1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
89 
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
91 
92 #define DEBUG_TYPE "selectiondag"
93 
94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95        cl::Hidden, cl::init(true),
96        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
97 
98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
99        cl::desc("Number limit for gluing ld/st of memcpy."),
100        cl::Hidden, cl::init(0));
101 
102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
103   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
104 }
105 
106 //===----------------------------------------------------------------------===//
107 //                              ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
109 
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
115   return getValueAPF().bitwiseIsEqual(V);
116 }
117 
118 bool ConstantFPSDNode::isValueValidForType(EVT VT,
119                                            const APFloat& Val) {
120   assert(VT.isFloatingPoint() && "Can only convert between FP types");
121 
122   // convert modifies in place, so make a copy.
123   APFloat Val2 = APFloat(Val);
124   bool losesInfo;
125   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
126                       APFloat::rmNearestTiesToEven,
127                       &losesInfo);
128   return !losesInfo;
129 }
130 
131 //===----------------------------------------------------------------------===//
132 //                              ISD Namespace
133 //===----------------------------------------------------------------------===//
134 
135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
136   auto *BV = dyn_cast<BuildVectorSDNode>(N);
137   if (!BV)
138     return false;
139 
140   APInt SplatUndef;
141   unsigned SplatBitSize;
142   bool HasUndefs;
143   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
144   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
145                              EltSize) &&
146          EltSize == SplatBitSize;
147 }
148 
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
151 
152 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
153   // Look through a bit convert.
154   while (N->getOpcode() == ISD::BITCAST)
155     N = N->getOperand(0).getNode();
156 
157   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158 
159   unsigned i = 0, e = N->getNumOperands();
160 
161   // Skip over all of the undef values.
162   while (i != e && N->getOperand(i).isUndef())
163     ++i;
164 
165   // Do not accept an all-undef vector.
166   if (i == e) return false;
167 
168   // Do not accept build_vectors that aren't all constants or which have non-~0
169   // elements. We have to be a bit careful here, as the type of the constant
170   // may not be the same as the type of the vector elements due to type
171   // legalization (the elements are promoted to a legal type for the target and
172   // a vector of a type may be legal when the base element type is not).
173   // We only want to check enough bits to cover the vector elements, because
174   // we care if the resultant vector is all ones, not whether the individual
175   // constants are.
176   SDValue NotZero = N->getOperand(i);
177   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
178   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
179     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
180       return false;
181   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
182     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
183       return false;
184   } else
185     return false;
186 
187   // Okay, we have at least one ~0 value, check to see if the rest match or are
188   // undefs. Even with the above element type twiddling, this should be OK, as
189   // the same type legalization should have applied to all the elements.
190   for (++i; i != e; ++i)
191     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
192       return false;
193   return true;
194 }
195 
196 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
197   // Look through a bit convert.
198   while (N->getOpcode() == ISD::BITCAST)
199     N = N->getOperand(0).getNode();
200 
201   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
202 
203   bool IsAllUndef = true;
204   for (const SDValue &Op : N->op_values()) {
205     if (Op.isUndef())
206       continue;
207     IsAllUndef = false;
208     // Do not accept build_vectors that aren't all constants or which have non-0
209     // elements. We have to be a bit careful here, as the type of the constant
210     // may not be the same as the type of the vector elements due to type
211     // legalization (the elements are promoted to a legal type for the target
212     // and a vector of a type may be legal when the base element type is not).
213     // We only want to check enough bits to cover the vector elements, because
214     // we care if the resultant vector is all zeros, not whether the individual
215     // constants are.
216     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
217     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
218       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
219         return false;
220     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
221       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
222         return false;
223     } else
224       return false;
225   }
226 
227   // Do not accept an all-undef vector.
228   if (IsAllUndef)
229     return false;
230   return true;
231 }
232 
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
234   if (N->getOpcode() != ISD::BUILD_VECTOR)
235     return false;
236 
237   for (const SDValue &Op : N->op_values()) {
238     if (Op.isUndef())
239       continue;
240     if (!isa<ConstantSDNode>(Op))
241       return false;
242   }
243   return true;
244 }
245 
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
247   if (N->getOpcode() != ISD::BUILD_VECTOR)
248     return false;
249 
250   for (const SDValue &Op : N->op_values()) {
251     if (Op.isUndef())
252       continue;
253     if (!isa<ConstantFPSDNode>(Op))
254       return false;
255   }
256   return true;
257 }
258 
259 bool ISD::allOperandsUndef(const SDNode *N) {
260   // Return false if the node has no operands.
261   // This is "logically inconsistent" with the definition of "all" but
262   // is probably the desired behavior.
263   if (N->getNumOperands() == 0)
264     return false;
265   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
266 }
267 
268 bool ISD::matchUnaryPredicate(SDValue Op,
269                               std::function<bool(ConstantSDNode *)> Match,
270                               bool AllowUndefs) {
271   // FIXME: Add support for scalar UNDEF cases?
272   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
273     return Match(Cst);
274 
275   // FIXME: Add support for vector UNDEF cases?
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     if (AllowUndefs && Op.getOperand(i).isUndef()) {
282       if (!Match(nullptr))
283         return false;
284       continue;
285     }
286 
287     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
288     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::matchBinaryPredicate(
295     SDValue LHS, SDValue RHS,
296     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
297     bool AllowUndefs, bool AllowTypeMismatch) {
298   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
299     return false;
300 
301   // TODO: Add support for scalar UNDEF cases?
302   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
303     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
304       return Match(LHSCst, RHSCst);
305 
306   // TODO: Add support for vector UNDEF cases?
307   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
308       ISD::BUILD_VECTOR != RHS.getOpcode())
309     return false;
310 
311   EVT SVT = LHS.getValueType().getScalarType();
312   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
313     SDValue LHSOp = LHS.getOperand(i);
314     SDValue RHSOp = RHS.getOperand(i);
315     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
316     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
317     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
318     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
319     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
320       return false;
321     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
322                                LHSOp.getValueType() != RHSOp.getValueType()))
323       return false;
324     if (!Match(LHSCst, RHSCst))
325       return false;
326   }
327   return true;
328 }
329 
330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
331   switch (ExtType) {
332   case ISD::EXTLOAD:
333     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
334   case ISD::SEXTLOAD:
335     return ISD::SIGN_EXTEND;
336   case ISD::ZEXTLOAD:
337     return ISD::ZERO_EXTEND;
338   default:
339     break;
340   }
341 
342   llvm_unreachable("Invalid LoadExtType");
343 }
344 
345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
346   // To perform this operation, we just need to swap the L and G bits of the
347   // operation.
348   unsigned OldL = (Operation >> 2) & 1;
349   unsigned OldG = (Operation >> 1) & 1;
350   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
351                        (OldL << 1) |       // New G bit
352                        (OldG << 2));       // New L bit.
353 }
354 
355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
356   unsigned Operation = Op;
357   if (isInteger)
358     Operation ^= 7;   // Flip L, G, E bits, but not U.
359   else
360     Operation ^= 15;  // Flip all of the condition bits.
361 
362   if (Operation > ISD::SETTRUE2)
363     Operation &= ~8;  // Don't let N and U bits get set.
364 
365   return ISD::CondCode(Operation);
366 }
367 
368 /// For an integer comparison, return 1 if the comparison is a signed operation
369 /// and 2 if the result is an unsigned comparison. Return zero if the operation
370 /// does not depend on the sign of the input (setne and seteq).
371 static int isSignedOp(ISD::CondCode Opcode) {
372   switch (Opcode) {
373   default: llvm_unreachable("Illegal integer setcc operation!");
374   case ISD::SETEQ:
375   case ISD::SETNE: return 0;
376   case ISD::SETLT:
377   case ISD::SETLE:
378   case ISD::SETGT:
379   case ISD::SETGE: return 1;
380   case ISD::SETULT:
381   case ISD::SETULE:
382   case ISD::SETUGT:
383   case ISD::SETUGE: return 2;
384   }
385 }
386 
387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
388                                        bool IsInteger) {
389   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
390     // Cannot fold a signed integer setcc with an unsigned integer setcc.
391     return ISD::SETCC_INVALID;
392 
393   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
394 
395   // If the N and U bits get set, then the resultant comparison DOES suddenly
396   // care about orderedness, and it is true when ordered.
397   if (Op > ISD::SETTRUE2)
398     Op &= ~16;     // Clear the U bit if the N bit is set.
399 
400   // Canonicalize illegal integer setcc's.
401   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
402     Op = ISD::SETNE;
403 
404   return ISD::CondCode(Op);
405 }
406 
407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
408                                         bool IsInteger) {
409   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
410     // Cannot fold a signed setcc with an unsigned setcc.
411     return ISD::SETCC_INVALID;
412 
413   // Combine all of the condition bits.
414   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
415 
416   // Canonicalize illegal integer setcc's.
417   if (IsInteger) {
418     switch (Result) {
419     default: break;
420     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
421     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
422     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
423     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
424     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
425     }
426   }
427 
428   return Result;
429 }
430 
431 //===----------------------------------------------------------------------===//
432 //                           SDNode Profile Support
433 //===----------------------------------------------------------------------===//
434 
435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
437   ID.AddInteger(OpC);
438 }
439 
440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
441 /// solely with their pointer.
442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
443   ID.AddPointer(VTList.VTs);
444 }
445 
446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
447 static void AddNodeIDOperands(FoldingSetNodeID &ID,
448                               ArrayRef<SDValue> Ops) {
449   for (auto& Op : Ops) {
450     ID.AddPointer(Op.getNode());
451     ID.AddInteger(Op.getResNo());
452   }
453 }
454 
455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
456 static void AddNodeIDOperands(FoldingSetNodeID &ID,
457                               ArrayRef<SDUse> Ops) {
458   for (auto& Op : Ops) {
459     ID.AddPointer(Op.getNode());
460     ID.AddInteger(Op.getResNo());
461   }
462 }
463 
464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
465                           SDVTList VTList, ArrayRef<SDValue> OpList) {
466   AddNodeIDOpcode(ID, OpC);
467   AddNodeIDValueTypes(ID, VTList);
468   AddNodeIDOperands(ID, OpList);
469 }
470 
471 /// If this is an SDNode with special info, add this info to the NodeID data.
472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
473   switch (N->getOpcode()) {
474   case ISD::TargetExternalSymbol:
475   case ISD::ExternalSymbol:
476   case ISD::MCSymbol:
477     llvm_unreachable("Should only be used on nodes with operands");
478   default: break;  // Normal nodes don't need extra info.
479   case ISD::TargetConstant:
480   case ISD::Constant: {
481     const ConstantSDNode *C = cast<ConstantSDNode>(N);
482     ID.AddPointer(C->getConstantIntValue());
483     ID.AddBoolean(C->isOpaque());
484     break;
485   }
486   case ISD::TargetConstantFP:
487   case ISD::ConstantFP:
488     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
489     break;
490   case ISD::TargetGlobalAddress:
491   case ISD::GlobalAddress:
492   case ISD::TargetGlobalTLSAddress:
493   case ISD::GlobalTLSAddress: {
494     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
495     ID.AddPointer(GA->getGlobal());
496     ID.AddInteger(GA->getOffset());
497     ID.AddInteger(GA->getTargetFlags());
498     break;
499   }
500   case ISD::BasicBlock:
501     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
502     break;
503   case ISD::Register:
504     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
505     break;
506   case ISD::RegisterMask:
507     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
508     break;
509   case ISD::SRCVALUE:
510     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
511     break;
512   case ISD::FrameIndex:
513   case ISD::TargetFrameIndex:
514     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
515     break;
516   case ISD::LIFETIME_START:
517   case ISD::LIFETIME_END:
518     if (cast<LifetimeSDNode>(N)->hasOffset()) {
519       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
520       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
521     }
522     break;
523   case ISD::JumpTable:
524   case ISD::TargetJumpTable:
525     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
526     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
527     break;
528   case ISD::ConstantPool:
529   case ISD::TargetConstantPool: {
530     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
531     ID.AddInteger(CP->getAlignment());
532     ID.AddInteger(CP->getOffset());
533     if (CP->isMachineConstantPoolEntry())
534       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
535     else
536       ID.AddPointer(CP->getConstVal());
537     ID.AddInteger(CP->getTargetFlags());
538     break;
539   }
540   case ISD::TargetIndex: {
541     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
542     ID.AddInteger(TI->getIndex());
543     ID.AddInteger(TI->getOffset());
544     ID.AddInteger(TI->getTargetFlags());
545     break;
546   }
547   case ISD::LOAD: {
548     const LoadSDNode *LD = cast<LoadSDNode>(N);
549     ID.AddInteger(LD->getMemoryVT().getRawBits());
550     ID.AddInteger(LD->getRawSubclassData());
551     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
552     break;
553   }
554   case ISD::STORE: {
555     const StoreSDNode *ST = cast<StoreSDNode>(N);
556     ID.AddInteger(ST->getMemoryVT().getRawBits());
557     ID.AddInteger(ST->getRawSubclassData());
558     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
559     break;
560   }
561   case ISD::MLOAD: {
562     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
563     ID.AddInteger(MLD->getMemoryVT().getRawBits());
564     ID.AddInteger(MLD->getRawSubclassData());
565     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
566     break;
567   }
568   case ISD::MSTORE: {
569     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
570     ID.AddInteger(MST->getMemoryVT().getRawBits());
571     ID.AddInteger(MST->getRawSubclassData());
572     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
573     break;
574   }
575   case ISD::MGATHER: {
576     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
577     ID.AddInteger(MG->getMemoryVT().getRawBits());
578     ID.AddInteger(MG->getRawSubclassData());
579     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
580     break;
581   }
582   case ISD::MSCATTER: {
583     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
584     ID.AddInteger(MS->getMemoryVT().getRawBits());
585     ID.AddInteger(MS->getRawSubclassData());
586     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
587     break;
588   }
589   case ISD::ATOMIC_CMP_SWAP:
590   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
591   case ISD::ATOMIC_SWAP:
592   case ISD::ATOMIC_LOAD_ADD:
593   case ISD::ATOMIC_LOAD_SUB:
594   case ISD::ATOMIC_LOAD_AND:
595   case ISD::ATOMIC_LOAD_CLR:
596   case ISD::ATOMIC_LOAD_OR:
597   case ISD::ATOMIC_LOAD_XOR:
598   case ISD::ATOMIC_LOAD_NAND:
599   case ISD::ATOMIC_LOAD_MIN:
600   case ISD::ATOMIC_LOAD_MAX:
601   case ISD::ATOMIC_LOAD_UMIN:
602   case ISD::ATOMIC_LOAD_UMAX:
603   case ISD::ATOMIC_LOAD:
604   case ISD::ATOMIC_STORE: {
605     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
606     ID.AddInteger(AT->getMemoryVT().getRawBits());
607     ID.AddInteger(AT->getRawSubclassData());
608     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
609     break;
610   }
611   case ISD::PREFETCH: {
612     const MemSDNode *PF = cast<MemSDNode>(N);
613     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
614     break;
615   }
616   case ISD::VECTOR_SHUFFLE: {
617     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
618     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
619          i != e; ++i)
620       ID.AddInteger(SVN->getMaskElt(i));
621     break;
622   }
623   case ISD::TargetBlockAddress:
624   case ISD::BlockAddress: {
625     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
626     ID.AddPointer(BA->getBlockAddress());
627     ID.AddInteger(BA->getOffset());
628     ID.AddInteger(BA->getTargetFlags());
629     break;
630   }
631   } // end switch (N->getOpcode())
632 
633   // Target specific memory nodes could also have address spaces to check.
634   if (N->isTargetMemoryOpcode())
635     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
636 }
637 
638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
639 /// data.
640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
641   AddNodeIDOpcode(ID, N->getOpcode());
642   // Add the return value info.
643   AddNodeIDValueTypes(ID, N->getVTList());
644   // Add the operand info.
645   AddNodeIDOperands(ID, N->ops());
646 
647   // Handle SDNode leafs with special info.
648   AddNodeIDCustom(ID, N);
649 }
650 
651 //===----------------------------------------------------------------------===//
652 //                              SelectionDAG Class
653 //===----------------------------------------------------------------------===//
654 
655 /// doNotCSE - Return true if CSE should not be performed for this node.
656 static bool doNotCSE(SDNode *N) {
657   if (N->getValueType(0) == MVT::Glue)
658     return true; // Never CSE anything that produces a flag.
659 
660   switch (N->getOpcode()) {
661   default: break;
662   case ISD::HANDLENODE:
663   case ISD::EH_LABEL:
664     return true;   // Never CSE these nodes.
665   }
666 
667   // Check that remaining values produced are not flags.
668   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
669     if (N->getValueType(i) == MVT::Glue)
670       return true; // Never CSE anything that produces a flag.
671 
672   return false;
673 }
674 
675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
676 /// SelectionDAG.
677 void SelectionDAG::RemoveDeadNodes() {
678   // Create a dummy node (which is not added to allnodes), that adds a reference
679   // to the root node, preventing it from being deleted.
680   HandleSDNode Dummy(getRoot());
681 
682   SmallVector<SDNode*, 128> DeadNodes;
683 
684   // Add all obviously-dead nodes to the DeadNodes worklist.
685   for (SDNode &Node : allnodes())
686     if (Node.use_empty())
687       DeadNodes.push_back(&Node);
688 
689   RemoveDeadNodes(DeadNodes);
690 
691   // If the root changed (e.g. it was a dead load, update the root).
692   setRoot(Dummy.getValue());
693 }
694 
695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
696 /// given list, and any nodes that become unreachable as a result.
697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
698 
699   // Process the worklist, deleting the nodes and adding their uses to the
700   // worklist.
701   while (!DeadNodes.empty()) {
702     SDNode *N = DeadNodes.pop_back_val();
703     // Skip to next node if we've already managed to delete the node. This could
704     // happen if replacing a node causes a node previously added to the node to
705     // be deleted.
706     if (N->getOpcode() == ISD::DELETED_NODE)
707       continue;
708 
709     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
710       DUL->NodeDeleted(N, nullptr);
711 
712     // Take the node out of the appropriate CSE map.
713     RemoveNodeFromCSEMaps(N);
714 
715     // Next, brutally remove the operand list.  This is safe to do, as there are
716     // no cycles in the graph.
717     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
718       SDUse &Use = *I++;
719       SDNode *Operand = Use.getNode();
720       Use.set(SDValue());
721 
722       // Now that we removed this operand, see if there are no uses of it left.
723       if (Operand->use_empty())
724         DeadNodes.push_back(Operand);
725     }
726 
727     DeallocateNode(N);
728   }
729 }
730 
731 void SelectionDAG::RemoveDeadNode(SDNode *N){
732   SmallVector<SDNode*, 16> DeadNodes(1, N);
733 
734   // Create a dummy node that adds a reference to the root node, preventing
735   // it from being deleted.  (This matters if the root is an operand of the
736   // dead node.)
737   HandleSDNode Dummy(getRoot());
738 
739   RemoveDeadNodes(DeadNodes);
740 }
741 
742 void SelectionDAG::DeleteNode(SDNode *N) {
743   // First take this out of the appropriate CSE map.
744   RemoveNodeFromCSEMaps(N);
745 
746   // Finally, remove uses due to operands of this node, remove from the
747   // AllNodes list, and delete the node.
748   DeleteNodeNotInCSEMaps(N);
749 }
750 
751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
752   assert(N->getIterator() != AllNodes.begin() &&
753          "Cannot delete the entry node!");
754   assert(N->use_empty() && "Cannot delete a node that is not dead!");
755 
756   // Drop all of the operands and decrement used node's use counts.
757   N->DropOperands();
758 
759   DeallocateNode(N);
760 }
761 
762 void SDDbgInfo::erase(const SDNode *Node) {
763   DbgValMapType::iterator I = DbgValMap.find(Node);
764   if (I == DbgValMap.end())
765     return;
766   for (auto &Val: I->second)
767     Val->setIsInvalidated();
768   DbgValMap.erase(I);
769 }
770 
771 void SelectionDAG::DeallocateNode(SDNode *N) {
772   // If we have operands, deallocate them.
773   removeOperands(N);
774 
775   NodeAllocator.Deallocate(AllNodes.remove(N));
776 
777   // Set the opcode to DELETED_NODE to help catch bugs when node
778   // memory is reallocated.
779   // FIXME: There are places in SDag that have grown a dependency on the opcode
780   // value in the released node.
781   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
782   N->NodeType = ISD::DELETED_NODE;
783 
784   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
785   // them and forget about that node.
786   DbgInfo->erase(N);
787 }
788 
789 #ifndef NDEBUG
790 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
791 static void VerifySDNode(SDNode *N) {
792   switch (N->getOpcode()) {
793   default:
794     break;
795   case ISD::BUILD_PAIR: {
796     EVT VT = N->getValueType(0);
797     assert(N->getNumValues() == 1 && "Too many results!");
798     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
799            "Wrong return type!");
800     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
801     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
802            "Mismatched operand types!");
803     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
804            "Wrong operand type!");
805     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
806            "Wrong return type size");
807     break;
808   }
809   case ISD::BUILD_VECTOR: {
810     assert(N->getNumValues() == 1 && "Too many results!");
811     assert(N->getValueType(0).isVector() && "Wrong return type!");
812     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
813            "Wrong number of operands!");
814     EVT EltVT = N->getValueType(0).getVectorElementType();
815     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
816       assert((I->getValueType() == EltVT ||
817              (EltVT.isInteger() && I->getValueType().isInteger() &&
818               EltVT.bitsLE(I->getValueType()))) &&
819             "Wrong operand type!");
820       assert(I->getValueType() == N->getOperand(0).getValueType() &&
821              "Operands must all have the same type");
822     }
823     break;
824   }
825   }
826 }
827 #endif // NDEBUG
828 
829 /// Insert a newly allocated node into the DAG.
830 ///
831 /// Handles insertion into the all nodes list and CSE map, as well as
832 /// verification and other common operations when a new node is allocated.
833 void SelectionDAG::InsertNode(SDNode *N) {
834   AllNodes.push_back(N);
835 #ifndef NDEBUG
836   N->PersistentId = NextPersistentId++;
837   VerifySDNode(N);
838 #endif
839   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
840     DUL->NodeInserted(N);
841 }
842 
843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
844 /// correspond to it.  This is useful when we're about to delete or repurpose
845 /// the node.  We don't want future request for structurally identical nodes
846 /// to return N anymore.
847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
848   bool Erased = false;
849   switch (N->getOpcode()) {
850   case ISD::HANDLENODE: return false;  // noop.
851   case ISD::CONDCODE:
852     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
853            "Cond code doesn't exist!");
854     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
855     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
856     break;
857   case ISD::ExternalSymbol:
858     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
859     break;
860   case ISD::TargetExternalSymbol: {
861     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
862     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
863         ESN->getSymbol(), ESN->getTargetFlags()));
864     break;
865   }
866   case ISD::MCSymbol: {
867     auto *MCSN = cast<MCSymbolSDNode>(N);
868     Erased = MCSymbols.erase(MCSN->getMCSymbol());
869     break;
870   }
871   case ISD::VALUETYPE: {
872     EVT VT = cast<VTSDNode>(N)->getVT();
873     if (VT.isExtended()) {
874       Erased = ExtendedValueTypeNodes.erase(VT);
875     } else {
876       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
877       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
878     }
879     break;
880   }
881   default:
882     // Remove it from the CSE Map.
883     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
884     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
885     Erased = CSEMap.RemoveNode(N);
886     break;
887   }
888 #ifndef NDEBUG
889   // Verify that the node was actually in one of the CSE maps, unless it has a
890   // flag result (which cannot be CSE'd) or is one of the special cases that are
891   // not subject to CSE.
892   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
893       !N->isMachineOpcode() && !doNotCSE(N)) {
894     N->dump(this);
895     dbgs() << "\n";
896     llvm_unreachable("Node is not in map!");
897   }
898 #endif
899   return Erased;
900 }
901 
902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
903 /// maps and modified in place. Add it back to the CSE maps, unless an identical
904 /// node already exists, in which case transfer all its users to the existing
905 /// node. This transfer can potentially trigger recursive merging.
906 void
907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
908   // For node types that aren't CSE'd, just act as if no identical node
909   // already exists.
910   if (!doNotCSE(N)) {
911     SDNode *Existing = CSEMap.GetOrInsertNode(N);
912     if (Existing != N) {
913       // If there was already an existing matching node, use ReplaceAllUsesWith
914       // to replace the dead one with the existing one.  This can cause
915       // recursive merging of other unrelated nodes down the line.
916       ReplaceAllUsesWith(N, Existing);
917 
918       // N is now dead. Inform the listeners and delete it.
919       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
920         DUL->NodeDeleted(N, Existing);
921       DeleteNodeNotInCSEMaps(N);
922       return;
923     }
924   }
925 
926   // If the node doesn't already exist, we updated it.  Inform listeners.
927   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
928     DUL->NodeUpdated(N);
929 }
930 
931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
932 /// were replaced with those specified.  If this node is never memoized,
933 /// return null, otherwise return a pointer to the slot it would take.  If a
934 /// node already exists with these operands, the slot will be non-null.
935 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
936                                            void *&InsertPos) {
937   if (doNotCSE(N))
938     return nullptr;
939 
940   SDValue Ops[] = { Op };
941   FoldingSetNodeID ID;
942   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
943   AddNodeIDCustom(ID, N);
944   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
945   if (Node)
946     Node->intersectFlagsWith(N->getFlags());
947   return Node;
948 }
949 
950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
951 /// were replaced with those specified.  If this node is never memoized,
952 /// return null, otherwise return a pointer to the slot it would take.  If a
953 /// node already exists with these operands, the slot will be non-null.
954 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
955                                            SDValue Op1, SDValue Op2,
956                                            void *&InsertPos) {
957   if (doNotCSE(N))
958     return nullptr;
959 
960   SDValue Ops[] = { Op1, Op2 };
961   FoldingSetNodeID ID;
962   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
963   AddNodeIDCustom(ID, N);
964   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
965   if (Node)
966     Node->intersectFlagsWith(N->getFlags());
967   return Node;
968 }
969 
970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
971 /// were replaced with those specified.  If this node is never memoized,
972 /// return null, otherwise return a pointer to the slot it would take.  If a
973 /// node already exists with these operands, the slot will be non-null.
974 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
975                                            void *&InsertPos) {
976   if (doNotCSE(N))
977     return nullptr;
978 
979   FoldingSetNodeID ID;
980   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
981   AddNodeIDCustom(ID, N);
982   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
983   if (Node)
984     Node->intersectFlagsWith(N->getFlags());
985   return Node;
986 }
987 
988 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
989   Type *Ty = VT == MVT::iPTR ?
990                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
991                    VT.getTypeForEVT(*getContext());
992 
993   return getDataLayout().getABITypeAlignment(Ty);
994 }
995 
996 // EntryNode could meaningfully have debug info if we can find it...
997 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
998     : TM(tm), OptLevel(OL),
999       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1000       Root(getEntryNode()) {
1001   InsertNode(&EntryNode);
1002   DbgInfo = new SDDbgInfo();
1003 }
1004 
1005 void SelectionDAG::init(MachineFunction &NewMF,
1006                         OptimizationRemarkEmitter &NewORE,
1007                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1008                         LegacyDivergenceAnalysis * Divergence) {
1009   MF = &NewMF;
1010   SDAGISelPass = PassPtr;
1011   ORE = &NewORE;
1012   TLI = getSubtarget().getTargetLowering();
1013   TSI = getSubtarget().getSelectionDAGInfo();
1014   LibInfo = LibraryInfo;
1015   Context = &MF->getFunction().getContext();
1016   DA = Divergence;
1017 }
1018 
1019 SelectionDAG::~SelectionDAG() {
1020   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1021   allnodes_clear();
1022   OperandRecycler.clear(OperandAllocator);
1023   delete DbgInfo;
1024 }
1025 
1026 void SelectionDAG::allnodes_clear() {
1027   assert(&*AllNodes.begin() == &EntryNode);
1028   AllNodes.remove(AllNodes.begin());
1029   while (!AllNodes.empty())
1030     DeallocateNode(&AllNodes.front());
1031 #ifndef NDEBUG
1032   NextPersistentId = 0;
1033 #endif
1034 }
1035 
1036 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1037                                           void *&InsertPos) {
1038   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1039   if (N) {
1040     switch (N->getOpcode()) {
1041     default: break;
1042     case ISD::Constant:
1043     case ISD::ConstantFP:
1044       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1045                        "debug location.  Use another overload.");
1046     }
1047   }
1048   return N;
1049 }
1050 
1051 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1052                                           const SDLoc &DL, void *&InsertPos) {
1053   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1054   if (N) {
1055     switch (N->getOpcode()) {
1056     case ISD::Constant:
1057     case ISD::ConstantFP:
1058       // Erase debug location from the node if the node is used at several
1059       // different places. Do not propagate one location to all uses as it
1060       // will cause a worse single stepping debugging experience.
1061       if (N->getDebugLoc() != DL.getDebugLoc())
1062         N->setDebugLoc(DebugLoc());
1063       break;
1064     default:
1065       // When the node's point of use is located earlier in the instruction
1066       // sequence than its prior point of use, update its debug info to the
1067       // earlier location.
1068       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1069         N->setDebugLoc(DL.getDebugLoc());
1070       break;
1071     }
1072   }
1073   return N;
1074 }
1075 
1076 void SelectionDAG::clear() {
1077   allnodes_clear();
1078   OperandRecycler.clear(OperandAllocator);
1079   OperandAllocator.Reset();
1080   CSEMap.clear();
1081 
1082   ExtendedValueTypeNodes.clear();
1083   ExternalSymbols.clear();
1084   TargetExternalSymbols.clear();
1085   MCSymbols.clear();
1086   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1087             static_cast<CondCodeSDNode*>(nullptr));
1088   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1089             static_cast<SDNode*>(nullptr));
1090 
1091   EntryNode.UseList = nullptr;
1092   InsertNode(&EntryNode);
1093   Root = getEntryNode();
1094   DbgInfo->clear();
1095 }
1096 
1097 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1098   return VT.bitsGT(Op.getValueType())
1099              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1100              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1101 }
1102 
1103 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1104   return VT.bitsGT(Op.getValueType()) ?
1105     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1106     getNode(ISD::TRUNCATE, DL, VT, Op);
1107 }
1108 
1109 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1110   return VT.bitsGT(Op.getValueType()) ?
1111     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1112     getNode(ISD::TRUNCATE, DL, VT, Op);
1113 }
1114 
1115 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1116   return VT.bitsGT(Op.getValueType()) ?
1117     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1118     getNode(ISD::TRUNCATE, DL, VT, Op);
1119 }
1120 
1121 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1122                                         EVT OpVT) {
1123   if (VT.bitsLE(Op.getValueType()))
1124     return getNode(ISD::TRUNCATE, SL, VT, Op);
1125 
1126   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1127   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1128 }
1129 
1130 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1131   assert(!VT.isVector() &&
1132          "getZeroExtendInReg should use the vector element type instead of "
1133          "the vector type!");
1134   if (Op.getValueType().getScalarType() == VT) return Op;
1135   unsigned BitWidth = Op.getScalarValueSizeInBits();
1136   APInt Imm = APInt::getLowBitsSet(BitWidth,
1137                                    VT.getSizeInBits());
1138   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1139                  getConstant(Imm, DL, Op.getValueType()));
1140 }
1141 
1142 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143   // Only unsigned pointer semantics are supported right now. In the future this
1144   // might delegate to TLI to check pointer signedness.
1145   return getZExtOrTrunc(Op, DL, VT);
1146 }
1147 
1148 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1149   // Only unsigned pointer semantics are supported right now. In the future this
1150   // might delegate to TLI to check pointer signedness.
1151   return getZeroExtendInReg(Op, DL, VT);
1152 }
1153 
1154 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1155 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1156   EVT EltVT = VT.getScalarType();
1157   SDValue NegOne =
1158     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1159   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1160 }
1161 
1162 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1163   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1164   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1165 }
1166 
1167 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1168                                       EVT OpVT) {
1169   if (!V)
1170     return getConstant(0, DL, VT);
1171 
1172   switch (TLI->getBooleanContents(OpVT)) {
1173   case TargetLowering::ZeroOrOneBooleanContent:
1174   case TargetLowering::UndefinedBooleanContent:
1175     return getConstant(1, DL, VT);
1176   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1177     return getAllOnesConstant(DL, VT);
1178   }
1179   llvm_unreachable("Unexpected boolean content enum!");
1180 }
1181 
1182 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1183                                   bool isT, bool isO) {
1184   EVT EltVT = VT.getScalarType();
1185   assert((EltVT.getSizeInBits() >= 64 ||
1186          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1187          "getConstant with a uint64_t value that doesn't fit in the type!");
1188   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1189 }
1190 
1191 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1192                                   bool isT, bool isO) {
1193   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1194 }
1195 
1196 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1197                                   EVT VT, bool isT, bool isO) {
1198   assert(VT.isInteger() && "Cannot create FP integer constant!");
1199 
1200   EVT EltVT = VT.getScalarType();
1201   const ConstantInt *Elt = &Val;
1202 
1203   // In some cases the vector type is legal but the element type is illegal and
1204   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1205   // inserted value (the type does not need to match the vector element type).
1206   // Any extra bits introduced will be truncated away.
1207   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1208       TargetLowering::TypePromoteInteger) {
1209    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1210    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1211    Elt = ConstantInt::get(*getContext(), NewVal);
1212   }
1213   // In other cases the element type is illegal and needs to be expanded, for
1214   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1215   // the value into n parts and use a vector type with n-times the elements.
1216   // Then bitcast to the type requested.
1217   // Legalizing constants too early makes the DAGCombiner's job harder so we
1218   // only legalize if the DAG tells us we must produce legal types.
1219   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1220            TLI->getTypeAction(*getContext(), EltVT) ==
1221            TargetLowering::TypeExpandInteger) {
1222     const APInt &NewVal = Elt->getValue();
1223     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1224     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1225     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1226     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1227 
1228     // Check the temporary vector is the correct size. If this fails then
1229     // getTypeToTransformTo() probably returned a type whose size (in bits)
1230     // isn't a power-of-2 factor of the requested type size.
1231     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1232 
1233     SmallVector<SDValue, 2> EltParts;
1234     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1235       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1236                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1237                                      ViaEltVT, isT, isO));
1238     }
1239 
1240     // EltParts is currently in little endian order. If we actually want
1241     // big-endian order then reverse it now.
1242     if (getDataLayout().isBigEndian())
1243       std::reverse(EltParts.begin(), EltParts.end());
1244 
1245     // The elements must be reversed when the element order is different
1246     // to the endianness of the elements (because the BITCAST is itself a
1247     // vector shuffle in this situation). However, we do not need any code to
1248     // perform this reversal because getConstant() is producing a vector
1249     // splat.
1250     // This situation occurs in MIPS MSA.
1251 
1252     SmallVector<SDValue, 8> Ops;
1253     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1254       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1255 
1256     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1257     return V;
1258   }
1259 
1260   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1261          "APInt size does not match type size!");
1262   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1263   FoldingSetNodeID ID;
1264   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1265   ID.AddPointer(Elt);
1266   ID.AddBoolean(isO);
1267   void *IP = nullptr;
1268   SDNode *N = nullptr;
1269   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1270     if (!VT.isVector())
1271       return SDValue(N, 0);
1272 
1273   if (!N) {
1274     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1275     CSEMap.InsertNode(N, IP);
1276     InsertNode(N);
1277     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1278   }
1279 
1280   SDValue Result(N, 0);
1281   if (VT.isVector())
1282     Result = getSplatBuildVector(VT, DL, Result);
1283 
1284   return Result;
1285 }
1286 
1287 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1288                                         bool isTarget) {
1289   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1290 }
1291 
1292 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1293                                              const SDLoc &DL, bool LegalTypes) {
1294   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1295   return getConstant(Val, DL, ShiftVT);
1296 }
1297 
1298 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1299                                     bool isTarget) {
1300   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1301 }
1302 
1303 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1304                                     EVT VT, bool isTarget) {
1305   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1306 
1307   EVT EltVT = VT.getScalarType();
1308 
1309   // Do the map lookup using the actual bit pattern for the floating point
1310   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1311   // we don't have issues with SNANs.
1312   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1313   FoldingSetNodeID ID;
1314   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1315   ID.AddPointer(&V);
1316   void *IP = nullptr;
1317   SDNode *N = nullptr;
1318   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1319     if (!VT.isVector())
1320       return SDValue(N, 0);
1321 
1322   if (!N) {
1323     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1324     CSEMap.InsertNode(N, IP);
1325     InsertNode(N);
1326   }
1327 
1328   SDValue Result(N, 0);
1329   if (VT.isVector())
1330     Result = getSplatBuildVector(VT, DL, Result);
1331   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1332   return Result;
1333 }
1334 
1335 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1336                                     bool isTarget) {
1337   EVT EltVT = VT.getScalarType();
1338   if (EltVT == MVT::f32)
1339     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1340   else if (EltVT == MVT::f64)
1341     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1342   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1343            EltVT == MVT::f16) {
1344     bool Ignored;
1345     APFloat APF = APFloat(Val);
1346     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1347                 &Ignored);
1348     return getConstantFP(APF, DL, VT, isTarget);
1349   } else
1350     llvm_unreachable("Unsupported type in getConstantFP");
1351 }
1352 
1353 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1354                                        EVT VT, int64_t Offset, bool isTargetGA,
1355                                        unsigned TargetFlags) {
1356   assert((TargetFlags == 0 || isTargetGA) &&
1357          "Cannot set target flags on target-independent globals");
1358 
1359   // Truncate (with sign-extension) the offset value to the pointer size.
1360   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1361   if (BitWidth < 64)
1362     Offset = SignExtend64(Offset, BitWidth);
1363 
1364   unsigned Opc;
1365   if (GV->isThreadLocal())
1366     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1367   else
1368     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1369 
1370   FoldingSetNodeID ID;
1371   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1372   ID.AddPointer(GV);
1373   ID.AddInteger(Offset);
1374   ID.AddInteger(TargetFlags);
1375   void *IP = nullptr;
1376   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1377     return SDValue(E, 0);
1378 
1379   auto *N = newSDNode<GlobalAddressSDNode>(
1380       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1381   CSEMap.InsertNode(N, IP);
1382     InsertNode(N);
1383   return SDValue(N, 0);
1384 }
1385 
1386 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1387   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1388   FoldingSetNodeID ID;
1389   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1390   ID.AddInteger(FI);
1391   void *IP = nullptr;
1392   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1393     return SDValue(E, 0);
1394 
1395   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1396   CSEMap.InsertNode(N, IP);
1397   InsertNode(N);
1398   return SDValue(N, 0);
1399 }
1400 
1401 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1402                                    unsigned TargetFlags) {
1403   assert((TargetFlags == 0 || isTarget) &&
1404          "Cannot set target flags on target-independent jump tables");
1405   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1406   FoldingSetNodeID ID;
1407   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1408   ID.AddInteger(JTI);
1409   ID.AddInteger(TargetFlags);
1410   void *IP = nullptr;
1411   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1412     return SDValue(E, 0);
1413 
1414   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1415   CSEMap.InsertNode(N, IP);
1416   InsertNode(N);
1417   return SDValue(N, 0);
1418 }
1419 
1420 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1421                                       unsigned Alignment, int Offset,
1422                                       bool isTarget,
1423                                       unsigned TargetFlags) {
1424   assert((TargetFlags == 0 || isTarget) &&
1425          "Cannot set target flags on target-independent globals");
1426   if (Alignment == 0)
1427     Alignment = MF->getFunction().hasOptSize()
1428                     ? getDataLayout().getABITypeAlignment(C->getType())
1429                     : getDataLayout().getPrefTypeAlignment(C->getType());
1430   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1431   FoldingSetNodeID ID;
1432   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1433   ID.AddInteger(Alignment);
1434   ID.AddInteger(Offset);
1435   ID.AddPointer(C);
1436   ID.AddInteger(TargetFlags);
1437   void *IP = nullptr;
1438   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1439     return SDValue(E, 0);
1440 
1441   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1442                                           TargetFlags);
1443   CSEMap.InsertNode(N, IP);
1444   InsertNode(N);
1445   return SDValue(N, 0);
1446 }
1447 
1448 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1449                                       unsigned Alignment, int Offset,
1450                                       bool isTarget,
1451                                       unsigned TargetFlags) {
1452   assert((TargetFlags == 0 || isTarget) &&
1453          "Cannot set target flags on target-independent globals");
1454   if (Alignment == 0)
1455     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1456   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1457   FoldingSetNodeID ID;
1458   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1459   ID.AddInteger(Alignment);
1460   ID.AddInteger(Offset);
1461   C->addSelectionDAGCSEId(ID);
1462   ID.AddInteger(TargetFlags);
1463   void *IP = nullptr;
1464   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1465     return SDValue(E, 0);
1466 
1467   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1468                                           TargetFlags);
1469   CSEMap.InsertNode(N, IP);
1470   InsertNode(N);
1471   return SDValue(N, 0);
1472 }
1473 
1474 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1475                                      unsigned TargetFlags) {
1476   FoldingSetNodeID ID;
1477   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1478   ID.AddInteger(Index);
1479   ID.AddInteger(Offset);
1480   ID.AddInteger(TargetFlags);
1481   void *IP = nullptr;
1482   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1483     return SDValue(E, 0);
1484 
1485   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1486   CSEMap.InsertNode(N, IP);
1487   InsertNode(N);
1488   return SDValue(N, 0);
1489 }
1490 
1491 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1492   FoldingSetNodeID ID;
1493   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1494   ID.AddPointer(MBB);
1495   void *IP = nullptr;
1496   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1497     return SDValue(E, 0);
1498 
1499   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1500   CSEMap.InsertNode(N, IP);
1501   InsertNode(N);
1502   return SDValue(N, 0);
1503 }
1504 
1505 SDValue SelectionDAG::getValueType(EVT VT) {
1506   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1507       ValueTypeNodes.size())
1508     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1509 
1510   SDNode *&N = VT.isExtended() ?
1511     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1512 
1513   if (N) return SDValue(N, 0);
1514   N = newSDNode<VTSDNode>(VT);
1515   InsertNode(N);
1516   return SDValue(N, 0);
1517 }
1518 
1519 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1520   SDNode *&N = ExternalSymbols[Sym];
1521   if (N) return SDValue(N, 0);
1522   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1523   InsertNode(N);
1524   return SDValue(N, 0);
1525 }
1526 
1527 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1528   SDNode *&N = MCSymbols[Sym];
1529   if (N)
1530     return SDValue(N, 0);
1531   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1532   InsertNode(N);
1533   return SDValue(N, 0);
1534 }
1535 
1536 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1537                                               unsigned TargetFlags) {
1538   SDNode *&N =
1539       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1540   if (N) return SDValue(N, 0);
1541   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1542   InsertNode(N);
1543   return SDValue(N, 0);
1544 }
1545 
1546 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1547   if ((unsigned)Cond >= CondCodeNodes.size())
1548     CondCodeNodes.resize(Cond+1);
1549 
1550   if (!CondCodeNodes[Cond]) {
1551     auto *N = newSDNode<CondCodeSDNode>(Cond);
1552     CondCodeNodes[Cond] = N;
1553     InsertNode(N);
1554   }
1555 
1556   return SDValue(CondCodeNodes[Cond], 0);
1557 }
1558 
1559 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1560 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1561 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1562   std::swap(N1, N2);
1563   ShuffleVectorSDNode::commuteMask(M);
1564 }
1565 
1566 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1567                                        SDValue N2, ArrayRef<int> Mask) {
1568   assert(VT.getVectorNumElements() == Mask.size() &&
1569            "Must have the same number of vector elements as mask elements!");
1570   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1571          "Invalid VECTOR_SHUFFLE");
1572 
1573   // Canonicalize shuffle undef, undef -> undef
1574   if (N1.isUndef() && N2.isUndef())
1575     return getUNDEF(VT);
1576 
1577   // Validate that all indices in Mask are within the range of the elements
1578   // input to the shuffle.
1579   int NElts = Mask.size();
1580   assert(llvm::all_of(Mask,
1581                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1582          "Index out of range");
1583 
1584   // Copy the mask so we can do any needed cleanup.
1585   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1586 
1587   // Canonicalize shuffle v, v -> v, undef
1588   if (N1 == N2) {
1589     N2 = getUNDEF(VT);
1590     for (int i = 0; i != NElts; ++i)
1591       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1592   }
1593 
1594   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1595   if (N1.isUndef())
1596     commuteShuffle(N1, N2, MaskVec);
1597 
1598   if (TLI->hasVectorBlend()) {
1599     // If shuffling a splat, try to blend the splat instead. We do this here so
1600     // that even when this arises during lowering we don't have to re-handle it.
1601     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1602       BitVector UndefElements;
1603       SDValue Splat = BV->getSplatValue(&UndefElements);
1604       if (!Splat)
1605         return;
1606 
1607       for (int i = 0; i < NElts; ++i) {
1608         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1609           continue;
1610 
1611         // If this input comes from undef, mark it as such.
1612         if (UndefElements[MaskVec[i] - Offset]) {
1613           MaskVec[i] = -1;
1614           continue;
1615         }
1616 
1617         // If we can blend a non-undef lane, use that instead.
1618         if (!UndefElements[i])
1619           MaskVec[i] = i + Offset;
1620       }
1621     };
1622     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1623       BlendSplat(N1BV, 0);
1624     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1625       BlendSplat(N2BV, NElts);
1626   }
1627 
1628   // Canonicalize all index into lhs, -> shuffle lhs, undef
1629   // Canonicalize all index into rhs, -> shuffle rhs, undef
1630   bool AllLHS = true, AllRHS = true;
1631   bool N2Undef = N2.isUndef();
1632   for (int i = 0; i != NElts; ++i) {
1633     if (MaskVec[i] >= NElts) {
1634       if (N2Undef)
1635         MaskVec[i] = -1;
1636       else
1637         AllLHS = false;
1638     } else if (MaskVec[i] >= 0) {
1639       AllRHS = false;
1640     }
1641   }
1642   if (AllLHS && AllRHS)
1643     return getUNDEF(VT);
1644   if (AllLHS && !N2Undef)
1645     N2 = getUNDEF(VT);
1646   if (AllRHS) {
1647     N1 = getUNDEF(VT);
1648     commuteShuffle(N1, N2, MaskVec);
1649   }
1650   // Reset our undef status after accounting for the mask.
1651   N2Undef = N2.isUndef();
1652   // Re-check whether both sides ended up undef.
1653   if (N1.isUndef() && N2Undef)
1654     return getUNDEF(VT);
1655 
1656   // If Identity shuffle return that node.
1657   bool Identity = true, AllSame = true;
1658   for (int i = 0; i != NElts; ++i) {
1659     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1660     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1661   }
1662   if (Identity && NElts)
1663     return N1;
1664 
1665   // Shuffling a constant splat doesn't change the result.
1666   if (N2Undef) {
1667     SDValue V = N1;
1668 
1669     // Look through any bitcasts. We check that these don't change the number
1670     // (and size) of elements and just changes their types.
1671     while (V.getOpcode() == ISD::BITCAST)
1672       V = V->getOperand(0);
1673 
1674     // A splat should always show up as a build vector node.
1675     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1676       BitVector UndefElements;
1677       SDValue Splat = BV->getSplatValue(&UndefElements);
1678       // If this is a splat of an undef, shuffling it is also undef.
1679       if (Splat && Splat.isUndef())
1680         return getUNDEF(VT);
1681 
1682       bool SameNumElts =
1683           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1684 
1685       // We only have a splat which can skip shuffles if there is a splatted
1686       // value and no undef lanes rearranged by the shuffle.
1687       if (Splat && UndefElements.none()) {
1688         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1689         // number of elements match or the value splatted is a zero constant.
1690         if (SameNumElts)
1691           return N1;
1692         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1693           if (C->isNullValue())
1694             return N1;
1695       }
1696 
1697       // If the shuffle itself creates a splat, build the vector directly.
1698       if (AllSame && SameNumElts) {
1699         EVT BuildVT = BV->getValueType(0);
1700         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1701         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1702 
1703         // We may have jumped through bitcasts, so the type of the
1704         // BUILD_VECTOR may not match the type of the shuffle.
1705         if (BuildVT != VT)
1706           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1707         return NewBV;
1708       }
1709     }
1710   }
1711 
1712   FoldingSetNodeID ID;
1713   SDValue Ops[2] = { N1, N2 };
1714   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1715   for (int i = 0; i != NElts; ++i)
1716     ID.AddInteger(MaskVec[i]);
1717 
1718   void* IP = nullptr;
1719   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1720     return SDValue(E, 0);
1721 
1722   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1723   // SDNode doesn't have access to it.  This memory will be "leaked" when
1724   // the node is deallocated, but recovered when the NodeAllocator is released.
1725   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1726   llvm::copy(MaskVec, MaskAlloc);
1727 
1728   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1729                                            dl.getDebugLoc(), MaskAlloc);
1730   createOperands(N, Ops);
1731 
1732   CSEMap.InsertNode(N, IP);
1733   InsertNode(N);
1734   SDValue V = SDValue(N, 0);
1735   NewSDValueDbgMsg(V, "Creating new node: ", this);
1736   return V;
1737 }
1738 
1739 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1740   EVT VT = SV.getValueType(0);
1741   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1742   ShuffleVectorSDNode::commuteMask(MaskVec);
1743 
1744   SDValue Op0 = SV.getOperand(0);
1745   SDValue Op1 = SV.getOperand(1);
1746   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1747 }
1748 
1749 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1750   FoldingSetNodeID ID;
1751   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1752   ID.AddInteger(RegNo);
1753   void *IP = nullptr;
1754   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1755     return SDValue(E, 0);
1756 
1757   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1758   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1759   CSEMap.InsertNode(N, IP);
1760   InsertNode(N);
1761   return SDValue(N, 0);
1762 }
1763 
1764 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1765   FoldingSetNodeID ID;
1766   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1767   ID.AddPointer(RegMask);
1768   void *IP = nullptr;
1769   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1770     return SDValue(E, 0);
1771 
1772   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1773   CSEMap.InsertNode(N, IP);
1774   InsertNode(N);
1775   return SDValue(N, 0);
1776 }
1777 
1778 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1779                                  MCSymbol *Label) {
1780   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1781 }
1782 
1783 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1784                                    SDValue Root, MCSymbol *Label) {
1785   FoldingSetNodeID ID;
1786   SDValue Ops[] = { Root };
1787   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1788   ID.AddPointer(Label);
1789   void *IP = nullptr;
1790   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1791     return SDValue(E, 0);
1792 
1793   auto *N =
1794       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1795   createOperands(N, Ops);
1796 
1797   CSEMap.InsertNode(N, IP);
1798   InsertNode(N);
1799   return SDValue(N, 0);
1800 }
1801 
1802 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1803                                       int64_t Offset, bool isTarget,
1804                                       unsigned TargetFlags) {
1805   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1806 
1807   FoldingSetNodeID ID;
1808   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1809   ID.AddPointer(BA);
1810   ID.AddInteger(Offset);
1811   ID.AddInteger(TargetFlags);
1812   void *IP = nullptr;
1813   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1814     return SDValue(E, 0);
1815 
1816   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1817   CSEMap.InsertNode(N, IP);
1818   InsertNode(N);
1819   return SDValue(N, 0);
1820 }
1821 
1822 SDValue SelectionDAG::getSrcValue(const Value *V) {
1823   assert((!V || V->getType()->isPointerTy()) &&
1824          "SrcValue is not a pointer?");
1825 
1826   FoldingSetNodeID ID;
1827   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1828   ID.AddPointer(V);
1829 
1830   void *IP = nullptr;
1831   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1832     return SDValue(E, 0);
1833 
1834   auto *N = newSDNode<SrcValueSDNode>(V);
1835   CSEMap.InsertNode(N, IP);
1836   InsertNode(N);
1837   return SDValue(N, 0);
1838 }
1839 
1840 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1841   FoldingSetNodeID ID;
1842   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1843   ID.AddPointer(MD);
1844 
1845   void *IP = nullptr;
1846   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1847     return SDValue(E, 0);
1848 
1849   auto *N = newSDNode<MDNodeSDNode>(MD);
1850   CSEMap.InsertNode(N, IP);
1851   InsertNode(N);
1852   return SDValue(N, 0);
1853 }
1854 
1855 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1856   if (VT == V.getValueType())
1857     return V;
1858 
1859   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1860 }
1861 
1862 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1863                                        unsigned SrcAS, unsigned DestAS) {
1864   SDValue Ops[] = {Ptr};
1865   FoldingSetNodeID ID;
1866   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1867   ID.AddInteger(SrcAS);
1868   ID.AddInteger(DestAS);
1869 
1870   void *IP = nullptr;
1871   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1872     return SDValue(E, 0);
1873 
1874   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1875                                            VT, SrcAS, DestAS);
1876   createOperands(N, Ops);
1877 
1878   CSEMap.InsertNode(N, IP);
1879   InsertNode(N);
1880   return SDValue(N, 0);
1881 }
1882 
1883 /// getShiftAmountOperand - Return the specified value casted to
1884 /// the target's desired shift amount type.
1885 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1886   EVT OpTy = Op.getValueType();
1887   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1888   if (OpTy == ShTy || OpTy.isVector()) return Op;
1889 
1890   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1891 }
1892 
1893 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1894   SDLoc dl(Node);
1895   const TargetLowering &TLI = getTargetLoweringInfo();
1896   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1897   EVT VT = Node->getValueType(0);
1898   SDValue Tmp1 = Node->getOperand(0);
1899   SDValue Tmp2 = Node->getOperand(1);
1900   unsigned Align = Node->getConstantOperandVal(3);
1901 
1902   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1903                                Tmp2, MachinePointerInfo(V));
1904   SDValue VAList = VAListLoad;
1905 
1906   if (Align > TLI.getMinStackArgumentAlignment()) {
1907     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1908 
1909     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1910                      getConstant(Align - 1, dl, VAList.getValueType()));
1911 
1912     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1913                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1914   }
1915 
1916   // Increment the pointer, VAList, to the next vaarg
1917   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1918                  getConstant(getDataLayout().getTypeAllocSize(
1919                                                VT.getTypeForEVT(*getContext())),
1920                              dl, VAList.getValueType()));
1921   // Store the incremented VAList to the legalized pointer
1922   Tmp1 =
1923       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1924   // Load the actual argument out of the pointer VAList
1925   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1926 }
1927 
1928 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1929   SDLoc dl(Node);
1930   const TargetLowering &TLI = getTargetLoweringInfo();
1931   // This defaults to loading a pointer from the input and storing it to the
1932   // output, returning the chain.
1933   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1934   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1935   SDValue Tmp1 =
1936       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1937               Node->getOperand(2), MachinePointerInfo(VS));
1938   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1939                   MachinePointerInfo(VD));
1940 }
1941 
1942 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1943   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1944   unsigned ByteSize = VT.getStoreSize();
1945   Type *Ty = VT.getTypeForEVT(*getContext());
1946   unsigned StackAlign =
1947       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1948 
1949   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1950   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1951 }
1952 
1953 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1954   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1955   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1956   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1957   const DataLayout &DL = getDataLayout();
1958   unsigned Align =
1959       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1960 
1961   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1962   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1963   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1964 }
1965 
1966 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1967                                 ISD::CondCode Cond, const SDLoc &dl) {
1968   EVT OpVT = N1.getValueType();
1969 
1970   // These setcc operations always fold.
1971   switch (Cond) {
1972   default: break;
1973   case ISD::SETFALSE:
1974   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1975   case ISD::SETTRUE:
1976   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1977 
1978   case ISD::SETOEQ:
1979   case ISD::SETOGT:
1980   case ISD::SETOGE:
1981   case ISD::SETOLT:
1982   case ISD::SETOLE:
1983   case ISD::SETONE:
1984   case ISD::SETO:
1985   case ISD::SETUO:
1986   case ISD::SETUEQ:
1987   case ISD::SETUNE:
1988     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
1989     break;
1990   }
1991 
1992   if (OpVT.isInteger()) {
1993     // For EQ and NE, we can always pick a value for the undef to make the
1994     // predicate pass or fail, so we can return undef.
1995     // Matches behavior in llvm::ConstantFoldCompareInstruction.
1996     // icmp eq/ne X, undef -> undef.
1997     if ((N1.isUndef() || N2.isUndef()) &&
1998         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
1999       return getUNDEF(VT);
2000 
2001     // If both operands are undef, we can return undef for int comparison.
2002     // icmp undef, undef -> undef.
2003     if (N1.isUndef() && N2.isUndef())
2004       return getUNDEF(VT);
2005 
2006     // icmp X, X -> true/false
2007     // icmp X, undef -> true/false because undef could be X.
2008     if (N1 == N2)
2009       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2010   }
2011 
2012   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2013     const APInt &C2 = N2C->getAPIntValue();
2014     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2015       const APInt &C1 = N1C->getAPIntValue();
2016 
2017       switch (Cond) {
2018       default: llvm_unreachable("Unknown integer setcc!");
2019       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2020       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2021       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2022       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2023       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2024       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2025       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2026       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2027       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2028       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2029       }
2030     }
2031   }
2032 
2033   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2034   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2035 
2036   if (N1CFP && N2CFP) {
2037     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2038     switch (Cond) {
2039     default: break;
2040     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2041                         return getUNDEF(VT);
2042                       LLVM_FALLTHROUGH;
2043     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2044                                              OpVT);
2045     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2046                         return getUNDEF(VT);
2047                       LLVM_FALLTHROUGH;
2048     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2049                                              R==APFloat::cmpLessThan, dl, VT,
2050                                              OpVT);
2051     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2052                         return getUNDEF(VT);
2053                       LLVM_FALLTHROUGH;
2054     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2055                                              OpVT);
2056     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2057                         return getUNDEF(VT);
2058                       LLVM_FALLTHROUGH;
2059     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2060                                              VT, OpVT);
2061     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2062                         return getUNDEF(VT);
2063                       LLVM_FALLTHROUGH;
2064     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2065                                              R==APFloat::cmpEqual, dl, VT,
2066                                              OpVT);
2067     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2068                         return getUNDEF(VT);
2069                       LLVM_FALLTHROUGH;
2070     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2071                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2072     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2073                                              OpVT);
2074     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2075                                              OpVT);
2076     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2077                                              R==APFloat::cmpEqual, dl, VT,
2078                                              OpVT);
2079     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2080                                              OpVT);
2081     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2082                                              R==APFloat::cmpLessThan, dl, VT,
2083                                              OpVT);
2084     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2085                                              R==APFloat::cmpUnordered, dl, VT,
2086                                              OpVT);
2087     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2088                                              VT, OpVT);
2089     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2090                                              OpVT);
2091     }
2092   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2093     // Ensure that the constant occurs on the RHS.
2094     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2095     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2096       return SDValue();
2097     return getSetCC(dl, VT, N2, N1, SwappedCond);
2098   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2099              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2100     // If an operand is known to be a nan (or undef that could be a nan), we can
2101     // fold it.
2102     // Choosing NaN for the undef will always make unordered comparison succeed
2103     // and ordered comparison fails.
2104     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2105     switch (ISD::getUnorderedFlavor(Cond)) {
2106     default:
2107       llvm_unreachable("Unknown flavor!");
2108     case 0: // Known false.
2109       return getBoolConstant(false, dl, VT, OpVT);
2110     case 1: // Known true.
2111       return getBoolConstant(true, dl, VT, OpVT);
2112     case 2: // Undefined.
2113       return getUNDEF(VT);
2114     }
2115   }
2116 
2117   // Could not fold it.
2118   return SDValue();
2119 }
2120 
2121 /// See if the specified operand can be simplified with the knowledge that only
2122 /// the bits specified by DemandedBits are used.
2123 /// TODO: really we should be making this into the DAG equivalent of
2124 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2125 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2126   EVT VT = V.getValueType();
2127   APInt DemandedElts = VT.isVector()
2128                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2129                            : APInt(1, 1);
2130   return GetDemandedBits(V, DemandedBits, DemandedElts);
2131 }
2132 
2133 /// See if the specified operand can be simplified with the knowledge that only
2134 /// the bits specified by DemandedBits are used in the elements specified by
2135 /// DemandedElts.
2136 /// TODO: really we should be making this into the DAG equivalent of
2137 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2138 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2139                                       const APInt &DemandedElts) {
2140   switch (V.getOpcode()) {
2141   default:
2142     break;
2143   case ISD::Constant: {
2144     auto *CV = cast<ConstantSDNode>(V.getNode());
2145     assert(CV && "Const value should be ConstSDNode.");
2146     const APInt &CVal = CV->getAPIntValue();
2147     APInt NewVal = CVal & DemandedBits;
2148     if (NewVal != CVal)
2149       return getConstant(NewVal, SDLoc(V), V.getValueType());
2150     break;
2151   }
2152   case ISD::OR:
2153   case ISD::XOR:
2154   case ISD::SIGN_EXTEND_INREG:
2155     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2156                                                 *this, 0);
2157   case ISD::SRL:
2158     // Only look at single-use SRLs.
2159     if (!V.getNode()->hasOneUse())
2160       break;
2161     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2162       // See if we can recursively simplify the LHS.
2163       unsigned Amt = RHSC->getZExtValue();
2164 
2165       // Watch out for shift count overflow though.
2166       if (Amt >= DemandedBits.getBitWidth())
2167         break;
2168       APInt SrcDemandedBits = DemandedBits << Amt;
2169       if (SDValue SimplifyLHS =
2170               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2171         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2172                        V.getOperand(1));
2173     }
2174     break;
2175   case ISD::AND: {
2176     // X & -1 -> X (ignoring bits which aren't demanded).
2177     // Also handle the case where masked out bits in X are known to be zero.
2178     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2179       const APInt &AndVal = RHSC->getAPIntValue();
2180       if (DemandedBits.isSubsetOf(AndVal) ||
2181           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2182                                   AndVal))
2183         return V.getOperand(0);
2184     }
2185     break;
2186   }
2187   case ISD::ANY_EXTEND: {
2188     SDValue Src = V.getOperand(0);
2189     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2190     // Being conservative here - only peek through if we only demand bits in the
2191     // non-extended source (even though the extended bits are technically
2192     // undef).
2193     if (DemandedBits.getActiveBits() > SrcBitWidth)
2194       break;
2195     APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
2196     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
2197       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2198     break;
2199   }
2200   }
2201   return SDValue();
2202 }
2203 
2204 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2205 /// use this predicate to simplify operations downstream.
2206 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2207   unsigned BitWidth = Op.getScalarValueSizeInBits();
2208   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2209 }
2210 
2211 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2212 /// this predicate to simplify operations downstream.  Mask is known to be zero
2213 /// for bits that V cannot have.
2214 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2215                                      unsigned Depth) const {
2216   EVT VT = V.getValueType();
2217   APInt DemandedElts = VT.isVector()
2218                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2219                            : APInt(1, 1);
2220   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2221 }
2222 
2223 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2224 /// DemandedElts.  We use this predicate to simplify operations downstream.
2225 /// Mask is known to be zero for bits that V cannot have.
2226 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2227                                      const APInt &DemandedElts,
2228                                      unsigned Depth) const {
2229   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2230 }
2231 
2232 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2233 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2234                                         unsigned Depth) const {
2235   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2236 }
2237 
2238 /// isSplatValue - Return true if the vector V has the same value
2239 /// across all DemandedElts.
2240 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2241                                 APInt &UndefElts) {
2242   if (!DemandedElts)
2243     return false; // No demanded elts, better to assume we don't know anything.
2244 
2245   EVT VT = V.getValueType();
2246   assert(VT.isVector() && "Vector type expected");
2247 
2248   unsigned NumElts = VT.getVectorNumElements();
2249   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2250   UndefElts = APInt::getNullValue(NumElts);
2251 
2252   switch (V.getOpcode()) {
2253   case ISD::BUILD_VECTOR: {
2254     SDValue Scl;
2255     for (unsigned i = 0; i != NumElts; ++i) {
2256       SDValue Op = V.getOperand(i);
2257       if (Op.isUndef()) {
2258         UndefElts.setBit(i);
2259         continue;
2260       }
2261       if (!DemandedElts[i])
2262         continue;
2263       if (Scl && Scl != Op)
2264         return false;
2265       Scl = Op;
2266     }
2267     return true;
2268   }
2269   case ISD::VECTOR_SHUFFLE: {
2270     // Check if this is a shuffle node doing a splat.
2271     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2272     int SplatIndex = -1;
2273     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2274     for (int i = 0; i != (int)NumElts; ++i) {
2275       int M = Mask[i];
2276       if (M < 0) {
2277         UndefElts.setBit(i);
2278         continue;
2279       }
2280       if (!DemandedElts[i])
2281         continue;
2282       if (0 <= SplatIndex && SplatIndex != M)
2283         return false;
2284       SplatIndex = M;
2285     }
2286     return true;
2287   }
2288   case ISD::EXTRACT_SUBVECTOR: {
2289     SDValue Src = V.getOperand(0);
2290     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2291     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2292     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2293       // Offset the demanded elts by the subvector index.
2294       uint64_t Idx = SubIdx->getZExtValue();
2295       APInt UndefSrcElts;
2296       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2297       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2298         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2299         return true;
2300       }
2301     }
2302     break;
2303   }
2304   case ISD::ADD:
2305   case ISD::SUB:
2306   case ISD::AND: {
2307     APInt UndefLHS, UndefRHS;
2308     SDValue LHS = V.getOperand(0);
2309     SDValue RHS = V.getOperand(1);
2310     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2311         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2312       UndefElts = UndefLHS | UndefRHS;
2313       return true;
2314     }
2315     break;
2316   }
2317   }
2318 
2319   return false;
2320 }
2321 
2322 /// Helper wrapper to main isSplatValue function.
2323 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2324   EVT VT = V.getValueType();
2325   assert(VT.isVector() && "Vector type expected");
2326   unsigned NumElts = VT.getVectorNumElements();
2327 
2328   APInt UndefElts;
2329   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2330   return isSplatValue(V, DemandedElts, UndefElts) &&
2331          (AllowUndefs || !UndefElts);
2332 }
2333 
2334 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2335   V = peekThroughExtractSubvectors(V);
2336 
2337   EVT VT = V.getValueType();
2338   unsigned Opcode = V.getOpcode();
2339   switch (Opcode) {
2340   default: {
2341     APInt UndefElts;
2342     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2343     if (isSplatValue(V, DemandedElts, UndefElts)) {
2344       // Handle case where all demanded elements are UNDEF.
2345       if (DemandedElts.isSubsetOf(UndefElts)) {
2346         SplatIdx = 0;
2347         return getUNDEF(VT);
2348       }
2349       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2350       return V;
2351     }
2352     break;
2353   }
2354   case ISD::VECTOR_SHUFFLE: {
2355     // Check if this is a shuffle node doing a splat.
2356     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2357     // getTargetVShiftNode currently struggles without the splat source.
2358     auto *SVN = cast<ShuffleVectorSDNode>(V);
2359     if (!SVN->isSplat())
2360       break;
2361     int Idx = SVN->getSplatIndex();
2362     int NumElts = V.getValueType().getVectorNumElements();
2363     SplatIdx = Idx % NumElts;
2364     return V.getOperand(Idx / NumElts);
2365   }
2366   }
2367 
2368   return SDValue();
2369 }
2370 
2371 SDValue SelectionDAG::getSplatValue(SDValue V) {
2372   int SplatIdx;
2373   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2374     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2375                    SrcVector.getValueType().getScalarType(), SrcVector,
2376                    getIntPtrConstant(SplatIdx, SDLoc(V)));
2377   return SDValue();
2378 }
2379 
2380 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2381 /// is less than the element bit-width of the shift node, return it.
2382 static const APInt *getValidShiftAmountConstant(SDValue V) {
2383   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2384     // Shifting more than the bitwidth is not valid.
2385     const APInt &ShAmt = SA->getAPIntValue();
2386     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2387       return &ShAmt;
2388   }
2389   return nullptr;
2390 }
2391 
2392 /// Determine which bits of Op are known to be either zero or one and return
2393 /// them in Known. For vectors, the known bits are those that are shared by
2394 /// every vector element.
2395 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2396   EVT VT = Op.getValueType();
2397   APInt DemandedElts = VT.isVector()
2398                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2399                            : APInt(1, 1);
2400   return computeKnownBits(Op, DemandedElts, Depth);
2401 }
2402 
2403 /// Determine which bits of Op are known to be either zero or one and return
2404 /// them in Known. The DemandedElts argument allows us to only collect the known
2405 /// bits that are shared by the requested vector elements.
2406 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2407                                          unsigned Depth) const {
2408   unsigned BitWidth = Op.getScalarValueSizeInBits();
2409 
2410   KnownBits Known(BitWidth);   // Don't know anything.
2411 
2412   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2413     // We know all of the bits for a constant!
2414     Known.One = C->getAPIntValue();
2415     Known.Zero = ~Known.One;
2416     return Known;
2417   }
2418   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2419     // We know all of the bits for a constant fp!
2420     Known.One = C->getValueAPF().bitcastToAPInt();
2421     Known.Zero = ~Known.One;
2422     return Known;
2423   }
2424 
2425   if (Depth >= 6)
2426     return Known;  // Limit search depth.
2427 
2428   KnownBits Known2;
2429   unsigned NumElts = DemandedElts.getBitWidth();
2430   assert((!Op.getValueType().isVector() ||
2431           NumElts == Op.getValueType().getVectorNumElements()) &&
2432          "Unexpected vector size");
2433 
2434   if (!DemandedElts)
2435     return Known;  // No demanded elts, better to assume we don't know anything.
2436 
2437   unsigned Opcode = Op.getOpcode();
2438   switch (Opcode) {
2439   case ISD::BUILD_VECTOR:
2440     // Collect the known bits that are shared by every demanded vector element.
2441     Known.Zero.setAllBits(); Known.One.setAllBits();
2442     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2443       if (!DemandedElts[i])
2444         continue;
2445 
2446       SDValue SrcOp = Op.getOperand(i);
2447       Known2 = computeKnownBits(SrcOp, Depth + 1);
2448 
2449       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2450       if (SrcOp.getValueSizeInBits() != BitWidth) {
2451         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2452                "Expected BUILD_VECTOR implicit truncation");
2453         Known2 = Known2.trunc(BitWidth);
2454       }
2455 
2456       // Known bits are the values that are shared by every demanded element.
2457       Known.One &= Known2.One;
2458       Known.Zero &= Known2.Zero;
2459 
2460       // If we don't know any bits, early out.
2461       if (Known.isUnknown())
2462         break;
2463     }
2464     break;
2465   case ISD::VECTOR_SHUFFLE: {
2466     // Collect the known bits that are shared by every vector element referenced
2467     // by the shuffle.
2468     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2469     Known.Zero.setAllBits(); Known.One.setAllBits();
2470     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2471     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2472     for (unsigned i = 0; i != NumElts; ++i) {
2473       if (!DemandedElts[i])
2474         continue;
2475 
2476       int M = SVN->getMaskElt(i);
2477       if (M < 0) {
2478         // For UNDEF elements, we don't know anything about the common state of
2479         // the shuffle result.
2480         Known.resetAll();
2481         DemandedLHS.clearAllBits();
2482         DemandedRHS.clearAllBits();
2483         break;
2484       }
2485 
2486       if ((unsigned)M < NumElts)
2487         DemandedLHS.setBit((unsigned)M % NumElts);
2488       else
2489         DemandedRHS.setBit((unsigned)M % NumElts);
2490     }
2491     // Known bits are the values that are shared by every demanded element.
2492     if (!!DemandedLHS) {
2493       SDValue LHS = Op.getOperand(0);
2494       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2495       Known.One &= Known2.One;
2496       Known.Zero &= Known2.Zero;
2497     }
2498     // If we don't know any bits, early out.
2499     if (Known.isUnknown())
2500       break;
2501     if (!!DemandedRHS) {
2502       SDValue RHS = Op.getOperand(1);
2503       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2504       Known.One &= Known2.One;
2505       Known.Zero &= Known2.Zero;
2506     }
2507     break;
2508   }
2509   case ISD::CONCAT_VECTORS: {
2510     // Split DemandedElts and test each of the demanded subvectors.
2511     Known.Zero.setAllBits(); Known.One.setAllBits();
2512     EVT SubVectorVT = Op.getOperand(0).getValueType();
2513     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2514     unsigned NumSubVectors = Op.getNumOperands();
2515     for (unsigned i = 0; i != NumSubVectors; ++i) {
2516       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2517       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2518       if (!!DemandedSub) {
2519         SDValue Sub = Op.getOperand(i);
2520         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2521         Known.One &= Known2.One;
2522         Known.Zero &= Known2.Zero;
2523       }
2524       // If we don't know any bits, early out.
2525       if (Known.isUnknown())
2526         break;
2527     }
2528     break;
2529   }
2530   case ISD::INSERT_SUBVECTOR: {
2531     // If we know the element index, demand any elements from the subvector and
2532     // the remainder from the src its inserted into, otherwise demand them all.
2533     SDValue Src = Op.getOperand(0);
2534     SDValue Sub = Op.getOperand(1);
2535     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2536     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2537     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2538       Known.One.setAllBits();
2539       Known.Zero.setAllBits();
2540       uint64_t Idx = SubIdx->getZExtValue();
2541       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2542       if (!!DemandedSubElts) {
2543         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2544         if (Known.isUnknown())
2545           break; // early-out.
2546       }
2547       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2548       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2549       if (!!DemandedSrcElts) {
2550         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2551         Known.One &= Known2.One;
2552         Known.Zero &= Known2.Zero;
2553       }
2554     } else {
2555       Known = computeKnownBits(Sub, Depth + 1);
2556       if (Known.isUnknown())
2557         break; // early-out.
2558       Known2 = computeKnownBits(Src, Depth + 1);
2559       Known.One &= Known2.One;
2560       Known.Zero &= Known2.Zero;
2561     }
2562     break;
2563   }
2564   case ISD::EXTRACT_SUBVECTOR: {
2565     // If we know the element index, just demand that subvector elements,
2566     // otherwise demand them all.
2567     SDValue Src = Op.getOperand(0);
2568     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2569     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2570     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2571       // Offset the demanded elts by the subvector index.
2572       uint64_t Idx = SubIdx->getZExtValue();
2573       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2574       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2575     } else {
2576       Known = computeKnownBits(Src, Depth + 1);
2577     }
2578     break;
2579   }
2580   case ISD::SCALAR_TO_VECTOR: {
2581     // We know about scalar_to_vector as much as we know about it source,
2582     // which becomes the first element of otherwise unknown vector.
2583     if (DemandedElts != 1)
2584       break;
2585 
2586     SDValue N0 = Op.getOperand(0);
2587     Known = computeKnownBits(N0, Depth + 1);
2588     if (N0.getValueSizeInBits() != BitWidth)
2589       Known = Known.trunc(BitWidth);
2590 
2591     break;
2592   }
2593   case ISD::BITCAST: {
2594     SDValue N0 = Op.getOperand(0);
2595     EVT SubVT = N0.getValueType();
2596     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2597 
2598     // Ignore bitcasts from unsupported types.
2599     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2600       break;
2601 
2602     // Fast handling of 'identity' bitcasts.
2603     if (BitWidth == SubBitWidth) {
2604       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2605       break;
2606     }
2607 
2608     bool IsLE = getDataLayout().isLittleEndian();
2609 
2610     // Bitcast 'small element' vector to 'large element' scalar/vector.
2611     if ((BitWidth % SubBitWidth) == 0) {
2612       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2613 
2614       // Collect known bits for the (larger) output by collecting the known
2615       // bits from each set of sub elements and shift these into place.
2616       // We need to separately call computeKnownBits for each set of
2617       // sub elements as the knownbits for each is likely to be different.
2618       unsigned SubScale = BitWidth / SubBitWidth;
2619       APInt SubDemandedElts(NumElts * SubScale, 0);
2620       for (unsigned i = 0; i != NumElts; ++i)
2621         if (DemandedElts[i])
2622           SubDemandedElts.setBit(i * SubScale);
2623 
2624       for (unsigned i = 0; i != SubScale; ++i) {
2625         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2626                          Depth + 1);
2627         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2628         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2629         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2630       }
2631     }
2632 
2633     // Bitcast 'large element' scalar/vector to 'small element' vector.
2634     if ((SubBitWidth % BitWidth) == 0) {
2635       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2636 
2637       // Collect known bits for the (smaller) output by collecting the known
2638       // bits from the overlapping larger input elements and extracting the
2639       // sub sections we actually care about.
2640       unsigned SubScale = SubBitWidth / BitWidth;
2641       APInt SubDemandedElts(NumElts / SubScale, 0);
2642       for (unsigned i = 0; i != NumElts; ++i)
2643         if (DemandedElts[i])
2644           SubDemandedElts.setBit(i / SubScale);
2645 
2646       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2647 
2648       Known.Zero.setAllBits(); Known.One.setAllBits();
2649       for (unsigned i = 0; i != NumElts; ++i)
2650         if (DemandedElts[i]) {
2651           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2652           unsigned Offset = (Shifts % SubScale) * BitWidth;
2653           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2654           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2655           // If we don't know any bits, early out.
2656           if (Known.isUnknown())
2657             break;
2658         }
2659     }
2660     break;
2661   }
2662   case ISD::AND:
2663     // If either the LHS or the RHS are Zero, the result is zero.
2664     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2665     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2666 
2667     // Output known-1 bits are only known if set in both the LHS & RHS.
2668     Known.One &= Known2.One;
2669     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2670     Known.Zero |= Known2.Zero;
2671     break;
2672   case ISD::OR:
2673     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2674     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2675 
2676     // Output known-0 bits are only known if clear in both the LHS & RHS.
2677     Known.Zero &= Known2.Zero;
2678     // Output known-1 are known to be set if set in either the LHS | RHS.
2679     Known.One |= Known2.One;
2680     break;
2681   case ISD::XOR: {
2682     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2683     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2684 
2685     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2686     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2687     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2688     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2689     Known.Zero = KnownZeroOut;
2690     break;
2691   }
2692   case ISD::MUL: {
2693     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2694     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2695 
2696     // If low bits are zero in either operand, output low known-0 bits.
2697     // Also compute a conservative estimate for high known-0 bits.
2698     // More trickiness is possible, but this is sufficient for the
2699     // interesting case of alignment computation.
2700     unsigned TrailZ = Known.countMinTrailingZeros() +
2701                       Known2.countMinTrailingZeros();
2702     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2703                                Known2.countMinLeadingZeros(),
2704                                BitWidth) - BitWidth;
2705 
2706     Known.resetAll();
2707     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2708     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2709     break;
2710   }
2711   case ISD::UDIV: {
2712     // For the purposes of computing leading zeros we can conservatively
2713     // treat a udiv as a logical right shift by the power of 2 known to
2714     // be less than the denominator.
2715     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2716     unsigned LeadZ = Known2.countMinLeadingZeros();
2717 
2718     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2719     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2720     if (RHSMaxLeadingZeros != BitWidth)
2721       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2722 
2723     Known.Zero.setHighBits(LeadZ);
2724     break;
2725   }
2726   case ISD::SELECT:
2727   case ISD::VSELECT:
2728     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2729     // If we don't know any bits, early out.
2730     if (Known.isUnknown())
2731       break;
2732     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2733 
2734     // Only known if known in both the LHS and RHS.
2735     Known.One &= Known2.One;
2736     Known.Zero &= Known2.Zero;
2737     break;
2738   case ISD::SELECT_CC:
2739     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2740     // If we don't know any bits, early out.
2741     if (Known.isUnknown())
2742       break;
2743     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2744 
2745     // Only known if known in both the LHS and RHS.
2746     Known.One &= Known2.One;
2747     Known.Zero &= Known2.Zero;
2748     break;
2749   case ISD::SMULO:
2750   case ISD::UMULO:
2751   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2752     if (Op.getResNo() != 1)
2753       break;
2754     // The boolean result conforms to getBooleanContents.
2755     // If we know the result of a setcc has the top bits zero, use this info.
2756     // We know that we have an integer-based boolean since these operations
2757     // are only available for integer.
2758     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2759             TargetLowering::ZeroOrOneBooleanContent &&
2760         BitWidth > 1)
2761       Known.Zero.setBitsFrom(1);
2762     break;
2763   case ISD::SETCC:
2764     // If we know the result of a setcc has the top bits zero, use this info.
2765     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2766             TargetLowering::ZeroOrOneBooleanContent &&
2767         BitWidth > 1)
2768       Known.Zero.setBitsFrom(1);
2769     break;
2770   case ISD::SHL:
2771     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2772       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2773       unsigned Shift = ShAmt->getZExtValue();
2774       Known.Zero <<= Shift;
2775       Known.One <<= Shift;
2776       // Low bits are known zero.
2777       Known.Zero.setLowBits(Shift);
2778     }
2779     break;
2780   case ISD::SRL:
2781     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2782       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2783       unsigned Shift = ShAmt->getZExtValue();
2784       Known.Zero.lshrInPlace(Shift);
2785       Known.One.lshrInPlace(Shift);
2786       // High bits are known zero.
2787       Known.Zero.setHighBits(Shift);
2788     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2789       // If the shift amount is a vector of constants see if we can bound
2790       // the number of upper zero bits.
2791       unsigned ShiftAmountMin = BitWidth;
2792       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2793         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2794           const APInt &ShAmt = C->getAPIntValue();
2795           if (ShAmt.ult(BitWidth)) {
2796             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2797                                                 ShAmt.getZExtValue());
2798             continue;
2799           }
2800         }
2801         // Don't know anything.
2802         ShiftAmountMin = 0;
2803         break;
2804       }
2805 
2806       Known.Zero.setHighBits(ShiftAmountMin);
2807     }
2808     break;
2809   case ISD::SRA:
2810     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2811       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2812       unsigned Shift = ShAmt->getZExtValue();
2813       // Sign extend known zero/one bit (else is unknown).
2814       Known.Zero.ashrInPlace(Shift);
2815       Known.One.ashrInPlace(Shift);
2816     }
2817     break;
2818   case ISD::FSHL:
2819   case ISD::FSHR:
2820     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2821       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2822 
2823       // For fshl, 0-shift returns the 1st arg.
2824       // For fshr, 0-shift returns the 2nd arg.
2825       if (Amt == 0) {
2826         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2827                                  DemandedElts, Depth + 1);
2828         break;
2829       }
2830 
2831       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2832       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2833       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2834       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2835       if (Opcode == ISD::FSHL) {
2836         Known.One <<= Amt;
2837         Known.Zero <<= Amt;
2838         Known2.One.lshrInPlace(BitWidth - Amt);
2839         Known2.Zero.lshrInPlace(BitWidth - Amt);
2840       } else {
2841         Known.One <<= BitWidth - Amt;
2842         Known.Zero <<= BitWidth - Amt;
2843         Known2.One.lshrInPlace(Amt);
2844         Known2.Zero.lshrInPlace(Amt);
2845       }
2846       Known.One |= Known2.One;
2847       Known.Zero |= Known2.Zero;
2848     }
2849     break;
2850   case ISD::SIGN_EXTEND_INREG: {
2851     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2852     unsigned EBits = EVT.getScalarSizeInBits();
2853 
2854     // Sign extension.  Compute the demanded bits in the result that are not
2855     // present in the input.
2856     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2857 
2858     APInt InSignMask = APInt::getSignMask(EBits);
2859     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2860 
2861     // If the sign extended bits are demanded, we know that the sign
2862     // bit is demanded.
2863     InSignMask = InSignMask.zext(BitWidth);
2864     if (NewBits.getBoolValue())
2865       InputDemandedBits |= InSignMask;
2866 
2867     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2868     Known.One &= InputDemandedBits;
2869     Known.Zero &= InputDemandedBits;
2870 
2871     // If the sign bit of the input is known set or clear, then we know the
2872     // top bits of the result.
2873     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2874       Known.Zero |= NewBits;
2875       Known.One  &= ~NewBits;
2876     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2877       Known.One  |= NewBits;
2878       Known.Zero &= ~NewBits;
2879     } else {                              // Input sign bit unknown
2880       Known.Zero &= ~NewBits;
2881       Known.One  &= ~NewBits;
2882     }
2883     break;
2884   }
2885   case ISD::CTTZ:
2886   case ISD::CTTZ_ZERO_UNDEF: {
2887     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2888     // If we have a known 1, its position is our upper bound.
2889     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2890     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2891     Known.Zero.setBitsFrom(LowBits);
2892     break;
2893   }
2894   case ISD::CTLZ:
2895   case ISD::CTLZ_ZERO_UNDEF: {
2896     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2897     // If we have a known 1, its position is our upper bound.
2898     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2899     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2900     Known.Zero.setBitsFrom(LowBits);
2901     break;
2902   }
2903   case ISD::CTPOP: {
2904     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2905     // If we know some of the bits are zero, they can't be one.
2906     unsigned PossibleOnes = Known2.countMaxPopulation();
2907     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2908     break;
2909   }
2910   case ISD::LOAD: {
2911     LoadSDNode *LD = cast<LoadSDNode>(Op);
2912     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
2913     if (ISD::isNON_EXTLoad(LD) && Cst) {
2914       // Determine any common known bits from the loaded constant pool value.
2915       Type *CstTy = Cst->getType();
2916       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
2917         // If its a vector splat, then we can (quickly) reuse the scalar path.
2918         // NOTE: We assume all elements match and none are UNDEF.
2919         if (CstTy->isVectorTy()) {
2920           if (const Constant *Splat = Cst->getSplatValue()) {
2921             Cst = Splat;
2922             CstTy = Cst->getType();
2923           }
2924         }
2925         // TODO - do we need to handle different bitwidths?
2926         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
2927           // Iterate across all vector elements finding common known bits.
2928           Known.One.setAllBits();
2929           Known.Zero.setAllBits();
2930           for (unsigned i = 0; i != NumElts; ++i) {
2931             if (!DemandedElts[i])
2932               continue;
2933             if (Constant *Elt = Cst->getAggregateElement(i)) {
2934               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
2935                 const APInt &Value = CInt->getValue();
2936                 Known.One &= Value;
2937                 Known.Zero &= ~Value;
2938                 continue;
2939               }
2940               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
2941                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
2942                 Known.One &= Value;
2943                 Known.Zero &= ~Value;
2944                 continue;
2945               }
2946             }
2947             Known.One.clearAllBits();
2948             Known.Zero.clearAllBits();
2949             break;
2950           }
2951         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
2952           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
2953             const APInt &Value = CInt->getValue();
2954             Known.One = Value;
2955             Known.Zero = ~Value;
2956           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
2957             APInt Value = CFP->getValueAPF().bitcastToAPInt();
2958             Known.One = Value;
2959             Known.Zero = ~Value;
2960           }
2961         }
2962       }
2963     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2964       // If this is a ZEXTLoad and we are looking at the loaded value.
2965       EVT VT = LD->getMemoryVT();
2966       unsigned MemBits = VT.getScalarSizeInBits();
2967       Known.Zero.setBitsFrom(MemBits);
2968     } else if (const MDNode *Ranges = LD->getRanges()) {
2969       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2970         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2971     }
2972     break;
2973   }
2974   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2975     EVT InVT = Op.getOperand(0).getValueType();
2976     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2977     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2978     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2979     break;
2980   }
2981   case ISD::ZERO_EXTEND: {
2982     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2983     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2984     break;
2985   }
2986   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2987     EVT InVT = Op.getOperand(0).getValueType();
2988     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2989     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2990     // If the sign bit is known to be zero or one, then sext will extend
2991     // it to the top bits, else it will just zext.
2992     Known = Known.sext(BitWidth);
2993     break;
2994   }
2995   case ISD::SIGN_EXTEND: {
2996     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2997     // If the sign bit is known to be zero or one, then sext will extend
2998     // it to the top bits, else it will just zext.
2999     Known = Known.sext(BitWidth);
3000     break;
3001   }
3002   case ISD::ANY_EXTEND: {
3003     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3004     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3005     break;
3006   }
3007   case ISD::TRUNCATE: {
3008     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3009     Known = Known.trunc(BitWidth);
3010     break;
3011   }
3012   case ISD::AssertZext: {
3013     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3014     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3015     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3016     Known.Zero |= (~InMask);
3017     Known.One  &= (~Known.Zero);
3018     break;
3019   }
3020   case ISD::FGETSIGN:
3021     // All bits are zero except the low bit.
3022     Known.Zero.setBitsFrom(1);
3023     break;
3024   case ISD::USUBO:
3025   case ISD::SSUBO:
3026     if (Op.getResNo() == 1) {
3027       // If we know the result of a setcc has the top bits zero, use this info.
3028       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3029               TargetLowering::ZeroOrOneBooleanContent &&
3030           BitWidth > 1)
3031         Known.Zero.setBitsFrom(1);
3032       break;
3033     }
3034     LLVM_FALLTHROUGH;
3035   case ISD::SUB:
3036   case ISD::SUBC: {
3037     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3038     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3039     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3040                                         Known, Known2);
3041     break;
3042   }
3043   case ISD::UADDO:
3044   case ISD::SADDO:
3045   case ISD::ADDCARRY:
3046     if (Op.getResNo() == 1) {
3047       // If we know the result of a setcc has the top bits zero, use this info.
3048       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3049               TargetLowering::ZeroOrOneBooleanContent &&
3050           BitWidth > 1)
3051         Known.Zero.setBitsFrom(1);
3052       break;
3053     }
3054     LLVM_FALLTHROUGH;
3055   case ISD::ADD:
3056   case ISD::ADDC:
3057   case ISD::ADDE: {
3058     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3059 
3060     // With ADDE and ADDCARRY, a carry bit may be added in.
3061     KnownBits Carry(1);
3062     if (Opcode == ISD::ADDE)
3063       // Can't track carry from glue, set carry to unknown.
3064       Carry.resetAll();
3065     else if (Opcode == ISD::ADDCARRY)
3066       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3067       // the trouble (how often will we find a known carry bit). And I haven't
3068       // tested this very much yet, but something like this might work:
3069       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3070       //   Carry = Carry.zextOrTrunc(1, false);
3071       Carry.resetAll();
3072     else
3073       Carry.setAllZero();
3074 
3075     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3076     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3077     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3078     break;
3079   }
3080   case ISD::SREM:
3081     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3082       const APInt &RA = Rem->getAPIntValue().abs();
3083       if (RA.isPowerOf2()) {
3084         APInt LowBits = RA - 1;
3085         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3086 
3087         // The low bits of the first operand are unchanged by the srem.
3088         Known.Zero = Known2.Zero & LowBits;
3089         Known.One = Known2.One & LowBits;
3090 
3091         // If the first operand is non-negative or has all low bits zero, then
3092         // the upper bits are all zero.
3093         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3094           Known.Zero |= ~LowBits;
3095 
3096         // If the first operand is negative and not all low bits are zero, then
3097         // the upper bits are all one.
3098         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3099           Known.One |= ~LowBits;
3100         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3101       }
3102     }
3103     break;
3104   case ISD::UREM: {
3105     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3106       const APInt &RA = Rem->getAPIntValue();
3107       if (RA.isPowerOf2()) {
3108         APInt LowBits = (RA - 1);
3109         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3110 
3111         // The upper bits are all zero, the lower ones are unchanged.
3112         Known.Zero = Known2.Zero | ~LowBits;
3113         Known.One = Known2.One & LowBits;
3114         break;
3115       }
3116     }
3117 
3118     // Since the result is less than or equal to either operand, any leading
3119     // zero bits in either operand must also exist in the result.
3120     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3121     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3122 
3123     uint32_t Leaders =
3124         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3125     Known.resetAll();
3126     Known.Zero.setHighBits(Leaders);
3127     break;
3128   }
3129   case ISD::EXTRACT_ELEMENT: {
3130     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3131     const unsigned Index = Op.getConstantOperandVal(1);
3132     const unsigned EltBitWidth = Op.getValueSizeInBits();
3133 
3134     // Remove low part of known bits mask
3135     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3136     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3137 
3138     // Remove high part of known bit mask
3139     Known = Known.trunc(EltBitWidth);
3140     break;
3141   }
3142   case ISD::EXTRACT_VECTOR_ELT: {
3143     SDValue InVec = Op.getOperand(0);
3144     SDValue EltNo = Op.getOperand(1);
3145     EVT VecVT = InVec.getValueType();
3146     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3147     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3148     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3149     // anything about the extended bits.
3150     if (BitWidth > EltBitWidth)
3151       Known = Known.trunc(EltBitWidth);
3152     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3153     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3154       // If we know the element index, just demand that vector element.
3155       unsigned Idx = ConstEltNo->getZExtValue();
3156       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3157       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3158     } else {
3159       // Unknown element index, so ignore DemandedElts and demand them all.
3160       Known = computeKnownBits(InVec, Depth + 1);
3161     }
3162     if (BitWidth > EltBitWidth)
3163       Known = Known.zext(BitWidth, false /* => any extend */);
3164     break;
3165   }
3166   case ISD::INSERT_VECTOR_ELT: {
3167     SDValue InVec = Op.getOperand(0);
3168     SDValue InVal = Op.getOperand(1);
3169     SDValue EltNo = Op.getOperand(2);
3170 
3171     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3172     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3173       // If we know the element index, split the demand between the
3174       // source vector and the inserted element.
3175       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3176       unsigned EltIdx = CEltNo->getZExtValue();
3177 
3178       // If we demand the inserted element then add its common known bits.
3179       if (DemandedElts[EltIdx]) {
3180         Known2 = computeKnownBits(InVal, Depth + 1);
3181         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3182         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3183       }
3184 
3185       // If we demand the source vector then add its common known bits, ensuring
3186       // that we don't demand the inserted element.
3187       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3188       if (!!VectorElts) {
3189         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3190         Known.One &= Known2.One;
3191         Known.Zero &= Known2.Zero;
3192       }
3193     } else {
3194       // Unknown element index, so ignore DemandedElts and demand them all.
3195       Known = computeKnownBits(InVec, Depth + 1);
3196       Known2 = computeKnownBits(InVal, Depth + 1);
3197       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3198       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3199     }
3200     break;
3201   }
3202   case ISD::BITREVERSE: {
3203     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3204     Known.Zero = Known2.Zero.reverseBits();
3205     Known.One = Known2.One.reverseBits();
3206     break;
3207   }
3208   case ISD::BSWAP: {
3209     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3210     Known.Zero = Known2.Zero.byteSwap();
3211     Known.One = Known2.One.byteSwap();
3212     break;
3213   }
3214   case ISD::ABS: {
3215     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3216 
3217     // If the source's MSB is zero then we know the rest of the bits already.
3218     if (Known2.isNonNegative()) {
3219       Known.Zero = Known2.Zero;
3220       Known.One = Known2.One;
3221       break;
3222     }
3223 
3224     // We only know that the absolute values's MSB will be zero iff there is
3225     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3226     Known2.One.clearSignBit();
3227     if (Known2.One.getBoolValue()) {
3228       Known.Zero = APInt::getSignMask(BitWidth);
3229       break;
3230     }
3231     break;
3232   }
3233   case ISD::UMIN: {
3234     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3235     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3236 
3237     // UMIN - we know that the result will have the maximum of the
3238     // known zero leading bits of the inputs.
3239     unsigned LeadZero = Known.countMinLeadingZeros();
3240     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3241 
3242     Known.Zero &= Known2.Zero;
3243     Known.One &= Known2.One;
3244     Known.Zero.setHighBits(LeadZero);
3245     break;
3246   }
3247   case ISD::UMAX: {
3248     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3249     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3250 
3251     // UMAX - we know that the result will have the maximum of the
3252     // known one leading bits of the inputs.
3253     unsigned LeadOne = Known.countMinLeadingOnes();
3254     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3255 
3256     Known.Zero &= Known2.Zero;
3257     Known.One &= Known2.One;
3258     Known.One.setHighBits(LeadOne);
3259     break;
3260   }
3261   case ISD::SMIN:
3262   case ISD::SMAX: {
3263     // If we have a clamp pattern, we know that the number of sign bits will be
3264     // the minimum of the clamp min/max range.
3265     bool IsMax = (Opcode == ISD::SMAX);
3266     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3267     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3268       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3269         CstHigh =
3270             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3271     if (CstLow && CstHigh) {
3272       if (!IsMax)
3273         std::swap(CstLow, CstHigh);
3274 
3275       const APInt &ValueLow = CstLow->getAPIntValue();
3276       const APInt &ValueHigh = CstHigh->getAPIntValue();
3277       if (ValueLow.sle(ValueHigh)) {
3278         unsigned LowSignBits = ValueLow.getNumSignBits();
3279         unsigned HighSignBits = ValueHigh.getNumSignBits();
3280         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3281         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3282           Known.One.setHighBits(MinSignBits);
3283           break;
3284         }
3285         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3286           Known.Zero.setHighBits(MinSignBits);
3287           break;
3288         }
3289       }
3290     }
3291 
3292     // Fallback - just get the shared known bits of the operands.
3293     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3294     if (Known.isUnknown()) break; // Early-out
3295     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3296     Known.Zero &= Known2.Zero;
3297     Known.One &= Known2.One;
3298     break;
3299   }
3300   case ISD::FrameIndex:
3301   case ISD::TargetFrameIndex:
3302     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3303     break;
3304 
3305   default:
3306     if (Opcode < ISD::BUILTIN_OP_END)
3307       break;
3308     LLVM_FALLTHROUGH;
3309   case ISD::INTRINSIC_WO_CHAIN:
3310   case ISD::INTRINSIC_W_CHAIN:
3311   case ISD::INTRINSIC_VOID:
3312     // Allow the target to implement this method for its nodes.
3313     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3314     break;
3315   }
3316 
3317   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3318   return Known;
3319 }
3320 
3321 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3322                                                              SDValue N1) const {
3323   // X + 0 never overflow
3324   if (isNullConstant(N1))
3325     return OFK_Never;
3326 
3327   KnownBits N1Known = computeKnownBits(N1);
3328   if (N1Known.Zero.getBoolValue()) {
3329     KnownBits N0Known = computeKnownBits(N0);
3330 
3331     bool overflow;
3332     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3333     if (!overflow)
3334       return OFK_Never;
3335   }
3336 
3337   // mulhi + 1 never overflow
3338   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3339       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3340     return OFK_Never;
3341 
3342   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3343     KnownBits N0Known = computeKnownBits(N0);
3344 
3345     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3346       return OFK_Never;
3347   }
3348 
3349   return OFK_Sometime;
3350 }
3351 
3352 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3353   EVT OpVT = Val.getValueType();
3354   unsigned BitWidth = OpVT.getScalarSizeInBits();
3355 
3356   // Is the constant a known power of 2?
3357   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3358     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3359 
3360   // A left-shift of a constant one will have exactly one bit set because
3361   // shifting the bit off the end is undefined.
3362   if (Val.getOpcode() == ISD::SHL) {
3363     auto *C = isConstOrConstSplat(Val.getOperand(0));
3364     if (C && C->getAPIntValue() == 1)
3365       return true;
3366   }
3367 
3368   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3369   // one bit set.
3370   if (Val.getOpcode() == ISD::SRL) {
3371     auto *C = isConstOrConstSplat(Val.getOperand(0));
3372     if (C && C->getAPIntValue().isSignMask())
3373       return true;
3374   }
3375 
3376   // Are all operands of a build vector constant powers of two?
3377   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3378     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3379           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3380             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3381           return false;
3382         }))
3383       return true;
3384 
3385   // More could be done here, though the above checks are enough
3386   // to handle some common cases.
3387 
3388   // Fall back to computeKnownBits to catch other known cases.
3389   KnownBits Known = computeKnownBits(Val);
3390   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3391 }
3392 
3393 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3394   EVT VT = Op.getValueType();
3395   APInt DemandedElts = VT.isVector()
3396                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3397                            : APInt(1, 1);
3398   return ComputeNumSignBits(Op, DemandedElts, Depth);
3399 }
3400 
3401 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3402                                           unsigned Depth) const {
3403   EVT VT = Op.getValueType();
3404   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3405   unsigned VTBits = VT.getScalarSizeInBits();
3406   unsigned NumElts = DemandedElts.getBitWidth();
3407   unsigned Tmp, Tmp2;
3408   unsigned FirstAnswer = 1;
3409 
3410   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3411     const APInt &Val = C->getAPIntValue();
3412     return Val.getNumSignBits();
3413   }
3414 
3415   if (Depth >= 6)
3416     return 1;  // Limit search depth.
3417 
3418   if (!DemandedElts)
3419     return 1;  // No demanded elts, better to assume we don't know anything.
3420 
3421   unsigned Opcode = Op.getOpcode();
3422   switch (Opcode) {
3423   default: break;
3424   case ISD::AssertSext:
3425     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3426     return VTBits-Tmp+1;
3427   case ISD::AssertZext:
3428     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3429     return VTBits-Tmp;
3430 
3431   case ISD::BUILD_VECTOR:
3432     Tmp = VTBits;
3433     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3434       if (!DemandedElts[i])
3435         continue;
3436 
3437       SDValue SrcOp = Op.getOperand(i);
3438       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3439 
3440       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3441       if (SrcOp.getValueSizeInBits() != VTBits) {
3442         assert(SrcOp.getValueSizeInBits() > VTBits &&
3443                "Expected BUILD_VECTOR implicit truncation");
3444         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3445         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3446       }
3447       Tmp = std::min(Tmp, Tmp2);
3448     }
3449     return Tmp;
3450 
3451   case ISD::VECTOR_SHUFFLE: {
3452     // Collect the minimum number of sign bits that are shared by every vector
3453     // element referenced by the shuffle.
3454     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3455     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3456     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3457     for (unsigned i = 0; i != NumElts; ++i) {
3458       int M = SVN->getMaskElt(i);
3459       if (!DemandedElts[i])
3460         continue;
3461       // For UNDEF elements, we don't know anything about the common state of
3462       // the shuffle result.
3463       if (M < 0)
3464         return 1;
3465       if ((unsigned)M < NumElts)
3466         DemandedLHS.setBit((unsigned)M % NumElts);
3467       else
3468         DemandedRHS.setBit((unsigned)M % NumElts);
3469     }
3470     Tmp = std::numeric_limits<unsigned>::max();
3471     if (!!DemandedLHS)
3472       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3473     if (!!DemandedRHS) {
3474       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3475       Tmp = std::min(Tmp, Tmp2);
3476     }
3477     // If we don't know anything, early out and try computeKnownBits fall-back.
3478     if (Tmp == 1)
3479       break;
3480     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3481     return Tmp;
3482   }
3483 
3484   case ISD::BITCAST: {
3485     SDValue N0 = Op.getOperand(0);
3486     EVT SrcVT = N0.getValueType();
3487     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3488 
3489     // Ignore bitcasts from unsupported types..
3490     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3491       break;
3492 
3493     // Fast handling of 'identity' bitcasts.
3494     if (VTBits == SrcBits)
3495       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3496 
3497     bool IsLE = getDataLayout().isLittleEndian();
3498 
3499     // Bitcast 'large element' scalar/vector to 'small element' vector.
3500     if ((SrcBits % VTBits) == 0) {
3501       assert(VT.isVector() && "Expected bitcast to vector");
3502 
3503       unsigned Scale = SrcBits / VTBits;
3504       APInt SrcDemandedElts(NumElts / Scale, 0);
3505       for (unsigned i = 0; i != NumElts; ++i)
3506         if (DemandedElts[i])
3507           SrcDemandedElts.setBit(i / Scale);
3508 
3509       // Fast case - sign splat can be simply split across the small elements.
3510       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3511       if (Tmp == SrcBits)
3512         return VTBits;
3513 
3514       // Slow case - determine how far the sign extends into each sub-element.
3515       Tmp2 = VTBits;
3516       for (unsigned i = 0; i != NumElts; ++i)
3517         if (DemandedElts[i]) {
3518           unsigned SubOffset = i % Scale;
3519           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3520           SubOffset = SubOffset * VTBits;
3521           if (Tmp <= SubOffset)
3522             return 1;
3523           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3524         }
3525       return Tmp2;
3526     }
3527     break;
3528   }
3529 
3530   case ISD::SIGN_EXTEND:
3531     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3532     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3533   case ISD::SIGN_EXTEND_INREG:
3534     // Max of the input and what this extends.
3535     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3536     Tmp = VTBits-Tmp+1;
3537     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3538     return std::max(Tmp, Tmp2);
3539   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3540     SDValue Src = Op.getOperand(0);
3541     EVT SrcVT = Src.getValueType();
3542     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3543     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3544     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3545   }
3546 
3547   case ISD::SRA:
3548     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3549     // SRA X, C   -> adds C sign bits.
3550     if (ConstantSDNode *C =
3551             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3552       APInt ShiftVal = C->getAPIntValue();
3553       ShiftVal += Tmp;
3554       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3555     }
3556     return Tmp;
3557   case ISD::SHL:
3558     if (ConstantSDNode *C =
3559             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3560       // shl destroys sign bits.
3561       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3562       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3563           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3564       return Tmp - C->getZExtValue();
3565     }
3566     break;
3567   case ISD::AND:
3568   case ISD::OR:
3569   case ISD::XOR:    // NOT is handled here.
3570     // Logical binary ops preserve the number of sign bits at the worst.
3571     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3572     if (Tmp != 1) {
3573       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3574       FirstAnswer = std::min(Tmp, Tmp2);
3575       // We computed what we know about the sign bits as our first
3576       // answer. Now proceed to the generic code that uses
3577       // computeKnownBits, and pick whichever answer is better.
3578     }
3579     break;
3580 
3581   case ISD::SELECT:
3582   case ISD::VSELECT:
3583     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3584     if (Tmp == 1) return 1;  // Early out.
3585     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3586     return std::min(Tmp, Tmp2);
3587   case ISD::SELECT_CC:
3588     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3589     if (Tmp == 1) return 1;  // Early out.
3590     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3591     return std::min(Tmp, Tmp2);
3592 
3593   case ISD::SMIN:
3594   case ISD::SMAX: {
3595     // If we have a clamp pattern, we know that the number of sign bits will be
3596     // the minimum of the clamp min/max range.
3597     bool IsMax = (Opcode == ISD::SMAX);
3598     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3599     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3600       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3601         CstHigh =
3602             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3603     if (CstLow && CstHigh) {
3604       if (!IsMax)
3605         std::swap(CstLow, CstHigh);
3606       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3607         Tmp = CstLow->getAPIntValue().getNumSignBits();
3608         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3609         return std::min(Tmp, Tmp2);
3610       }
3611     }
3612 
3613     // Fallback - just get the minimum number of sign bits of the operands.
3614     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3615     if (Tmp == 1)
3616       return 1;  // Early out.
3617     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3618     return std::min(Tmp, Tmp2);
3619   }
3620   case ISD::UMIN:
3621   case ISD::UMAX:
3622     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3623     if (Tmp == 1)
3624       return 1;  // Early out.
3625     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3626     return std::min(Tmp, Tmp2);
3627   case ISD::SADDO:
3628   case ISD::UADDO:
3629   case ISD::SSUBO:
3630   case ISD::USUBO:
3631   case ISD::SMULO:
3632   case ISD::UMULO:
3633     if (Op.getResNo() != 1)
3634       break;
3635     // The boolean result conforms to getBooleanContents.  Fall through.
3636     // If setcc returns 0/-1, all bits are sign bits.
3637     // We know that we have an integer-based boolean since these operations
3638     // are only available for integer.
3639     if (TLI->getBooleanContents(VT.isVector(), false) ==
3640         TargetLowering::ZeroOrNegativeOneBooleanContent)
3641       return VTBits;
3642     break;
3643   case ISD::SETCC:
3644     // If setcc returns 0/-1, all bits are sign bits.
3645     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3646         TargetLowering::ZeroOrNegativeOneBooleanContent)
3647       return VTBits;
3648     break;
3649   case ISD::ROTL:
3650   case ISD::ROTR:
3651     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3652       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3653 
3654       // Handle rotate right by N like a rotate left by 32-N.
3655       if (Opcode == ISD::ROTR)
3656         RotAmt = (VTBits - RotAmt) % VTBits;
3657 
3658       // If we aren't rotating out all of the known-in sign bits, return the
3659       // number that are left.  This handles rotl(sext(x), 1) for example.
3660       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3661       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3662     }
3663     break;
3664   case ISD::ADD:
3665   case ISD::ADDC:
3666     // Add can have at most one carry bit.  Thus we know that the output
3667     // is, at worst, one more bit than the inputs.
3668     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3669     if (Tmp == 1) return 1;  // Early out.
3670 
3671     // Special case decrementing a value (ADD X, -1):
3672     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3673       if (CRHS->isAllOnesValue()) {
3674         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3675 
3676         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3677         // sign bits set.
3678         if ((Known.Zero | 1).isAllOnesValue())
3679           return VTBits;
3680 
3681         // If we are subtracting one from a positive number, there is no carry
3682         // out of the result.
3683         if (Known.isNonNegative())
3684           return Tmp;
3685       }
3686 
3687     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3688     if (Tmp2 == 1) return 1;
3689     return std::min(Tmp, Tmp2)-1;
3690 
3691   case ISD::SUB:
3692     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3693     if (Tmp2 == 1) return 1;
3694 
3695     // Handle NEG.
3696     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3697       if (CLHS->isNullValue()) {
3698         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3699         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3700         // sign bits set.
3701         if ((Known.Zero | 1).isAllOnesValue())
3702           return VTBits;
3703 
3704         // If the input is known to be positive (the sign bit is known clear),
3705         // the output of the NEG has the same number of sign bits as the input.
3706         if (Known.isNonNegative())
3707           return Tmp2;
3708 
3709         // Otherwise, we treat this like a SUB.
3710       }
3711 
3712     // Sub can have at most one carry bit.  Thus we know that the output
3713     // is, at worst, one more bit than the inputs.
3714     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3715     if (Tmp == 1) return 1;  // Early out.
3716     return std::min(Tmp, Tmp2)-1;
3717   case ISD::TRUNCATE: {
3718     // Check if the sign bits of source go down as far as the truncated value.
3719     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3720     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3721     if (NumSrcSignBits > (NumSrcBits - VTBits))
3722       return NumSrcSignBits - (NumSrcBits - VTBits);
3723     break;
3724   }
3725   case ISD::EXTRACT_ELEMENT: {
3726     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3727     const int BitWidth = Op.getValueSizeInBits();
3728     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3729 
3730     // Get reverse index (starting from 1), Op1 value indexes elements from
3731     // little end. Sign starts at big end.
3732     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3733 
3734     // If the sign portion ends in our element the subtraction gives correct
3735     // result. Otherwise it gives either negative or > bitwidth result
3736     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3737   }
3738   case ISD::INSERT_VECTOR_ELT: {
3739     SDValue InVec = Op.getOperand(0);
3740     SDValue InVal = Op.getOperand(1);
3741     SDValue EltNo = Op.getOperand(2);
3742 
3743     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3744     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3745       // If we know the element index, split the demand between the
3746       // source vector and the inserted element.
3747       unsigned EltIdx = CEltNo->getZExtValue();
3748 
3749       // If we demand the inserted element then get its sign bits.
3750       Tmp = std::numeric_limits<unsigned>::max();
3751       if (DemandedElts[EltIdx]) {
3752         // TODO - handle implicit truncation of inserted elements.
3753         if (InVal.getScalarValueSizeInBits() != VTBits)
3754           break;
3755         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3756       }
3757 
3758       // If we demand the source vector then get its sign bits, and determine
3759       // the minimum.
3760       APInt VectorElts = DemandedElts;
3761       VectorElts.clearBit(EltIdx);
3762       if (!!VectorElts) {
3763         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3764         Tmp = std::min(Tmp, Tmp2);
3765       }
3766     } else {
3767       // Unknown element index, so ignore DemandedElts and demand them all.
3768       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3769       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3770       Tmp = std::min(Tmp, Tmp2);
3771     }
3772     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3773     return Tmp;
3774   }
3775   case ISD::EXTRACT_VECTOR_ELT: {
3776     SDValue InVec = Op.getOperand(0);
3777     SDValue EltNo = Op.getOperand(1);
3778     EVT VecVT = InVec.getValueType();
3779     const unsigned BitWidth = Op.getValueSizeInBits();
3780     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3781     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3782 
3783     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3784     // anything about sign bits. But if the sizes match we can derive knowledge
3785     // about sign bits from the vector operand.
3786     if (BitWidth != EltBitWidth)
3787       break;
3788 
3789     // If we know the element index, just demand that vector element, else for
3790     // an unknown element index, ignore DemandedElts and demand them all.
3791     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3792     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3793     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3794       DemandedSrcElts =
3795           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3796 
3797     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3798   }
3799   case ISD::EXTRACT_SUBVECTOR: {
3800     // If we know the element index, just demand that subvector elements,
3801     // otherwise demand them all.
3802     SDValue Src = Op.getOperand(0);
3803     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3804     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3805     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3806       // Offset the demanded elts by the subvector index.
3807       uint64_t Idx = SubIdx->getZExtValue();
3808       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3809       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3810     }
3811     return ComputeNumSignBits(Src, Depth + 1);
3812   }
3813   case ISD::CONCAT_VECTORS: {
3814     // Determine the minimum number of sign bits across all demanded
3815     // elts of the input vectors. Early out if the result is already 1.
3816     Tmp = std::numeric_limits<unsigned>::max();
3817     EVT SubVectorVT = Op.getOperand(0).getValueType();
3818     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3819     unsigned NumSubVectors = Op.getNumOperands();
3820     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3821       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3822       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3823       if (!DemandedSub)
3824         continue;
3825       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3826       Tmp = std::min(Tmp, Tmp2);
3827     }
3828     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3829     return Tmp;
3830   }
3831   case ISD::INSERT_SUBVECTOR: {
3832     // If we know the element index, demand any elements from the subvector and
3833     // the remainder from the src its inserted into, otherwise demand them all.
3834     SDValue Src = Op.getOperand(0);
3835     SDValue Sub = Op.getOperand(1);
3836     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3837     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3838     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3839       Tmp = std::numeric_limits<unsigned>::max();
3840       uint64_t Idx = SubIdx->getZExtValue();
3841       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3842       if (!!DemandedSubElts) {
3843         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3844         if (Tmp == 1) return 1; // early-out
3845       }
3846       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3847       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3848       if (!!DemandedSrcElts) {
3849         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3850         Tmp = std::min(Tmp, Tmp2);
3851       }
3852       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3853       return Tmp;
3854     }
3855 
3856     // Not able to determine the index so just assume worst case.
3857     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3858     if (Tmp == 1) return 1; // early-out
3859     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3860     Tmp = std::min(Tmp, Tmp2);
3861     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3862     return Tmp;
3863   }
3864   }
3865 
3866   // If we are looking at the loaded value of the SDNode.
3867   if (Op.getResNo() == 0) {
3868     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3869     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3870       unsigned ExtType = LD->getExtensionType();
3871       switch (ExtType) {
3872       default: break;
3873       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3874         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3875         return VTBits - Tmp + 1;
3876       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3877         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3878         return VTBits - Tmp;
3879       case ISD::NON_EXTLOAD:
3880         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3881           // We only need to handle vectors - computeKnownBits should handle
3882           // scalar cases.
3883           Type *CstTy = Cst->getType();
3884           if (CstTy->isVectorTy() &&
3885               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3886             Tmp = VTBits;
3887             for (unsigned i = 0; i != NumElts; ++i) {
3888               if (!DemandedElts[i])
3889                 continue;
3890               if (Constant *Elt = Cst->getAggregateElement(i)) {
3891                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3892                   const APInt &Value = CInt->getValue();
3893                   Tmp = std::min(Tmp, Value.getNumSignBits());
3894                   continue;
3895                 }
3896                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3897                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
3898                   Tmp = std::min(Tmp, Value.getNumSignBits());
3899                   continue;
3900                 }
3901               }
3902               // Unknown type. Conservatively assume no bits match sign bit.
3903               return 1;
3904             }
3905             return Tmp;
3906           }
3907         }
3908         break;
3909       }
3910     }
3911   }
3912 
3913   // Allow the target to implement this method for its nodes.
3914   if (Opcode >= ISD::BUILTIN_OP_END ||
3915       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3916       Opcode == ISD::INTRINSIC_W_CHAIN ||
3917       Opcode == ISD::INTRINSIC_VOID) {
3918     unsigned NumBits =
3919         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3920     if (NumBits > 1)
3921       FirstAnswer = std::max(FirstAnswer, NumBits);
3922   }
3923 
3924   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3925   // use this information.
3926   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3927 
3928   APInt Mask;
3929   if (Known.isNonNegative()) {        // sign bit is 0
3930     Mask = Known.Zero;
3931   } else if (Known.isNegative()) {  // sign bit is 1;
3932     Mask = Known.One;
3933   } else {
3934     // Nothing known.
3935     return FirstAnswer;
3936   }
3937 
3938   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3939   // the number of identical bits in the top of the input value.
3940   Mask = ~Mask;
3941   Mask <<= Mask.getBitWidth()-VTBits;
3942   // Return # leading zeros.  We use 'min' here in case Val was zero before
3943   // shifting.  We don't want to return '64' as for an i32 "0".
3944   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3945 }
3946 
3947 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3948   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3949       !isa<ConstantSDNode>(Op.getOperand(1)))
3950     return false;
3951 
3952   if (Op.getOpcode() == ISD::OR &&
3953       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3954     return false;
3955 
3956   return true;
3957 }
3958 
3959 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3960   // If we're told that NaNs won't happen, assume they won't.
3961   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3962     return true;
3963 
3964   if (Depth >= 6)
3965     return false; // Limit search depth.
3966 
3967   // TODO: Handle vectors.
3968   // If the value is a constant, we can obviously see if it is a NaN or not.
3969   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3970     return !C->getValueAPF().isNaN() ||
3971            (SNaN && !C->getValueAPF().isSignaling());
3972   }
3973 
3974   unsigned Opcode = Op.getOpcode();
3975   switch (Opcode) {
3976   case ISD::FADD:
3977   case ISD::FSUB:
3978   case ISD::FMUL:
3979   case ISD::FDIV:
3980   case ISD::FREM:
3981   case ISD::FSIN:
3982   case ISD::FCOS: {
3983     if (SNaN)
3984       return true;
3985     // TODO: Need isKnownNeverInfinity
3986     return false;
3987   }
3988   case ISD::FCANONICALIZE:
3989   case ISD::FEXP:
3990   case ISD::FEXP2:
3991   case ISD::FTRUNC:
3992   case ISD::FFLOOR:
3993   case ISD::FCEIL:
3994   case ISD::FROUND:
3995   case ISD::FRINT:
3996   case ISD::FNEARBYINT: {
3997     if (SNaN)
3998       return true;
3999     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4000   }
4001   case ISD::FABS:
4002   case ISD::FNEG:
4003   case ISD::FCOPYSIGN: {
4004     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4005   }
4006   case ISD::SELECT:
4007     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4008            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4009   case ISD::FP_EXTEND:
4010   case ISD::FP_ROUND: {
4011     if (SNaN)
4012       return true;
4013     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4014   }
4015   case ISD::SINT_TO_FP:
4016   case ISD::UINT_TO_FP:
4017     return true;
4018   case ISD::FMA:
4019   case ISD::FMAD: {
4020     if (SNaN)
4021       return true;
4022     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4023            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4024            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4025   }
4026   case ISD::FSQRT: // Need is known positive
4027   case ISD::FLOG:
4028   case ISD::FLOG2:
4029   case ISD::FLOG10:
4030   case ISD::FPOWI:
4031   case ISD::FPOW: {
4032     if (SNaN)
4033       return true;
4034     // TODO: Refine on operand
4035     return false;
4036   }
4037   case ISD::FMINNUM:
4038   case ISD::FMAXNUM: {
4039     // Only one needs to be known not-nan, since it will be returned if the
4040     // other ends up being one.
4041     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4042            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4043   }
4044   case ISD::FMINNUM_IEEE:
4045   case ISD::FMAXNUM_IEEE: {
4046     if (SNaN)
4047       return true;
4048     // This can return a NaN if either operand is an sNaN, or if both operands
4049     // are NaN.
4050     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4051             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4052            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4053             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4054   }
4055   case ISD::FMINIMUM:
4056   case ISD::FMAXIMUM: {
4057     // TODO: Does this quiet or return the origina NaN as-is?
4058     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4059            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4060   }
4061   case ISD::EXTRACT_VECTOR_ELT: {
4062     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4063   }
4064   default:
4065     if (Opcode >= ISD::BUILTIN_OP_END ||
4066         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4067         Opcode == ISD::INTRINSIC_W_CHAIN ||
4068         Opcode == ISD::INTRINSIC_VOID) {
4069       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4070     }
4071 
4072     return false;
4073   }
4074 }
4075 
4076 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4077   assert(Op.getValueType().isFloatingPoint() &&
4078          "Floating point type expected");
4079 
4080   // If the value is a constant, we can obviously see if it is a zero or not.
4081   // TODO: Add BuildVector support.
4082   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4083     return !C->isZero();
4084   return false;
4085 }
4086 
4087 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4088   assert(!Op.getValueType().isFloatingPoint() &&
4089          "Floating point types unsupported - use isKnownNeverZeroFloat");
4090 
4091   // If the value is a constant, we can obviously see if it is a zero or not.
4092   if (ISD::matchUnaryPredicate(
4093           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4094     return true;
4095 
4096   // TODO: Recognize more cases here.
4097   switch (Op.getOpcode()) {
4098   default: break;
4099   case ISD::OR:
4100     if (isKnownNeverZero(Op.getOperand(1)) ||
4101         isKnownNeverZero(Op.getOperand(0)))
4102       return true;
4103     break;
4104   }
4105 
4106   return false;
4107 }
4108 
4109 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4110   // Check the obvious case.
4111   if (A == B) return true;
4112 
4113   // For for negative and positive zero.
4114   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4115     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4116       if (CA->isZero() && CB->isZero()) return true;
4117 
4118   // Otherwise they may not be equal.
4119   return false;
4120 }
4121 
4122 // FIXME: unify with llvm::haveNoCommonBitsSet.
4123 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4124 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4125   assert(A.getValueType() == B.getValueType() &&
4126          "Values must have the same type");
4127   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4128 }
4129 
4130 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4131                                 ArrayRef<SDValue> Ops,
4132                                 SelectionDAG &DAG) {
4133   int NumOps = Ops.size();
4134   assert(NumOps != 0 && "Can't build an empty vector!");
4135   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4136          "Incorrect element count in BUILD_VECTOR!");
4137 
4138   // BUILD_VECTOR of UNDEFs is UNDEF.
4139   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4140     return DAG.getUNDEF(VT);
4141 
4142   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4143   SDValue IdentitySrc;
4144   bool IsIdentity = true;
4145   for (int i = 0; i != NumOps; ++i) {
4146     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4147         Ops[i].getOperand(0).getValueType() != VT ||
4148         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4149         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4150         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4151       IsIdentity = false;
4152       break;
4153     }
4154     IdentitySrc = Ops[i].getOperand(0);
4155   }
4156   if (IsIdentity)
4157     return IdentitySrc;
4158 
4159   return SDValue();
4160 }
4161 
4162 /// Try to simplify vector concatenation to an input value, undef, or build
4163 /// vector.
4164 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4165                                   ArrayRef<SDValue> Ops,
4166                                   SelectionDAG &DAG) {
4167   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4168   assert(llvm::all_of(Ops,
4169                       [Ops](SDValue Op) {
4170                         return Ops[0].getValueType() == Op.getValueType();
4171                       }) &&
4172          "Concatenation of vectors with inconsistent value types!");
4173   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4174              VT.getVectorNumElements() &&
4175          "Incorrect element count in vector concatenation!");
4176 
4177   if (Ops.size() == 1)
4178     return Ops[0];
4179 
4180   // Concat of UNDEFs is UNDEF.
4181   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4182     return DAG.getUNDEF(VT);
4183 
4184   // Scan the operands and look for extract operations from a single source
4185   // that correspond to insertion at the same location via this concatenation:
4186   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4187   SDValue IdentitySrc;
4188   bool IsIdentity = true;
4189   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4190     SDValue Op = Ops[i];
4191     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4192     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4193         Op.getOperand(0).getValueType() != VT ||
4194         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4195         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4196         Op.getConstantOperandVal(1) != IdentityIndex) {
4197       IsIdentity = false;
4198       break;
4199     }
4200     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4201            "Unexpected identity source vector for concat of extracts");
4202     IdentitySrc = Op.getOperand(0);
4203   }
4204   if (IsIdentity) {
4205     assert(IdentitySrc && "Failed to set source vector of extracts");
4206     return IdentitySrc;
4207   }
4208 
4209   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4210   // simplified to one big BUILD_VECTOR.
4211   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4212   EVT SVT = VT.getScalarType();
4213   SmallVector<SDValue, 16> Elts;
4214   for (SDValue Op : Ops) {
4215     EVT OpVT = Op.getValueType();
4216     if (Op.isUndef())
4217       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4218     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4219       Elts.append(Op->op_begin(), Op->op_end());
4220     else
4221       return SDValue();
4222   }
4223 
4224   // BUILD_VECTOR requires all inputs to be of the same type, find the
4225   // maximum type and extend them all.
4226   for (SDValue Op : Elts)
4227     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4228 
4229   if (SVT.bitsGT(VT.getScalarType()))
4230     for (SDValue &Op : Elts)
4231       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4232                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4233                : DAG.getSExtOrTrunc(Op, DL, SVT);
4234 
4235   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4236   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4237   return V;
4238 }
4239 
4240 /// Gets or creates the specified node.
4241 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4242   FoldingSetNodeID ID;
4243   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4244   void *IP = nullptr;
4245   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4246     return SDValue(E, 0);
4247 
4248   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4249                               getVTList(VT));
4250   CSEMap.InsertNode(N, IP);
4251 
4252   InsertNode(N);
4253   SDValue V = SDValue(N, 0);
4254   NewSDValueDbgMsg(V, "Creating new node: ", this);
4255   return V;
4256 }
4257 
4258 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4259                               SDValue Operand, const SDNodeFlags Flags) {
4260   // Constant fold unary operations with an integer constant operand. Even
4261   // opaque constant will be folded, because the folding of unary operations
4262   // doesn't create new constants with different values. Nevertheless, the
4263   // opaque flag is preserved during folding to prevent future folding with
4264   // other constants.
4265   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4266     const APInt &Val = C->getAPIntValue();
4267     switch (Opcode) {
4268     default: break;
4269     case ISD::SIGN_EXTEND:
4270       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4271                          C->isTargetOpcode(), C->isOpaque());
4272     case ISD::TRUNCATE:
4273       if (C->isOpaque())
4274         break;
4275       LLVM_FALLTHROUGH;
4276     case ISD::ANY_EXTEND:
4277     case ISD::ZERO_EXTEND:
4278       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4279                          C->isTargetOpcode(), C->isOpaque());
4280     case ISD::UINT_TO_FP:
4281     case ISD::SINT_TO_FP: {
4282       APFloat apf(EVTToAPFloatSemantics(VT),
4283                   APInt::getNullValue(VT.getSizeInBits()));
4284       (void)apf.convertFromAPInt(Val,
4285                                  Opcode==ISD::SINT_TO_FP,
4286                                  APFloat::rmNearestTiesToEven);
4287       return getConstantFP(apf, DL, VT);
4288     }
4289     case ISD::BITCAST:
4290       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4291         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4292       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4293         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4294       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4295         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4296       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4297         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4298       break;
4299     case ISD::ABS:
4300       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4301                          C->isOpaque());
4302     case ISD::BITREVERSE:
4303       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4304                          C->isOpaque());
4305     case ISD::BSWAP:
4306       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4307                          C->isOpaque());
4308     case ISD::CTPOP:
4309       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4310                          C->isOpaque());
4311     case ISD::CTLZ:
4312     case ISD::CTLZ_ZERO_UNDEF:
4313       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4314                          C->isOpaque());
4315     case ISD::CTTZ:
4316     case ISD::CTTZ_ZERO_UNDEF:
4317       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4318                          C->isOpaque());
4319     case ISD::FP16_TO_FP: {
4320       bool Ignored;
4321       APFloat FPV(APFloat::IEEEhalf(),
4322                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4323 
4324       // This can return overflow, underflow, or inexact; we don't care.
4325       // FIXME need to be more flexible about rounding mode.
4326       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4327                         APFloat::rmNearestTiesToEven, &Ignored);
4328       return getConstantFP(FPV, DL, VT);
4329     }
4330     }
4331   }
4332 
4333   // Constant fold unary operations with a floating point constant operand.
4334   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4335     APFloat V = C->getValueAPF();    // make copy
4336     switch (Opcode) {
4337     case ISD::FNEG:
4338       V.changeSign();
4339       return getConstantFP(V, DL, VT);
4340     case ISD::FABS:
4341       V.clearSign();
4342       return getConstantFP(V, DL, VT);
4343     case ISD::FCEIL: {
4344       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4345       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4346         return getConstantFP(V, DL, VT);
4347       break;
4348     }
4349     case ISD::FTRUNC: {
4350       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4351       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4352         return getConstantFP(V, DL, VT);
4353       break;
4354     }
4355     case ISD::FFLOOR: {
4356       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4357       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4358         return getConstantFP(V, DL, VT);
4359       break;
4360     }
4361     case ISD::FP_EXTEND: {
4362       bool ignored;
4363       // This can return overflow, underflow, or inexact; we don't care.
4364       // FIXME need to be more flexible about rounding mode.
4365       (void)V.convert(EVTToAPFloatSemantics(VT),
4366                       APFloat::rmNearestTiesToEven, &ignored);
4367       return getConstantFP(V, DL, VT);
4368     }
4369     case ISD::FP_TO_SINT:
4370     case ISD::FP_TO_UINT: {
4371       bool ignored;
4372       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4373       // FIXME need to be more flexible about rounding mode.
4374       APFloat::opStatus s =
4375           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4376       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4377         break;
4378       return getConstant(IntVal, DL, VT);
4379     }
4380     case ISD::BITCAST:
4381       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4382         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4383       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4384         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4385       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4386         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4387       break;
4388     case ISD::FP_TO_FP16: {
4389       bool Ignored;
4390       // This can return overflow, underflow, or inexact; we don't care.
4391       // FIXME need to be more flexible about rounding mode.
4392       (void)V.convert(APFloat::IEEEhalf(),
4393                       APFloat::rmNearestTiesToEven, &Ignored);
4394       return getConstant(V.bitcastToAPInt(), DL, VT);
4395     }
4396     }
4397   }
4398 
4399   // Constant fold unary operations with a vector integer or float operand.
4400   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4401     if (BV->isConstant()) {
4402       switch (Opcode) {
4403       default:
4404         // FIXME: Entirely reasonable to perform folding of other unary
4405         // operations here as the need arises.
4406         break;
4407       case ISD::FNEG:
4408       case ISD::FABS:
4409       case ISD::FCEIL:
4410       case ISD::FTRUNC:
4411       case ISD::FFLOOR:
4412       case ISD::FP_EXTEND:
4413       case ISD::FP_TO_SINT:
4414       case ISD::FP_TO_UINT:
4415       case ISD::TRUNCATE:
4416       case ISD::ANY_EXTEND:
4417       case ISD::ZERO_EXTEND:
4418       case ISD::SIGN_EXTEND:
4419       case ISD::UINT_TO_FP:
4420       case ISD::SINT_TO_FP:
4421       case ISD::ABS:
4422       case ISD::BITREVERSE:
4423       case ISD::BSWAP:
4424       case ISD::CTLZ:
4425       case ISD::CTLZ_ZERO_UNDEF:
4426       case ISD::CTTZ:
4427       case ISD::CTTZ_ZERO_UNDEF:
4428       case ISD::CTPOP: {
4429         SDValue Ops = { Operand };
4430         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4431           return Fold;
4432       }
4433       }
4434     }
4435   }
4436 
4437   unsigned OpOpcode = Operand.getNode()->getOpcode();
4438   switch (Opcode) {
4439   case ISD::TokenFactor:
4440   case ISD::MERGE_VALUES:
4441   case ISD::CONCAT_VECTORS:
4442     return Operand;         // Factor, merge or concat of one node?  No need.
4443   case ISD::BUILD_VECTOR: {
4444     // Attempt to simplify BUILD_VECTOR.
4445     SDValue Ops[] = {Operand};
4446     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4447       return V;
4448     break;
4449   }
4450   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4451   case ISD::FP_EXTEND:
4452     assert(VT.isFloatingPoint() &&
4453            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4454     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4455     assert((!VT.isVector() ||
4456             VT.getVectorNumElements() ==
4457             Operand.getValueType().getVectorNumElements()) &&
4458            "Vector element count mismatch!");
4459     assert(Operand.getValueType().bitsLT(VT) &&
4460            "Invalid fpext node, dst < src!");
4461     if (Operand.isUndef())
4462       return getUNDEF(VT);
4463     break;
4464   case ISD::FP_TO_SINT:
4465   case ISD::FP_TO_UINT:
4466     if (Operand.isUndef())
4467       return getUNDEF(VT);
4468     break;
4469   case ISD::SINT_TO_FP:
4470   case ISD::UINT_TO_FP:
4471     // [us]itofp(undef) = 0, because the result value is bounded.
4472     if (Operand.isUndef())
4473       return getConstantFP(0.0, DL, VT);
4474     break;
4475   case ISD::SIGN_EXTEND:
4476     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4477            "Invalid SIGN_EXTEND!");
4478     assert(VT.isVector() == Operand.getValueType().isVector() &&
4479            "SIGN_EXTEND result type type should be vector iff the operand "
4480            "type is vector!");
4481     if (Operand.getValueType() == VT) return Operand;   // noop extension
4482     assert((!VT.isVector() ||
4483             VT.getVectorNumElements() ==
4484             Operand.getValueType().getVectorNumElements()) &&
4485            "Vector element count mismatch!");
4486     assert(Operand.getValueType().bitsLT(VT) &&
4487            "Invalid sext node, dst < src!");
4488     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4489       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4490     else if (OpOpcode == ISD::UNDEF)
4491       // sext(undef) = 0, because the top bits will all be the same.
4492       return getConstant(0, DL, VT);
4493     break;
4494   case ISD::ZERO_EXTEND:
4495     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4496            "Invalid ZERO_EXTEND!");
4497     assert(VT.isVector() == Operand.getValueType().isVector() &&
4498            "ZERO_EXTEND result type type should be vector iff the operand "
4499            "type is vector!");
4500     if (Operand.getValueType() == VT) return Operand;   // noop extension
4501     assert((!VT.isVector() ||
4502             VT.getVectorNumElements() ==
4503             Operand.getValueType().getVectorNumElements()) &&
4504            "Vector element count mismatch!");
4505     assert(Operand.getValueType().bitsLT(VT) &&
4506            "Invalid zext node, dst < src!");
4507     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4508       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4509     else if (OpOpcode == ISD::UNDEF)
4510       // zext(undef) = 0, because the top bits will be zero.
4511       return getConstant(0, DL, VT);
4512     break;
4513   case ISD::ANY_EXTEND:
4514     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4515            "Invalid ANY_EXTEND!");
4516     assert(VT.isVector() == Operand.getValueType().isVector() &&
4517            "ANY_EXTEND result type type should be vector iff the operand "
4518            "type is vector!");
4519     if (Operand.getValueType() == VT) return Operand;   // noop extension
4520     assert((!VT.isVector() ||
4521             VT.getVectorNumElements() ==
4522             Operand.getValueType().getVectorNumElements()) &&
4523            "Vector element count mismatch!");
4524     assert(Operand.getValueType().bitsLT(VT) &&
4525            "Invalid anyext node, dst < src!");
4526 
4527     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4528         OpOpcode == ISD::ANY_EXTEND)
4529       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4530       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4531     else if (OpOpcode == ISD::UNDEF)
4532       return getUNDEF(VT);
4533 
4534     // (ext (trunc x)) -> x
4535     if (OpOpcode == ISD::TRUNCATE) {
4536       SDValue OpOp = Operand.getOperand(0);
4537       if (OpOp.getValueType() == VT) {
4538         transferDbgValues(Operand, OpOp);
4539         return OpOp;
4540       }
4541     }
4542     break;
4543   case ISD::TRUNCATE:
4544     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4545            "Invalid TRUNCATE!");
4546     assert(VT.isVector() == Operand.getValueType().isVector() &&
4547            "TRUNCATE result type type should be vector iff the operand "
4548            "type is vector!");
4549     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4550     assert((!VT.isVector() ||
4551             VT.getVectorNumElements() ==
4552             Operand.getValueType().getVectorNumElements()) &&
4553            "Vector element count mismatch!");
4554     assert(Operand.getValueType().bitsGT(VT) &&
4555            "Invalid truncate node, src < dst!");
4556     if (OpOpcode == ISD::TRUNCATE)
4557       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4558     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4559         OpOpcode == ISD::ANY_EXTEND) {
4560       // If the source is smaller than the dest, we still need an extend.
4561       if (Operand.getOperand(0).getValueType().getScalarType()
4562             .bitsLT(VT.getScalarType()))
4563         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4564       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4565         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4566       return Operand.getOperand(0);
4567     }
4568     if (OpOpcode == ISD::UNDEF)
4569       return getUNDEF(VT);
4570     break;
4571   case ISD::ANY_EXTEND_VECTOR_INREG:
4572   case ISD::ZERO_EXTEND_VECTOR_INREG:
4573   case ISD::SIGN_EXTEND_VECTOR_INREG:
4574     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4575     assert(Operand.getValueType().bitsLE(VT) &&
4576            "The input must be the same size or smaller than the result.");
4577     assert(VT.getVectorNumElements() <
4578              Operand.getValueType().getVectorNumElements() &&
4579            "The destination vector type must have fewer lanes than the input.");
4580     break;
4581   case ISD::ABS:
4582     assert(VT.isInteger() && VT == Operand.getValueType() &&
4583            "Invalid ABS!");
4584     if (OpOpcode == ISD::UNDEF)
4585       return getUNDEF(VT);
4586     break;
4587   case ISD::BSWAP:
4588     assert(VT.isInteger() && VT == Operand.getValueType() &&
4589            "Invalid BSWAP!");
4590     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4591            "BSWAP types must be a multiple of 16 bits!");
4592     if (OpOpcode == ISD::UNDEF)
4593       return getUNDEF(VT);
4594     break;
4595   case ISD::BITREVERSE:
4596     assert(VT.isInteger() && VT == Operand.getValueType() &&
4597            "Invalid BITREVERSE!");
4598     if (OpOpcode == ISD::UNDEF)
4599       return getUNDEF(VT);
4600     break;
4601   case ISD::BITCAST:
4602     // Basic sanity checking.
4603     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4604            "Cannot BITCAST between types of different sizes!");
4605     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4606     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4607       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4608     if (OpOpcode == ISD::UNDEF)
4609       return getUNDEF(VT);
4610     break;
4611   case ISD::SCALAR_TO_VECTOR:
4612     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4613            (VT.getVectorElementType() == Operand.getValueType() ||
4614             (VT.getVectorElementType().isInteger() &&
4615              Operand.getValueType().isInteger() &&
4616              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4617            "Illegal SCALAR_TO_VECTOR node!");
4618     if (OpOpcode == ISD::UNDEF)
4619       return getUNDEF(VT);
4620     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4621     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4622         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4623         Operand.getConstantOperandVal(1) == 0 &&
4624         Operand.getOperand(0).getValueType() == VT)
4625       return Operand.getOperand(0);
4626     break;
4627   case ISD::FNEG:
4628     // Negation of an unknown bag of bits is still completely undefined.
4629     if (OpOpcode == ISD::UNDEF)
4630       return getUNDEF(VT);
4631 
4632     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4633     if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
4634         OpOpcode == ISD::FSUB)
4635       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4636                      Operand.getOperand(0), Flags);
4637     if (OpOpcode == ISD::FNEG)  // --X -> X
4638       return Operand.getOperand(0);
4639     break;
4640   case ISD::FABS:
4641     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4642       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4643     break;
4644   }
4645 
4646   SDNode *N;
4647   SDVTList VTs = getVTList(VT);
4648   SDValue Ops[] = {Operand};
4649   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4650     FoldingSetNodeID ID;
4651     AddNodeIDNode(ID, Opcode, VTs, Ops);
4652     void *IP = nullptr;
4653     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4654       E->intersectFlagsWith(Flags);
4655       return SDValue(E, 0);
4656     }
4657 
4658     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4659     N->setFlags(Flags);
4660     createOperands(N, Ops);
4661     CSEMap.InsertNode(N, IP);
4662   } else {
4663     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4664     createOperands(N, Ops);
4665   }
4666 
4667   InsertNode(N);
4668   SDValue V = SDValue(N, 0);
4669   NewSDValueDbgMsg(V, "Creating new node: ", this);
4670   return V;
4671 }
4672 
4673 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4674                                         const APInt &C2) {
4675   switch (Opcode) {
4676   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4677   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4678   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4679   case ISD::AND:  return std::make_pair(C1 & C2, true);
4680   case ISD::OR:   return std::make_pair(C1 | C2, true);
4681   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4682   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4683   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4684   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4685   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4686   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4687   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4688   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4689   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4690   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4691   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4692   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4693   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4694   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4695   case ISD::UDIV:
4696     if (!C2.getBoolValue())
4697       break;
4698     return std::make_pair(C1.udiv(C2), true);
4699   case ISD::UREM:
4700     if (!C2.getBoolValue())
4701       break;
4702     return std::make_pair(C1.urem(C2), true);
4703   case ISD::SDIV:
4704     if (!C2.getBoolValue())
4705       break;
4706     return std::make_pair(C1.sdiv(C2), true);
4707   case ISD::SREM:
4708     if (!C2.getBoolValue())
4709       break;
4710     return std::make_pair(C1.srem(C2), true);
4711   }
4712   return std::make_pair(APInt(1, 0), false);
4713 }
4714 
4715 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4716                                              EVT VT, const ConstantSDNode *C1,
4717                                              const ConstantSDNode *C2) {
4718   if (C1->isOpaque() || C2->isOpaque())
4719     return SDValue();
4720 
4721   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4722                                             C2->getAPIntValue());
4723   if (!Folded.second)
4724     return SDValue();
4725   return getConstant(Folded.first, DL, VT);
4726 }
4727 
4728 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4729                                        const GlobalAddressSDNode *GA,
4730                                        const SDNode *N2) {
4731   if (GA->getOpcode() != ISD::GlobalAddress)
4732     return SDValue();
4733   if (!TLI->isOffsetFoldingLegal(GA))
4734     return SDValue();
4735   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4736   if (!C2)
4737     return SDValue();
4738   int64_t Offset = C2->getSExtValue();
4739   switch (Opcode) {
4740   case ISD::ADD: break;
4741   case ISD::SUB: Offset = -uint64_t(Offset); break;
4742   default: return SDValue();
4743   }
4744   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4745                           GA->getOffset() + uint64_t(Offset));
4746 }
4747 
4748 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4749   switch (Opcode) {
4750   case ISD::SDIV:
4751   case ISD::UDIV:
4752   case ISD::SREM:
4753   case ISD::UREM: {
4754     // If a divisor is zero/undef or any element of a divisor vector is
4755     // zero/undef, the whole op is undef.
4756     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4757     SDValue Divisor = Ops[1];
4758     if (Divisor.isUndef() || isNullConstant(Divisor))
4759       return true;
4760 
4761     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4762            llvm::any_of(Divisor->op_values(),
4763                         [](SDValue V) { return V.isUndef() ||
4764                                         isNullConstant(V); });
4765     // TODO: Handle signed overflow.
4766   }
4767   // TODO: Handle oversized shifts.
4768   default:
4769     return false;
4770   }
4771 }
4772 
4773 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4774                                              EVT VT, SDNode *N1, SDNode *N2) {
4775   // If the opcode is a target-specific ISD node, there's nothing we can
4776   // do here and the operand rules may not line up with the below, so
4777   // bail early.
4778   if (Opcode >= ISD::BUILTIN_OP_END)
4779     return SDValue();
4780 
4781   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4782     return getUNDEF(VT);
4783 
4784   // Handle the case of two scalars.
4785   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4786     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4787       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4788       assert((!Folded || !VT.isVector()) &&
4789              "Can't fold vectors ops with scalar operands");
4790       return Folded;
4791     }
4792   }
4793 
4794   // fold (add Sym, c) -> Sym+c
4795   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4796     return FoldSymbolOffset(Opcode, VT, GA, N2);
4797   if (TLI->isCommutativeBinOp(Opcode))
4798     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4799       return FoldSymbolOffset(Opcode, VT, GA, N1);
4800 
4801   // For vectors, extract each constant element and fold them individually.
4802   // Either input may be an undef value.
4803   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4804   if (!BV1 && !N1->isUndef())
4805     return SDValue();
4806   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4807   if (!BV2 && !N2->isUndef())
4808     return SDValue();
4809   // If both operands are undef, that's handled the same way as scalars.
4810   if (!BV1 && !BV2)
4811     return SDValue();
4812 
4813   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4814          "Vector binop with different number of elements in operands?");
4815 
4816   EVT SVT = VT.getScalarType();
4817   EVT LegalSVT = SVT;
4818   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4819     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4820     if (LegalSVT.bitsLT(SVT))
4821       return SDValue();
4822   }
4823   SmallVector<SDValue, 4> Outputs;
4824   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4825   for (unsigned I = 0; I != NumOps; ++I) {
4826     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4827     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4828     if (SVT.isInteger()) {
4829       if (V1->getValueType(0).bitsGT(SVT))
4830         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4831       if (V2->getValueType(0).bitsGT(SVT))
4832         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4833     }
4834 
4835     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4836       return SDValue();
4837 
4838     // Fold one vector element.
4839     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4840     if (LegalSVT != SVT)
4841       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4842 
4843     // Scalar folding only succeeded if the result is a constant or UNDEF.
4844     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4845         ScalarResult.getOpcode() != ISD::ConstantFP)
4846       return SDValue();
4847     Outputs.push_back(ScalarResult);
4848   }
4849 
4850   assert(VT.getVectorNumElements() == Outputs.size() &&
4851          "Vector size mismatch!");
4852 
4853   // We may have a vector type but a scalar result. Create a splat.
4854   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4855 
4856   // Build a big vector out of the scalar elements we generated.
4857   return getBuildVector(VT, SDLoc(), Outputs);
4858 }
4859 
4860 // TODO: Merge with FoldConstantArithmetic
4861 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4862                                                    const SDLoc &DL, EVT VT,
4863                                                    ArrayRef<SDValue> Ops,
4864                                                    const SDNodeFlags Flags) {
4865   // If the opcode is a target-specific ISD node, there's nothing we can
4866   // do here and the operand rules may not line up with the below, so
4867   // bail early.
4868   if (Opcode >= ISD::BUILTIN_OP_END)
4869     return SDValue();
4870 
4871   if (isUndef(Opcode, Ops))
4872     return getUNDEF(VT);
4873 
4874   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4875   if (!VT.isVector())
4876     return SDValue();
4877 
4878   unsigned NumElts = VT.getVectorNumElements();
4879 
4880   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4881     return !Op.getValueType().isVector() ||
4882            Op.getValueType().getVectorNumElements() == NumElts;
4883   };
4884 
4885   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4886     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4887     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4888            (BV && BV->isConstant());
4889   };
4890 
4891   // All operands must be vector types with the same number of elements as
4892   // the result type and must be either UNDEF or a build vector of constant
4893   // or UNDEF scalars.
4894   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4895       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4896     return SDValue();
4897 
4898   // If we are comparing vectors, then the result needs to be a i1 boolean
4899   // that is then sign-extended back to the legal result type.
4900   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4901 
4902   // Find legal integer scalar type for constant promotion and
4903   // ensure that its scalar size is at least as large as source.
4904   EVT LegalSVT = VT.getScalarType();
4905   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4906     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4907     if (LegalSVT.bitsLT(VT.getScalarType()))
4908       return SDValue();
4909   }
4910 
4911   // Constant fold each scalar lane separately.
4912   SmallVector<SDValue, 4> ScalarResults;
4913   for (unsigned i = 0; i != NumElts; i++) {
4914     SmallVector<SDValue, 4> ScalarOps;
4915     for (SDValue Op : Ops) {
4916       EVT InSVT = Op.getValueType().getScalarType();
4917       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4918       if (!InBV) {
4919         // We've checked that this is UNDEF or a constant of some kind.
4920         if (Op.isUndef())
4921           ScalarOps.push_back(getUNDEF(InSVT));
4922         else
4923           ScalarOps.push_back(Op);
4924         continue;
4925       }
4926 
4927       SDValue ScalarOp = InBV->getOperand(i);
4928       EVT ScalarVT = ScalarOp.getValueType();
4929 
4930       // Build vector (integer) scalar operands may need implicit
4931       // truncation - do this before constant folding.
4932       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4933         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4934 
4935       ScalarOps.push_back(ScalarOp);
4936     }
4937 
4938     // Constant fold the scalar operands.
4939     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4940 
4941     // Legalize the (integer) scalar constant if necessary.
4942     if (LegalSVT != SVT)
4943       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4944 
4945     // Scalar folding only succeeded if the result is a constant or UNDEF.
4946     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4947         ScalarResult.getOpcode() != ISD::ConstantFP)
4948       return SDValue();
4949     ScalarResults.push_back(ScalarResult);
4950   }
4951 
4952   SDValue V = getBuildVector(VT, DL, ScalarResults);
4953   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4954   return V;
4955 }
4956 
4957 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4958                                          EVT VT, SDValue N1, SDValue N2) {
4959   // TODO: We don't do any constant folding for strict FP opcodes here, but we
4960   //       should. That will require dealing with a potentially non-default
4961   //       rounding mode, checking the "opStatus" return value from the APFloat
4962   //       math calculations, and possibly other variations.
4963   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4964   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4965   if (N1CFP && N2CFP) {
4966     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4967     switch (Opcode) {
4968     case ISD::FADD:
4969       C1.add(C2, APFloat::rmNearestTiesToEven);
4970       return getConstantFP(C1, DL, VT);
4971     case ISD::FSUB:
4972       C1.subtract(C2, APFloat::rmNearestTiesToEven);
4973       return getConstantFP(C1, DL, VT);
4974     case ISD::FMUL:
4975       C1.multiply(C2, APFloat::rmNearestTiesToEven);
4976       return getConstantFP(C1, DL, VT);
4977     case ISD::FDIV:
4978       C1.divide(C2, APFloat::rmNearestTiesToEven);
4979       return getConstantFP(C1, DL, VT);
4980     case ISD::FREM:
4981       C1.mod(C2);
4982       return getConstantFP(C1, DL, VT);
4983     case ISD::FCOPYSIGN:
4984       C1.copySign(C2);
4985       return getConstantFP(C1, DL, VT);
4986     default: break;
4987     }
4988   }
4989   if (N1CFP && Opcode == ISD::FP_ROUND) {
4990     APFloat C1 = N1CFP->getValueAPF();    // make copy
4991     bool Unused;
4992     // This can return overflow, underflow, or inexact; we don't care.
4993     // FIXME need to be more flexible about rounding mode.
4994     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
4995                       &Unused);
4996     return getConstantFP(C1, DL, VT);
4997   }
4998 
4999   switch (Opcode) {
5000   case ISD::FADD:
5001   case ISD::FSUB:
5002   case ISD::FMUL:
5003   case ISD::FDIV:
5004   case ISD::FREM:
5005     // If both operands are undef, the result is undef. If 1 operand is undef,
5006     // the result is NaN. This should match the behavior of the IR optimizer.
5007     if (N1.isUndef() && N2.isUndef())
5008       return getUNDEF(VT);
5009     if (N1.isUndef() || N2.isUndef())
5010       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5011   }
5012   return SDValue();
5013 }
5014 
5015 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5016                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5017   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5018   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5019   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5020   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5021 
5022   // Canonicalize constant to RHS if commutative.
5023   if (TLI->isCommutativeBinOp(Opcode)) {
5024     if (N1C && !N2C) {
5025       std::swap(N1C, N2C);
5026       std::swap(N1, N2);
5027     } else if (N1CFP && !N2CFP) {
5028       std::swap(N1CFP, N2CFP);
5029       std::swap(N1, N2);
5030     }
5031   }
5032 
5033   switch (Opcode) {
5034   default: break;
5035   case ISD::TokenFactor:
5036     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5037            N2.getValueType() == MVT::Other && "Invalid token factor!");
5038     // Fold trivial token factors.
5039     if (N1.getOpcode() == ISD::EntryToken) return N2;
5040     if (N2.getOpcode() == ISD::EntryToken) return N1;
5041     if (N1 == N2) return N1;
5042     break;
5043   case ISD::BUILD_VECTOR: {
5044     // Attempt to simplify BUILD_VECTOR.
5045     SDValue Ops[] = {N1, N2};
5046     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5047       return V;
5048     break;
5049   }
5050   case ISD::CONCAT_VECTORS: {
5051     SDValue Ops[] = {N1, N2};
5052     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5053       return V;
5054     break;
5055   }
5056   case ISD::AND:
5057     assert(VT.isInteger() && "This operator does not apply to FP types!");
5058     assert(N1.getValueType() == N2.getValueType() &&
5059            N1.getValueType() == VT && "Binary operator types must match!");
5060     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5061     // worth handling here.
5062     if (N2C && N2C->isNullValue())
5063       return N2;
5064     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5065       return N1;
5066     break;
5067   case ISD::OR:
5068   case ISD::XOR:
5069   case ISD::ADD:
5070   case ISD::SUB:
5071     assert(VT.isInteger() && "This operator does not apply to FP types!");
5072     assert(N1.getValueType() == N2.getValueType() &&
5073            N1.getValueType() == VT && "Binary operator types must match!");
5074     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5075     // it's worth handling here.
5076     if (N2C && N2C->isNullValue())
5077       return N1;
5078     break;
5079   case ISD::UDIV:
5080   case ISD::UREM:
5081   case ISD::MULHU:
5082   case ISD::MULHS:
5083   case ISD::MUL:
5084   case ISD::SDIV:
5085   case ISD::SREM:
5086   case ISD::SMIN:
5087   case ISD::SMAX:
5088   case ISD::UMIN:
5089   case ISD::UMAX:
5090   case ISD::SADDSAT:
5091   case ISD::SSUBSAT:
5092   case ISD::UADDSAT:
5093   case ISD::USUBSAT:
5094     assert(VT.isInteger() && "This operator does not apply to FP types!");
5095     assert(N1.getValueType() == N2.getValueType() &&
5096            N1.getValueType() == VT && "Binary operator types must match!");
5097     break;
5098   case ISD::FADD:
5099   case ISD::FSUB:
5100   case ISD::FMUL:
5101   case ISD::FDIV:
5102   case ISD::FREM:
5103     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5104     assert(N1.getValueType() == N2.getValueType() &&
5105            N1.getValueType() == VT && "Binary operator types must match!");
5106     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5107       return V;
5108     break;
5109   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5110     assert(N1.getValueType() == VT &&
5111            N1.getValueType().isFloatingPoint() &&
5112            N2.getValueType().isFloatingPoint() &&
5113            "Invalid FCOPYSIGN!");
5114     break;
5115   case ISD::SHL:
5116   case ISD::SRA:
5117   case ISD::SRL:
5118     if (SDValue V = simplifyShift(N1, N2))
5119       return V;
5120     LLVM_FALLTHROUGH;
5121   case ISD::ROTL:
5122   case ISD::ROTR:
5123     assert(VT == N1.getValueType() &&
5124            "Shift operators return type must be the same as their first arg");
5125     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5126            "Shifts only work on integers");
5127     assert((!VT.isVector() || VT == N2.getValueType()) &&
5128            "Vector shift amounts must be in the same as their first arg");
5129     // Verify that the shift amount VT is big enough to hold valid shift
5130     // amounts.  This catches things like trying to shift an i1024 value by an
5131     // i8, which is easy to fall into in generic code that uses
5132     // TLI.getShiftAmount().
5133     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5134            "Invalid use of small shift amount with oversized value!");
5135 
5136     // Always fold shifts of i1 values so the code generator doesn't need to
5137     // handle them.  Since we know the size of the shift has to be less than the
5138     // size of the value, the shift/rotate count is guaranteed to be zero.
5139     if (VT == MVT::i1)
5140       return N1;
5141     if (N2C && N2C->isNullValue())
5142       return N1;
5143     break;
5144   case ISD::FP_ROUND_INREG: {
5145     EVT EVT = cast<VTSDNode>(N2)->getVT();
5146     assert(VT == N1.getValueType() && "Not an inreg round!");
5147     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
5148            "Cannot FP_ROUND_INREG integer types");
5149     assert(EVT.isVector() == VT.isVector() &&
5150            "FP_ROUND_INREG type should be vector iff the operand "
5151            "type is vector!");
5152     assert((!EVT.isVector() ||
5153             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5154            "Vector element counts must match in FP_ROUND_INREG");
5155     assert(EVT.bitsLE(VT) && "Not rounding down!");
5156     (void)EVT;
5157     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
5158     break;
5159   }
5160   case ISD::FP_ROUND:
5161     assert(VT.isFloatingPoint() &&
5162            N1.getValueType().isFloatingPoint() &&
5163            VT.bitsLE(N1.getValueType()) &&
5164            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5165            "Invalid FP_ROUND!");
5166     if (N1.getValueType() == VT) return N1;  // noop conversion.
5167     break;
5168   case ISD::AssertSext:
5169   case ISD::AssertZext: {
5170     EVT EVT = cast<VTSDNode>(N2)->getVT();
5171     assert(VT == N1.getValueType() && "Not an inreg extend!");
5172     assert(VT.isInteger() && EVT.isInteger() &&
5173            "Cannot *_EXTEND_INREG FP types");
5174     assert(!EVT.isVector() &&
5175            "AssertSExt/AssertZExt type should be the vector element type "
5176            "rather than the vector type!");
5177     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5178     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5179     break;
5180   }
5181   case ISD::SIGN_EXTEND_INREG: {
5182     EVT EVT = cast<VTSDNode>(N2)->getVT();
5183     assert(VT == N1.getValueType() && "Not an inreg extend!");
5184     assert(VT.isInteger() && EVT.isInteger() &&
5185            "Cannot *_EXTEND_INREG FP types");
5186     assert(EVT.isVector() == VT.isVector() &&
5187            "SIGN_EXTEND_INREG type should be vector iff the operand "
5188            "type is vector!");
5189     assert((!EVT.isVector() ||
5190             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5191            "Vector element counts must match in SIGN_EXTEND_INREG");
5192     assert(EVT.bitsLE(VT) && "Not extending!");
5193     if (EVT == VT) return N1;  // Not actually extending
5194 
5195     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5196       unsigned FromBits = EVT.getScalarSizeInBits();
5197       Val <<= Val.getBitWidth() - FromBits;
5198       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5199       return getConstant(Val, DL, ConstantVT);
5200     };
5201 
5202     if (N1C) {
5203       const APInt &Val = N1C->getAPIntValue();
5204       return SignExtendInReg(Val, VT);
5205     }
5206     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5207       SmallVector<SDValue, 8> Ops;
5208       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5209       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5210         SDValue Op = N1.getOperand(i);
5211         if (Op.isUndef()) {
5212           Ops.push_back(getUNDEF(OpVT));
5213           continue;
5214         }
5215         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5216         APInt Val = C->getAPIntValue();
5217         Ops.push_back(SignExtendInReg(Val, OpVT));
5218       }
5219       return getBuildVector(VT, DL, Ops);
5220     }
5221     break;
5222   }
5223   case ISD::EXTRACT_VECTOR_ELT:
5224     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5225            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5226              element type of the vector.");
5227 
5228     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5229     if (N1.isUndef())
5230       return getUNDEF(VT);
5231 
5232     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5233     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5234       return getUNDEF(VT);
5235 
5236     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5237     // expanding copies of large vectors from registers.
5238     if (N2C &&
5239         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5240         N1.getNumOperands() > 0) {
5241       unsigned Factor =
5242         N1.getOperand(0).getValueType().getVectorNumElements();
5243       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5244                      N1.getOperand(N2C->getZExtValue() / Factor),
5245                      getConstant(N2C->getZExtValue() % Factor, DL,
5246                                  N2.getValueType()));
5247     }
5248 
5249     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5250     // expanding large vector constants.
5251     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5252       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5253 
5254       if (VT != Elt.getValueType())
5255         // If the vector element type is not legal, the BUILD_VECTOR operands
5256         // are promoted and implicitly truncated, and the result implicitly
5257         // extended. Make that explicit here.
5258         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5259 
5260       return Elt;
5261     }
5262 
5263     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5264     // operations are lowered to scalars.
5265     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5266       // If the indices are the same, return the inserted element else
5267       // if the indices are known different, extract the element from
5268       // the original vector.
5269       SDValue N1Op2 = N1.getOperand(2);
5270       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5271 
5272       if (N1Op2C && N2C) {
5273         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5274           if (VT == N1.getOperand(1).getValueType())
5275             return N1.getOperand(1);
5276           else
5277             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5278         }
5279 
5280         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5281       }
5282     }
5283 
5284     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5285     // when vector types are scalarized and v1iX is legal.
5286     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5287     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5288         N1.getValueType().getVectorNumElements() == 1) {
5289       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5290                      N1.getOperand(1));
5291     }
5292     break;
5293   case ISD::EXTRACT_ELEMENT:
5294     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5295     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5296            (N1.getValueType().isInteger() == VT.isInteger()) &&
5297            N1.getValueType() != VT &&
5298            "Wrong types for EXTRACT_ELEMENT!");
5299 
5300     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5301     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5302     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5303     if (N1.getOpcode() == ISD::BUILD_PAIR)
5304       return N1.getOperand(N2C->getZExtValue());
5305 
5306     // EXTRACT_ELEMENT of a constant int is also very common.
5307     if (N1C) {
5308       unsigned ElementSize = VT.getSizeInBits();
5309       unsigned Shift = ElementSize * N2C->getZExtValue();
5310       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5311       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5312     }
5313     break;
5314   case ISD::EXTRACT_SUBVECTOR:
5315     if (VT.isSimple() && N1.getValueType().isSimple()) {
5316       assert(VT.isVector() && N1.getValueType().isVector() &&
5317              "Extract subvector VTs must be a vectors!");
5318       assert(VT.getVectorElementType() ==
5319              N1.getValueType().getVectorElementType() &&
5320              "Extract subvector VTs must have the same element type!");
5321       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5322              "Extract subvector must be from larger vector to smaller vector!");
5323 
5324       if (N2C) {
5325         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5326                 <= N1.getValueType().getVectorNumElements())
5327                && "Extract subvector overflow!");
5328       }
5329 
5330       // Trivial extraction.
5331       if (VT.getSimpleVT() == N1.getSimpleValueType())
5332         return N1;
5333 
5334       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5335       if (N1.isUndef())
5336         return getUNDEF(VT);
5337 
5338       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5339       // the concat have the same type as the extract.
5340       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5341           N1.getNumOperands() > 0 &&
5342           VT == N1.getOperand(0).getValueType()) {
5343         unsigned Factor = VT.getVectorNumElements();
5344         return N1.getOperand(N2C->getZExtValue() / Factor);
5345       }
5346 
5347       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5348       // during shuffle legalization.
5349       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5350           VT == N1.getOperand(1).getValueType())
5351         return N1.getOperand(1);
5352     }
5353     break;
5354   }
5355 
5356   // Perform trivial constant folding.
5357   if (SDValue SV =
5358           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5359     return SV;
5360 
5361   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5362     return V;
5363 
5364   // Canonicalize an UNDEF to the RHS, even over a constant.
5365   if (N1.isUndef()) {
5366     if (TLI->isCommutativeBinOp(Opcode)) {
5367       std::swap(N1, N2);
5368     } else {
5369       switch (Opcode) {
5370       case ISD::FP_ROUND_INREG:
5371       case ISD::SIGN_EXTEND_INREG:
5372       case ISD::SUB:
5373         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5374       case ISD::UDIV:
5375       case ISD::SDIV:
5376       case ISD::UREM:
5377       case ISD::SREM:
5378       case ISD::SSUBSAT:
5379       case ISD::USUBSAT:
5380         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5381       }
5382     }
5383   }
5384 
5385   // Fold a bunch of operators when the RHS is undef.
5386   if (N2.isUndef()) {
5387     switch (Opcode) {
5388     case ISD::XOR:
5389       if (N1.isUndef())
5390         // Handle undef ^ undef -> 0 special case. This is a common
5391         // idiom (misuse).
5392         return getConstant(0, DL, VT);
5393       LLVM_FALLTHROUGH;
5394     case ISD::ADD:
5395     case ISD::SUB:
5396     case ISD::UDIV:
5397     case ISD::SDIV:
5398     case ISD::UREM:
5399     case ISD::SREM:
5400       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5401     case ISD::MUL:
5402     case ISD::AND:
5403     case ISD::SSUBSAT:
5404     case ISD::USUBSAT:
5405       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5406     case ISD::OR:
5407     case ISD::SADDSAT:
5408     case ISD::UADDSAT:
5409       return getAllOnesConstant(DL, VT);
5410     }
5411   }
5412 
5413   // Memoize this node if possible.
5414   SDNode *N;
5415   SDVTList VTs = getVTList(VT);
5416   SDValue Ops[] = {N1, N2};
5417   if (VT != MVT::Glue) {
5418     FoldingSetNodeID ID;
5419     AddNodeIDNode(ID, Opcode, VTs, Ops);
5420     void *IP = nullptr;
5421     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5422       E->intersectFlagsWith(Flags);
5423       return SDValue(E, 0);
5424     }
5425 
5426     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5427     N->setFlags(Flags);
5428     createOperands(N, Ops);
5429     CSEMap.InsertNode(N, IP);
5430   } else {
5431     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5432     createOperands(N, Ops);
5433   }
5434 
5435   InsertNode(N);
5436   SDValue V = SDValue(N, 0);
5437   NewSDValueDbgMsg(V, "Creating new node: ", this);
5438   return V;
5439 }
5440 
5441 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5442                               SDValue N1, SDValue N2, SDValue N3,
5443                               const SDNodeFlags Flags) {
5444   // Perform various simplifications.
5445   switch (Opcode) {
5446   case ISD::FMA: {
5447     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5448     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5449            N3.getValueType() == VT && "FMA types must match!");
5450     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5451     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5452     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5453     if (N1CFP && N2CFP && N3CFP) {
5454       APFloat  V1 = N1CFP->getValueAPF();
5455       const APFloat &V2 = N2CFP->getValueAPF();
5456       const APFloat &V3 = N3CFP->getValueAPF();
5457       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5458       return getConstantFP(V1, DL, VT);
5459     }
5460     break;
5461   }
5462   case ISD::BUILD_VECTOR: {
5463     // Attempt to simplify BUILD_VECTOR.
5464     SDValue Ops[] = {N1, N2, N3};
5465     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5466       return V;
5467     break;
5468   }
5469   case ISD::CONCAT_VECTORS: {
5470     SDValue Ops[] = {N1, N2, N3};
5471     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5472       return V;
5473     break;
5474   }
5475   case ISD::SETCC: {
5476     assert(VT.isInteger() && "SETCC result type must be an integer!");
5477     assert(N1.getValueType() == N2.getValueType() &&
5478            "SETCC operands must have the same type!");
5479     assert(VT.isVector() == N1.getValueType().isVector() &&
5480            "SETCC type should be vector iff the operand type is vector!");
5481     assert((!VT.isVector() ||
5482             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5483            "SETCC vector element counts must match!");
5484     // Use FoldSetCC to simplify SETCC's.
5485     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5486       return V;
5487     // Vector constant folding.
5488     SDValue Ops[] = {N1, N2, N3};
5489     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5490       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5491       return V;
5492     }
5493     break;
5494   }
5495   case ISD::SELECT:
5496   case ISD::VSELECT:
5497     if (SDValue V = simplifySelect(N1, N2, N3))
5498       return V;
5499     break;
5500   case ISD::VECTOR_SHUFFLE:
5501     llvm_unreachable("should use getVectorShuffle constructor!");
5502   case ISD::INSERT_VECTOR_ELT: {
5503     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5504     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5505     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5506       return getUNDEF(VT);
5507     break;
5508   }
5509   case ISD::INSERT_SUBVECTOR: {
5510     // Inserting undef into undef is still undef.
5511     if (N1.isUndef() && N2.isUndef())
5512       return getUNDEF(VT);
5513     SDValue Index = N3;
5514     if (VT.isSimple() && N1.getValueType().isSimple()
5515         && N2.getValueType().isSimple()) {
5516       assert(VT.isVector() && N1.getValueType().isVector() &&
5517              N2.getValueType().isVector() &&
5518              "Insert subvector VTs must be a vectors");
5519       assert(VT == N1.getValueType() &&
5520              "Dest and insert subvector source types must match!");
5521       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5522              "Insert subvector must be from smaller vector to larger vector!");
5523       if (isa<ConstantSDNode>(Index)) {
5524         assert((N2.getValueType().getVectorNumElements() +
5525                 cast<ConstantSDNode>(Index)->getZExtValue()
5526                 <= VT.getVectorNumElements())
5527                && "Insert subvector overflow!");
5528       }
5529 
5530       // Trivial insertion.
5531       if (VT.getSimpleVT() == N2.getSimpleValueType())
5532         return N2;
5533 
5534       // If this is an insert of an extracted vector into an undef vector, we
5535       // can just use the input to the extract.
5536       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5537           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5538         return N2.getOperand(0);
5539     }
5540     break;
5541   }
5542   case ISD::BITCAST:
5543     // Fold bit_convert nodes from a type to themselves.
5544     if (N1.getValueType() == VT)
5545       return N1;
5546     break;
5547   }
5548 
5549   // Memoize node if it doesn't produce a flag.
5550   SDNode *N;
5551   SDVTList VTs = getVTList(VT);
5552   SDValue Ops[] = {N1, N2, N3};
5553   if (VT != MVT::Glue) {
5554     FoldingSetNodeID ID;
5555     AddNodeIDNode(ID, Opcode, VTs, Ops);
5556     void *IP = nullptr;
5557     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5558       E->intersectFlagsWith(Flags);
5559       return SDValue(E, 0);
5560     }
5561 
5562     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5563     N->setFlags(Flags);
5564     createOperands(N, Ops);
5565     CSEMap.InsertNode(N, IP);
5566   } else {
5567     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5568     createOperands(N, Ops);
5569   }
5570 
5571   InsertNode(N);
5572   SDValue V = SDValue(N, 0);
5573   NewSDValueDbgMsg(V, "Creating new node: ", this);
5574   return V;
5575 }
5576 
5577 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5578                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5579   SDValue Ops[] = { N1, N2, N3, N4 };
5580   return getNode(Opcode, DL, VT, Ops);
5581 }
5582 
5583 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5584                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5585                               SDValue N5) {
5586   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5587   return getNode(Opcode, DL, VT, Ops);
5588 }
5589 
5590 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5591 /// the incoming stack arguments to be loaded from the stack.
5592 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5593   SmallVector<SDValue, 8> ArgChains;
5594 
5595   // Include the original chain at the beginning of the list. When this is
5596   // used by target LowerCall hooks, this helps legalize find the
5597   // CALLSEQ_BEGIN node.
5598   ArgChains.push_back(Chain);
5599 
5600   // Add a chain value for each stack argument.
5601   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5602        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5603     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5604       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5605         if (FI->getIndex() < 0)
5606           ArgChains.push_back(SDValue(L, 1));
5607 
5608   // Build a tokenfactor for all the chains.
5609   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5610 }
5611 
5612 /// getMemsetValue - Vectorized representation of the memset value
5613 /// operand.
5614 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5615                               const SDLoc &dl) {
5616   assert(!Value.isUndef());
5617 
5618   unsigned NumBits = VT.getScalarSizeInBits();
5619   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5620     assert(C->getAPIntValue().getBitWidth() == 8);
5621     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5622     if (VT.isInteger()) {
5623       bool IsOpaque = VT.getSizeInBits() > 64 ||
5624           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5625       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5626     }
5627     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5628                              VT);
5629   }
5630 
5631   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5632   EVT IntVT = VT.getScalarType();
5633   if (!IntVT.isInteger())
5634     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5635 
5636   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5637   if (NumBits > 8) {
5638     // Use a multiplication with 0x010101... to extend the input to the
5639     // required length.
5640     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5641     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5642                         DAG.getConstant(Magic, dl, IntVT));
5643   }
5644 
5645   if (VT != Value.getValueType() && !VT.isInteger())
5646     Value = DAG.getBitcast(VT.getScalarType(), Value);
5647   if (VT != Value.getValueType())
5648     Value = DAG.getSplatBuildVector(VT, dl, Value);
5649 
5650   return Value;
5651 }
5652 
5653 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5654 /// used when a memcpy is turned into a memset when the source is a constant
5655 /// string ptr.
5656 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5657                                   const TargetLowering &TLI,
5658                                   const ConstantDataArraySlice &Slice) {
5659   // Handle vector with all elements zero.
5660   if (Slice.Array == nullptr) {
5661     if (VT.isInteger())
5662       return DAG.getConstant(0, dl, VT);
5663     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5664       return DAG.getConstantFP(0.0, dl, VT);
5665     else if (VT.isVector()) {
5666       unsigned NumElts = VT.getVectorNumElements();
5667       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5668       return DAG.getNode(ISD::BITCAST, dl, VT,
5669                          DAG.getConstant(0, dl,
5670                                          EVT::getVectorVT(*DAG.getContext(),
5671                                                           EltVT, NumElts)));
5672     } else
5673       llvm_unreachable("Expected type!");
5674   }
5675 
5676   assert(!VT.isVector() && "Can't handle vector type here!");
5677   unsigned NumVTBits = VT.getSizeInBits();
5678   unsigned NumVTBytes = NumVTBits / 8;
5679   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5680 
5681   APInt Val(NumVTBits, 0);
5682   if (DAG.getDataLayout().isLittleEndian()) {
5683     for (unsigned i = 0; i != NumBytes; ++i)
5684       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5685   } else {
5686     for (unsigned i = 0; i != NumBytes; ++i)
5687       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5688   }
5689 
5690   // If the "cost" of materializing the integer immediate is less than the cost
5691   // of a load, then it is cost effective to turn the load into the immediate.
5692   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5693   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5694     return DAG.getConstant(Val, dl, VT);
5695   return SDValue(nullptr, 0);
5696 }
5697 
5698 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5699                                            const SDLoc &DL) {
5700   EVT VT = Base.getValueType();
5701   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5702 }
5703 
5704 /// Returns true if memcpy source is constant data.
5705 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5706   uint64_t SrcDelta = 0;
5707   GlobalAddressSDNode *G = nullptr;
5708   if (Src.getOpcode() == ISD::GlobalAddress)
5709     G = cast<GlobalAddressSDNode>(Src);
5710   else if (Src.getOpcode() == ISD::ADD &&
5711            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5712            Src.getOperand(1).getOpcode() == ISD::Constant) {
5713     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5714     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5715   }
5716   if (!G)
5717     return false;
5718 
5719   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5720                                   SrcDelta + G->getOffset());
5721 }
5722 
5723 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5724   // On Darwin, -Os means optimize for size without hurting performance, so
5725   // only really optimize for size when -Oz (MinSize) is used.
5726   if (MF.getTarget().getTargetTriple().isOSDarwin())
5727     return MF.getFunction().hasMinSize();
5728   return MF.getFunction().hasOptSize();
5729 }
5730 
5731 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5732                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5733                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5734                           SmallVector<SDValue, 16> &OutStoreChains) {
5735   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5736   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5737   SmallVector<SDValue, 16> GluedLoadChains;
5738   for (unsigned i = From; i < To; ++i) {
5739     OutChains.push_back(OutLoadChains[i]);
5740     GluedLoadChains.push_back(OutLoadChains[i]);
5741   }
5742 
5743   // Chain for all loads.
5744   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5745                                   GluedLoadChains);
5746 
5747   for (unsigned i = From; i < To; ++i) {
5748     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5749     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5750                                   ST->getBasePtr(), ST->getMemoryVT(),
5751                                   ST->getMemOperand());
5752     OutChains.push_back(NewStore);
5753   }
5754 }
5755 
5756 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5757                                        SDValue Chain, SDValue Dst, SDValue Src,
5758                                        uint64_t Size, unsigned Align,
5759                                        bool isVol, bool AlwaysInline,
5760                                        MachinePointerInfo DstPtrInfo,
5761                                        MachinePointerInfo SrcPtrInfo) {
5762   // Turn a memcpy of undef to nop.
5763   // FIXME: We need to honor volatile even is Src is undef.
5764   if (Src.isUndef())
5765     return Chain;
5766 
5767   // Expand memcpy to a series of load and store ops if the size operand falls
5768   // below a certain threshold.
5769   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5770   // rather than maybe a humongous number of loads and stores.
5771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5772   const DataLayout &DL = DAG.getDataLayout();
5773   LLVMContext &C = *DAG.getContext();
5774   std::vector<EVT> MemOps;
5775   bool DstAlignCanChange = false;
5776   MachineFunction &MF = DAG.getMachineFunction();
5777   MachineFrameInfo &MFI = MF.getFrameInfo();
5778   bool OptSize = shouldLowerMemFuncForSize(MF);
5779   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5780   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5781     DstAlignCanChange = true;
5782   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5783   if (Align > SrcAlign)
5784     SrcAlign = Align;
5785   ConstantDataArraySlice Slice;
5786   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5787   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5788   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5789 
5790   if (!TLI.findOptimalMemOpLowering(
5791           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align),
5792           (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5793           /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5794           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5795           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5796     return SDValue();
5797 
5798   if (DstAlignCanChange) {
5799     Type *Ty = MemOps[0].getTypeForEVT(C);
5800     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5801 
5802     // Don't promote to an alignment that would require dynamic stack
5803     // realignment.
5804     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5805     if (!TRI->needsStackRealignment(MF))
5806       while (NewAlign > Align &&
5807              DL.exceedsNaturalStackAlignment(NewAlign))
5808           NewAlign /= 2;
5809 
5810     if (NewAlign > Align) {
5811       // Give the stack frame object a larger alignment if needed.
5812       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5813         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5814       Align = NewAlign;
5815     }
5816   }
5817 
5818   MachineMemOperand::Flags MMOFlags =
5819       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5820   SmallVector<SDValue, 16> OutLoadChains;
5821   SmallVector<SDValue, 16> OutStoreChains;
5822   SmallVector<SDValue, 32> OutChains;
5823   unsigned NumMemOps = MemOps.size();
5824   uint64_t SrcOff = 0, DstOff = 0;
5825   for (unsigned i = 0; i != NumMemOps; ++i) {
5826     EVT VT = MemOps[i];
5827     unsigned VTSize = VT.getSizeInBits() / 8;
5828     SDValue Value, Store;
5829 
5830     if (VTSize > Size) {
5831       // Issuing an unaligned load / store pair  that overlaps with the previous
5832       // pair. Adjust the offset accordingly.
5833       assert(i == NumMemOps-1 && i != 0);
5834       SrcOff -= VTSize - Size;
5835       DstOff -= VTSize - Size;
5836     }
5837 
5838     if (CopyFromConstant &&
5839         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5840       // It's unlikely a store of a vector immediate can be done in a single
5841       // instruction. It would require a load from a constantpool first.
5842       // We only handle zero vectors here.
5843       // FIXME: Handle other cases where store of vector immediate is done in
5844       // a single instruction.
5845       ConstantDataArraySlice SubSlice;
5846       if (SrcOff < Slice.Length) {
5847         SubSlice = Slice;
5848         SubSlice.move(SrcOff);
5849       } else {
5850         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5851         SubSlice.Array = nullptr;
5852         SubSlice.Offset = 0;
5853         SubSlice.Length = VTSize;
5854       }
5855       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5856       if (Value.getNode()) {
5857         Store = DAG.getStore(Chain, dl, Value,
5858                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5859                              DstPtrInfo.getWithOffset(DstOff), Align,
5860                              MMOFlags);
5861         OutChains.push_back(Store);
5862       }
5863     }
5864 
5865     if (!Store.getNode()) {
5866       // The type might not be legal for the target.  This should only happen
5867       // if the type is smaller than a legal type, as on PPC, so the right
5868       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5869       // to Load/Store if NVT==VT.
5870       // FIXME does the case above also need this?
5871       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5872       assert(NVT.bitsGE(VT));
5873 
5874       bool isDereferenceable =
5875         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5876       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5877       if (isDereferenceable)
5878         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5879 
5880       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5881                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5882                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5883                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5884       OutLoadChains.push_back(Value.getValue(1));
5885 
5886       Store = DAG.getTruncStore(
5887           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5888           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5889       OutStoreChains.push_back(Store);
5890     }
5891     SrcOff += VTSize;
5892     DstOff += VTSize;
5893     Size -= VTSize;
5894   }
5895 
5896   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5897                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5898   unsigned NumLdStInMemcpy = OutStoreChains.size();
5899 
5900   if (NumLdStInMemcpy) {
5901     // It may be that memcpy might be converted to memset if it's memcpy
5902     // of constants. In such a case, we won't have loads and stores, but
5903     // just stores. In the absence of loads, there is nothing to gang up.
5904     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5905       // If target does not care, just leave as it.
5906       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5907         OutChains.push_back(OutLoadChains[i]);
5908         OutChains.push_back(OutStoreChains[i]);
5909       }
5910     } else {
5911       // Ld/St less than/equal limit set by target.
5912       if (NumLdStInMemcpy <= GluedLdStLimit) {
5913           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5914                                         NumLdStInMemcpy, OutLoadChains,
5915                                         OutStoreChains);
5916       } else {
5917         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5918         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5919         unsigned GlueIter = 0;
5920 
5921         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5922           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5923           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5924 
5925           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5926                                        OutLoadChains, OutStoreChains);
5927           GlueIter += GluedLdStLimit;
5928         }
5929 
5930         // Residual ld/st.
5931         if (RemainingLdStInMemcpy) {
5932           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5933                                         RemainingLdStInMemcpy, OutLoadChains,
5934                                         OutStoreChains);
5935         }
5936       }
5937     }
5938   }
5939   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5940 }
5941 
5942 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5943                                         SDValue Chain, SDValue Dst, SDValue Src,
5944                                         uint64_t Size, unsigned Align,
5945                                         bool isVol, bool AlwaysInline,
5946                                         MachinePointerInfo DstPtrInfo,
5947                                         MachinePointerInfo SrcPtrInfo) {
5948   // Turn a memmove of undef to nop.
5949   // FIXME: We need to honor volatile even is Src is undef.
5950   if (Src.isUndef())
5951     return Chain;
5952 
5953   // Expand memmove to a series of load and store ops if the size operand falls
5954   // below a certain threshold.
5955   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5956   const DataLayout &DL = DAG.getDataLayout();
5957   LLVMContext &C = *DAG.getContext();
5958   std::vector<EVT> MemOps;
5959   bool DstAlignCanChange = false;
5960   MachineFunction &MF = DAG.getMachineFunction();
5961   MachineFrameInfo &MFI = MF.getFrameInfo();
5962   bool OptSize = shouldLowerMemFuncForSize(MF);
5963   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5964   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5965     DstAlignCanChange = true;
5966   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5967   if (Align > SrcAlign)
5968     SrcAlign = Align;
5969   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5970   // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
5971   // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
5972   // correct code.
5973   bool AllowOverlap = false;
5974   if (!TLI.findOptimalMemOpLowering(
5975           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
5976           /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
5977           AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
5978           MF.getFunction().getAttributes()))
5979     return SDValue();
5980 
5981   if (DstAlignCanChange) {
5982     Type *Ty = MemOps[0].getTypeForEVT(C);
5983     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5984     if (NewAlign > Align) {
5985       // Give the stack frame object a larger alignment if needed.
5986       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5987         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5988       Align = NewAlign;
5989     }
5990   }
5991 
5992   MachineMemOperand::Flags MMOFlags =
5993       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5994   uint64_t SrcOff = 0, DstOff = 0;
5995   SmallVector<SDValue, 8> LoadValues;
5996   SmallVector<SDValue, 8> LoadChains;
5997   SmallVector<SDValue, 8> OutChains;
5998   unsigned NumMemOps = MemOps.size();
5999   for (unsigned i = 0; i < NumMemOps; i++) {
6000     EVT VT = MemOps[i];
6001     unsigned VTSize = VT.getSizeInBits() / 8;
6002     SDValue Value;
6003 
6004     bool isDereferenceable =
6005       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6006     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6007     if (isDereferenceable)
6008       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6009 
6010     Value =
6011         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6012                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6013     LoadValues.push_back(Value);
6014     LoadChains.push_back(Value.getValue(1));
6015     SrcOff += VTSize;
6016   }
6017   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6018   OutChains.clear();
6019   for (unsigned i = 0; i < NumMemOps; i++) {
6020     EVT VT = MemOps[i];
6021     unsigned VTSize = VT.getSizeInBits() / 8;
6022     SDValue Store;
6023 
6024     Store = DAG.getStore(Chain, dl, LoadValues[i],
6025                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6026                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6027     OutChains.push_back(Store);
6028     DstOff += VTSize;
6029   }
6030 
6031   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6032 }
6033 
6034 /// Lower the call to 'memset' intrinsic function into a series of store
6035 /// operations.
6036 ///
6037 /// \param DAG Selection DAG where lowered code is placed.
6038 /// \param dl Link to corresponding IR location.
6039 /// \param Chain Control flow dependency.
6040 /// \param Dst Pointer to destination memory location.
6041 /// \param Src Value of byte to write into the memory.
6042 /// \param Size Number of bytes to write.
6043 /// \param Align Alignment of the destination in bytes.
6044 /// \param isVol True if destination is volatile.
6045 /// \param DstPtrInfo IR information on the memory pointer.
6046 /// \returns New head in the control flow, if lowering was successful, empty
6047 /// SDValue otherwise.
6048 ///
6049 /// The function tries to replace 'llvm.memset' intrinsic with several store
6050 /// operations and value calculation code. This is usually profitable for small
6051 /// memory size.
6052 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6053                                SDValue Chain, SDValue Dst, SDValue Src,
6054                                uint64_t Size, unsigned Align, bool isVol,
6055                                MachinePointerInfo DstPtrInfo) {
6056   // Turn a memset of undef to nop.
6057   // FIXME: We need to honor volatile even is Src is undef.
6058   if (Src.isUndef())
6059     return Chain;
6060 
6061   // Expand memset to a series of load/store ops if the size operand
6062   // falls below a certain threshold.
6063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6064   std::vector<EVT> MemOps;
6065   bool DstAlignCanChange = false;
6066   MachineFunction &MF = DAG.getMachineFunction();
6067   MachineFrameInfo &MFI = MF.getFrameInfo();
6068   bool OptSize = shouldLowerMemFuncForSize(MF);
6069   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6070   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6071     DstAlignCanChange = true;
6072   bool IsZeroVal =
6073     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6074   if (!TLI.findOptimalMemOpLowering(
6075           MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6076           (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6077           /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6078           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6079           MF.getFunction().getAttributes()))
6080     return SDValue();
6081 
6082   if (DstAlignCanChange) {
6083     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6084     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6085     if (NewAlign > Align) {
6086       // Give the stack frame object a larger alignment if needed.
6087       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6088         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6089       Align = NewAlign;
6090     }
6091   }
6092 
6093   SmallVector<SDValue, 8> OutChains;
6094   uint64_t DstOff = 0;
6095   unsigned NumMemOps = MemOps.size();
6096 
6097   // Find the largest store and generate the bit pattern for it.
6098   EVT LargestVT = MemOps[0];
6099   for (unsigned i = 1; i < NumMemOps; i++)
6100     if (MemOps[i].bitsGT(LargestVT))
6101       LargestVT = MemOps[i];
6102   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6103 
6104   for (unsigned i = 0; i < NumMemOps; i++) {
6105     EVT VT = MemOps[i];
6106     unsigned VTSize = VT.getSizeInBits() / 8;
6107     if (VTSize > Size) {
6108       // Issuing an unaligned load / store pair  that overlaps with the previous
6109       // pair. Adjust the offset accordingly.
6110       assert(i == NumMemOps-1 && i != 0);
6111       DstOff -= VTSize - Size;
6112     }
6113 
6114     // If this store is smaller than the largest store see whether we can get
6115     // the smaller value for free with a truncate.
6116     SDValue Value = MemSetValue;
6117     if (VT.bitsLT(LargestVT)) {
6118       if (!LargestVT.isVector() && !VT.isVector() &&
6119           TLI.isTruncateFree(LargestVT, VT))
6120         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6121       else
6122         Value = getMemsetValue(Src, VT, DAG, dl);
6123     }
6124     assert(Value.getValueType() == VT && "Value with wrong type.");
6125     SDValue Store = DAG.getStore(
6126         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6127         DstPtrInfo.getWithOffset(DstOff), Align,
6128         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6129     OutChains.push_back(Store);
6130     DstOff += VT.getSizeInBits() / 8;
6131     Size -= VTSize;
6132   }
6133 
6134   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6135 }
6136 
6137 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6138                                             unsigned AS) {
6139   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6140   // pointer operands can be losslessly bitcasted to pointers of address space 0
6141   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6142     report_fatal_error("cannot lower memory intrinsic in address space " +
6143                        Twine(AS));
6144   }
6145 }
6146 
6147 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6148                                 SDValue Src, SDValue Size, unsigned Align,
6149                                 bool isVol, bool AlwaysInline, bool isTailCall,
6150                                 MachinePointerInfo DstPtrInfo,
6151                                 MachinePointerInfo SrcPtrInfo) {
6152   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6153 
6154   // Check to see if we should lower the memcpy to loads and stores first.
6155   // For cases within the target-specified limits, this is the best choice.
6156   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6157   if (ConstantSize) {
6158     // Memcpy with size zero? Just return the original chain.
6159     if (ConstantSize->isNullValue())
6160       return Chain;
6161 
6162     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6163                                              ConstantSize->getZExtValue(),Align,
6164                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6165     if (Result.getNode())
6166       return Result;
6167   }
6168 
6169   // Then check to see if we should lower the memcpy with target-specific
6170   // code. If the target chooses to do this, this is the next best.
6171   if (TSI) {
6172     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6173         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6174         DstPtrInfo, SrcPtrInfo);
6175     if (Result.getNode())
6176       return Result;
6177   }
6178 
6179   // If we really need inline code and the target declined to provide it,
6180   // use a (potentially long) sequence of loads and stores.
6181   if (AlwaysInline) {
6182     assert(ConstantSize && "AlwaysInline requires a constant size!");
6183     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6184                                    ConstantSize->getZExtValue(), Align, isVol,
6185                                    true, DstPtrInfo, SrcPtrInfo);
6186   }
6187 
6188   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6189   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6190 
6191   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6192   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6193   // respect volatile, so they may do things like read or write memory
6194   // beyond the given memory regions. But fixing this isn't easy, and most
6195   // people don't care.
6196 
6197   // Emit a library call.
6198   TargetLowering::ArgListTy Args;
6199   TargetLowering::ArgListEntry Entry;
6200   Entry.Ty = Type::getInt8PtrTy(*getContext());
6201   Entry.Node = Dst; Args.push_back(Entry);
6202   Entry.Node = Src; Args.push_back(Entry);
6203 
6204   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6205   Entry.Node = Size; Args.push_back(Entry);
6206   // FIXME: pass in SDLoc
6207   TargetLowering::CallLoweringInfo CLI(*this);
6208   CLI.setDebugLoc(dl)
6209       .setChain(Chain)
6210       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6211                     Dst.getValueType().getTypeForEVT(*getContext()),
6212                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6213                                       TLI->getPointerTy(getDataLayout())),
6214                     std::move(Args))
6215       .setDiscardResult()
6216       .setTailCall(isTailCall);
6217 
6218   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6219   return CallResult.second;
6220 }
6221 
6222 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6223                                       SDValue Dst, unsigned DstAlign,
6224                                       SDValue Src, unsigned SrcAlign,
6225                                       SDValue Size, Type *SizeTy,
6226                                       unsigned ElemSz, bool isTailCall,
6227                                       MachinePointerInfo DstPtrInfo,
6228                                       MachinePointerInfo SrcPtrInfo) {
6229   // Emit a library call.
6230   TargetLowering::ArgListTy Args;
6231   TargetLowering::ArgListEntry Entry;
6232   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6233   Entry.Node = Dst;
6234   Args.push_back(Entry);
6235 
6236   Entry.Node = Src;
6237   Args.push_back(Entry);
6238 
6239   Entry.Ty = SizeTy;
6240   Entry.Node = Size;
6241   Args.push_back(Entry);
6242 
6243   RTLIB::Libcall LibraryCall =
6244       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6245   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6246     report_fatal_error("Unsupported element size");
6247 
6248   TargetLowering::CallLoweringInfo CLI(*this);
6249   CLI.setDebugLoc(dl)
6250       .setChain(Chain)
6251       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6252                     Type::getVoidTy(*getContext()),
6253                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6254                                       TLI->getPointerTy(getDataLayout())),
6255                     std::move(Args))
6256       .setDiscardResult()
6257       .setTailCall(isTailCall);
6258 
6259   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6260   return CallResult.second;
6261 }
6262 
6263 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6264                                  SDValue Src, SDValue Size, unsigned Align,
6265                                  bool isVol, bool isTailCall,
6266                                  MachinePointerInfo DstPtrInfo,
6267                                  MachinePointerInfo SrcPtrInfo) {
6268   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6269 
6270   // Check to see if we should lower the memmove to loads and stores first.
6271   // For cases within the target-specified limits, this is the best choice.
6272   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6273   if (ConstantSize) {
6274     // Memmove with size zero? Just return the original chain.
6275     if (ConstantSize->isNullValue())
6276       return Chain;
6277 
6278     SDValue Result =
6279       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6280                                ConstantSize->getZExtValue(), Align, isVol,
6281                                false, DstPtrInfo, SrcPtrInfo);
6282     if (Result.getNode())
6283       return Result;
6284   }
6285 
6286   // Then check to see if we should lower the memmove with target-specific
6287   // code. If the target chooses to do this, this is the next best.
6288   if (TSI) {
6289     SDValue Result = TSI->EmitTargetCodeForMemmove(
6290         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6291     if (Result.getNode())
6292       return Result;
6293   }
6294 
6295   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6296   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6297 
6298   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6299   // not be safe.  See memcpy above for more details.
6300 
6301   // Emit a library call.
6302   TargetLowering::ArgListTy Args;
6303   TargetLowering::ArgListEntry Entry;
6304   Entry.Ty = Type::getInt8PtrTy(*getContext());
6305   Entry.Node = Dst; Args.push_back(Entry);
6306   Entry.Node = Src; Args.push_back(Entry);
6307 
6308   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6309   Entry.Node = Size; Args.push_back(Entry);
6310   // FIXME:  pass in SDLoc
6311   TargetLowering::CallLoweringInfo CLI(*this);
6312   CLI.setDebugLoc(dl)
6313       .setChain(Chain)
6314       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6315                     Dst.getValueType().getTypeForEVT(*getContext()),
6316                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6317                                       TLI->getPointerTy(getDataLayout())),
6318                     std::move(Args))
6319       .setDiscardResult()
6320       .setTailCall(isTailCall);
6321 
6322   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6323   return CallResult.second;
6324 }
6325 
6326 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6327                                        SDValue Dst, unsigned DstAlign,
6328                                        SDValue Src, unsigned SrcAlign,
6329                                        SDValue Size, Type *SizeTy,
6330                                        unsigned ElemSz, bool isTailCall,
6331                                        MachinePointerInfo DstPtrInfo,
6332                                        MachinePointerInfo SrcPtrInfo) {
6333   // Emit a library call.
6334   TargetLowering::ArgListTy Args;
6335   TargetLowering::ArgListEntry Entry;
6336   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6337   Entry.Node = Dst;
6338   Args.push_back(Entry);
6339 
6340   Entry.Node = Src;
6341   Args.push_back(Entry);
6342 
6343   Entry.Ty = SizeTy;
6344   Entry.Node = Size;
6345   Args.push_back(Entry);
6346 
6347   RTLIB::Libcall LibraryCall =
6348       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6349   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6350     report_fatal_error("Unsupported element size");
6351 
6352   TargetLowering::CallLoweringInfo CLI(*this);
6353   CLI.setDebugLoc(dl)
6354       .setChain(Chain)
6355       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6356                     Type::getVoidTy(*getContext()),
6357                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6358                                       TLI->getPointerTy(getDataLayout())),
6359                     std::move(Args))
6360       .setDiscardResult()
6361       .setTailCall(isTailCall);
6362 
6363   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6364   return CallResult.second;
6365 }
6366 
6367 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6368                                 SDValue Src, SDValue Size, unsigned Align,
6369                                 bool isVol, bool isTailCall,
6370                                 MachinePointerInfo DstPtrInfo) {
6371   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6372 
6373   // Check to see if we should lower the memset to stores first.
6374   // For cases within the target-specified limits, this is the best choice.
6375   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6376   if (ConstantSize) {
6377     // Memset with size zero? Just return the original chain.
6378     if (ConstantSize->isNullValue())
6379       return Chain;
6380 
6381     SDValue Result =
6382       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6383                       Align, isVol, DstPtrInfo);
6384 
6385     if (Result.getNode())
6386       return Result;
6387   }
6388 
6389   // Then check to see if we should lower the memset with target-specific
6390   // code. If the target chooses to do this, this is the next best.
6391   if (TSI) {
6392     SDValue Result = TSI->EmitTargetCodeForMemset(
6393         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6394     if (Result.getNode())
6395       return Result;
6396   }
6397 
6398   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6399 
6400   // Emit a library call.
6401   TargetLowering::ArgListTy Args;
6402   TargetLowering::ArgListEntry Entry;
6403   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6404   Args.push_back(Entry);
6405   Entry.Node = Src;
6406   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6407   Args.push_back(Entry);
6408   Entry.Node = Size;
6409   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6410   Args.push_back(Entry);
6411 
6412   // FIXME: pass in SDLoc
6413   TargetLowering::CallLoweringInfo CLI(*this);
6414   CLI.setDebugLoc(dl)
6415       .setChain(Chain)
6416       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6417                     Dst.getValueType().getTypeForEVT(*getContext()),
6418                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6419                                       TLI->getPointerTy(getDataLayout())),
6420                     std::move(Args))
6421       .setDiscardResult()
6422       .setTailCall(isTailCall);
6423 
6424   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6425   return CallResult.second;
6426 }
6427 
6428 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6429                                       SDValue Dst, unsigned DstAlign,
6430                                       SDValue Value, SDValue Size, Type *SizeTy,
6431                                       unsigned ElemSz, bool isTailCall,
6432                                       MachinePointerInfo DstPtrInfo) {
6433   // Emit a library call.
6434   TargetLowering::ArgListTy Args;
6435   TargetLowering::ArgListEntry Entry;
6436   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6437   Entry.Node = Dst;
6438   Args.push_back(Entry);
6439 
6440   Entry.Ty = Type::getInt8Ty(*getContext());
6441   Entry.Node = Value;
6442   Args.push_back(Entry);
6443 
6444   Entry.Ty = SizeTy;
6445   Entry.Node = Size;
6446   Args.push_back(Entry);
6447 
6448   RTLIB::Libcall LibraryCall =
6449       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6450   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6451     report_fatal_error("Unsupported element size");
6452 
6453   TargetLowering::CallLoweringInfo CLI(*this);
6454   CLI.setDebugLoc(dl)
6455       .setChain(Chain)
6456       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6457                     Type::getVoidTy(*getContext()),
6458                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6459                                       TLI->getPointerTy(getDataLayout())),
6460                     std::move(Args))
6461       .setDiscardResult()
6462       .setTailCall(isTailCall);
6463 
6464   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6465   return CallResult.second;
6466 }
6467 
6468 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6469                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6470                                 MachineMemOperand *MMO) {
6471   FoldingSetNodeID ID;
6472   ID.AddInteger(MemVT.getRawBits());
6473   AddNodeIDNode(ID, Opcode, VTList, Ops);
6474   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6475   void* IP = nullptr;
6476   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6477     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6478     return SDValue(E, 0);
6479   }
6480 
6481   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6482                                     VTList, MemVT, MMO);
6483   createOperands(N, Ops);
6484 
6485   CSEMap.InsertNode(N, IP);
6486   InsertNode(N);
6487   return SDValue(N, 0);
6488 }
6489 
6490 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6491                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6492                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6493                                        MachineMemOperand *MMO) {
6494   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6495          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6496   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6497 
6498   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6499   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6500 }
6501 
6502 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6503                                 SDValue Chain, SDValue Ptr, SDValue Val,
6504                                 MachineMemOperand *MMO) {
6505   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6506           Opcode == ISD::ATOMIC_LOAD_SUB ||
6507           Opcode == ISD::ATOMIC_LOAD_AND ||
6508           Opcode == ISD::ATOMIC_LOAD_CLR ||
6509           Opcode == ISD::ATOMIC_LOAD_OR ||
6510           Opcode == ISD::ATOMIC_LOAD_XOR ||
6511           Opcode == ISD::ATOMIC_LOAD_NAND ||
6512           Opcode == ISD::ATOMIC_LOAD_MIN ||
6513           Opcode == ISD::ATOMIC_LOAD_MAX ||
6514           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6515           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6516           Opcode == ISD::ATOMIC_LOAD_FADD ||
6517           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6518           Opcode == ISD::ATOMIC_SWAP ||
6519           Opcode == ISD::ATOMIC_STORE) &&
6520          "Invalid Atomic Op");
6521 
6522   EVT VT = Val.getValueType();
6523 
6524   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6525                                                getVTList(VT, MVT::Other);
6526   SDValue Ops[] = {Chain, Ptr, Val};
6527   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6528 }
6529 
6530 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6531                                 EVT VT, SDValue Chain, SDValue Ptr,
6532                                 MachineMemOperand *MMO) {
6533   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6534 
6535   SDVTList VTs = getVTList(VT, MVT::Other);
6536   SDValue Ops[] = {Chain, Ptr};
6537   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6538 }
6539 
6540 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6541 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6542   if (Ops.size() == 1)
6543     return Ops[0];
6544 
6545   SmallVector<EVT, 4> VTs;
6546   VTs.reserve(Ops.size());
6547   for (unsigned i = 0; i < Ops.size(); ++i)
6548     VTs.push_back(Ops[i].getValueType());
6549   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6550 }
6551 
6552 SDValue SelectionDAG::getMemIntrinsicNode(
6553     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6554     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6555     MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) {
6556   if (Align == 0)  // Ensure that codegen never sees alignment 0
6557     Align = getEVTAlignment(MemVT);
6558 
6559   if (!Size)
6560     Size = MemVT.getStoreSize();
6561 
6562   MachineFunction &MF = getMachineFunction();
6563   MachineMemOperand *MMO =
6564       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6565 
6566   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6567 }
6568 
6569 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6570                                           SDVTList VTList,
6571                                           ArrayRef<SDValue> Ops, EVT MemVT,
6572                                           MachineMemOperand *MMO) {
6573   assert((Opcode == ISD::INTRINSIC_VOID ||
6574           Opcode == ISD::INTRINSIC_W_CHAIN ||
6575           Opcode == ISD::PREFETCH ||
6576           Opcode == ISD::LIFETIME_START ||
6577           Opcode == ISD::LIFETIME_END ||
6578           ((int)Opcode <= std::numeric_limits<int>::max() &&
6579            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6580          "Opcode is not a memory-accessing opcode!");
6581 
6582   // Memoize the node unless it returns a flag.
6583   MemIntrinsicSDNode *N;
6584   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6585     FoldingSetNodeID ID;
6586     AddNodeIDNode(ID, Opcode, VTList, Ops);
6587     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6588         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6589     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6590     void *IP = nullptr;
6591     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6592       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6593       return SDValue(E, 0);
6594     }
6595 
6596     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6597                                       VTList, MemVT, MMO);
6598     createOperands(N, Ops);
6599 
6600   CSEMap.InsertNode(N, IP);
6601   } else {
6602     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6603                                       VTList, MemVT, MMO);
6604     createOperands(N, Ops);
6605   }
6606   InsertNode(N);
6607   return SDValue(N, 0);
6608 }
6609 
6610 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6611                                       SDValue Chain, int FrameIndex,
6612                                       int64_t Size, int64_t Offset) {
6613   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6614   const auto VTs = getVTList(MVT::Other);
6615   SDValue Ops[2] = {
6616       Chain,
6617       getFrameIndex(FrameIndex,
6618                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6619                     true)};
6620 
6621   FoldingSetNodeID ID;
6622   AddNodeIDNode(ID, Opcode, VTs, Ops);
6623   ID.AddInteger(FrameIndex);
6624   ID.AddInteger(Size);
6625   ID.AddInteger(Offset);
6626   void *IP = nullptr;
6627   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6628     return SDValue(E, 0);
6629 
6630   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6631       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6632   createOperands(N, Ops);
6633   CSEMap.InsertNode(N, IP);
6634   InsertNode(N);
6635   SDValue V(N, 0);
6636   NewSDValueDbgMsg(V, "Creating new node: ", this);
6637   return V;
6638 }
6639 
6640 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6641 /// MachinePointerInfo record from it.  This is particularly useful because the
6642 /// code generator has many cases where it doesn't bother passing in a
6643 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6644 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6645                                            SelectionDAG &DAG, SDValue Ptr,
6646                                            int64_t Offset = 0) {
6647   // If this is FI+Offset, we can model it.
6648   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6649     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6650                                              FI->getIndex(), Offset);
6651 
6652   // If this is (FI+Offset1)+Offset2, we can model it.
6653   if (Ptr.getOpcode() != ISD::ADD ||
6654       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6655       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6656     return Info;
6657 
6658   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6659   return MachinePointerInfo::getFixedStack(
6660       DAG.getMachineFunction(), FI,
6661       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6662 }
6663 
6664 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6665 /// MachinePointerInfo record from it.  This is particularly useful because the
6666 /// code generator has many cases where it doesn't bother passing in a
6667 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6668 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6669                                            SelectionDAG &DAG, SDValue Ptr,
6670                                            SDValue OffsetOp) {
6671   // If the 'Offset' value isn't a constant, we can't handle this.
6672   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6673     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6674   if (OffsetOp.isUndef())
6675     return InferPointerInfo(Info, DAG, Ptr);
6676   return Info;
6677 }
6678 
6679 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6680                               EVT VT, const SDLoc &dl, SDValue Chain,
6681                               SDValue Ptr, SDValue Offset,
6682                               MachinePointerInfo PtrInfo, EVT MemVT,
6683                               unsigned Alignment,
6684                               MachineMemOperand::Flags MMOFlags,
6685                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6686   assert(Chain.getValueType() == MVT::Other &&
6687         "Invalid chain type");
6688   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6689     Alignment = getEVTAlignment(MemVT);
6690 
6691   MMOFlags |= MachineMemOperand::MOLoad;
6692   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6693   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6694   // clients.
6695   if (PtrInfo.V.isNull())
6696     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6697 
6698   MachineFunction &MF = getMachineFunction();
6699   MachineMemOperand *MMO = MF.getMachineMemOperand(
6700       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6701   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6702 }
6703 
6704 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6705                               EVT VT, const SDLoc &dl, SDValue Chain,
6706                               SDValue Ptr, SDValue Offset, EVT MemVT,
6707                               MachineMemOperand *MMO) {
6708   if (VT == MemVT) {
6709     ExtType = ISD::NON_EXTLOAD;
6710   } else if (ExtType == ISD::NON_EXTLOAD) {
6711     assert(VT == MemVT && "Non-extending load from different memory type!");
6712   } else {
6713     // Extending load.
6714     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6715            "Should only be an extending load, not truncating!");
6716     assert(VT.isInteger() == MemVT.isInteger() &&
6717            "Cannot convert from FP to Int or Int -> FP!");
6718     assert(VT.isVector() == MemVT.isVector() &&
6719            "Cannot use an ext load to convert to or from a vector!");
6720     assert((!VT.isVector() ||
6721             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6722            "Cannot use an ext load to change the number of vector elements!");
6723   }
6724 
6725   bool Indexed = AM != ISD::UNINDEXED;
6726   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6727 
6728   SDVTList VTs = Indexed ?
6729     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6730   SDValue Ops[] = { Chain, Ptr, Offset };
6731   FoldingSetNodeID ID;
6732   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6733   ID.AddInteger(MemVT.getRawBits());
6734   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6735       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6736   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6737   void *IP = nullptr;
6738   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6739     cast<LoadSDNode>(E)->refineAlignment(MMO);
6740     return SDValue(E, 0);
6741   }
6742   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6743                                   ExtType, MemVT, MMO);
6744   createOperands(N, Ops);
6745 
6746   CSEMap.InsertNode(N, IP);
6747   InsertNode(N);
6748   SDValue V(N, 0);
6749   NewSDValueDbgMsg(V, "Creating new node: ", this);
6750   return V;
6751 }
6752 
6753 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6754                               SDValue Ptr, MachinePointerInfo PtrInfo,
6755                               unsigned Alignment,
6756                               MachineMemOperand::Flags MMOFlags,
6757                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6758   SDValue Undef = getUNDEF(Ptr.getValueType());
6759   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6760                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6761 }
6762 
6763 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6764                               SDValue Ptr, MachineMemOperand *MMO) {
6765   SDValue Undef = getUNDEF(Ptr.getValueType());
6766   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6767                  VT, MMO);
6768 }
6769 
6770 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6771                                  EVT VT, SDValue Chain, SDValue Ptr,
6772                                  MachinePointerInfo PtrInfo, EVT MemVT,
6773                                  unsigned Alignment,
6774                                  MachineMemOperand::Flags MMOFlags,
6775                                  const AAMDNodes &AAInfo) {
6776   SDValue Undef = getUNDEF(Ptr.getValueType());
6777   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6778                  MemVT, Alignment, MMOFlags, AAInfo);
6779 }
6780 
6781 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6782                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6783                                  MachineMemOperand *MMO) {
6784   SDValue Undef = getUNDEF(Ptr.getValueType());
6785   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6786                  MemVT, MMO);
6787 }
6788 
6789 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6790                                      SDValue Base, SDValue Offset,
6791                                      ISD::MemIndexedMode AM) {
6792   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6793   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6794   // Don't propagate the invariant or dereferenceable flags.
6795   auto MMOFlags =
6796       LD->getMemOperand()->getFlags() &
6797       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6798   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6799                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6800                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6801                  LD->getAAInfo());
6802 }
6803 
6804 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6805                                SDValue Ptr, MachinePointerInfo PtrInfo,
6806                                unsigned Alignment,
6807                                MachineMemOperand::Flags MMOFlags,
6808                                const AAMDNodes &AAInfo) {
6809   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6810   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6811     Alignment = getEVTAlignment(Val.getValueType());
6812 
6813   MMOFlags |= MachineMemOperand::MOStore;
6814   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6815 
6816   if (PtrInfo.V.isNull())
6817     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6818 
6819   MachineFunction &MF = getMachineFunction();
6820   MachineMemOperand *MMO = MF.getMachineMemOperand(
6821       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6822   return getStore(Chain, dl, Val, Ptr, MMO);
6823 }
6824 
6825 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6826                                SDValue Ptr, MachineMemOperand *MMO) {
6827   assert(Chain.getValueType() == MVT::Other &&
6828         "Invalid chain type");
6829   EVT VT = Val.getValueType();
6830   SDVTList VTs = getVTList(MVT::Other);
6831   SDValue Undef = getUNDEF(Ptr.getValueType());
6832   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6833   FoldingSetNodeID ID;
6834   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6835   ID.AddInteger(VT.getRawBits());
6836   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6837       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6838   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6839   void *IP = nullptr;
6840   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6841     cast<StoreSDNode>(E)->refineAlignment(MMO);
6842     return SDValue(E, 0);
6843   }
6844   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6845                                    ISD::UNINDEXED, false, VT, MMO);
6846   createOperands(N, Ops);
6847 
6848   CSEMap.InsertNode(N, IP);
6849   InsertNode(N);
6850   SDValue V(N, 0);
6851   NewSDValueDbgMsg(V, "Creating new node: ", this);
6852   return V;
6853 }
6854 
6855 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6856                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6857                                     EVT SVT, unsigned Alignment,
6858                                     MachineMemOperand::Flags MMOFlags,
6859                                     const AAMDNodes &AAInfo) {
6860   assert(Chain.getValueType() == MVT::Other &&
6861         "Invalid chain type");
6862   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6863     Alignment = getEVTAlignment(SVT);
6864 
6865   MMOFlags |= MachineMemOperand::MOStore;
6866   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6867 
6868   if (PtrInfo.V.isNull())
6869     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6870 
6871   MachineFunction &MF = getMachineFunction();
6872   MachineMemOperand *MMO = MF.getMachineMemOperand(
6873       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6874   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6875 }
6876 
6877 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6878                                     SDValue Ptr, EVT SVT,
6879                                     MachineMemOperand *MMO) {
6880   EVT VT = Val.getValueType();
6881 
6882   assert(Chain.getValueType() == MVT::Other &&
6883         "Invalid chain type");
6884   if (VT == SVT)
6885     return getStore(Chain, dl, Val, Ptr, MMO);
6886 
6887   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6888          "Should only be a truncating store, not extending!");
6889   assert(VT.isInteger() == SVT.isInteger() &&
6890          "Can't do FP-INT conversion!");
6891   assert(VT.isVector() == SVT.isVector() &&
6892          "Cannot use trunc store to convert to or from a vector!");
6893   assert((!VT.isVector() ||
6894           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6895          "Cannot use trunc store to change the number of vector elements!");
6896 
6897   SDVTList VTs = getVTList(MVT::Other);
6898   SDValue Undef = getUNDEF(Ptr.getValueType());
6899   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6900   FoldingSetNodeID ID;
6901   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6902   ID.AddInteger(SVT.getRawBits());
6903   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6904       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6905   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6906   void *IP = nullptr;
6907   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6908     cast<StoreSDNode>(E)->refineAlignment(MMO);
6909     return SDValue(E, 0);
6910   }
6911   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6912                                    ISD::UNINDEXED, true, SVT, MMO);
6913   createOperands(N, Ops);
6914 
6915   CSEMap.InsertNode(N, IP);
6916   InsertNode(N);
6917   SDValue V(N, 0);
6918   NewSDValueDbgMsg(V, "Creating new node: ", this);
6919   return V;
6920 }
6921 
6922 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6923                                       SDValue Base, SDValue Offset,
6924                                       ISD::MemIndexedMode AM) {
6925   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6926   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6927   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6928   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6929   FoldingSetNodeID ID;
6930   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6931   ID.AddInteger(ST->getMemoryVT().getRawBits());
6932   ID.AddInteger(ST->getRawSubclassData());
6933   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6934   void *IP = nullptr;
6935   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6936     return SDValue(E, 0);
6937 
6938   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6939                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6940                                    ST->getMemOperand());
6941   createOperands(N, Ops);
6942 
6943   CSEMap.InsertNode(N, IP);
6944   InsertNode(N);
6945   SDValue V(N, 0);
6946   NewSDValueDbgMsg(V, "Creating new node: ", this);
6947   return V;
6948 }
6949 
6950 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6951                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6952                                     EVT MemVT, MachineMemOperand *MMO,
6953                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6954   SDVTList VTs = getVTList(VT, MVT::Other);
6955   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6956   FoldingSetNodeID ID;
6957   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6958   ID.AddInteger(MemVT.getRawBits());
6959   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6960       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6961   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6962   void *IP = nullptr;
6963   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6964     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6965     return SDValue(E, 0);
6966   }
6967   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6968                                         ExtTy, isExpanding, MemVT, MMO);
6969   createOperands(N, Ops);
6970 
6971   CSEMap.InsertNode(N, IP);
6972   InsertNode(N);
6973   SDValue V(N, 0);
6974   NewSDValueDbgMsg(V, "Creating new node: ", this);
6975   return V;
6976 }
6977 
6978 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6979                                      SDValue Val, SDValue Ptr, SDValue Mask,
6980                                      EVT MemVT, MachineMemOperand *MMO,
6981                                      bool IsTruncating, bool IsCompressing) {
6982   assert(Chain.getValueType() == MVT::Other &&
6983         "Invalid chain type");
6984   SDVTList VTs = getVTList(MVT::Other);
6985   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6986   FoldingSetNodeID ID;
6987   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6988   ID.AddInteger(MemVT.getRawBits());
6989   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6990       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6991   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6992   void *IP = nullptr;
6993   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6994     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6995     return SDValue(E, 0);
6996   }
6997   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6998                                          IsTruncating, IsCompressing, MemVT, MMO);
6999   createOperands(N, Ops);
7000 
7001   CSEMap.InsertNode(N, IP);
7002   InsertNode(N);
7003   SDValue V(N, 0);
7004   NewSDValueDbgMsg(V, "Creating new node: ", this);
7005   return V;
7006 }
7007 
7008 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7009                                       ArrayRef<SDValue> Ops,
7010                                       MachineMemOperand *MMO) {
7011   assert(Ops.size() == 6 && "Incompatible number of operands");
7012 
7013   FoldingSetNodeID ID;
7014   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7015   ID.AddInteger(VT.getRawBits());
7016   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7017       dl.getIROrder(), VTs, VT, MMO));
7018   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7019   void *IP = nullptr;
7020   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7021     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7022     return SDValue(E, 0);
7023   }
7024 
7025   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7026                                           VTs, VT, MMO);
7027   createOperands(N, Ops);
7028 
7029   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7030          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7031   assert(N->getMask().getValueType().getVectorNumElements() ==
7032              N->getValueType(0).getVectorNumElements() &&
7033          "Vector width mismatch between mask and data");
7034   assert(N->getIndex().getValueType().getVectorNumElements() >=
7035              N->getValueType(0).getVectorNumElements() &&
7036          "Vector width mismatch between index and data");
7037   assert(isa<ConstantSDNode>(N->getScale()) &&
7038          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7039          "Scale should be a constant power of 2");
7040 
7041   CSEMap.InsertNode(N, IP);
7042   InsertNode(N);
7043   SDValue V(N, 0);
7044   NewSDValueDbgMsg(V, "Creating new node: ", this);
7045   return V;
7046 }
7047 
7048 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7049                                        ArrayRef<SDValue> Ops,
7050                                        MachineMemOperand *MMO) {
7051   assert(Ops.size() == 6 && "Incompatible number of operands");
7052 
7053   FoldingSetNodeID ID;
7054   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7055   ID.AddInteger(VT.getRawBits());
7056   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7057       dl.getIROrder(), VTs, VT, MMO));
7058   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7059   void *IP = nullptr;
7060   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7061     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7062     return SDValue(E, 0);
7063   }
7064   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7065                                            VTs, VT, MMO);
7066   createOperands(N, Ops);
7067 
7068   assert(N->getMask().getValueType().getVectorNumElements() ==
7069              N->getValue().getValueType().getVectorNumElements() &&
7070          "Vector width mismatch between mask and data");
7071   assert(N->getIndex().getValueType().getVectorNumElements() >=
7072              N->getValue().getValueType().getVectorNumElements() &&
7073          "Vector width mismatch between index and data");
7074   assert(isa<ConstantSDNode>(N->getScale()) &&
7075          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7076          "Scale should be a constant power of 2");
7077 
7078   CSEMap.InsertNode(N, IP);
7079   InsertNode(N);
7080   SDValue V(N, 0);
7081   NewSDValueDbgMsg(V, "Creating new node: ", this);
7082   return V;
7083 }
7084 
7085 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7086   // select undef, T, F --> T (if T is a constant), otherwise F
7087   // select, ?, undef, F --> F
7088   // select, ?, T, undef --> T
7089   if (Cond.isUndef())
7090     return isConstantValueOfAnyType(T) ? T : F;
7091   if (T.isUndef())
7092     return F;
7093   if (F.isUndef())
7094     return T;
7095 
7096   // select true, T, F --> T
7097   // select false, T, F --> F
7098   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7099     return CondC->isNullValue() ? F : T;
7100 
7101   // TODO: This should simplify VSELECT with constant condition using something
7102   // like this (but check boolean contents to be complete?):
7103   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7104   //    return T;
7105   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7106   //    return F;
7107 
7108   // select ?, T, T --> T
7109   if (T == F)
7110     return T;
7111 
7112   return SDValue();
7113 }
7114 
7115 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7116   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7117   if (X.isUndef())
7118     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7119   // shift X, undef --> undef (because it may shift by the bitwidth)
7120   if (Y.isUndef())
7121     return getUNDEF(X.getValueType());
7122 
7123   // shift 0, Y --> 0
7124   // shift X, 0 --> X
7125   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7126     return X;
7127 
7128   // shift X, C >= bitwidth(X) --> undef
7129   // All vector elements must be too big (or undef) to avoid partial undefs.
7130   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7131     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7132   };
7133   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7134     return getUNDEF(X.getValueType());
7135 
7136   return SDValue();
7137 }
7138 
7139 // TODO: Use fast-math-flags to enable more simplifications.
7140 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7141   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7142   if (!YC)
7143     return SDValue();
7144 
7145   // X + -0.0 --> X
7146   if (Opcode == ISD::FADD)
7147     if (YC->getValueAPF().isNegZero())
7148       return X;
7149 
7150   // X - +0.0 --> X
7151   if (Opcode == ISD::FSUB)
7152     if (YC->getValueAPF().isPosZero())
7153       return X;
7154 
7155   // X * 1.0 --> X
7156   // X / 1.0 --> X
7157   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7158     if (YC->getValueAPF().isExactlyValue(1.0))
7159       return X;
7160 
7161   return SDValue();
7162 }
7163 
7164 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7165                                SDValue Ptr, SDValue SV, unsigned Align) {
7166   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7167   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7168 }
7169 
7170 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7171                               ArrayRef<SDUse> Ops) {
7172   switch (Ops.size()) {
7173   case 0: return getNode(Opcode, DL, VT);
7174   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7175   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7176   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7177   default: break;
7178   }
7179 
7180   // Copy from an SDUse array into an SDValue array for use with
7181   // the regular getNode logic.
7182   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7183   return getNode(Opcode, DL, VT, NewOps);
7184 }
7185 
7186 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7187                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7188   unsigned NumOps = Ops.size();
7189   switch (NumOps) {
7190   case 0: return getNode(Opcode, DL, VT);
7191   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7192   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7193   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7194   default: break;
7195   }
7196 
7197   switch (Opcode) {
7198   default: break;
7199   case ISD::BUILD_VECTOR:
7200     // Attempt to simplify BUILD_VECTOR.
7201     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7202       return V;
7203     break;
7204   case ISD::CONCAT_VECTORS:
7205     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7206       return V;
7207     break;
7208   case ISD::SELECT_CC:
7209     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7210     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7211            "LHS and RHS of condition must have same type!");
7212     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7213            "True and False arms of SelectCC must have same type!");
7214     assert(Ops[2].getValueType() == VT &&
7215            "select_cc node must be of same type as true and false value!");
7216     break;
7217   case ISD::BR_CC:
7218     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7219     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7220            "LHS/RHS of comparison should match types!");
7221     break;
7222   }
7223 
7224   // Memoize nodes.
7225   SDNode *N;
7226   SDVTList VTs = getVTList(VT);
7227 
7228   if (VT != MVT::Glue) {
7229     FoldingSetNodeID ID;
7230     AddNodeIDNode(ID, Opcode, VTs, Ops);
7231     void *IP = nullptr;
7232 
7233     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7234       return SDValue(E, 0);
7235 
7236     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7237     createOperands(N, Ops);
7238 
7239     CSEMap.InsertNode(N, IP);
7240   } else {
7241     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7242     createOperands(N, Ops);
7243   }
7244 
7245   InsertNode(N);
7246   SDValue V(N, 0);
7247   NewSDValueDbgMsg(V, "Creating new node: ", this);
7248   return V;
7249 }
7250 
7251 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7252                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7253   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7254 }
7255 
7256 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7257                               ArrayRef<SDValue> Ops) {
7258   if (VTList.NumVTs == 1)
7259     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7260 
7261 #if 0
7262   switch (Opcode) {
7263   // FIXME: figure out how to safely handle things like
7264   // int foo(int x) { return 1 << (x & 255); }
7265   // int bar() { return foo(256); }
7266   case ISD::SRA_PARTS:
7267   case ISD::SRL_PARTS:
7268   case ISD::SHL_PARTS:
7269     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7270         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7271       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7272     else if (N3.getOpcode() == ISD::AND)
7273       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7274         // If the and is only masking out bits that cannot effect the shift,
7275         // eliminate the and.
7276         unsigned NumBits = VT.getScalarSizeInBits()*2;
7277         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7278           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7279       }
7280     break;
7281   }
7282 #endif
7283 
7284   // Memoize the node unless it returns a flag.
7285   SDNode *N;
7286   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7287     FoldingSetNodeID ID;
7288     AddNodeIDNode(ID, Opcode, VTList, Ops);
7289     void *IP = nullptr;
7290     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7291       return SDValue(E, 0);
7292 
7293     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7294     createOperands(N, Ops);
7295     CSEMap.InsertNode(N, IP);
7296   } else {
7297     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7298     createOperands(N, Ops);
7299   }
7300   InsertNode(N);
7301   SDValue V(N, 0);
7302   NewSDValueDbgMsg(V, "Creating new node: ", this);
7303   return V;
7304 }
7305 
7306 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7307                               SDVTList VTList) {
7308   return getNode(Opcode, DL, VTList, None);
7309 }
7310 
7311 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7312                               SDValue N1) {
7313   SDValue Ops[] = { N1 };
7314   return getNode(Opcode, DL, VTList, Ops);
7315 }
7316 
7317 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7318                               SDValue N1, SDValue N2) {
7319   SDValue Ops[] = { N1, N2 };
7320   return getNode(Opcode, DL, VTList, Ops);
7321 }
7322 
7323 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7324                               SDValue N1, SDValue N2, SDValue N3) {
7325   SDValue Ops[] = { N1, N2, N3 };
7326   return getNode(Opcode, DL, VTList, Ops);
7327 }
7328 
7329 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7330                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7331   SDValue Ops[] = { N1, N2, N3, N4 };
7332   return getNode(Opcode, DL, VTList, Ops);
7333 }
7334 
7335 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7336                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7337                               SDValue N5) {
7338   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7339   return getNode(Opcode, DL, VTList, Ops);
7340 }
7341 
7342 SDVTList SelectionDAG::getVTList(EVT VT) {
7343   return makeVTList(SDNode::getValueTypeList(VT), 1);
7344 }
7345 
7346 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7347   FoldingSetNodeID ID;
7348   ID.AddInteger(2U);
7349   ID.AddInteger(VT1.getRawBits());
7350   ID.AddInteger(VT2.getRawBits());
7351 
7352   void *IP = nullptr;
7353   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7354   if (!Result) {
7355     EVT *Array = Allocator.Allocate<EVT>(2);
7356     Array[0] = VT1;
7357     Array[1] = VT2;
7358     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7359     VTListMap.InsertNode(Result, IP);
7360   }
7361   return Result->getSDVTList();
7362 }
7363 
7364 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7365   FoldingSetNodeID ID;
7366   ID.AddInteger(3U);
7367   ID.AddInteger(VT1.getRawBits());
7368   ID.AddInteger(VT2.getRawBits());
7369   ID.AddInteger(VT3.getRawBits());
7370 
7371   void *IP = nullptr;
7372   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7373   if (!Result) {
7374     EVT *Array = Allocator.Allocate<EVT>(3);
7375     Array[0] = VT1;
7376     Array[1] = VT2;
7377     Array[2] = VT3;
7378     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7379     VTListMap.InsertNode(Result, IP);
7380   }
7381   return Result->getSDVTList();
7382 }
7383 
7384 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7385   FoldingSetNodeID ID;
7386   ID.AddInteger(4U);
7387   ID.AddInteger(VT1.getRawBits());
7388   ID.AddInteger(VT2.getRawBits());
7389   ID.AddInteger(VT3.getRawBits());
7390   ID.AddInteger(VT4.getRawBits());
7391 
7392   void *IP = nullptr;
7393   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7394   if (!Result) {
7395     EVT *Array = Allocator.Allocate<EVT>(4);
7396     Array[0] = VT1;
7397     Array[1] = VT2;
7398     Array[2] = VT3;
7399     Array[3] = VT4;
7400     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7401     VTListMap.InsertNode(Result, IP);
7402   }
7403   return Result->getSDVTList();
7404 }
7405 
7406 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7407   unsigned NumVTs = VTs.size();
7408   FoldingSetNodeID ID;
7409   ID.AddInteger(NumVTs);
7410   for (unsigned index = 0; index < NumVTs; index++) {
7411     ID.AddInteger(VTs[index].getRawBits());
7412   }
7413 
7414   void *IP = nullptr;
7415   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7416   if (!Result) {
7417     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7418     llvm::copy(VTs, Array);
7419     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7420     VTListMap.InsertNode(Result, IP);
7421   }
7422   return Result->getSDVTList();
7423 }
7424 
7425 
7426 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7427 /// specified operands.  If the resultant node already exists in the DAG,
7428 /// this does not modify the specified node, instead it returns the node that
7429 /// already exists.  If the resultant node does not exist in the DAG, the
7430 /// input node is returned.  As a degenerate case, if you specify the same
7431 /// input operands as the node already has, the input node is returned.
7432 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7433   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7434 
7435   // Check to see if there is no change.
7436   if (Op == N->getOperand(0)) return N;
7437 
7438   // See if the modified node already exists.
7439   void *InsertPos = nullptr;
7440   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7441     return Existing;
7442 
7443   // Nope it doesn't.  Remove the node from its current place in the maps.
7444   if (InsertPos)
7445     if (!RemoveNodeFromCSEMaps(N))
7446       InsertPos = nullptr;
7447 
7448   // Now we update the operands.
7449   N->OperandList[0].set(Op);
7450 
7451   updateDivergence(N);
7452   // If this gets put into a CSE map, add it.
7453   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7454   return N;
7455 }
7456 
7457 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7458   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7459 
7460   // Check to see if there is no change.
7461   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7462     return N;   // No operands changed, just return the input node.
7463 
7464   // See if the modified node already exists.
7465   void *InsertPos = nullptr;
7466   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7467     return Existing;
7468 
7469   // Nope it doesn't.  Remove the node from its current place in the maps.
7470   if (InsertPos)
7471     if (!RemoveNodeFromCSEMaps(N))
7472       InsertPos = nullptr;
7473 
7474   // Now we update the operands.
7475   if (N->OperandList[0] != Op1)
7476     N->OperandList[0].set(Op1);
7477   if (N->OperandList[1] != Op2)
7478     N->OperandList[1].set(Op2);
7479 
7480   updateDivergence(N);
7481   // If this gets put into a CSE map, add it.
7482   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7483   return N;
7484 }
7485 
7486 SDNode *SelectionDAG::
7487 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7488   SDValue Ops[] = { Op1, Op2, Op3 };
7489   return UpdateNodeOperands(N, Ops);
7490 }
7491 
7492 SDNode *SelectionDAG::
7493 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7494                    SDValue Op3, SDValue Op4) {
7495   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7496   return UpdateNodeOperands(N, Ops);
7497 }
7498 
7499 SDNode *SelectionDAG::
7500 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7501                    SDValue Op3, SDValue Op4, SDValue Op5) {
7502   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7503   return UpdateNodeOperands(N, Ops);
7504 }
7505 
7506 SDNode *SelectionDAG::
7507 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7508   unsigned NumOps = Ops.size();
7509   assert(N->getNumOperands() == NumOps &&
7510          "Update with wrong number of operands");
7511 
7512   // If no operands changed just return the input node.
7513   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7514     return N;
7515 
7516   // See if the modified node already exists.
7517   void *InsertPos = nullptr;
7518   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7519     return Existing;
7520 
7521   // Nope it doesn't.  Remove the node from its current place in the maps.
7522   if (InsertPos)
7523     if (!RemoveNodeFromCSEMaps(N))
7524       InsertPos = nullptr;
7525 
7526   // Now we update the operands.
7527   for (unsigned i = 0; i != NumOps; ++i)
7528     if (N->OperandList[i] != Ops[i])
7529       N->OperandList[i].set(Ops[i]);
7530 
7531   updateDivergence(N);
7532   // If this gets put into a CSE map, add it.
7533   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7534   return N;
7535 }
7536 
7537 /// DropOperands - Release the operands and set this node to have
7538 /// zero operands.
7539 void SDNode::DropOperands() {
7540   // Unlike the code in MorphNodeTo that does this, we don't need to
7541   // watch for dead nodes here.
7542   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7543     SDUse &Use = *I++;
7544     Use.set(SDValue());
7545   }
7546 }
7547 
7548 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7549                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7550   if (NewMemRefs.empty()) {
7551     N->clearMemRefs();
7552     return;
7553   }
7554 
7555   // Check if we can avoid allocating by storing a single reference directly.
7556   if (NewMemRefs.size() == 1) {
7557     N->MemRefs = NewMemRefs[0];
7558     N->NumMemRefs = 1;
7559     return;
7560   }
7561 
7562   MachineMemOperand **MemRefsBuffer =
7563       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7564   llvm::copy(NewMemRefs, MemRefsBuffer);
7565   N->MemRefs = MemRefsBuffer;
7566   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7567 }
7568 
7569 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7570 /// machine opcode.
7571 ///
7572 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7573                                    EVT VT) {
7574   SDVTList VTs = getVTList(VT);
7575   return SelectNodeTo(N, MachineOpc, VTs, None);
7576 }
7577 
7578 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7579                                    EVT VT, SDValue Op1) {
7580   SDVTList VTs = getVTList(VT);
7581   SDValue Ops[] = { Op1 };
7582   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7583 }
7584 
7585 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7586                                    EVT VT, SDValue Op1,
7587                                    SDValue Op2) {
7588   SDVTList VTs = getVTList(VT);
7589   SDValue Ops[] = { Op1, Op2 };
7590   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7591 }
7592 
7593 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7594                                    EVT VT, SDValue Op1,
7595                                    SDValue Op2, SDValue Op3) {
7596   SDVTList VTs = getVTList(VT);
7597   SDValue Ops[] = { Op1, Op2, Op3 };
7598   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7599 }
7600 
7601 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7602                                    EVT VT, ArrayRef<SDValue> Ops) {
7603   SDVTList VTs = getVTList(VT);
7604   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7605 }
7606 
7607 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7608                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7609   SDVTList VTs = getVTList(VT1, VT2);
7610   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7611 }
7612 
7613 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7614                                    EVT VT1, EVT VT2) {
7615   SDVTList VTs = getVTList(VT1, VT2);
7616   return SelectNodeTo(N, MachineOpc, VTs, None);
7617 }
7618 
7619 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7620                                    EVT VT1, EVT VT2, EVT VT3,
7621                                    ArrayRef<SDValue> Ops) {
7622   SDVTList VTs = getVTList(VT1, VT2, VT3);
7623   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7624 }
7625 
7626 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7627                                    EVT VT1, EVT VT2,
7628                                    SDValue Op1, SDValue Op2) {
7629   SDVTList VTs = getVTList(VT1, VT2);
7630   SDValue Ops[] = { Op1, Op2 };
7631   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7632 }
7633 
7634 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7635                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7636   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7637   // Reset the NodeID to -1.
7638   New->setNodeId(-1);
7639   if (New != N) {
7640     ReplaceAllUsesWith(N, New);
7641     RemoveDeadNode(N);
7642   }
7643   return New;
7644 }
7645 
7646 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7647 /// the line number information on the merged node since it is not possible to
7648 /// preserve the information that operation is associated with multiple lines.
7649 /// This will make the debugger working better at -O0, were there is a higher
7650 /// probability having other instructions associated with that line.
7651 ///
7652 /// For IROrder, we keep the smaller of the two
7653 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7654   DebugLoc NLoc = N->getDebugLoc();
7655   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7656     N->setDebugLoc(DebugLoc());
7657   }
7658   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7659   N->setIROrder(Order);
7660   return N;
7661 }
7662 
7663 /// MorphNodeTo - This *mutates* the specified node to have the specified
7664 /// return type, opcode, and operands.
7665 ///
7666 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7667 /// node of the specified opcode and operands, it returns that node instead of
7668 /// the current one.  Note that the SDLoc need not be the same.
7669 ///
7670 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7671 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7672 /// node, and because it doesn't require CSE recalculation for any of
7673 /// the node's users.
7674 ///
7675 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7676 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7677 /// the legalizer which maintain worklists that would need to be updated when
7678 /// deleting things.
7679 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7680                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7681   // If an identical node already exists, use it.
7682   void *IP = nullptr;
7683   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7684     FoldingSetNodeID ID;
7685     AddNodeIDNode(ID, Opc, VTs, Ops);
7686     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7687       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7688   }
7689 
7690   if (!RemoveNodeFromCSEMaps(N))
7691     IP = nullptr;
7692 
7693   // Start the morphing.
7694   N->NodeType = Opc;
7695   N->ValueList = VTs.VTs;
7696   N->NumValues = VTs.NumVTs;
7697 
7698   // Clear the operands list, updating used nodes to remove this from their
7699   // use list.  Keep track of any operands that become dead as a result.
7700   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7701   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7702     SDUse &Use = *I++;
7703     SDNode *Used = Use.getNode();
7704     Use.set(SDValue());
7705     if (Used->use_empty())
7706       DeadNodeSet.insert(Used);
7707   }
7708 
7709   // For MachineNode, initialize the memory references information.
7710   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7711     MN->clearMemRefs();
7712 
7713   // Swap for an appropriately sized array from the recycler.
7714   removeOperands(N);
7715   createOperands(N, Ops);
7716 
7717   // Delete any nodes that are still dead after adding the uses for the
7718   // new operands.
7719   if (!DeadNodeSet.empty()) {
7720     SmallVector<SDNode *, 16> DeadNodes;
7721     for (SDNode *N : DeadNodeSet)
7722       if (N->use_empty())
7723         DeadNodes.push_back(N);
7724     RemoveDeadNodes(DeadNodes);
7725   }
7726 
7727   if (IP)
7728     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7729   return N;
7730 }
7731 
7732 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7733   unsigned OrigOpc = Node->getOpcode();
7734   unsigned NewOpc;
7735   switch (OrigOpc) {
7736   default:
7737     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7738   case ISD::STRICT_FADD:       NewOpc = ISD::FADD;       break;
7739   case ISD::STRICT_FSUB:       NewOpc = ISD::FSUB;       break;
7740   case ISD::STRICT_FMUL:       NewOpc = ISD::FMUL;       break;
7741   case ISD::STRICT_FDIV:       NewOpc = ISD::FDIV;       break;
7742   case ISD::STRICT_FREM:       NewOpc = ISD::FREM;       break;
7743   case ISD::STRICT_FMA:        NewOpc = ISD::FMA;        break;
7744   case ISD::STRICT_FSQRT:      NewOpc = ISD::FSQRT;      break;
7745   case ISD::STRICT_FPOW:       NewOpc = ISD::FPOW;       break;
7746   case ISD::STRICT_FPOWI:      NewOpc = ISD::FPOWI;      break;
7747   case ISD::STRICT_FSIN:       NewOpc = ISD::FSIN;       break;
7748   case ISD::STRICT_FCOS:       NewOpc = ISD::FCOS;       break;
7749   case ISD::STRICT_FEXP:       NewOpc = ISD::FEXP;       break;
7750   case ISD::STRICT_FEXP2:      NewOpc = ISD::FEXP2;      break;
7751   case ISD::STRICT_FLOG:       NewOpc = ISD::FLOG;       break;
7752   case ISD::STRICT_FLOG10:     NewOpc = ISD::FLOG10;     break;
7753   case ISD::STRICT_FLOG2:      NewOpc = ISD::FLOG2;      break;
7754   case ISD::STRICT_FRINT:      NewOpc = ISD::FRINT;      break;
7755   case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break;
7756   case ISD::STRICT_FMAXNUM:    NewOpc = ISD::FMAXNUM;    break;
7757   case ISD::STRICT_FMINNUM:    NewOpc = ISD::FMINNUM;    break;
7758   case ISD::STRICT_FCEIL:      NewOpc = ISD::FCEIL;      break;
7759   case ISD::STRICT_FFLOOR:     NewOpc = ISD::FFLOOR;     break;
7760   case ISD::STRICT_FROUND:     NewOpc = ISD::FROUND;     break;
7761   case ISD::STRICT_FTRUNC:     NewOpc = ISD::FTRUNC;     break;
7762   case ISD::STRICT_FP_ROUND:   NewOpc = ISD::FP_ROUND;   break;
7763   case ISD::STRICT_FP_EXTEND:  NewOpc = ISD::FP_EXTEND;  break;
7764   }
7765 
7766   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7767 
7768   // We're taking this node out of the chain, so we need to re-link things.
7769   SDValue InputChain = Node->getOperand(0);
7770   SDValue OutputChain = SDValue(Node, 1);
7771   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7772 
7773   SmallVector<SDValue, 3> Ops;
7774   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7775     Ops.push_back(Node->getOperand(i));
7776 
7777   SDVTList VTs = getVTList(Node->getValueType(0));
7778   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7779 
7780   // MorphNodeTo can operate in two ways: if an existing node with the
7781   // specified operands exists, it can just return it.  Otherwise, it
7782   // updates the node in place to have the requested operands.
7783   if (Res == Node) {
7784     // If we updated the node in place, reset the node ID.  To the isel,
7785     // this should be just like a newly allocated machine node.
7786     Res->setNodeId(-1);
7787   } else {
7788     ReplaceAllUsesWith(Node, Res);
7789     RemoveDeadNode(Node);
7790   }
7791 
7792   return Res;
7793 }
7794 
7795 /// getMachineNode - These are used for target selectors to create a new node
7796 /// with specified return type(s), MachineInstr opcode, and operands.
7797 ///
7798 /// Note that getMachineNode returns the resultant node.  If there is already a
7799 /// node of the specified opcode and operands, it returns that node instead of
7800 /// the current one.
7801 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7802                                             EVT VT) {
7803   SDVTList VTs = getVTList(VT);
7804   return getMachineNode(Opcode, dl, VTs, None);
7805 }
7806 
7807 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7808                                             EVT VT, SDValue Op1) {
7809   SDVTList VTs = getVTList(VT);
7810   SDValue Ops[] = { Op1 };
7811   return getMachineNode(Opcode, dl, VTs, Ops);
7812 }
7813 
7814 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7815                                             EVT VT, SDValue Op1, SDValue Op2) {
7816   SDVTList VTs = getVTList(VT);
7817   SDValue Ops[] = { Op1, Op2 };
7818   return getMachineNode(Opcode, dl, VTs, Ops);
7819 }
7820 
7821 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7822                                             EVT VT, SDValue Op1, SDValue Op2,
7823                                             SDValue Op3) {
7824   SDVTList VTs = getVTList(VT);
7825   SDValue Ops[] = { Op1, Op2, Op3 };
7826   return getMachineNode(Opcode, dl, VTs, Ops);
7827 }
7828 
7829 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7830                                             EVT VT, ArrayRef<SDValue> Ops) {
7831   SDVTList VTs = getVTList(VT);
7832   return getMachineNode(Opcode, dl, VTs, Ops);
7833 }
7834 
7835 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7836                                             EVT VT1, EVT VT2, SDValue Op1,
7837                                             SDValue Op2) {
7838   SDVTList VTs = getVTList(VT1, VT2);
7839   SDValue Ops[] = { Op1, Op2 };
7840   return getMachineNode(Opcode, dl, VTs, Ops);
7841 }
7842 
7843 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7844                                             EVT VT1, EVT VT2, SDValue Op1,
7845                                             SDValue Op2, SDValue Op3) {
7846   SDVTList VTs = getVTList(VT1, VT2);
7847   SDValue Ops[] = { Op1, Op2, Op3 };
7848   return getMachineNode(Opcode, dl, VTs, Ops);
7849 }
7850 
7851 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7852                                             EVT VT1, EVT VT2,
7853                                             ArrayRef<SDValue> Ops) {
7854   SDVTList VTs = getVTList(VT1, VT2);
7855   return getMachineNode(Opcode, dl, VTs, Ops);
7856 }
7857 
7858 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7859                                             EVT VT1, EVT VT2, EVT VT3,
7860                                             SDValue Op1, SDValue Op2) {
7861   SDVTList VTs = getVTList(VT1, VT2, VT3);
7862   SDValue Ops[] = { Op1, Op2 };
7863   return getMachineNode(Opcode, dl, VTs, Ops);
7864 }
7865 
7866 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7867                                             EVT VT1, EVT VT2, EVT VT3,
7868                                             SDValue Op1, SDValue Op2,
7869                                             SDValue Op3) {
7870   SDVTList VTs = getVTList(VT1, VT2, VT3);
7871   SDValue Ops[] = { Op1, Op2, Op3 };
7872   return getMachineNode(Opcode, dl, VTs, Ops);
7873 }
7874 
7875 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7876                                             EVT VT1, EVT VT2, EVT VT3,
7877                                             ArrayRef<SDValue> Ops) {
7878   SDVTList VTs = getVTList(VT1, VT2, VT3);
7879   return getMachineNode(Opcode, dl, VTs, Ops);
7880 }
7881 
7882 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7883                                             ArrayRef<EVT> ResultTys,
7884                                             ArrayRef<SDValue> Ops) {
7885   SDVTList VTs = getVTList(ResultTys);
7886   return getMachineNode(Opcode, dl, VTs, Ops);
7887 }
7888 
7889 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7890                                             SDVTList VTs,
7891                                             ArrayRef<SDValue> Ops) {
7892   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7893   MachineSDNode *N;
7894   void *IP = nullptr;
7895 
7896   if (DoCSE) {
7897     FoldingSetNodeID ID;
7898     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7899     IP = nullptr;
7900     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7901       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7902     }
7903   }
7904 
7905   // Allocate a new MachineSDNode.
7906   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7907   createOperands(N, Ops);
7908 
7909   if (DoCSE)
7910     CSEMap.InsertNode(N, IP);
7911 
7912   InsertNode(N);
7913   return N;
7914 }
7915 
7916 /// getTargetExtractSubreg - A convenience function for creating
7917 /// TargetOpcode::EXTRACT_SUBREG nodes.
7918 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7919                                              SDValue Operand) {
7920   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7921   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7922                                   VT, Operand, SRIdxVal);
7923   return SDValue(Subreg, 0);
7924 }
7925 
7926 /// getTargetInsertSubreg - A convenience function for creating
7927 /// TargetOpcode::INSERT_SUBREG nodes.
7928 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7929                                             SDValue Operand, SDValue Subreg) {
7930   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7931   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7932                                   VT, Operand, Subreg, SRIdxVal);
7933   return SDValue(Result, 0);
7934 }
7935 
7936 /// getNodeIfExists - Get the specified node if it's already available, or
7937 /// else return NULL.
7938 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7939                                       ArrayRef<SDValue> Ops,
7940                                       const SDNodeFlags Flags) {
7941   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7942     FoldingSetNodeID ID;
7943     AddNodeIDNode(ID, Opcode, VTList, Ops);
7944     void *IP = nullptr;
7945     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7946       E->intersectFlagsWith(Flags);
7947       return E;
7948     }
7949   }
7950   return nullptr;
7951 }
7952 
7953 /// getDbgValue - Creates a SDDbgValue node.
7954 ///
7955 /// SDNode
7956 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7957                                       SDNode *N, unsigned R, bool IsIndirect,
7958                                       const DebugLoc &DL, unsigned O) {
7959   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7960          "Expected inlined-at fields to agree");
7961   return new (DbgInfo->getAlloc())
7962       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7963 }
7964 
7965 /// Constant
7966 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7967                                               DIExpression *Expr,
7968                                               const Value *C,
7969                                               const DebugLoc &DL, unsigned O) {
7970   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7971          "Expected inlined-at fields to agree");
7972   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7973 }
7974 
7975 /// FrameIndex
7976 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7977                                                 DIExpression *Expr, unsigned FI,
7978                                                 bool IsIndirect,
7979                                                 const DebugLoc &DL,
7980                                                 unsigned O) {
7981   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7982          "Expected inlined-at fields to agree");
7983   return new (DbgInfo->getAlloc())
7984       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7985 }
7986 
7987 /// VReg
7988 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7989                                           DIExpression *Expr,
7990                                           unsigned VReg, bool IsIndirect,
7991                                           const DebugLoc &DL, unsigned O) {
7992   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7993          "Expected inlined-at fields to agree");
7994   return new (DbgInfo->getAlloc())
7995       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7996 }
7997 
7998 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7999                                      unsigned OffsetInBits, unsigned SizeInBits,
8000                                      bool InvalidateDbg) {
8001   SDNode *FromNode = From.getNode();
8002   SDNode *ToNode = To.getNode();
8003   assert(FromNode && ToNode && "Can't modify dbg values");
8004 
8005   // PR35338
8006   // TODO: assert(From != To && "Redundant dbg value transfer");
8007   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8008   if (From == To || FromNode == ToNode)
8009     return;
8010 
8011   if (!FromNode->getHasDebugValue())
8012     return;
8013 
8014   SmallVector<SDDbgValue *, 2> ClonedDVs;
8015   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8016     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8017       continue;
8018 
8019     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8020 
8021     // Just transfer the dbg value attached to From.
8022     if (Dbg->getResNo() != From.getResNo())
8023       continue;
8024 
8025     DIVariable *Var = Dbg->getVariable();
8026     auto *Expr = Dbg->getExpression();
8027     // If a fragment is requested, update the expression.
8028     if (SizeInBits) {
8029       // When splitting a larger (e.g., sign-extended) value whose
8030       // lower bits are described with an SDDbgValue, do not attempt
8031       // to transfer the SDDbgValue to the upper bits.
8032       if (auto FI = Expr->getFragmentInfo())
8033         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8034           continue;
8035       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8036                                                              SizeInBits);
8037       if (!Fragment)
8038         continue;
8039       Expr = *Fragment;
8040     }
8041     // Clone the SDDbgValue and move it to To.
8042     SDDbgValue *Clone =
8043         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
8044                     Dbg->getDebugLoc(), Dbg->getOrder());
8045     ClonedDVs.push_back(Clone);
8046 
8047     if (InvalidateDbg) {
8048       // Invalidate value and indicate the SDDbgValue should not be emitted.
8049       Dbg->setIsInvalidated();
8050       Dbg->setIsEmitted();
8051     }
8052   }
8053 
8054   for (SDDbgValue *Dbg : ClonedDVs)
8055     AddDbgValue(Dbg, ToNode, false);
8056 }
8057 
8058 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8059   if (!N.getHasDebugValue())
8060     return;
8061 
8062   SmallVector<SDDbgValue *, 2> ClonedDVs;
8063   for (auto DV : GetDbgValues(&N)) {
8064     if (DV->isInvalidated())
8065       continue;
8066     switch (N.getOpcode()) {
8067     default:
8068       break;
8069     case ISD::ADD:
8070       SDValue N0 = N.getOperand(0);
8071       SDValue N1 = N.getOperand(1);
8072       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8073           isConstantIntBuildVectorOrConstantInt(N1)) {
8074         uint64_t Offset = N.getConstantOperandVal(1);
8075         // Rewrite an ADD constant node into a DIExpression. Since we are
8076         // performing arithmetic to compute the variable's *value* in the
8077         // DIExpression, we need to mark the expression with a
8078         // DW_OP_stack_value.
8079         auto *DIExpr = DV->getExpression();
8080         DIExpr =
8081             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8082         SDDbgValue *Clone =
8083             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8084                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8085         ClonedDVs.push_back(Clone);
8086         DV->setIsInvalidated();
8087         DV->setIsEmitted();
8088         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8089                    N0.getNode()->dumprFull(this);
8090                    dbgs() << " into " << *DIExpr << '\n');
8091       }
8092     }
8093   }
8094 
8095   for (SDDbgValue *Dbg : ClonedDVs)
8096     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8097 }
8098 
8099 /// Creates a SDDbgLabel node.
8100 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8101                                       const DebugLoc &DL, unsigned O) {
8102   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8103          "Expected inlined-at fields to agree");
8104   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8105 }
8106 
8107 namespace {
8108 
8109 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8110 /// pointed to by a use iterator is deleted, increment the use iterator
8111 /// so that it doesn't dangle.
8112 ///
8113 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8114   SDNode::use_iterator &UI;
8115   SDNode::use_iterator &UE;
8116 
8117   void NodeDeleted(SDNode *N, SDNode *E) override {
8118     // Increment the iterator as needed.
8119     while (UI != UE && N == *UI)
8120       ++UI;
8121   }
8122 
8123 public:
8124   RAUWUpdateListener(SelectionDAG &d,
8125                      SDNode::use_iterator &ui,
8126                      SDNode::use_iterator &ue)
8127     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8128 };
8129 
8130 } // end anonymous namespace
8131 
8132 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8133 /// This can cause recursive merging of nodes in the DAG.
8134 ///
8135 /// This version assumes From has a single result value.
8136 ///
8137 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8138   SDNode *From = FromN.getNode();
8139   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8140          "Cannot replace with this method!");
8141   assert(From != To.getNode() && "Cannot replace uses of with self");
8142 
8143   // Preserve Debug Values
8144   transferDbgValues(FromN, To);
8145 
8146   // Iterate over all the existing uses of From. New uses will be added
8147   // to the beginning of the use list, which we avoid visiting.
8148   // This specifically avoids visiting uses of From that arise while the
8149   // replacement is happening, because any such uses would be the result
8150   // of CSE: If an existing node looks like From after one of its operands
8151   // is replaced by To, we don't want to replace of all its users with To
8152   // too. See PR3018 for more info.
8153   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8154   RAUWUpdateListener Listener(*this, UI, UE);
8155   while (UI != UE) {
8156     SDNode *User = *UI;
8157 
8158     // This node is about to morph, remove its old self from the CSE maps.
8159     RemoveNodeFromCSEMaps(User);
8160 
8161     // A user can appear in a use list multiple times, and when this
8162     // happens the uses are usually next to each other in the list.
8163     // To help reduce the number of CSE recomputations, process all
8164     // the uses of this user that we can find this way.
8165     do {
8166       SDUse &Use = UI.getUse();
8167       ++UI;
8168       Use.set(To);
8169       if (To->isDivergent() != From->isDivergent())
8170         updateDivergence(User);
8171     } while (UI != UE && *UI == User);
8172     // Now that we have modified User, add it back to the CSE maps.  If it
8173     // already exists there, recursively merge the results together.
8174     AddModifiedNodeToCSEMaps(User);
8175   }
8176 
8177   // If we just RAUW'd the root, take note.
8178   if (FromN == getRoot())
8179     setRoot(To);
8180 }
8181 
8182 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8183 /// This can cause recursive merging of nodes in the DAG.
8184 ///
8185 /// This version assumes that for each value of From, there is a
8186 /// corresponding value in To in the same position with the same type.
8187 ///
8188 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8189 #ifndef NDEBUG
8190   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8191     assert((!From->hasAnyUseOfValue(i) ||
8192             From->getValueType(i) == To->getValueType(i)) &&
8193            "Cannot use this version of ReplaceAllUsesWith!");
8194 #endif
8195 
8196   // Handle the trivial case.
8197   if (From == To)
8198     return;
8199 
8200   // Preserve Debug Info. Only do this if there's a use.
8201   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8202     if (From->hasAnyUseOfValue(i)) {
8203       assert((i < To->getNumValues()) && "Invalid To location");
8204       transferDbgValues(SDValue(From, i), SDValue(To, i));
8205     }
8206 
8207   // Iterate over just the existing users of From. See the comments in
8208   // the ReplaceAllUsesWith above.
8209   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8210   RAUWUpdateListener Listener(*this, UI, UE);
8211   while (UI != UE) {
8212     SDNode *User = *UI;
8213 
8214     // This node is about to morph, remove its old self from the CSE maps.
8215     RemoveNodeFromCSEMaps(User);
8216 
8217     // A user can appear in a use list multiple times, and when this
8218     // happens the uses are usually next to each other in the list.
8219     // To help reduce the number of CSE recomputations, process all
8220     // the uses of this user that we can find this way.
8221     do {
8222       SDUse &Use = UI.getUse();
8223       ++UI;
8224       Use.setNode(To);
8225       if (To->isDivergent() != From->isDivergent())
8226         updateDivergence(User);
8227     } while (UI != UE && *UI == User);
8228 
8229     // Now that we have modified User, add it back to the CSE maps.  If it
8230     // already exists there, recursively merge the results together.
8231     AddModifiedNodeToCSEMaps(User);
8232   }
8233 
8234   // If we just RAUW'd the root, take note.
8235   if (From == getRoot().getNode())
8236     setRoot(SDValue(To, getRoot().getResNo()));
8237 }
8238 
8239 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8240 /// This can cause recursive merging of nodes in the DAG.
8241 ///
8242 /// This version can replace From with any result values.  To must match the
8243 /// number and types of values returned by From.
8244 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8245   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8246     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8247 
8248   // Preserve Debug Info.
8249   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8250     transferDbgValues(SDValue(From, i), To[i]);
8251 
8252   // Iterate over just the existing users of From. See the comments in
8253   // the ReplaceAllUsesWith above.
8254   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8255   RAUWUpdateListener Listener(*this, UI, UE);
8256   while (UI != UE) {
8257     SDNode *User = *UI;
8258 
8259     // This node is about to morph, remove its old self from the CSE maps.
8260     RemoveNodeFromCSEMaps(User);
8261 
8262     // A user can appear in a use list multiple times, and when this happens the
8263     // uses are usually next to each other in the list.  To help reduce the
8264     // number of CSE and divergence recomputations, process all the uses of this
8265     // user that we can find this way.
8266     bool To_IsDivergent = false;
8267     do {
8268       SDUse &Use = UI.getUse();
8269       const SDValue &ToOp = To[Use.getResNo()];
8270       ++UI;
8271       Use.set(ToOp);
8272       To_IsDivergent |= ToOp->isDivergent();
8273     } while (UI != UE && *UI == User);
8274 
8275     if (To_IsDivergent != From->isDivergent())
8276       updateDivergence(User);
8277 
8278     // Now that we have modified User, add it back to the CSE maps.  If it
8279     // already exists there, recursively merge the results together.
8280     AddModifiedNodeToCSEMaps(User);
8281   }
8282 
8283   // If we just RAUW'd the root, take note.
8284   if (From == getRoot().getNode())
8285     setRoot(SDValue(To[getRoot().getResNo()]));
8286 }
8287 
8288 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8289 /// uses of other values produced by From.getNode() alone.  The Deleted
8290 /// vector is handled the same way as for ReplaceAllUsesWith.
8291 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8292   // Handle the really simple, really trivial case efficiently.
8293   if (From == To) return;
8294 
8295   // Handle the simple, trivial, case efficiently.
8296   if (From.getNode()->getNumValues() == 1) {
8297     ReplaceAllUsesWith(From, To);
8298     return;
8299   }
8300 
8301   // Preserve Debug Info.
8302   transferDbgValues(From, To);
8303 
8304   // Iterate over just the existing users of From. See the comments in
8305   // the ReplaceAllUsesWith above.
8306   SDNode::use_iterator UI = From.getNode()->use_begin(),
8307                        UE = From.getNode()->use_end();
8308   RAUWUpdateListener Listener(*this, UI, UE);
8309   while (UI != UE) {
8310     SDNode *User = *UI;
8311     bool UserRemovedFromCSEMaps = false;
8312 
8313     // A user can appear in a use list multiple times, and when this
8314     // happens the uses are usually next to each other in the list.
8315     // To help reduce the number of CSE recomputations, process all
8316     // the uses of this user that we can find this way.
8317     do {
8318       SDUse &Use = UI.getUse();
8319 
8320       // Skip uses of different values from the same node.
8321       if (Use.getResNo() != From.getResNo()) {
8322         ++UI;
8323         continue;
8324       }
8325 
8326       // If this node hasn't been modified yet, it's still in the CSE maps,
8327       // so remove its old self from the CSE maps.
8328       if (!UserRemovedFromCSEMaps) {
8329         RemoveNodeFromCSEMaps(User);
8330         UserRemovedFromCSEMaps = true;
8331       }
8332 
8333       ++UI;
8334       Use.set(To);
8335       if (To->isDivergent() != From->isDivergent())
8336         updateDivergence(User);
8337     } while (UI != UE && *UI == User);
8338     // We are iterating over all uses of the From node, so if a use
8339     // doesn't use the specific value, no changes are made.
8340     if (!UserRemovedFromCSEMaps)
8341       continue;
8342 
8343     // Now that we have modified User, add it back to the CSE maps.  If it
8344     // already exists there, recursively merge the results together.
8345     AddModifiedNodeToCSEMaps(User);
8346   }
8347 
8348   // If we just RAUW'd the root, take note.
8349   if (From == getRoot())
8350     setRoot(To);
8351 }
8352 
8353 namespace {
8354 
8355   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8356   /// to record information about a use.
8357   struct UseMemo {
8358     SDNode *User;
8359     unsigned Index;
8360     SDUse *Use;
8361   };
8362 
8363   /// operator< - Sort Memos by User.
8364   bool operator<(const UseMemo &L, const UseMemo &R) {
8365     return (intptr_t)L.User < (intptr_t)R.User;
8366   }
8367 
8368 } // end anonymous namespace
8369 
8370 void SelectionDAG::updateDivergence(SDNode * N)
8371 {
8372   if (TLI->isSDNodeAlwaysUniform(N))
8373     return;
8374   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8375   for (auto &Op : N->ops()) {
8376     if (Op.Val.getValueType() != MVT::Other)
8377       IsDivergent |= Op.getNode()->isDivergent();
8378   }
8379   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8380     N->SDNodeBits.IsDivergent = IsDivergent;
8381     for (auto U : N->uses()) {
8382       updateDivergence(U);
8383     }
8384   }
8385 }
8386 
8387 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8388   DenseMap<SDNode *, unsigned> Degree;
8389   Order.reserve(AllNodes.size());
8390   for (auto &N : allnodes()) {
8391     unsigned NOps = N.getNumOperands();
8392     Degree[&N] = NOps;
8393     if (0 == NOps)
8394       Order.push_back(&N);
8395   }
8396   for (size_t I = 0; I != Order.size(); ++I) {
8397     SDNode *N = Order[I];
8398     for (auto U : N->uses()) {
8399       unsigned &UnsortedOps = Degree[U];
8400       if (0 == --UnsortedOps)
8401         Order.push_back(U);
8402     }
8403   }
8404 }
8405 
8406 #ifndef NDEBUG
8407 void SelectionDAG::VerifyDAGDiverence() {
8408   std::vector<SDNode *> TopoOrder;
8409   CreateTopologicalOrder(TopoOrder);
8410   const TargetLowering &TLI = getTargetLoweringInfo();
8411   DenseMap<const SDNode *, bool> DivergenceMap;
8412   for (auto &N : allnodes()) {
8413     DivergenceMap[&N] = false;
8414   }
8415   for (auto N : TopoOrder) {
8416     bool IsDivergent = DivergenceMap[N];
8417     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8418     for (auto &Op : N->ops()) {
8419       if (Op.Val.getValueType() != MVT::Other)
8420         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8421     }
8422     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8423       DivergenceMap[N] = true;
8424     }
8425   }
8426   for (auto &N : allnodes()) {
8427     (void)N;
8428     assert(DivergenceMap[&N] == N.isDivergent() &&
8429            "Divergence bit inconsistency detected\n");
8430   }
8431 }
8432 #endif
8433 
8434 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8435 /// uses of other values produced by From.getNode() alone.  The same value
8436 /// may appear in both the From and To list.  The Deleted vector is
8437 /// handled the same way as for ReplaceAllUsesWith.
8438 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8439                                               const SDValue *To,
8440                                               unsigned Num){
8441   // Handle the simple, trivial case efficiently.
8442   if (Num == 1)
8443     return ReplaceAllUsesOfValueWith(*From, *To);
8444 
8445   transferDbgValues(*From, *To);
8446 
8447   // Read up all the uses and make records of them. This helps
8448   // processing new uses that are introduced during the
8449   // replacement process.
8450   SmallVector<UseMemo, 4> Uses;
8451   for (unsigned i = 0; i != Num; ++i) {
8452     unsigned FromResNo = From[i].getResNo();
8453     SDNode *FromNode = From[i].getNode();
8454     for (SDNode::use_iterator UI = FromNode->use_begin(),
8455          E = FromNode->use_end(); UI != E; ++UI) {
8456       SDUse &Use = UI.getUse();
8457       if (Use.getResNo() == FromResNo) {
8458         UseMemo Memo = { *UI, i, &Use };
8459         Uses.push_back(Memo);
8460       }
8461     }
8462   }
8463 
8464   // Sort the uses, so that all the uses from a given User are together.
8465   llvm::sort(Uses);
8466 
8467   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8468        UseIndex != UseIndexEnd; ) {
8469     // We know that this user uses some value of From.  If it is the right
8470     // value, update it.
8471     SDNode *User = Uses[UseIndex].User;
8472 
8473     // This node is about to morph, remove its old self from the CSE maps.
8474     RemoveNodeFromCSEMaps(User);
8475 
8476     // The Uses array is sorted, so all the uses for a given User
8477     // are next to each other in the list.
8478     // To help reduce the number of CSE recomputations, process all
8479     // the uses of this user that we can find this way.
8480     do {
8481       unsigned i = Uses[UseIndex].Index;
8482       SDUse &Use = *Uses[UseIndex].Use;
8483       ++UseIndex;
8484 
8485       Use.set(To[i]);
8486     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8487 
8488     // Now that we have modified User, add it back to the CSE maps.  If it
8489     // already exists there, recursively merge the results together.
8490     AddModifiedNodeToCSEMaps(User);
8491   }
8492 }
8493 
8494 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8495 /// based on their topological order. It returns the maximum id and a vector
8496 /// of the SDNodes* in assigned order by reference.
8497 unsigned SelectionDAG::AssignTopologicalOrder() {
8498   unsigned DAGSize = 0;
8499 
8500   // SortedPos tracks the progress of the algorithm. Nodes before it are
8501   // sorted, nodes after it are unsorted. When the algorithm completes
8502   // it is at the end of the list.
8503   allnodes_iterator SortedPos = allnodes_begin();
8504 
8505   // Visit all the nodes. Move nodes with no operands to the front of
8506   // the list immediately. Annotate nodes that do have operands with their
8507   // operand count. Before we do this, the Node Id fields of the nodes
8508   // may contain arbitrary values. After, the Node Id fields for nodes
8509   // before SortedPos will contain the topological sort index, and the
8510   // Node Id fields for nodes At SortedPos and after will contain the
8511   // count of outstanding operands.
8512   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8513     SDNode *N = &*I++;
8514     checkForCycles(N, this);
8515     unsigned Degree = N->getNumOperands();
8516     if (Degree == 0) {
8517       // A node with no uses, add it to the result array immediately.
8518       N->setNodeId(DAGSize++);
8519       allnodes_iterator Q(N);
8520       if (Q != SortedPos)
8521         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8522       assert(SortedPos != AllNodes.end() && "Overran node list");
8523       ++SortedPos;
8524     } else {
8525       // Temporarily use the Node Id as scratch space for the degree count.
8526       N->setNodeId(Degree);
8527     }
8528   }
8529 
8530   // Visit all the nodes. As we iterate, move nodes into sorted order,
8531   // such that by the time the end is reached all nodes will be sorted.
8532   for (SDNode &Node : allnodes()) {
8533     SDNode *N = &Node;
8534     checkForCycles(N, this);
8535     // N is in sorted position, so all its uses have one less operand
8536     // that needs to be sorted.
8537     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8538          UI != UE; ++UI) {
8539       SDNode *P = *UI;
8540       unsigned Degree = P->getNodeId();
8541       assert(Degree != 0 && "Invalid node degree");
8542       --Degree;
8543       if (Degree == 0) {
8544         // All of P's operands are sorted, so P may sorted now.
8545         P->setNodeId(DAGSize++);
8546         if (P->getIterator() != SortedPos)
8547           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8548         assert(SortedPos != AllNodes.end() && "Overran node list");
8549         ++SortedPos;
8550       } else {
8551         // Update P's outstanding operand count.
8552         P->setNodeId(Degree);
8553       }
8554     }
8555     if (Node.getIterator() == SortedPos) {
8556 #ifndef NDEBUG
8557       allnodes_iterator I(N);
8558       SDNode *S = &*++I;
8559       dbgs() << "Overran sorted position:\n";
8560       S->dumprFull(this); dbgs() << "\n";
8561       dbgs() << "Checking if this is due to cycles\n";
8562       checkForCycles(this, true);
8563 #endif
8564       llvm_unreachable(nullptr);
8565     }
8566   }
8567 
8568   assert(SortedPos == AllNodes.end() &&
8569          "Topological sort incomplete!");
8570   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8571          "First node in topological sort is not the entry token!");
8572   assert(AllNodes.front().getNodeId() == 0 &&
8573          "First node in topological sort has non-zero id!");
8574   assert(AllNodes.front().getNumOperands() == 0 &&
8575          "First node in topological sort has operands!");
8576   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8577          "Last node in topologic sort has unexpected id!");
8578   assert(AllNodes.back().use_empty() &&
8579          "Last node in topologic sort has users!");
8580   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8581   return DAGSize;
8582 }
8583 
8584 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8585 /// value is produced by SD.
8586 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8587   if (SD) {
8588     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8589     SD->setHasDebugValue(true);
8590   }
8591   DbgInfo->add(DB, SD, isParameter);
8592 }
8593 
8594 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8595   DbgInfo->add(DB);
8596 }
8597 
8598 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8599                                                    SDValue NewMemOp) {
8600   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8601   // The new memory operation must have the same position as the old load in
8602   // terms of memory dependency. Create a TokenFactor for the old load and new
8603   // memory operation and update uses of the old load's output chain to use that
8604   // TokenFactor.
8605   SDValue OldChain = SDValue(OldLoad, 1);
8606   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8607   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8608     return NewChain;
8609 
8610   SDValue TokenFactor =
8611       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8612   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8613   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8614   return TokenFactor;
8615 }
8616 
8617 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8618                                                      Function **OutFunction) {
8619   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8620 
8621   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8622   auto *Module = MF->getFunction().getParent();
8623   auto *Function = Module->getFunction(Symbol);
8624 
8625   if (OutFunction != nullptr)
8626       *OutFunction = Function;
8627 
8628   if (Function != nullptr) {
8629     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8630     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8631   }
8632 
8633   std::string ErrorStr;
8634   raw_string_ostream ErrorFormatter(ErrorStr);
8635 
8636   ErrorFormatter << "Undefined external symbol ";
8637   ErrorFormatter << '"' << Symbol << '"';
8638   ErrorFormatter.flush();
8639 
8640   report_fatal_error(ErrorStr);
8641 }
8642 
8643 //===----------------------------------------------------------------------===//
8644 //                              SDNode Class
8645 //===----------------------------------------------------------------------===//
8646 
8647 bool llvm::isNullConstant(SDValue V) {
8648   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8649   return Const != nullptr && Const->isNullValue();
8650 }
8651 
8652 bool llvm::isNullFPConstant(SDValue V) {
8653   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8654   return Const != nullptr && Const->isZero() && !Const->isNegative();
8655 }
8656 
8657 bool llvm::isAllOnesConstant(SDValue V) {
8658   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8659   return Const != nullptr && Const->isAllOnesValue();
8660 }
8661 
8662 bool llvm::isOneConstant(SDValue V) {
8663   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8664   return Const != nullptr && Const->isOne();
8665 }
8666 
8667 SDValue llvm::peekThroughBitcasts(SDValue V) {
8668   while (V.getOpcode() == ISD::BITCAST)
8669     V = V.getOperand(0);
8670   return V;
8671 }
8672 
8673 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8674   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8675     V = V.getOperand(0);
8676   return V;
8677 }
8678 
8679 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8680   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8681     V = V.getOperand(0);
8682   return V;
8683 }
8684 
8685 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8686   if (V.getOpcode() != ISD::XOR)
8687     return false;
8688   V = peekThroughBitcasts(V.getOperand(1));
8689   unsigned NumBits = V.getScalarValueSizeInBits();
8690   ConstantSDNode *C =
8691       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8692   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8693 }
8694 
8695 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8696                                           bool AllowTruncation) {
8697   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8698     return CN;
8699 
8700   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8701     BitVector UndefElements;
8702     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8703 
8704     // BuildVectors can truncate their operands. Ignore that case here unless
8705     // AllowTruncation is set.
8706     if (CN && (UndefElements.none() || AllowUndefs)) {
8707       EVT CVT = CN->getValueType(0);
8708       EVT NSVT = N.getValueType().getScalarType();
8709       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8710       if (AllowTruncation || (CVT == NSVT))
8711         return CN;
8712     }
8713   }
8714 
8715   return nullptr;
8716 }
8717 
8718 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8719                                           bool AllowUndefs,
8720                                           bool AllowTruncation) {
8721   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8722     return CN;
8723 
8724   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8725     BitVector UndefElements;
8726     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8727 
8728     // BuildVectors can truncate their operands. Ignore that case here unless
8729     // AllowTruncation is set.
8730     if (CN && (UndefElements.none() || AllowUndefs)) {
8731       EVT CVT = CN->getValueType(0);
8732       EVT NSVT = N.getValueType().getScalarType();
8733       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8734       if (AllowTruncation || (CVT == NSVT))
8735         return CN;
8736     }
8737   }
8738 
8739   return nullptr;
8740 }
8741 
8742 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8743   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8744     return CN;
8745 
8746   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8747     BitVector UndefElements;
8748     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8749     if (CN && (UndefElements.none() || AllowUndefs))
8750       return CN;
8751   }
8752 
8753   return nullptr;
8754 }
8755 
8756 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8757                                               const APInt &DemandedElts,
8758                                               bool AllowUndefs) {
8759   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8760     return CN;
8761 
8762   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8763     BitVector UndefElements;
8764     ConstantFPSDNode *CN =
8765         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8766     if (CN && (UndefElements.none() || AllowUndefs))
8767       return CN;
8768   }
8769 
8770   return nullptr;
8771 }
8772 
8773 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8774   // TODO: may want to use peekThroughBitcast() here.
8775   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8776   return C && C->isNullValue();
8777 }
8778 
8779 bool llvm::isOneOrOneSplat(SDValue N) {
8780   // TODO: may want to use peekThroughBitcast() here.
8781   unsigned BitWidth = N.getScalarValueSizeInBits();
8782   ConstantSDNode *C = isConstOrConstSplat(N);
8783   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8784 }
8785 
8786 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8787   N = peekThroughBitcasts(N);
8788   unsigned BitWidth = N.getScalarValueSizeInBits();
8789   ConstantSDNode *C = isConstOrConstSplat(N);
8790   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8791 }
8792 
8793 HandleSDNode::~HandleSDNode() {
8794   DropOperands();
8795 }
8796 
8797 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8798                                          const DebugLoc &DL,
8799                                          const GlobalValue *GA, EVT VT,
8800                                          int64_t o, unsigned TF)
8801     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8802   TheGlobal = GA;
8803 }
8804 
8805 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8806                                          EVT VT, unsigned SrcAS,
8807                                          unsigned DestAS)
8808     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8809       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8810 
8811 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8812                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8813     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8814   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8815   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8816   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8817   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8818 
8819   // We check here that the size of the memory operand fits within the size of
8820   // the MMO. This is because the MMO might indicate only a possible address
8821   // range instead of specifying the affected memory addresses precisely.
8822   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8823 }
8824 
8825 /// Profile - Gather unique data for the node.
8826 ///
8827 void SDNode::Profile(FoldingSetNodeID &ID) const {
8828   AddNodeIDNode(ID, this);
8829 }
8830 
8831 namespace {
8832 
8833   struct EVTArray {
8834     std::vector<EVT> VTs;
8835 
8836     EVTArray() {
8837       VTs.reserve(MVT::LAST_VALUETYPE);
8838       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8839         VTs.push_back(MVT((MVT::SimpleValueType)i));
8840     }
8841   };
8842 
8843 } // end anonymous namespace
8844 
8845 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8846 static ManagedStatic<EVTArray> SimpleVTArray;
8847 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8848 
8849 /// getValueTypeList - Return a pointer to the specified value type.
8850 ///
8851 const EVT *SDNode::getValueTypeList(EVT VT) {
8852   if (VT.isExtended()) {
8853     sys::SmartScopedLock<true> Lock(*VTMutex);
8854     return &(*EVTs->insert(VT).first);
8855   } else {
8856     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8857            "Value type out of range!");
8858     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8859   }
8860 }
8861 
8862 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8863 /// indicated value.  This method ignores uses of other values defined by this
8864 /// operation.
8865 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8866   assert(Value < getNumValues() && "Bad value!");
8867 
8868   // TODO: Only iterate over uses of a given value of the node
8869   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8870     if (UI.getUse().getResNo() == Value) {
8871       if (NUses == 0)
8872         return false;
8873       --NUses;
8874     }
8875   }
8876 
8877   // Found exactly the right number of uses?
8878   return NUses == 0;
8879 }
8880 
8881 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8882 /// value. This method ignores uses of other values defined by this operation.
8883 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8884   assert(Value < getNumValues() && "Bad value!");
8885 
8886   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8887     if (UI.getUse().getResNo() == Value)
8888       return true;
8889 
8890   return false;
8891 }
8892 
8893 /// isOnlyUserOf - Return true if this node is the only use of N.
8894 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8895   bool Seen = false;
8896   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8897     SDNode *User = *I;
8898     if (User == this)
8899       Seen = true;
8900     else
8901       return false;
8902   }
8903 
8904   return Seen;
8905 }
8906 
8907 /// Return true if the only users of N are contained in Nodes.
8908 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8909   bool Seen = false;
8910   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8911     SDNode *User = *I;
8912     if (llvm::any_of(Nodes,
8913                      [&User](const SDNode *Node) { return User == Node; }))
8914       Seen = true;
8915     else
8916       return false;
8917   }
8918 
8919   return Seen;
8920 }
8921 
8922 /// isOperand - Return true if this node is an operand of N.
8923 bool SDValue::isOperandOf(const SDNode *N) const {
8924   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
8925 }
8926 
8927 bool SDNode::isOperandOf(const SDNode *N) const {
8928   return any_of(N->op_values(),
8929                 [this](SDValue Op) { return this == Op.getNode(); });
8930 }
8931 
8932 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8933 /// be a chain) reaches the specified operand without crossing any
8934 /// side-effecting instructions on any chain path.  In practice, this looks
8935 /// through token factors and non-volatile loads.  In order to remain efficient,
8936 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8937 ///
8938 /// Note that we only need to examine chains when we're searching for
8939 /// side-effects; SelectionDAG requires that all side-effects are represented
8940 /// by chains, even if another operand would force a specific ordering. This
8941 /// constraint is necessary to allow transformations like splitting loads.
8942 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8943                                              unsigned Depth) const {
8944   if (*this == Dest) return true;
8945 
8946   // Don't search too deeply, we just want to be able to see through
8947   // TokenFactor's etc.
8948   if (Depth == 0) return false;
8949 
8950   // If this is a token factor, all inputs to the TF happen in parallel.
8951   if (getOpcode() == ISD::TokenFactor) {
8952     // First, try a shallow search.
8953     if (is_contained((*this)->ops(), Dest)) {
8954       // We found the chain we want as an operand of this TokenFactor.
8955       // Essentially, we reach the chain without side-effects if we could
8956       // serialize the TokenFactor into a simple chain of operations with
8957       // Dest as the last operation. This is automatically true if the
8958       // chain has one use: there are no other ordering constraints.
8959       // If the chain has more than one use, we give up: some other
8960       // use of Dest might force a side-effect between Dest and the current
8961       // node.
8962       if (Dest.hasOneUse())
8963         return true;
8964     }
8965     // Next, try a deep search: check whether every operand of the TokenFactor
8966     // reaches Dest.
8967     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8968       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8969     });
8970   }
8971 
8972   // Loads don't have side effects, look through them.
8973   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8974     if (!Ld->isVolatile())
8975       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8976   }
8977   return false;
8978 }
8979 
8980 bool SDNode::hasPredecessor(const SDNode *N) const {
8981   SmallPtrSet<const SDNode *, 32> Visited;
8982   SmallVector<const SDNode *, 16> Worklist;
8983   Worklist.push_back(this);
8984   return hasPredecessorHelper(N, Visited, Worklist);
8985 }
8986 
8987 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8988   this->Flags.intersectWith(Flags);
8989 }
8990 
8991 SDValue
8992 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8993                                   ArrayRef<ISD::NodeType> CandidateBinOps,
8994                                   bool AllowPartials) {
8995   // The pattern must end in an extract from index 0.
8996   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8997       !isNullConstant(Extract->getOperand(1)))
8998     return SDValue();
8999 
9000   SDValue Op = Extract->getOperand(0);
9001   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9002 
9003   // Match against one of the candidate binary ops.
9004   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9005         return Op.getOpcode() == unsigned(BinOp);
9006       }))
9007     return SDValue();
9008   unsigned CandidateBinOp = Op.getOpcode();
9009 
9010   // Matching failed - attempt to see if we did enough stages that a partial
9011   // reduction from a subvector is possible.
9012   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9013     if (!AllowPartials || !Op)
9014       return SDValue();
9015     EVT OpVT = Op.getValueType();
9016     EVT OpSVT = OpVT.getScalarType();
9017     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9018     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9019       return SDValue();
9020     BinOp = (ISD::NodeType)CandidateBinOp;
9021     return getNode(
9022         ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9023         getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout())));
9024   };
9025 
9026   // At each stage, we're looking for something that looks like:
9027   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9028   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9029   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9030   // %a = binop <8 x i32> %op, %s
9031   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9032   // we expect something like:
9033   // <4,5,6,7,u,u,u,u>
9034   // <2,3,u,u,u,u,u,u>
9035   // <1,u,u,u,u,u,u,u>
9036   // While a partial reduction match would be:
9037   // <2,3,u,u,u,u,u,u>
9038   // <1,u,u,u,u,u,u,u>
9039   SDValue PrevOp;
9040   for (unsigned i = 0; i < Stages; ++i) {
9041     unsigned MaskEnd = (1 << i);
9042 
9043     if (Op.getOpcode() != CandidateBinOp)
9044       return PartialReduction(PrevOp, MaskEnd);
9045 
9046     SDValue Op0 = Op.getOperand(0);
9047     SDValue Op1 = Op.getOperand(1);
9048 
9049     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9050     if (Shuffle) {
9051       Op = Op1;
9052     } else {
9053       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9054       Op = Op0;
9055     }
9056 
9057     // The first operand of the shuffle should be the same as the other operand
9058     // of the binop.
9059     if (!Shuffle || Shuffle->getOperand(0) != Op)
9060       return PartialReduction(PrevOp, MaskEnd);
9061 
9062     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9063     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9064       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9065         return PartialReduction(PrevOp, MaskEnd);
9066 
9067     PrevOp = Op;
9068   }
9069 
9070   BinOp = (ISD::NodeType)CandidateBinOp;
9071   return Op;
9072 }
9073 
9074 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9075   assert(N->getNumValues() == 1 &&
9076          "Can't unroll a vector with multiple results!");
9077 
9078   EVT VT = N->getValueType(0);
9079   unsigned NE = VT.getVectorNumElements();
9080   EVT EltVT = VT.getVectorElementType();
9081   SDLoc dl(N);
9082 
9083   SmallVector<SDValue, 8> Scalars;
9084   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9085 
9086   // If ResNE is 0, fully unroll the vector op.
9087   if (ResNE == 0)
9088     ResNE = NE;
9089   else if (NE > ResNE)
9090     NE = ResNE;
9091 
9092   unsigned i;
9093   for (i= 0; i != NE; ++i) {
9094     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9095       SDValue Operand = N->getOperand(j);
9096       EVT OperandVT = Operand.getValueType();
9097       if (OperandVT.isVector()) {
9098         // A vector operand; extract a single element.
9099         EVT OperandEltVT = OperandVT.getVectorElementType();
9100         Operands[j] =
9101             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9102                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9103       } else {
9104         // A scalar operand; just use it as is.
9105         Operands[j] = Operand;
9106       }
9107     }
9108 
9109     switch (N->getOpcode()) {
9110     default: {
9111       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9112                                 N->getFlags()));
9113       break;
9114     }
9115     case ISD::VSELECT:
9116       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9117       break;
9118     case ISD::SHL:
9119     case ISD::SRA:
9120     case ISD::SRL:
9121     case ISD::ROTL:
9122     case ISD::ROTR:
9123       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9124                                getShiftAmountOperand(Operands[0].getValueType(),
9125                                                      Operands[1])));
9126       break;
9127     case ISD::SIGN_EXTEND_INREG:
9128     case ISD::FP_ROUND_INREG: {
9129       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9130       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9131                                 Operands[0],
9132                                 getValueType(ExtVT)));
9133     }
9134     }
9135   }
9136 
9137   for (; i < ResNE; ++i)
9138     Scalars.push_back(getUNDEF(EltVT));
9139 
9140   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9141   return getBuildVector(VecVT, dl, Scalars);
9142 }
9143 
9144 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9145     SDNode *N, unsigned ResNE) {
9146   unsigned Opcode = N->getOpcode();
9147   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9148           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9149           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9150          "Expected an overflow opcode");
9151 
9152   EVT ResVT = N->getValueType(0);
9153   EVT OvVT = N->getValueType(1);
9154   EVT ResEltVT = ResVT.getVectorElementType();
9155   EVT OvEltVT = OvVT.getVectorElementType();
9156   SDLoc dl(N);
9157 
9158   // If ResNE is 0, fully unroll the vector op.
9159   unsigned NE = ResVT.getVectorNumElements();
9160   if (ResNE == 0)
9161     ResNE = NE;
9162   else if (NE > ResNE)
9163     NE = ResNE;
9164 
9165   SmallVector<SDValue, 8> LHSScalars;
9166   SmallVector<SDValue, 8> RHSScalars;
9167   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9168   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9169 
9170   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9171   SDVTList VTs = getVTList(ResEltVT, SVT);
9172   SmallVector<SDValue, 8> ResScalars;
9173   SmallVector<SDValue, 8> OvScalars;
9174   for (unsigned i = 0; i < NE; ++i) {
9175     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9176     SDValue Ov =
9177         getSelect(dl, OvEltVT, Res.getValue(1),
9178                   getBoolConstant(true, dl, OvEltVT, ResVT),
9179                   getConstant(0, dl, OvEltVT));
9180 
9181     ResScalars.push_back(Res);
9182     OvScalars.push_back(Ov);
9183   }
9184 
9185   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9186   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9187 
9188   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9189   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9190   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9191                         getBuildVector(NewOvVT, dl, OvScalars));
9192 }
9193 
9194 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9195                                                   LoadSDNode *Base,
9196                                                   unsigned Bytes,
9197                                                   int Dist) const {
9198   if (LD->isVolatile() || Base->isVolatile())
9199     return false;
9200   if (LD->isIndexed() || Base->isIndexed())
9201     return false;
9202   if (LD->getChain() != Base->getChain())
9203     return false;
9204   EVT VT = LD->getValueType(0);
9205   if (VT.getSizeInBits() / 8 != Bytes)
9206     return false;
9207 
9208   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9209   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9210 
9211   int64_t Offset = 0;
9212   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9213     return (Dist * Bytes == Offset);
9214   return false;
9215 }
9216 
9217 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9218 /// it cannot be inferred.
9219 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9220   // If this is a GlobalAddress + cst, return the alignment.
9221   const GlobalValue *GV;
9222   int64_t GVOffset = 0;
9223   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9224     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9225     KnownBits Known(IdxWidth);
9226     llvm::computeKnownBits(GV, Known, getDataLayout());
9227     unsigned AlignBits = Known.countMinTrailingZeros();
9228     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9229     if (Align)
9230       return MinAlign(Align, GVOffset);
9231   }
9232 
9233   // If this is a direct reference to a stack slot, use information about the
9234   // stack slot's alignment.
9235   int FrameIdx = INT_MIN;
9236   int64_t FrameOffset = 0;
9237   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9238     FrameIdx = FI->getIndex();
9239   } else if (isBaseWithConstantOffset(Ptr) &&
9240              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9241     // Handle FI+Cst
9242     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9243     FrameOffset = Ptr.getConstantOperandVal(1);
9244   }
9245 
9246   if (FrameIdx != INT_MIN) {
9247     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9248     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9249                                     FrameOffset);
9250     return FIInfoAlign;
9251   }
9252 
9253   return 0;
9254 }
9255 
9256 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9257 /// which is split (or expanded) into two not necessarily identical pieces.
9258 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9259   // Currently all types are split in half.
9260   EVT LoVT, HiVT;
9261   if (!VT.isVector())
9262     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9263   else
9264     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9265 
9266   return std::make_pair(LoVT, HiVT);
9267 }
9268 
9269 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9270 /// low/high part.
9271 std::pair<SDValue, SDValue>
9272 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9273                           const EVT &HiVT) {
9274   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9275          N.getValueType().getVectorNumElements() &&
9276          "More vector elements requested than available!");
9277   SDValue Lo, Hi;
9278   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9279                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9280   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9281                getConstant(LoVT.getVectorNumElements(), DL,
9282                            TLI->getVectorIdxTy(getDataLayout())));
9283   return std::make_pair(Lo, Hi);
9284 }
9285 
9286 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9287 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9288   EVT VT = N.getValueType();
9289   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9290                                 NextPowerOf2(VT.getVectorNumElements()));
9291   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9292                  getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9293 }
9294 
9295 void SelectionDAG::ExtractVectorElements(SDValue Op,
9296                                          SmallVectorImpl<SDValue> &Args,
9297                                          unsigned Start, unsigned Count) {
9298   EVT VT = Op.getValueType();
9299   if (Count == 0)
9300     Count = VT.getVectorNumElements();
9301 
9302   EVT EltVT = VT.getVectorElementType();
9303   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9304   SDLoc SL(Op);
9305   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9306     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9307                            Op, getConstant(i, SL, IdxTy)));
9308   }
9309 }
9310 
9311 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9312 unsigned GlobalAddressSDNode::getAddressSpace() const {
9313   return getGlobal()->getType()->getAddressSpace();
9314 }
9315 
9316 Type *ConstantPoolSDNode::getType() const {
9317   if (isMachineConstantPoolEntry())
9318     return Val.MachineCPVal->getType();
9319   return Val.ConstVal->getType();
9320 }
9321 
9322 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9323                                         unsigned &SplatBitSize,
9324                                         bool &HasAnyUndefs,
9325                                         unsigned MinSplatBits,
9326                                         bool IsBigEndian) const {
9327   EVT VT = getValueType(0);
9328   assert(VT.isVector() && "Expected a vector type");
9329   unsigned VecWidth = VT.getSizeInBits();
9330   if (MinSplatBits > VecWidth)
9331     return false;
9332 
9333   // FIXME: The widths are based on this node's type, but build vectors can
9334   // truncate their operands.
9335   SplatValue = APInt(VecWidth, 0);
9336   SplatUndef = APInt(VecWidth, 0);
9337 
9338   // Get the bits. Bits with undefined values (when the corresponding element
9339   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9340   // in SplatValue. If any of the values are not constant, give up and return
9341   // false.
9342   unsigned int NumOps = getNumOperands();
9343   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9344   unsigned EltWidth = VT.getScalarSizeInBits();
9345 
9346   for (unsigned j = 0; j < NumOps; ++j) {
9347     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9348     SDValue OpVal = getOperand(i);
9349     unsigned BitPos = j * EltWidth;
9350 
9351     if (OpVal.isUndef())
9352       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9353     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9354       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9355     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9356       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9357     else
9358       return false;
9359   }
9360 
9361   // The build_vector is all constants or undefs. Find the smallest element
9362   // size that splats the vector.
9363   HasAnyUndefs = (SplatUndef != 0);
9364 
9365   // FIXME: This does not work for vectors with elements less than 8 bits.
9366   while (VecWidth > 8) {
9367     unsigned HalfSize = VecWidth / 2;
9368     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9369     APInt LowValue = SplatValue.trunc(HalfSize);
9370     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9371     APInt LowUndef = SplatUndef.trunc(HalfSize);
9372 
9373     // If the two halves do not match (ignoring undef bits), stop here.
9374     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9375         MinSplatBits > HalfSize)
9376       break;
9377 
9378     SplatValue = HighValue | LowValue;
9379     SplatUndef = HighUndef & LowUndef;
9380 
9381     VecWidth = HalfSize;
9382   }
9383 
9384   SplatBitSize = VecWidth;
9385   return true;
9386 }
9387 
9388 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9389                                          BitVector *UndefElements) const {
9390   if (UndefElements) {
9391     UndefElements->clear();
9392     UndefElements->resize(getNumOperands());
9393   }
9394   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9395          "Unexpected vector size");
9396   if (!DemandedElts)
9397     return SDValue();
9398   SDValue Splatted;
9399   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9400     if (!DemandedElts[i])
9401       continue;
9402     SDValue Op = getOperand(i);
9403     if (Op.isUndef()) {
9404       if (UndefElements)
9405         (*UndefElements)[i] = true;
9406     } else if (!Splatted) {
9407       Splatted = Op;
9408     } else if (Splatted != Op) {
9409       return SDValue();
9410     }
9411   }
9412 
9413   if (!Splatted) {
9414     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9415     assert(getOperand(FirstDemandedIdx).isUndef() &&
9416            "Can only have a splat without a constant for all undefs.");
9417     return getOperand(FirstDemandedIdx);
9418   }
9419 
9420   return Splatted;
9421 }
9422 
9423 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9424   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9425   return getSplatValue(DemandedElts, UndefElements);
9426 }
9427 
9428 ConstantSDNode *
9429 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9430                                         BitVector *UndefElements) const {
9431   return dyn_cast_or_null<ConstantSDNode>(
9432       getSplatValue(DemandedElts, UndefElements));
9433 }
9434 
9435 ConstantSDNode *
9436 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9437   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9438 }
9439 
9440 ConstantFPSDNode *
9441 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9442                                           BitVector *UndefElements) const {
9443   return dyn_cast_or_null<ConstantFPSDNode>(
9444       getSplatValue(DemandedElts, UndefElements));
9445 }
9446 
9447 ConstantFPSDNode *
9448 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9449   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9450 }
9451 
9452 int32_t
9453 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9454                                                    uint32_t BitWidth) const {
9455   if (ConstantFPSDNode *CN =
9456           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9457     bool IsExact;
9458     APSInt IntVal(BitWidth);
9459     const APFloat &APF = CN->getValueAPF();
9460     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9461             APFloat::opOK ||
9462         !IsExact)
9463       return -1;
9464 
9465     return IntVal.exactLogBase2();
9466   }
9467   return -1;
9468 }
9469 
9470 bool BuildVectorSDNode::isConstant() const {
9471   for (const SDValue &Op : op_values()) {
9472     unsigned Opc = Op.getOpcode();
9473     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9474       return false;
9475   }
9476   return true;
9477 }
9478 
9479 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9480   // Find the first non-undef value in the shuffle mask.
9481   unsigned i, e;
9482   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9483     /* search */;
9484 
9485   // If all elements are undefined, this shuffle can be considered a splat
9486   // (although it should eventually get simplified away completely).
9487   if (i == e)
9488     return true;
9489 
9490   // Make sure all remaining elements are either undef or the same as the first
9491   // non-undef value.
9492   for (int Idx = Mask[i]; i != e; ++i)
9493     if (Mask[i] >= 0 && Mask[i] != Idx)
9494       return false;
9495   return true;
9496 }
9497 
9498 // Returns the SDNode if it is a constant integer BuildVector
9499 // or constant integer.
9500 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9501   if (isa<ConstantSDNode>(N))
9502     return N.getNode();
9503   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9504     return N.getNode();
9505   // Treat a GlobalAddress supporting constant offset folding as a
9506   // constant integer.
9507   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9508     if (GA->getOpcode() == ISD::GlobalAddress &&
9509         TLI->isOffsetFoldingLegal(GA))
9510       return GA;
9511   return nullptr;
9512 }
9513 
9514 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9515   if (isa<ConstantFPSDNode>(N))
9516     return N.getNode();
9517 
9518   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9519     return N.getNode();
9520 
9521   return nullptr;
9522 }
9523 
9524 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9525   assert(!Node->OperandList && "Node already has operands");
9526   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9527          "too many operands to fit into SDNode");
9528   SDUse *Ops = OperandRecycler.allocate(
9529       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9530 
9531   bool IsDivergent = false;
9532   for (unsigned I = 0; I != Vals.size(); ++I) {
9533     Ops[I].setUser(Node);
9534     Ops[I].setInitial(Vals[I]);
9535     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9536       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9537   }
9538   Node->NumOperands = Vals.size();
9539   Node->OperandList = Ops;
9540   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9541   if (!TLI->isSDNodeAlwaysUniform(Node))
9542     Node->SDNodeBits.IsDivergent = IsDivergent;
9543   checkForCycles(Node);
9544 }
9545 
9546 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9547                                      SmallVectorImpl<SDValue> &Vals) {
9548   size_t Limit = SDNode::getMaxNumOperands();
9549   while (Vals.size() > Limit) {
9550     unsigned SliceIdx = Vals.size() - Limit;
9551     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9552     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9553     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9554     Vals.emplace_back(NewTF);
9555   }
9556   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9557 }
9558 
9559 #ifndef NDEBUG
9560 static void checkForCyclesHelper(const SDNode *N,
9561                                  SmallPtrSetImpl<const SDNode*> &Visited,
9562                                  SmallPtrSetImpl<const SDNode*> &Checked,
9563                                  const llvm::SelectionDAG *DAG) {
9564   // If this node has already been checked, don't check it again.
9565   if (Checked.count(N))
9566     return;
9567 
9568   // If a node has already been visited on this depth-first walk, reject it as
9569   // a cycle.
9570   if (!Visited.insert(N).second) {
9571     errs() << "Detected cycle in SelectionDAG\n";
9572     dbgs() << "Offending node:\n";
9573     N->dumprFull(DAG); dbgs() << "\n";
9574     abort();
9575   }
9576 
9577   for (const SDValue &Op : N->op_values())
9578     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9579 
9580   Checked.insert(N);
9581   Visited.erase(N);
9582 }
9583 #endif
9584 
9585 void llvm::checkForCycles(const llvm::SDNode *N,
9586                           const llvm::SelectionDAG *DAG,
9587                           bool force) {
9588 #ifndef NDEBUG
9589   bool check = force;
9590 #ifdef EXPENSIVE_CHECKS
9591   check = true;
9592 #endif  // EXPENSIVE_CHECKS
9593   if (check) {
9594     assert(N && "Checking nonexistent SDNode");
9595     SmallPtrSet<const SDNode*, 32> visited;
9596     SmallPtrSet<const SDNode*, 32> checked;
9597     checkForCyclesHelper(N, visited, checked, DAG);
9598   }
9599 #endif  // !NDEBUG
9600 }
9601 
9602 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9603   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9604 }
9605