1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/RuntimeLibcalls.h"
36 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/KnownBits.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/ManagedStatic.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/Mutex.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <cstdlib>
71 #include <limits>
72 #include <set>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 /// makeVTList - Return an instance of the SDVTList struct initialized with the
80 /// specified members.
81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
82   SDVTList Res = {VTs, NumVTs};
83   return Res;
84 }
85 
86 // Default null implementations of the callbacks.
87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
89 
90 #define DEBUG_TYPE "selectiondag"
91 
92 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
93        cl::Hidden, cl::init(true),
94        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
95 
96 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
97        cl::desc("Number limit for gluing ld/st of memcpy."),
98        cl::Hidden, cl::init(0));
99 
100 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
101   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
102 }
103 
104 //===----------------------------------------------------------------------===//
105 //                              ConstantFPSDNode Class
106 //===----------------------------------------------------------------------===//
107 
108 /// isExactlyValue - We don't rely on operator== working on double values, as
109 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
110 /// As such, this method can be used to do an exact bit-for-bit comparison of
111 /// two floating point values.
112 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
113   return getValueAPF().bitwiseIsEqual(V);
114 }
115 
116 bool ConstantFPSDNode::isValueValidForType(EVT VT,
117                                            const APFloat& Val) {
118   assert(VT.isFloatingPoint() && "Can only convert between FP types");
119 
120   // convert modifies in place, so make a copy.
121   APFloat Val2 = APFloat(Val);
122   bool losesInfo;
123   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
124                       APFloat::rmNearestTiesToEven,
125                       &losesInfo);
126   return !losesInfo;
127 }
128 
129 //===----------------------------------------------------------------------===//
130 //                              ISD Namespace
131 //===----------------------------------------------------------------------===//
132 
133 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
134   auto *BV = dyn_cast<BuildVectorSDNode>(N);
135   if (!BV)
136     return false;
137 
138   APInt SplatUndef;
139   unsigned SplatBitSize;
140   bool HasUndefs;
141   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
142   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
143                              EltSize) &&
144          EltSize == SplatBitSize;
145 }
146 
147 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
148 // specializations of the more general isConstantSplatVector()?
149 
150 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
151   // Look through a bit convert.
152   while (N->getOpcode() == ISD::BITCAST)
153     N = N->getOperand(0).getNode();
154 
155   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156 
157   unsigned i = 0, e = N->getNumOperands();
158 
159   // Skip over all of the undef values.
160   while (i != e && N->getOperand(i).isUndef())
161     ++i;
162 
163   // Do not accept an all-undef vector.
164   if (i == e) return false;
165 
166   // Do not accept build_vectors that aren't all constants or which have non-~0
167   // elements. We have to be a bit careful here, as the type of the constant
168   // may not be the same as the type of the vector elements due to type
169   // legalization (the elements are promoted to a legal type for the target and
170   // a vector of a type may be legal when the base element type is not).
171   // We only want to check enough bits to cover the vector elements, because
172   // we care if the resultant vector is all ones, not whether the individual
173   // constants are.
174   SDValue NotZero = N->getOperand(i);
175   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
176   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
177     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
178       return false;
179   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
180     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
181       return false;
182   } else
183     return false;
184 
185   // Okay, we have at least one ~0 value, check to see if the rest match or are
186   // undefs. Even with the above element type twiddling, this should be OK, as
187   // the same type legalization should have applied to all the elements.
188   for (++i; i != e; ++i)
189     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
190       return false;
191   return true;
192 }
193 
194 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
195   // Look through a bit convert.
196   while (N->getOpcode() == ISD::BITCAST)
197     N = N->getOperand(0).getNode();
198 
199   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
200 
201   bool IsAllUndef = true;
202   for (const SDValue &Op : N->op_values()) {
203     if (Op.isUndef())
204       continue;
205     IsAllUndef = false;
206     // Do not accept build_vectors that aren't all constants or which have non-0
207     // elements. We have to be a bit careful here, as the type of the constant
208     // may not be the same as the type of the vector elements due to type
209     // legalization (the elements are promoted to a legal type for the target
210     // and a vector of a type may be legal when the base element type is not).
211     // We only want to check enough bits to cover the vector elements, because
212     // we care if the resultant vector is all zeros, not whether the individual
213     // constants are.
214     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
215     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
216       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
217         return false;
218     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
219       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
220         return false;
221     } else
222       return false;
223   }
224 
225   // Do not accept an all-undef vector.
226   if (IsAllUndef)
227     return false;
228   return true;
229 }
230 
231 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
232   if (N->getOpcode() != ISD::BUILD_VECTOR)
233     return false;
234 
235   for (const SDValue &Op : N->op_values()) {
236     if (Op.isUndef())
237       continue;
238     if (!isa<ConstantSDNode>(Op))
239       return false;
240   }
241   return true;
242 }
243 
244 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
245   if (N->getOpcode() != ISD::BUILD_VECTOR)
246     return false;
247 
248   for (const SDValue &Op : N->op_values()) {
249     if (Op.isUndef())
250       continue;
251     if (!isa<ConstantFPSDNode>(Op))
252       return false;
253   }
254   return true;
255 }
256 
257 bool ISD::allOperandsUndef(const SDNode *N) {
258   // Return false if the node has no operands.
259   // This is "logically inconsistent" with the definition of "all" but
260   // is probably the desired behavior.
261   if (N->getNumOperands() == 0)
262     return false;
263 
264   for (const SDValue &Op : N->op_values())
265     if (!Op.isUndef())
266       return false;
267 
268   return true;
269 }
270 
271 bool ISD::matchUnaryPredicate(SDValue Op,
272                               std::function<bool(ConstantSDNode *)> Match) {
273   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
274     return Match(Cst);
275 
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
282     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
283       return false;
284   }
285   return true;
286 }
287 
288 bool ISD::matchBinaryPredicate(
289     SDValue LHS, SDValue RHS,
290     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match) {
291   if (LHS.getValueType() != RHS.getValueType())
292     return false;
293 
294   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
295     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
296       return Match(LHSCst, RHSCst);
297 
298   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
299       ISD::BUILD_VECTOR != RHS.getOpcode())
300     return false;
301 
302   EVT SVT = LHS.getValueType().getScalarType();
303   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
304     auto *LHSCst = dyn_cast<ConstantSDNode>(LHS.getOperand(i));
305     auto *RHSCst = dyn_cast<ConstantSDNode>(RHS.getOperand(i));
306     if (!LHSCst || !RHSCst)
307       return false;
308     if (LHSCst->getValueType(0) != SVT ||
309         LHSCst->getValueType(0) != RHSCst->getValueType(0))
310       return false;
311     if (!Match(LHSCst, RHSCst))
312       return false;
313   }
314   return true;
315 }
316 
317 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
318   switch (ExtType) {
319   case ISD::EXTLOAD:
320     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
321   case ISD::SEXTLOAD:
322     return ISD::SIGN_EXTEND;
323   case ISD::ZEXTLOAD:
324     return ISD::ZERO_EXTEND;
325   default:
326     break;
327   }
328 
329   llvm_unreachable("Invalid LoadExtType");
330 }
331 
332 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
333   // To perform this operation, we just need to swap the L and G bits of the
334   // operation.
335   unsigned OldL = (Operation >> 2) & 1;
336   unsigned OldG = (Operation >> 1) & 1;
337   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
338                        (OldL << 1) |       // New G bit
339                        (OldG << 2));       // New L bit.
340 }
341 
342 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
343   unsigned Operation = Op;
344   if (isInteger)
345     Operation ^= 7;   // Flip L, G, E bits, but not U.
346   else
347     Operation ^= 15;  // Flip all of the condition bits.
348 
349   if (Operation > ISD::SETTRUE2)
350     Operation &= ~8;  // Don't let N and U bits get set.
351 
352   return ISD::CondCode(Operation);
353 }
354 
355 /// For an integer comparison, return 1 if the comparison is a signed operation
356 /// and 2 if the result is an unsigned comparison. Return zero if the operation
357 /// does not depend on the sign of the input (setne and seteq).
358 static int isSignedOp(ISD::CondCode Opcode) {
359   switch (Opcode) {
360   default: llvm_unreachable("Illegal integer setcc operation!");
361   case ISD::SETEQ:
362   case ISD::SETNE: return 0;
363   case ISD::SETLT:
364   case ISD::SETLE:
365   case ISD::SETGT:
366   case ISD::SETGE: return 1;
367   case ISD::SETULT:
368   case ISD::SETULE:
369   case ISD::SETUGT:
370   case ISD::SETUGE: return 2;
371   }
372 }
373 
374 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
375                                        bool IsInteger) {
376   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
377     // Cannot fold a signed integer setcc with an unsigned integer setcc.
378     return ISD::SETCC_INVALID;
379 
380   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
381 
382   // If the N and U bits get set, then the resultant comparison DOES suddenly
383   // care about orderedness, and it is true when ordered.
384   if (Op > ISD::SETTRUE2)
385     Op &= ~16;     // Clear the U bit if the N bit is set.
386 
387   // Canonicalize illegal integer setcc's.
388   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
389     Op = ISD::SETNE;
390 
391   return ISD::CondCode(Op);
392 }
393 
394 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
395                                         bool IsInteger) {
396   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
397     // Cannot fold a signed setcc with an unsigned setcc.
398     return ISD::SETCC_INVALID;
399 
400   // Combine all of the condition bits.
401   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
402 
403   // Canonicalize illegal integer setcc's.
404   if (IsInteger) {
405     switch (Result) {
406     default: break;
407     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
408     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
409     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
410     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
411     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
412     }
413   }
414 
415   return Result;
416 }
417 
418 //===----------------------------------------------------------------------===//
419 //                           SDNode Profile Support
420 //===----------------------------------------------------------------------===//
421 
422 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
423 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
424   ID.AddInteger(OpC);
425 }
426 
427 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
428 /// solely with their pointer.
429 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
430   ID.AddPointer(VTList.VTs);
431 }
432 
433 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
434 static void AddNodeIDOperands(FoldingSetNodeID &ID,
435                               ArrayRef<SDValue> Ops) {
436   for (auto& Op : Ops) {
437     ID.AddPointer(Op.getNode());
438     ID.AddInteger(Op.getResNo());
439   }
440 }
441 
442 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
443 static void AddNodeIDOperands(FoldingSetNodeID &ID,
444                               ArrayRef<SDUse> Ops) {
445   for (auto& Op : Ops) {
446     ID.AddPointer(Op.getNode());
447     ID.AddInteger(Op.getResNo());
448   }
449 }
450 
451 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
452                           SDVTList VTList, ArrayRef<SDValue> OpList) {
453   AddNodeIDOpcode(ID, OpC);
454   AddNodeIDValueTypes(ID, VTList);
455   AddNodeIDOperands(ID, OpList);
456 }
457 
458 /// If this is an SDNode with special info, add this info to the NodeID data.
459 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
460   switch (N->getOpcode()) {
461   case ISD::TargetExternalSymbol:
462   case ISD::ExternalSymbol:
463   case ISD::MCSymbol:
464     llvm_unreachable("Should only be used on nodes with operands");
465   default: break;  // Normal nodes don't need extra info.
466   case ISD::TargetConstant:
467   case ISD::Constant: {
468     const ConstantSDNode *C = cast<ConstantSDNode>(N);
469     ID.AddPointer(C->getConstantIntValue());
470     ID.AddBoolean(C->isOpaque());
471     break;
472   }
473   case ISD::TargetConstantFP:
474   case ISD::ConstantFP:
475     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
476     break;
477   case ISD::TargetGlobalAddress:
478   case ISD::GlobalAddress:
479   case ISD::TargetGlobalTLSAddress:
480   case ISD::GlobalTLSAddress: {
481     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
482     ID.AddPointer(GA->getGlobal());
483     ID.AddInteger(GA->getOffset());
484     ID.AddInteger(GA->getTargetFlags());
485     break;
486   }
487   case ISD::BasicBlock:
488     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
489     break;
490   case ISD::Register:
491     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
492     break;
493   case ISD::RegisterMask:
494     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
495     break;
496   case ISD::SRCVALUE:
497     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
498     break;
499   case ISD::FrameIndex:
500   case ISD::TargetFrameIndex:
501     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
502     break;
503   case ISD::JumpTable:
504   case ISD::TargetJumpTable:
505     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
506     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
507     break;
508   case ISD::ConstantPool:
509   case ISD::TargetConstantPool: {
510     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
511     ID.AddInteger(CP->getAlignment());
512     ID.AddInteger(CP->getOffset());
513     if (CP->isMachineConstantPoolEntry())
514       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
515     else
516       ID.AddPointer(CP->getConstVal());
517     ID.AddInteger(CP->getTargetFlags());
518     break;
519   }
520   case ISD::TargetIndex: {
521     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
522     ID.AddInteger(TI->getIndex());
523     ID.AddInteger(TI->getOffset());
524     ID.AddInteger(TI->getTargetFlags());
525     break;
526   }
527   case ISD::LOAD: {
528     const LoadSDNode *LD = cast<LoadSDNode>(N);
529     ID.AddInteger(LD->getMemoryVT().getRawBits());
530     ID.AddInteger(LD->getRawSubclassData());
531     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
532     break;
533   }
534   case ISD::STORE: {
535     const StoreSDNode *ST = cast<StoreSDNode>(N);
536     ID.AddInteger(ST->getMemoryVT().getRawBits());
537     ID.AddInteger(ST->getRawSubclassData());
538     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
539     break;
540   }
541   case ISD::ATOMIC_CMP_SWAP:
542   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
543   case ISD::ATOMIC_SWAP:
544   case ISD::ATOMIC_LOAD_ADD:
545   case ISD::ATOMIC_LOAD_SUB:
546   case ISD::ATOMIC_LOAD_AND:
547   case ISD::ATOMIC_LOAD_CLR:
548   case ISD::ATOMIC_LOAD_OR:
549   case ISD::ATOMIC_LOAD_XOR:
550   case ISD::ATOMIC_LOAD_NAND:
551   case ISD::ATOMIC_LOAD_MIN:
552   case ISD::ATOMIC_LOAD_MAX:
553   case ISD::ATOMIC_LOAD_UMIN:
554   case ISD::ATOMIC_LOAD_UMAX:
555   case ISD::ATOMIC_LOAD:
556   case ISD::ATOMIC_STORE: {
557     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
558     ID.AddInteger(AT->getMemoryVT().getRawBits());
559     ID.AddInteger(AT->getRawSubclassData());
560     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
561     break;
562   }
563   case ISD::PREFETCH: {
564     const MemSDNode *PF = cast<MemSDNode>(N);
565     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
566     break;
567   }
568   case ISD::VECTOR_SHUFFLE: {
569     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
570     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
571          i != e; ++i)
572       ID.AddInteger(SVN->getMaskElt(i));
573     break;
574   }
575   case ISD::TargetBlockAddress:
576   case ISD::BlockAddress: {
577     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
578     ID.AddPointer(BA->getBlockAddress());
579     ID.AddInteger(BA->getOffset());
580     ID.AddInteger(BA->getTargetFlags());
581     break;
582   }
583   } // end switch (N->getOpcode())
584 
585   // Target specific memory nodes could also have address spaces to check.
586   if (N->isTargetMemoryOpcode())
587     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
588 }
589 
590 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
591 /// data.
592 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
593   AddNodeIDOpcode(ID, N->getOpcode());
594   // Add the return value info.
595   AddNodeIDValueTypes(ID, N->getVTList());
596   // Add the operand info.
597   AddNodeIDOperands(ID, N->ops());
598 
599   // Handle SDNode leafs with special info.
600   AddNodeIDCustom(ID, N);
601 }
602 
603 //===----------------------------------------------------------------------===//
604 //                              SelectionDAG Class
605 //===----------------------------------------------------------------------===//
606 
607 /// doNotCSE - Return true if CSE should not be performed for this node.
608 static bool doNotCSE(SDNode *N) {
609   if (N->getValueType(0) == MVT::Glue)
610     return true; // Never CSE anything that produces a flag.
611 
612   switch (N->getOpcode()) {
613   default: break;
614   case ISD::HANDLENODE:
615   case ISD::EH_LABEL:
616     return true;   // Never CSE these nodes.
617   }
618 
619   // Check that remaining values produced are not flags.
620   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
621     if (N->getValueType(i) == MVT::Glue)
622       return true; // Never CSE anything that produces a flag.
623 
624   return false;
625 }
626 
627 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
628 /// SelectionDAG.
629 void SelectionDAG::RemoveDeadNodes() {
630   // Create a dummy node (which is not added to allnodes), that adds a reference
631   // to the root node, preventing it from being deleted.
632   HandleSDNode Dummy(getRoot());
633 
634   SmallVector<SDNode*, 128> DeadNodes;
635 
636   // Add all obviously-dead nodes to the DeadNodes worklist.
637   for (SDNode &Node : allnodes())
638     if (Node.use_empty())
639       DeadNodes.push_back(&Node);
640 
641   RemoveDeadNodes(DeadNodes);
642 
643   // If the root changed (e.g. it was a dead load, update the root).
644   setRoot(Dummy.getValue());
645 }
646 
647 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
648 /// given list, and any nodes that become unreachable as a result.
649 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
650 
651   // Process the worklist, deleting the nodes and adding their uses to the
652   // worklist.
653   while (!DeadNodes.empty()) {
654     SDNode *N = DeadNodes.pop_back_val();
655     // Skip to next node if we've already managed to delete the node. This could
656     // happen if replacing a node causes a node previously added to the node to
657     // be deleted.
658     if (N->getOpcode() == ISD::DELETED_NODE)
659       continue;
660 
661     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
662       DUL->NodeDeleted(N, nullptr);
663 
664     // Take the node out of the appropriate CSE map.
665     RemoveNodeFromCSEMaps(N);
666 
667     // Next, brutally remove the operand list.  This is safe to do, as there are
668     // no cycles in the graph.
669     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
670       SDUse &Use = *I++;
671       SDNode *Operand = Use.getNode();
672       Use.set(SDValue());
673 
674       // Now that we removed this operand, see if there are no uses of it left.
675       if (Operand->use_empty())
676         DeadNodes.push_back(Operand);
677     }
678 
679     DeallocateNode(N);
680   }
681 }
682 
683 void SelectionDAG::RemoveDeadNode(SDNode *N){
684   SmallVector<SDNode*, 16> DeadNodes(1, N);
685 
686   // Create a dummy node that adds a reference to the root node, preventing
687   // it from being deleted.  (This matters if the root is an operand of the
688   // dead node.)
689   HandleSDNode Dummy(getRoot());
690 
691   RemoveDeadNodes(DeadNodes);
692 }
693 
694 void SelectionDAG::DeleteNode(SDNode *N) {
695   // First take this out of the appropriate CSE map.
696   RemoveNodeFromCSEMaps(N);
697 
698   // Finally, remove uses due to operands of this node, remove from the
699   // AllNodes list, and delete the node.
700   DeleteNodeNotInCSEMaps(N);
701 }
702 
703 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
704   assert(N->getIterator() != AllNodes.begin() &&
705          "Cannot delete the entry node!");
706   assert(N->use_empty() && "Cannot delete a node that is not dead!");
707 
708   // Drop all of the operands and decrement used node's use counts.
709   N->DropOperands();
710 
711   DeallocateNode(N);
712 }
713 
714 void SDDbgInfo::erase(const SDNode *Node) {
715   DbgValMapType::iterator I = DbgValMap.find(Node);
716   if (I == DbgValMap.end())
717     return;
718   for (auto &Val: I->second)
719     Val->setIsInvalidated();
720   DbgValMap.erase(I);
721 }
722 
723 void SelectionDAG::DeallocateNode(SDNode *N) {
724   // If we have operands, deallocate them.
725   removeOperands(N);
726 
727   NodeAllocator.Deallocate(AllNodes.remove(N));
728 
729   // Set the opcode to DELETED_NODE to help catch bugs when node
730   // memory is reallocated.
731   // FIXME: There are places in SDag that have grown a dependency on the opcode
732   // value in the released node.
733   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
734   N->NodeType = ISD::DELETED_NODE;
735 
736   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
737   // them and forget about that node.
738   DbgInfo->erase(N);
739 }
740 
741 #ifndef NDEBUG
742 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
743 static void VerifySDNode(SDNode *N) {
744   switch (N->getOpcode()) {
745   default:
746     break;
747   case ISD::BUILD_PAIR: {
748     EVT VT = N->getValueType(0);
749     assert(N->getNumValues() == 1 && "Too many results!");
750     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
751            "Wrong return type!");
752     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
753     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
754            "Mismatched operand types!");
755     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
756            "Wrong operand type!");
757     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
758            "Wrong return type size");
759     break;
760   }
761   case ISD::BUILD_VECTOR: {
762     assert(N->getNumValues() == 1 && "Too many results!");
763     assert(N->getValueType(0).isVector() && "Wrong return type!");
764     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
765            "Wrong number of operands!");
766     EVT EltVT = N->getValueType(0).getVectorElementType();
767     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
768       assert((I->getValueType() == EltVT ||
769              (EltVT.isInteger() && I->getValueType().isInteger() &&
770               EltVT.bitsLE(I->getValueType()))) &&
771             "Wrong operand type!");
772       assert(I->getValueType() == N->getOperand(0).getValueType() &&
773              "Operands must all have the same type");
774     }
775     break;
776   }
777   }
778 }
779 #endif // NDEBUG
780 
781 /// Insert a newly allocated node into the DAG.
782 ///
783 /// Handles insertion into the all nodes list and CSE map, as well as
784 /// verification and other common operations when a new node is allocated.
785 void SelectionDAG::InsertNode(SDNode *N) {
786   AllNodes.push_back(N);
787 #ifndef NDEBUG
788   N->PersistentId = NextPersistentId++;
789   VerifySDNode(N);
790 #endif
791 }
792 
793 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
794 /// correspond to it.  This is useful when we're about to delete or repurpose
795 /// the node.  We don't want future request for structurally identical nodes
796 /// to return N anymore.
797 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
798   bool Erased = false;
799   switch (N->getOpcode()) {
800   case ISD::HANDLENODE: return false;  // noop.
801   case ISD::CONDCODE:
802     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
803            "Cond code doesn't exist!");
804     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
805     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
806     break;
807   case ISD::ExternalSymbol:
808     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
809     break;
810   case ISD::TargetExternalSymbol: {
811     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
812     Erased = TargetExternalSymbols.erase(
813                std::pair<std::string,unsigned char>(ESN->getSymbol(),
814                                                     ESN->getTargetFlags()));
815     break;
816   }
817   case ISD::MCSymbol: {
818     auto *MCSN = cast<MCSymbolSDNode>(N);
819     Erased = MCSymbols.erase(MCSN->getMCSymbol());
820     break;
821   }
822   case ISD::VALUETYPE: {
823     EVT VT = cast<VTSDNode>(N)->getVT();
824     if (VT.isExtended()) {
825       Erased = ExtendedValueTypeNodes.erase(VT);
826     } else {
827       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
828       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
829     }
830     break;
831   }
832   default:
833     // Remove it from the CSE Map.
834     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
835     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
836     Erased = CSEMap.RemoveNode(N);
837     break;
838   }
839 #ifndef NDEBUG
840   // Verify that the node was actually in one of the CSE maps, unless it has a
841   // flag result (which cannot be CSE'd) or is one of the special cases that are
842   // not subject to CSE.
843   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
844       !N->isMachineOpcode() && !doNotCSE(N)) {
845     N->dump(this);
846     dbgs() << "\n";
847     llvm_unreachable("Node is not in map!");
848   }
849 #endif
850   return Erased;
851 }
852 
853 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
854 /// maps and modified in place. Add it back to the CSE maps, unless an identical
855 /// node already exists, in which case transfer all its users to the existing
856 /// node. This transfer can potentially trigger recursive merging.
857 void
858 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
859   // For node types that aren't CSE'd, just act as if no identical node
860   // already exists.
861   if (!doNotCSE(N)) {
862     SDNode *Existing = CSEMap.GetOrInsertNode(N);
863     if (Existing != N) {
864       // If there was already an existing matching node, use ReplaceAllUsesWith
865       // to replace the dead one with the existing one.  This can cause
866       // recursive merging of other unrelated nodes down the line.
867       ReplaceAllUsesWith(N, Existing);
868 
869       // N is now dead. Inform the listeners and delete it.
870       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
871         DUL->NodeDeleted(N, Existing);
872       DeleteNodeNotInCSEMaps(N);
873       return;
874     }
875   }
876 
877   // If the node doesn't already exist, we updated it.  Inform listeners.
878   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
879     DUL->NodeUpdated(N);
880 }
881 
882 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
883 /// were replaced with those specified.  If this node is never memoized,
884 /// return null, otherwise return a pointer to the slot it would take.  If a
885 /// node already exists with these operands, the slot will be non-null.
886 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
887                                            void *&InsertPos) {
888   if (doNotCSE(N))
889     return nullptr;
890 
891   SDValue Ops[] = { Op };
892   FoldingSetNodeID ID;
893   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
894   AddNodeIDCustom(ID, N);
895   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
896   if (Node)
897     Node->intersectFlagsWith(N->getFlags());
898   return Node;
899 }
900 
901 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
902 /// were replaced with those specified.  If this node is never memoized,
903 /// return null, otherwise return a pointer to the slot it would take.  If a
904 /// node already exists with these operands, the slot will be non-null.
905 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
906                                            SDValue Op1, SDValue Op2,
907                                            void *&InsertPos) {
908   if (doNotCSE(N))
909     return nullptr;
910 
911   SDValue Ops[] = { Op1, Op2 };
912   FoldingSetNodeID ID;
913   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
914   AddNodeIDCustom(ID, N);
915   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
916   if (Node)
917     Node->intersectFlagsWith(N->getFlags());
918   return Node;
919 }
920 
921 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
922 /// were replaced with those specified.  If this node is never memoized,
923 /// return null, otherwise return a pointer to the slot it would take.  If a
924 /// node already exists with these operands, the slot will be non-null.
925 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
926                                            void *&InsertPos) {
927   if (doNotCSE(N))
928     return nullptr;
929 
930   FoldingSetNodeID ID;
931   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
932   AddNodeIDCustom(ID, N);
933   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
934   if (Node)
935     Node->intersectFlagsWith(N->getFlags());
936   return Node;
937 }
938 
939 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
940   Type *Ty = VT == MVT::iPTR ?
941                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
942                    VT.getTypeForEVT(*getContext());
943 
944   return getDataLayout().getABITypeAlignment(Ty);
945 }
946 
947 // EntryNode could meaningfully have debug info if we can find it...
948 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
949     : TM(tm), OptLevel(OL),
950       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
951       Root(getEntryNode()) {
952   InsertNode(&EntryNode);
953   DbgInfo = new SDDbgInfo();
954 }
955 
956 void SelectionDAG::init(MachineFunction &NewMF,
957                         OptimizationRemarkEmitter &NewORE,
958                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
959                         DivergenceAnalysis * Divergence) {
960   MF = &NewMF;
961   SDAGISelPass = PassPtr;
962   ORE = &NewORE;
963   TLI = getSubtarget().getTargetLowering();
964   TSI = getSubtarget().getSelectionDAGInfo();
965   LibInfo = LibraryInfo;
966   Context = &MF->getFunction().getContext();
967   DA = Divergence;
968 }
969 
970 SelectionDAG::~SelectionDAG() {
971   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
972   allnodes_clear();
973   OperandRecycler.clear(OperandAllocator);
974   delete DbgInfo;
975 }
976 
977 void SelectionDAG::allnodes_clear() {
978   assert(&*AllNodes.begin() == &EntryNode);
979   AllNodes.remove(AllNodes.begin());
980   while (!AllNodes.empty())
981     DeallocateNode(&AllNodes.front());
982 #ifndef NDEBUG
983   NextPersistentId = 0;
984 #endif
985 }
986 
987 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
988                                           void *&InsertPos) {
989   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
990   if (N) {
991     switch (N->getOpcode()) {
992     default: break;
993     case ISD::Constant:
994     case ISD::ConstantFP:
995       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
996                        "debug location.  Use another overload.");
997     }
998   }
999   return N;
1000 }
1001 
1002 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1003                                           const SDLoc &DL, void *&InsertPos) {
1004   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1005   if (N) {
1006     switch (N->getOpcode()) {
1007     case ISD::Constant:
1008     case ISD::ConstantFP:
1009       // Erase debug location from the node if the node is used at several
1010       // different places. Do not propagate one location to all uses as it
1011       // will cause a worse single stepping debugging experience.
1012       if (N->getDebugLoc() != DL.getDebugLoc())
1013         N->setDebugLoc(DebugLoc());
1014       break;
1015     default:
1016       // When the node's point of use is located earlier in the instruction
1017       // sequence than its prior point of use, update its debug info to the
1018       // earlier location.
1019       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1020         N->setDebugLoc(DL.getDebugLoc());
1021       break;
1022     }
1023   }
1024   return N;
1025 }
1026 
1027 void SelectionDAG::clear() {
1028   allnodes_clear();
1029   OperandRecycler.clear(OperandAllocator);
1030   OperandAllocator.Reset();
1031   CSEMap.clear();
1032 
1033   ExtendedValueTypeNodes.clear();
1034   ExternalSymbols.clear();
1035   TargetExternalSymbols.clear();
1036   MCSymbols.clear();
1037   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1038             static_cast<CondCodeSDNode*>(nullptr));
1039   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1040             static_cast<SDNode*>(nullptr));
1041 
1042   EntryNode.UseList = nullptr;
1043   InsertNode(&EntryNode);
1044   Root = getEntryNode();
1045   DbgInfo->clear();
1046 }
1047 
1048 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1049   return VT.bitsGT(Op.getValueType())
1050              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1051              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1052 }
1053 
1054 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1055   return VT.bitsGT(Op.getValueType()) ?
1056     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1057     getNode(ISD::TRUNCATE, DL, VT, Op);
1058 }
1059 
1060 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1061   return VT.bitsGT(Op.getValueType()) ?
1062     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1063     getNode(ISD::TRUNCATE, DL, VT, Op);
1064 }
1065 
1066 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1067   return VT.bitsGT(Op.getValueType()) ?
1068     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1069     getNode(ISD::TRUNCATE, DL, VT, Op);
1070 }
1071 
1072 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1073                                         EVT OpVT) {
1074   if (VT.bitsLE(Op.getValueType()))
1075     return getNode(ISD::TRUNCATE, SL, VT, Op);
1076 
1077   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1078   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1079 }
1080 
1081 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1082   assert(!VT.isVector() &&
1083          "getZeroExtendInReg should use the vector element type instead of "
1084          "the vector type!");
1085   if (Op.getValueType().getScalarType() == VT) return Op;
1086   unsigned BitWidth = Op.getScalarValueSizeInBits();
1087   APInt Imm = APInt::getLowBitsSet(BitWidth,
1088                                    VT.getSizeInBits());
1089   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1090                  getConstant(Imm, DL, Op.getValueType()));
1091 }
1092 
1093 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1094                                               EVT VT) {
1095   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1096   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1097          "The sizes of the input and result must match in order to perform the "
1098          "extend in-register.");
1099   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1100          "The destination vector type must have fewer lanes than the input.");
1101   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1102 }
1103 
1104 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1105                                                EVT VT) {
1106   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1107   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1108          "The sizes of the input and result must match in order to perform the "
1109          "extend in-register.");
1110   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1111          "The destination vector type must have fewer lanes than the input.");
1112   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1113 }
1114 
1115 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1116                                                EVT VT) {
1117   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1118   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1119          "The sizes of the input and result must match in order to perform the "
1120          "extend in-register.");
1121   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1122          "The destination vector type must have fewer lanes than the input.");
1123   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1124 }
1125 
1126 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1127 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1128   EVT EltVT = VT.getScalarType();
1129   SDValue NegOne =
1130     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1131   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1132 }
1133 
1134 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1135   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1136   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1137 }
1138 
1139 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1140                                       EVT OpVT) {
1141   if (!V)
1142     return getConstant(0, DL, VT);
1143 
1144   switch (TLI->getBooleanContents(OpVT)) {
1145   case TargetLowering::ZeroOrOneBooleanContent:
1146   case TargetLowering::UndefinedBooleanContent:
1147     return getConstant(1, DL, VT);
1148   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1149     return getAllOnesConstant(DL, VT);
1150   }
1151   llvm_unreachable("Unexpected boolean content enum!");
1152 }
1153 
1154 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1155                                   bool isT, bool isO) {
1156   EVT EltVT = VT.getScalarType();
1157   assert((EltVT.getSizeInBits() >= 64 ||
1158          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1159          "getConstant with a uint64_t value that doesn't fit in the type!");
1160   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1161 }
1162 
1163 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1164                                   bool isT, bool isO) {
1165   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1166 }
1167 
1168 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1169                                   EVT VT, bool isT, bool isO) {
1170   assert(VT.isInteger() && "Cannot create FP integer constant!");
1171 
1172   EVT EltVT = VT.getScalarType();
1173   const ConstantInt *Elt = &Val;
1174 
1175   // In some cases the vector type is legal but the element type is illegal and
1176   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1177   // inserted value (the type does not need to match the vector element type).
1178   // Any extra bits introduced will be truncated away.
1179   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1180       TargetLowering::TypePromoteInteger) {
1181    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1182    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1183    Elt = ConstantInt::get(*getContext(), NewVal);
1184   }
1185   // In other cases the element type is illegal and needs to be expanded, for
1186   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1187   // the value into n parts and use a vector type with n-times the elements.
1188   // Then bitcast to the type requested.
1189   // Legalizing constants too early makes the DAGCombiner's job harder so we
1190   // only legalize if the DAG tells us we must produce legal types.
1191   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1192            TLI->getTypeAction(*getContext(), EltVT) ==
1193            TargetLowering::TypeExpandInteger) {
1194     const APInt &NewVal = Elt->getValue();
1195     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1196     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1197     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1198     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1199 
1200     // Check the temporary vector is the correct size. If this fails then
1201     // getTypeToTransformTo() probably returned a type whose size (in bits)
1202     // isn't a power-of-2 factor of the requested type size.
1203     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1204 
1205     SmallVector<SDValue, 2> EltParts;
1206     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1207       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1208                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1209                                      ViaEltVT, isT, isO));
1210     }
1211 
1212     // EltParts is currently in little endian order. If we actually want
1213     // big-endian order then reverse it now.
1214     if (getDataLayout().isBigEndian())
1215       std::reverse(EltParts.begin(), EltParts.end());
1216 
1217     // The elements must be reversed when the element order is different
1218     // to the endianness of the elements (because the BITCAST is itself a
1219     // vector shuffle in this situation). However, we do not need any code to
1220     // perform this reversal because getConstant() is producing a vector
1221     // splat.
1222     // This situation occurs in MIPS MSA.
1223 
1224     SmallVector<SDValue, 8> Ops;
1225     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1226       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1227 
1228     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1229     return V;
1230   }
1231 
1232   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1233          "APInt size does not match type size!");
1234   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1235   FoldingSetNodeID ID;
1236   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1237   ID.AddPointer(Elt);
1238   ID.AddBoolean(isO);
1239   void *IP = nullptr;
1240   SDNode *N = nullptr;
1241   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1242     if (!VT.isVector())
1243       return SDValue(N, 0);
1244 
1245   if (!N) {
1246     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
1247     CSEMap.InsertNode(N, IP);
1248     InsertNode(N);
1249     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1250   }
1251 
1252   SDValue Result(N, 0);
1253   if (VT.isVector())
1254     Result = getSplatBuildVector(VT, DL, Result);
1255 
1256   return Result;
1257 }
1258 
1259 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1260                                         bool isTarget) {
1261   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1262 }
1263 
1264 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1265                                     bool isTarget) {
1266   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1267 }
1268 
1269 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1270                                     EVT VT, bool isTarget) {
1271   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1272 
1273   EVT EltVT = VT.getScalarType();
1274 
1275   // Do the map lookup using the actual bit pattern for the floating point
1276   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1277   // we don't have issues with SNANs.
1278   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1279   FoldingSetNodeID ID;
1280   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1281   ID.AddPointer(&V);
1282   void *IP = nullptr;
1283   SDNode *N = nullptr;
1284   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1285     if (!VT.isVector())
1286       return SDValue(N, 0);
1287 
1288   if (!N) {
1289     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
1290     CSEMap.InsertNode(N, IP);
1291     InsertNode(N);
1292   }
1293 
1294   SDValue Result(N, 0);
1295   if (VT.isVector())
1296     Result = getSplatBuildVector(VT, DL, Result);
1297   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1298   return Result;
1299 }
1300 
1301 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1302                                     bool isTarget) {
1303   EVT EltVT = VT.getScalarType();
1304   if (EltVT == MVT::f32)
1305     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1306   else if (EltVT == MVT::f64)
1307     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1308   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1309            EltVT == MVT::f16) {
1310     bool Ignored;
1311     APFloat APF = APFloat(Val);
1312     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1313                 &Ignored);
1314     return getConstantFP(APF, DL, VT, isTarget);
1315   } else
1316     llvm_unreachable("Unsupported type in getConstantFP");
1317 }
1318 
1319 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1320                                        EVT VT, int64_t Offset, bool isTargetGA,
1321                                        unsigned char TargetFlags) {
1322   assert((TargetFlags == 0 || isTargetGA) &&
1323          "Cannot set target flags on target-independent globals");
1324 
1325   // Truncate (with sign-extension) the offset value to the pointer size.
1326   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1327   if (BitWidth < 64)
1328     Offset = SignExtend64(Offset, BitWidth);
1329 
1330   unsigned Opc;
1331   if (GV->isThreadLocal())
1332     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1333   else
1334     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1335 
1336   FoldingSetNodeID ID;
1337   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1338   ID.AddPointer(GV);
1339   ID.AddInteger(Offset);
1340   ID.AddInteger(TargetFlags);
1341   void *IP = nullptr;
1342   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1343     return SDValue(E, 0);
1344 
1345   auto *N = newSDNode<GlobalAddressSDNode>(
1346       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1347   CSEMap.InsertNode(N, IP);
1348     InsertNode(N);
1349   return SDValue(N, 0);
1350 }
1351 
1352 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1353   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1354   FoldingSetNodeID ID;
1355   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1356   ID.AddInteger(FI);
1357   void *IP = nullptr;
1358   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1359     return SDValue(E, 0);
1360 
1361   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1362   CSEMap.InsertNode(N, IP);
1363   InsertNode(N);
1364   return SDValue(N, 0);
1365 }
1366 
1367 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1368                                    unsigned char TargetFlags) {
1369   assert((TargetFlags == 0 || isTarget) &&
1370          "Cannot set target flags on target-independent jump tables");
1371   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1372   FoldingSetNodeID ID;
1373   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1374   ID.AddInteger(JTI);
1375   ID.AddInteger(TargetFlags);
1376   void *IP = nullptr;
1377   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1378     return SDValue(E, 0);
1379 
1380   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1381   CSEMap.InsertNode(N, IP);
1382   InsertNode(N);
1383   return SDValue(N, 0);
1384 }
1385 
1386 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1387                                       unsigned Alignment, int Offset,
1388                                       bool isTarget,
1389                                       unsigned char TargetFlags) {
1390   assert((TargetFlags == 0 || isTarget) &&
1391          "Cannot set target flags on target-independent globals");
1392   if (Alignment == 0)
1393     Alignment = MF->getFunction().optForSize()
1394                     ? getDataLayout().getABITypeAlignment(C->getType())
1395                     : getDataLayout().getPrefTypeAlignment(C->getType());
1396   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1397   FoldingSetNodeID ID;
1398   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1399   ID.AddInteger(Alignment);
1400   ID.AddInteger(Offset);
1401   ID.AddPointer(C);
1402   ID.AddInteger(TargetFlags);
1403   void *IP = nullptr;
1404   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1405     return SDValue(E, 0);
1406 
1407   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1408                                           TargetFlags);
1409   CSEMap.InsertNode(N, IP);
1410   InsertNode(N);
1411   return SDValue(N, 0);
1412 }
1413 
1414 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1415                                       unsigned Alignment, int Offset,
1416                                       bool isTarget,
1417                                       unsigned char TargetFlags) {
1418   assert((TargetFlags == 0 || isTarget) &&
1419          "Cannot set target flags on target-independent globals");
1420   if (Alignment == 0)
1421     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1422   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1423   FoldingSetNodeID ID;
1424   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1425   ID.AddInteger(Alignment);
1426   ID.AddInteger(Offset);
1427   C->addSelectionDAGCSEId(ID);
1428   ID.AddInteger(TargetFlags);
1429   void *IP = nullptr;
1430   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1431     return SDValue(E, 0);
1432 
1433   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1434                                           TargetFlags);
1435   CSEMap.InsertNode(N, IP);
1436   InsertNode(N);
1437   return SDValue(N, 0);
1438 }
1439 
1440 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1441                                      unsigned char TargetFlags) {
1442   FoldingSetNodeID ID;
1443   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1444   ID.AddInteger(Index);
1445   ID.AddInteger(Offset);
1446   ID.AddInteger(TargetFlags);
1447   void *IP = nullptr;
1448   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1449     return SDValue(E, 0);
1450 
1451   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1452   CSEMap.InsertNode(N, IP);
1453   InsertNode(N);
1454   return SDValue(N, 0);
1455 }
1456 
1457 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1458   FoldingSetNodeID ID;
1459   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1460   ID.AddPointer(MBB);
1461   void *IP = nullptr;
1462   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1463     return SDValue(E, 0);
1464 
1465   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1466   CSEMap.InsertNode(N, IP);
1467   InsertNode(N);
1468   return SDValue(N, 0);
1469 }
1470 
1471 SDValue SelectionDAG::getValueType(EVT VT) {
1472   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1473       ValueTypeNodes.size())
1474     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1475 
1476   SDNode *&N = VT.isExtended() ?
1477     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1478 
1479   if (N) return SDValue(N, 0);
1480   N = newSDNode<VTSDNode>(VT);
1481   InsertNode(N);
1482   return SDValue(N, 0);
1483 }
1484 
1485 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1486   SDNode *&N = ExternalSymbols[Sym];
1487   if (N) return SDValue(N, 0);
1488   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1489   InsertNode(N);
1490   return SDValue(N, 0);
1491 }
1492 
1493 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1494   SDNode *&N = MCSymbols[Sym];
1495   if (N)
1496     return SDValue(N, 0);
1497   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1498   InsertNode(N);
1499   return SDValue(N, 0);
1500 }
1501 
1502 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1503                                               unsigned char TargetFlags) {
1504   SDNode *&N =
1505     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1506                                                                TargetFlags)];
1507   if (N) return SDValue(N, 0);
1508   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1509   InsertNode(N);
1510   return SDValue(N, 0);
1511 }
1512 
1513 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1514   if ((unsigned)Cond >= CondCodeNodes.size())
1515     CondCodeNodes.resize(Cond+1);
1516 
1517   if (!CondCodeNodes[Cond]) {
1518     auto *N = newSDNode<CondCodeSDNode>(Cond);
1519     CondCodeNodes[Cond] = N;
1520     InsertNode(N);
1521   }
1522 
1523   return SDValue(CondCodeNodes[Cond], 0);
1524 }
1525 
1526 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1527 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1528 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1529   std::swap(N1, N2);
1530   ShuffleVectorSDNode::commuteMask(M);
1531 }
1532 
1533 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1534                                        SDValue N2, ArrayRef<int> Mask) {
1535   assert(VT.getVectorNumElements() == Mask.size() &&
1536            "Must have the same number of vector elements as mask elements!");
1537   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1538          "Invalid VECTOR_SHUFFLE");
1539 
1540   // Canonicalize shuffle undef, undef -> undef
1541   if (N1.isUndef() && N2.isUndef())
1542     return getUNDEF(VT);
1543 
1544   // Validate that all indices in Mask are within the range of the elements
1545   // input to the shuffle.
1546   int NElts = Mask.size();
1547   assert(llvm::all_of(Mask,
1548                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1549          "Index out of range");
1550 
1551   // Copy the mask so we can do any needed cleanup.
1552   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1553 
1554   // Canonicalize shuffle v, v -> v, undef
1555   if (N1 == N2) {
1556     N2 = getUNDEF(VT);
1557     for (int i = 0; i != NElts; ++i)
1558       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1559   }
1560 
1561   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1562   if (N1.isUndef())
1563     commuteShuffle(N1, N2, MaskVec);
1564 
1565   if (TLI->hasVectorBlend()) {
1566     // If shuffling a splat, try to blend the splat instead. We do this here so
1567     // that even when this arises during lowering we don't have to re-handle it.
1568     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1569       BitVector UndefElements;
1570       SDValue Splat = BV->getSplatValue(&UndefElements);
1571       if (!Splat)
1572         return;
1573 
1574       for (int i = 0; i < NElts; ++i) {
1575         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1576           continue;
1577 
1578         // If this input comes from undef, mark it as such.
1579         if (UndefElements[MaskVec[i] - Offset]) {
1580           MaskVec[i] = -1;
1581           continue;
1582         }
1583 
1584         // If we can blend a non-undef lane, use that instead.
1585         if (!UndefElements[i])
1586           MaskVec[i] = i + Offset;
1587       }
1588     };
1589     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1590       BlendSplat(N1BV, 0);
1591     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1592       BlendSplat(N2BV, NElts);
1593   }
1594 
1595   // Canonicalize all index into lhs, -> shuffle lhs, undef
1596   // Canonicalize all index into rhs, -> shuffle rhs, undef
1597   bool AllLHS = true, AllRHS = true;
1598   bool N2Undef = N2.isUndef();
1599   for (int i = 0; i != NElts; ++i) {
1600     if (MaskVec[i] >= NElts) {
1601       if (N2Undef)
1602         MaskVec[i] = -1;
1603       else
1604         AllLHS = false;
1605     } else if (MaskVec[i] >= 0) {
1606       AllRHS = false;
1607     }
1608   }
1609   if (AllLHS && AllRHS)
1610     return getUNDEF(VT);
1611   if (AllLHS && !N2Undef)
1612     N2 = getUNDEF(VT);
1613   if (AllRHS) {
1614     N1 = getUNDEF(VT);
1615     commuteShuffle(N1, N2, MaskVec);
1616   }
1617   // Reset our undef status after accounting for the mask.
1618   N2Undef = N2.isUndef();
1619   // Re-check whether both sides ended up undef.
1620   if (N1.isUndef() && N2Undef)
1621     return getUNDEF(VT);
1622 
1623   // If Identity shuffle return that node.
1624   bool Identity = true, AllSame = true;
1625   for (int i = 0; i != NElts; ++i) {
1626     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1627     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1628   }
1629   if (Identity && NElts)
1630     return N1;
1631 
1632   // Shuffling a constant splat doesn't change the result.
1633   if (N2Undef) {
1634     SDValue V = N1;
1635 
1636     // Look through any bitcasts. We check that these don't change the number
1637     // (and size) of elements and just changes their types.
1638     while (V.getOpcode() == ISD::BITCAST)
1639       V = V->getOperand(0);
1640 
1641     // A splat should always show up as a build vector node.
1642     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1643       BitVector UndefElements;
1644       SDValue Splat = BV->getSplatValue(&UndefElements);
1645       // If this is a splat of an undef, shuffling it is also undef.
1646       if (Splat && Splat.isUndef())
1647         return getUNDEF(VT);
1648 
1649       bool SameNumElts =
1650           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1651 
1652       // We only have a splat which can skip shuffles if there is a splatted
1653       // value and no undef lanes rearranged by the shuffle.
1654       if (Splat && UndefElements.none()) {
1655         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1656         // number of elements match or the value splatted is a zero constant.
1657         if (SameNumElts)
1658           return N1;
1659         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1660           if (C->isNullValue())
1661             return N1;
1662       }
1663 
1664       // If the shuffle itself creates a splat, build the vector directly.
1665       if (AllSame && SameNumElts) {
1666         EVT BuildVT = BV->getValueType(0);
1667         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1668         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1669 
1670         // We may have jumped through bitcasts, so the type of the
1671         // BUILD_VECTOR may not match the type of the shuffle.
1672         if (BuildVT != VT)
1673           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1674         return NewBV;
1675       }
1676     }
1677   }
1678 
1679   FoldingSetNodeID ID;
1680   SDValue Ops[2] = { N1, N2 };
1681   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1682   for (int i = 0; i != NElts; ++i)
1683     ID.AddInteger(MaskVec[i]);
1684 
1685   void* IP = nullptr;
1686   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1687     return SDValue(E, 0);
1688 
1689   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1690   // SDNode doesn't have access to it.  This memory will be "leaked" when
1691   // the node is deallocated, but recovered when the NodeAllocator is released.
1692   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1693   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1694 
1695   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1696                                            dl.getDebugLoc(), MaskAlloc);
1697   createOperands(N, Ops);
1698 
1699   CSEMap.InsertNode(N, IP);
1700   InsertNode(N);
1701   SDValue V = SDValue(N, 0);
1702   NewSDValueDbgMsg(V, "Creating new node: ", this);
1703   return V;
1704 }
1705 
1706 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1707   EVT VT = SV.getValueType(0);
1708   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1709   ShuffleVectorSDNode::commuteMask(MaskVec);
1710 
1711   SDValue Op0 = SV.getOperand(0);
1712   SDValue Op1 = SV.getOperand(1);
1713   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1714 }
1715 
1716 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1717   FoldingSetNodeID ID;
1718   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1719   ID.AddInteger(RegNo);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1725   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1726   CSEMap.InsertNode(N, IP);
1727   InsertNode(N);
1728   return SDValue(N, 0);
1729 }
1730 
1731 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1732   FoldingSetNodeID ID;
1733   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1734   ID.AddPointer(RegMask);
1735   void *IP = nullptr;
1736   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1737     return SDValue(E, 0);
1738 
1739   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1740   CSEMap.InsertNode(N, IP);
1741   InsertNode(N);
1742   return SDValue(N, 0);
1743 }
1744 
1745 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1746                                  MCSymbol *Label) {
1747   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1748 }
1749 
1750 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1751                                    SDValue Root, MCSymbol *Label) {
1752   FoldingSetNodeID ID;
1753   SDValue Ops[] = { Root };
1754   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1755   ID.AddPointer(Label);
1756   void *IP = nullptr;
1757   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1758     return SDValue(E, 0);
1759 
1760   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1761   createOperands(N, Ops);
1762 
1763   CSEMap.InsertNode(N, IP);
1764   InsertNode(N);
1765   return SDValue(N, 0);
1766 }
1767 
1768 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1769                                       int64_t Offset,
1770                                       bool isTarget,
1771                                       unsigned char TargetFlags) {
1772   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1773 
1774   FoldingSetNodeID ID;
1775   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1776   ID.AddPointer(BA);
1777   ID.AddInteger(Offset);
1778   ID.AddInteger(TargetFlags);
1779   void *IP = nullptr;
1780   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1781     return SDValue(E, 0);
1782 
1783   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1784   CSEMap.InsertNode(N, IP);
1785   InsertNode(N);
1786   return SDValue(N, 0);
1787 }
1788 
1789 SDValue SelectionDAG::getSrcValue(const Value *V) {
1790   assert((!V || V->getType()->isPointerTy()) &&
1791          "SrcValue is not a pointer?");
1792 
1793   FoldingSetNodeID ID;
1794   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1795   ID.AddPointer(V);
1796 
1797   void *IP = nullptr;
1798   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1799     return SDValue(E, 0);
1800 
1801   auto *N = newSDNode<SrcValueSDNode>(V);
1802   CSEMap.InsertNode(N, IP);
1803   InsertNode(N);
1804   return SDValue(N, 0);
1805 }
1806 
1807 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1808   FoldingSetNodeID ID;
1809   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1810   ID.AddPointer(MD);
1811 
1812   void *IP = nullptr;
1813   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1814     return SDValue(E, 0);
1815 
1816   auto *N = newSDNode<MDNodeSDNode>(MD);
1817   CSEMap.InsertNode(N, IP);
1818   InsertNode(N);
1819   return SDValue(N, 0);
1820 }
1821 
1822 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1823   if (VT == V.getValueType())
1824     return V;
1825 
1826   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1827 }
1828 
1829 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1830                                        unsigned SrcAS, unsigned DestAS) {
1831   SDValue Ops[] = {Ptr};
1832   FoldingSetNodeID ID;
1833   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1834   ID.AddInteger(SrcAS);
1835   ID.AddInteger(DestAS);
1836 
1837   void *IP = nullptr;
1838   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1839     return SDValue(E, 0);
1840 
1841   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1842                                            VT, SrcAS, DestAS);
1843   createOperands(N, Ops);
1844 
1845   CSEMap.InsertNode(N, IP);
1846   InsertNode(N);
1847   return SDValue(N, 0);
1848 }
1849 
1850 /// getShiftAmountOperand - Return the specified value casted to
1851 /// the target's desired shift amount type.
1852 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1853   EVT OpTy = Op.getValueType();
1854   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1855   if (OpTy == ShTy || OpTy.isVector()) return Op;
1856 
1857   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1858 }
1859 
1860 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1861   SDLoc dl(Node);
1862   const TargetLowering &TLI = getTargetLoweringInfo();
1863   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1864   EVT VT = Node->getValueType(0);
1865   SDValue Tmp1 = Node->getOperand(0);
1866   SDValue Tmp2 = Node->getOperand(1);
1867   unsigned Align = Node->getConstantOperandVal(3);
1868 
1869   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1870                                Tmp2, MachinePointerInfo(V));
1871   SDValue VAList = VAListLoad;
1872 
1873   if (Align > TLI.getMinStackArgumentAlignment()) {
1874     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1875 
1876     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1877                      getConstant(Align - 1, dl, VAList.getValueType()));
1878 
1879     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1880                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1881   }
1882 
1883   // Increment the pointer, VAList, to the next vaarg
1884   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1885                  getConstant(getDataLayout().getTypeAllocSize(
1886                                                VT.getTypeForEVT(*getContext())),
1887                              dl, VAList.getValueType()));
1888   // Store the incremented VAList to the legalized pointer
1889   Tmp1 =
1890       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1891   // Load the actual argument out of the pointer VAList
1892   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1893 }
1894 
1895 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1896   SDLoc dl(Node);
1897   const TargetLowering &TLI = getTargetLoweringInfo();
1898   // This defaults to loading a pointer from the input and storing it to the
1899   // output, returning the chain.
1900   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1901   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1902   SDValue Tmp1 =
1903       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1904               Node->getOperand(2), MachinePointerInfo(VS));
1905   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1906                   MachinePointerInfo(VD));
1907 }
1908 
1909 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1910   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1911   unsigned ByteSize = VT.getStoreSize();
1912   Type *Ty = VT.getTypeForEVT(*getContext());
1913   unsigned StackAlign =
1914       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1915 
1916   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1917   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1918 }
1919 
1920 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1921   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1922   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1923   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1924   const DataLayout &DL = getDataLayout();
1925   unsigned Align =
1926       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1927 
1928   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1929   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1930   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1931 }
1932 
1933 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1934                                 ISD::CondCode Cond, const SDLoc &dl) {
1935   EVT OpVT = N1.getValueType();
1936 
1937   // These setcc operations always fold.
1938   switch (Cond) {
1939   default: break;
1940   case ISD::SETFALSE:
1941   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1942   case ISD::SETTRUE:
1943   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1944 
1945   case ISD::SETOEQ:
1946   case ISD::SETOGT:
1947   case ISD::SETOGE:
1948   case ISD::SETOLT:
1949   case ISD::SETOLE:
1950   case ISD::SETONE:
1951   case ISD::SETO:
1952   case ISD::SETUO:
1953   case ISD::SETUEQ:
1954   case ISD::SETUNE:
1955     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1956     break;
1957   }
1958 
1959   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1960     const APInt &C2 = N2C->getAPIntValue();
1961     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1962       const APInt &C1 = N1C->getAPIntValue();
1963 
1964       switch (Cond) {
1965       default: llvm_unreachable("Unknown integer setcc!");
1966       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
1967       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
1968       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
1969       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
1970       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
1971       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
1972       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
1973       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
1974       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
1975       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
1976       }
1977     }
1978   }
1979   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1980     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1981       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1982       switch (Cond) {
1983       default: break;
1984       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1985                           return getUNDEF(VT);
1986                         LLVM_FALLTHROUGH;
1987       case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
1988                                                OpVT);
1989       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1990                           return getUNDEF(VT);
1991                         LLVM_FALLTHROUGH;
1992       case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
1993                                                R==APFloat::cmpLessThan, dl, VT,
1994                                                OpVT);
1995       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1996                           return getUNDEF(VT);
1997                         LLVM_FALLTHROUGH;
1998       case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
1999                                                OpVT);
2000       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2001                           return getUNDEF(VT);
2002                         LLVM_FALLTHROUGH;
2003       case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2004                                                VT, OpVT);
2005       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2006                           return getUNDEF(VT);
2007                         LLVM_FALLTHROUGH;
2008       case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2009                                                R==APFloat::cmpEqual, dl, VT,
2010                                                OpVT);
2011       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2012                           return getUNDEF(VT);
2013                         LLVM_FALLTHROUGH;
2014       case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2015                                            R==APFloat::cmpEqual, dl, VT, OpVT);
2016       case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2017                                                OpVT);
2018       case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2019                                                OpVT);
2020       case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2021                                                R==APFloat::cmpEqual, dl, VT,
2022                                                OpVT);
2023       case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2024                                                OpVT);
2025       case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2026                                                R==APFloat::cmpLessThan, dl, VT,
2027                                                OpVT);
2028       case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2029                                                R==APFloat::cmpUnordered, dl, VT,
2030                                                OpVT);
2031       case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2032                                                VT, OpVT);
2033       case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2034                                                OpVT);
2035       }
2036     } else {
2037       // Ensure that the constant occurs on the RHS.
2038       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2039       MVT CompVT = N1.getValueType().getSimpleVT();
2040       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
2041         return SDValue();
2042 
2043       return getSetCC(dl, VT, N2, N1, SwappedCond);
2044     }
2045   }
2046 
2047   // Could not fold it.
2048   return SDValue();
2049 }
2050 
2051 /// See if the specified operand can be simplified with the knowledge that only
2052 /// the bits specified by Mask are used.
2053 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2054   switch (V.getOpcode()) {
2055   default:
2056     break;
2057   case ISD::Constant: {
2058     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2059     assert(CV && "Const value should be ConstSDNode.");
2060     const APInt &CVal = CV->getAPIntValue();
2061     APInt NewVal = CVal & Mask;
2062     if (NewVal != CVal)
2063       return getConstant(NewVal, SDLoc(V), V.getValueType());
2064     break;
2065   }
2066   case ISD::OR:
2067   case ISD::XOR:
2068     // If the LHS or RHS don't contribute bits to the or, drop them.
2069     if (MaskedValueIsZero(V.getOperand(0), Mask))
2070       return V.getOperand(1);
2071     if (MaskedValueIsZero(V.getOperand(1), Mask))
2072       return V.getOperand(0);
2073     break;
2074   case ISD::SRL:
2075     // Only look at single-use SRLs.
2076     if (!V.getNode()->hasOneUse())
2077       break;
2078     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2079       // See if we can recursively simplify the LHS.
2080       unsigned Amt = RHSC->getZExtValue();
2081 
2082       // Watch out for shift count overflow though.
2083       if (Amt >= Mask.getBitWidth())
2084         break;
2085       APInt NewMask = Mask << Amt;
2086       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2087         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2088                        V.getOperand(1));
2089     }
2090     break;
2091   case ISD::AND: {
2092     // X & -1 -> X (ignoring bits which aren't demanded).
2093     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2094     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2095       return V.getOperand(0);
2096     break;
2097   }
2098   case ISD::ANY_EXTEND: {
2099     SDValue Src = V.getOperand(0);
2100     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2101     // Being conservative here - only peek through if we only demand bits in the
2102     // non-extended source (even though the extended bits are technically undef).
2103     if (Mask.getActiveBits() > SrcBitWidth)
2104       break;
2105     APInt SrcMask = Mask.trunc(SrcBitWidth);
2106     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2107       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2108     break;
2109   }
2110   }
2111   return SDValue();
2112 }
2113 
2114 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2115 /// use this predicate to simplify operations downstream.
2116 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2117   unsigned BitWidth = Op.getScalarValueSizeInBits();
2118   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2119 }
2120 
2121 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2122 /// this predicate to simplify operations downstream.  Mask is known to be zero
2123 /// for bits that V cannot have.
2124 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2125                                      unsigned Depth) const {
2126   KnownBits Known;
2127   computeKnownBits(Op, Known, Depth);
2128   return Mask.isSubsetOf(Known.Zero);
2129 }
2130 
2131 /// Helper function that checks to see if a node is a constant or a
2132 /// build vector of splat constants at least within the demanded elts.
2133 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N,
2134                                                    const APInt &DemandedElts) {
2135   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
2136     return CN;
2137   if (N.getOpcode() != ISD::BUILD_VECTOR)
2138     return nullptr;
2139   EVT VT = N.getValueType();
2140   ConstantSDNode *Cst = nullptr;
2141   unsigned NumElts = VT.getVectorNumElements();
2142   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size");
2143   for (unsigned i = 0; i != NumElts; ++i) {
2144     if (!DemandedElts[i])
2145       continue;
2146     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i));
2147     if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) ||
2148         C->getValueType(0) != VT.getScalarType())
2149       return nullptr;
2150     Cst = C;
2151   }
2152   return Cst;
2153 }
2154 
2155 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2156 /// is less than the element bit-width of the shift node, return it.
2157 static const APInt *getValidShiftAmountConstant(SDValue V) {
2158   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2159     // Shifting more than the bitwidth is not valid.
2160     const APInt &ShAmt = SA->getAPIntValue();
2161     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2162       return &ShAmt;
2163   }
2164   return nullptr;
2165 }
2166 
2167 /// Determine which bits of Op are known to be either zero or one and return
2168 /// them in Known. For vectors, the known bits are those that are shared by
2169 /// every vector element.
2170 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2171                                     unsigned Depth) const {
2172   EVT VT = Op.getValueType();
2173   APInt DemandedElts = VT.isVector()
2174                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2175                            : APInt(1, 1);
2176   computeKnownBits(Op, Known, DemandedElts, Depth);
2177 }
2178 
2179 /// Determine which bits of Op are known to be either zero or one and return
2180 /// them in Known. The DemandedElts argument allows us to only collect the known
2181 /// bits that are shared by the requested vector elements.
2182 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2183                                     const APInt &DemandedElts,
2184                                     unsigned Depth) const {
2185   unsigned BitWidth = Op.getScalarValueSizeInBits();
2186 
2187   Known = KnownBits(BitWidth);   // Don't know anything.
2188 
2189   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2190     // We know all of the bits for a constant!
2191     Known.One = C->getAPIntValue();
2192     Known.Zero = ~Known.One;
2193     return;
2194   }
2195   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2196     // We know all of the bits for a constant fp!
2197     Known.One = C->getValueAPF().bitcastToAPInt();
2198     Known.Zero = ~Known.One;
2199     return;
2200   }
2201 
2202   if (Depth == 6)
2203     return;  // Limit search depth.
2204 
2205   KnownBits Known2;
2206   unsigned NumElts = DemandedElts.getBitWidth();
2207 
2208   if (!DemandedElts)
2209     return;  // No demanded elts, better to assume we don't know anything.
2210 
2211   unsigned Opcode = Op.getOpcode();
2212   switch (Opcode) {
2213   case ISD::BUILD_VECTOR:
2214     // Collect the known bits that are shared by every demanded vector element.
2215     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2216            "Unexpected vector size");
2217     Known.Zero.setAllBits(); Known.One.setAllBits();
2218     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2219       if (!DemandedElts[i])
2220         continue;
2221 
2222       SDValue SrcOp = Op.getOperand(i);
2223       computeKnownBits(SrcOp, Known2, Depth + 1);
2224 
2225       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2226       if (SrcOp.getValueSizeInBits() != BitWidth) {
2227         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2228                "Expected BUILD_VECTOR implicit truncation");
2229         Known2 = Known2.trunc(BitWidth);
2230       }
2231 
2232       // Known bits are the values that are shared by every demanded element.
2233       Known.One &= Known2.One;
2234       Known.Zero &= Known2.Zero;
2235 
2236       // If we don't know any bits, early out.
2237       if (Known.isUnknown())
2238         break;
2239     }
2240     break;
2241   case ISD::VECTOR_SHUFFLE: {
2242     // Collect the known bits that are shared by every vector element referenced
2243     // by the shuffle.
2244     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2245     Known.Zero.setAllBits(); Known.One.setAllBits();
2246     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2247     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2248     for (unsigned i = 0; i != NumElts; ++i) {
2249       if (!DemandedElts[i])
2250         continue;
2251 
2252       int M = SVN->getMaskElt(i);
2253       if (M < 0) {
2254         // For UNDEF elements, we don't know anything about the common state of
2255         // the shuffle result.
2256         Known.resetAll();
2257         DemandedLHS.clearAllBits();
2258         DemandedRHS.clearAllBits();
2259         break;
2260       }
2261 
2262       if ((unsigned)M < NumElts)
2263         DemandedLHS.setBit((unsigned)M % NumElts);
2264       else
2265         DemandedRHS.setBit((unsigned)M % NumElts);
2266     }
2267     // Known bits are the values that are shared by every demanded element.
2268     if (!!DemandedLHS) {
2269       SDValue LHS = Op.getOperand(0);
2270       computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1);
2271       Known.One &= Known2.One;
2272       Known.Zero &= Known2.Zero;
2273     }
2274     // If we don't know any bits, early out.
2275     if (Known.isUnknown())
2276       break;
2277     if (!!DemandedRHS) {
2278       SDValue RHS = Op.getOperand(1);
2279       computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1);
2280       Known.One &= Known2.One;
2281       Known.Zero &= Known2.Zero;
2282     }
2283     break;
2284   }
2285   case ISD::CONCAT_VECTORS: {
2286     // Split DemandedElts and test each of the demanded subvectors.
2287     Known.Zero.setAllBits(); Known.One.setAllBits();
2288     EVT SubVectorVT = Op.getOperand(0).getValueType();
2289     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2290     unsigned NumSubVectors = Op.getNumOperands();
2291     for (unsigned i = 0; i != NumSubVectors; ++i) {
2292       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2293       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2294       if (!!DemandedSub) {
2295         SDValue Sub = Op.getOperand(i);
2296         computeKnownBits(Sub, Known2, DemandedSub, Depth + 1);
2297         Known.One &= Known2.One;
2298         Known.Zero &= Known2.Zero;
2299       }
2300       // If we don't know any bits, early out.
2301       if (Known.isUnknown())
2302         break;
2303     }
2304     break;
2305   }
2306   case ISD::INSERT_SUBVECTOR: {
2307     // If we know the element index, demand any elements from the subvector and
2308     // the remainder from the src its inserted into, otherwise demand them all.
2309     SDValue Src = Op.getOperand(0);
2310     SDValue Sub = Op.getOperand(1);
2311     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2312     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2313     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2314       Known.One.setAllBits();
2315       Known.Zero.setAllBits();
2316       uint64_t Idx = SubIdx->getZExtValue();
2317       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2318       if (!!DemandedSubElts) {
2319         computeKnownBits(Sub, Known, DemandedSubElts, Depth + 1);
2320         if (Known.isUnknown())
2321           break; // early-out.
2322       }
2323       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2324       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2325       if (!!DemandedSrcElts) {
2326         computeKnownBits(Src, Known2, DemandedSrcElts, Depth + 1);
2327         Known.One &= Known2.One;
2328         Known.Zero &= Known2.Zero;
2329       }
2330     } else {
2331       computeKnownBits(Sub, Known, Depth + 1);
2332       if (Known.isUnknown())
2333         break; // early-out.
2334       computeKnownBits(Src, Known2, Depth + 1);
2335       Known.One &= Known2.One;
2336       Known.Zero &= Known2.Zero;
2337     }
2338     break;
2339   }
2340   case ISD::EXTRACT_SUBVECTOR: {
2341     // If we know the element index, just demand that subvector elements,
2342     // otherwise demand them all.
2343     SDValue Src = Op.getOperand(0);
2344     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2345     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2346     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2347       // Offset the demanded elts by the subvector index.
2348       uint64_t Idx = SubIdx->getZExtValue();
2349       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
2350       computeKnownBits(Src, Known, DemandedSrc, Depth + 1);
2351     } else {
2352       computeKnownBits(Src, Known, Depth + 1);
2353     }
2354     break;
2355   }
2356   case ISD::BITCAST: {
2357     SDValue N0 = Op.getOperand(0);
2358     EVT SubVT = N0.getValueType();
2359     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2360 
2361     // Ignore bitcasts from unsupported types.
2362     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2363       break;
2364 
2365     // Fast handling of 'identity' bitcasts.
2366     if (BitWidth == SubBitWidth) {
2367       computeKnownBits(N0, Known, DemandedElts, Depth + 1);
2368       break;
2369     }
2370 
2371     bool IsLE = getDataLayout().isLittleEndian();
2372 
2373     // Bitcast 'small element' vector to 'large element' scalar/vector.
2374     if ((BitWidth % SubBitWidth) == 0) {
2375       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2376 
2377       // Collect known bits for the (larger) output by collecting the known
2378       // bits from each set of sub elements and shift these into place.
2379       // We need to separately call computeKnownBits for each set of
2380       // sub elements as the knownbits for each is likely to be different.
2381       unsigned SubScale = BitWidth / SubBitWidth;
2382       APInt SubDemandedElts(NumElts * SubScale, 0);
2383       for (unsigned i = 0; i != NumElts; ++i)
2384         if (DemandedElts[i])
2385           SubDemandedElts.setBit(i * SubScale);
2386 
2387       for (unsigned i = 0; i != SubScale; ++i) {
2388         computeKnownBits(N0, Known2, SubDemandedElts.shl(i),
2389                          Depth + 1);
2390         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2391         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2392         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2393       }
2394     }
2395 
2396     // Bitcast 'large element' scalar/vector to 'small element' vector.
2397     if ((SubBitWidth % BitWidth) == 0) {
2398       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2399 
2400       // Collect known bits for the (smaller) output by collecting the known
2401       // bits from the overlapping larger input elements and extracting the
2402       // sub sections we actually care about.
2403       unsigned SubScale = SubBitWidth / BitWidth;
2404       APInt SubDemandedElts(NumElts / SubScale, 0);
2405       for (unsigned i = 0; i != NumElts; ++i)
2406         if (DemandedElts[i])
2407           SubDemandedElts.setBit(i / SubScale);
2408 
2409       computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1);
2410 
2411       Known.Zero.setAllBits(); Known.One.setAllBits();
2412       for (unsigned i = 0; i != NumElts; ++i)
2413         if (DemandedElts[i]) {
2414           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2415           unsigned Offset = (Shifts % SubScale) * BitWidth;
2416           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2417           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2418           // If we don't know any bits, early out.
2419           if (Known.isUnknown())
2420             break;
2421         }
2422     }
2423     break;
2424   }
2425   case ISD::AND:
2426     // If either the LHS or the RHS are Zero, the result is zero.
2427     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2428     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2429 
2430     // Output known-1 bits are only known if set in both the LHS & RHS.
2431     Known.One &= Known2.One;
2432     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2433     Known.Zero |= Known2.Zero;
2434     break;
2435   case ISD::OR:
2436     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2437     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2438 
2439     // Output known-0 bits are only known if clear in both the LHS & RHS.
2440     Known.Zero &= Known2.Zero;
2441     // Output known-1 are known to be set if set in either the LHS | RHS.
2442     Known.One |= Known2.One;
2443     break;
2444   case ISD::XOR: {
2445     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2446     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2447 
2448     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2449     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2450     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2451     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2452     Known.Zero = KnownZeroOut;
2453     break;
2454   }
2455   case ISD::MUL: {
2456     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2457     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2458 
2459     // If low bits are zero in either operand, output low known-0 bits.
2460     // Also compute a conservative estimate for high known-0 bits.
2461     // More trickiness is possible, but this is sufficient for the
2462     // interesting case of alignment computation.
2463     unsigned TrailZ = Known.countMinTrailingZeros() +
2464                       Known2.countMinTrailingZeros();
2465     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2466                                Known2.countMinLeadingZeros(),
2467                                BitWidth) - BitWidth;
2468 
2469     Known.resetAll();
2470     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2471     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2472     break;
2473   }
2474   case ISD::UDIV: {
2475     // For the purposes of computing leading zeros we can conservatively
2476     // treat a udiv as a logical right shift by the power of 2 known to
2477     // be less than the denominator.
2478     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2479     unsigned LeadZ = Known2.countMinLeadingZeros();
2480 
2481     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2482     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2483     if (RHSMaxLeadingZeros != BitWidth)
2484       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2485 
2486     Known.Zero.setHighBits(LeadZ);
2487     break;
2488   }
2489   case ISD::SELECT:
2490   case ISD::VSELECT:
2491     computeKnownBits(Op.getOperand(2), Known, DemandedElts, Depth+1);
2492     // If we don't know any bits, early out.
2493     if (Known.isUnknown())
2494       break;
2495     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth+1);
2496 
2497     // Only known if known in both the LHS and RHS.
2498     Known.One &= Known2.One;
2499     Known.Zero &= Known2.Zero;
2500     break;
2501   case ISD::SELECT_CC:
2502     computeKnownBits(Op.getOperand(3), Known, DemandedElts, Depth+1);
2503     // If we don't know any bits, early out.
2504     if (Known.isUnknown())
2505       break;
2506     computeKnownBits(Op.getOperand(2), Known2, DemandedElts, Depth+1);
2507 
2508     // Only known if known in both the LHS and RHS.
2509     Known.One &= Known2.One;
2510     Known.Zero &= Known2.Zero;
2511     break;
2512   case ISD::SMULO:
2513   case ISD::UMULO:
2514   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2515     if (Op.getResNo() != 1)
2516       break;
2517     // The boolean result conforms to getBooleanContents.
2518     // If we know the result of a setcc has the top bits zero, use this info.
2519     // We know that we have an integer-based boolean since these operations
2520     // are only available for integer.
2521     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2522             TargetLowering::ZeroOrOneBooleanContent &&
2523         BitWidth > 1)
2524       Known.Zero.setBitsFrom(1);
2525     break;
2526   case ISD::SETCC:
2527     // If we know the result of a setcc has the top bits zero, use this info.
2528     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2529             TargetLowering::ZeroOrOneBooleanContent &&
2530         BitWidth > 1)
2531       Known.Zero.setBitsFrom(1);
2532     break;
2533   case ISD::SHL:
2534     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2535       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2536       unsigned Shift = ShAmt->getZExtValue();
2537       Known.Zero <<= Shift;
2538       Known.One <<= Shift;
2539       // Low bits are known zero.
2540       Known.Zero.setLowBits(Shift);
2541     }
2542     break;
2543   case ISD::SRL:
2544     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2545       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2546       unsigned Shift = ShAmt->getZExtValue();
2547       Known.Zero.lshrInPlace(Shift);
2548       Known.One.lshrInPlace(Shift);
2549       // High bits are known zero.
2550       Known.Zero.setHighBits(Shift);
2551     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2552       // If the shift amount is a vector of constants see if we can bound
2553       // the number of upper zero bits.
2554       unsigned ShiftAmountMin = BitWidth;
2555       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2556         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2557           const APInt &ShAmt = C->getAPIntValue();
2558           if (ShAmt.ult(BitWidth)) {
2559             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2560                                                 ShAmt.getZExtValue());
2561             continue;
2562           }
2563         }
2564         // Don't know anything.
2565         ShiftAmountMin = 0;
2566         break;
2567       }
2568 
2569       Known.Zero.setHighBits(ShiftAmountMin);
2570     }
2571     break;
2572   case ISD::SRA:
2573     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2574       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2575       unsigned Shift = ShAmt->getZExtValue();
2576       // Sign extend known zero/one bit (else is unknown).
2577       Known.Zero.ashrInPlace(Shift);
2578       Known.One.ashrInPlace(Shift);
2579     }
2580     break;
2581   case ISD::SIGN_EXTEND_INREG: {
2582     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2583     unsigned EBits = EVT.getScalarSizeInBits();
2584 
2585     // Sign extension.  Compute the demanded bits in the result that are not
2586     // present in the input.
2587     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2588 
2589     APInt InSignMask = APInt::getSignMask(EBits);
2590     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2591 
2592     // If the sign extended bits are demanded, we know that the sign
2593     // bit is demanded.
2594     InSignMask = InSignMask.zext(BitWidth);
2595     if (NewBits.getBoolValue())
2596       InputDemandedBits |= InSignMask;
2597 
2598     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2599     Known.One &= InputDemandedBits;
2600     Known.Zero &= InputDemandedBits;
2601 
2602     // If the sign bit of the input is known set or clear, then we know the
2603     // top bits of the result.
2604     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2605       Known.Zero |= NewBits;
2606       Known.One  &= ~NewBits;
2607     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2608       Known.One  |= NewBits;
2609       Known.Zero &= ~NewBits;
2610     } else {                              // Input sign bit unknown
2611       Known.Zero &= ~NewBits;
2612       Known.One  &= ~NewBits;
2613     }
2614     break;
2615   }
2616   case ISD::CTTZ:
2617   case ISD::CTTZ_ZERO_UNDEF: {
2618     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2619     // If we have a known 1, its position is our upper bound.
2620     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2621     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2622     Known.Zero.setBitsFrom(LowBits);
2623     break;
2624   }
2625   case ISD::CTLZ:
2626   case ISD::CTLZ_ZERO_UNDEF: {
2627     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2628     // If we have a known 1, its position is our upper bound.
2629     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2630     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2631     Known.Zero.setBitsFrom(LowBits);
2632     break;
2633   }
2634   case ISD::CTPOP: {
2635     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2636     // If we know some of the bits are zero, they can't be one.
2637     unsigned PossibleOnes = Known2.countMaxPopulation();
2638     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2639     break;
2640   }
2641   case ISD::LOAD: {
2642     LoadSDNode *LD = cast<LoadSDNode>(Op);
2643     // If this is a ZEXTLoad and we are looking at the loaded value.
2644     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2645       EVT VT = LD->getMemoryVT();
2646       unsigned MemBits = VT.getScalarSizeInBits();
2647       Known.Zero.setBitsFrom(MemBits);
2648     } else if (const MDNode *Ranges = LD->getRanges()) {
2649       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2650         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2651     }
2652     break;
2653   }
2654   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2655     EVT InVT = Op.getOperand(0).getValueType();
2656     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
2657     computeKnownBits(Op.getOperand(0), Known, InDemandedElts, Depth + 1);
2658     Known = Known.zext(BitWidth);
2659     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2660     break;
2661   }
2662   case ISD::ZERO_EXTEND: {
2663     EVT InVT = Op.getOperand(0).getValueType();
2664     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2665     Known = Known.zext(BitWidth);
2666     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2667     break;
2668   }
2669   // TODO ISD::SIGN_EXTEND_VECTOR_INREG
2670   case ISD::SIGN_EXTEND: {
2671     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2672     // If the sign bit is known to be zero or one, then sext will extend
2673     // it to the top bits, else it will just zext.
2674     Known = Known.sext(BitWidth);
2675     break;
2676   }
2677   case ISD::ANY_EXTEND: {
2678     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2679     Known = Known.zext(BitWidth);
2680     break;
2681   }
2682   case ISD::TRUNCATE: {
2683     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2684     Known = Known.trunc(BitWidth);
2685     break;
2686   }
2687   case ISD::AssertZext: {
2688     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2689     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2690     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2691     Known.Zero |= (~InMask);
2692     Known.One  &= (~Known.Zero);
2693     break;
2694   }
2695   case ISD::FGETSIGN:
2696     // All bits are zero except the low bit.
2697     Known.Zero.setBitsFrom(1);
2698     break;
2699   case ISD::USUBO:
2700   case ISD::SSUBO:
2701     if (Op.getResNo() == 1) {
2702       // If we know the result of a setcc has the top bits zero, use this info.
2703       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2704               TargetLowering::ZeroOrOneBooleanContent &&
2705           BitWidth > 1)
2706         Known.Zero.setBitsFrom(1);
2707       break;
2708     }
2709     LLVM_FALLTHROUGH;
2710   case ISD::SUB:
2711   case ISD::SUBC: {
2712     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2713       // We know that the top bits of C-X are clear if X contains less bits
2714       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2715       // positive if we can prove that X is >= 0 and < 16.
2716       if (CLHS->getAPIntValue().isNonNegative()) {
2717         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2718         // NLZ can't be BitWidth with no sign bit
2719         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2720         computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2721                          Depth + 1);
2722 
2723         // If all of the MaskV bits are known to be zero, then we know the
2724         // output top bits are zero, because we now know that the output is
2725         // from [0-C].
2726         if ((Known2.Zero & MaskV) == MaskV) {
2727           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2728           // Top bits known zero.
2729           Known.Zero.setHighBits(NLZ2);
2730         }
2731       }
2732     }
2733 
2734     // If low bits are know to be zero in both operands, then we know they are
2735     // going to be 0 in the result. Both addition and complement operations
2736     // preserve the low zero bits.
2737     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2738     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2739     if (KnownZeroLow == 0)
2740       break;
2741 
2742     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2743     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2744     Known.Zero.setLowBits(KnownZeroLow);
2745     break;
2746   }
2747   case ISD::UADDO:
2748   case ISD::SADDO:
2749   case ISD::ADDCARRY:
2750     if (Op.getResNo() == 1) {
2751       // If we know the result of a setcc has the top bits zero, use this info.
2752       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2753               TargetLowering::ZeroOrOneBooleanContent &&
2754           BitWidth > 1)
2755         Known.Zero.setBitsFrom(1);
2756       break;
2757     }
2758     LLVM_FALLTHROUGH;
2759   case ISD::ADD:
2760   case ISD::ADDC:
2761   case ISD::ADDE: {
2762     // Output known-0 bits are known if clear or set in both the low clear bits
2763     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2764     // low 3 bits clear.
2765     // Output known-0 bits are also known if the top bits of each input are
2766     // known to be clear. For example, if one input has the top 10 bits clear
2767     // and the other has the top 8 bits clear, we know the top 7 bits of the
2768     // output must be clear.
2769     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2770     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2771     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2772 
2773     computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2774                      Depth + 1);
2775     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2776     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2777 
2778     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2779       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2780       // use this information if we know (at least) that the low two bits are
2781       // clear. We then return to the caller that the low bit is unknown but
2782       // that other bits are known zero.
2783       if (KnownZeroLow >= 2)
2784         Known.Zero.setBits(1, KnownZeroLow);
2785       break;
2786     }
2787 
2788     Known.Zero.setLowBits(KnownZeroLow);
2789     if (KnownZeroHigh > 1)
2790       Known.Zero.setHighBits(KnownZeroHigh - 1);
2791     break;
2792   }
2793   case ISD::SREM:
2794     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2795       const APInt &RA = Rem->getAPIntValue().abs();
2796       if (RA.isPowerOf2()) {
2797         APInt LowBits = RA - 1;
2798         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2799 
2800         // The low bits of the first operand are unchanged by the srem.
2801         Known.Zero = Known2.Zero & LowBits;
2802         Known.One = Known2.One & LowBits;
2803 
2804         // If the first operand is non-negative or has all low bits zero, then
2805         // the upper bits are all zero.
2806         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2807           Known.Zero |= ~LowBits;
2808 
2809         // If the first operand is negative and not all low bits are zero, then
2810         // the upper bits are all one.
2811         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2812           Known.One |= ~LowBits;
2813         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2814       }
2815     }
2816     break;
2817   case ISD::UREM: {
2818     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2819       const APInt &RA = Rem->getAPIntValue();
2820       if (RA.isPowerOf2()) {
2821         APInt LowBits = (RA - 1);
2822         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2823 
2824         // The upper bits are all zero, the lower ones are unchanged.
2825         Known.Zero = Known2.Zero | ~LowBits;
2826         Known.One = Known2.One & LowBits;
2827         break;
2828       }
2829     }
2830 
2831     // Since the result is less than or equal to either operand, any leading
2832     // zero bits in either operand must also exist in the result.
2833     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2834     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2835 
2836     uint32_t Leaders =
2837         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
2838     Known.resetAll();
2839     Known.Zero.setHighBits(Leaders);
2840     break;
2841   }
2842   case ISD::EXTRACT_ELEMENT: {
2843     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2844     const unsigned Index = Op.getConstantOperandVal(1);
2845     const unsigned BitWidth = Op.getValueSizeInBits();
2846 
2847     // Remove low part of known bits mask
2848     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
2849     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
2850 
2851     // Remove high part of known bit mask
2852     Known = Known.trunc(BitWidth);
2853     break;
2854   }
2855   case ISD::EXTRACT_VECTOR_ELT: {
2856     SDValue InVec = Op.getOperand(0);
2857     SDValue EltNo = Op.getOperand(1);
2858     EVT VecVT = InVec.getValueType();
2859     const unsigned BitWidth = Op.getValueSizeInBits();
2860     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2861     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2862     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2863     // anything about the extended bits.
2864     if (BitWidth > EltBitWidth)
2865       Known = Known.trunc(EltBitWidth);
2866     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2867     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2868       // If we know the element index, just demand that vector element.
2869       unsigned Idx = ConstEltNo->getZExtValue();
2870       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2871       computeKnownBits(InVec, Known, DemandedElt, Depth + 1);
2872     } else {
2873       // Unknown element index, so ignore DemandedElts and demand them all.
2874       computeKnownBits(InVec, Known, Depth + 1);
2875     }
2876     if (BitWidth > EltBitWidth)
2877       Known = Known.zext(BitWidth);
2878     break;
2879   }
2880   case ISD::INSERT_VECTOR_ELT: {
2881     SDValue InVec = Op.getOperand(0);
2882     SDValue InVal = Op.getOperand(1);
2883     SDValue EltNo = Op.getOperand(2);
2884 
2885     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2886     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2887       // If we know the element index, split the demand between the
2888       // source vector and the inserted element.
2889       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
2890       unsigned EltIdx = CEltNo->getZExtValue();
2891 
2892       // If we demand the inserted element then add its common known bits.
2893       if (DemandedElts[EltIdx]) {
2894         computeKnownBits(InVal, Known2, Depth + 1);
2895         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2896         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2897       }
2898 
2899       // If we demand the source vector then add its common known bits, ensuring
2900       // that we don't demand the inserted element.
2901       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2902       if (!!VectorElts) {
2903         computeKnownBits(InVec, Known2, VectorElts, Depth + 1);
2904         Known.One &= Known2.One;
2905         Known.Zero &= Known2.Zero;
2906       }
2907     } else {
2908       // Unknown element index, so ignore DemandedElts and demand them all.
2909       computeKnownBits(InVec, Known, Depth + 1);
2910       computeKnownBits(InVal, Known2, Depth + 1);
2911       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2912       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2913     }
2914     break;
2915   }
2916   case ISD::BITREVERSE: {
2917     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2918     Known.Zero = Known2.Zero.reverseBits();
2919     Known.One = Known2.One.reverseBits();
2920     break;
2921   }
2922   case ISD::BSWAP: {
2923     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2924     Known.Zero = Known2.Zero.byteSwap();
2925     Known.One = Known2.One.byteSwap();
2926     break;
2927   }
2928   case ISD::ABS: {
2929     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2930 
2931     // If the source's MSB is zero then we know the rest of the bits already.
2932     if (Known2.isNonNegative()) {
2933       Known.Zero = Known2.Zero;
2934       Known.One = Known2.One;
2935       break;
2936     }
2937 
2938     // We only know that the absolute values's MSB will be zero iff there is
2939     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
2940     Known2.One.clearSignBit();
2941     if (Known2.One.getBoolValue()) {
2942       Known.Zero = APInt::getSignMask(BitWidth);
2943       break;
2944     }
2945     break;
2946   }
2947   case ISD::UMIN: {
2948     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2949     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2950 
2951     // UMIN - we know that the result will have the maximum of the
2952     // known zero leading bits of the inputs.
2953     unsigned LeadZero = Known.countMinLeadingZeros();
2954     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
2955 
2956     Known.Zero &= Known2.Zero;
2957     Known.One &= Known2.One;
2958     Known.Zero.setHighBits(LeadZero);
2959     break;
2960   }
2961   case ISD::UMAX: {
2962     computeKnownBits(Op.getOperand(0), Known, DemandedElts,
2963                      Depth + 1);
2964     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2965 
2966     // UMAX - we know that the result will have the maximum of the
2967     // known one leading bits of the inputs.
2968     unsigned LeadOne = Known.countMinLeadingOnes();
2969     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
2970 
2971     Known.Zero &= Known2.Zero;
2972     Known.One &= Known2.One;
2973     Known.One.setHighBits(LeadOne);
2974     break;
2975   }
2976   case ISD::SMIN:
2977   case ISD::SMAX: {
2978     // If we have a clamp pattern, we know that the number of sign bits will be
2979     // the minimum of the clamp min/max range.
2980     bool IsMax = (Opcode == ISD::SMAX);
2981     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
2982     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
2983       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
2984         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
2985                                               DemandedElts);
2986     if (CstLow && CstHigh) {
2987       if (!IsMax)
2988         std::swap(CstLow, CstHigh);
2989 
2990       const APInt &ValueLow = CstLow->getAPIntValue();
2991       const APInt &ValueHigh = CstHigh->getAPIntValue();
2992       if (ValueLow.sle(ValueHigh)) {
2993         unsigned LowSignBits = ValueLow.getNumSignBits();
2994         unsigned HighSignBits = ValueHigh.getNumSignBits();
2995         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
2996         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
2997           Known.One.setHighBits(MinSignBits);
2998           break;
2999         }
3000         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3001           Known.Zero.setHighBits(MinSignBits);
3002           break;
3003         }
3004       }
3005     }
3006 
3007     // Fallback - just get the shared known bits of the operands.
3008     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
3009     if (Known.isUnknown()) break; // Early-out
3010     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
3011     Known.Zero &= Known2.Zero;
3012     Known.One &= Known2.One;
3013     break;
3014   }
3015   case ISD::FrameIndex:
3016   case ISD::TargetFrameIndex:
3017     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3018     break;
3019 
3020   default:
3021     if (Opcode < ISD::BUILTIN_OP_END)
3022       break;
3023     LLVM_FALLTHROUGH;
3024   case ISD::INTRINSIC_WO_CHAIN:
3025   case ISD::INTRINSIC_W_CHAIN:
3026   case ISD::INTRINSIC_VOID:
3027     // Allow the target to implement this method for its nodes.
3028     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3029     break;
3030   }
3031 
3032   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3033 }
3034 
3035 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3036                                                              SDValue N1) const {
3037   // X + 0 never overflow
3038   if (isNullConstant(N1))
3039     return OFK_Never;
3040 
3041   KnownBits N1Known;
3042   computeKnownBits(N1, N1Known);
3043   if (N1Known.Zero.getBoolValue()) {
3044     KnownBits N0Known;
3045     computeKnownBits(N0, N0Known);
3046 
3047     bool overflow;
3048     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3049     if (!overflow)
3050       return OFK_Never;
3051   }
3052 
3053   // mulhi + 1 never overflow
3054   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3055       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3056     return OFK_Never;
3057 
3058   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3059     KnownBits N0Known;
3060     computeKnownBits(N0, N0Known);
3061 
3062     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3063       return OFK_Never;
3064   }
3065 
3066   return OFK_Sometime;
3067 }
3068 
3069 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3070   EVT OpVT = Val.getValueType();
3071   unsigned BitWidth = OpVT.getScalarSizeInBits();
3072 
3073   // Is the constant a known power of 2?
3074   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3075     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3076 
3077   // A left-shift of a constant one will have exactly one bit set because
3078   // shifting the bit off the end is undefined.
3079   if (Val.getOpcode() == ISD::SHL) {
3080     auto *C = isConstOrConstSplat(Val.getOperand(0));
3081     if (C && C->getAPIntValue() == 1)
3082       return true;
3083   }
3084 
3085   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3086   // one bit set.
3087   if (Val.getOpcode() == ISD::SRL) {
3088     auto *C = isConstOrConstSplat(Val.getOperand(0));
3089     if (C && C->getAPIntValue().isSignMask())
3090       return true;
3091   }
3092 
3093   // Are all operands of a build vector constant powers of two?
3094   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3095     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3096           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3097             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3098           return false;
3099         }))
3100       return true;
3101 
3102   // More could be done here, though the above checks are enough
3103   // to handle some common cases.
3104 
3105   // Fall back to computeKnownBits to catch other known cases.
3106   KnownBits Known;
3107   computeKnownBits(Val, Known);
3108   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3109 }
3110 
3111 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3112   EVT VT = Op.getValueType();
3113   APInt DemandedElts = VT.isVector()
3114                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3115                            : APInt(1, 1);
3116   return ComputeNumSignBits(Op, DemandedElts, Depth);
3117 }
3118 
3119 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3120                                           unsigned Depth) const {
3121   EVT VT = Op.getValueType();
3122   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3123   unsigned VTBits = VT.getScalarSizeInBits();
3124   unsigned NumElts = DemandedElts.getBitWidth();
3125   unsigned Tmp, Tmp2;
3126   unsigned FirstAnswer = 1;
3127 
3128   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3129     const APInt &Val = C->getAPIntValue();
3130     return Val.getNumSignBits();
3131   }
3132 
3133   if (Depth == 6)
3134     return 1;  // Limit search depth.
3135 
3136   if (!DemandedElts)
3137     return 1;  // No demanded elts, better to assume we don't know anything.
3138 
3139   unsigned Opcode = Op.getOpcode();
3140   switch (Opcode) {
3141   default: break;
3142   case ISD::AssertSext:
3143     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3144     return VTBits-Tmp+1;
3145   case ISD::AssertZext:
3146     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3147     return VTBits-Tmp;
3148 
3149   case ISD::BUILD_VECTOR:
3150     Tmp = VTBits;
3151     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3152       if (!DemandedElts[i])
3153         continue;
3154 
3155       SDValue SrcOp = Op.getOperand(i);
3156       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3157 
3158       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3159       if (SrcOp.getValueSizeInBits() != VTBits) {
3160         assert(SrcOp.getValueSizeInBits() > VTBits &&
3161                "Expected BUILD_VECTOR implicit truncation");
3162         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3163         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3164       }
3165       Tmp = std::min(Tmp, Tmp2);
3166     }
3167     return Tmp;
3168 
3169   case ISD::VECTOR_SHUFFLE: {
3170     // Collect the minimum number of sign bits that are shared by every vector
3171     // element referenced by the shuffle.
3172     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3173     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3174     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3175     for (unsigned i = 0; i != NumElts; ++i) {
3176       int M = SVN->getMaskElt(i);
3177       if (!DemandedElts[i])
3178         continue;
3179       // For UNDEF elements, we don't know anything about the common state of
3180       // the shuffle result.
3181       if (M < 0)
3182         return 1;
3183       if ((unsigned)M < NumElts)
3184         DemandedLHS.setBit((unsigned)M % NumElts);
3185       else
3186         DemandedRHS.setBit((unsigned)M % NumElts);
3187     }
3188     Tmp = std::numeric_limits<unsigned>::max();
3189     if (!!DemandedLHS)
3190       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3191     if (!!DemandedRHS) {
3192       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3193       Tmp = std::min(Tmp, Tmp2);
3194     }
3195     // If we don't know anything, early out and try computeKnownBits fall-back.
3196     if (Tmp == 1)
3197       break;
3198     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3199     return Tmp;
3200   }
3201 
3202   case ISD::BITCAST: {
3203     SDValue N0 = Op.getOperand(0);
3204     EVT SrcVT = N0.getValueType();
3205     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3206 
3207     // Ignore bitcasts from unsupported types..
3208     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3209       break;
3210 
3211     // Fast handling of 'identity' bitcasts.
3212     if (VTBits == SrcBits)
3213       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3214 
3215     // Bitcast 'large element' scalar/vector to 'small element' vector.
3216     // TODO: Handle cases other than 'sign splat' when we have a use case.
3217     // Requires handling of DemandedElts and Endianness.
3218     if ((SrcBits % VTBits) == 0) {
3219       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3220       Tmp = ComputeNumSignBits(N0, Depth + 1);
3221       if (Tmp == SrcBits)
3222         return VTBits;
3223     }
3224     break;
3225   }
3226 
3227   case ISD::SIGN_EXTEND:
3228     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3229     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3230   case ISD::SIGN_EXTEND_INREG:
3231     // Max of the input and what this extends.
3232     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3233     Tmp = VTBits-Tmp+1;
3234     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3235     return std::max(Tmp, Tmp2);
3236   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3237     SDValue Src = Op.getOperand(0);
3238     EVT SrcVT = Src.getValueType();
3239     APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
3240     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3241     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3242   }
3243 
3244   case ISD::SRA:
3245     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3246     // SRA X, C   -> adds C sign bits.
3247     if (ConstantSDNode *C =
3248             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3249       APInt ShiftVal = C->getAPIntValue();
3250       ShiftVal += Tmp;
3251       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3252     }
3253     return Tmp;
3254   case ISD::SHL:
3255     if (ConstantSDNode *C =
3256             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3257       // shl destroys sign bits.
3258       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3259       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3260           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3261       return Tmp - C->getZExtValue();
3262     }
3263     break;
3264   case ISD::AND:
3265   case ISD::OR:
3266   case ISD::XOR:    // NOT is handled here.
3267     // Logical binary ops preserve the number of sign bits at the worst.
3268     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3269     if (Tmp != 1) {
3270       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3271       FirstAnswer = std::min(Tmp, Tmp2);
3272       // We computed what we know about the sign bits as our first
3273       // answer. Now proceed to the generic code that uses
3274       // computeKnownBits, and pick whichever answer is better.
3275     }
3276     break;
3277 
3278   case ISD::SELECT:
3279   case ISD::VSELECT:
3280     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3281     if (Tmp == 1) return 1;  // Early out.
3282     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3283     return std::min(Tmp, Tmp2);
3284   case ISD::SELECT_CC:
3285     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3286     if (Tmp == 1) return 1;  // Early out.
3287     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3288     return std::min(Tmp, Tmp2);
3289 
3290   case ISD::SMIN:
3291   case ISD::SMAX: {
3292     // If we have a clamp pattern, we know that the number of sign bits will be
3293     // the minimum of the clamp min/max range.
3294     bool IsMax = (Opcode == ISD::SMAX);
3295     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3296     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3297       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3298         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3299                                               DemandedElts);
3300     if (CstLow && CstHigh) {
3301       if (!IsMax)
3302         std::swap(CstLow, CstHigh);
3303       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3304         Tmp = CstLow->getAPIntValue().getNumSignBits();
3305         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3306         return std::min(Tmp, Tmp2);
3307       }
3308     }
3309 
3310     // Fallback - just get the minimum number of sign bits of the operands.
3311     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3312     if (Tmp == 1)
3313       return 1;  // Early out.
3314     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3315     return std::min(Tmp, Tmp2);
3316   }
3317   case ISD::UMIN:
3318   case ISD::UMAX:
3319     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3320     if (Tmp == 1)
3321       return 1;  // Early out.
3322     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3323     return std::min(Tmp, Tmp2);
3324   case ISD::SADDO:
3325   case ISD::UADDO:
3326   case ISD::SSUBO:
3327   case ISD::USUBO:
3328   case ISD::SMULO:
3329   case ISD::UMULO:
3330     if (Op.getResNo() != 1)
3331       break;
3332     // The boolean result conforms to getBooleanContents.  Fall through.
3333     // If setcc returns 0/-1, all bits are sign bits.
3334     // We know that we have an integer-based boolean since these operations
3335     // are only available for integer.
3336     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3337         TargetLowering::ZeroOrNegativeOneBooleanContent)
3338       return VTBits;
3339     break;
3340   case ISD::SETCC:
3341     // If setcc returns 0/-1, all bits are sign bits.
3342     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3343         TargetLowering::ZeroOrNegativeOneBooleanContent)
3344       return VTBits;
3345     break;
3346   case ISD::ROTL:
3347   case ISD::ROTR:
3348     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3349       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3350 
3351       // Handle rotate right by N like a rotate left by 32-N.
3352       if (Opcode == ISD::ROTR)
3353         RotAmt = (VTBits - RotAmt) % VTBits;
3354 
3355       // If we aren't rotating out all of the known-in sign bits, return the
3356       // number that are left.  This handles rotl(sext(x), 1) for example.
3357       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3358       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3359     }
3360     break;
3361   case ISD::ADD:
3362   case ISD::ADDC:
3363     // Add can have at most one carry bit.  Thus we know that the output
3364     // is, at worst, one more bit than the inputs.
3365     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3366     if (Tmp == 1) return 1;  // Early out.
3367 
3368     // Special case decrementing a value (ADD X, -1):
3369     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3370       if (CRHS->isAllOnesValue()) {
3371         KnownBits Known;
3372         computeKnownBits(Op.getOperand(0), Known, Depth+1);
3373 
3374         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3375         // sign bits set.
3376         if ((Known.Zero | 1).isAllOnesValue())
3377           return VTBits;
3378 
3379         // If we are subtracting one from a positive number, there is no carry
3380         // out of the result.
3381         if (Known.isNonNegative())
3382           return Tmp;
3383       }
3384 
3385     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3386     if (Tmp2 == 1) return 1;
3387     return std::min(Tmp, Tmp2)-1;
3388 
3389   case ISD::SUB:
3390     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3391     if (Tmp2 == 1) return 1;
3392 
3393     // Handle NEG.
3394     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3395       if (CLHS->isNullValue()) {
3396         KnownBits Known;
3397         computeKnownBits(Op.getOperand(1), Known, Depth+1);
3398         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3399         // sign bits set.
3400         if ((Known.Zero | 1).isAllOnesValue())
3401           return VTBits;
3402 
3403         // If the input is known to be positive (the sign bit is known clear),
3404         // the output of the NEG has the same number of sign bits as the input.
3405         if (Known.isNonNegative())
3406           return Tmp2;
3407 
3408         // Otherwise, we treat this like a SUB.
3409       }
3410 
3411     // Sub can have at most one carry bit.  Thus we know that the output
3412     // is, at worst, one more bit than the inputs.
3413     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3414     if (Tmp == 1) return 1;  // Early out.
3415     return std::min(Tmp, Tmp2)-1;
3416   case ISD::TRUNCATE: {
3417     // Check if the sign bits of source go down as far as the truncated value.
3418     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3419     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3420     if (NumSrcSignBits > (NumSrcBits - VTBits))
3421       return NumSrcSignBits - (NumSrcBits - VTBits);
3422     break;
3423   }
3424   case ISD::EXTRACT_ELEMENT: {
3425     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3426     const int BitWidth = Op.getValueSizeInBits();
3427     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3428 
3429     // Get reverse index (starting from 1), Op1 value indexes elements from
3430     // little end. Sign starts at big end.
3431     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3432 
3433     // If the sign portion ends in our element the subtraction gives correct
3434     // result. Otherwise it gives either negative or > bitwidth result
3435     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3436   }
3437   case ISD::INSERT_VECTOR_ELT: {
3438     SDValue InVec = Op.getOperand(0);
3439     SDValue InVal = Op.getOperand(1);
3440     SDValue EltNo = Op.getOperand(2);
3441     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3442 
3443     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3444     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3445       // If we know the element index, split the demand between the
3446       // source vector and the inserted element.
3447       unsigned EltIdx = CEltNo->getZExtValue();
3448 
3449       // If we demand the inserted element then get its sign bits.
3450       Tmp = std::numeric_limits<unsigned>::max();
3451       if (DemandedElts[EltIdx]) {
3452         // TODO - handle implicit truncation of inserted elements.
3453         if (InVal.getScalarValueSizeInBits() != VTBits)
3454           break;
3455         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3456       }
3457 
3458       // If we demand the source vector then get its sign bits, and determine
3459       // the minimum.
3460       APInt VectorElts = DemandedElts;
3461       VectorElts.clearBit(EltIdx);
3462       if (!!VectorElts) {
3463         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3464         Tmp = std::min(Tmp, Tmp2);
3465       }
3466     } else {
3467       // Unknown element index, so ignore DemandedElts and demand them all.
3468       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3469       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3470       Tmp = std::min(Tmp, Tmp2);
3471     }
3472     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3473     return Tmp;
3474   }
3475   case ISD::EXTRACT_VECTOR_ELT: {
3476     SDValue InVec = Op.getOperand(0);
3477     SDValue EltNo = Op.getOperand(1);
3478     EVT VecVT = InVec.getValueType();
3479     const unsigned BitWidth = Op.getValueSizeInBits();
3480     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3481     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3482 
3483     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3484     // anything about sign bits. But if the sizes match we can derive knowledge
3485     // about sign bits from the vector operand.
3486     if (BitWidth != EltBitWidth)
3487       break;
3488 
3489     // If we know the element index, just demand that vector element, else for
3490     // an unknown element index, ignore DemandedElts and demand them all.
3491     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3492     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3493     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3494       DemandedSrcElts =
3495           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3496 
3497     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3498   }
3499   case ISD::EXTRACT_SUBVECTOR: {
3500     // If we know the element index, just demand that subvector elements,
3501     // otherwise demand them all.
3502     SDValue Src = Op.getOperand(0);
3503     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3504     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3505     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3506       // Offset the demanded elts by the subvector index.
3507       uint64_t Idx = SubIdx->getZExtValue();
3508       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
3509       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3510     }
3511     return ComputeNumSignBits(Src, Depth + 1);
3512   }
3513   case ISD::CONCAT_VECTORS:
3514     // Determine the minimum number of sign bits across all demanded
3515     // elts of the input vectors. Early out if the result is already 1.
3516     Tmp = std::numeric_limits<unsigned>::max();
3517     EVT SubVectorVT = Op.getOperand(0).getValueType();
3518     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3519     unsigned NumSubVectors = Op.getNumOperands();
3520     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3521       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3522       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3523       if (!DemandedSub)
3524         continue;
3525       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3526       Tmp = std::min(Tmp, Tmp2);
3527     }
3528     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3529     return Tmp;
3530   }
3531 
3532   // If we are looking at the loaded value of the SDNode.
3533   if (Op.getResNo() == 0) {
3534     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3535     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3536       unsigned ExtType = LD->getExtensionType();
3537       switch (ExtType) {
3538         default: break;
3539         case ISD::SEXTLOAD:    // '17' bits known
3540           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3541           return VTBits-Tmp+1;
3542         case ISD::ZEXTLOAD:    // '16' bits known
3543           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3544           return VTBits-Tmp;
3545       }
3546     }
3547   }
3548 
3549   // Allow the target to implement this method for its nodes.
3550   if (Opcode >= ISD::BUILTIN_OP_END ||
3551       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3552       Opcode == ISD::INTRINSIC_W_CHAIN ||
3553       Opcode == ISD::INTRINSIC_VOID) {
3554     unsigned NumBits =
3555         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3556     if (NumBits > 1)
3557       FirstAnswer = std::max(FirstAnswer, NumBits);
3558   }
3559 
3560   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3561   // use this information.
3562   KnownBits Known;
3563   computeKnownBits(Op, Known, DemandedElts, Depth);
3564 
3565   APInt Mask;
3566   if (Known.isNonNegative()) {        // sign bit is 0
3567     Mask = Known.Zero;
3568   } else if (Known.isNegative()) {  // sign bit is 1;
3569     Mask = Known.One;
3570   } else {
3571     // Nothing known.
3572     return FirstAnswer;
3573   }
3574 
3575   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3576   // the number of identical bits in the top of the input value.
3577   Mask = ~Mask;
3578   Mask <<= Mask.getBitWidth()-VTBits;
3579   // Return # leading zeros.  We use 'min' here in case Val was zero before
3580   // shifting.  We don't want to return '64' as for an i32 "0".
3581   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3582 }
3583 
3584 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3585   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3586       !isa<ConstantSDNode>(Op.getOperand(1)))
3587     return false;
3588 
3589   if (Op.getOpcode() == ISD::OR &&
3590       !MaskedValueIsZero(Op.getOperand(0),
3591                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3592     return false;
3593 
3594   return true;
3595 }
3596 
3597 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
3598   // If we're told that NaNs won't happen, assume they won't.
3599   if (getTarget().Options.NoNaNsFPMath)
3600     return true;
3601 
3602   if (Op->getFlags().hasNoNaNs())
3603     return true;
3604 
3605   // If the value is a constant, we can obviously see if it is a NaN or not.
3606   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3607     return !C->getValueAPF().isNaN();
3608 
3609   // TODO: Recognize more cases here.
3610 
3611   return false;
3612 }
3613 
3614 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3615   // If the value is a constant, we can obviously see if it is a zero or not.
3616   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3617     return !C->isZero();
3618 
3619   // TODO: Recognize more cases here.
3620   switch (Op.getOpcode()) {
3621   default: break;
3622   case ISD::OR:
3623     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3624       return !C->isNullValue();
3625     break;
3626   }
3627 
3628   return false;
3629 }
3630 
3631 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3632   // Check the obvious case.
3633   if (A == B) return true;
3634 
3635   // For for negative and positive zero.
3636   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3637     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3638       if (CA->isZero() && CB->isZero()) return true;
3639 
3640   // Otherwise they may not be equal.
3641   return false;
3642 }
3643 
3644 // FIXME: unify with llvm::haveNoCommonBitsSet.
3645 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
3646 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3647   assert(A.getValueType() == B.getValueType() &&
3648          "Values must have the same type");
3649   KnownBits AKnown, BKnown;
3650   computeKnownBits(A, AKnown);
3651   computeKnownBits(B, BKnown);
3652   return (AKnown.Zero | BKnown.Zero).isAllOnesValue();
3653 }
3654 
3655 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3656                                   ArrayRef<SDValue> Ops,
3657                                   SelectionDAG &DAG) {
3658   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3659   assert(llvm::all_of(Ops,
3660                       [Ops](SDValue Op) {
3661                         return Ops[0].getValueType() == Op.getValueType();
3662                       }) &&
3663          "Concatenation of vectors with inconsistent value types!");
3664   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3665              VT.getVectorNumElements() &&
3666          "Incorrect element count in vector concatenation!");
3667 
3668   if (Ops.size() == 1)
3669     return Ops[0];
3670 
3671   // Concat of UNDEFs is UNDEF.
3672   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3673     return DAG.getUNDEF(VT);
3674 
3675   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3676   // simplified to one big BUILD_VECTOR.
3677   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3678   EVT SVT = VT.getScalarType();
3679   SmallVector<SDValue, 16> Elts;
3680   for (SDValue Op : Ops) {
3681     EVT OpVT = Op.getValueType();
3682     if (Op.isUndef())
3683       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3684     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3685       Elts.append(Op->op_begin(), Op->op_end());
3686     else
3687       return SDValue();
3688   }
3689 
3690   // BUILD_VECTOR requires all inputs to be of the same type, find the
3691   // maximum type and extend them all.
3692   for (SDValue Op : Elts)
3693     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3694 
3695   if (SVT.bitsGT(VT.getScalarType()))
3696     for (SDValue &Op : Elts)
3697       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3698                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3699                : DAG.getSExtOrTrunc(Op, DL, SVT);
3700 
3701   SDValue V = DAG.getBuildVector(VT, DL, Elts);
3702   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
3703   return V;
3704 }
3705 
3706 /// Gets or creates the specified node.
3707 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3708   FoldingSetNodeID ID;
3709   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3710   void *IP = nullptr;
3711   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3712     return SDValue(E, 0);
3713 
3714   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3715                               getVTList(VT));
3716   CSEMap.InsertNode(N, IP);
3717 
3718   InsertNode(N);
3719   SDValue V = SDValue(N, 0);
3720   NewSDValueDbgMsg(V, "Creating new node: ", this);
3721   return V;
3722 }
3723 
3724 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3725                               SDValue Operand, const SDNodeFlags Flags) {
3726   // Constant fold unary operations with an integer constant operand. Even
3727   // opaque constant will be folded, because the folding of unary operations
3728   // doesn't create new constants with different values. Nevertheless, the
3729   // opaque flag is preserved during folding to prevent future folding with
3730   // other constants.
3731   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3732     const APInt &Val = C->getAPIntValue();
3733     switch (Opcode) {
3734     default: break;
3735     case ISD::SIGN_EXTEND:
3736       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3737                          C->isTargetOpcode(), C->isOpaque());
3738     case ISD::ANY_EXTEND:
3739     case ISD::ZERO_EXTEND:
3740     case ISD::TRUNCATE:
3741       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3742                          C->isTargetOpcode(), C->isOpaque());
3743     case ISD::UINT_TO_FP:
3744     case ISD::SINT_TO_FP: {
3745       APFloat apf(EVTToAPFloatSemantics(VT),
3746                   APInt::getNullValue(VT.getSizeInBits()));
3747       (void)apf.convertFromAPInt(Val,
3748                                  Opcode==ISD::SINT_TO_FP,
3749                                  APFloat::rmNearestTiesToEven);
3750       return getConstantFP(apf, DL, VT);
3751     }
3752     case ISD::BITCAST:
3753       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3754         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3755       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3756         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3757       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3758         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3759       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3760         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3761       break;
3762     case ISD::ABS:
3763       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
3764                          C->isOpaque());
3765     case ISD::BITREVERSE:
3766       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3767                          C->isOpaque());
3768     case ISD::BSWAP:
3769       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3770                          C->isOpaque());
3771     case ISD::CTPOP:
3772       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3773                          C->isOpaque());
3774     case ISD::CTLZ:
3775     case ISD::CTLZ_ZERO_UNDEF:
3776       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3777                          C->isOpaque());
3778     case ISD::CTTZ:
3779     case ISD::CTTZ_ZERO_UNDEF:
3780       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3781                          C->isOpaque());
3782     case ISD::FP16_TO_FP: {
3783       bool Ignored;
3784       APFloat FPV(APFloat::IEEEhalf(),
3785                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3786 
3787       // This can return overflow, underflow, or inexact; we don't care.
3788       // FIXME need to be more flexible about rounding mode.
3789       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3790                         APFloat::rmNearestTiesToEven, &Ignored);
3791       return getConstantFP(FPV, DL, VT);
3792     }
3793     }
3794   }
3795 
3796   // Constant fold unary operations with a floating point constant operand.
3797   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3798     APFloat V = C->getValueAPF();    // make copy
3799     switch (Opcode) {
3800     case ISD::FNEG:
3801       V.changeSign();
3802       return getConstantFP(V, DL, VT);
3803     case ISD::FABS:
3804       V.clearSign();
3805       return getConstantFP(V, DL, VT);
3806     case ISD::FCEIL: {
3807       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3808       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3809         return getConstantFP(V, DL, VT);
3810       break;
3811     }
3812     case ISD::FTRUNC: {
3813       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3814       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3815         return getConstantFP(V, DL, VT);
3816       break;
3817     }
3818     case ISD::FFLOOR: {
3819       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3820       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3821         return getConstantFP(V, DL, VT);
3822       break;
3823     }
3824     case ISD::FP_EXTEND: {
3825       bool ignored;
3826       // This can return overflow, underflow, or inexact; we don't care.
3827       // FIXME need to be more flexible about rounding mode.
3828       (void)V.convert(EVTToAPFloatSemantics(VT),
3829                       APFloat::rmNearestTiesToEven, &ignored);
3830       return getConstantFP(V, DL, VT);
3831     }
3832     case ISD::FP_TO_SINT:
3833     case ISD::FP_TO_UINT: {
3834       bool ignored;
3835       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
3836       // FIXME need to be more flexible about rounding mode.
3837       APFloat::opStatus s =
3838           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
3839       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
3840         break;
3841       return getConstant(IntVal, DL, VT);
3842     }
3843     case ISD::BITCAST:
3844       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3845         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3846       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3847         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3848       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3849         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3850       break;
3851     case ISD::FP_TO_FP16: {
3852       bool Ignored;
3853       // This can return overflow, underflow, or inexact; we don't care.
3854       // FIXME need to be more flexible about rounding mode.
3855       (void)V.convert(APFloat::IEEEhalf(),
3856                       APFloat::rmNearestTiesToEven, &Ignored);
3857       return getConstant(V.bitcastToAPInt(), DL, VT);
3858     }
3859     }
3860   }
3861 
3862   // Constant fold unary operations with a vector integer or float operand.
3863   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3864     if (BV->isConstant()) {
3865       switch (Opcode) {
3866       default:
3867         // FIXME: Entirely reasonable to perform folding of other unary
3868         // operations here as the need arises.
3869         break;
3870       case ISD::FNEG:
3871       case ISD::FABS:
3872       case ISD::FCEIL:
3873       case ISD::FTRUNC:
3874       case ISD::FFLOOR:
3875       case ISD::FP_EXTEND:
3876       case ISD::FP_TO_SINT:
3877       case ISD::FP_TO_UINT:
3878       case ISD::TRUNCATE:
3879       case ISD::ANY_EXTEND:
3880       case ISD::ZERO_EXTEND:
3881       case ISD::SIGN_EXTEND:
3882       case ISD::UINT_TO_FP:
3883       case ISD::SINT_TO_FP:
3884       case ISD::ABS:
3885       case ISD::BITREVERSE:
3886       case ISD::BSWAP:
3887       case ISD::CTLZ:
3888       case ISD::CTLZ_ZERO_UNDEF:
3889       case ISD::CTTZ:
3890       case ISD::CTTZ_ZERO_UNDEF:
3891       case ISD::CTPOP: {
3892         SDValue Ops = { Operand };
3893         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3894           return Fold;
3895       }
3896       }
3897     }
3898   }
3899 
3900   unsigned OpOpcode = Operand.getNode()->getOpcode();
3901   switch (Opcode) {
3902   case ISD::TokenFactor:
3903   case ISD::MERGE_VALUES:
3904   case ISD::CONCAT_VECTORS:
3905     return Operand;         // Factor, merge or concat of one node?  No need.
3906   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3907   case ISD::FP_EXTEND:
3908     assert(VT.isFloatingPoint() &&
3909            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3910     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3911     assert((!VT.isVector() ||
3912             VT.getVectorNumElements() ==
3913             Operand.getValueType().getVectorNumElements()) &&
3914            "Vector element count mismatch!");
3915     assert(Operand.getValueType().bitsLT(VT) &&
3916            "Invalid fpext node, dst < src!");
3917     if (Operand.isUndef())
3918       return getUNDEF(VT);
3919     break;
3920   case ISD::SIGN_EXTEND:
3921     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3922            "Invalid SIGN_EXTEND!");
3923     if (Operand.getValueType() == VT) return Operand;   // noop extension
3924     assert((!VT.isVector() ||
3925             VT.getVectorNumElements() ==
3926             Operand.getValueType().getVectorNumElements()) &&
3927            "Vector element count mismatch!");
3928     assert(Operand.getValueType().bitsLT(VT) &&
3929            "Invalid sext node, dst < src!");
3930     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3931       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3932     else if (OpOpcode == ISD::UNDEF)
3933       // sext(undef) = 0, because the top bits will all be the same.
3934       return getConstant(0, DL, VT);
3935     break;
3936   case ISD::ZERO_EXTEND:
3937     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3938            "Invalid ZERO_EXTEND!");
3939     if (Operand.getValueType() == VT) return Operand;   // noop extension
3940     assert((!VT.isVector() ||
3941             VT.getVectorNumElements() ==
3942             Operand.getValueType().getVectorNumElements()) &&
3943            "Vector element count mismatch!");
3944     assert(Operand.getValueType().bitsLT(VT) &&
3945            "Invalid zext node, dst < src!");
3946     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3947       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
3948     else if (OpOpcode == ISD::UNDEF)
3949       // zext(undef) = 0, because the top bits will be zero.
3950       return getConstant(0, DL, VT);
3951     break;
3952   case ISD::ANY_EXTEND:
3953     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3954            "Invalid ANY_EXTEND!");
3955     if (Operand.getValueType() == VT) return Operand;   // noop extension
3956     assert((!VT.isVector() ||
3957             VT.getVectorNumElements() ==
3958             Operand.getValueType().getVectorNumElements()) &&
3959            "Vector element count mismatch!");
3960     assert(Operand.getValueType().bitsLT(VT) &&
3961            "Invalid anyext node, dst < src!");
3962 
3963     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3964         OpOpcode == ISD::ANY_EXTEND)
3965       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
3966       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3967     else if (OpOpcode == ISD::UNDEF)
3968       return getUNDEF(VT);
3969 
3970     // (ext (trunc x)) -> x
3971     if (OpOpcode == ISD::TRUNCATE) {
3972       SDValue OpOp = Operand.getOperand(0);
3973       if (OpOp.getValueType() == VT) {
3974         transferDbgValues(Operand, OpOp);
3975         return OpOp;
3976       }
3977     }
3978     break;
3979   case ISD::TRUNCATE:
3980     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3981            "Invalid TRUNCATE!");
3982     if (Operand.getValueType() == VT) return Operand;   // noop truncate
3983     assert((!VT.isVector() ||
3984             VT.getVectorNumElements() ==
3985             Operand.getValueType().getVectorNumElements()) &&
3986            "Vector element count mismatch!");
3987     assert(Operand.getValueType().bitsGT(VT) &&
3988            "Invalid truncate node, src < dst!");
3989     if (OpOpcode == ISD::TRUNCATE)
3990       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
3991     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3992         OpOpcode == ISD::ANY_EXTEND) {
3993       // If the source is smaller than the dest, we still need an extend.
3994       if (Operand.getOperand(0).getValueType().getScalarType()
3995             .bitsLT(VT.getScalarType()))
3996         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3997       if (Operand.getOperand(0).getValueType().bitsGT(VT))
3998         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
3999       return Operand.getOperand(0);
4000     }
4001     if (OpOpcode == ISD::UNDEF)
4002       return getUNDEF(VT);
4003     break;
4004   case ISD::ABS:
4005     assert(VT.isInteger() && VT == Operand.getValueType() &&
4006            "Invalid ABS!");
4007     if (OpOpcode == ISD::UNDEF)
4008       return getUNDEF(VT);
4009     break;
4010   case ISD::BSWAP:
4011     assert(VT.isInteger() && VT == Operand.getValueType() &&
4012            "Invalid BSWAP!");
4013     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4014            "BSWAP types must be a multiple of 16 bits!");
4015     if (OpOpcode == ISD::UNDEF)
4016       return getUNDEF(VT);
4017     break;
4018   case ISD::BITREVERSE:
4019     assert(VT.isInteger() && VT == Operand.getValueType() &&
4020            "Invalid BITREVERSE!");
4021     if (OpOpcode == ISD::UNDEF)
4022       return getUNDEF(VT);
4023     break;
4024   case ISD::BITCAST:
4025     // Basic sanity checking.
4026     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4027            "Cannot BITCAST between types of different sizes!");
4028     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4029     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4030       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4031     if (OpOpcode == ISD::UNDEF)
4032       return getUNDEF(VT);
4033     break;
4034   case ISD::SCALAR_TO_VECTOR:
4035     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4036            (VT.getVectorElementType() == Operand.getValueType() ||
4037             (VT.getVectorElementType().isInteger() &&
4038              Operand.getValueType().isInteger() &&
4039              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4040            "Illegal SCALAR_TO_VECTOR node!");
4041     if (OpOpcode == ISD::UNDEF)
4042       return getUNDEF(VT);
4043     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4044     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4045         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4046         Operand.getConstantOperandVal(1) == 0 &&
4047         Operand.getOperand(0).getValueType() == VT)
4048       return Operand.getOperand(0);
4049     break;
4050   case ISD::FNEG:
4051     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4052     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
4053       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
4054       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4055                      Operand.getOperand(0), Operand.getNode()->getFlags());
4056     if (OpOpcode == ISD::FNEG)  // --X -> X
4057       return Operand.getOperand(0);
4058     break;
4059   case ISD::FABS:
4060     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4061       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4062     break;
4063   }
4064 
4065   SDNode *N;
4066   SDVTList VTs = getVTList(VT);
4067   SDValue Ops[] = {Operand};
4068   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4069     FoldingSetNodeID ID;
4070     AddNodeIDNode(ID, Opcode, VTs, Ops);
4071     void *IP = nullptr;
4072     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4073       E->intersectFlagsWith(Flags);
4074       return SDValue(E, 0);
4075     }
4076 
4077     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4078     N->setFlags(Flags);
4079     createOperands(N, Ops);
4080     CSEMap.InsertNode(N, IP);
4081   } else {
4082     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4083     createOperands(N, Ops);
4084   }
4085 
4086   InsertNode(N);
4087   SDValue V = SDValue(N, 0);
4088   NewSDValueDbgMsg(V, "Creating new node: ", this);
4089   return V;
4090 }
4091 
4092 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4093                                         const APInt &C2) {
4094   switch (Opcode) {
4095   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4096   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4097   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4098   case ISD::AND:  return std::make_pair(C1 & C2, true);
4099   case ISD::OR:   return std::make_pair(C1 | C2, true);
4100   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4101   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4102   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4103   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4104   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4105   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4106   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4107   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4108   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4109   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4110   case ISD::UDIV:
4111     if (!C2.getBoolValue())
4112       break;
4113     return std::make_pair(C1.udiv(C2), true);
4114   case ISD::UREM:
4115     if (!C2.getBoolValue())
4116       break;
4117     return std::make_pair(C1.urem(C2), true);
4118   case ISD::SDIV:
4119     if (!C2.getBoolValue())
4120       break;
4121     return std::make_pair(C1.sdiv(C2), true);
4122   case ISD::SREM:
4123     if (!C2.getBoolValue())
4124       break;
4125     return std::make_pair(C1.srem(C2), true);
4126   }
4127   return std::make_pair(APInt(1, 0), false);
4128 }
4129 
4130 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4131                                              EVT VT, const ConstantSDNode *Cst1,
4132                                              const ConstantSDNode *Cst2) {
4133   if (Cst1->isOpaque() || Cst2->isOpaque())
4134     return SDValue();
4135 
4136   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
4137                                             Cst2->getAPIntValue());
4138   if (!Folded.second)
4139     return SDValue();
4140   return getConstant(Folded.first, DL, VT);
4141 }
4142 
4143 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4144                                        const GlobalAddressSDNode *GA,
4145                                        const SDNode *N2) {
4146   if (GA->getOpcode() != ISD::GlobalAddress)
4147     return SDValue();
4148   if (!TLI->isOffsetFoldingLegal(GA))
4149     return SDValue();
4150   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
4151   if (!Cst2)
4152     return SDValue();
4153   int64_t Offset = Cst2->getSExtValue();
4154   switch (Opcode) {
4155   case ISD::ADD: break;
4156   case ISD::SUB: Offset = -uint64_t(Offset); break;
4157   default: return SDValue();
4158   }
4159   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
4160                           GA->getOffset() + uint64_t(Offset));
4161 }
4162 
4163 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4164   switch (Opcode) {
4165   case ISD::SDIV:
4166   case ISD::UDIV:
4167   case ISD::SREM:
4168   case ISD::UREM: {
4169     // If a divisor is zero/undef or any element of a divisor vector is
4170     // zero/undef, the whole op is undef.
4171     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4172     SDValue Divisor = Ops[1];
4173     if (Divisor.isUndef() || isNullConstant(Divisor))
4174       return true;
4175 
4176     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4177            llvm::any_of(Divisor->op_values(),
4178                         [](SDValue V) { return V.isUndef() ||
4179                                         isNullConstant(V); });
4180     // TODO: Handle signed overflow.
4181   }
4182   // TODO: Handle oversized shifts.
4183   default:
4184     return false;
4185   }
4186 }
4187 
4188 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4189                                              EVT VT, SDNode *Cst1,
4190                                              SDNode *Cst2) {
4191   // If the opcode is a target-specific ISD node, there's nothing we can
4192   // do here and the operand rules may not line up with the below, so
4193   // bail early.
4194   if (Opcode >= ISD::BUILTIN_OP_END)
4195     return SDValue();
4196 
4197   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
4198     return getUNDEF(VT);
4199 
4200   // Handle the case of two scalars.
4201   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
4202     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
4203       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
4204       assert((!Folded || !VT.isVector()) &&
4205              "Can't fold vectors ops with scalar operands");
4206       return Folded;
4207     }
4208   }
4209 
4210   // fold (add Sym, c) -> Sym+c
4211   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
4212     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
4213   if (TLI->isCommutativeBinOp(Opcode))
4214     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
4215       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
4216 
4217   // For vectors extract each constant element into Inputs so we can constant
4218   // fold them individually.
4219   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
4220   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
4221   if (!BV1 || !BV2)
4222     return SDValue();
4223 
4224   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
4225 
4226   EVT SVT = VT.getScalarType();
4227   EVT LegalSVT = SVT;
4228   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4229     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4230     if (LegalSVT.bitsLT(SVT))
4231       return SDValue();
4232   }
4233   SmallVector<SDValue, 4> Outputs;
4234   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
4235     SDValue V1 = BV1->getOperand(I);
4236     SDValue V2 = BV2->getOperand(I);
4237 
4238     if (SVT.isInteger()) {
4239         if (V1->getValueType(0).bitsGT(SVT))
4240           V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4241         if (V2->getValueType(0).bitsGT(SVT))
4242           V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4243     }
4244 
4245     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4246       return SDValue();
4247 
4248     // Fold one vector element.
4249     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4250     if (LegalSVT != SVT)
4251       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4252 
4253     // Scalar folding only succeeded if the result is a constant or UNDEF.
4254     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4255         ScalarResult.getOpcode() != ISD::ConstantFP)
4256       return SDValue();
4257     Outputs.push_back(ScalarResult);
4258   }
4259 
4260   assert(VT.getVectorNumElements() == Outputs.size() &&
4261          "Vector size mismatch!");
4262 
4263   // We may have a vector type but a scalar result. Create a splat.
4264   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4265 
4266   // Build a big vector out of the scalar elements we generated.
4267   return getBuildVector(VT, SDLoc(), Outputs);
4268 }
4269 
4270 // TODO: Merge with FoldConstantArithmetic
4271 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4272                                                    const SDLoc &DL, EVT VT,
4273                                                    ArrayRef<SDValue> Ops,
4274                                                    const SDNodeFlags Flags) {
4275   // If the opcode is a target-specific ISD node, there's nothing we can
4276   // do here and the operand rules may not line up with the below, so
4277   // bail early.
4278   if (Opcode >= ISD::BUILTIN_OP_END)
4279     return SDValue();
4280 
4281   if (isUndef(Opcode, Ops))
4282     return getUNDEF(VT);
4283 
4284   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4285   if (!VT.isVector())
4286     return SDValue();
4287 
4288   unsigned NumElts = VT.getVectorNumElements();
4289 
4290   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4291     return !Op.getValueType().isVector() ||
4292            Op.getValueType().getVectorNumElements() == NumElts;
4293   };
4294 
4295   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4296     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4297     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4298            (BV && BV->isConstant());
4299   };
4300 
4301   // All operands must be vector types with the same number of elements as
4302   // the result type and must be either UNDEF or a build vector of constant
4303   // or UNDEF scalars.
4304   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4305       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4306     return SDValue();
4307 
4308   // If we are comparing vectors, then the result needs to be a i1 boolean
4309   // that is then sign-extended back to the legal result type.
4310   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4311 
4312   // Find legal integer scalar type for constant promotion and
4313   // ensure that its scalar size is at least as large as source.
4314   EVT LegalSVT = VT.getScalarType();
4315   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4316     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4317     if (LegalSVT.bitsLT(VT.getScalarType()))
4318       return SDValue();
4319   }
4320 
4321   // Constant fold each scalar lane separately.
4322   SmallVector<SDValue, 4> ScalarResults;
4323   for (unsigned i = 0; i != NumElts; i++) {
4324     SmallVector<SDValue, 4> ScalarOps;
4325     for (SDValue Op : Ops) {
4326       EVT InSVT = Op.getValueType().getScalarType();
4327       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4328       if (!InBV) {
4329         // We've checked that this is UNDEF or a constant of some kind.
4330         if (Op.isUndef())
4331           ScalarOps.push_back(getUNDEF(InSVT));
4332         else
4333           ScalarOps.push_back(Op);
4334         continue;
4335       }
4336 
4337       SDValue ScalarOp = InBV->getOperand(i);
4338       EVT ScalarVT = ScalarOp.getValueType();
4339 
4340       // Build vector (integer) scalar operands may need implicit
4341       // truncation - do this before constant folding.
4342       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4343         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4344 
4345       ScalarOps.push_back(ScalarOp);
4346     }
4347 
4348     // Constant fold the scalar operands.
4349     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4350 
4351     // Legalize the (integer) scalar constant if necessary.
4352     if (LegalSVT != SVT)
4353       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4354 
4355     // Scalar folding only succeeded if the result is a constant or UNDEF.
4356     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4357         ScalarResult.getOpcode() != ISD::ConstantFP)
4358       return SDValue();
4359     ScalarResults.push_back(ScalarResult);
4360   }
4361 
4362   SDValue V = getBuildVector(VT, DL, ScalarResults);
4363   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4364   return V;
4365 }
4366 
4367 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4368                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4369   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4370   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4371   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4372   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4373 
4374   // Canonicalize constant to RHS if commutative.
4375   if (TLI->isCommutativeBinOp(Opcode)) {
4376     if (N1C && !N2C) {
4377       std::swap(N1C, N2C);
4378       std::swap(N1, N2);
4379     } else if (N1CFP && !N2CFP) {
4380       std::swap(N1CFP, N2CFP);
4381       std::swap(N1, N2);
4382     }
4383   }
4384 
4385   switch (Opcode) {
4386   default: break;
4387   case ISD::TokenFactor:
4388     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4389            N2.getValueType() == MVT::Other && "Invalid token factor!");
4390     // Fold trivial token factors.
4391     if (N1.getOpcode() == ISD::EntryToken) return N2;
4392     if (N2.getOpcode() == ISD::EntryToken) return N1;
4393     if (N1 == N2) return N1;
4394     break;
4395   case ISD::CONCAT_VECTORS: {
4396     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4397     SDValue Ops[] = {N1, N2};
4398     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4399       return V;
4400     break;
4401   }
4402   case ISD::AND:
4403     assert(VT.isInteger() && "This operator does not apply to FP types!");
4404     assert(N1.getValueType() == N2.getValueType() &&
4405            N1.getValueType() == VT && "Binary operator types must match!");
4406     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4407     // worth handling here.
4408     if (N2C && N2C->isNullValue())
4409       return N2;
4410     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4411       return N1;
4412     break;
4413   case ISD::OR:
4414   case ISD::XOR:
4415   case ISD::ADD:
4416   case ISD::SUB:
4417     assert(VT.isInteger() && "This operator does not apply to FP types!");
4418     assert(N1.getValueType() == N2.getValueType() &&
4419            N1.getValueType() == VT && "Binary operator types must match!");
4420     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4421     // it's worth handling here.
4422     if (N2C && N2C->isNullValue())
4423       return N1;
4424     break;
4425   case ISD::UDIV:
4426   case ISD::UREM:
4427   case ISD::MULHU:
4428   case ISD::MULHS:
4429   case ISD::MUL:
4430   case ISD::SDIV:
4431   case ISD::SREM:
4432   case ISD::SMIN:
4433   case ISD::SMAX:
4434   case ISD::UMIN:
4435   case ISD::UMAX:
4436     assert(VT.isInteger() && "This operator does not apply to FP types!");
4437     assert(N1.getValueType() == N2.getValueType() &&
4438            N1.getValueType() == VT && "Binary operator types must match!");
4439     break;
4440   case ISD::FADD:
4441   case ISD::FSUB:
4442   case ISD::FMUL:
4443   case ISD::FDIV:
4444   case ISD::FREM:
4445     if (getTarget().Options.UnsafeFPMath) {
4446       if (Opcode == ISD::FADD) {
4447         // x+0 --> x
4448         if (N2CFP && N2CFP->getValueAPF().isZero())
4449           return N1;
4450       } else if (Opcode == ISD::FSUB) {
4451         // x-0 --> x
4452         if (N2CFP && N2CFP->getValueAPF().isZero())
4453           return N1;
4454       } else if (Opcode == ISD::FMUL) {
4455         // x*0 --> 0
4456         if (N2CFP && N2CFP->isZero())
4457           return N2;
4458         // x*1 --> x
4459         if (N2CFP && N2CFP->isExactlyValue(1.0))
4460           return N1;
4461       }
4462     }
4463     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4464     assert(N1.getValueType() == N2.getValueType() &&
4465            N1.getValueType() == VT && "Binary operator types must match!");
4466     break;
4467   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4468     assert(N1.getValueType() == VT &&
4469            N1.getValueType().isFloatingPoint() &&
4470            N2.getValueType().isFloatingPoint() &&
4471            "Invalid FCOPYSIGN!");
4472     break;
4473   case ISD::SHL:
4474   case ISD::SRA:
4475   case ISD::SRL:
4476   case ISD::ROTL:
4477   case ISD::ROTR:
4478     assert(VT == N1.getValueType() &&
4479            "Shift operators return type must be the same as their first arg");
4480     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4481            "Shifts only work on integers");
4482     assert((!VT.isVector() || VT == N2.getValueType()) &&
4483            "Vector shift amounts must be in the same as their first arg");
4484     // Verify that the shift amount VT is bit enough to hold valid shift
4485     // amounts.  This catches things like trying to shift an i1024 value by an
4486     // i8, which is easy to fall into in generic code that uses
4487     // TLI.getShiftAmount().
4488     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4489            "Invalid use of small shift amount with oversized value!");
4490 
4491     // Always fold shifts of i1 values so the code generator doesn't need to
4492     // handle them.  Since we know the size of the shift has to be less than the
4493     // size of the value, the shift/rotate count is guaranteed to be zero.
4494     if (VT == MVT::i1)
4495       return N1;
4496     if (N2C && N2C->isNullValue())
4497       return N1;
4498     break;
4499   case ISD::FP_ROUND_INREG: {
4500     EVT EVT = cast<VTSDNode>(N2)->getVT();
4501     assert(VT == N1.getValueType() && "Not an inreg round!");
4502     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4503            "Cannot FP_ROUND_INREG integer types");
4504     assert(EVT.isVector() == VT.isVector() &&
4505            "FP_ROUND_INREG type should be vector iff the operand "
4506            "type is vector!");
4507     assert((!EVT.isVector() ||
4508             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4509            "Vector element counts must match in FP_ROUND_INREG");
4510     assert(EVT.bitsLE(VT) && "Not rounding down!");
4511     (void)EVT;
4512     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4513     break;
4514   }
4515   case ISD::FP_ROUND:
4516     assert(VT.isFloatingPoint() &&
4517            N1.getValueType().isFloatingPoint() &&
4518            VT.bitsLE(N1.getValueType()) &&
4519            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4520            "Invalid FP_ROUND!");
4521     if (N1.getValueType() == VT) return N1;  // noop conversion.
4522     break;
4523   case ISD::AssertSext:
4524   case ISD::AssertZext: {
4525     EVT EVT = cast<VTSDNode>(N2)->getVT();
4526     assert(VT == N1.getValueType() && "Not an inreg extend!");
4527     assert(VT.isInteger() && EVT.isInteger() &&
4528            "Cannot *_EXTEND_INREG FP types");
4529     assert(!EVT.isVector() &&
4530            "AssertSExt/AssertZExt type should be the vector element type "
4531            "rather than the vector type!");
4532     assert(EVT.bitsLE(VT) && "Not extending!");
4533     if (VT == EVT) return N1; // noop assertion.
4534     break;
4535   }
4536   case ISD::SIGN_EXTEND_INREG: {
4537     EVT EVT = cast<VTSDNode>(N2)->getVT();
4538     assert(VT == N1.getValueType() && "Not an inreg extend!");
4539     assert(VT.isInteger() && EVT.isInteger() &&
4540            "Cannot *_EXTEND_INREG FP types");
4541     assert(EVT.isVector() == VT.isVector() &&
4542            "SIGN_EXTEND_INREG type should be vector iff the operand "
4543            "type is vector!");
4544     assert((!EVT.isVector() ||
4545             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4546            "Vector element counts must match in SIGN_EXTEND_INREG");
4547     assert(EVT.bitsLE(VT) && "Not extending!");
4548     if (EVT == VT) return N1;  // Not actually extending
4549 
4550     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4551       unsigned FromBits = EVT.getScalarSizeInBits();
4552       Val <<= Val.getBitWidth() - FromBits;
4553       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4554       return getConstant(Val, DL, ConstantVT);
4555     };
4556 
4557     if (N1C) {
4558       const APInt &Val = N1C->getAPIntValue();
4559       return SignExtendInReg(Val, VT);
4560     }
4561     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4562       SmallVector<SDValue, 8> Ops;
4563       llvm::EVT OpVT = N1.getOperand(0).getValueType();
4564       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4565         SDValue Op = N1.getOperand(i);
4566         if (Op.isUndef()) {
4567           Ops.push_back(getUNDEF(OpVT));
4568           continue;
4569         }
4570         ConstantSDNode *C = cast<ConstantSDNode>(Op);
4571         APInt Val = C->getAPIntValue();
4572         Ops.push_back(SignExtendInReg(Val, OpVT));
4573       }
4574       return getBuildVector(VT, DL, Ops);
4575     }
4576     break;
4577   }
4578   case ISD::EXTRACT_VECTOR_ELT:
4579     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
4580            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
4581              element type of the vector.");
4582 
4583     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4584     if (N1.isUndef())
4585       return getUNDEF(VT);
4586 
4587     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4588     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
4589       return getUNDEF(VT);
4590 
4591     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4592     // expanding copies of large vectors from registers.
4593     if (N2C &&
4594         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4595         N1.getNumOperands() > 0) {
4596       unsigned Factor =
4597         N1.getOperand(0).getValueType().getVectorNumElements();
4598       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4599                      N1.getOperand(N2C->getZExtValue() / Factor),
4600                      getConstant(N2C->getZExtValue() % Factor, DL,
4601                                  N2.getValueType()));
4602     }
4603 
4604     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4605     // expanding large vector constants.
4606     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4607       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4608 
4609       if (VT != Elt.getValueType())
4610         // If the vector element type is not legal, the BUILD_VECTOR operands
4611         // are promoted and implicitly truncated, and the result implicitly
4612         // extended. Make that explicit here.
4613         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4614 
4615       return Elt;
4616     }
4617 
4618     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4619     // operations are lowered to scalars.
4620     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4621       // If the indices are the same, return the inserted element else
4622       // if the indices are known different, extract the element from
4623       // the original vector.
4624       SDValue N1Op2 = N1.getOperand(2);
4625       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4626 
4627       if (N1Op2C && N2C) {
4628         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4629           if (VT == N1.getOperand(1).getValueType())
4630             return N1.getOperand(1);
4631           else
4632             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4633         }
4634 
4635         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4636       }
4637     }
4638 
4639     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
4640     // when vector types are scalarized and v1iX is legal.
4641     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
4642     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
4643         N1.getValueType().getVectorNumElements() == 1) {
4644       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
4645                      N1.getOperand(1));
4646     }
4647     break;
4648   case ISD::EXTRACT_ELEMENT:
4649     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4650     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4651            (N1.getValueType().isInteger() == VT.isInteger()) &&
4652            N1.getValueType() != VT &&
4653            "Wrong types for EXTRACT_ELEMENT!");
4654 
4655     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4656     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4657     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4658     if (N1.getOpcode() == ISD::BUILD_PAIR)
4659       return N1.getOperand(N2C->getZExtValue());
4660 
4661     // EXTRACT_ELEMENT of a constant int is also very common.
4662     if (N1C) {
4663       unsigned ElementSize = VT.getSizeInBits();
4664       unsigned Shift = ElementSize * N2C->getZExtValue();
4665       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4666       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4667     }
4668     break;
4669   case ISD::EXTRACT_SUBVECTOR:
4670     if (VT.isSimple() && N1.getValueType().isSimple()) {
4671       assert(VT.isVector() && N1.getValueType().isVector() &&
4672              "Extract subvector VTs must be a vectors!");
4673       assert(VT.getVectorElementType() ==
4674              N1.getValueType().getVectorElementType() &&
4675              "Extract subvector VTs must have the same element type!");
4676       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4677              "Extract subvector must be from larger vector to smaller vector!");
4678 
4679       if (N2C) {
4680         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4681                 <= N1.getValueType().getVectorNumElements())
4682                && "Extract subvector overflow!");
4683       }
4684 
4685       // Trivial extraction.
4686       if (VT.getSimpleVT() == N1.getSimpleValueType())
4687         return N1;
4688 
4689       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4690       if (N1.isUndef())
4691         return getUNDEF(VT);
4692 
4693       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4694       // the concat have the same type as the extract.
4695       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4696           N1.getNumOperands() > 0 &&
4697           VT == N1.getOperand(0).getValueType()) {
4698         unsigned Factor = VT.getVectorNumElements();
4699         return N1.getOperand(N2C->getZExtValue() / Factor);
4700       }
4701 
4702       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4703       // during shuffle legalization.
4704       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4705           VT == N1.getOperand(1).getValueType())
4706         return N1.getOperand(1);
4707     }
4708     break;
4709   }
4710 
4711   // Perform trivial constant folding.
4712   if (SDValue SV =
4713           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4714     return SV;
4715 
4716   // Constant fold FP operations.
4717   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4718   if (N1CFP) {
4719     if (N2CFP) {
4720       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4721       APFloat::opStatus s;
4722       switch (Opcode) {
4723       case ISD::FADD:
4724         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4725         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4726           return getConstantFP(V1, DL, VT);
4727         break;
4728       case ISD::FSUB:
4729         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4730         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4731           return getConstantFP(V1, DL, VT);
4732         break;
4733       case ISD::FMUL:
4734         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4735         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4736           return getConstantFP(V1, DL, VT);
4737         break;
4738       case ISD::FDIV:
4739         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4740         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4741                                  s!=APFloat::opDivByZero)) {
4742           return getConstantFP(V1, DL, VT);
4743         }
4744         break;
4745       case ISD::FREM :
4746         s = V1.mod(V2);
4747         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4748                                  s!=APFloat::opDivByZero)) {
4749           return getConstantFP(V1, DL, VT);
4750         }
4751         break;
4752       case ISD::FCOPYSIGN:
4753         V1.copySign(V2);
4754         return getConstantFP(V1, DL, VT);
4755       default: break;
4756       }
4757     }
4758 
4759     if (Opcode == ISD::FP_ROUND) {
4760       APFloat V = N1CFP->getValueAPF();    // make copy
4761       bool ignored;
4762       // This can return overflow, underflow, or inexact; we don't care.
4763       // FIXME need to be more flexible about rounding mode.
4764       (void)V.convert(EVTToAPFloatSemantics(VT),
4765                       APFloat::rmNearestTiesToEven, &ignored);
4766       return getConstantFP(V, DL, VT);
4767     }
4768   }
4769 
4770   // Any FP binop with an undef operand is folded to NaN. This matches the
4771   // behavior of the IR optimizer.
4772   switch (Opcode) {
4773   case ISD::FADD:
4774   case ISD::FSUB:
4775   case ISD::FMUL:
4776   case ISD::FDIV:
4777   case ISD::FREM:
4778     if (N1.isUndef() || N2.isUndef())
4779       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
4780   }
4781 
4782   // Canonicalize an UNDEF to the RHS, even over a constant.
4783   if (N1.isUndef()) {
4784     if (TLI->isCommutativeBinOp(Opcode)) {
4785       std::swap(N1, N2);
4786     } else {
4787       switch (Opcode) {
4788       case ISD::FP_ROUND_INREG:
4789       case ISD::SIGN_EXTEND_INREG:
4790       case ISD::SUB:
4791         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
4792       case ISD::UDIV:
4793       case ISD::SDIV:
4794       case ISD::UREM:
4795       case ISD::SREM:
4796       case ISD::SRA:
4797       case ISD::SRL:
4798       case ISD::SHL:
4799         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4800       }
4801     }
4802   }
4803 
4804   // Fold a bunch of operators when the RHS is undef.
4805   if (N2.isUndef()) {
4806     switch (Opcode) {
4807     case ISD::XOR:
4808       if (N1.isUndef())
4809         // Handle undef ^ undef -> 0 special case. This is a common
4810         // idiom (misuse).
4811         return getConstant(0, DL, VT);
4812       LLVM_FALLTHROUGH;
4813     case ISD::ADD:
4814     case ISD::ADDC:
4815     case ISD::ADDE:
4816     case ISD::SUB:
4817     case ISD::UDIV:
4818     case ISD::SDIV:
4819     case ISD::UREM:
4820     case ISD::SREM:
4821     case ISD::SRA:
4822     case ISD::SRL:
4823     case ISD::SHL:
4824       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
4825     case ISD::MUL:
4826     case ISD::AND:
4827       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4828     case ISD::OR:
4829       return getAllOnesConstant(DL, VT);
4830     }
4831   }
4832 
4833   // Memoize this node if possible.
4834   SDNode *N;
4835   SDVTList VTs = getVTList(VT);
4836   SDValue Ops[] = {N1, N2};
4837   if (VT != MVT::Glue) {
4838     FoldingSetNodeID ID;
4839     AddNodeIDNode(ID, Opcode, VTs, Ops);
4840     void *IP = nullptr;
4841     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4842       E->intersectFlagsWith(Flags);
4843       return SDValue(E, 0);
4844     }
4845 
4846     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4847     N->setFlags(Flags);
4848     createOperands(N, Ops);
4849     CSEMap.InsertNode(N, IP);
4850   } else {
4851     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4852     createOperands(N, Ops);
4853   }
4854 
4855   InsertNode(N);
4856   SDValue V = SDValue(N, 0);
4857   NewSDValueDbgMsg(V, "Creating new node: ", this);
4858   return V;
4859 }
4860 
4861 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4862                               SDValue N1, SDValue N2, SDValue N3) {
4863   // Perform various simplifications.
4864   switch (Opcode) {
4865   case ISD::FMA: {
4866     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4867     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4868     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4869     if (N1CFP && N2CFP && N3CFP) {
4870       APFloat  V1 = N1CFP->getValueAPF();
4871       const APFloat &V2 = N2CFP->getValueAPF();
4872       const APFloat &V3 = N3CFP->getValueAPF();
4873       APFloat::opStatus s =
4874         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4875       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4876         return getConstantFP(V1, DL, VT);
4877     }
4878     break;
4879   }
4880   case ISD::CONCAT_VECTORS: {
4881     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4882     SDValue Ops[] = {N1, N2, N3};
4883     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4884       return V;
4885     break;
4886   }
4887   case ISD::SETCC: {
4888     // Use FoldSetCC to simplify SETCC's.
4889     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
4890       return V;
4891     // Vector constant folding.
4892     SDValue Ops[] = {N1, N2, N3};
4893     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
4894       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
4895       return V;
4896     }
4897     break;
4898   }
4899   case ISD::SELECT:
4900     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
4901      if (N1C->getZExtValue())
4902        return N2;             // select true, X, Y -> X
4903      return N3;             // select false, X, Y -> Y
4904     }
4905 
4906     if (N2 == N3) return N2;   // select C, X, X -> X
4907     break;
4908   case ISD::VECTOR_SHUFFLE:
4909     llvm_unreachable("should use getVectorShuffle constructor!");
4910   case ISD::INSERT_VECTOR_ELT: {
4911     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
4912     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
4913     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4914       return getUNDEF(VT);
4915     break;
4916   }
4917   case ISD::INSERT_SUBVECTOR: {
4918     SDValue Index = N3;
4919     if (VT.isSimple() && N1.getValueType().isSimple()
4920         && N2.getValueType().isSimple()) {
4921       assert(VT.isVector() && N1.getValueType().isVector() &&
4922              N2.getValueType().isVector() &&
4923              "Insert subvector VTs must be a vectors");
4924       assert(VT == N1.getValueType() &&
4925              "Dest and insert subvector source types must match!");
4926       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
4927              "Insert subvector must be from smaller vector to larger vector!");
4928       if (isa<ConstantSDNode>(Index)) {
4929         assert((N2.getValueType().getVectorNumElements() +
4930                 cast<ConstantSDNode>(Index)->getZExtValue()
4931                 <= VT.getVectorNumElements())
4932                && "Insert subvector overflow!");
4933       }
4934 
4935       // Trivial insertion.
4936       if (VT.getSimpleVT() == N2.getSimpleValueType())
4937         return N2;
4938     }
4939     break;
4940   }
4941   case ISD::BITCAST:
4942     // Fold bit_convert nodes from a type to themselves.
4943     if (N1.getValueType() == VT)
4944       return N1;
4945     break;
4946   }
4947 
4948   // Memoize node if it doesn't produce a flag.
4949   SDNode *N;
4950   SDVTList VTs = getVTList(VT);
4951   SDValue Ops[] = {N1, N2, N3};
4952   if (VT != MVT::Glue) {
4953     FoldingSetNodeID ID;
4954     AddNodeIDNode(ID, Opcode, VTs, Ops);
4955     void *IP = nullptr;
4956     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4957       return SDValue(E, 0);
4958 
4959     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4960     createOperands(N, Ops);
4961     CSEMap.InsertNode(N, IP);
4962   } else {
4963     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4964     createOperands(N, Ops);
4965   }
4966 
4967   InsertNode(N);
4968   SDValue V = SDValue(N, 0);
4969   NewSDValueDbgMsg(V, "Creating new node: ", this);
4970   return V;
4971 }
4972 
4973 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4974                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
4975   SDValue Ops[] = { N1, N2, N3, N4 };
4976   return getNode(Opcode, DL, VT, Ops);
4977 }
4978 
4979 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4980                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
4981                               SDValue N5) {
4982   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4983   return getNode(Opcode, DL, VT, Ops);
4984 }
4985 
4986 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
4987 /// the incoming stack arguments to be loaded from the stack.
4988 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
4989   SmallVector<SDValue, 8> ArgChains;
4990 
4991   // Include the original chain at the beginning of the list. When this is
4992   // used by target LowerCall hooks, this helps legalize find the
4993   // CALLSEQ_BEGIN node.
4994   ArgChains.push_back(Chain);
4995 
4996   // Add a chain value for each stack argument.
4997   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
4998        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
4999     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5000       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5001         if (FI->getIndex() < 0)
5002           ArgChains.push_back(SDValue(L, 1));
5003 
5004   // Build a tokenfactor for all the chains.
5005   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5006 }
5007 
5008 /// getMemsetValue - Vectorized representation of the memset value
5009 /// operand.
5010 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5011                               const SDLoc &dl) {
5012   assert(!Value.isUndef());
5013 
5014   unsigned NumBits = VT.getScalarSizeInBits();
5015   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5016     assert(C->getAPIntValue().getBitWidth() == 8);
5017     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5018     if (VT.isInteger())
5019       return DAG.getConstant(Val, dl, VT);
5020     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5021                              VT);
5022   }
5023 
5024   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5025   EVT IntVT = VT.getScalarType();
5026   if (!IntVT.isInteger())
5027     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5028 
5029   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5030   if (NumBits > 8) {
5031     // Use a multiplication with 0x010101... to extend the input to the
5032     // required length.
5033     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5034     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5035                         DAG.getConstant(Magic, dl, IntVT));
5036   }
5037 
5038   if (VT != Value.getValueType() && !VT.isInteger())
5039     Value = DAG.getBitcast(VT.getScalarType(), Value);
5040   if (VT != Value.getValueType())
5041     Value = DAG.getSplatBuildVector(VT, dl, Value);
5042 
5043   return Value;
5044 }
5045 
5046 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5047 /// used when a memcpy is turned into a memset when the source is a constant
5048 /// string ptr.
5049 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5050                                   const TargetLowering &TLI,
5051                                   const ConstantDataArraySlice &Slice) {
5052   // Handle vector with all elements zero.
5053   if (Slice.Array == nullptr) {
5054     if (VT.isInteger())
5055       return DAG.getConstant(0, dl, VT);
5056     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5057       return DAG.getConstantFP(0.0, dl, VT);
5058     else if (VT.isVector()) {
5059       unsigned NumElts = VT.getVectorNumElements();
5060       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5061       return DAG.getNode(ISD::BITCAST, dl, VT,
5062                          DAG.getConstant(0, dl,
5063                                          EVT::getVectorVT(*DAG.getContext(),
5064                                                           EltVT, NumElts)));
5065     } else
5066       llvm_unreachable("Expected type!");
5067   }
5068 
5069   assert(!VT.isVector() && "Can't handle vector type here!");
5070   unsigned NumVTBits = VT.getSizeInBits();
5071   unsigned NumVTBytes = NumVTBits / 8;
5072   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5073 
5074   APInt Val(NumVTBits, 0);
5075   if (DAG.getDataLayout().isLittleEndian()) {
5076     for (unsigned i = 0; i != NumBytes; ++i)
5077       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5078   } else {
5079     for (unsigned i = 0; i != NumBytes; ++i)
5080       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5081   }
5082 
5083   // If the "cost" of materializing the integer immediate is less than the cost
5084   // of a load, then it is cost effective to turn the load into the immediate.
5085   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5086   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5087     return DAG.getConstant(Val, dl, VT);
5088   return SDValue(nullptr, 0);
5089 }
5090 
5091 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5092                                            const SDLoc &DL) {
5093   EVT VT = Base.getValueType();
5094   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5095 }
5096 
5097 /// Returns true if memcpy source is constant data.
5098 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5099   uint64_t SrcDelta = 0;
5100   GlobalAddressSDNode *G = nullptr;
5101   if (Src.getOpcode() == ISD::GlobalAddress)
5102     G = cast<GlobalAddressSDNode>(Src);
5103   else if (Src.getOpcode() == ISD::ADD &&
5104            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5105            Src.getOperand(1).getOpcode() == ISD::Constant) {
5106     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5107     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5108   }
5109   if (!G)
5110     return false;
5111 
5112   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5113                                   SrcDelta + G->getOffset());
5114 }
5115 
5116 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5117 /// Return true if the number of memory ops is below the threshold (Limit).
5118 /// It returns the types of the sequence of memory ops to perform
5119 /// memset / memcpy by reference.
5120 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5121                                      unsigned Limit, uint64_t Size,
5122                                      unsigned DstAlign, unsigned SrcAlign,
5123                                      bool IsMemset,
5124                                      bool ZeroMemset,
5125                                      bool MemcpyStrSrc,
5126                                      bool AllowOverlap,
5127                                      unsigned DstAS, unsigned SrcAS,
5128                                      SelectionDAG &DAG,
5129                                      const TargetLowering &TLI) {
5130   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5131          "Expecting memcpy / memset source to meet alignment requirement!");
5132   // If 'SrcAlign' is zero, that means the memory operation does not need to
5133   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5134   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5135   // is the specified alignment of the memory operation. If it is zero, that
5136   // means it's possible to change the alignment of the destination.
5137   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5138   // not need to be loaded.
5139   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5140                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5141                                    DAG.getMachineFunction());
5142 
5143   if (VT == MVT::Other) {
5144     // Use the largest integer type whose alignment constraints are satisfied.
5145     // We only need to check DstAlign here as SrcAlign is always greater or
5146     // equal to DstAlign (or zero).
5147     VT = MVT::i64;
5148     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5149            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5150       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5151     assert(VT.isInteger());
5152 
5153     // Find the largest legal integer type.
5154     MVT LVT = MVT::i64;
5155     while (!TLI.isTypeLegal(LVT))
5156       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5157     assert(LVT.isInteger());
5158 
5159     // If the type we've chosen is larger than the largest legal integer type
5160     // then use that instead.
5161     if (VT.bitsGT(LVT))
5162       VT = LVT;
5163   }
5164 
5165   unsigned NumMemOps = 0;
5166   while (Size != 0) {
5167     unsigned VTSize = VT.getSizeInBits() / 8;
5168     while (VTSize > Size) {
5169       // For now, only use non-vector load / store's for the left-over pieces.
5170       EVT NewVT = VT;
5171       unsigned NewVTSize;
5172 
5173       bool Found = false;
5174       if (VT.isVector() || VT.isFloatingPoint()) {
5175         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5176         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5177             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5178           Found = true;
5179         else if (NewVT == MVT::i64 &&
5180                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5181                  TLI.isSafeMemOpType(MVT::f64)) {
5182           // i64 is usually not legal on 32-bit targets, but f64 may be.
5183           NewVT = MVT::f64;
5184           Found = true;
5185         }
5186       }
5187 
5188       if (!Found) {
5189         do {
5190           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5191           if (NewVT == MVT::i8)
5192             break;
5193         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5194       }
5195       NewVTSize = NewVT.getSizeInBits() / 8;
5196 
5197       // If the new VT cannot cover all of the remaining bits, then consider
5198       // issuing a (or a pair of) unaligned and overlapping load / store.
5199       // FIXME: Only does this for 64-bit or more since we don't have proper
5200       // cost model for unaligned load / store.
5201       bool Fast;
5202       if (NumMemOps && AllowOverlap &&
5203           VTSize >= 8 && NewVTSize < Size &&
5204           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
5205         VTSize = Size;
5206       else {
5207         VT = NewVT;
5208         VTSize = NewVTSize;
5209       }
5210     }
5211 
5212     if (++NumMemOps > Limit)
5213       return false;
5214 
5215     MemOps.push_back(VT);
5216     Size -= VTSize;
5217   }
5218 
5219   return true;
5220 }
5221 
5222 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5223   // On Darwin, -Os means optimize for size without hurting performance, so
5224   // only really optimize for size when -Oz (MinSize) is used.
5225   if (MF.getTarget().getTargetTriple().isOSDarwin())
5226     return MF.getFunction().optForMinSize();
5227   return MF.getFunction().optForSize();
5228 }
5229 
5230 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5231                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5232                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5233                           SmallVector<SDValue, 16> &OutStoreChains) {
5234   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5235   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5236   SmallVector<SDValue, 16> GluedLoadChains;
5237   for (unsigned i = From; i < To; ++i) {
5238     OutChains.push_back(OutLoadChains[i]);
5239     GluedLoadChains.push_back(OutLoadChains[i]);
5240   }
5241 
5242   // Chain for all loads.
5243   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5244                                   GluedLoadChains);
5245 
5246   for (unsigned i = From; i < To; ++i) {
5247     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5248     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5249                                   ST->getBasePtr(), ST->getMemoryVT(),
5250                                   ST->getMemOperand());
5251     OutChains.push_back(NewStore);
5252   }
5253 }
5254 
5255 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5256                                        SDValue Chain, SDValue Dst, SDValue Src,
5257                                        uint64_t Size, unsigned Align,
5258                                        bool isVol, bool AlwaysInline,
5259                                        MachinePointerInfo DstPtrInfo,
5260                                        MachinePointerInfo SrcPtrInfo) {
5261   // Turn a memcpy of undef to nop.
5262   if (Src.isUndef())
5263     return Chain;
5264 
5265   // Expand memcpy to a series of load and store ops if the size operand falls
5266   // below a certain threshold.
5267   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5268   // rather than maybe a humongous number of loads and stores.
5269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5270   const DataLayout &DL = DAG.getDataLayout();
5271   LLVMContext &C = *DAG.getContext();
5272   std::vector<EVT> MemOps;
5273   bool DstAlignCanChange = false;
5274   MachineFunction &MF = DAG.getMachineFunction();
5275   MachineFrameInfo &MFI = MF.getFrameInfo();
5276   bool OptSize = shouldLowerMemFuncForSize(MF);
5277   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5278   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5279     DstAlignCanChange = true;
5280   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5281   if (Align > SrcAlign)
5282     SrcAlign = Align;
5283   ConstantDataArraySlice Slice;
5284   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5285   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5286   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5287 
5288   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5289                                 (DstAlignCanChange ? 0 : Align),
5290                                 (isZeroConstant ? 0 : SrcAlign),
5291                                 false, false, CopyFromConstant, true,
5292                                 DstPtrInfo.getAddrSpace(),
5293                                 SrcPtrInfo.getAddrSpace(),
5294                                 DAG, TLI))
5295     return SDValue();
5296 
5297   if (DstAlignCanChange) {
5298     Type *Ty = MemOps[0].getTypeForEVT(C);
5299     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5300 
5301     // Don't promote to an alignment that would require dynamic stack
5302     // realignment.
5303     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5304     if (!TRI->needsStackRealignment(MF))
5305       while (NewAlign > Align &&
5306              DL.exceedsNaturalStackAlignment(NewAlign))
5307           NewAlign /= 2;
5308 
5309     if (NewAlign > Align) {
5310       // Give the stack frame object a larger alignment if needed.
5311       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5312         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5313       Align = NewAlign;
5314     }
5315   }
5316 
5317   MachineMemOperand::Flags MMOFlags =
5318       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5319   SmallVector<SDValue, 16> OutLoadChains;
5320   SmallVector<SDValue, 16> OutStoreChains;
5321   SmallVector<SDValue, 32> OutChains;
5322   unsigned NumMemOps = MemOps.size();
5323   uint64_t SrcOff = 0, DstOff = 0;
5324   for (unsigned i = 0; i != NumMemOps; ++i) {
5325     EVT VT = MemOps[i];
5326     unsigned VTSize = VT.getSizeInBits() / 8;
5327     SDValue Value, Store;
5328 
5329     if (VTSize > Size) {
5330       // Issuing an unaligned load / store pair  that overlaps with the previous
5331       // pair. Adjust the offset accordingly.
5332       assert(i == NumMemOps-1 && i != 0);
5333       SrcOff -= VTSize - Size;
5334       DstOff -= VTSize - Size;
5335     }
5336 
5337     if (CopyFromConstant &&
5338         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5339       // It's unlikely a store of a vector immediate can be done in a single
5340       // instruction. It would require a load from a constantpool first.
5341       // We only handle zero vectors here.
5342       // FIXME: Handle other cases where store of vector immediate is done in
5343       // a single instruction.
5344       ConstantDataArraySlice SubSlice;
5345       if (SrcOff < Slice.Length) {
5346         SubSlice = Slice;
5347         SubSlice.move(SrcOff);
5348       } else {
5349         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5350         SubSlice.Array = nullptr;
5351         SubSlice.Offset = 0;
5352         SubSlice.Length = VTSize;
5353       }
5354       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5355       if (Value.getNode()) {
5356         Store = DAG.getStore(Chain, dl, Value,
5357                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5358                              DstPtrInfo.getWithOffset(DstOff), Align,
5359                              MMOFlags);
5360         OutChains.push_back(Store);
5361       }
5362     }
5363 
5364     if (!Store.getNode()) {
5365       // The type might not be legal for the target.  This should only happen
5366       // if the type is smaller than a legal type, as on PPC, so the right
5367       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5368       // to Load/Store if NVT==VT.
5369       // FIXME does the case above also need this?
5370       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5371       assert(NVT.bitsGE(VT));
5372 
5373       bool isDereferenceable =
5374         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5375       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5376       if (isDereferenceable)
5377         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5378 
5379       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5380                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5381                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5382                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5383       OutLoadChains.push_back(Value.getValue(1));
5384 
5385       Store = DAG.getTruncStore(
5386           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5387           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5388       OutStoreChains.push_back(Store);
5389     }
5390     SrcOff += VTSize;
5391     DstOff += VTSize;
5392     Size -= VTSize;
5393   }
5394 
5395   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5396                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5397   unsigned NumLdStInMemcpy = OutStoreChains.size();
5398 
5399   if (NumLdStInMemcpy) {
5400     // It may be that memcpy might be converted to memset if it's memcpy
5401     // of constants. In such a case, we won't have loads and stores, but
5402     // just stores. In the absence of loads, there is nothing to gang up.
5403     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5404       // If target does not care, just leave as it.
5405       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5406         OutChains.push_back(OutLoadChains[i]);
5407         OutChains.push_back(OutStoreChains[i]);
5408       }
5409     } else {
5410       // Ld/St less than/equal limit set by target.
5411       if (NumLdStInMemcpy <= GluedLdStLimit) {
5412           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5413                                         NumLdStInMemcpy, OutLoadChains,
5414                                         OutStoreChains);
5415       } else {
5416         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5417         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5418         unsigned GlueIter = 0;
5419 
5420         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5421           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5422           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5423 
5424           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5425                                        OutLoadChains, OutStoreChains);
5426           GlueIter += GluedLdStLimit;
5427         }
5428 
5429         // Residual ld/st.
5430         if (RemainingLdStInMemcpy) {
5431           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5432                                         RemainingLdStInMemcpy, OutLoadChains,
5433                                         OutStoreChains);
5434         }
5435       }
5436     }
5437   }
5438   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5439 }
5440 
5441 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5442                                         SDValue Chain, SDValue Dst, SDValue Src,
5443                                         uint64_t Size, unsigned Align,
5444                                         bool isVol, bool AlwaysInline,
5445                                         MachinePointerInfo DstPtrInfo,
5446                                         MachinePointerInfo SrcPtrInfo) {
5447   // Turn a memmove of undef to nop.
5448   if (Src.isUndef())
5449     return Chain;
5450 
5451   // Expand memmove to a series of load and store ops if the size operand falls
5452   // below a certain threshold.
5453   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5454   const DataLayout &DL = DAG.getDataLayout();
5455   LLVMContext &C = *DAG.getContext();
5456   std::vector<EVT> MemOps;
5457   bool DstAlignCanChange = false;
5458   MachineFunction &MF = DAG.getMachineFunction();
5459   MachineFrameInfo &MFI = MF.getFrameInfo();
5460   bool OptSize = shouldLowerMemFuncForSize(MF);
5461   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5462   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5463     DstAlignCanChange = true;
5464   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5465   if (Align > SrcAlign)
5466     SrcAlign = Align;
5467   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5468 
5469   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5470                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5471                                 false, false, false, false,
5472                                 DstPtrInfo.getAddrSpace(),
5473                                 SrcPtrInfo.getAddrSpace(),
5474                                 DAG, TLI))
5475     return SDValue();
5476 
5477   if (DstAlignCanChange) {
5478     Type *Ty = MemOps[0].getTypeForEVT(C);
5479     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5480     if (NewAlign > Align) {
5481       // Give the stack frame object a larger alignment if needed.
5482       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5483         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5484       Align = NewAlign;
5485     }
5486   }
5487 
5488   MachineMemOperand::Flags MMOFlags =
5489       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5490   uint64_t SrcOff = 0, DstOff = 0;
5491   SmallVector<SDValue, 8> LoadValues;
5492   SmallVector<SDValue, 8> LoadChains;
5493   SmallVector<SDValue, 8> OutChains;
5494   unsigned NumMemOps = MemOps.size();
5495   for (unsigned i = 0; i < NumMemOps; i++) {
5496     EVT VT = MemOps[i];
5497     unsigned VTSize = VT.getSizeInBits() / 8;
5498     SDValue Value;
5499 
5500     bool isDereferenceable =
5501       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5502     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5503     if (isDereferenceable)
5504       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5505 
5506     Value =
5507         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5508                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5509     LoadValues.push_back(Value);
5510     LoadChains.push_back(Value.getValue(1));
5511     SrcOff += VTSize;
5512   }
5513   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5514   OutChains.clear();
5515   for (unsigned i = 0; i < NumMemOps; i++) {
5516     EVT VT = MemOps[i];
5517     unsigned VTSize = VT.getSizeInBits() / 8;
5518     SDValue Store;
5519 
5520     Store = DAG.getStore(Chain, dl, LoadValues[i],
5521                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5522                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5523     OutChains.push_back(Store);
5524     DstOff += VTSize;
5525   }
5526 
5527   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5528 }
5529 
5530 /// Lower the call to 'memset' intrinsic function into a series of store
5531 /// operations.
5532 ///
5533 /// \param DAG Selection DAG where lowered code is placed.
5534 /// \param dl Link to corresponding IR location.
5535 /// \param Chain Control flow dependency.
5536 /// \param Dst Pointer to destination memory location.
5537 /// \param Src Value of byte to write into the memory.
5538 /// \param Size Number of bytes to write.
5539 /// \param Align Alignment of the destination in bytes.
5540 /// \param isVol True if destination is volatile.
5541 /// \param DstPtrInfo IR information on the memory pointer.
5542 /// \returns New head in the control flow, if lowering was successful, empty
5543 /// SDValue otherwise.
5544 ///
5545 /// The function tries to replace 'llvm.memset' intrinsic with several store
5546 /// operations and value calculation code. This is usually profitable for small
5547 /// memory size.
5548 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5549                                SDValue Chain, SDValue Dst, SDValue Src,
5550                                uint64_t Size, unsigned Align, bool isVol,
5551                                MachinePointerInfo DstPtrInfo) {
5552   // Turn a memset of undef to nop.
5553   if (Src.isUndef())
5554     return Chain;
5555 
5556   // Expand memset to a series of load/store ops if the size operand
5557   // falls below a certain threshold.
5558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5559   std::vector<EVT> MemOps;
5560   bool DstAlignCanChange = false;
5561   MachineFunction &MF = DAG.getMachineFunction();
5562   MachineFrameInfo &MFI = MF.getFrameInfo();
5563   bool OptSize = shouldLowerMemFuncForSize(MF);
5564   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5565   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5566     DstAlignCanChange = true;
5567   bool IsZeroVal =
5568     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5569   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5570                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5571                                 true, IsZeroVal, false, true,
5572                                 DstPtrInfo.getAddrSpace(), ~0u,
5573                                 DAG, TLI))
5574     return SDValue();
5575 
5576   if (DstAlignCanChange) {
5577     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5578     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5579     if (NewAlign > Align) {
5580       // Give the stack frame object a larger alignment if needed.
5581       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5582         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5583       Align = NewAlign;
5584     }
5585   }
5586 
5587   SmallVector<SDValue, 8> OutChains;
5588   uint64_t DstOff = 0;
5589   unsigned NumMemOps = MemOps.size();
5590 
5591   // Find the largest store and generate the bit pattern for it.
5592   EVT LargestVT = MemOps[0];
5593   for (unsigned i = 1; i < NumMemOps; i++)
5594     if (MemOps[i].bitsGT(LargestVT))
5595       LargestVT = MemOps[i];
5596   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5597 
5598   for (unsigned i = 0; i < NumMemOps; i++) {
5599     EVT VT = MemOps[i];
5600     unsigned VTSize = VT.getSizeInBits() / 8;
5601     if (VTSize > Size) {
5602       // Issuing an unaligned load / store pair  that overlaps with the previous
5603       // pair. Adjust the offset accordingly.
5604       assert(i == NumMemOps-1 && i != 0);
5605       DstOff -= VTSize - Size;
5606     }
5607 
5608     // If this store is smaller than the largest store see whether we can get
5609     // the smaller value for free with a truncate.
5610     SDValue Value = MemSetValue;
5611     if (VT.bitsLT(LargestVT)) {
5612       if (!LargestVT.isVector() && !VT.isVector() &&
5613           TLI.isTruncateFree(LargestVT, VT))
5614         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5615       else
5616         Value = getMemsetValue(Src, VT, DAG, dl);
5617     }
5618     assert(Value.getValueType() == VT && "Value with wrong type.");
5619     SDValue Store = DAG.getStore(
5620         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5621         DstPtrInfo.getWithOffset(DstOff), Align,
5622         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5623     OutChains.push_back(Store);
5624     DstOff += VT.getSizeInBits() / 8;
5625     Size -= VTSize;
5626   }
5627 
5628   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5629 }
5630 
5631 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5632                                             unsigned AS) {
5633   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5634   // pointer operands can be losslessly bitcasted to pointers of address space 0
5635   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5636     report_fatal_error("cannot lower memory intrinsic in address space " +
5637                        Twine(AS));
5638   }
5639 }
5640 
5641 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5642                                 SDValue Src, SDValue Size, unsigned Align,
5643                                 bool isVol, bool AlwaysInline, bool isTailCall,
5644                                 MachinePointerInfo DstPtrInfo,
5645                                 MachinePointerInfo SrcPtrInfo) {
5646   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5647 
5648   // Check to see if we should lower the memcpy to loads and stores first.
5649   // For cases within the target-specified limits, this is the best choice.
5650   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5651   if (ConstantSize) {
5652     // Memcpy with size zero? Just return the original chain.
5653     if (ConstantSize->isNullValue())
5654       return Chain;
5655 
5656     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5657                                              ConstantSize->getZExtValue(),Align,
5658                                 isVol, false, DstPtrInfo, SrcPtrInfo);
5659     if (Result.getNode())
5660       return Result;
5661   }
5662 
5663   // Then check to see if we should lower the memcpy with target-specific
5664   // code. If the target chooses to do this, this is the next best.
5665   if (TSI) {
5666     SDValue Result = TSI->EmitTargetCodeForMemcpy(
5667         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5668         DstPtrInfo, SrcPtrInfo);
5669     if (Result.getNode())
5670       return Result;
5671   }
5672 
5673   // If we really need inline code and the target declined to provide it,
5674   // use a (potentially long) sequence of loads and stores.
5675   if (AlwaysInline) {
5676     assert(ConstantSize && "AlwaysInline requires a constant size!");
5677     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5678                                    ConstantSize->getZExtValue(), Align, isVol,
5679                                    true, DstPtrInfo, SrcPtrInfo);
5680   }
5681 
5682   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5683   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5684 
5685   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5686   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5687   // respect volatile, so they may do things like read or write memory
5688   // beyond the given memory regions. But fixing this isn't easy, and most
5689   // people don't care.
5690 
5691   // Emit a library call.
5692   TargetLowering::ArgListTy Args;
5693   TargetLowering::ArgListEntry Entry;
5694   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5695   Entry.Node = Dst; Args.push_back(Entry);
5696   Entry.Node = Src; Args.push_back(Entry);
5697   Entry.Node = Size; Args.push_back(Entry);
5698   // FIXME: pass in SDLoc
5699   TargetLowering::CallLoweringInfo CLI(*this);
5700   CLI.setDebugLoc(dl)
5701       .setChain(Chain)
5702       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5703                     Dst.getValueType().getTypeForEVT(*getContext()),
5704                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5705                                       TLI->getPointerTy(getDataLayout())),
5706                     std::move(Args))
5707       .setDiscardResult()
5708       .setTailCall(isTailCall);
5709 
5710   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5711   return CallResult.second;
5712 }
5713 
5714 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
5715                                       SDValue Dst, unsigned DstAlign,
5716                                       SDValue Src, unsigned SrcAlign,
5717                                       SDValue Size, Type *SizeTy,
5718                                       unsigned ElemSz, bool isTailCall,
5719                                       MachinePointerInfo DstPtrInfo,
5720                                       MachinePointerInfo SrcPtrInfo) {
5721   // Emit a library call.
5722   TargetLowering::ArgListTy Args;
5723   TargetLowering::ArgListEntry Entry;
5724   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5725   Entry.Node = Dst;
5726   Args.push_back(Entry);
5727 
5728   Entry.Node = Src;
5729   Args.push_back(Entry);
5730 
5731   Entry.Ty = SizeTy;
5732   Entry.Node = Size;
5733   Args.push_back(Entry);
5734 
5735   RTLIB::Libcall LibraryCall =
5736       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5737   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5738     report_fatal_error("Unsupported element size");
5739 
5740   TargetLowering::CallLoweringInfo CLI(*this);
5741   CLI.setDebugLoc(dl)
5742       .setChain(Chain)
5743       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5744                     Type::getVoidTy(*getContext()),
5745                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5746                                       TLI->getPointerTy(getDataLayout())),
5747                     std::move(Args))
5748       .setDiscardResult()
5749       .setTailCall(isTailCall);
5750 
5751   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5752   return CallResult.second;
5753 }
5754 
5755 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5756                                  SDValue Src, SDValue Size, unsigned Align,
5757                                  bool isVol, bool isTailCall,
5758                                  MachinePointerInfo DstPtrInfo,
5759                                  MachinePointerInfo SrcPtrInfo) {
5760   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5761 
5762   // Check to see if we should lower the memmove to loads and stores first.
5763   // For cases within the target-specified limits, this is the best choice.
5764   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5765   if (ConstantSize) {
5766     // Memmove with size zero? Just return the original chain.
5767     if (ConstantSize->isNullValue())
5768       return Chain;
5769 
5770     SDValue Result =
5771       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5772                                ConstantSize->getZExtValue(), Align, isVol,
5773                                false, DstPtrInfo, SrcPtrInfo);
5774     if (Result.getNode())
5775       return Result;
5776   }
5777 
5778   // Then check to see if we should lower the memmove with target-specific
5779   // code. If the target chooses to do this, this is the next best.
5780   if (TSI) {
5781     SDValue Result = TSI->EmitTargetCodeForMemmove(
5782         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5783     if (Result.getNode())
5784       return Result;
5785   }
5786 
5787   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5788   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5789 
5790   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5791   // not be safe.  See memcpy above for more details.
5792 
5793   // Emit a library call.
5794   TargetLowering::ArgListTy Args;
5795   TargetLowering::ArgListEntry Entry;
5796   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5797   Entry.Node = Dst; Args.push_back(Entry);
5798   Entry.Node = Src; Args.push_back(Entry);
5799   Entry.Node = Size; Args.push_back(Entry);
5800   // FIXME:  pass in SDLoc
5801   TargetLowering::CallLoweringInfo CLI(*this);
5802   CLI.setDebugLoc(dl)
5803       .setChain(Chain)
5804       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5805                     Dst.getValueType().getTypeForEVT(*getContext()),
5806                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5807                                       TLI->getPointerTy(getDataLayout())),
5808                     std::move(Args))
5809       .setDiscardResult()
5810       .setTailCall(isTailCall);
5811 
5812   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5813   return CallResult.second;
5814 }
5815 
5816 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
5817                                        SDValue Dst, unsigned DstAlign,
5818                                        SDValue Src, unsigned SrcAlign,
5819                                        SDValue Size, Type *SizeTy,
5820                                        unsigned ElemSz, bool isTailCall,
5821                                        MachinePointerInfo DstPtrInfo,
5822                                        MachinePointerInfo SrcPtrInfo) {
5823   // Emit a library call.
5824   TargetLowering::ArgListTy Args;
5825   TargetLowering::ArgListEntry Entry;
5826   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5827   Entry.Node = Dst;
5828   Args.push_back(Entry);
5829 
5830   Entry.Node = Src;
5831   Args.push_back(Entry);
5832 
5833   Entry.Ty = SizeTy;
5834   Entry.Node = Size;
5835   Args.push_back(Entry);
5836 
5837   RTLIB::Libcall LibraryCall =
5838       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5839   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5840     report_fatal_error("Unsupported element size");
5841 
5842   TargetLowering::CallLoweringInfo CLI(*this);
5843   CLI.setDebugLoc(dl)
5844       .setChain(Chain)
5845       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5846                     Type::getVoidTy(*getContext()),
5847                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5848                                       TLI->getPointerTy(getDataLayout())),
5849                     std::move(Args))
5850       .setDiscardResult()
5851       .setTailCall(isTailCall);
5852 
5853   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5854   return CallResult.second;
5855 }
5856 
5857 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5858                                 SDValue Src, SDValue Size, unsigned Align,
5859                                 bool isVol, bool isTailCall,
5860                                 MachinePointerInfo DstPtrInfo) {
5861   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5862 
5863   // Check to see if we should lower the memset to stores first.
5864   // For cases within the target-specified limits, this is the best choice.
5865   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5866   if (ConstantSize) {
5867     // Memset with size zero? Just return the original chain.
5868     if (ConstantSize->isNullValue())
5869       return Chain;
5870 
5871     SDValue Result =
5872       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5873                       Align, isVol, DstPtrInfo);
5874 
5875     if (Result.getNode())
5876       return Result;
5877   }
5878 
5879   // Then check to see if we should lower the memset with target-specific
5880   // code. If the target chooses to do this, this is the next best.
5881   if (TSI) {
5882     SDValue Result = TSI->EmitTargetCodeForMemset(
5883         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
5884     if (Result.getNode())
5885       return Result;
5886   }
5887 
5888   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5889 
5890   // Emit a library call.
5891   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
5892   TargetLowering::ArgListTy Args;
5893   TargetLowering::ArgListEntry Entry;
5894   Entry.Node = Dst; Entry.Ty = IntPtrTy;
5895   Args.push_back(Entry);
5896   Entry.Node = Src;
5897   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
5898   Args.push_back(Entry);
5899   Entry.Node = Size;
5900   Entry.Ty = IntPtrTy;
5901   Args.push_back(Entry);
5902 
5903   // FIXME: pass in SDLoc
5904   TargetLowering::CallLoweringInfo CLI(*this);
5905   CLI.setDebugLoc(dl)
5906       .setChain(Chain)
5907       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
5908                     Dst.getValueType().getTypeForEVT(*getContext()),
5909                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
5910                                       TLI->getPointerTy(getDataLayout())),
5911                     std::move(Args))
5912       .setDiscardResult()
5913       .setTailCall(isTailCall);
5914 
5915   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5916   return CallResult.second;
5917 }
5918 
5919 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
5920                                       SDValue Dst, unsigned DstAlign,
5921                                       SDValue Value, SDValue Size, Type *SizeTy,
5922                                       unsigned ElemSz, bool isTailCall,
5923                                       MachinePointerInfo DstPtrInfo) {
5924   // Emit a library call.
5925   TargetLowering::ArgListTy Args;
5926   TargetLowering::ArgListEntry Entry;
5927   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5928   Entry.Node = Dst;
5929   Args.push_back(Entry);
5930 
5931   Entry.Ty = Type::getInt8Ty(*getContext());
5932   Entry.Node = Value;
5933   Args.push_back(Entry);
5934 
5935   Entry.Ty = SizeTy;
5936   Entry.Node = Size;
5937   Args.push_back(Entry);
5938 
5939   RTLIB::Libcall LibraryCall =
5940       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5941   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5942     report_fatal_error("Unsupported element size");
5943 
5944   TargetLowering::CallLoweringInfo CLI(*this);
5945   CLI.setDebugLoc(dl)
5946       .setChain(Chain)
5947       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5948                     Type::getVoidTy(*getContext()),
5949                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5950                                       TLI->getPointerTy(getDataLayout())),
5951                     std::move(Args))
5952       .setDiscardResult()
5953       .setTailCall(isTailCall);
5954 
5955   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5956   return CallResult.second;
5957 }
5958 
5959 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5960                                 SDVTList VTList, ArrayRef<SDValue> Ops,
5961                                 MachineMemOperand *MMO) {
5962   FoldingSetNodeID ID;
5963   ID.AddInteger(MemVT.getRawBits());
5964   AddNodeIDNode(ID, Opcode, VTList, Ops);
5965   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5966   void* IP = nullptr;
5967   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5968     cast<AtomicSDNode>(E)->refineAlignment(MMO);
5969     return SDValue(E, 0);
5970   }
5971 
5972   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5973                                     VTList, MemVT, MMO);
5974   createOperands(N, Ops);
5975 
5976   CSEMap.InsertNode(N, IP);
5977   InsertNode(N);
5978   return SDValue(N, 0);
5979 }
5980 
5981 SDValue SelectionDAG::getAtomicCmpSwap(
5982     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
5983     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
5984     unsigned Alignment, AtomicOrdering SuccessOrdering,
5985     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
5986   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5987          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5988   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5989 
5990   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5991     Alignment = getEVTAlignment(MemVT);
5992 
5993   MachineFunction &MF = getMachineFunction();
5994 
5995   // FIXME: Volatile isn't really correct; we should keep track of atomic
5996   // orderings in the memoperand.
5997   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
5998                MachineMemOperand::MOStore;
5999   MachineMemOperand *MMO =
6000     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
6001                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
6002                             FailureOrdering);
6003 
6004   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
6005 }
6006 
6007 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6008                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6009                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6010                                        MachineMemOperand *MMO) {
6011   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6012          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6013   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6014 
6015   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6016   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6017 }
6018 
6019 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6020                                 SDValue Chain, SDValue Ptr, SDValue Val,
6021                                 const Value *PtrVal, unsigned Alignment,
6022                                 AtomicOrdering Ordering,
6023                                 SyncScope::ID SSID) {
6024   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6025     Alignment = getEVTAlignment(MemVT);
6026 
6027   MachineFunction &MF = getMachineFunction();
6028   // An atomic store does not load. An atomic load does not store.
6029   // (An atomicrmw obviously both loads and stores.)
6030   // For now, atomics are considered to be volatile always, and they are
6031   // chained as such.
6032   // FIXME: Volatile isn't really correct; we should keep track of atomic
6033   // orderings in the memoperand.
6034   auto Flags = MachineMemOperand::MOVolatile;
6035   if (Opcode != ISD::ATOMIC_STORE)
6036     Flags |= MachineMemOperand::MOLoad;
6037   if (Opcode != ISD::ATOMIC_LOAD)
6038     Flags |= MachineMemOperand::MOStore;
6039 
6040   MachineMemOperand *MMO =
6041     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
6042                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
6043                             nullptr, SSID, Ordering);
6044 
6045   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
6046 }
6047 
6048 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6049                                 SDValue Chain, SDValue Ptr, SDValue Val,
6050                                 MachineMemOperand *MMO) {
6051   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6052           Opcode == ISD::ATOMIC_LOAD_SUB ||
6053           Opcode == ISD::ATOMIC_LOAD_AND ||
6054           Opcode == ISD::ATOMIC_LOAD_CLR ||
6055           Opcode == ISD::ATOMIC_LOAD_OR ||
6056           Opcode == ISD::ATOMIC_LOAD_XOR ||
6057           Opcode == ISD::ATOMIC_LOAD_NAND ||
6058           Opcode == ISD::ATOMIC_LOAD_MIN ||
6059           Opcode == ISD::ATOMIC_LOAD_MAX ||
6060           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6061           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6062           Opcode == ISD::ATOMIC_SWAP ||
6063           Opcode == ISD::ATOMIC_STORE) &&
6064          "Invalid Atomic Op");
6065 
6066   EVT VT = Val.getValueType();
6067 
6068   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6069                                                getVTList(VT, MVT::Other);
6070   SDValue Ops[] = {Chain, Ptr, Val};
6071   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6072 }
6073 
6074 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6075                                 EVT VT, SDValue Chain, SDValue Ptr,
6076                                 MachineMemOperand *MMO) {
6077   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6078 
6079   SDVTList VTs = getVTList(VT, MVT::Other);
6080   SDValue Ops[] = {Chain, Ptr};
6081   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6082 }
6083 
6084 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6085 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6086   if (Ops.size() == 1)
6087     return Ops[0];
6088 
6089   SmallVector<EVT, 4> VTs;
6090   VTs.reserve(Ops.size());
6091   for (unsigned i = 0; i < Ops.size(); ++i)
6092     VTs.push_back(Ops[i].getValueType());
6093   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6094 }
6095 
6096 SDValue SelectionDAG::getMemIntrinsicNode(
6097     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6098     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6099     MachineMemOperand::Flags Flags, unsigned Size) {
6100   if (Align == 0)  // Ensure that codegen never sees alignment 0
6101     Align = getEVTAlignment(MemVT);
6102 
6103   if (!Size)
6104     Size = MemVT.getStoreSize();
6105 
6106   MachineFunction &MF = getMachineFunction();
6107   MachineMemOperand *MMO =
6108     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6109 
6110   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6111 }
6112 
6113 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6114                                           SDVTList VTList,
6115                                           ArrayRef<SDValue> Ops, EVT MemVT,
6116                                           MachineMemOperand *MMO) {
6117   assert((Opcode == ISD::INTRINSIC_VOID ||
6118           Opcode == ISD::INTRINSIC_W_CHAIN ||
6119           Opcode == ISD::PREFETCH ||
6120           Opcode == ISD::LIFETIME_START ||
6121           Opcode == ISD::LIFETIME_END ||
6122           ((int)Opcode <= std::numeric_limits<int>::max() &&
6123            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6124          "Opcode is not a memory-accessing opcode!");
6125 
6126   // Memoize the node unless it returns a flag.
6127   MemIntrinsicSDNode *N;
6128   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6129     FoldingSetNodeID ID;
6130     AddNodeIDNode(ID, Opcode, VTList, Ops);
6131     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6132         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6133     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6134     void *IP = nullptr;
6135     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6136       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6137       return SDValue(E, 0);
6138     }
6139 
6140     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6141                                       VTList, MemVT, MMO);
6142     createOperands(N, Ops);
6143 
6144   CSEMap.InsertNode(N, IP);
6145   } else {
6146     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6147                                       VTList, MemVT, MMO);
6148     createOperands(N, Ops);
6149   }
6150   InsertNode(N);
6151   return SDValue(N, 0);
6152 }
6153 
6154 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6155 /// MachinePointerInfo record from it.  This is particularly useful because the
6156 /// code generator has many cases where it doesn't bother passing in a
6157 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6158 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6159                                            SelectionDAG &DAG, SDValue Ptr,
6160                                            int64_t Offset = 0) {
6161   // If this is FI+Offset, we can model it.
6162   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6163     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6164                                              FI->getIndex(), Offset);
6165 
6166   // If this is (FI+Offset1)+Offset2, we can model it.
6167   if (Ptr.getOpcode() != ISD::ADD ||
6168       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6169       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6170     return Info;
6171 
6172   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6173   return MachinePointerInfo::getFixedStack(
6174       DAG.getMachineFunction(), FI,
6175       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6176 }
6177 
6178 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6179 /// MachinePointerInfo record from it.  This is particularly useful because the
6180 /// code generator has many cases where it doesn't bother passing in a
6181 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6182 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6183                                            SelectionDAG &DAG, SDValue Ptr,
6184                                            SDValue OffsetOp) {
6185   // If the 'Offset' value isn't a constant, we can't handle this.
6186   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6187     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6188   if (OffsetOp.isUndef())
6189     return InferPointerInfo(Info, DAG, Ptr);
6190   return Info;
6191 }
6192 
6193 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6194                               EVT VT, const SDLoc &dl, SDValue Chain,
6195                               SDValue Ptr, SDValue Offset,
6196                               MachinePointerInfo PtrInfo, EVT MemVT,
6197                               unsigned Alignment,
6198                               MachineMemOperand::Flags MMOFlags,
6199                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6200   assert(Chain.getValueType() == MVT::Other &&
6201         "Invalid chain type");
6202   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6203     Alignment = getEVTAlignment(MemVT);
6204 
6205   MMOFlags |= MachineMemOperand::MOLoad;
6206   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6207   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6208   // clients.
6209   if (PtrInfo.V.isNull())
6210     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6211 
6212   MachineFunction &MF = getMachineFunction();
6213   MachineMemOperand *MMO = MF.getMachineMemOperand(
6214       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6215   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6216 }
6217 
6218 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6219                               EVT VT, const SDLoc &dl, SDValue Chain,
6220                               SDValue Ptr, SDValue Offset, EVT MemVT,
6221                               MachineMemOperand *MMO) {
6222   if (VT == MemVT) {
6223     ExtType = ISD::NON_EXTLOAD;
6224   } else if (ExtType == ISD::NON_EXTLOAD) {
6225     assert(VT == MemVT && "Non-extending load from different memory type!");
6226   } else {
6227     // Extending load.
6228     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6229            "Should only be an extending load, not truncating!");
6230     assert(VT.isInteger() == MemVT.isInteger() &&
6231            "Cannot convert from FP to Int or Int -> FP!");
6232     assert(VT.isVector() == MemVT.isVector() &&
6233            "Cannot use an ext load to convert to or from a vector!");
6234     assert((!VT.isVector() ||
6235             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6236            "Cannot use an ext load to change the number of vector elements!");
6237   }
6238 
6239   bool Indexed = AM != ISD::UNINDEXED;
6240   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6241 
6242   SDVTList VTs = Indexed ?
6243     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6244   SDValue Ops[] = { Chain, Ptr, Offset };
6245   FoldingSetNodeID ID;
6246   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6247   ID.AddInteger(MemVT.getRawBits());
6248   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6249       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6250   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6251   void *IP = nullptr;
6252   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6253     cast<LoadSDNode>(E)->refineAlignment(MMO);
6254     return SDValue(E, 0);
6255   }
6256   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6257                                   ExtType, MemVT, MMO);
6258   createOperands(N, Ops);
6259 
6260   CSEMap.InsertNode(N, IP);
6261   InsertNode(N);
6262   SDValue V(N, 0);
6263   NewSDValueDbgMsg(V, "Creating new node: ", this);
6264   return V;
6265 }
6266 
6267 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6268                               SDValue Ptr, MachinePointerInfo PtrInfo,
6269                               unsigned Alignment,
6270                               MachineMemOperand::Flags MMOFlags,
6271                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6272   SDValue Undef = getUNDEF(Ptr.getValueType());
6273   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6274                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6275 }
6276 
6277 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6278                               SDValue Ptr, MachineMemOperand *MMO) {
6279   SDValue Undef = getUNDEF(Ptr.getValueType());
6280   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6281                  VT, MMO);
6282 }
6283 
6284 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6285                                  EVT VT, SDValue Chain, SDValue Ptr,
6286                                  MachinePointerInfo PtrInfo, EVT MemVT,
6287                                  unsigned Alignment,
6288                                  MachineMemOperand::Flags MMOFlags,
6289                                  const AAMDNodes &AAInfo) {
6290   SDValue Undef = getUNDEF(Ptr.getValueType());
6291   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6292                  MemVT, Alignment, MMOFlags, AAInfo);
6293 }
6294 
6295 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6296                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6297                                  MachineMemOperand *MMO) {
6298   SDValue Undef = getUNDEF(Ptr.getValueType());
6299   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6300                  MemVT, MMO);
6301 }
6302 
6303 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6304                                      SDValue Base, SDValue Offset,
6305                                      ISD::MemIndexedMode AM) {
6306   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6307   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6308   // Don't propagate the invariant or dereferenceable flags.
6309   auto MMOFlags =
6310       LD->getMemOperand()->getFlags() &
6311       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6312   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6313                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6314                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6315                  LD->getAAInfo());
6316 }
6317 
6318 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6319                                SDValue Ptr, MachinePointerInfo PtrInfo,
6320                                unsigned Alignment,
6321                                MachineMemOperand::Flags MMOFlags,
6322                                const AAMDNodes &AAInfo) {
6323   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6324   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6325     Alignment = getEVTAlignment(Val.getValueType());
6326 
6327   MMOFlags |= MachineMemOperand::MOStore;
6328   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6329 
6330   if (PtrInfo.V.isNull())
6331     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6332 
6333   MachineFunction &MF = getMachineFunction();
6334   MachineMemOperand *MMO = MF.getMachineMemOperand(
6335       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6336   return getStore(Chain, dl, Val, Ptr, MMO);
6337 }
6338 
6339 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6340                                SDValue Ptr, MachineMemOperand *MMO) {
6341   assert(Chain.getValueType() == MVT::Other &&
6342         "Invalid chain type");
6343   EVT VT = Val.getValueType();
6344   SDVTList VTs = getVTList(MVT::Other);
6345   SDValue Undef = getUNDEF(Ptr.getValueType());
6346   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6347   FoldingSetNodeID ID;
6348   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6349   ID.AddInteger(VT.getRawBits());
6350   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6351       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6352   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6353   void *IP = nullptr;
6354   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6355     cast<StoreSDNode>(E)->refineAlignment(MMO);
6356     return SDValue(E, 0);
6357   }
6358   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6359                                    ISD::UNINDEXED, false, VT, MMO);
6360   createOperands(N, Ops);
6361 
6362   CSEMap.InsertNode(N, IP);
6363   InsertNode(N);
6364   SDValue V(N, 0);
6365   NewSDValueDbgMsg(V, "Creating new node: ", this);
6366   return V;
6367 }
6368 
6369 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6370                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6371                                     EVT SVT, unsigned Alignment,
6372                                     MachineMemOperand::Flags MMOFlags,
6373                                     const AAMDNodes &AAInfo) {
6374   assert(Chain.getValueType() == MVT::Other &&
6375         "Invalid chain type");
6376   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6377     Alignment = getEVTAlignment(SVT);
6378 
6379   MMOFlags |= MachineMemOperand::MOStore;
6380   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6381 
6382   if (PtrInfo.V.isNull())
6383     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6384 
6385   MachineFunction &MF = getMachineFunction();
6386   MachineMemOperand *MMO = MF.getMachineMemOperand(
6387       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6388   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6389 }
6390 
6391 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6392                                     SDValue Ptr, EVT SVT,
6393                                     MachineMemOperand *MMO) {
6394   EVT VT = Val.getValueType();
6395 
6396   assert(Chain.getValueType() == MVT::Other &&
6397         "Invalid chain type");
6398   if (VT == SVT)
6399     return getStore(Chain, dl, Val, Ptr, MMO);
6400 
6401   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6402          "Should only be a truncating store, not extending!");
6403   assert(VT.isInteger() == SVT.isInteger() &&
6404          "Can't do FP-INT conversion!");
6405   assert(VT.isVector() == SVT.isVector() &&
6406          "Cannot use trunc store to convert to or from a vector!");
6407   assert((!VT.isVector() ||
6408           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6409          "Cannot use trunc store to change the number of vector elements!");
6410 
6411   SDVTList VTs = getVTList(MVT::Other);
6412   SDValue Undef = getUNDEF(Ptr.getValueType());
6413   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6414   FoldingSetNodeID ID;
6415   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6416   ID.AddInteger(SVT.getRawBits());
6417   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6418       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6419   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6420   void *IP = nullptr;
6421   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6422     cast<StoreSDNode>(E)->refineAlignment(MMO);
6423     return SDValue(E, 0);
6424   }
6425   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6426                                    ISD::UNINDEXED, true, SVT, MMO);
6427   createOperands(N, Ops);
6428 
6429   CSEMap.InsertNode(N, IP);
6430   InsertNode(N);
6431   SDValue V(N, 0);
6432   NewSDValueDbgMsg(V, "Creating new node: ", this);
6433   return V;
6434 }
6435 
6436 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6437                                       SDValue Base, SDValue Offset,
6438                                       ISD::MemIndexedMode AM) {
6439   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6440   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6441   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6442   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6443   FoldingSetNodeID ID;
6444   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6445   ID.AddInteger(ST->getMemoryVT().getRawBits());
6446   ID.AddInteger(ST->getRawSubclassData());
6447   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6448   void *IP = nullptr;
6449   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6450     return SDValue(E, 0);
6451 
6452   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6453                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6454                                    ST->getMemOperand());
6455   createOperands(N, Ops);
6456 
6457   CSEMap.InsertNode(N, IP);
6458   InsertNode(N);
6459   SDValue V(N, 0);
6460   NewSDValueDbgMsg(V, "Creating new node: ", this);
6461   return V;
6462 }
6463 
6464 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6465                                     SDValue Ptr, SDValue Mask, SDValue Src0,
6466                                     EVT MemVT, MachineMemOperand *MMO,
6467                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6468   SDVTList VTs = getVTList(VT, MVT::Other);
6469   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
6470   FoldingSetNodeID ID;
6471   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6472   ID.AddInteger(VT.getRawBits());
6473   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6474       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6475   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6476   void *IP = nullptr;
6477   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6478     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6479     return SDValue(E, 0);
6480   }
6481   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6482                                         ExtTy, isExpanding, MemVT, MMO);
6483   createOperands(N, Ops);
6484 
6485   CSEMap.InsertNode(N, IP);
6486   InsertNode(N);
6487   SDValue V(N, 0);
6488   NewSDValueDbgMsg(V, "Creating new node: ", this);
6489   return V;
6490 }
6491 
6492 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6493                                      SDValue Val, SDValue Ptr, SDValue Mask,
6494                                      EVT MemVT, MachineMemOperand *MMO,
6495                                      bool IsTruncating, bool IsCompressing) {
6496   assert(Chain.getValueType() == MVT::Other &&
6497         "Invalid chain type");
6498   EVT VT = Val.getValueType();
6499   SDVTList VTs = getVTList(MVT::Other);
6500   SDValue Ops[] = { Chain, Ptr, Mask, Val };
6501   FoldingSetNodeID ID;
6502   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6503   ID.AddInteger(VT.getRawBits());
6504   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6505       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6506   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6507   void *IP = nullptr;
6508   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6509     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6510     return SDValue(E, 0);
6511   }
6512   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6513                                          IsTruncating, IsCompressing, MemVT, MMO);
6514   createOperands(N, Ops);
6515 
6516   CSEMap.InsertNode(N, IP);
6517   InsertNode(N);
6518   SDValue V(N, 0);
6519   NewSDValueDbgMsg(V, "Creating new node: ", this);
6520   return V;
6521 }
6522 
6523 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6524                                       ArrayRef<SDValue> Ops,
6525                                       MachineMemOperand *MMO) {
6526   assert(Ops.size() == 6 && "Incompatible number of operands");
6527 
6528   FoldingSetNodeID ID;
6529   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6530   ID.AddInteger(VT.getRawBits());
6531   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6532       dl.getIROrder(), VTs, VT, MMO));
6533   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6534   void *IP = nullptr;
6535   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6536     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6537     return SDValue(E, 0);
6538   }
6539 
6540   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6541                                           VTs, VT, MMO);
6542   createOperands(N, Ops);
6543 
6544   assert(N->getValue().getValueType() == N->getValueType(0) &&
6545          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6546   assert(N->getMask().getValueType().getVectorNumElements() ==
6547              N->getValueType(0).getVectorNumElements() &&
6548          "Vector width mismatch between mask and data");
6549   assert(N->getIndex().getValueType().getVectorNumElements() ==
6550              N->getValueType(0).getVectorNumElements() &&
6551          "Vector width mismatch between index and data");
6552   assert(isa<ConstantSDNode>(N->getScale()) &&
6553          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6554          "Scale should be a constant power of 2");
6555 
6556   CSEMap.InsertNode(N, IP);
6557   InsertNode(N);
6558   SDValue V(N, 0);
6559   NewSDValueDbgMsg(V, "Creating new node: ", this);
6560   return V;
6561 }
6562 
6563 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6564                                        ArrayRef<SDValue> Ops,
6565                                        MachineMemOperand *MMO) {
6566   assert(Ops.size() == 6 && "Incompatible number of operands");
6567 
6568   FoldingSetNodeID ID;
6569   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6570   ID.AddInteger(VT.getRawBits());
6571   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6572       dl.getIROrder(), VTs, VT, MMO));
6573   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6574   void *IP = nullptr;
6575   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6576     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6577     return SDValue(E, 0);
6578   }
6579   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6580                                            VTs, VT, MMO);
6581   createOperands(N, Ops);
6582 
6583   assert(N->getMask().getValueType().getVectorNumElements() ==
6584              N->getValue().getValueType().getVectorNumElements() &&
6585          "Vector width mismatch between mask and data");
6586   assert(N->getIndex().getValueType().getVectorNumElements() ==
6587              N->getValue().getValueType().getVectorNumElements() &&
6588          "Vector width mismatch between index and data");
6589   assert(isa<ConstantSDNode>(N->getScale()) &&
6590          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6591          "Scale should be a constant power of 2");
6592 
6593   CSEMap.InsertNode(N, IP);
6594   InsertNode(N);
6595   SDValue V(N, 0);
6596   NewSDValueDbgMsg(V, "Creating new node: ", this);
6597   return V;
6598 }
6599 
6600 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
6601                                SDValue Ptr, SDValue SV, unsigned Align) {
6602   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
6603   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
6604 }
6605 
6606 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6607                               ArrayRef<SDUse> Ops) {
6608   switch (Ops.size()) {
6609   case 0: return getNode(Opcode, DL, VT);
6610   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
6611   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
6612   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6613   default: break;
6614   }
6615 
6616   // Copy from an SDUse array into an SDValue array for use with
6617   // the regular getNode logic.
6618   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
6619   return getNode(Opcode, DL, VT, NewOps);
6620 }
6621 
6622 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6623                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
6624   unsigned NumOps = Ops.size();
6625   switch (NumOps) {
6626   case 0: return getNode(Opcode, DL, VT);
6627   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
6628   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
6629   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6630   default: break;
6631   }
6632 
6633   switch (Opcode) {
6634   default: break;
6635   case ISD::CONCAT_VECTORS:
6636     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
6637     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
6638       return V;
6639     break;
6640   case ISD::SELECT_CC:
6641     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
6642     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
6643            "LHS and RHS of condition must have same type!");
6644     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6645            "True and False arms of SelectCC must have same type!");
6646     assert(Ops[2].getValueType() == VT &&
6647            "select_cc node must be of same type as true and false value!");
6648     break;
6649   case ISD::BR_CC:
6650     assert(NumOps == 5 && "BR_CC takes 5 operands!");
6651     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6652            "LHS/RHS of comparison should match types!");
6653     break;
6654   }
6655 
6656   // Memoize nodes.
6657   SDNode *N;
6658   SDVTList VTs = getVTList(VT);
6659 
6660   if (VT != MVT::Glue) {
6661     FoldingSetNodeID ID;
6662     AddNodeIDNode(ID, Opcode, VTs, Ops);
6663     void *IP = nullptr;
6664 
6665     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6666       return SDValue(E, 0);
6667 
6668     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6669     createOperands(N, Ops);
6670 
6671     CSEMap.InsertNode(N, IP);
6672   } else {
6673     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6674     createOperands(N, Ops);
6675   }
6676 
6677   InsertNode(N);
6678   SDValue V(N, 0);
6679   NewSDValueDbgMsg(V, "Creating new node: ", this);
6680   return V;
6681 }
6682 
6683 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6684                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
6685   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
6686 }
6687 
6688 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6689                               ArrayRef<SDValue> Ops) {
6690   if (VTList.NumVTs == 1)
6691     return getNode(Opcode, DL, VTList.VTs[0], Ops);
6692 
6693 #if 0
6694   switch (Opcode) {
6695   // FIXME: figure out how to safely handle things like
6696   // int foo(int x) { return 1 << (x & 255); }
6697   // int bar() { return foo(256); }
6698   case ISD::SRA_PARTS:
6699   case ISD::SRL_PARTS:
6700   case ISD::SHL_PARTS:
6701     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6702         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
6703       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6704     else if (N3.getOpcode() == ISD::AND)
6705       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
6706         // If the and is only masking out bits that cannot effect the shift,
6707         // eliminate the and.
6708         unsigned NumBits = VT.getScalarSizeInBits()*2;
6709         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
6710           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6711       }
6712     break;
6713   }
6714 #endif
6715 
6716   // Memoize the node unless it returns a flag.
6717   SDNode *N;
6718   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6719     FoldingSetNodeID ID;
6720     AddNodeIDNode(ID, Opcode, VTList, Ops);
6721     void *IP = nullptr;
6722     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6723       return SDValue(E, 0);
6724 
6725     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6726     createOperands(N, Ops);
6727     CSEMap.InsertNode(N, IP);
6728   } else {
6729     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6730     createOperands(N, Ops);
6731   }
6732   InsertNode(N);
6733   SDValue V(N, 0);
6734   NewSDValueDbgMsg(V, "Creating new node: ", this);
6735   return V;
6736 }
6737 
6738 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6739                               SDVTList VTList) {
6740   return getNode(Opcode, DL, VTList, None);
6741 }
6742 
6743 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6744                               SDValue N1) {
6745   SDValue Ops[] = { N1 };
6746   return getNode(Opcode, DL, VTList, Ops);
6747 }
6748 
6749 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6750                               SDValue N1, SDValue N2) {
6751   SDValue Ops[] = { N1, N2 };
6752   return getNode(Opcode, DL, VTList, Ops);
6753 }
6754 
6755 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6756                               SDValue N1, SDValue N2, SDValue N3) {
6757   SDValue Ops[] = { N1, N2, N3 };
6758   return getNode(Opcode, DL, VTList, Ops);
6759 }
6760 
6761 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6762                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6763   SDValue Ops[] = { N1, N2, N3, N4 };
6764   return getNode(Opcode, DL, VTList, Ops);
6765 }
6766 
6767 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6768                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6769                               SDValue N5) {
6770   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6771   return getNode(Opcode, DL, VTList, Ops);
6772 }
6773 
6774 SDVTList SelectionDAG::getVTList(EVT VT) {
6775   return makeVTList(SDNode::getValueTypeList(VT), 1);
6776 }
6777 
6778 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
6779   FoldingSetNodeID ID;
6780   ID.AddInteger(2U);
6781   ID.AddInteger(VT1.getRawBits());
6782   ID.AddInteger(VT2.getRawBits());
6783 
6784   void *IP = nullptr;
6785   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6786   if (!Result) {
6787     EVT *Array = Allocator.Allocate<EVT>(2);
6788     Array[0] = VT1;
6789     Array[1] = VT2;
6790     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
6791     VTListMap.InsertNode(Result, IP);
6792   }
6793   return Result->getSDVTList();
6794 }
6795 
6796 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
6797   FoldingSetNodeID ID;
6798   ID.AddInteger(3U);
6799   ID.AddInteger(VT1.getRawBits());
6800   ID.AddInteger(VT2.getRawBits());
6801   ID.AddInteger(VT3.getRawBits());
6802 
6803   void *IP = nullptr;
6804   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6805   if (!Result) {
6806     EVT *Array = Allocator.Allocate<EVT>(3);
6807     Array[0] = VT1;
6808     Array[1] = VT2;
6809     Array[2] = VT3;
6810     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
6811     VTListMap.InsertNode(Result, IP);
6812   }
6813   return Result->getSDVTList();
6814 }
6815 
6816 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
6817   FoldingSetNodeID ID;
6818   ID.AddInteger(4U);
6819   ID.AddInteger(VT1.getRawBits());
6820   ID.AddInteger(VT2.getRawBits());
6821   ID.AddInteger(VT3.getRawBits());
6822   ID.AddInteger(VT4.getRawBits());
6823 
6824   void *IP = nullptr;
6825   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6826   if (!Result) {
6827     EVT *Array = Allocator.Allocate<EVT>(4);
6828     Array[0] = VT1;
6829     Array[1] = VT2;
6830     Array[2] = VT3;
6831     Array[3] = VT4;
6832     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6833     VTListMap.InsertNode(Result, IP);
6834   }
6835   return Result->getSDVTList();
6836 }
6837 
6838 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6839   unsigned NumVTs = VTs.size();
6840   FoldingSetNodeID ID;
6841   ID.AddInteger(NumVTs);
6842   for (unsigned index = 0; index < NumVTs; index++) {
6843     ID.AddInteger(VTs[index].getRawBits());
6844   }
6845 
6846   void *IP = nullptr;
6847   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6848   if (!Result) {
6849     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6850     std::copy(VTs.begin(), VTs.end(), Array);
6851     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6852     VTListMap.InsertNode(Result, IP);
6853   }
6854   return Result->getSDVTList();
6855 }
6856 
6857 
6858 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6859 /// specified operands.  If the resultant node already exists in the DAG,
6860 /// this does not modify the specified node, instead it returns the node that
6861 /// already exists.  If the resultant node does not exist in the DAG, the
6862 /// input node is returned.  As a degenerate case, if you specify the same
6863 /// input operands as the node already has, the input node is returned.
6864 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6865   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6866 
6867   // Check to see if there is no change.
6868   if (Op == N->getOperand(0)) return N;
6869 
6870   // See if the modified node already exists.
6871   void *InsertPos = nullptr;
6872   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6873     return Existing;
6874 
6875   // Nope it doesn't.  Remove the node from its current place in the maps.
6876   if (InsertPos)
6877     if (!RemoveNodeFromCSEMaps(N))
6878       InsertPos = nullptr;
6879 
6880   // Now we update the operands.
6881   N->OperandList[0].set(Op);
6882 
6883   // If this gets put into a CSE map, add it.
6884   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6885   return N;
6886 }
6887 
6888 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
6889   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
6890 
6891   // Check to see if there is no change.
6892   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
6893     return N;   // No operands changed, just return the input node.
6894 
6895   // See if the modified node already exists.
6896   void *InsertPos = nullptr;
6897   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
6898     return Existing;
6899 
6900   // Nope it doesn't.  Remove the node from its current place in the maps.
6901   if (InsertPos)
6902     if (!RemoveNodeFromCSEMaps(N))
6903       InsertPos = nullptr;
6904 
6905   // Now we update the operands.
6906   if (N->OperandList[0] != Op1)
6907     N->OperandList[0].set(Op1);
6908   if (N->OperandList[1] != Op2)
6909     N->OperandList[1].set(Op2);
6910 
6911   updateDivergence(N);
6912   // If this gets put into a CSE map, add it.
6913   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6914   return N;
6915 }
6916 
6917 SDNode *SelectionDAG::
6918 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
6919   SDValue Ops[] = { Op1, Op2, Op3 };
6920   return UpdateNodeOperands(N, Ops);
6921 }
6922 
6923 SDNode *SelectionDAG::
6924 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6925                    SDValue Op3, SDValue Op4) {
6926   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
6927   return UpdateNodeOperands(N, Ops);
6928 }
6929 
6930 SDNode *SelectionDAG::
6931 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6932                    SDValue Op3, SDValue Op4, SDValue Op5) {
6933   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
6934   return UpdateNodeOperands(N, Ops);
6935 }
6936 
6937 SDNode *SelectionDAG::
6938 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
6939   unsigned NumOps = Ops.size();
6940   assert(N->getNumOperands() == NumOps &&
6941          "Update with wrong number of operands");
6942 
6943   // If no operands changed just return the input node.
6944   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
6945     return N;
6946 
6947   // See if the modified node already exists.
6948   void *InsertPos = nullptr;
6949   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
6950     return Existing;
6951 
6952   // Nope it doesn't.  Remove the node from its current place in the maps.
6953   if (InsertPos)
6954     if (!RemoveNodeFromCSEMaps(N))
6955       InsertPos = nullptr;
6956 
6957   // Now we update the operands.
6958   for (unsigned i = 0; i != NumOps; ++i)
6959     if (N->OperandList[i] != Ops[i])
6960       N->OperandList[i].set(Ops[i]);
6961 
6962   // If this gets put into a CSE map, add it.
6963   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6964   return N;
6965 }
6966 
6967 /// DropOperands - Release the operands and set this node to have
6968 /// zero operands.
6969 void SDNode::DropOperands() {
6970   // Unlike the code in MorphNodeTo that does this, we don't need to
6971   // watch for dead nodes here.
6972   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
6973     SDUse &Use = *I++;
6974     Use.set(SDValue());
6975   }
6976 }
6977 
6978 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
6979 /// machine opcode.
6980 ///
6981 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6982                                    EVT VT) {
6983   SDVTList VTs = getVTList(VT);
6984   return SelectNodeTo(N, MachineOpc, VTs, None);
6985 }
6986 
6987 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6988                                    EVT VT, SDValue Op1) {
6989   SDVTList VTs = getVTList(VT);
6990   SDValue Ops[] = { Op1 };
6991   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6992 }
6993 
6994 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6995                                    EVT VT, SDValue Op1,
6996                                    SDValue Op2) {
6997   SDVTList VTs = getVTList(VT);
6998   SDValue Ops[] = { Op1, Op2 };
6999   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7000 }
7001 
7002 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7003                                    EVT VT, SDValue Op1,
7004                                    SDValue Op2, SDValue Op3) {
7005   SDVTList VTs = getVTList(VT);
7006   SDValue Ops[] = { Op1, Op2, Op3 };
7007   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7008 }
7009 
7010 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7011                                    EVT VT, ArrayRef<SDValue> Ops) {
7012   SDVTList VTs = getVTList(VT);
7013   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7014 }
7015 
7016 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7017                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7018   SDVTList VTs = getVTList(VT1, VT2);
7019   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7020 }
7021 
7022 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7023                                    EVT VT1, EVT VT2) {
7024   SDVTList VTs = getVTList(VT1, VT2);
7025   return SelectNodeTo(N, MachineOpc, VTs, None);
7026 }
7027 
7028 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7029                                    EVT VT1, EVT VT2, EVT VT3,
7030                                    ArrayRef<SDValue> Ops) {
7031   SDVTList VTs = getVTList(VT1, VT2, VT3);
7032   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7033 }
7034 
7035 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7036                                    EVT VT1, EVT VT2,
7037                                    SDValue Op1, SDValue Op2) {
7038   SDVTList VTs = getVTList(VT1, VT2);
7039   SDValue Ops[] = { Op1, Op2 };
7040   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7041 }
7042 
7043 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7044                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7045   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7046   // Reset the NodeID to -1.
7047   New->setNodeId(-1);
7048   if (New != N) {
7049     ReplaceAllUsesWith(N, New);
7050     RemoveDeadNode(N);
7051   }
7052   return New;
7053 }
7054 
7055 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7056 /// the line number information on the merged node since it is not possible to
7057 /// preserve the information that operation is associated with multiple lines.
7058 /// This will make the debugger working better at -O0, were there is a higher
7059 /// probability having other instructions associated with that line.
7060 ///
7061 /// For IROrder, we keep the smaller of the two
7062 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7063   DebugLoc NLoc = N->getDebugLoc();
7064   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7065     N->setDebugLoc(DebugLoc());
7066   }
7067   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7068   N->setIROrder(Order);
7069   return N;
7070 }
7071 
7072 /// MorphNodeTo - This *mutates* the specified node to have the specified
7073 /// return type, opcode, and operands.
7074 ///
7075 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7076 /// node of the specified opcode and operands, it returns that node instead of
7077 /// the current one.  Note that the SDLoc need not be the same.
7078 ///
7079 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7080 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7081 /// node, and because it doesn't require CSE recalculation for any of
7082 /// the node's users.
7083 ///
7084 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7085 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7086 /// the legalizer which maintain worklists that would need to be updated when
7087 /// deleting things.
7088 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7089                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7090   // If an identical node already exists, use it.
7091   void *IP = nullptr;
7092   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7093     FoldingSetNodeID ID;
7094     AddNodeIDNode(ID, Opc, VTs, Ops);
7095     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7096       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7097   }
7098 
7099   if (!RemoveNodeFromCSEMaps(N))
7100     IP = nullptr;
7101 
7102   // Start the morphing.
7103   N->NodeType = Opc;
7104   N->ValueList = VTs.VTs;
7105   N->NumValues = VTs.NumVTs;
7106 
7107   // Clear the operands list, updating used nodes to remove this from their
7108   // use list.  Keep track of any operands that become dead as a result.
7109   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7110   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7111     SDUse &Use = *I++;
7112     SDNode *Used = Use.getNode();
7113     Use.set(SDValue());
7114     if (Used->use_empty())
7115       DeadNodeSet.insert(Used);
7116   }
7117 
7118   // For MachineNode, initialize the memory references information.
7119   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7120     MN->setMemRefs(nullptr, nullptr);
7121 
7122   // Swap for an appropriately sized array from the recycler.
7123   removeOperands(N);
7124   createOperands(N, Ops);
7125 
7126   // Delete any nodes that are still dead after adding the uses for the
7127   // new operands.
7128   if (!DeadNodeSet.empty()) {
7129     SmallVector<SDNode *, 16> DeadNodes;
7130     for (SDNode *N : DeadNodeSet)
7131       if (N->use_empty())
7132         DeadNodes.push_back(N);
7133     RemoveDeadNodes(DeadNodes);
7134   }
7135 
7136   if (IP)
7137     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7138   return N;
7139 }
7140 
7141 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7142   unsigned OrigOpc = Node->getOpcode();
7143   unsigned NewOpc;
7144   bool IsUnary = false;
7145   bool IsTernary = false;
7146   switch (OrigOpc) {
7147   default:
7148     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7149   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7150   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7151   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7152   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7153   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7154   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7155   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7156   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7157   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7158   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7159   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7160   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7161   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7162   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7163   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7164   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7165   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7166   case ISD::STRICT_FNEARBYINT:
7167     NewOpc = ISD::FNEARBYINT;
7168     IsUnary = true;
7169     break;
7170   }
7171 
7172   // We're taking this node out of the chain, so we need to re-link things.
7173   SDValue InputChain = Node->getOperand(0);
7174   SDValue OutputChain = SDValue(Node, 1);
7175   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7176 
7177   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7178   SDNode *Res = nullptr;
7179   if (IsUnary)
7180     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7181   else if (IsTernary)
7182     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7183                                            Node->getOperand(2),
7184                                            Node->getOperand(3)});
7185   else
7186     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7187                                            Node->getOperand(2) });
7188 
7189   // MorphNodeTo can operate in two ways: if an existing node with the
7190   // specified operands exists, it can just return it.  Otherwise, it
7191   // updates the node in place to have the requested operands.
7192   if (Res == Node) {
7193     // If we updated the node in place, reset the node ID.  To the isel,
7194     // this should be just like a newly allocated machine node.
7195     Res->setNodeId(-1);
7196   } else {
7197     ReplaceAllUsesWith(Node, Res);
7198     RemoveDeadNode(Node);
7199   }
7200 
7201   return Res;
7202 }
7203 
7204 /// getMachineNode - These are used for target selectors to create a new node
7205 /// with specified return type(s), MachineInstr opcode, and operands.
7206 ///
7207 /// Note that getMachineNode returns the resultant node.  If there is already a
7208 /// node of the specified opcode and operands, it returns that node instead of
7209 /// the current one.
7210 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7211                                             EVT VT) {
7212   SDVTList VTs = getVTList(VT);
7213   return getMachineNode(Opcode, dl, VTs, None);
7214 }
7215 
7216 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7217                                             EVT VT, SDValue Op1) {
7218   SDVTList VTs = getVTList(VT);
7219   SDValue Ops[] = { Op1 };
7220   return getMachineNode(Opcode, dl, VTs, Ops);
7221 }
7222 
7223 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7224                                             EVT VT, SDValue Op1, SDValue Op2) {
7225   SDVTList VTs = getVTList(VT);
7226   SDValue Ops[] = { Op1, Op2 };
7227   return getMachineNode(Opcode, dl, VTs, Ops);
7228 }
7229 
7230 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7231                                             EVT VT, SDValue Op1, SDValue Op2,
7232                                             SDValue Op3) {
7233   SDVTList VTs = getVTList(VT);
7234   SDValue Ops[] = { Op1, Op2, Op3 };
7235   return getMachineNode(Opcode, dl, VTs, Ops);
7236 }
7237 
7238 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7239                                             EVT VT, ArrayRef<SDValue> Ops) {
7240   SDVTList VTs = getVTList(VT);
7241   return getMachineNode(Opcode, dl, VTs, Ops);
7242 }
7243 
7244 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7245                                             EVT VT1, EVT VT2, SDValue Op1,
7246                                             SDValue Op2) {
7247   SDVTList VTs = getVTList(VT1, VT2);
7248   SDValue Ops[] = { Op1, Op2 };
7249   return getMachineNode(Opcode, dl, VTs, Ops);
7250 }
7251 
7252 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7253                                             EVT VT1, EVT VT2, SDValue Op1,
7254                                             SDValue Op2, SDValue Op3) {
7255   SDVTList VTs = getVTList(VT1, VT2);
7256   SDValue Ops[] = { Op1, Op2, Op3 };
7257   return getMachineNode(Opcode, dl, VTs, Ops);
7258 }
7259 
7260 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7261                                             EVT VT1, EVT VT2,
7262                                             ArrayRef<SDValue> Ops) {
7263   SDVTList VTs = getVTList(VT1, VT2);
7264   return getMachineNode(Opcode, dl, VTs, Ops);
7265 }
7266 
7267 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7268                                             EVT VT1, EVT VT2, EVT VT3,
7269                                             SDValue Op1, SDValue Op2) {
7270   SDVTList VTs = getVTList(VT1, VT2, VT3);
7271   SDValue Ops[] = { Op1, Op2 };
7272   return getMachineNode(Opcode, dl, VTs, Ops);
7273 }
7274 
7275 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7276                                             EVT VT1, EVT VT2, EVT VT3,
7277                                             SDValue Op1, SDValue Op2,
7278                                             SDValue Op3) {
7279   SDVTList VTs = getVTList(VT1, VT2, VT3);
7280   SDValue Ops[] = { Op1, Op2, Op3 };
7281   return getMachineNode(Opcode, dl, VTs, Ops);
7282 }
7283 
7284 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7285                                             EVT VT1, EVT VT2, EVT VT3,
7286                                             ArrayRef<SDValue> Ops) {
7287   SDVTList VTs = getVTList(VT1, VT2, VT3);
7288   return getMachineNode(Opcode, dl, VTs, Ops);
7289 }
7290 
7291 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7292                                             ArrayRef<EVT> ResultTys,
7293                                             ArrayRef<SDValue> Ops) {
7294   SDVTList VTs = getVTList(ResultTys);
7295   return getMachineNode(Opcode, dl, VTs, Ops);
7296 }
7297 
7298 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7299                                             SDVTList VTs,
7300                                             ArrayRef<SDValue> Ops) {
7301   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7302   MachineSDNode *N;
7303   void *IP = nullptr;
7304 
7305   if (DoCSE) {
7306     FoldingSetNodeID ID;
7307     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7308     IP = nullptr;
7309     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7310       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7311     }
7312   }
7313 
7314   // Allocate a new MachineSDNode.
7315   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7316   createOperands(N, Ops);
7317 
7318   if (DoCSE)
7319     CSEMap.InsertNode(N, IP);
7320 
7321   InsertNode(N);
7322   return N;
7323 }
7324 
7325 /// getTargetExtractSubreg - A convenience function for creating
7326 /// TargetOpcode::EXTRACT_SUBREG nodes.
7327 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7328                                              SDValue Operand) {
7329   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7330   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7331                                   VT, Operand, SRIdxVal);
7332   return SDValue(Subreg, 0);
7333 }
7334 
7335 /// getTargetInsertSubreg - A convenience function for creating
7336 /// TargetOpcode::INSERT_SUBREG nodes.
7337 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7338                                             SDValue Operand, SDValue Subreg) {
7339   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7340   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7341                                   VT, Operand, Subreg, SRIdxVal);
7342   return SDValue(Result, 0);
7343 }
7344 
7345 /// getNodeIfExists - Get the specified node if it's already available, or
7346 /// else return NULL.
7347 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7348                                       ArrayRef<SDValue> Ops,
7349                                       const SDNodeFlags Flags) {
7350   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7351     FoldingSetNodeID ID;
7352     AddNodeIDNode(ID, Opcode, VTList, Ops);
7353     void *IP = nullptr;
7354     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7355       E->intersectFlagsWith(Flags);
7356       return E;
7357     }
7358   }
7359   return nullptr;
7360 }
7361 
7362 /// getDbgValue - Creates a SDDbgValue node.
7363 ///
7364 /// SDNode
7365 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7366                                       SDNode *N, unsigned R, bool IsIndirect,
7367                                       const DebugLoc &DL, unsigned O) {
7368   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7369          "Expected inlined-at fields to agree");
7370   return new (DbgInfo->getAlloc())
7371       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7372 }
7373 
7374 /// Constant
7375 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7376                                               DIExpression *Expr,
7377                                               const Value *C,
7378                                               const DebugLoc &DL, unsigned O) {
7379   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7380          "Expected inlined-at fields to agree");
7381   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7382 }
7383 
7384 /// FrameIndex
7385 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7386                                                 DIExpression *Expr, unsigned FI,
7387                                                 const DebugLoc &DL,
7388                                                 unsigned O) {
7389   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7390          "Expected inlined-at fields to agree");
7391   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O);
7392 }
7393 
7394 /// VReg
7395 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7396                                           DIExpression *Expr,
7397                                           unsigned VReg, bool IsIndirect,
7398                                           const DebugLoc &DL, unsigned O) {
7399   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7400          "Expected inlined-at fields to agree");
7401   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, VReg, IsIndirect, DL,
7402                                               O);
7403 }
7404 
7405 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7406                                      unsigned OffsetInBits, unsigned SizeInBits,
7407                                      bool InvalidateDbg) {
7408   SDNode *FromNode = From.getNode();
7409   SDNode *ToNode = To.getNode();
7410   assert(FromNode && ToNode && "Can't modify dbg values");
7411 
7412   // PR35338
7413   // TODO: assert(From != To && "Redundant dbg value transfer");
7414   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7415   if (From == To || FromNode == ToNode)
7416     return;
7417 
7418   if (!FromNode->getHasDebugValue())
7419     return;
7420 
7421   SmallVector<SDDbgValue *, 2> ClonedDVs;
7422   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7423     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7424       continue;
7425 
7426     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7427 
7428     // Just transfer the dbg value attached to From.
7429     if (Dbg->getResNo() != From.getResNo())
7430       continue;
7431 
7432     DIVariable *Var = Dbg->getVariable();
7433     auto *Expr = Dbg->getExpression();
7434     // If a fragment is requested, update the expression.
7435     if (SizeInBits) {
7436       // When splitting a larger (e.g., sign-extended) value whose
7437       // lower bits are described with an SDDbgValue, do not attempt
7438       // to transfer the SDDbgValue to the upper bits.
7439       if (auto FI = Expr->getFragmentInfo())
7440         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7441           continue;
7442       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7443                                                              SizeInBits);
7444       if (!Fragment)
7445         continue;
7446       Expr = *Fragment;
7447     }
7448     // Clone the SDDbgValue and move it to To.
7449     SDDbgValue *Clone =
7450         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7451                     Dbg->getDebugLoc(), Dbg->getOrder());
7452     ClonedDVs.push_back(Clone);
7453 
7454     if (InvalidateDbg)
7455       Dbg->setIsInvalidated();
7456   }
7457 
7458   for (SDDbgValue *Dbg : ClonedDVs)
7459     AddDbgValue(Dbg, ToNode, false);
7460 }
7461 
7462 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7463   if (!N.getHasDebugValue())
7464     return;
7465 
7466   SmallVector<SDDbgValue *, 2> ClonedDVs;
7467   for (auto DV : GetDbgValues(&N)) {
7468     if (DV->isInvalidated())
7469       continue;
7470     switch (N.getOpcode()) {
7471     default:
7472       break;
7473     case ISD::ADD:
7474       SDValue N0 = N.getOperand(0);
7475       SDValue N1 = N.getOperand(1);
7476       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7477           isConstantIntBuildVectorOrConstantInt(N1)) {
7478         uint64_t Offset = N.getConstantOperandVal(1);
7479         // Rewrite an ADD constant node into a DIExpression. Since we are
7480         // performing arithmetic to compute the variable's *value* in the
7481         // DIExpression, we need to mark the expression with a
7482         // DW_OP_stack_value.
7483         auto *DIExpr = DV->getExpression();
7484         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7485                                        DIExpression::NoDeref,
7486                                        DIExpression::WithStackValue);
7487         SDDbgValue *Clone =
7488             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7489                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7490         ClonedDVs.push_back(Clone);
7491         DV->setIsInvalidated();
7492         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7493                    N0.getNode()->dumprFull(this);
7494                    dbgs() << " into " << *DIExpr << '\n');
7495       }
7496     }
7497   }
7498 
7499   for (SDDbgValue *Dbg : ClonedDVs)
7500     AddDbgValue(Dbg, Dbg->getSDNode(), false);
7501 }
7502 
7503 /// Creates a SDDbgLabel node.
7504 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
7505                                       const DebugLoc &DL, unsigned O) {
7506   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
7507          "Expected inlined-at fields to agree");
7508   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
7509 }
7510 
7511 namespace {
7512 
7513 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7514 /// pointed to by a use iterator is deleted, increment the use iterator
7515 /// so that it doesn't dangle.
7516 ///
7517 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
7518   SDNode::use_iterator &UI;
7519   SDNode::use_iterator &UE;
7520 
7521   void NodeDeleted(SDNode *N, SDNode *E) override {
7522     // Increment the iterator as needed.
7523     while (UI != UE && N == *UI)
7524       ++UI;
7525   }
7526 
7527 public:
7528   RAUWUpdateListener(SelectionDAG &d,
7529                      SDNode::use_iterator &ui,
7530                      SDNode::use_iterator &ue)
7531     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
7532 };
7533 
7534 } // end anonymous namespace
7535 
7536 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7537 /// This can cause recursive merging of nodes in the DAG.
7538 ///
7539 /// This version assumes From has a single result value.
7540 ///
7541 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
7542   SDNode *From = FromN.getNode();
7543   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
7544          "Cannot replace with this method!");
7545   assert(From != To.getNode() && "Cannot replace uses of with self");
7546 
7547   // Preserve Debug Values
7548   transferDbgValues(FromN, To);
7549 
7550   // Iterate over all the existing uses of From. New uses will be added
7551   // to the beginning of the use list, which we avoid visiting.
7552   // This specifically avoids visiting uses of From that arise while the
7553   // replacement is happening, because any such uses would be the result
7554   // of CSE: If an existing node looks like From after one of its operands
7555   // is replaced by To, we don't want to replace of all its users with To
7556   // too. See PR3018 for more info.
7557   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7558   RAUWUpdateListener Listener(*this, UI, UE);
7559   while (UI != UE) {
7560     SDNode *User = *UI;
7561 
7562     // This node is about to morph, remove its old self from the CSE maps.
7563     RemoveNodeFromCSEMaps(User);
7564 
7565     // A user can appear in a use list multiple times, and when this
7566     // happens the uses are usually next to each other in the list.
7567     // To help reduce the number of CSE recomputations, process all
7568     // the uses of this user that we can find this way.
7569     do {
7570       SDUse &Use = UI.getUse();
7571       ++UI;
7572       Use.set(To);
7573       if (To->isDivergent() != From->isDivergent())
7574         updateDivergence(User);
7575     } while (UI != UE && *UI == User);
7576     // Now that we have modified User, add it back to the CSE maps.  If it
7577     // already exists there, recursively merge the results together.
7578     AddModifiedNodeToCSEMaps(User);
7579   }
7580 
7581   // If we just RAUW'd the root, take note.
7582   if (FromN == getRoot())
7583     setRoot(To);
7584 }
7585 
7586 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7587 /// This can cause recursive merging of nodes in the DAG.
7588 ///
7589 /// This version assumes that for each value of From, there is a
7590 /// corresponding value in To in the same position with the same type.
7591 ///
7592 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
7593 #ifndef NDEBUG
7594   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7595     assert((!From->hasAnyUseOfValue(i) ||
7596             From->getValueType(i) == To->getValueType(i)) &&
7597            "Cannot use this version of ReplaceAllUsesWith!");
7598 #endif
7599 
7600   // Handle the trivial case.
7601   if (From == To)
7602     return;
7603 
7604   // Preserve Debug Info. Only do this if there's a use.
7605   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7606     if (From->hasAnyUseOfValue(i)) {
7607       assert((i < To->getNumValues()) && "Invalid To location");
7608       transferDbgValues(SDValue(From, i), SDValue(To, i));
7609     }
7610 
7611   // Iterate over just the existing users of From. See the comments in
7612   // the ReplaceAllUsesWith above.
7613   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7614   RAUWUpdateListener Listener(*this, UI, UE);
7615   while (UI != UE) {
7616     SDNode *User = *UI;
7617 
7618     // This node is about to morph, remove its old self from the CSE maps.
7619     RemoveNodeFromCSEMaps(User);
7620 
7621     // A user can appear in a use list multiple times, and when this
7622     // happens the uses are usually next to each other in the list.
7623     // To help reduce the number of CSE recomputations, process all
7624     // the uses of this user that we can find this way.
7625     do {
7626       SDUse &Use = UI.getUse();
7627       ++UI;
7628       Use.setNode(To);
7629       if (To->isDivergent() != From->isDivergent())
7630         updateDivergence(User);
7631     } while (UI != UE && *UI == User);
7632 
7633     // Now that we have modified User, add it back to the CSE maps.  If it
7634     // already exists there, recursively merge the results together.
7635     AddModifiedNodeToCSEMaps(User);
7636   }
7637 
7638   // If we just RAUW'd the root, take note.
7639   if (From == getRoot().getNode())
7640     setRoot(SDValue(To, getRoot().getResNo()));
7641 }
7642 
7643 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7644 /// This can cause recursive merging of nodes in the DAG.
7645 ///
7646 /// This version can replace From with any result values.  To must match the
7647 /// number and types of values returned by From.
7648 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
7649   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
7650     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
7651 
7652   // Preserve Debug Info.
7653   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7654     transferDbgValues(SDValue(From, i), *To);
7655 
7656   // Iterate over just the existing users of From. See the comments in
7657   // the ReplaceAllUsesWith above.
7658   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7659   RAUWUpdateListener Listener(*this, UI, UE);
7660   while (UI != UE) {
7661     SDNode *User = *UI;
7662 
7663     // This node is about to morph, remove its old self from the CSE maps.
7664     RemoveNodeFromCSEMaps(User);
7665 
7666     // A user can appear in a use list multiple times, and when this
7667     // happens the uses are usually next to each other in the list.
7668     // To help reduce the number of CSE recomputations, process all
7669     // the uses of this user that we can find this way.
7670     do {
7671       SDUse &Use = UI.getUse();
7672       const SDValue &ToOp = To[Use.getResNo()];
7673       ++UI;
7674       Use.set(ToOp);
7675       if (To->getNode()->isDivergent() != From->isDivergent())
7676         updateDivergence(User);
7677     } while (UI != UE && *UI == User);
7678     // Now that we have modified User, add it back to the CSE maps.  If it
7679     // already exists there, recursively merge the results together.
7680     AddModifiedNodeToCSEMaps(User);
7681   }
7682 
7683   // If we just RAUW'd the root, take note.
7684   if (From == getRoot().getNode())
7685     setRoot(SDValue(To[getRoot().getResNo()]));
7686 }
7687 
7688 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
7689 /// uses of other values produced by From.getNode() alone.  The Deleted
7690 /// vector is handled the same way as for ReplaceAllUsesWith.
7691 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
7692   // Handle the really simple, really trivial case efficiently.
7693   if (From == To) return;
7694 
7695   // Handle the simple, trivial, case efficiently.
7696   if (From.getNode()->getNumValues() == 1) {
7697     ReplaceAllUsesWith(From, To);
7698     return;
7699   }
7700 
7701   // Preserve Debug Info.
7702   transferDbgValues(From, To);
7703 
7704   // Iterate over just the existing users of From. See the comments in
7705   // the ReplaceAllUsesWith above.
7706   SDNode::use_iterator UI = From.getNode()->use_begin(),
7707                        UE = From.getNode()->use_end();
7708   RAUWUpdateListener Listener(*this, UI, UE);
7709   while (UI != UE) {
7710     SDNode *User = *UI;
7711     bool UserRemovedFromCSEMaps = false;
7712 
7713     // A user can appear in a use list multiple times, and when this
7714     // happens the uses are usually next to each other in the list.
7715     // To help reduce the number of CSE recomputations, process all
7716     // the uses of this user that we can find this way.
7717     do {
7718       SDUse &Use = UI.getUse();
7719 
7720       // Skip uses of different values from the same node.
7721       if (Use.getResNo() != From.getResNo()) {
7722         ++UI;
7723         continue;
7724       }
7725 
7726       // If this node hasn't been modified yet, it's still in the CSE maps,
7727       // so remove its old self from the CSE maps.
7728       if (!UserRemovedFromCSEMaps) {
7729         RemoveNodeFromCSEMaps(User);
7730         UserRemovedFromCSEMaps = true;
7731       }
7732 
7733       ++UI;
7734       Use.set(To);
7735       if (To->isDivergent() != From->isDivergent())
7736         updateDivergence(User);
7737     } while (UI != UE && *UI == User);
7738     // We are iterating over all uses of the From node, so if a use
7739     // doesn't use the specific value, no changes are made.
7740     if (!UserRemovedFromCSEMaps)
7741       continue;
7742 
7743     // Now that we have modified User, add it back to the CSE maps.  If it
7744     // already exists there, recursively merge the results together.
7745     AddModifiedNodeToCSEMaps(User);
7746   }
7747 
7748   // If we just RAUW'd the root, take note.
7749   if (From == getRoot())
7750     setRoot(To);
7751 }
7752 
7753 namespace {
7754 
7755   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
7756   /// to record information about a use.
7757   struct UseMemo {
7758     SDNode *User;
7759     unsigned Index;
7760     SDUse *Use;
7761   };
7762 
7763   /// operator< - Sort Memos by User.
7764   bool operator<(const UseMemo &L, const UseMemo &R) {
7765     return (intptr_t)L.User < (intptr_t)R.User;
7766   }
7767 
7768 } // end anonymous namespace
7769 
7770 void SelectionDAG::updateDivergence(SDNode * N)
7771 {
7772   if (TLI->isSDNodeAlwaysUniform(N))
7773     return;
7774   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
7775   for (auto &Op : N->ops()) {
7776     if (Op.Val.getValueType() != MVT::Other)
7777       IsDivergent |= Op.getNode()->isDivergent();
7778   }
7779   if (N->SDNodeBits.IsDivergent != IsDivergent) {
7780     N->SDNodeBits.IsDivergent = IsDivergent;
7781     for (auto U : N->uses()) {
7782       updateDivergence(U);
7783     }
7784   }
7785 }
7786 
7787 
7788 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
7789   DenseMap<SDNode *, unsigned> Degree;
7790   Order.reserve(AllNodes.size());
7791   for (auto & N : allnodes()) {
7792     unsigned NOps = N.getNumOperands();
7793     Degree[&N] = NOps;
7794     if (0 == NOps)
7795       Order.push_back(&N);
7796   }
7797   for (std::vector<SDNode *>::iterator I = Order.begin();
7798   I!=Order.end();++I) {
7799     SDNode * N = *I;
7800     for (auto U : N->uses()) {
7801       unsigned &UnsortedOps = Degree[U];
7802       if (0 == --UnsortedOps)
7803         Order.push_back(U);
7804     }
7805   }
7806 }
7807 
7808 void SelectionDAG::VerifyDAGDiverence()
7809 {
7810   std::vector<SDNode*> TopoOrder;
7811   CreateTopologicalOrder(TopoOrder);
7812   const TargetLowering &TLI = getTargetLoweringInfo();
7813   DenseMap<const SDNode *, bool> DivergenceMap;
7814   for (auto &N : allnodes()) {
7815     DivergenceMap[&N] = false;
7816   }
7817   for (auto N : TopoOrder) {
7818     bool IsDivergent = DivergenceMap[N];
7819     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
7820     for (auto &Op : N->ops()) {
7821       if (Op.Val.getValueType() != MVT::Other)
7822         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
7823     }
7824     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
7825       DivergenceMap[N] = true;
7826     }
7827   }
7828   for (auto &N : allnodes()) {
7829     (void)N;
7830     assert(DivergenceMap[&N] == N.isDivergent() &&
7831            "Divergence bit inconsistency detected\n");
7832   }
7833 }
7834 
7835 
7836 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
7837 /// uses of other values produced by From.getNode() alone.  The same value
7838 /// may appear in both the From and To list.  The Deleted vector is
7839 /// handled the same way as for ReplaceAllUsesWith.
7840 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
7841                                               const SDValue *To,
7842                                               unsigned Num){
7843   // Handle the simple, trivial case efficiently.
7844   if (Num == 1)
7845     return ReplaceAllUsesOfValueWith(*From, *To);
7846 
7847   transferDbgValues(*From, *To);
7848 
7849   // Read up all the uses and make records of them. This helps
7850   // processing new uses that are introduced during the
7851   // replacement process.
7852   SmallVector<UseMemo, 4> Uses;
7853   for (unsigned i = 0; i != Num; ++i) {
7854     unsigned FromResNo = From[i].getResNo();
7855     SDNode *FromNode = From[i].getNode();
7856     for (SDNode::use_iterator UI = FromNode->use_begin(),
7857          E = FromNode->use_end(); UI != E; ++UI) {
7858       SDUse &Use = UI.getUse();
7859       if (Use.getResNo() == FromResNo) {
7860         UseMemo Memo = { *UI, i, &Use };
7861         Uses.push_back(Memo);
7862       }
7863     }
7864   }
7865 
7866   // Sort the uses, so that all the uses from a given User are together.
7867   llvm::sort(Uses.begin(), Uses.end());
7868 
7869   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
7870        UseIndex != UseIndexEnd; ) {
7871     // We know that this user uses some value of From.  If it is the right
7872     // value, update it.
7873     SDNode *User = Uses[UseIndex].User;
7874 
7875     // This node is about to morph, remove its old self from the CSE maps.
7876     RemoveNodeFromCSEMaps(User);
7877 
7878     // The Uses array is sorted, so all the uses for a given User
7879     // are next to each other in the list.
7880     // To help reduce the number of CSE recomputations, process all
7881     // the uses of this user that we can find this way.
7882     do {
7883       unsigned i = Uses[UseIndex].Index;
7884       SDUse &Use = *Uses[UseIndex].Use;
7885       ++UseIndex;
7886 
7887       Use.set(To[i]);
7888     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
7889 
7890     // Now that we have modified User, add it back to the CSE maps.  If it
7891     // already exists there, recursively merge the results together.
7892     AddModifiedNodeToCSEMaps(User);
7893   }
7894 }
7895 
7896 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
7897 /// based on their topological order. It returns the maximum id and a vector
7898 /// of the SDNodes* in assigned order by reference.
7899 unsigned SelectionDAG::AssignTopologicalOrder() {
7900   unsigned DAGSize = 0;
7901 
7902   // SortedPos tracks the progress of the algorithm. Nodes before it are
7903   // sorted, nodes after it are unsorted. When the algorithm completes
7904   // it is at the end of the list.
7905   allnodes_iterator SortedPos = allnodes_begin();
7906 
7907   // Visit all the nodes. Move nodes with no operands to the front of
7908   // the list immediately. Annotate nodes that do have operands with their
7909   // operand count. Before we do this, the Node Id fields of the nodes
7910   // may contain arbitrary values. After, the Node Id fields for nodes
7911   // before SortedPos will contain the topological sort index, and the
7912   // Node Id fields for nodes At SortedPos and after will contain the
7913   // count of outstanding operands.
7914   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
7915     SDNode *N = &*I++;
7916     checkForCycles(N, this);
7917     unsigned Degree = N->getNumOperands();
7918     if (Degree == 0) {
7919       // A node with no uses, add it to the result array immediately.
7920       N->setNodeId(DAGSize++);
7921       allnodes_iterator Q(N);
7922       if (Q != SortedPos)
7923         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
7924       assert(SortedPos != AllNodes.end() && "Overran node list");
7925       ++SortedPos;
7926     } else {
7927       // Temporarily use the Node Id as scratch space for the degree count.
7928       N->setNodeId(Degree);
7929     }
7930   }
7931 
7932   // Visit all the nodes. As we iterate, move nodes into sorted order,
7933   // such that by the time the end is reached all nodes will be sorted.
7934   for (SDNode &Node : allnodes()) {
7935     SDNode *N = &Node;
7936     checkForCycles(N, this);
7937     // N is in sorted position, so all its uses have one less operand
7938     // that needs to be sorted.
7939     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
7940          UI != UE; ++UI) {
7941       SDNode *P = *UI;
7942       unsigned Degree = P->getNodeId();
7943       assert(Degree != 0 && "Invalid node degree");
7944       --Degree;
7945       if (Degree == 0) {
7946         // All of P's operands are sorted, so P may sorted now.
7947         P->setNodeId(DAGSize++);
7948         if (P->getIterator() != SortedPos)
7949           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
7950         assert(SortedPos != AllNodes.end() && "Overran node list");
7951         ++SortedPos;
7952       } else {
7953         // Update P's outstanding operand count.
7954         P->setNodeId(Degree);
7955       }
7956     }
7957     if (Node.getIterator() == SortedPos) {
7958 #ifndef NDEBUG
7959       allnodes_iterator I(N);
7960       SDNode *S = &*++I;
7961       dbgs() << "Overran sorted position:\n";
7962       S->dumprFull(this); dbgs() << "\n";
7963       dbgs() << "Checking if this is due to cycles\n";
7964       checkForCycles(this, true);
7965 #endif
7966       llvm_unreachable(nullptr);
7967     }
7968   }
7969 
7970   assert(SortedPos == AllNodes.end() &&
7971          "Topological sort incomplete!");
7972   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
7973          "First node in topological sort is not the entry token!");
7974   assert(AllNodes.front().getNodeId() == 0 &&
7975          "First node in topological sort has non-zero id!");
7976   assert(AllNodes.front().getNumOperands() == 0 &&
7977          "First node in topological sort has operands!");
7978   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
7979          "Last node in topologic sort has unexpected id!");
7980   assert(AllNodes.back().use_empty() &&
7981          "Last node in topologic sort has users!");
7982   assert(DAGSize == allnodes_size() && "Node count mismatch!");
7983   return DAGSize;
7984 }
7985 
7986 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
7987 /// value is produced by SD.
7988 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
7989   if (SD) {
7990     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
7991     SD->setHasDebugValue(true);
7992   }
7993   DbgInfo->add(DB, SD, isParameter);
7994 }
7995 
7996 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
7997   DbgInfo->add(DB);
7998 }
7999 
8000 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8001                                                    SDValue NewMemOp) {
8002   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8003   // The new memory operation must have the same position as the old load in
8004   // terms of memory dependency. Create a TokenFactor for the old load and new
8005   // memory operation and update uses of the old load's output chain to use that
8006   // TokenFactor.
8007   SDValue OldChain = SDValue(OldLoad, 1);
8008   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8009   if (!OldLoad->hasAnyUseOfValue(1))
8010     return NewChain;
8011 
8012   SDValue TokenFactor =
8013       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8014   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8015   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8016   return TokenFactor;
8017 }
8018 
8019 //===----------------------------------------------------------------------===//
8020 //                              SDNode Class
8021 //===----------------------------------------------------------------------===//
8022 
8023 bool llvm::isNullConstant(SDValue V) {
8024   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8025   return Const != nullptr && Const->isNullValue();
8026 }
8027 
8028 bool llvm::isNullFPConstant(SDValue V) {
8029   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8030   return Const != nullptr && Const->isZero() && !Const->isNegative();
8031 }
8032 
8033 bool llvm::isAllOnesConstant(SDValue V) {
8034   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8035   return Const != nullptr && Const->isAllOnesValue();
8036 }
8037 
8038 bool llvm::isOneConstant(SDValue V) {
8039   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8040   return Const != nullptr && Const->isOne();
8041 }
8042 
8043 bool llvm::isBitwiseNot(SDValue V) {
8044   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
8045 }
8046 
8047 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
8048   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8049     return CN;
8050 
8051   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8052     BitVector UndefElements;
8053     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8054 
8055     // BuildVectors can truncate their operands. Ignore that case here.
8056     // FIXME: We blindly ignore splats which include undef which is overly
8057     // pessimistic.
8058     if (CN && UndefElements.none() &&
8059         CN->getValueType(0) == N.getValueType().getScalarType())
8060       return CN;
8061   }
8062 
8063   return nullptr;
8064 }
8065 
8066 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
8067   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8068     return CN;
8069 
8070   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8071     BitVector UndefElements;
8072     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8073 
8074     if (CN && UndefElements.none())
8075       return CN;
8076   }
8077 
8078   return nullptr;
8079 }
8080 
8081 HandleSDNode::~HandleSDNode() {
8082   DropOperands();
8083 }
8084 
8085 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8086                                          const DebugLoc &DL,
8087                                          const GlobalValue *GA, EVT VT,
8088                                          int64_t o, unsigned char TF)
8089     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8090   TheGlobal = GA;
8091 }
8092 
8093 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8094                                          EVT VT, unsigned SrcAS,
8095                                          unsigned DestAS)
8096     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8097       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8098 
8099 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8100                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8101     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8102   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8103   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8104   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8105   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8106 
8107   // We check here that the size of the memory operand fits within the size of
8108   // the MMO. This is because the MMO might indicate only a possible address
8109   // range instead of specifying the affected memory addresses precisely.
8110   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8111 }
8112 
8113 /// Profile - Gather unique data for the node.
8114 ///
8115 void SDNode::Profile(FoldingSetNodeID &ID) const {
8116   AddNodeIDNode(ID, this);
8117 }
8118 
8119 namespace {
8120 
8121   struct EVTArray {
8122     std::vector<EVT> VTs;
8123 
8124     EVTArray() {
8125       VTs.reserve(MVT::LAST_VALUETYPE);
8126       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8127         VTs.push_back(MVT((MVT::SimpleValueType)i));
8128     }
8129   };
8130 
8131 } // end anonymous namespace
8132 
8133 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8134 static ManagedStatic<EVTArray> SimpleVTArray;
8135 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8136 
8137 /// getValueTypeList - Return a pointer to the specified value type.
8138 ///
8139 const EVT *SDNode::getValueTypeList(EVT VT) {
8140   if (VT.isExtended()) {
8141     sys::SmartScopedLock<true> Lock(*VTMutex);
8142     return &(*EVTs->insert(VT).first);
8143   } else {
8144     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8145            "Value type out of range!");
8146     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8147   }
8148 }
8149 
8150 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8151 /// indicated value.  This method ignores uses of other values defined by this
8152 /// operation.
8153 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8154   assert(Value < getNumValues() && "Bad value!");
8155 
8156   // TODO: Only iterate over uses of a given value of the node
8157   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8158     if (UI.getUse().getResNo() == Value) {
8159       if (NUses == 0)
8160         return false;
8161       --NUses;
8162     }
8163   }
8164 
8165   // Found exactly the right number of uses?
8166   return NUses == 0;
8167 }
8168 
8169 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8170 /// value. This method ignores uses of other values defined by this operation.
8171 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8172   assert(Value < getNumValues() && "Bad value!");
8173 
8174   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8175     if (UI.getUse().getResNo() == Value)
8176       return true;
8177 
8178   return false;
8179 }
8180 
8181 /// isOnlyUserOf - Return true if this node is the only use of N.
8182 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8183   bool Seen = false;
8184   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8185     SDNode *User = *I;
8186     if (User == this)
8187       Seen = true;
8188     else
8189       return false;
8190   }
8191 
8192   return Seen;
8193 }
8194 
8195 /// Return true if the only users of N are contained in Nodes.
8196 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8197   bool Seen = false;
8198   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8199     SDNode *User = *I;
8200     if (llvm::any_of(Nodes,
8201                      [&User](const SDNode *Node) { return User == Node; }))
8202       Seen = true;
8203     else
8204       return false;
8205   }
8206 
8207   return Seen;
8208 }
8209 
8210 /// isOperand - Return true if this node is an operand of N.
8211 bool SDValue::isOperandOf(const SDNode *N) const {
8212   for (const SDValue &Op : N->op_values())
8213     if (*this == Op)
8214       return true;
8215   return false;
8216 }
8217 
8218 bool SDNode::isOperandOf(const SDNode *N) const {
8219   for (const SDValue &Op : N->op_values())
8220     if (this == Op.getNode())
8221       return true;
8222   return false;
8223 }
8224 
8225 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8226 /// be a chain) reaches the specified operand without crossing any
8227 /// side-effecting instructions on any chain path.  In practice, this looks
8228 /// through token factors and non-volatile loads.  In order to remain efficient,
8229 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8230 ///
8231 /// Note that we only need to examine chains when we're searching for
8232 /// side-effects; SelectionDAG requires that all side-effects are represented
8233 /// by chains, even if another operand would force a specific ordering. This
8234 /// constraint is necessary to allow transformations like splitting loads.
8235 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8236                                              unsigned Depth) const {
8237   if (*this == Dest) return true;
8238 
8239   // Don't search too deeply, we just want to be able to see through
8240   // TokenFactor's etc.
8241   if (Depth == 0) return false;
8242 
8243   // If this is a token factor, all inputs to the TF happen in parallel.
8244   if (getOpcode() == ISD::TokenFactor) {
8245     // First, try a shallow search.
8246     if (is_contained((*this)->ops(), Dest)) {
8247       // We found the chain we want as an operand of this TokenFactor.
8248       // Essentially, we reach the chain without side-effects if we could
8249       // serialize the TokenFactor into a simple chain of operations with
8250       // Dest as the last operation. This is automatically true if the
8251       // chain has one use: there are no other ordering constraints.
8252       // If the chain has more than one use, we give up: some other
8253       // use of Dest might force a side-effect between Dest and the current
8254       // node.
8255       if (Dest.hasOneUse())
8256         return true;
8257     }
8258     // Next, try a deep search: check whether every operand of the TokenFactor
8259     // reaches Dest.
8260     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8261       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8262     });
8263   }
8264 
8265   // Loads don't have side effects, look through them.
8266   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8267     if (!Ld->isVolatile())
8268       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8269   }
8270   return false;
8271 }
8272 
8273 bool SDNode::hasPredecessor(const SDNode *N) const {
8274   SmallPtrSet<const SDNode *, 32> Visited;
8275   SmallVector<const SDNode *, 16> Worklist;
8276   Worklist.push_back(this);
8277   return hasPredecessorHelper(N, Visited, Worklist);
8278 }
8279 
8280 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8281   this->Flags.intersectWith(Flags);
8282 }
8283 
8284 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8285   assert(N->getNumValues() == 1 &&
8286          "Can't unroll a vector with multiple results!");
8287 
8288   EVT VT = N->getValueType(0);
8289   unsigned NE = VT.getVectorNumElements();
8290   EVT EltVT = VT.getVectorElementType();
8291   SDLoc dl(N);
8292 
8293   SmallVector<SDValue, 8> Scalars;
8294   SmallVector<SDValue, 4> Operands(N->getNumOperands());
8295 
8296   // If ResNE is 0, fully unroll the vector op.
8297   if (ResNE == 0)
8298     ResNE = NE;
8299   else if (NE > ResNE)
8300     NE = ResNE;
8301 
8302   unsigned i;
8303   for (i= 0; i != NE; ++i) {
8304     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8305       SDValue Operand = N->getOperand(j);
8306       EVT OperandVT = Operand.getValueType();
8307       if (OperandVT.isVector()) {
8308         // A vector operand; extract a single element.
8309         EVT OperandEltVT = OperandVT.getVectorElementType();
8310         Operands[j] =
8311             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8312                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8313       } else {
8314         // A scalar operand; just use it as is.
8315         Operands[j] = Operand;
8316       }
8317     }
8318 
8319     switch (N->getOpcode()) {
8320     default: {
8321       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8322                                 N->getFlags()));
8323       break;
8324     }
8325     case ISD::VSELECT:
8326       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8327       break;
8328     case ISD::SHL:
8329     case ISD::SRA:
8330     case ISD::SRL:
8331     case ISD::ROTL:
8332     case ISD::ROTR:
8333       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8334                                getShiftAmountOperand(Operands[0].getValueType(),
8335                                                      Operands[1])));
8336       break;
8337     case ISD::SIGN_EXTEND_INREG:
8338     case ISD::FP_ROUND_INREG: {
8339       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8340       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8341                                 Operands[0],
8342                                 getValueType(ExtVT)));
8343     }
8344     }
8345   }
8346 
8347   for (; i < ResNE; ++i)
8348     Scalars.push_back(getUNDEF(EltVT));
8349 
8350   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8351   return getBuildVector(VecVT, dl, Scalars);
8352 }
8353 
8354 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
8355                                                   LoadSDNode *Base,
8356                                                   unsigned Bytes,
8357                                                   int Dist) const {
8358   if (LD->isVolatile() || Base->isVolatile())
8359     return false;
8360   if (LD->isIndexed() || Base->isIndexed())
8361     return false;
8362   if (LD->getChain() != Base->getChain())
8363     return false;
8364   EVT VT = LD->getValueType(0);
8365   if (VT.getSizeInBits() / 8 != Bytes)
8366     return false;
8367 
8368   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
8369   auto LocDecomp = BaseIndexOffset::match(LD, *this);
8370 
8371   int64_t Offset = 0;
8372   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
8373     return (Dist * Bytes == Offset);
8374   return false;
8375 }
8376 
8377 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
8378 /// it cannot be inferred.
8379 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
8380   // If this is a GlobalAddress + cst, return the alignment.
8381   const GlobalValue *GV;
8382   int64_t GVOffset = 0;
8383   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
8384     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
8385     KnownBits Known(IdxWidth);
8386     llvm::computeKnownBits(GV, Known, getDataLayout());
8387     unsigned AlignBits = Known.countMinTrailingZeros();
8388     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
8389     if (Align)
8390       return MinAlign(Align, GVOffset);
8391   }
8392 
8393   // If this is a direct reference to a stack slot, use information about the
8394   // stack slot's alignment.
8395   int FrameIdx = 1 << 31;
8396   int64_t FrameOffset = 0;
8397   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
8398     FrameIdx = FI->getIndex();
8399   } else if (isBaseWithConstantOffset(Ptr) &&
8400              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
8401     // Handle FI+Cst
8402     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
8403     FrameOffset = Ptr.getConstantOperandVal(1);
8404   }
8405 
8406   if (FrameIdx != (1 << 31)) {
8407     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
8408     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
8409                                     FrameOffset);
8410     return FIInfoAlign;
8411   }
8412 
8413   return 0;
8414 }
8415 
8416 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
8417 /// which is split (or expanded) into two not necessarily identical pieces.
8418 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
8419   // Currently all types are split in half.
8420   EVT LoVT, HiVT;
8421   if (!VT.isVector())
8422     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
8423   else
8424     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
8425 
8426   return std::make_pair(LoVT, HiVT);
8427 }
8428 
8429 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
8430 /// low/high part.
8431 std::pair<SDValue, SDValue>
8432 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
8433                           const EVT &HiVT) {
8434   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
8435          N.getValueType().getVectorNumElements() &&
8436          "More vector elements requested than available!");
8437   SDValue Lo, Hi;
8438   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
8439                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
8440   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
8441                getConstant(LoVT.getVectorNumElements(), DL,
8442                            TLI->getVectorIdxTy(getDataLayout())));
8443   return std::make_pair(Lo, Hi);
8444 }
8445 
8446 void SelectionDAG::ExtractVectorElements(SDValue Op,
8447                                          SmallVectorImpl<SDValue> &Args,
8448                                          unsigned Start, unsigned Count) {
8449   EVT VT = Op.getValueType();
8450   if (Count == 0)
8451     Count = VT.getVectorNumElements();
8452 
8453   EVT EltVT = VT.getVectorElementType();
8454   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
8455   SDLoc SL(Op);
8456   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
8457     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
8458                            Op, getConstant(i, SL, IdxTy)));
8459   }
8460 }
8461 
8462 // getAddressSpace - Return the address space this GlobalAddress belongs to.
8463 unsigned GlobalAddressSDNode::getAddressSpace() const {
8464   return getGlobal()->getType()->getAddressSpace();
8465 }
8466 
8467 Type *ConstantPoolSDNode::getType() const {
8468   if (isMachineConstantPoolEntry())
8469     return Val.MachineCPVal->getType();
8470   return Val.ConstVal->getType();
8471 }
8472 
8473 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
8474                                         unsigned &SplatBitSize,
8475                                         bool &HasAnyUndefs,
8476                                         unsigned MinSplatBits,
8477                                         bool IsBigEndian) const {
8478   EVT VT = getValueType(0);
8479   assert(VT.isVector() && "Expected a vector type");
8480   unsigned VecWidth = VT.getSizeInBits();
8481   if (MinSplatBits > VecWidth)
8482     return false;
8483 
8484   // FIXME: The widths are based on this node's type, but build vectors can
8485   // truncate their operands.
8486   SplatValue = APInt(VecWidth, 0);
8487   SplatUndef = APInt(VecWidth, 0);
8488 
8489   // Get the bits. Bits with undefined values (when the corresponding element
8490   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
8491   // in SplatValue. If any of the values are not constant, give up and return
8492   // false.
8493   unsigned int NumOps = getNumOperands();
8494   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
8495   unsigned EltWidth = VT.getScalarSizeInBits();
8496 
8497   for (unsigned j = 0; j < NumOps; ++j) {
8498     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
8499     SDValue OpVal = getOperand(i);
8500     unsigned BitPos = j * EltWidth;
8501 
8502     if (OpVal.isUndef())
8503       SplatUndef.setBits(BitPos, BitPos + EltWidth);
8504     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
8505       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
8506     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
8507       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
8508     else
8509       return false;
8510   }
8511 
8512   // The build_vector is all constants or undefs. Find the smallest element
8513   // size that splats the vector.
8514   HasAnyUndefs = (SplatUndef != 0);
8515 
8516   // FIXME: This does not work for vectors with elements less than 8 bits.
8517   while (VecWidth > 8) {
8518     unsigned HalfSize = VecWidth / 2;
8519     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
8520     APInt LowValue = SplatValue.trunc(HalfSize);
8521     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
8522     APInt LowUndef = SplatUndef.trunc(HalfSize);
8523 
8524     // If the two halves do not match (ignoring undef bits), stop here.
8525     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
8526         MinSplatBits > HalfSize)
8527       break;
8528 
8529     SplatValue = HighValue | LowValue;
8530     SplatUndef = HighUndef & LowUndef;
8531 
8532     VecWidth = HalfSize;
8533   }
8534 
8535   SplatBitSize = VecWidth;
8536   return true;
8537 }
8538 
8539 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
8540   if (UndefElements) {
8541     UndefElements->clear();
8542     UndefElements->resize(getNumOperands());
8543   }
8544   SDValue Splatted;
8545   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
8546     SDValue Op = getOperand(i);
8547     if (Op.isUndef()) {
8548       if (UndefElements)
8549         (*UndefElements)[i] = true;
8550     } else if (!Splatted) {
8551       Splatted = Op;
8552     } else if (Splatted != Op) {
8553       return SDValue();
8554     }
8555   }
8556 
8557   if (!Splatted) {
8558     assert(getOperand(0).isUndef() &&
8559            "Can only have a splat without a constant for all undefs.");
8560     return getOperand(0);
8561   }
8562 
8563   return Splatted;
8564 }
8565 
8566 ConstantSDNode *
8567 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
8568   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
8569 }
8570 
8571 ConstantFPSDNode *
8572 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
8573   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
8574 }
8575 
8576 int32_t
8577 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
8578                                                    uint32_t BitWidth) const {
8579   if (ConstantFPSDNode *CN =
8580           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
8581     bool IsExact;
8582     APSInt IntVal(BitWidth);
8583     const APFloat &APF = CN->getValueAPF();
8584     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
8585             APFloat::opOK ||
8586         !IsExact)
8587       return -1;
8588 
8589     return IntVal.exactLogBase2();
8590   }
8591   return -1;
8592 }
8593 
8594 bool BuildVectorSDNode::isConstant() const {
8595   for (const SDValue &Op : op_values()) {
8596     unsigned Opc = Op.getOpcode();
8597     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
8598       return false;
8599   }
8600   return true;
8601 }
8602 
8603 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
8604   // Find the first non-undef value in the shuffle mask.
8605   unsigned i, e;
8606   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
8607     /* search */;
8608 
8609   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
8610 
8611   // Make sure all remaining elements are either undef or the same as the first
8612   // non-undef value.
8613   for (int Idx = Mask[i]; i != e; ++i)
8614     if (Mask[i] >= 0 && Mask[i] != Idx)
8615       return false;
8616   return true;
8617 }
8618 
8619 // Returns the SDNode if it is a constant integer BuildVector
8620 // or constant integer.
8621 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
8622   if (isa<ConstantSDNode>(N))
8623     return N.getNode();
8624   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
8625     return N.getNode();
8626   // Treat a GlobalAddress supporting constant offset folding as a
8627   // constant integer.
8628   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
8629     if (GA->getOpcode() == ISD::GlobalAddress &&
8630         TLI->isOffsetFoldingLegal(GA))
8631       return GA;
8632   return nullptr;
8633 }
8634 
8635 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
8636   if (isa<ConstantFPSDNode>(N))
8637     return N.getNode();
8638 
8639   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
8640     return N.getNode();
8641 
8642   return nullptr;
8643 }
8644 
8645 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
8646   assert(!Node->OperandList && "Node already has operands");
8647   SDUse *Ops = OperandRecycler.allocate(
8648     ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
8649 
8650   bool IsDivergent = false;
8651   for (unsigned I = 0; I != Vals.size(); ++I) {
8652     Ops[I].setUser(Node);
8653     Ops[I].setInitial(Vals[I]);
8654     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
8655       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
8656   }
8657   Node->NumOperands = Vals.size();
8658   Node->OperandList = Ops;
8659   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
8660   if (!TLI->isSDNodeAlwaysUniform(Node))
8661     Node->SDNodeBits.IsDivergent = IsDivergent;
8662   checkForCycles(Node);
8663 }
8664 
8665 #ifndef NDEBUG
8666 static void checkForCyclesHelper(const SDNode *N,
8667                                  SmallPtrSetImpl<const SDNode*> &Visited,
8668                                  SmallPtrSetImpl<const SDNode*> &Checked,
8669                                  const llvm::SelectionDAG *DAG) {
8670   // If this node has already been checked, don't check it again.
8671   if (Checked.count(N))
8672     return;
8673 
8674   // If a node has already been visited on this depth-first walk, reject it as
8675   // a cycle.
8676   if (!Visited.insert(N).second) {
8677     errs() << "Detected cycle in SelectionDAG\n";
8678     dbgs() << "Offending node:\n";
8679     N->dumprFull(DAG); dbgs() << "\n";
8680     abort();
8681   }
8682 
8683   for (const SDValue &Op : N->op_values())
8684     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
8685 
8686   Checked.insert(N);
8687   Visited.erase(N);
8688 }
8689 #endif
8690 
8691 void llvm::checkForCycles(const llvm::SDNode *N,
8692                           const llvm::SelectionDAG *DAG,
8693                           bool force) {
8694 #ifndef NDEBUG
8695   bool check = force;
8696 #ifdef EXPENSIVE_CHECKS
8697   check = true;
8698 #endif  // EXPENSIVE_CHECKS
8699   if (check) {
8700     assert(N && "Checking nonexistent SDNode");
8701     SmallPtrSet<const SDNode*, 32> visited;
8702     SmallPtrSet<const SDNode*, 32> checked;
8703     checkForCyclesHelper(N, visited, checked, DAG);
8704   }
8705 #endif  // !NDEBUG
8706 }
8707 
8708 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
8709   checkForCycles(DAG->getRoot().getNode(), DAG, force);
8710 }
8711