDIV:
4013       case ISD::FREM:
4014       case ISD::SRA:
4015         return N1;     // fold op(undef, arg2) -> undef
4016       case ISD::UDIV:
4017       case ISD::SDIV:
4018       case ISD::UREM:
4019       case ISD::SREM:
4020       case ISD::SRL:
4021       case ISD::SHL:
4022         if (!VT.isVector())
4023           return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4024         // For vectors, we can't easily build an all zero vector, just return
4025         // the LHS.
4026         return N2;
4027       }
4028     }
4029   }
4030 
4031   // Fold a bunch of operators when the RHS is undef.
4032   if (N2.isUndef()) {
4033     switch (Opcode) {
4034     case ISD::XOR:
4035       if (N1.isUndef())
4036         // Handle undef ^ undef -> 0 special case. This is a common
4037         // idiom (misuse).
4038         return getConstant(0, DL, VT);
4039       LLVM_FALLTHROUGH;
4040     case ISD::ADD:
4041     case ISD::ADDC:
4042     case ISD::ADDE:
4043     case ISD::SUB:
4044     case ISD::UDIV:
4045     case ISD::SDIV:
4046     case ISD::UREM:
4047     case ISD::SREM:
4048       return N2;       // fold op(arg1, undef) -> undef
4049     case ISD::FADD:
4050     case ISD::FSUB:
4051     case ISD::FMUL:
4052     case ISD::FDIV:
4053     case ISD::FREM:
4054       if (getTarget().Options.UnsafeFPMath)
4055         return N2;
4056       break;
4057     case ISD::MUL:
4058     case ISD::AND:
4059     case ISD::SRL:
4060     case ISD::SHL:
4061       if (!VT.isVector())
4062         return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4063       // For vectors, we can't easily build an all zero vector, just return
4064       // the LHS.
4065       return N1;
4066     case ISD::OR:
4067       if (!VT.isVector())
4068         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
4069       // For vectors, we can't easily build an all one vector, just return
4070       // the LHS.
4071       return N1;
4072     case ISD::SRA:
4073       return N1;
4074     }
4075   }
4076 
4077   // Memoize this node if possible.
4078   SDNode *N;
4079   SDVTList VTs = getVTList(VT);
4080   if (VT != MVT::Glue) {
4081     SDValue Ops[] = {N1, N2};
4082     FoldingSetNodeID ID;
4083     AddNodeIDNode(ID, Opcode, VTs, Ops);
4084     void *IP = nullptr;
4085     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4086       if (Flags)
4087         E->intersectFlagsWith(Flags);
4088       return SDValue(E, 0);
4089     }
4090 
4091     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
4092     CSEMap.InsertNode(N, IP);
4093   } else {
4094     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
4095   }
4096 
4097   InsertNode(N);
4098   return SDValue(N, 0);
4099 }
4100 
4101 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4102                               SDValue N1, SDValue N2, SDValue N3) {
4103   // Perform various simplifications.
4104   switch (Opcode) {
4105   case ISD::FMA: {
4106     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4107     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4108     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4109     if (N1CFP && N2CFP && N3CFP) {
4110       APFloat  V1 = N1CFP->getValueAPF();
4111       const APFloat &V2 = N2CFP->getValueAPF();
4112       const APFloat &V3 = N3CFP->getValueAPF();
4113       APFloat::opStatus s =
4114         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4115       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4116         return getConstantFP(V1, DL, VT);
4117     }
4118     break;
4119   }
4120   case ISD::CONCAT_VECTORS: {
4121     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4122     SDValue Ops[] = {N1, N2, N3};
4123     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4124       return V;
4125     break;
4126   }
4127   case ISD::SETCC: {
4128     // Use FoldSetCC to simplify SETCC's.
4129     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
4130       return V;
4131     // Vector constant folding.
4132     SDValue Ops[] = {N1, N2, N3};
4133     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4134       return V;
4135     break;
4136   }
4137   case ISD::SELECT:
4138     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
4139      if (N1C->getZExtValue())
4140        return N2;             // select true, X, Y -> X
4141      return N3;             // select false, X, Y -> Y
4142     }
4143 
4144     if (N2 == N3) return N2;   // select C, X, X -> X
4145     break;
4146   case ISD::VECTOR_SHUFFLE:
4147     llvm_unreachable("should use getVectorShuffle constructor!");
4148   case ISD::INSERT_SUBVECTOR: {
4149     SDValue Index = N3;
4150     if (VT.isSimple() && N1.getValueType().isSimple()
4151         && N2.getValueType().isSimple()) {
4152       assert(VT.isVector() && N1.getValueType().isVector() &&
4153              N2.getValueType().isVector() &&
4154              "Insert subvector VTs must be a vectors");
4155       assert(VT == N1.getValueType() &&
4156              "Dest and insert subvector source types must match!");
4157       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
4158              "Insert subvector must be from smaller vector to larger vector!");
4159       if (isa<ConstantSDNode>(Index)) {
4160         assert((N2.getValueType().getVectorNumElements() +
4161                 cast<ConstantSDNode>(Index)->getZExtValue()
4162                 <= VT.getVectorNumElements())
4163                && "Insert subvector overflow!");
4164       }
4165 
4166       // Trivial insertion.
4167       if (VT.getSimpleVT() == N2.getSimpleValueType())
4168         return N2;
4169     }
4170     break;
4171   }
4172   case ISD::BITCAST:
4173     // Fold bit_convert nodes from a type to themselves.
4174     if (N1.getValueType() == VT)
4175       return N1;
4176     break;
4177   }
4178 
4179   // Memoize node if it doesn't produce a flag.
4180   SDNode *N;
4181   SDVTList VTs = getVTList(VT);
4182   SDValue Ops[] = {N1, N2, N3};
4183   if (VT != MVT::Glue) {
4184     FoldingSetNodeID ID;
4185     AddNodeIDNode(ID, Opcode, VTs, Ops);
4186     void *IP = nullptr;
4187     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4188       return SDValue(E, 0);
4189 
4190     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4191     createOperands(N, Ops);
4192     CSEMap.InsertNode(N, IP);
4193   } else {
4194     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4195     createOperands(N, Ops);
4196   }
4197 
4198   InsertNode(N);
4199   return SDValue(N, 0);
4200 }
4201 
4202 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4203                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
4204   SDValue Ops[] = { N1, N2, N3, N4 };
4205   return getNode(Opcode, DL, VT, Ops);
4206 }
4207 
4208 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4209                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
4210                               SDValue N5) {
4211   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4212   return getNode(Opcode, DL, VT, Ops);
4213 }
4214 
4215 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
4216 /// the incoming stack arguments to be loaded from the stack.
4217 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
4218   SmallVector<SDValue, 8> ArgChains;
4219 
4220   // Include the original chain at the beginning of the list. When this is
4221   // used by target LowerCall hooks, this helps legalize find the
4222   // CALLSEQ_BEGIN node.
4223   ArgChains.push_back(Chain);
4224 
4225   // Add a chain value for each stack argument.
4226   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
4227        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
4228     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
4229       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
4230         if (FI->getIndex() < 0)
4231           ArgChains.push_back(SDValue(L, 1));
4232 
4233   // Build a tokenfactor for all the chains.
4234   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
4235 }
4236 
4237 /// getMemsetValue - Vectorized representation of the memset value
4238 /// operand.
4239 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
4240                               const SDLoc &dl) {
4241   assert(!Value.isUndef());
4242 
4243   unsigned NumBits = VT.getScalarSizeInBits();
4244   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4245     assert(C->getAPIntValue().getBitWidth() == 8);
4246     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
4247     if (VT.isInteger())
4248       return DAG.getConstant(Val, dl, VT);
4249     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
4250                              VT);
4251   }
4252 
4253   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
4254   EVT IntVT = VT.getScalarType();
4255   if (!IntVT.isInteger())
4256     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
4257 
4258   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
4259   if (NumBits > 8) {
4260     // Use a multiplication with 0x010101... to extend the input to the
4261     // required length.
4262     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
4263     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
4264                         DAG.getConstant(Magic, dl, IntVT));
4265   }
4266 
4267   if (VT != Value.getValueType() && !VT.isInteger())
4268     Value = DAG.getBitcast(VT.getScalarType(), Value);
4269   if (VT != Value.getValueType())
4270     Value = DAG.getSplatBuildVector(VT, dl, Value);
4271 
4272   return Value;
4273 }
4274 
4275 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4276 /// used when a memcpy is turned into a memset when the source is a constant
4277 /// string ptr.
4278 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
4279                                   const TargetLowering &TLI, StringRef Str) {
4280   // Handle vector with all elements zero.
4281   if (Str.empty()) {
4282     if (VT.isInteger())
4283       return DAG.getConstant(0, dl, VT);
4284     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
4285       return DAG.getConstantFP(0.0, dl, VT);
4286     else if (VT.isVector()) {
4287       unsigned NumElts = VT.getVectorNumElements();
4288       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
4289       return DAG.getNode(ISD::BITCAST, dl, VT,
4290                          DAG.getConstant(0, dl,
4291                                          EVT::getVectorVT(*DAG.getContext(),
4292                                                           EltVT, NumElts)));
4293     } else
4294       llvm_unreachable("Expected type!");
4295   }
4296 
4297   assert(!VT.isVector() && "Can't handle vector type here!");
4298   unsigned NumVTBits = VT.getSizeInBits();
4299   unsigned NumVTBytes = NumVTBits / 8;
4300   unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
4301 
4302   APInt Val(NumVTBits, 0);
4303   if (DAG.getDataLayout().isLittleEndian()) {
4304     for (unsigned i = 0; i != NumBytes; ++i)
4305       Val |= (uint64_t)(unsigned char)Str[i] << i*8;
4306   } else {
4307     for (unsigned i = 0; i != NumBytes; ++i)
4308       Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
4309   }
4310 
4311   // If the "cost" of materializing the integer immediate is less than the cost
4312   // of a load, then it is cost effective to turn the load into the immediate.
4313   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
4314   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
4315     return DAG.getConstant(Val, dl, VT);
4316   return SDValue(nullptr, 0);
4317 }
4318 
4319 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
4320                                            const SDLoc &DL) {
4321   EVT VT = Base.getValueType();
4322   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
4323 }
4324 
4325 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
4326 ///
4327 static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
4328   uint64_t SrcDelta = 0;
4329   GlobalAddressSDNode *G = nullptr;
4330   if (Src.getOpcode() == ISD::GlobalAddress)
4331     G = cast<GlobalAddressSDNode>(Src);
4332   else if (Src.getOpcode() == ISD::ADD &&
4333            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4334            Src.getOperand(1).getOpcode() == ISD::Constant) {
4335     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
4336     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
4337   }
4338   if (!G)
4339     return false;
4340 
4341   return getConstantStringInfo(G->getGlobal(), Str,
4342                                SrcDelta + G->getOffset(), false);
4343 }
4344 
4345 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4346 /// Return true if the number of memory ops is below the threshold (Limit).
4347 /// It returns the types of the sequence of memory ops to perform
4348 /// memset / memcpy by reference.
4349 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
4350                                      unsigned Limit, uint64_t Size,
4351                                      unsigned DstAlign, unsigned SrcAlign,
4352                                      bool IsMemset,
4353                                      bool ZeroMemset,
4354                                      bool MemcpyStrSrc,
4355                                      bool AllowOverlap,
4356                                      unsigned DstAS, unsigned SrcAS,
4357                                      SelectionDAG &DAG,
4358                                      const TargetLowering &TLI) {
4359   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
4360          "Expecting memcpy / memset source to meet alignment requirement!");
4361   // If 'SrcAlign' is zero, that means the memory operation does not need to
4362   // load the value, i.e. memset or memcpy from constant string. Otherwise,
4363   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
4364   // is the specified alignment of the memory operation. If it is zero, that
4365   // means it's possible to change the alignment of the destination.
4366   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
4367   // not need to be loaded.
4368   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
4369                                    IsMemset, ZeroMemset, MemcpyStrSrc,
4370                                    DAG.getMachineFunction());
4371 
4372   if (VT == MVT::Other) {
4373     if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) ||
4374         TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) {
4375       VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS);
4376     } else {
4377       switch (DstAlign & 7) {
4378       case 0:  VT = MVT::i64; break;
4379       case 4:  VT = MVT::i32; break;
4380       case 2:  VT = MVT::i16; break;
4381       default: VT = MVT::i8;  break;
4382       }
4383     }
4384 
4385     MVT LVT = MVT::i64;
4386     while (!TLI.isTypeLegal(LVT))
4387       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
4388     assert(LVT.isInteger());
4389 
4390     if (VT.bitsGT(LVT))
4391       VT = LVT;
4392   }
4393 
4394   unsigned NumMemOps = 0;
4395   while (Size != 0) {
4396     unsigned VTSize = VT.getSizeInBits() / 8;
4397     while (VTSize > Size) {
4398       // For now, only use non-vector load / store's for the left-over pieces.
4399       EVT NewVT = VT;
4400       unsigned NewVTSize;
4401 
4402       bool Found = false;
4403       if (VT.isVector() || VT.isFloatingPoint()) {
4404         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
4405         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
4406             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
4407           Found = true;
4408         else if (NewVT == MVT::i64 &&
4409                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
4410                  TLI.isSafeMemOpType(MVT::f64)) {
4411           // i64 is usually not legal on 32-bit targets, but f64 may be.
4412           NewVT = MVT::f64;
4413           Found = true;
4414         }
4415       }
4416 
4417       if (!Found) {
4418         do {
4419           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
4420           if (NewVT == MVT::i8)
4421             break;
4422         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
4423       }
4424       NewVTSize = NewVT.getSizeInBits() / 8;
4425 
4426       // If the new VT cannot cover all of the remaining bits, then consider
4427       // issuing a (or a pair of) unaligned and overlapping load / store.
4428       // FIXME: Only does this for 64-bit or more since we don't have proper
4429       // cost model for unaligned load / store.
4430       bool Fast;
4431       if (NumMemOps && AllowOverlap &&
4432           VTSize >= 8 && NewVTSize < Size &&
4433           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
4434         VTSize = Size;
4435       else {
4436         VT = NewVT;
4437         VTSize = NewVTSize;
4438       }
4439     }
4440 
4441     if (++NumMemOps > Limit)
4442       return false;
4443 
4444     MemOps.push_back(VT);
4445     Size -= VTSize;
4446   }
4447 
4448   return true;
4449 }
4450 
4451 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
4452   // On Darwin, -Os means optimize for size without hurting performance, so
4453   // only really optimize for size when -Oz (MinSize) is used.
4454   if (MF.getTarget().getTargetTriple().isOSDarwin())
4455     return MF.getFunction()->optForMinSize();
4456   return MF.getFunction()->optForSize();
4457 }
4458 
4459 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4460                                        SDValue Chain, SDValue Dst, SDValue Src,
4461                                        uint64_t Size, unsigned Align,
4462                                        bool isVol, bool AlwaysInline,
4463                                        MachinePointerInfo DstPtrInfo,
4464                                        MachinePointerInfo SrcPtrInfo) {
4465   // Turn a memcpy of undef to nop.
4466   if (Src.isUndef())
4467     return Chain;
4468 
4469   // Expand memcpy to a series of load and store ops if the size operand falls
4470   // below a certain threshold.
4471   // TODO: In the AlwaysInline case, if the size is big then generate a loop
4472   // rather than maybe a humongous number of loads and stores.
4473   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4474   std::vector<EVT> MemOps;
4475   bool DstAlignCanChange = false;
4476   MachineFunction &MF = DAG.getMachineFunction();
4477   MachineFrameInfo &MFI = MF.getFrameInfo();
4478   bool OptSize = shouldLowerMemFuncForSize(MF);
4479   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4480   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4481     DstAlignCanChange = true;
4482   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4483   if (Align > SrcAlign)
4484     SrcAlign = Align;
4485   StringRef Str;
4486   bool CopyFromStr = isMemSrcFromString(Src, Str);
4487   bool isZeroStr = CopyFromStr && Str.empty();
4488   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
4489 
4490   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4491                                 (DstAlignCanChange ? 0 : Align),
4492                                 (isZeroStr ? 0 : SrcAlign),
4493                                 false, false, CopyFromStr, true,
4494                                 DstPtrInfo.getAddrSpace(),
4495                                 SrcPtrInfo.getAddrSpace(),
4496                                 DAG, TLI))
4497     return SDValue();
4498 
4499   if (DstAlignCanChange) {
4500     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4501     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4502 
4503     // Don't promote to an alignment that would require dynamic stack
4504     // realignment.
4505     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
4506     if (!TRI->needsStackRealignment(MF))
4507       while (NewAlign > Align &&
4508              DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign))
4509           NewAlign /= 2;
4510 
4511     if (NewAlign > Align) {
4512       // Give the stack frame object a larger alignment if needed.
4513       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4514         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4515       Align = NewAlign;
4516     }
4517   }
4518 
4519   MachineMemOperand::Flags MMOFlags =
4520       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
4521   SmallVector<SDValue, 8> OutChains;
4522   unsigned NumMemOps = MemOps.size();
4523   uint64_t SrcOff = 0, DstOff = 0;
4524   for (unsigned i = 0; i != NumMemOps; ++i) {
4525     EVT VT = MemOps[i];
4526     unsigned VTSize = VT.getSizeInBits() / 8;
4527     SDValue Value, Store;
4528 
4529     if (VTSize > Size) {
4530       // Issuing an unaligned load / store pair  that overlaps with the previous
4531       // pair. Adjust the offset accordingly.
4532       assert(i == NumMemOps-1 && i != 0);
4533       SrcOff -= VTSize - Size;
4534       DstOff -= VTSize - Size;
4535     }
4536 
4537     if (CopyFromStr &&
4538         (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
4539       // It's unlikely a store of a vector immediate can be done in a single
4540       // instruction. It would require a load from a constantpool first.
4541       // We only handle zero vectors here.
4542       // FIXME: Handle other cases where store of vector immediate is done in
4543       // a single instruction.
4544       Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
4545       if (Value.getNode())
4546         Store = DAG.getStore(Chain, dl, Value,
4547                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4548                              DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
4549     }
4550 
4551     if (!Store.getNode()) {
4552       // The type might not be legal for the target.  This should only happen
4553       // if the type is smaller than a legal type, as on PPC, so the right
4554       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
4555       // to Load/Store if NVT==VT.
4556       // FIXME does the case above also need this?
4557       EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
4558       assert(NVT.bitsGE(VT));
4559       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
4560                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4561                              SrcPtrInfo.getWithOffset(SrcOff), VT,
4562                              MinAlign(SrcAlign, SrcOff), MMOFlags);
4563       OutChains.push_back(Value.getValue(1));
4564       Store = DAG.getTruncStore(
4565           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4566           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
4567     }
4568     OutChains.push_back(Store);
4569     SrcOff += VTSize;
4570     DstOff += VTSize;
4571     Size -= VTSize;
4572   }
4573 
4574   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4575 }
4576 
4577 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4578                                         SDValue Chain, SDValue Dst, SDValue Src,
4579                                         uint64_t Size, unsigned Align,
4580                                         bool isVol, bool AlwaysInline,
4581                                         MachinePointerInfo DstPtrInfo,
4582                                         MachinePointerInfo SrcPtrInfo) {
4583   // Turn a memmove of undef to nop.
4584   if (Src.isUndef())
4585     return Chain;
4586 
4587   // Expand memmove to a series of load and store ops if the size operand falls
4588   // below a certain threshold.
4589   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4590   std::vector<EVT> MemOps;
4591   bool DstAlignCanChange = false;
4592   MachineFunction &MF = DAG.getMachineFunction();
4593   MachineFrameInfo &MFI = MF.getFrameInfo();
4594   bool OptSize = shouldLowerMemFuncForSize(MF);
4595   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4596   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4597     DstAlignCanChange = true;
4598   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4599   if (Align > SrcAlign)
4600     SrcAlign = Align;
4601   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
4602 
4603   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4604                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
4605                                 false, false, false, false,
4606                                 DstPtrInfo.getAddrSpace(),
4607                                 SrcPtrInfo.getAddrSpace(),
4608                                 DAG, TLI))
4609     return SDValue();
4610 
4611   if (DstAlignCanChange) {
4612     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4613     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4614     if (NewAlign > Align) {
4615       // Give the stack frame object a larger alignment if needed.
4616       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4617         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4618       Align = NewAlign;
4619     }
4620   }
4621 
4622   MachineMemOperand::Flags MMOFlags =
4623       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
4624   uint64_t SrcOff = 0, DstOff = 0;
4625   SmallVector<SDValue, 8> LoadValues;
4626   SmallVector<SDValue, 8> LoadChains;
4627   SmallVector<SDValue, 8> OutChains;
4628   unsigned NumMemOps = MemOps.size();
4629   for (unsigned i = 0; i < NumMemOps; i++) {
4630     EVT VT = MemOps[i];
4631     unsigned VTSize = VT.getSizeInBits() / 8;
4632     SDValue Value;
4633 
4634     Value =
4635         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4636                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags);
4637     LoadValues.push_back(Value);
4638     LoadChains.push_back(Value.getValue(1));
4639     SrcOff += VTSize;
4640   }
4641   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
4642   OutChains.clear();
4643   for (unsigned i = 0; i < NumMemOps; i++) {
4644     EVT VT = MemOps[i];
4645     unsigned VTSize = VT.getSizeInBits() / 8;
4646     SDValue Store;
4647 
4648     Store = DAG.getStore(Chain, dl, LoadValues[i],
4649                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4650                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
4651     OutChains.push_back(Store);
4652     DstOff += VTSize;
4653   }
4654 
4655   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4656 }
4657 
4658 /// \brief Lower the call to 'memset' intrinsic function into a series of store
4659 /// operations.
4660 ///
4661 /// \param DAG Selection DAG where lowered code is placed.
4662 /// \param dl Link to corresponding IR location.
4663 /// \param Chain Control flow dependency.
4664 /// \param Dst Pointer to destination memory location.
4665 /// \param Src Value of byte to write into the memory.
4666 /// \param Size Number of bytes to write.
4667 /// \param Align Alignment of the destination in bytes.
4668 /// \param isVol True if destination is volatile.
4669 /// \param DstPtrInfo IR information on the memory pointer.
4670 /// \returns New head in the control flow, if lowering was successful, empty
4671 /// SDValue otherwise.
4672 ///
4673 /// The function tries to replace 'llvm.memset' intrinsic with several store
4674 /// operations and value calculation code. This is usually profitable for small
4675 /// memory size.
4676 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
4677                                SDValue Chain, SDValue Dst, SDValue Src,
4678                                uint64_t Size, unsigned Align, bool isVol,
4679                                MachinePointerInfo DstPtrInfo) {
4680   // Turn a memset of undef to nop.
4681   if (Src.isUndef())
4682     return Chain;
4683 
4684   // Expand memset to a series of load/store ops if the size operand
4685   // falls below a certain threshold.
4686   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4687   std::vector<EVT> MemOps;
4688   bool DstAlignCanChange = false;
4689   MachineFunction &MF = DAG.getMachineFunction();
4690   MachineFrameInfo &MFI = MF.getFrameInfo();
4691   bool OptSize = shouldLowerMemFuncForSize(MF);
4692   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4693   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4694     DstAlignCanChange = true;
4695   bool IsZeroVal =
4696     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
4697   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
4698                                 Size, (DstAlignCanChange ? 0 : Align), 0,
4699                                 true, IsZeroVal, false, true,
4700                                 DstPtrInfo.getAddrSpace(), ~0u,
4701                                 DAG, TLI))
4702     return SDValue();
4703 
4704   if (DstAlignCanChange) {
4705     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4706     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4707     if (NewAlign > Align) {
4708       // Give the stack frame object a larger alignment if needed.
4709       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4710         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4711       Align = NewAlign;
4712     }
4713   }
4714 
4715   SmallVector<SDValue, 8> OutChains;
4716   uint64_t DstOff = 0;
4717   unsigned NumMemOps = MemOps.size();
4718 
4719   // Find the largest store and generate the bit pattern for it.
4720   EVT LargestVT = MemOps[0];
4721   for (unsigned i = 1; i < NumMemOps; i++)
4722     if (MemOps[i].bitsGT(LargestVT))
4723       LargestVT = MemOps[i];
4724   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
4725 
4726   for (unsigned i = 0; i < NumMemOps; i++) {
4727     EVT VT = MemOps[i];
4728     unsigned VTSize = VT.getSizeInBits() / 8;
4729     if (VTSize > Size) {
4730       // Issuing an unaligned load / store pair  that overlaps with the previous
4731       // pair. Adjust the offset accordingly.
4732       assert(i == NumMemOps-1 && i != 0);
4733       DstOff -= VTSize - Size;
4734     }
4735 
4736     // If this store is smaller than the largest store see whether we can get
4737     // the smaller value for free with a truncate.
4738     SDValue Value = MemSetValue;
4739     if (VT.bitsLT(LargestVT)) {
4740       if (!LargestVT.isVector() && !VT.isVector() &&
4741           TLI.isTruncateFree(LargestVT, VT))
4742         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
4743       else
4744         Value = getMemsetValue(Src, VT, DAG, dl);
4745     }
4746     assert(Value.getValueType() == VT && "Value with wrong type.");
4747     SDValue Store = DAG.getStore(
4748         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4749         DstPtrInfo.getWithOffset(DstOff), Align,
4750         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
4751     OutChains.push_back(Store);
4752     DstOff += VT.getSizeInBits() / 8;
4753     Size -= VTSize;
4754   }
4755 
4756   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4757 }
4758 
4759 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
4760                                             unsigned AS) {
4761   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
4762   // pointer operands can be losslessly bitcasted to pointers of address space 0
4763   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
4764     report_fatal_error("cannot lower memory intrinsic in address space " +
4765                        Twine(AS));
4766   }
4767 }
4768 
4769 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
4770                                 SDValue Src, SDValue Size, unsigned Align,
4771                                 bool isVol, bool AlwaysInline, bool isTailCall,
4772                                 MachinePointerInfo DstPtrInfo,
4773                                 MachinePointerInfo SrcPtrInfo) {
4774   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4775 
4776   // Check to see if we should lower the memcpy to loads and stores first.
4777   // For cases within the target-specified limits, this is the best choice.
4778   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4779   if (ConstantSize) {
4780     // Memcpy with size zero? Just return the original chain.
4781     if (ConstantSize->isNullValue())
4782       return Chain;
4783 
4784     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
4785                                              ConstantSize->getZExtValue(),Align,
4786                                 isVol, false, DstPtrInfo, SrcPtrInfo);
4787     if (Result.getNode())
4788       return Result;
4789   }
4790 
4791   // Then check to see if we should lower the memcpy with target-specific
4792   // code. If the target chooses to do this, this is the next best.
4793   if (TSI) {
4794     SDValue Result = TSI->EmitTargetCodeForMemcpy(
4795         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
4796         DstPtrInfo, SrcPtrInfo);
4797     if (Result.getNode())
4798       return Result;
4799   }
4800 
4801   // If we really need inline code and the target declined to provide it,
4802   // use a (potentially long) sequence of loads and stores.
4803   if (AlwaysInline) {
4804     assert(ConstantSize && "AlwaysInline requires a constant size!");
4805     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
4806                                    ConstantSize->getZExtValue(), Align, isVol,
4807                                    true, DstPtrInfo, SrcPtrInfo);
4808   }
4809 
4810   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
4811   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
4812 
4813   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
4814   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
4815   // respect volatile, so they may do things like read or write memory
4816   // beyond the given memory regions. But fixing this isn't easy, and most
4817   // people don't care.
4818 
4819   // Emit a library call.
4820   TargetLowering::ArgListTy Args;
4821   TargetLowering::ArgListEntry Entry;
4822   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
4823   Entry.Node = Dst; Args.push_back(Entry);
4824   Entry.Node = Src; Args.push_back(Entry);
4825   Entry.Node = Size; Args.push_back(Entry);
4826   // FIXME: pass in SDLoc
4827   TargetLowering::CallLoweringInfo CLI(*this);
4828   CLI.setDebugLoc(dl)
4829       .setChain(Chain)
4830       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
4831                  Dst.getValueType().getTypeForEVT(*getContext()),
4832                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
4833                                    TLI->getPointerTy(getDataLayout())),
4834                  std::move(Args))
4835       .setDiscardResult()
4836       .setTailCall(isTailCall);
4837 
4838   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4839   return CallResult.second;
4840 }
4841 
4842 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
4843                                  SDValue Src, SDValue Size, unsigned Align,
4844                                  bool isVol, bool isTailCall,
4845                                  MachinePointerInfo DstPtrInfo,
4846                                  MachinePointerInfo SrcPtrInfo) {
4847   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4848 
4849   // Check to see if we should lower the memmove to loads and stores first.
4850   // For cases within the target-specified limits, this is the best choice.
4851   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4852   if (ConstantSize) {
4853     // Memmove with size zero? Just return the original chain.
4854     if (ConstantSize->isNullValue())
4855       return Chain;
4856 
4857     SDValue Result =
4858       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
4859                                ConstantSize->getZExtValue(), Align, isVol,
4860                                false, DstPtrInfo, SrcPtrInfo);
4861     if (Result.getNode())
4862       return Result;
4863   }
4864 
4865   // Then check to see if we should lower the memmove with target-specific
4866   // code. If the target chooses to do this, this is the next best.
4867   if (TSI) {
4868     SDValue Result = TSI->EmitTargetCodeForMemmove(
4869         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
4870     if (Result.getNode())
4871       return Result;
4872   }
4873 
4874   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
4875   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
4876 
4877   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
4878   // not be safe.  See memcpy above for more details.
4879 
4880   // Emit a library call.
4881   TargetLowering::ArgListTy Args;
4882   TargetLowering::ArgListEntry Entry;
4883   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
4884   Entry.Node = Dst; Args.push_back(Entry);
4885   Entry.Node = Src; Args.push_back(Entry);
4886   Entry.Node = Size; Args.push_back(Entry);
4887   // FIXME:  pass in SDLoc
4888   TargetLowering::CallLoweringInfo CLI(*this);
4889   CLI.setDebugLoc(dl)
4890       .setChain(Chain)
4891       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
4892                  Dst.getValueType().getTypeForEVT(*getContext()),
4893                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
4894                                    TLI->getPointerTy(getDataLayout())),
4895                  std::move(Args))
4896       .setDiscardResult()
4897       .setTailCall(isTailCall);
4898 
4899   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4900   return CallResult.second;
4901 }
4902 
4903 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
4904                                 SDValue Src, SDValue Size, unsigned Align,
4905                                 bool isVol, bool isTailCall,
4906                                 MachinePointerInfo DstPtrInfo) {
4907   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4908 
4909   // Check to see if we should lower the memset to stores first.
4910   // For cases within the target-specified limits, this is the best choice.
4911   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4912   if (ConstantSize) {
4913     // Memset with size zero? Just return the original chain.
4914     if (ConstantSize->isNullValue())
4915       return Chain;
4916 
4917     SDValue Result =
4918       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
4919                       Align, isVol, DstPtrInfo);
4920 
4921     if (Result.getNode())
4922       return Result;
4923   }
4924 
4925   // Then check to see if we should lower the memset with target-specific
4926   // code. If the target chooses to do this, this is the next best.
4927   if (TSI) {
4928     SDValue Result = TSI->EmitTargetCodeForMemset(
4929         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
4930     if (Result.getNode())
4931       return Result;
4932   }
4933 
4934   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
4935 
4936   // Emit a library call.
4937   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
4938   TargetLowering::ArgListTy Args;
4939   TargetLowering::ArgListEntry Entry;
4940   Entry.Node = Dst; Entry.Ty = IntPtrTy;
4941   Args.push_back(Entry);
4942   Entry.Node = Src;
4943   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
4944   Args.push_back(Entry);
4945   Entry.Node = Size;
4946   Entry.Ty = IntPtrTy;
4947   Args.push_back(Entry);
4948 
4949   // FIXME: pass in SDLoc
4950   TargetLowering::CallLoweringInfo CLI(*this);
4951   CLI.setDebugLoc(dl)
4952       .setChain(Chain)
4953       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
4954                  Dst.getValueType().getTypeForEVT(*getContext()),
4955                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
4956                                    TLI->getPointerTy(getDataLayout())),
4957                  std::move(Args))
4958       .setDiscardResult()
4959       .setTailCall(isTailCall);
4960 
4961   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4962   return CallResult.second;
4963 }
4964 
4965 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4966                                 SDVTList VTList, ArrayRef<SDValue> Ops,
4967                                 MachineMemOperand *MMO) {
4968   FoldingSetNodeID ID;
4969   ID.AddInteger(MemVT.getRawBits());
4970   AddNodeIDNode(ID, Opcode, VTList, Ops);
4971   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4972   void* IP = nullptr;
4973   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
4974     cast<AtomicSDNode>(E)->refineAlignment(MMO);
4975     return SDValue(E, 0);
4976   }
4977 
4978   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
4979                                     VTList, MemVT, MMO);
4980   createOperands(N, Ops);
4981 
4982   CSEMap.InsertNode(N, IP);
4983   InsertNode(N);
4984   return SDValue(N, 0);
4985 }
4986 
4987 SDValue SelectionDAG::getAtomicCmpSwap(
4988     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
4989     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
4990     unsigned Alignment, AtomicOrdering SuccessOrdering,
4991     AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) {
4992   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
4993          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
4994   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
4995 
4996   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4997     Alignment = getEVTAlignment(MemVT);
4998 
4999   MachineFunction &MF = getMachineFunction();
5000 
5001   // FIXME: Volatile isn't really correct; we should keep track of atomic
5002   // orderings in the memoperand.
5003   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
5004                MachineMemOperand::MOStore;
5005   MachineMemOperand *MMO =
5006     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
5007                             AAMDNodes(), nullptr, SynchScope, SuccessOrdering,
5008                             FailureOrdering);
5009 
5010   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
5011 }
5012 
5013 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
5014                                        EVT MemVT, SDVTList VTs, SDValue Chain,
5015                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
5016                                        MachineMemOperand *MMO) {
5017   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5018          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5019   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5020 
5021   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
5022   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5023 }
5024 
5025 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5026                                 SDValue Chain, SDValue Ptr, SDValue Val,
5027                                 const Value *PtrVal, unsigned Alignment,
5028                                 AtomicOrdering Ordering,
5029                                 SynchronizationScope SynchScope) {
5030   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5031     Alignment = getEVTAlignment(MemVT);
5032 
5033   MachineFunction &MF = getMachineFunction();
5034   // An atomic store does not load. An atomic load does not store.
5035   // (An atomicrmw obviously both loads and stores.)
5036   // For now, atomics are considered to be volatile always, and they are
5037   // chained as such.
5038   // FIXME: Volatile isn't really correct; we should keep track of atomic
5039   // orderings in the memoperand.
5040   auto Flags = MachineMemOperand::MOVolatile;
5041   if (Opcode != ISD::ATOMIC_STORE)
5042     Flags |= MachineMemOperand::MOLoad;
5043   if (Opcode != ISD::ATOMIC_LOAD)
5044     Flags |= MachineMemOperand::MOStore;
5045 
5046   MachineMemOperand *MMO =
5047     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
5048                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
5049                             nullptr, SynchScope, Ordering);
5050 
5051   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
5052 }
5053 
5054 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5055                                 SDValue Chain, SDValue Ptr, SDValue Val,
5056                                 MachineMemOperand *MMO) {
5057   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
5058           Opcode == ISD::ATOMIC_LOAD_SUB ||
5059           Opcode == ISD::ATOMIC_LOAD_AND ||
5060           Opcode == ISD::ATOMIC_LOAD_OR ||
5061           Opcode == ISD::ATOMIC_LOAD_XOR ||
5062           Opcode == ISD::ATOMIC_LOAD_NAND ||
5063           Opcode == ISD::ATOMIC_LOAD_MIN ||
5064           Opcode == ISD::ATOMIC_LOAD_MAX ||
5065           Opcode == ISD::ATOMIC_LOAD_UMIN ||
5066           Opcode == ISD::ATOMIC_LOAD_UMAX ||
5067           Opcode == ISD::ATOMIC_SWAP ||
5068           Opcode == ISD::ATOMIC_STORE) &&
5069          "Invalid Atomic Op");
5070 
5071   EVT VT = Val.getValueType();
5072 
5073   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
5074                                                getVTList(VT, MVT::Other);
5075   SDValue Ops[] = {Chain, Ptr, Val};
5076   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5077 }
5078 
5079 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5080                                 EVT VT, SDValue Chain, SDValue Ptr,
5081                                 MachineMemOperand *MMO) {
5082   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
5083 
5084   SDVTList VTs = getVTList(VT, MVT::Other);
5085   SDValue Ops[] = {Chain, Ptr};
5086   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5087 }
5088 
5089 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
5090 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
5091   if (Ops.size() == 1)
5092     return Ops[0];
5093 
5094   SmallVector<EVT, 4> VTs;
5095   VTs.reserve(Ops.size());
5096   for (unsigned i = 0; i < Ops.size(); ++i)
5097     VTs.push_back(Ops[i].getValueType());
5098   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
5099 }
5100 
5101 SDValue SelectionDAG::getMemIntrinsicNode(
5102     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
5103     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol,
5104     bool ReadMem, bool WriteMem, unsigned Size) {
5105   if (Align == 0)  // Ensure that codegen never sees alignment 0
5106     Align = getEVTAlignment(MemVT);
5107 
5108   MachineFunction &MF = getMachineFunction();
5109   auto Flags = MachineMemOperand::MONone;
5110   if (WriteMem)
5111     Flags |= MachineMemOperand::MOStore;
5112   if (ReadMem)
5113     Flags |= MachineMemOperand::MOLoad;
5114   if (Vol)
5115     Flags |= MachineMemOperand::MOVolatile;
5116   if (!Size)
5117     Size = MemVT.getStoreSize();
5118   MachineMemOperand *MMO =
5119     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
5120 
5121   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
5122 }
5123 
5124 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
5125                                           SDVTList VTList,
5126                                           ArrayRef<SDValue> Ops, EVT MemVT,
5127                                           MachineMemOperand *MMO) {
5128   assert((Opcode == ISD::INTRINSIC_VOID ||
5129           Opcode == ISD::INTRINSIC_W_CHAIN ||
5130           Opcode == ISD::PREFETCH ||
5131           Opcode == ISD::LIFETIME_START ||
5132           Opcode == ISD::LIFETIME_END ||
5133           (Opcode <= INT_MAX &&
5134            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
5135          "Opcode is not a memory-accessing opcode!");
5136 
5137   // Memoize the node unless it returns a flag.
5138   MemIntrinsicSDNode *N;
5139   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5140     FoldingSetNodeID ID;
5141     AddNodeIDNode(ID, Opcode, VTList, Ops);
5142     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5143     void *IP = nullptr;
5144     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5145       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
5146       return SDValue(E, 0);
5147     }
5148 
5149     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5150                                       VTList, MemVT, MMO);
5151     createOperands(N, Ops);
5152 
5153   CSEMap.InsertNode(N, IP);
5154   } else {
5155     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5156                                       VTList, MemVT, MMO);
5157     createOperands(N, Ops);
5158   }
5159   InsertNode(N);
5160   return SDValue(N, 0);
5161 }
5162 
5163 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5164 /// MachinePointerInfo record from it.  This is particularly useful because the
5165 /// code generator has many cases where it doesn't bother passing in a
5166 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5167 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5168                                            int64_t Offset = 0) {
5169   // If this is FI+Offset, we can model it.
5170   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
5171     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
5172                                              FI->getIndex(), Offset);
5173 
5174   // If this is (FI+Offset1)+Offset2, we can model it.
5175   if (Ptr.getOpcode() != ISD::ADD ||
5176       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
5177       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
5178     return MachinePointerInfo();
5179 
5180   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5181   return MachinePointerInfo::getFixedStack(
5182       DAG.getMachineFunction(), FI,
5183       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
5184 }
5185 
5186 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5187 /// MachinePointerInfo record from it.  This is particularly useful because the
5188 /// code generator has many cases where it doesn't bother passing in a
5189 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5190 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5191                                            SDValue OffsetOp) {
5192   // If the 'Offset' value isn't a constant, we can't handle this.
5193   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
5194     return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue());
5195   if (OffsetOp.isUndef())
5196     return InferPointerInfo(DAG, Ptr);
5197   return MachinePointerInfo();
5198 }
5199 
5200 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5201                               EVT VT, const SDLoc &dl, SDValue Chain,
5202                               SDValue Ptr, SDValue Offset,
5203                               MachinePointerInfo PtrInfo, EVT MemVT,
5204                               unsigned Alignment,
5205                               MachineMemOperand::Flags MMOFlags,
5206                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5207   assert(Chain.getValueType() == MVT::Other &&
5208         "Invalid chain type");
5209   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5210     Alignment = getEVTAlignment(MemVT);
5211 
5212   MMOFlags |= MachineMemOperand::MOLoad;
5213   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
5214   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
5215   // clients.
5216   if (PtrInfo.V.isNull())
5217     PtrInfo = InferPointerInfo(*this, Ptr, Offset);
5218 
5219   MachineFunction &MF = getMachineFunction();
5220   MachineMemOperand *MMO = MF.getMachineMemOperand(
5221       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
5222   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
5223 }
5224 
5225 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5226                               EVT VT, const SDLoc &dl, SDValue Chain,
5227                               SDValue Ptr, SDValue Offset, EVT MemVT,
5228                               MachineMemOperand *MMO) {
5229   if (VT == MemVT) {
5230     ExtType = ISD::NON_EXTLOAD;
5231   } else if (ExtType == ISD::NON_EXTLOAD) {
5232     assert(VT == MemVT && "Non-extending load from different memory type!");
5233   } else {
5234     // Extending load.
5235     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
5236            "Should only be an extending load, not truncating!");
5237     assert(VT.isInteger() == MemVT.isInteger() &&
5238            "Cannot convert from FP to Int or Int -> FP!");
5239     assert(VT.isVector() == MemVT.isVector() &&
5240            "Cannot use an ext load to convert to or from a vector!");
5241     assert((!VT.isVector() ||
5242             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
5243            "Cannot use an ext load to change the number of vector elements!");
5244   }
5245 
5246   bool Indexed = AM != ISD::UNINDEXED;
5247   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
5248 
5249   SDVTList VTs = Indexed ?
5250     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
5251   SDValue Ops[] = { Chain, Ptr, Offset };
5252   FoldingSetNodeID ID;
5253   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
5254   ID.AddInteger(MemVT.getRawBits());
5255   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
5256       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
5257   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5258   void *IP = nullptr;
5259   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5260     cast<LoadSDNode>(E)->refineAlignment(MMO);
5261     return SDValue(E, 0);
5262   }
5263   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5264                                   ExtType, MemVT, MMO);
5265   createOperands(N, Ops);
5266 
5267   CSEMap.InsertNode(N, IP);
5268   InsertNode(N);
5269   return SDValue(N, 0);
5270 }
5271 
5272 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5273                               SDValue Ptr, MachinePointerInfo PtrInfo,
5274                               unsigned Alignment,
5275                               MachineMemOperand::Flags MMOFlags,
5276                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5277   SDValue Undef = getUNDEF(Ptr.getValueType());
5278   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5279                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
5280 }
5281 
5282 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5283                               SDValue Ptr, MachineMemOperand *MMO) {
5284   SDValue Undef = getUNDEF(Ptr.getValueType());
5285   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5286                  VT, MMO);
5287 }
5288 
5289 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5290                                  EVT VT, SDValue Chain, SDValue Ptr,
5291                                  MachinePointerInfo PtrInfo, EVT MemVT,
5292                                  unsigned Alignment,
5293                                  MachineMemOperand::Flags MMOFlags,
5294                                  const AAMDNodes &AAInfo) {
5295   SDValue Undef = getUNDEF(Ptr.getValueType());
5296   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
5297                  MemVT, Alignment, MMOFlags, AAInfo);
5298 }
5299 
5300 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5301                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
5302                                  MachineMemOperand *MMO) {
5303   SDValue Undef = getUNDEF(Ptr.getValueType());
5304   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
5305                  MemVT, MMO);
5306 }
5307 
5308 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
5309                                      SDValue Base, SDValue Offset,
5310                                      ISD::MemIndexedMode AM) {
5311   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
5312   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
5313   // Don't propagate the invariant or dereferenceable flags.
5314   auto MMOFlags =
5315       LD->getMemOperand()->getFlags() &
5316       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
5317   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
5318                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
5319                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
5320                  LD->getAAInfo());
5321 }
5322 
5323 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5324                                SDValue Ptr, MachinePointerInfo PtrInfo,
5325                                unsigned Alignment,
5326                                MachineMemOperand::Flags MMOFlags,
5327                                const AAMDNodes &AAInfo) {
5328   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
5329   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5330     Alignment = getEVTAlignment(Val.getValueType());
5331 
5332   MMOFlags |= MachineMemOperand::MOStore;
5333   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5334 
5335   if (PtrInfo.V.isNull())
5336     PtrInfo = InferPointerInfo(*this, Ptr);
5337 
5338   MachineFunction &MF = getMachineFunction();
5339   MachineMemOperand *MMO = MF.getMachineMemOperand(
5340       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
5341   return getStore(Chain, dl, Val, Ptr, MMO);
5342 }
5343 
5344 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5345                                SDValue Ptr, MachineMemOperand *MMO) {
5346   assert(Chain.getValueType() == MVT::Other &&
5347         "Invalid chain type");
5348   EVT VT = Val.getValueType();
5349   SDVTList VTs = getVTList(MVT::Other);
5350   SDValue Undef = getUNDEF(Ptr.getValueType());
5351   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5352   FoldingSetNodeID ID;
5353   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5354   ID.AddInteger(VT.getRawBits());
5355   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5356       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
5357   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5358   void *IP = nullptr;
5359   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5360     cast<StoreSDNode>(E)->refineAlignment(MMO);
5361     return SDValue(E, 0);
5362   }
5363   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5364                                    ISD::UNINDEXED, false, VT, MMO);
5365   createOperands(N, Ops);
5366 
5367   CSEMap.InsertNode(N, IP);
5368   InsertNode(N);
5369   return SDValue(N, 0);
5370 }
5371 
5372 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5373                                     SDValue Ptr, MachinePointerInfo PtrInfo,
5374                                     EVT SVT, unsigned Alignment,
5375                                     MachineMemOperand::Flags MMOFlags,
5376                                     const AAMDNodes &AAInfo) {
5377   assert(Chain.getValueType() == MVT::Other &&
5378         "Invalid chain type");
5379   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5380     Alignment = getEVTAlignment(SVT);
5381 
5382   MMOFlags |= MachineMemOperand::MOStore;
5383   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5384 
5385   if (PtrInfo.V.isNull())
5386     PtrInfo = InferPointerInfo(*this, Ptr);
5387 
5388   MachineFunction &MF = getMachineFunction();
5389   MachineMemOperand *MMO = MF.getMachineMemOperand(
5390       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
5391   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
5392 }
5393 
5394 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5395                                     SDValue Ptr, EVT SVT,
5396                                     MachineMemOperand *MMO) {
5397   EVT VT = Val.getValueType();
5398 
5399   assert(Chain.getValueType() == MVT::Other &&
5400         "Invalid chain type");
5401   if (VT == SVT)
5402     return getStore(Chain, dl, Val, Ptr, MMO);
5403 
5404   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
5405          "Should only be a truncating store, not extending!");
5406   assert(VT.isInteger() == SVT.isInteger() &&
5407          "Can't do FP-INT conversion!");
5408   assert(VT.isVector() == SVT.isVector() &&
5409          "Cannot use trunc store to convert to or from a vector!");
5410   assert((!VT.isVector() ||
5411           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
5412          "Cannot use trunc store to change the number of vector elements!");
5413 
5414   SDVTList VTs = getVTList(MVT::Other);
5415   SDValue Undef = getUNDEF(Ptr.getValueType());
5416   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5417   FoldingSetNodeID ID;
5418   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5419   ID.AddInteger(SVT.getRawBits());
5420   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5421       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
5422   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5423   void *IP = nullptr;
5424   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5425     cast<StoreSDNode>(E)->refineAlignment(MMO);
5426     return SDValue(E, 0);
5427   }
5428   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5429                                    ISD::UNINDEXED, true, SVT, MMO);
5430   createOperands(N, Ops);
5431 
5432   CSEMap.InsertNode(N, IP);
5433   InsertNode(N);
5434   return SDValue(N, 0);
5435 }
5436 
5437 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
5438                                       SDValue Base, SDValue Offset,
5439                                       ISD::MemIndexedMode AM) {
5440   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
5441   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
5442   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
5443   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
5444   FoldingSetNodeID ID;
5445   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5446   ID.AddInteger(ST->getMemoryVT().getRawBits());
5447   ID.AddInteger(ST->getRawSubclassData());
5448   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
5449   void *IP = nullptr;
5450   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
5451     return SDValue(E, 0);
5452 
5453   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5454                                    ST->isTruncatingStore(), ST->getMemoryVT(),
5455                                    ST->getMemOperand());
5456   createOperands(N, Ops);
5457 
5458   CSEMap.InsertNode(N, IP);
5459   InsertNode(N);
5460   return SDValue(N, 0);
5461 }
5462 
5463 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5464                                     SDValue Ptr, SDValue Mask, SDValue Src0,
5465                                     EVT MemVT, MachineMemOperand *MMO,
5466                                     ISD::LoadExtType ExtTy, bool isExpanding) {
5467 
5468   SDVTList VTs = getVTList(VT, MVT::Other);
5469   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
5470   FoldingSetNodeID ID;
5471   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
5472   ID.AddInteger(VT.getRawBits());
5473   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
5474       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
5475   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5476   void *IP = nullptr;
5477   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5478     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
5479     return SDValue(E, 0);
5480   }
5481   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5482                                         ExtTy, isExpanding, MemVT, MMO);
5483   createOperands(N, Ops);
5484 
5485   CSEMap.InsertNode(N, IP);
5486   InsertNode(N);
5487   return SDValue(N, 0);
5488 }
5489 
5490 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
5491                                      SDValue Val, SDValue Ptr, SDValue Mask,
5492                                      EVT MemVT, MachineMemOperand *MMO,
5493                                      bool IsTruncating, bool IsCompressing) {
5494   assert(Chain.getValueType() == MVT::Other &&
5495         "Invalid chain type");
5496   EVT VT = Val.getValueType();
5497   SDVTList VTs = getVTList(MVT::Other);
5498   SDValue Ops[] = { Chain, Ptr, Mask, Val };
5499   FoldingSetNodeID ID;
5500   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
5501   ID.AddInteger(VT.getRawBits());
5502   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
5503       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
5504   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5505   void *IP = nullptr;
5506   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5507     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
5508     return SDValue(E, 0);
5509   }
5510   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5511                                          IsTruncating, IsCompressing, MemVT, MMO);
5512   createOperands(N, Ops);
5513 
5514   CSEMap.InsertNode(N, IP);
5515   InsertNode(N);
5516   return SDValue(N, 0);
5517 }
5518 
5519 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
5520                                       ArrayRef<SDValue> Ops,
5521                                       MachineMemOperand *MMO) {
5522   assert(Ops.size() == 5 && "Incompatible number of operands");
5523 
5524   FoldingSetNodeID ID;
5525   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
5526   ID.AddInteger(VT.getRawBits());
5527   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
5528       dl.getIROrder(), VTs, VT, MMO));
5529   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5530   void *IP = nullptr;
5531   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5532     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
5533     return SDValue(E, 0);
5534   }
5535 
5536   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5537                                           VTs, VT, MMO);
5538   createOperands(N, Ops);
5539 
5540   assert(N->getValue().getValueType() == N->getValueType(0) &&
5541          "Incompatible type of the PassThru value in MaskedGatherSDNode");
5542   assert(N->getMask().getValueType().getVectorNumElements() ==
5543              N->getValueType(0).getVectorNumElements() &&
5544          "Vector width mismatch between mask and data");
5545   assert(N->getIndex().getValueType().getVectorNumElements() ==
5546              N->getValueType(0).getVectorNumElements() &&
5547          "Vector width mismatch between index and data");
5548 
5549   CSEMap.InsertNode(N, IP);
5550   InsertNode(N);
5551   return SDValue(N, 0);
5552 }
5553 
5554 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
5555                                        ArrayRef<SDValue> Ops,
5556                                        MachineMemOperand *MMO) {
5557   assert(Ops.size() == 5 && "Incompatible number of operands");
5558 
5559   FoldingSetNodeID ID;
5560   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
5561   ID.AddInteger(VT.getRawBits());
5562   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
5563       dl.getIROrder(), VTs, VT, MMO));
5564   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5565   void *IP = nullptr;
5566   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5567     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
5568     return SDValue(E, 0);
5569   }
5570   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5571                                            VTs, VT, MMO);
5572   createOperands(N, Ops);
5573 
5574   assert(N->getMask().getValueType().getVectorNumElements() ==
5575              N->getValue().getValueType().getVectorNumElements() &&
5576          "Vector width mismatch between mask and data");
5577   assert(N->getIndex().getValueType().getVectorNumElements() ==
5578              N->getValue().getValueType().getVectorNumElements() &&
5579          "Vector width mismatch between index and data");
5580 
5581   CSEMap.InsertNode(N, IP);
5582   InsertNode(N);
5583   return SDValue(N, 0);
5584 }
5585 
5586 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
5587                                SDValue Ptr, SDValue SV, unsigned Align) {
5588   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
5589   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
5590 }
5591 
5592 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5593                               ArrayRef<SDUse> Ops) {
5594   switch (Ops.size()) {
5595   case 0: return getNode(Opcode, DL, VT);
5596   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
5597   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
5598   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5599   default: break;
5600   }
5601 
5602   // Copy from an SDUse array into an SDValue array for use with
5603   // the regular getNode logic.
5604   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
5605   return getNode(Opcode, DL, VT, NewOps);
5606 }
5607 
5608 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5609                               ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) {
5610   unsigned NumOps = Ops.size();
5611   switch (NumOps) {
5612   case 0: return getNode(Opcode, DL, VT);
5613   case 1: return getNode(Opcode, DL, VT, Ops[0]);
5614   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
5615   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5616   default: break;
5617   }
5618 
5619   switch (Opcode) {
5620   default: break;
5621   case ISD::CONCAT_VECTORS: {
5622     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5623     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5624       return V;
5625     break;
5626   }
5627   case ISD::SELECT_CC: {
5628     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
5629     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
5630            "LHS and RHS of condition must have same type!");
5631     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5632            "True and False arms of SelectCC must have same type!");
5633     assert(Ops[2].getValueType() == VT &&
5634            "select_cc node must be of same type as true and false value!");
5635     break;
5636   }
5637   case ISD::BR_CC: {
5638     assert(NumOps == 5 && "BR_CC takes 5 operands!");
5639     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5640            "LHS/RHS of comparison should match types!");
5641     break;
5642   }
5643   }
5644 
5645   // Memoize nodes.
5646   SDNode *N;
5647   SDVTList VTs = getVTList(VT);
5648 
5649   if (VT != MVT::Glue) {
5650     FoldingSetNodeID ID;
5651     AddNodeIDNode(ID, Opcode, VTs, Ops);
5652     void *IP = nullptr;
5653 
5654     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5655       return SDValue(E, 0);
5656 
5657     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5658     createOperands(N, Ops);
5659 
5660     CSEMap.InsertNode(N, IP);
5661   } else {
5662     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5663     createOperands(N, Ops);
5664   }
5665 
5666   InsertNode(N);
5667   return SDValue(N, 0);
5668 }
5669 
5670 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5671                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
5672   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
5673 }
5674 
5675 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5676                               ArrayRef<SDValue> Ops) {
5677   if (VTList.NumVTs == 1)
5678     return getNode(Opcode, DL, VTList.VTs[0], Ops);
5679 
5680 #if 0
5681   switch (Opcode) {
5682   // FIXME: figure out how to safely handle things like
5683   // int foo(int x) { return 1 << (x & 255); }
5684   // int bar() { return foo(256); }
5685   case ISD::SRA_PARTS:
5686   case ISD::SRL_PARTS:
5687   case ISD::SHL_PARTS:
5688     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5689         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
5690       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
5691     else if (N3.getOpcode() == ISD::AND)
5692       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
5693         // If the and is only masking out bits that cannot effect the shift,
5694         // eliminate the and.
5695         unsigned NumBits = VT.getScalarSizeInBits()*2;
5696         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
5697           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
5698       }
5699     break;
5700   }
5701 #endif
5702 
5703   // Memoize the node unless it returns a flag.
5704   SDNode *N;
5705   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5706     FoldingSetNodeID ID;
5707     AddNodeIDNode(ID, Opcode, VTList, Ops);
5708     void *IP = nullptr;
5709     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5710       return SDValue(E, 0);
5711 
5712     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
5713     createOperands(N, Ops);
5714     CSEMap.InsertNode(N, IP);
5715   } else {
5716     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
5717     createOperands(N, Ops);
5718   }
5719   InsertNode(N);
5720   return SDValue(N, 0);
5721 }
5722 
5723 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5724                               SDVTList VTList) {
5725   return getNode(Opcode, DL, VTList, None);
5726 }
5727 
5728 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5729                               SDValue N1) {
5730   SDValue Ops[] = { N1 };
5731   return getNode(Opcode, DL, VTList, Ops);
5732 }
5733 
5734 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5735                               SDValue N1, SDValue N2) {
5736   SDValue Ops[] = { N1, N2 };
5737   return getNode(Opcode, DL, VTList, Ops);
5738 }
5739 
5740 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5741                               SDValue N1, SDValue N2, SDValue N3) {
5742   SDValue Ops[] = { N1, N2, N3 };
5743   return getNode(Opcode, DL, VTList, Ops);
5744 }
5745 
5746 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5747                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5748   SDValue Ops[] = { N1, N2, N3, N4 };
5749   return getNode(Opcode, DL, VTList, Ops);
5750 }
5751 
5752 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5753                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5754                               SDValue N5) {
5755   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5756   return getNode(Opcode, DL, VTList, Ops);
5757 }
5758 
5759 SDVTList SelectionDAG::getVTList(EVT VT) {
5760   return makeVTList(SDNode::getValueTypeList(VT), 1);
5761 }
5762 
5763 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
5764   FoldingSetNodeID ID;
5765   ID.AddInteger(2U);
5766   ID.AddInteger(VT1.getRawBits());
5767   ID.AddInteger(VT2.getRawBits());
5768 
5769   void *IP = nullptr;
5770   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5771   if (!Result) {
5772     EVT *Array = Allocator.Allocate<EVT>(2);
5773     Array[0] = VT1;
5774     Array[1] = VT2;
5775     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
5776     VTListMap.InsertNode(Result, IP);
5777   }
5778   return Result->getSDVTList();
5779 }
5780 
5781 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
5782   FoldingSetNodeID ID;
5783   ID.AddInteger(3U);
5784   ID.AddInteger(VT1.getRawBits());
5785   ID.AddInteger(VT2.getRawBits());
5786   ID.AddInteger(VT3.getRawBits());
5787 
5788   void *IP = nullptr;
5789   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5790   if (!Result) {
5791     EVT *Array = Allocator.Allocate<EVT>(3);
5792     Array[0] = VT1;
5793     Array[1] = VT2;
5794     Array[2] = VT3;
5795     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
5796     VTListMap.InsertNode(Result, IP);
5797   }
5798   return Result->getSDVTList();
5799 }
5800 
5801 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
5802   FoldingSetNodeID ID;
5803   ID.AddInteger(4U);
5804   ID.AddInteger(VT1.getRawBits());
5805   ID.AddInteger(VT2.getRawBits());
5806   ID.AddInteger(VT3.getRawBits());
5807   ID.AddInteger(VT4.getRawBits());
5808 
5809   void *IP = nullptr;
5810   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5811   if (!Result) {
5812     EVT *Array = Allocator.Allocate<EVT>(4);
5813     Array[0] = VT1;
5814     Array[1] = VT2;
5815     Array[2] = VT3;
5816     Array[3] = VT4;
5817     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
5818     VTListMap.InsertNode(Result, IP);
5819   }
5820   return Result->getSDVTList();
5821 }
5822 
5823 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
5824   unsigned NumVTs = VTs.size();
5825   FoldingSetNodeID ID;
5826   ID.AddInteger(NumVTs);
5827   for (unsigned index = 0; index < NumVTs; index++) {
5828     ID.AddInteger(VTs[index].getRawBits());
5829   }
5830 
5831   void *IP = nullptr;
5832   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5833   if (!Result) {
5834     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
5835     std::copy(VTs.begin(), VTs.end(), Array);
5836     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
5837     VTListMap.InsertNode(Result, IP);
5838   }
5839   return Result->getSDVTList();
5840 }
5841 
5842 
5843 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
5844 /// specified operands.  If the resultant node already exists in the DAG,
5845 /// this does not modify the specified node, instead it returns the node that
5846 /// already exists.  If the resultant node does not exist in the DAG, the
5847 /// input node is returned.  As a degenerate case, if you specify the same
5848 /// input operands as the node already has, the input node is returned.
5849 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
5850   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
5851 
5852   // Check to see if there is no change.
5853   if (Op == N->getOperand(0)) return N;
5854 
5855   // See if the modified node already exists.
5856   void *InsertPos = nullptr;
5857   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
5858     return Existing;
5859 
5860   // Nope it doesn't.  Remove the node from its current place in the maps.
5861   if (InsertPos)
5862     if (!RemoveNodeFromCSEMaps(N))
5863       InsertPos = nullptr;
5864 
5865   // Now we update the operands.
5866   N->OperandList[0].set(Op);
5867 
5868   // If this gets put into a CSE map, add it.
5869   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5870   return N;
5871 }
5872 
5873 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
5874   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
5875 
5876   // Check to see if there is no change.
5877   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
5878     return N;   // No operands changed, just return the input node.
5879 
5880   // See if the modified node already exists.
5881   void *InsertPos = nullptr;
5882   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
5883     return Existing;
5884 
5885   // Nope it doesn't.  Remove the node from its current place in the maps.
5886   if (InsertPos)
5887     if (!RemoveNodeFromCSEMaps(N))
5888       InsertPos = nullptr;
5889 
5890   // Now we update the operands.
5891   if (N->OperandList[0] != Op1)
5892     N->OperandList[0].set(Op1);
5893   if (N->OperandList[1] != Op2)
5894     N->OperandList[1].set(Op2);
5895 
5896   // If this gets put into a CSE map, add it.
5897   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5898   return N;
5899 }
5900 
5901 SDNode *SelectionDAG::
5902 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
5903   SDValue Ops[] = { Op1, Op2, Op3 };
5904   return UpdateNodeOperands(N, Ops);
5905 }
5906 
5907 SDNode *SelectionDAG::
5908 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
5909                    SDValue Op3, SDValue Op4) {
5910   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
5911   return UpdateNodeOperands(N, Ops);
5912 }
5913 
5914 SDNode *SelectionDAG::
5915 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
5916                    SDValue Op3, SDValue Op4, SDValue Op5) {
5917   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
5918   return UpdateNodeOperands(N, Ops);
5919 }
5920 
5921 SDNode *SelectionDAG::
5922 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
5923   unsigned NumOps = Ops.size();
5924   assert(N->getNumOperands() == NumOps &&
5925          "Update with wrong number of operands");
5926 
5927   // If no operands changed just return the input node.
5928   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
5929     return N;
5930 
5931   // See if the modified node already exists.
5932   void *InsertPos = nullptr;
5933   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
5934     return Existing;
5935 
5936   // Nope it doesn't.  Remove the node from its current place in the maps.
5937   if (InsertPos)
5938     if (!RemoveNodeFromCSEMaps(N))
5939       InsertPos = nullptr;
5940 
5941   // Now we update the operands.
5942   for (unsigned i = 0; i != NumOps; ++i)
5943     if (N->OperandList[i] != Ops[i])
5944       N->OperandList[i].set(Ops[i]);
5945 
5946   // If this gets put into a CSE map, add it.
5947   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5948   return N;
5949 }
5950 
5951 /// DropOperands - Release the operands and set this node to have
5952 /// zero operands.
5953 void SDNode::DropOperands() {
5954   // Unlike the code in MorphNodeTo that does this, we don't need to
5955   // watch for dead nodes here.
5956   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
5957     SDUse &Use = *I++;
5958     Use.set(SDValue());
5959   }
5960 }
5961 
5962 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
5963 /// machine opcode.
5964 ///
5965 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5966                                    EVT VT) {
5967   SDVTList VTs = getVTList(VT);
5968   return SelectNodeTo(N, MachineOpc, VTs, None);
5969 }
5970 
5971 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5972                                    EVT VT, SDValue Op1) {
5973   SDVTList VTs = getVTList(VT);
5974   SDValue Ops[] = { Op1 };
5975   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5976 }
5977 
5978 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5979                                    EVT VT, SDValue Op1,
5980                                    SDValue Op2) {
5981   SDVTList VTs = getVTList(VT);
5982   SDValue Ops[] = { Op1, Op2 };
5983   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5984 }
5985 
5986 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5987                                    EVT VT, SDValue Op1,
5988                                    SDValue Op2, SDValue Op3) {
5989   SDVTList VTs = getVTList(VT);
5990   SDValue Ops[] = { Op1, Op2, Op3 };
5991   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5992 }
5993 
5994 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5995                                    EVT VT, ArrayRef<SDValue> Ops) {
5996   SDVTList VTs = getVTList(VT);
5997   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5998 }
5999 
6000 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6001                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
6002   SDVTList VTs = getVTList(VT1, VT2);
6003   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6004 }
6005 
6006 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6007                                    EVT VT1, EVT VT2) {
6008   SDVTList VTs = getVTList(VT1, VT2);
6009   return SelectNodeTo(N, MachineOpc, VTs, None);
6010 }
6011 
6012 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6013                                    EVT VT1, EVT VT2, EVT VT3,
6014                                    ArrayRef<SDValue> Ops) {
6015   SDVTList VTs = getVTList(VT1, VT2, VT3);
6016   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6017 }
6018 
6019 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6020                                    EVT VT1, EVT VT2,
6021                                    SDValue Op1, SDValue Op2) {
6022   SDVTList VTs = getVTList(VT1, VT2);
6023   SDValue Ops[] = { Op1, Op2 };
6024   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6025 }
6026 
6027 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6028                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
6029   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
6030   // Reset the NodeID to -1.
6031   New->setNodeId(-1);
6032   if (New != N) {
6033     ReplaceAllUsesWith(N, New);
6034     RemoveDeadNode(N);
6035   }
6036   return New;
6037 }
6038 
6039 /// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away
6040 /// the line number information on the merged node since it is not possible to
6041 /// preserve the information that operation is associated with multiple lines.
6042 /// This will make the debugger working better at -O0, were there is a higher
6043 /// probability having other instructions associated with that line.
6044 ///
6045 /// For IROrder, we keep the smaller of the two
6046 SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &OLoc) {
6047   DebugLoc NLoc = N->getDebugLoc();
6048   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
6049     N->setDebugLoc(DebugLoc());
6050   }
6051   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
6052   N->setIROrder(Order);
6053   return N;
6054 }
6055 
6056 /// MorphNodeTo - This *mutates* the specified node to have the specified
6057 /// return type, opcode, and operands.
6058 ///
6059 /// Note that MorphNodeTo returns the resultant node.  If there is already a
6060 /// node of the specified opcode and operands, it returns that node instead of
6061 /// the current one.  Note that the SDLoc need not be the same.
6062 ///
6063 /// Using MorphNodeTo is faster than creating a new node and swapping it in
6064 /// with ReplaceAllUsesWith both because it often avoids allocating a new
6065 /// node, and because it doesn't require CSE recalculation for any of
6066 /// the node's users.
6067 ///
6068 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
6069 /// As a consequence it isn't appropriate to use from within the DAG combiner or
6070 /// the legalizer which maintain worklists that would need to be updated when
6071 /// deleting things.
6072 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
6073                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
6074   // If an identical node already exists, use it.
6075   void *IP = nullptr;
6076   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
6077     FoldingSetNodeID ID;
6078     AddNodeIDNode(ID, Opc, VTs, Ops);
6079     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
6080       return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N));
6081   }
6082 
6083   if (!RemoveNodeFromCSEMaps(N))
6084     IP = nullptr;
6085 
6086   // Start the morphing.
6087   N->NodeType = Opc;
6088   N->ValueList = VTs.VTs;
6089   N->NumValues = VTs.NumVTs;
6090 
6091   // Clear the operands list, updating used nodes to remove this from their
6092   // use list.  Keep track of any operands that become dead as a result.
6093   SmallPtrSet<SDNode*, 16> DeadNodeSet;
6094   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
6095     SDUse &Use = *I++;
6096     SDNode *Used = Use.getNode();
6097     Use.set(SDValue());
6098     if (Used->use_empty())
6099       DeadNodeSet.insert(Used);
6100   }
6101 
6102   // For MachineNode, initialize the memory references information.
6103   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
6104     MN->setMemRefs(nullptr, nullptr);
6105 
6106   // Swap for an appropriately sized array from the recycler.
6107   removeOperands(N);
6108   createOperands(N, Ops);
6109 
6110   // Delete any nodes that are still dead after adding the uses for the
6111   // new operands.
6112   if (!DeadNodeSet.empty()) {
6113     SmallVector<SDNode *, 16> DeadNodes;
6114     for (SDNode *N : DeadNodeSet)
6115       if (N->use_empty())
6116         DeadNodes.push_back(N);
6117     RemoveDeadNodes(DeadNodes);
6118   }
6119 
6120   if (IP)
6121     CSEMap.InsertNode(N, IP);   // Memoize the new node.
6122   return N;
6123 }
6124 
6125 
6126 /// getMachineNode - These are used for target selectors to create a new node
6127 /// with specified return type(s), MachineInstr opcode, and operands.
6128 ///
6129 /// Note that getMachineNode returns the resultant node.  If there is already a
6130 /// node of the specified opcode and operands, it returns that node instead of
6131 /// the current one.
6132 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6133                                             EVT VT) {
6134   SDVTList VTs = getVTList(VT);
6135   return getMachineNode(Opcode, dl, VTs, None);
6136 }
6137 
6138 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6139                                             EVT VT, SDValue Op1) {
6140   SDVTList VTs = getVTList(VT);
6141   SDValue Ops[] = { Op1 };
6142   return getMachineNode(Opcode, dl, VTs, Ops);
6143 }
6144 
6145 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6146                                             EVT VT, SDValue Op1, SDValue Op2) {
6147   SDVTList VTs = getVTList(VT);
6148   SDValue Ops[] = { Op1, Op2 };
6149   return getMachineNode(Opcode, dl, VTs, Ops);
6150 }
6151 
6152 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6153                                             EVT VT, SDValue Op1, SDValue Op2,
6154                                             SDValue Op3) {
6155   SDVTList VTs = getVTList(VT);
6156   SDValue Ops[] = { Op1, Op2, Op3 };
6157   return getMachineNode(Opcode, dl, VTs, Ops);
6158 }
6159 
6160 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6161                                             EVT VT, ArrayRef<SDValue> Ops) {
6162   SDVTList VTs = getVTList(VT);
6163   return getMachineNode(Opcode, dl, VTs, Ops);
6164 }
6165 
6166 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6167                                             EVT VT1, EVT VT2, SDValue Op1,
6168                                             SDValue Op2) {
6169   SDVTList VTs = getVTList(VT1, VT2);
6170   SDValue Ops[] = { Op1, Op2 };
6171   return getMachineNode(Opcode, dl, VTs, Ops);
6172 }
6173 
6174 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6175                                             EVT VT1, EVT VT2, SDValue Op1,
6176                                             SDValue Op2, SDValue Op3) {
6177   SDVTList VTs = getVTList(VT1, VT2);
6178   SDValue Ops[] = { Op1, Op2, Op3 };
6179   return getMachineNode(Opcode, dl, VTs, Ops);
6180 }
6181 
6182 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6183                                             EVT VT1, EVT VT2,
6184                                             ArrayRef<SDValue> Ops) {
6185   SDVTList VTs = getVTList(VT1, VT2);
6186   return getMachineNode(Opcode, dl, VTs, Ops);
6187 }
6188 
6189 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6190                                             EVT VT1, EVT VT2, EVT VT3,
6191                                             SDValue Op1, SDValue Op2) {
6192   SDVTList VTs = getVTList(VT1, VT2, VT3);
6193   SDValue Ops[] = { Op1, Op2 };
6194   return getMachineNode(Opcode, dl, VTs, Ops);
6195 }
6196 
6197 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6198                                             EVT VT1, EVT VT2, EVT VT3,
6199                                             SDValue Op1, SDValue Op2,
6200                                             SDValue Op3) {
6201   SDVTList VTs = getVTList(VT1, VT2, VT3);
6202   SDValue Ops[] = { Op1, Op2, Op3 };
6203   return getMachineNode(Opcode, dl, VTs, Ops);
6204 }
6205 
6206 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6207                                             EVT VT1, EVT VT2, EVT VT3,
6208                                             ArrayRef<SDValue> Ops) {
6209   SDVTList VTs = getVTList(VT1, VT2, VT3);
6210   return getMachineNode(Opcode, dl, VTs, Ops);
6211 }
6212 
6213 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6214                                             ArrayRef<EVT> ResultTys,
6215                                             ArrayRef<SDValue> Ops) {
6216   SDVTList VTs = getVTList(ResultTys);
6217   return getMachineNode(Opcode, dl, VTs, Ops);
6218 }
6219 
6220 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
6221                                             SDVTList VTs,
6222                                             ArrayRef<SDValue> Ops) {
6223   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
6224   MachineSDNode *N;
6225   void *IP = nullptr;
6226 
6227   if (DoCSE) {
6228     FoldingSetNodeID ID;
6229     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
6230     IP = nullptr;
6231     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6232       return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL));
6233     }
6234   }
6235 
6236   // Allocate a new MachineSDNode.
6237   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6238   createOperands(N, Ops);
6239 
6240   if (DoCSE)
6241     CSEMap.InsertNode(N, IP);
6242 
6243   InsertNode(N);
6244   return N;
6245 }
6246 
6247 /// getTargetExtractSubreg - A convenience function for creating
6248 /// TargetOpcode::EXTRACT_SUBREG nodes.
6249 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6250                                              SDValue Operand) {
6251   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6252   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
6253                                   VT, Operand, SRIdxVal);
6254   return SDValue(Subreg, 0);
6255 }
6256 
6257 /// getTargetInsertSubreg - A convenience function for creating
6258 /// TargetOpcode::INSERT_SUBREG nodes.
6259 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6260                                             SDValue Operand, SDValue Subreg) {
6261   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6262   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
6263                                   VT, Operand, Subreg, SRIdxVal);
6264   return SDValue(Result, 0);
6265 }
6266 
6267 /// getNodeIfExists - Get the specified node if it's already available, or
6268 /// else return NULL.
6269 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
6270                                       ArrayRef<SDValue> Ops,
6271                                       const SDNodeFlags *Flags) {
6272   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
6273     FoldingSetNodeID ID;
6274     AddNodeIDNode(ID, Opcode, VTList, Ops);
6275     void *IP = nullptr;
6276     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
6277       if (Flags)
6278         E->intersectFlagsWith(Flags);
6279       return E;
6280     }
6281   }
6282   return nullptr;
6283 }
6284 
6285 /// getDbgValue - Creates a SDDbgValue node.
6286 ///
6287 /// SDNode
6288 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N,
6289                                       unsigned R, bool IsIndirect, uint64_t Off,
6290                                       const DebugLoc &DL, unsigned O) {
6291   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6292          "Expected inlined-at fields to agree");
6293   return new (DbgInfo->getAlloc())
6294       SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O);
6295 }
6296 
6297 /// Constant
6298 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr,
6299                                               const Value *C, uint64_t Off,
6300                                               const DebugLoc &DL, unsigned O) {
6301   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6302          "Expected inlined-at fields to agree");
6303   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O);
6304 }
6305 
6306 /// FrameIndex
6307 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr,
6308                                                 unsigned FI, uint64_t Off,
6309                                                 const DebugLoc &DL,
6310                                                 unsigned O) {
6311   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6312          "Expected inlined-at fields to agree");
6313   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O);
6314 }
6315 
6316 namespace {
6317 
6318 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
6319 /// pointed to by a use iterator is deleted, increment the use iterator
6320 /// so that it doesn't dangle.
6321 ///
6322 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
6323   SDNode::use_iterator &UI;
6324   SDNode::use_iterator &UE;
6325 
6326   void NodeDeleted(SDNode *N, SDNode *E) override {
6327     // Increment the iterator as needed.
6328     while (UI != UE && N == *UI)
6329       ++UI;
6330   }
6331 
6332 public:
6333   RAUWUpdateListener(SelectionDAG &d,
6334                      SDNode::use_iterator &ui,
6335                      SDNode::use_iterator &ue)
6336     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
6337 };
6338 
6339 }
6340 
6341 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6342 /// This can cause recursive merging of nodes in the DAG.
6343 ///
6344 /// This version assumes From has a single result value.
6345 ///
6346 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
6347   SDNode *From = FromN.getNode();
6348   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
6349          "Cannot replace with this method!");
6350   assert(From != To.getNode() && "Cannot replace uses of with self");
6351 
6352   // Preserve Debug Values
6353   TransferDbgValues(FromN, To);
6354 
6355   // Iterate over all the existing uses of From. New uses will be added
6356   // to the beginning of the use list, which we avoid visiting.
6357   // This specifically avoids visiting uses of From that arise while the
6358   // replacement is happening, because any such uses would be the result
6359   // of CSE: If an existing node looks like From after one of its operands
6360   // is replaced by To, we don't want to replace of all its users with To
6361   // too. See PR3018 for more info.
6362   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6363   RAUWUpdateListener Listener(*this, UI, UE);
6364   while (UI != UE) {
6365     SDNode *User = *UI;
6366 
6367     // This node is about to morph, remove its old self from the CSE maps.
6368     RemoveNodeFromCSEMaps(User);
6369 
6370     // A user can appear in a use list multiple times, and when this
6371     // happens the uses are usually next to each other in the list.
6372     // To help reduce the number of CSE recomputations, process all
6373     // the uses of this user that we can find this way.
6374     do {
6375       SDUse &Use = UI.getUse();
6376       ++UI;
6377       Use.set(To);
6378     } while (UI != UE && *UI == User);
6379 
6380     // Now that we have modified User, add it back to the CSE maps.  If it
6381     // already exists there, recursively merge the results together.
6382     AddModifiedNodeToCSEMaps(User);
6383   }
6384 
6385 
6386   // If we just RAUW'd the root, take note.
6387   if (FromN == getRoot())
6388     setRoot(To);
6389 }
6390 
6391 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6392 /// This can cause recursive merging of nodes in the DAG.
6393 ///
6394 /// This version assumes that for each value of From, there is a
6395 /// corresponding value in To in the same position with the same type.
6396 ///
6397 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
6398 #ifndef NDEBUG
6399   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6400     assert((!From->hasAnyUseOfValue(i) ||
6401             From->getValueType(i) == To->getValueType(i)) &&
6402            "Cannot use this version of ReplaceAllUsesWith!");
6403 #endif
6404 
6405   // Handle the trivial case.
6406   if (From == To)
6407     return;
6408 
6409   // Preserve Debug Info. Only do this if there's a use.
6410   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6411     if (From->hasAnyUseOfValue(i)) {
6412       assert((i < To->getNumValues()) && "Invalid To location");
6413       TransferDbgValues(SDValue(From, i), SDValue(To, i));
6414     }
6415 
6416   // Iterate over just the existing users of From. See the comments in
6417   // the ReplaceAllUsesWith above.
6418   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6419   RAUWUpdateListener Listener(*this, UI, UE);
6420   while (UI != UE) {
6421     SDNode *User = *UI;
6422 
6423     // This node is about to morph, remove its old self from the CSE maps.
6424     RemoveNodeFromCSEMaps(User);
6425 
6426     // A user can appear in a use list multiple times, and when this
6427     // happens the uses are usually next to each other in the list.
6428     // To help reduce the number of CSE recomputations, process all
6429     // the uses of this user that we can find this way.
6430     do {
6431       SDUse &Use = UI.getUse();
6432       ++UI;
6433       Use.setNode(To);
6434     } while (UI != UE && *UI == User);
6435 
6436     // Now that we have modified User, add it back to the CSE maps.  If it
6437     // already exists there, recursively merge the results together.
6438     AddModifiedNodeToCSEMaps(User);
6439   }
6440 
6441   // If we just RAUW'd the root, take note.
6442   if (From == getRoot().getNode())
6443     setRoot(SDValue(To, getRoot().getResNo()));
6444 }
6445 
6446 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6447 /// This can cause recursive merging of nodes in the DAG.
6448 ///
6449 /// This version can replace From with any result values.  To must match the
6450 /// number and types of values returned by From.
6451 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
6452   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
6453     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
6454 
6455   // Preserve Debug Info.
6456   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6457     TransferDbgValues(SDValue(From, i), *To);
6458 
6459   // Iterate over just the existing users of From. See the comments in
6460   // the ReplaceAllUsesWith above.
6461   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6462   RAUWUpdateListener Listener(*this, UI, UE);
6463   while (UI != UE) {
6464     SDNode *User = *UI;
6465 
6466     // This node is about to morph, remove its old self from the CSE maps.
6467     RemoveNodeFromCSEMaps(User);
6468 
6469     // A user can appear in a use list multiple times, and when this
6470     // happens the uses are usually next to each other in the list.
6471     // To help reduce the number of CSE recomputations, process all
6472     // the uses of this user that we can find this way.
6473     do {
6474       SDUse &Use = UI.getUse();
6475       const SDValue &ToOp = To[Use.getResNo()];
6476       ++UI;
6477       Use.set(ToOp);
6478     } while (UI != UE && *UI == User);
6479 
6480     // Now that we have modified User, add it back to the CSE maps.  If it
6481     // already exists there, recursively merge the results together.
6482     AddModifiedNodeToCSEMaps(User);
6483   }
6484 
6485   // If we just RAUW'd the root, take note.
6486   if (From == getRoot().getNode())
6487     setRoot(SDValue(To[getRoot().getResNo()]));
6488 }
6489 
6490 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
6491 /// uses of other values produced by From.getNode() alone.  The Deleted
6492 /// vector is handled the same way as for ReplaceAllUsesWith.
6493 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
6494   // Handle the really simple, really trivial case efficiently.
6495   if (From == To) return;
6496 
6497   // Handle the simple, trivial, case efficiently.
6498   if (From.getNode()->getNumValues() == 1) {
6499     ReplaceAllUsesWith(From, To);
6500     return;
6501   }
6502 
6503   // Preserve Debug Info.
6504   TransferDbgValues(From, To);
6505 
6506   // Iterate over just the existing users of From. See the comments in
6507   // the ReplaceAllUsesWith above.
6508   SDNode::use_iterator UI = From.getNode()->use_begin(),
6509                        UE = From.getNode()->use_end();
6510   RAUWUpdateListener Listener(*this, UI, UE);
6511   while (UI != UE) {
6512     SDNode *User = *UI;
6513     bool UserRemovedFromCSEMaps = false;
6514 
6515     // A user can appear in a use list multiple times, and when this
6516     // happens the uses are usually next to each other in the list.
6517     // To help reduce the number of CSE recomputations, process all
6518     // the uses of this user that we can find this way.
6519     do {
6520       SDUse &Use = UI.getUse();
6521 
6522       // Skip uses of different values from the same node.
6523       if (Use.getResNo() != From.getResNo()) {
6524         ++UI;
6525         continue;
6526       }
6527 
6528       // If this node hasn't been modified yet, it's still in the CSE maps,
6529       // so remove its old self from the CSE maps.
6530       if (!UserRemovedFromCSEMaps) {
6531         RemoveNodeFromCSEMaps(User);
6532         UserRemovedFromCSEMaps = true;
6533       }
6534 
6535       ++UI;
6536       Use.set(To);
6537     } while (UI != UE && *UI == User);
6538 
6539     // We are iterating over all uses of the From node, so if a use
6540     // doesn't use the specific value, no changes are made.
6541     if (!UserRemovedFromCSEMaps)
6542       continue;
6543 
6544     // Now that we have modified User, add it back to the CSE maps.  If it
6545     // already exists there, recursively merge the results together.
6546     AddModifiedNodeToCSEMaps(User);
6547   }
6548 
6549   // If we just RAUW'd the root, take note.
6550   if (From == getRoot())
6551     setRoot(To);
6552 }
6553 
6554 namespace {
6555   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
6556   /// to record information about a use.
6557   struct UseMemo {
6558     SDNode *User;
6559     unsigned Index;
6560     SDUse *Use;
6561   };
6562 
6563   /// operator< - Sort Memos by User.
6564   bool operator<(const UseMemo &L, const UseMemo &R) {
6565     return (intptr_t)L.User < (intptr_t)R.User;
6566   }
6567 }
6568 
6569 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
6570 /// uses of other values produced by From.getNode() alone.  The same value
6571 /// may appear in both the From and To list.  The Deleted vector is
6572 /// handled the same way as for ReplaceAllUsesWith.
6573 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
6574                                               const SDValue *To,
6575                                               unsigned Num){
6576   // Handle the simple, trivial case efficiently.
6577   if (Num == 1)
6578     return ReplaceAllUsesOfValueWith(*From, *To);
6579 
6580   TransferDbgValues(*From, *To);
6581 
6582   // Read up all the uses and make records of them. This helps
6583   // processing new uses that are introduced during the
6584   // replacement process.
6585   SmallVector<UseMemo, 4> Uses;
6586   for (unsigned i = 0; i != Num; ++i) {
6587     unsigned FromResNo = From[i].getResNo();
6588     SDNode *FromNode = From[i].getNode();
6589     for (SDNode::use_iterator UI = FromNode->use_begin(),
6590          E = FromNode->use_end(); UI != E; ++UI) {
6591       SDUse &Use = UI.getUse();
6592       if (Use.getResNo() == FromResNo) {
6593         UseMemo Memo = { *UI, i, &Use };
6594         Uses.push_back(Memo);
6595       }
6596     }
6597   }
6598 
6599   // Sort the uses, so that all the uses from a given User are together.
6600   std::sort(Uses.begin(), Uses.end());
6601 
6602   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
6603        UseIndex != UseIndexEnd; ) {
6604     // We know that this user uses some value of From.  If it is the right
6605     // value, update it.
6606     SDNode *User = Uses[UseIndex].User;
6607 
6608     // This node is about to morph, remove its old self from the CSE maps.
6609     RemoveNodeFromCSEMaps(User);
6610 
6611     // The Uses array is sorted, so all the uses for a given User
6612     // are next to each other in the list.
6613     // To help reduce the number of CSE recomputations, process all
6614     // the uses of this user that we can find this way.
6615     do {
6616       unsigned i = Uses[UseIndex].Index;
6617       SDUse &Use = *Uses[UseIndex].Use;
6618       ++UseIndex;
6619 
6620       Use.set(To[i]);
6621     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
6622 
6623     // Now that we have modified User, add it back to the CSE maps.  If it
6624     // already exists there, recursively merge the results together.
6625     AddModifiedNodeToCSEMaps(User);
6626   }
6627 }
6628 
6629 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
6630 /// based on their topological order. It returns the maximum id and a vector
6631 /// of the SDNodes* in assigned order by reference.
6632 unsigned SelectionDAG::AssignTopologicalOrder() {
6633 
6634   unsigned DAGSize = 0;
6635 
6636   // SortedPos tracks the progress of the algorithm. Nodes before it are
6637   // sorted, nodes after it are unsorted. When the algorithm completes
6638   // it is at the end of the list.
6639   allnodes_iterator SortedPos = allnodes_begin();
6640 
6641   // Visit all the nodes. Move nodes with no operands to the front of
6642   // the list immediately. Annotate nodes that do have operands with their
6643   // operand count. Before we do this, the Node Id fields of the nodes
6644   // may contain arbitrary values. After, the Node Id fields for nodes
6645   // before SortedPos will contain the topological sort index, and the
6646   // Node Id fields for nodes At SortedPos and after will contain the
6647   // count of outstanding operands.
6648   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
6649     SDNode *N = &*I++;
6650     checkForCycles(N, this);
6651     unsigned Degree = N->getNumOperands();
6652     if (Degree == 0) {
6653       // A node with no uses, add it to the result array immediately.
6654       N->setNodeId(DAGSize++);
6655       allnodes_iterator Q(N);
6656       if (Q != SortedPos)
6657         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
6658       assert(SortedPos != AllNodes.end() && "Overran node list");
6659       ++SortedPos;
6660     } else {
6661       // Temporarily use the Node Id as scratch space for the degree count.
6662       N->setNodeId(Degree);
6663     }
6664   }
6665 
6666   // Visit all the nodes. As we iterate, move nodes into sorted order,
6667   // such that by the time the end is reached all nodes will be sorted.
6668   for (SDNode &Node : allnodes()) {
6669     SDNode *N = &Node;
6670     checkForCycles(N, this);
6671     // N is in sorted position, so all its uses have one less operand
6672     // that needs to be sorted.
6673     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6674          UI != UE; ++UI) {
6675       SDNode *P = *UI;
6676       unsigned Degree = P->getNodeId();
6677       assert(Degree != 0 && "Invalid node degree");
6678       --Degree;
6679       if (Degree == 0) {
6680         // All of P's operands are sorted, so P may sorted now.
6681         P->setNodeId(DAGSize++);
6682         if (P->getIterator() != SortedPos)
6683           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
6684         assert(SortedPos != AllNodes.end() && "Overran node list");
6685         ++SortedPos;
6686       } else {
6687         // Update P's outstanding operand count.
6688         P->setNodeId(Degree);
6689       }
6690     }
6691     if (Node.getIterator() == SortedPos) {
6692 #ifndef NDEBUG
6693       allnodes_iterator I(N);
6694       SDNode *S = &*++I;
6695       dbgs() << "Overran sorted position:\n";
6696       S->dumprFull(this); dbgs() << "\n";
6697       dbgs() << "Checking if this is due to cycles\n";
6698       checkForCycles(this, true);
6699 #endif
6700       llvm_unreachable(nullptr);
6701     }
6702   }
6703 
6704   assert(SortedPos == AllNodes.end() &&
6705          "Topological sort incomplete!");
6706   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
6707          "First node in topological sort is not the entry token!");
6708   assert(AllNodes.front().getNodeId() == 0 &&
6709          "First node in topological sort has non-zero id!");
6710   assert(AllNodes.front().getNumOperands() == 0 &&
6711          "First node in topological sort has operands!");
6712   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
6713          "Last node in topologic sort has unexpected id!");
6714   assert(AllNodes.back().use_empty() &&
6715          "Last node in topologic sort has users!");
6716   assert(DAGSize == allnodes_size() && "Node count mismatch!");
6717   return DAGSize;
6718 }
6719 
6720 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
6721 /// value is produced by SD.
6722 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
6723   if (SD) {
6724     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
6725     SD->setHasDebugValue(true);
6726   }
6727   DbgInfo->add(DB, SD, isParameter);
6728 }
6729 
6730 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes.
6731 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
6732   if (From == To || !From.getNode()->getHasDebugValue())
6733     return;
6734   SDNode *FromNode = From.getNode();
6735   SDNode *ToNode = To.getNode();
6736   ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
6737   SmallVector<SDDbgValue *, 2> ClonedDVs;
6738   for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
6739        I != E; ++I) {
6740     SDDbgValue *Dbg = *I;
6741     // Only add Dbgvalues attached to same ResNo.
6742     if (Dbg->getKind() == SDDbgValue::SDNODE &&
6743         Dbg->getSDNode() == From.getNode() &&
6744         Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) {
6745       assert(FromNode != ToNode &&
6746              "Should not transfer Debug Values intranode");
6747       SDDbgValue *Clone =
6748           getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode,
6749                       To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(),
6750                       Dbg->getDebugLoc(), Dbg->getOrder());
6751       ClonedDVs.push_back(Clone);
6752       Dbg->setIsInvalidated();
6753     }
6754   }
6755   for (SDDbgValue *I : ClonedDVs)
6756     AddDbgValue(I, ToNode, false);
6757 }
6758 
6759 //===----------------------------------------------------------------------===//
6760 //                              SDNode Class
6761 //===----------------------------------------------------------------------===//
6762 
6763 bool llvm::isNullConstant(SDValue V) {
6764   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6765   return Const != nullptr && Const->isNullValue();
6766 }
6767 
6768 bool llvm::isNullFPConstant(SDValue V) {
6769   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
6770   return Const != nullptr && Const->isZero() && !Const->isNegative();
6771 }
6772 
6773 bool llvm::isAllOnesConstant(SDValue V) {
6774   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6775   return Const != nullptr && Const->isAllOnesValue();
6776 }
6777 
6778 bool llvm::isOneConstant(SDValue V) {
6779   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6780   return Const != nullptr && Const->isOne();
6781 }
6782 
6783 bool llvm::isBitwiseNot(SDValue V) {
6784   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
6785 }
6786 
6787 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
6788   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
6789     return CN;
6790 
6791   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
6792     BitVector UndefElements;
6793     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
6794 
6795     // BuildVectors can truncate their operands. Ignore that case here.
6796     // FIXME: We blindly ignore splats which include undef which is overly
6797     // pessimistic.
6798     if (CN && UndefElements.none() &&
6799         CN->getValueType(0) == N.getValueType().getScalarType())
6800       return CN;
6801   }
6802 
6803   return nullptr;
6804 }
6805 
6806 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
6807   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
6808     return CN;
6809 
6810   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
6811     BitVector UndefElements;
6812     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
6813 
6814     if (CN && UndefElements.none())
6815       return CN;
6816   }
6817 
6818   return nullptr;
6819 }
6820 
6821 HandleSDNode::~HandleSDNode() {
6822   DropOperands();
6823 }
6824 
6825 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
6826                                          const DebugLoc &DL,
6827                                          const GlobalValue *GA, EVT VT,
6828                                          int64_t o, unsigned char TF)
6829     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
6830   TheGlobal = GA;
6831 }
6832 
6833 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
6834                                          EVT VT, unsigned SrcAS,
6835                                          unsigned DestAS)
6836     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
6837       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
6838 
6839 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
6840                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
6841     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
6842   MemSDNodeBits.IsVolatile = MMO->isVolatile();
6843   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
6844   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
6845   MemSDNodeBits.IsInvariant = MMO->isInvariant();
6846 
6847   // We check here that the size of the memory operand fits within the size of
6848   // the MMO. This is because the MMO might indicate only a possible address
6849   // range instead of specifying the affected memory addresses precisely.
6850   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
6851 }
6852 
6853 /// Profile - Gather unique data for the node.
6854 ///
6855 void SDNode::Profile(FoldingSetNodeID &ID) const {
6856   AddNodeIDNode(ID, this);
6857 }
6858 
6859 namespace {
6860   struct EVTArray {
6861     std::vector<EVT> VTs;
6862 
6863     EVTArray() {
6864       VTs.reserve(MVT::LAST_VALUETYPE);
6865       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
6866         VTs.push_back(MVT((MVT::SimpleValueType)i));
6867     }
6868   };
6869 }
6870 
6871 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
6872 static ManagedStatic<EVTArray> SimpleVTArray;
6873 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
6874 
6875 /// getValueTypeList - Return a pointer to the specified value type.
6876 ///
6877 const EVT *SDNode::getValueTypeList(EVT VT) {
6878   if (VT.isExtended()) {
6879     sys::SmartScopedLock<true> Lock(*VTMutex);
6880     return &(*EVTs->insert(VT).first);
6881   } else {
6882     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
6883            "Value type out of range!");
6884     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
6885   }
6886 }
6887 
6888 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
6889 /// indicated value.  This method ignores uses of other values defined by this
6890 /// operation.
6891 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
6892   assert(Value < getNumValues() && "Bad value!");
6893 
6894   // TODO: Only iterate over uses of a given value of the node
6895   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
6896     if (UI.getUse().getResNo() == Value) {
6897       if (NUses == 0)
6898         return false;
6899       --NUses;
6900     }
6901   }
6902 
6903   // Found exactly the right number of uses?
6904   return NUses == 0;
6905 }
6906 
6907 
6908 /// hasAnyUseOfValue - Return true if there are any use of the indicated
6909 /// value. This method ignores uses of other values defined by this operation.
6910 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
6911   assert(Value < getNumValues() && "Bad value!");
6912 
6913   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
6914     if (UI.getUse().getResNo() == Value)
6915       return true;
6916 
6917   return false;
6918 }
6919 
6920 
6921 /// isOnlyUserOf - Return true if this node is the only use of N.
6922 ///
6923 bool SDNode::isOnlyUserOf(const SDNode *N) const {
6924   bool Seen = false;
6925   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
6926     SDNode *User = *I;
6927     if (User == this)
6928       Seen = true;
6929     else
6930       return false;
6931   }
6932 
6933   return Seen;
6934 }
6935 
6936 /// isOperand - Return true if this node is an operand of N.
6937 ///
6938 bool SDValue::isOperandOf(const SDNode *N) const {
6939   for (const SDValue &Op : N->op_values())
6940     if (*this == Op)
6941       return true;
6942   return false;
6943 }
6944 
6945 bool SDNode::isOperandOf(const SDNode *N) const {
6946   for (const SDValue &Op : N->op_values())
6947     if (this == Op.getNode())
6948       return true;
6949   return false;
6950 }
6951 
6952 /// reachesChainWithoutSideEffects - Return true if this operand (which must
6953 /// be a chain) reaches the specified operand without crossing any
6954 /// side-effecting instructions on any chain path.  In practice, this looks
6955 /// through token factors and non-volatile loads.  In order to remain efficient,
6956 /// this only looks a couple of nodes in, it does not do an exhaustive search.
6957 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
6958                                                unsigned Depth) const {
6959   if (*this == Dest) return true;
6960 
6961   // Don't search too deeply, we just want to be able to see through
6962   // TokenFactor's etc.
6963   if (Depth == 0) return false;
6964 
6965   // If this is a token factor, all inputs to the TF happen in parallel.  If any
6966   // of the operands of the TF does not reach dest, then we cannot do the xform.
6967   if (getOpcode() == ISD::TokenFactor) {
6968     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6969       if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
6970         return false;
6971     return true;
6972   }
6973 
6974   // Loads don't have side effects, look through them.
6975   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
6976     if (!Ld->isVolatile())
6977       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
6978   }
6979   return false;
6980 }
6981 
6982 bool SDNode::hasPredecessor(const SDNode *N) const {
6983   SmallPtrSet<const SDNode *, 32> Visited;
6984   SmallVector<const SDNode *, 16> Worklist;
6985   Worklist.push_back(this);
6986   return hasPredecessorHelper(N, Visited, Worklist);
6987 }
6988 
6989 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
6990   assert(Num < NumOperands && "Invalid child # of SDNode!");
6991   return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
6992 }
6993 
6994 const SDNodeFlags *SDNode::getFlags() const {
6995   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
6996     return &FlagsNode->Flags;
6997   return nullptr;
6998 }
6999 
7000 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) {
7001   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
7002     FlagsNode->Flags.intersectWith(Flags);
7003 }
7004 
7005 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
7006   assert(N->getNumValues() == 1 &&
7007          "Can't unroll a vector with multiple results!");
7008 
7009   EVT VT = N->getValueType(0);
7010   unsigned NE = VT.getVectorNumElements();
7011   EVT EltVT = VT.getVectorElementType();
7012   SDLoc dl(N);
7013 
7014   SmallVector<SDValue, 8> Scalars;
7015   SmallVector<SDValue, 4> Operands(N->getNumOperands());
7016 
7017   // If ResNE is 0, fully unroll the vector op.
7018   if (ResNE == 0)
7019     ResNE = NE;
7020   else if (NE > ResNE)
7021     NE = ResNE;
7022 
7023   unsigned i;
7024   for (i= 0; i != NE; ++i) {
7025     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
7026       SDValue Operand = N->getOperand(j);
7027       EVT OperandVT = Operand.getValueType();
7028       if (OperandVT.isVector()) {
7029         // A vector operand; extract a single element.
7030         EVT OperandEltVT = OperandVT.getVectorElementType();
7031         Operands[j] =
7032             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
7033                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
7034       } else {
7035         // A scalar operand; just use it as is.
7036         Operands[j] = Operand;
7037       }
7038     }
7039 
7040     switch (N->getOpcode()) {
7041     default: {
7042       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
7043                                 N->getFlags()));
7044       break;
7045     }
7046     case ISD::VSELECT:
7047       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
7048       break;
7049     case ISD::SHL:
7050     case ISD::SRA:
7051     case ISD::SRL:
7052     case ISD::ROTL:
7053     case ISD::ROTR:
7054       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
7055                                getShiftAmountOperand(Operands[0].getValueType(),
7056                                                      Operands[1])));
7057       break;
7058     case ISD::SIGN_EXTEND_INREG:
7059     case ISD::FP_ROUND_INREG: {
7060       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
7061       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
7062                                 Operands[0],
7063                                 getValueType(ExtVT)));
7064     }
7065     }
7066   }
7067 
7068   for (; i < ResNE; ++i)
7069     Scalars.push_back(getUNDEF(EltVT));
7070 
7071   return getNode(ISD::BUILD_VECTOR, dl,
7072                  EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars);
7073 }
7074 
7075 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
7076                                                   LoadSDNode *Base,
7077                                                   unsigned Bytes,
7078                                                   int Dist) const {
7079   if (LD->isVolatile() || Base->isVolatile())
7080     return false;
7081   if (LD->isIndexed() || Base->isIndexed())
7082     return false;
7083   if (LD->getChain() != Base->getChain())
7084     return false;
7085   EVT VT = LD->getValueType(0);
7086   if (VT.getSizeInBits() / 8 != Bytes)
7087     return false;
7088 
7089   SDValue Loc = LD->getOperand(1);
7090   SDValue BaseLoc = Base->getOperand(1);
7091   if (Loc.getOpcode() == ISD::FrameIndex) {
7092     if (BaseLoc.getOpcode() != ISD::FrameIndex)
7093       return false;
7094     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7095     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
7096     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
7097     int FS  = MFI.getObjectSize(FI);
7098     int BFS = MFI.getObjectSize(BFI);
7099     if (FS != BFS || FS != (int)Bytes) return false;
7100     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
7101   }
7102 
7103   // Handle X + C.
7104   if (isBaseWithConstantOffset(Loc)) {
7105     int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
7106     if (Loc.getOperand(0) == BaseLoc) {
7107       // If the base location is a simple address with no offset itself, then
7108       // the second load's first add operand should be the base address.
7109       if (LocOffset == Dist * (int)Bytes)
7110         return true;
7111     } else if (isBaseWithConstantOffset(BaseLoc)) {
7112       // The base location itself has an offset, so subtract that value from the
7113       // second load's offset before comparing to distance * size.
7114       int64_t BOffset =
7115         cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue();
7116       if (Loc.getOperand(0) == BaseLoc.getOperand(0)) {
7117         if ((LocOffset - BOffset) == Dist * (int)Bytes)
7118           return true;
7119       }
7120     }
7121   }
7122   const GlobalValue *GV1 = nullptr;
7123   const GlobalValue *GV2 = nullptr;
7124   int64_t Offset1 = 0;
7125   int64_t Offset2 = 0;
7126   bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
7127   bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
7128   if (isGA1 && isGA2 && GV1 == GV2)
7129     return Offset1 == (Offset2 + Dist*Bytes);
7130   return false;
7131 }
7132 
7133 
7134 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
7135 /// it cannot be inferred.
7136 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
7137   // If this is a GlobalAddress + cst, return the alignment.
7138   const GlobalValue *GV;
7139   int64_t GVOffset = 0;
7140   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
7141     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
7142     APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
7143     llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne,
7144                            getDataLayout());
7145     unsigned AlignBits = KnownZero.countTrailingOnes();
7146     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
7147     if (Align)
7148       return MinAlign(Align, GVOffset);
7149   }
7150 
7151   // If this is a direct reference to a stack slot, use information about the
7152   // stack slot's alignment.
7153   int FrameIdx = 1 << 31;
7154   int64_t FrameOffset = 0;
7155   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
7156     FrameIdx = FI->getIndex();
7157   } else if (isBaseWithConstantOffset(Ptr) &&
7158              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
7159     // Handle FI+Cst
7160     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7161     FrameOffset = Ptr.getConstantOperandVal(1);
7162   }
7163 
7164   if (FrameIdx != (1 << 31)) {
7165     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7166     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
7167                                     FrameOffset);
7168     return FIInfoAlign;
7169   }
7170 
7171   return 0;
7172 }
7173 
7174 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
7175 /// which is split (or expanded) into two not necessarily identical pieces.
7176 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
7177   // Currently all types are split in half.
7178   EVT LoVT, HiVT;
7179   if (!VT.isVector()) {
7180     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
7181   } else {
7182     unsigned NumElements = VT.getVectorNumElements();
7183     assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7184     LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
7185                                    NumElements/2);
7186   }
7187   return std::make_pair(LoVT, HiVT);
7188 }
7189 
7190 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
7191 /// low/high part.
7192 std::pair<SDValue, SDValue>
7193 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
7194                           const EVT &HiVT) {
7195   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
7196          N.getValueType().getVectorNumElements() &&
7197          "More vector elements requested than available!");
7198   SDValue Lo, Hi;
7199   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
7200                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
7201   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
7202                getConstant(LoVT.getVectorNumElements(), DL,
7203                            TLI->getVectorIdxTy(getDataLayout())));
7204   return std::make_pair(Lo, Hi);
7205 }
7206 
7207 void SelectionDAG::ExtractVectorElements(SDValue Op,
7208                                          SmallVectorImpl<SDValue> &Args,
7209                                          unsigned Start, unsigned Count) {
7210   EVT VT = Op.getValueType();
7211   if (Count == 0)
7212     Count = VT.getVectorNumElements();
7213 
7214   EVT EltVT = VT.getVectorElementType();
7215   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
7216   SDLoc SL(Op);
7217   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
7218     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
7219                            Op, getConstant(i, SL, IdxTy)));
7220   }
7221 }
7222 
7223 // getAddressSpace - Return the address space this GlobalAddress belongs to.
7224 unsigned GlobalAddressSDNode::getAddressSpace() const {
7225   return getGlobal()->getType()->getAddressSpace();
7226 }
7227 
7228 
7229 Type *ConstantPoolSDNode::getType() const {
7230   if (isMachineConstantPoolEntry())
7231     return Val.MachineCPVal->getType();
7232   return Val.ConstVal->getType();
7233 }
7234 
7235 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
7236                                         APInt &SplatUndef,
7237                                         unsigned &SplatBitSize,
7238                                         bool &HasAnyUndefs,
7239                                         unsigned MinSplatBits,
7240                                         bool isBigEndian) const {
7241   EVT VT = getValueType(0);
7242   assert(VT.isVector() && "Expected a vector type");
7243   unsigned sz = VT.getSizeInBits();
7244   if (MinSplatBits > sz)
7245     return false;
7246 
7247   SplatValue = APInt(sz, 0);
7248   SplatUndef = APInt(sz, 0);
7249 
7250   // Get the bits.  Bits with undefined values (when the corresponding element
7251   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
7252   // in SplatValue.  If any of the values are not constant, give up and return
7253   // false.
7254   unsigned int nOps = getNumOperands();
7255   assert(nOps > 0 && "isConstantSplat has 0-size build vector");
7256   unsigned EltBitSize = VT.getScalarSizeInBits();
7257 
7258   for (unsigned j = 0; j < nOps; ++j) {
7259     unsigned i = isBigEndian ? nOps-1-j : j;
7260     SDValue OpVal = getOperand(i);
7261     unsigned BitPos = j * EltBitSize;
7262 
7263     if (OpVal.isUndef())
7264       SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
7265     else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
7266       SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
7267                     zextOrTrunc(sz) << BitPos;
7268     else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
7269       SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
7270      else
7271       return false;
7272   }
7273 
7274   // The build_vector is all constants or undefs.  Find the smallest element
7275   // size that splats the vector.
7276 
7277   HasAnyUndefs = (SplatUndef != 0);
7278   while (sz > 8) {
7279 
7280     unsigned HalfSize = sz / 2;
7281     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
7282     APInt LowValue = SplatValue.trunc(HalfSize);
7283     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
7284     APInt LowUndef = SplatUndef.trunc(HalfSize);
7285 
7286     // If the two halves do not match (ignoring undef bits), stop here.
7287     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
7288         MinSplatBits > HalfSize)
7289       break;
7290 
7291     SplatValue = HighValue | LowValue;
7292     SplatUndef = HighUndef & LowUndef;
7293 
7294     sz = HalfSize;
7295   }
7296 
7297   SplatBitSize = sz;
7298   return true;
7299 }
7300 
7301 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
7302   if (UndefElements) {
7303     UndefElements->clear();
7304     UndefElements->resize(getNumOperands());
7305   }
7306   SDValue Splatted;
7307   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
7308     SDValue Op = getOperand(i);
7309     if (Op.isUndef()) {
7310       if (UndefElements)
7311         (*UndefElements)[i] = true;
7312     } else if (!Splatted) {
7313       Splatted = Op;
7314     } else if (Splatted != Op) {
7315       return SDValue();
7316     }
7317   }
7318 
7319   if (!Splatted) {
7320     assert(getOperand(0).isUndef() &&
7321            "Can only have a splat without a constant for all undefs.");
7322     return getOperand(0);
7323   }
7324 
7325   return Splatted;
7326 }
7327 
7328 ConstantSDNode *
7329 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
7330   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
7331 }
7332 
7333 ConstantFPSDNode *
7334 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
7335   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
7336 }
7337 
7338 int32_t
7339 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
7340                                                    uint32_t BitWidth) const {
7341   if (ConstantFPSDNode *CN =
7342           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
7343     bool IsExact;
7344     APSInt IntVal(BitWidth);
7345     const APFloat &APF = CN->getValueAPF();
7346     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
7347             APFloat::opOK ||
7348         !IsExact)
7349       return -1;
7350 
7351     return IntVal.exactLogBase2();
7352   }
7353   return -1;
7354 }
7355 
7356 bool BuildVectorSDNode::isConstant() const {
7357   for (const SDValue &Op : op_values()) {
7358     unsigned Opc = Op.getOpcode();
7359     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
7360       return false;
7361   }
7362   return true;
7363 }
7364 
7365 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
7366   // Find the first non-undef value in the shuffle mask.
7367   unsigned i, e;
7368   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
7369     /* search */;
7370 
7371   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
7372 
7373   // Make sure all remaining elements are either undef or the same as the first
7374   // non-undef value.
7375   for (int Idx = Mask[i]; i != e; ++i)
7376     if (Mask[i] >= 0 && Mask[i] != Idx)
7377       return false;
7378   return true;
7379 }
7380 
7381 // \brief Returns the SDNode if it is a constant integer BuildVector
7382 // or constant integer.
7383 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
7384   if (isa<ConstantSDNode>(N))
7385     return N.getNode();
7386   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
7387     return N.getNode();
7388   // Treat a GlobalAddress supporting constant offset folding as a
7389   // constant integer.
7390   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
7391     if (GA->getOpcode() == ISD::GlobalAddress &&
7392         TLI->isOffsetFoldingLegal(GA))
7393       return GA;
7394   return nullptr;
7395 }
7396 
7397 #ifndef NDEBUG
7398 static void checkForCyclesHelper(const SDNode *N,
7399                                  SmallPtrSetImpl<const SDNode*> &Visited,
7400                                  SmallPtrSetImpl<const SDNode*> &Checked,
7401                                  const llvm::SelectionDAG *DAG) {
7402   // If this node has already been checked, don't check it again.
7403   if (Checked.count(N))
7404     return;
7405 
7406   // If a node has already been visited on this depth-first walk, reject it as
7407   // a cycle.
7408   if (!Visited.insert(N).second) {
7409     errs() << "Detected cycle in SelectionDAG\n";
7410     dbgs() << "Offending node:\n";
7411     N->dumprFull(DAG); dbgs() << "\n";
7412     abort();
7413   }
7414 
7415   for (const SDValue &Op : N->op_values())
7416     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
7417 
7418   Checked.insert(N);
7419   Visited.erase(N);
7420 }
7421 #endif
7422 
7423 void llvm::checkForCycles(const llvm::SDNode *N,
7424                           const llvm::SelectionDAG *DAG,
7425                           bool force) {
7426 #ifndef NDEBUG
7427   bool check = force;
7428 #ifdef EXPENSIVE_CHECKS
7429   check = true;
7430 #endif  // EXPENSIVE_CHECKS
7431   if (check) {
7432     assert(N && "Checking nonexistent SDNode");
7433     SmallPtrSet<const SDNode*, 32> visited;
7434     SmallPtrSet<const SDNode*, 32> checked;
7435     checkForCyclesHelper(N, visited, checked, DAG);
7436   }
7437 #endif  // !NDEBUG
7438 }
7439 
7440 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
7441   checkForCycles(DAG->getRoot().getNode(), DAG, force);
7442 }
7443