1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (LHS.getOpcode() != RHS.getOpcode() ||
346       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
347        LHS.getOpcode() != ISD::SPLAT_VECTOR))
348     return false;
349 
350   EVT SVT = LHS.getValueType().getScalarType();
351   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
352     SDValue LHSOp = LHS.getOperand(i);
353     SDValue RHSOp = RHS.getOperand(i);
354     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
355     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
356     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
357     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
358     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
359       return false;
360     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
361                                LHSOp.getValueType() != RHSOp.getValueType()))
362       return false;
363     if (!Match(LHSCst, RHSCst))
364       return false;
365   }
366   return true;
367 }
368 
369 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
370   switch (VecReduceOpcode) {
371   default:
372     llvm_unreachable("Expected VECREDUCE opcode");
373   case ISD::VECREDUCE_FADD:
374   case ISD::VECREDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378     return ISD::FMUL;
379   case ISD::VECREDUCE_ADD:
380     return ISD::ADD;
381   case ISD::VECREDUCE_MUL:
382     return ISD::MUL;
383   case ISD::VECREDUCE_AND:
384     return ISD::AND;
385   case ISD::VECREDUCE_OR:
386     return ISD::OR;
387   case ISD::VECREDUCE_XOR:
388     return ISD::XOR;
389   case ISD::VECREDUCE_SMAX:
390     return ISD::SMAX;
391   case ISD::VECREDUCE_SMIN:
392     return ISD::SMIN;
393   case ISD::VECREDUCE_UMAX:
394     return ISD::UMAX;
395   case ISD::VECREDUCE_UMIN:
396     return ISD::UMIN;
397   case ISD::VECREDUCE_FMAX:
398     return ISD::FMAXNUM;
399   case ISD::VECREDUCE_FMIN:
400     return ISD::FMINNUM;
401   }
402 }
403 
404 bool ISD::isVPOpcode(unsigned Opcode) {
405   switch (Opcode) {
406   default:
407     return false;
408 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
409   case ISD::SDOPC:                                                             \
410     return true;
411 #include "llvm/IR/VPIntrinsics.def"
412   }
413 }
414 
415 /// The operand position of the vector mask.
416 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
417   switch (Opcode) {
418   default:
419     return None;
420 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
421   case ISD::SDOPC:                                                             \
422     return MASKPOS;
423 #include "llvm/IR/VPIntrinsics.def"
424   }
425 }
426 
427 /// The operand position of the explicit vector length parameter.
428 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     return None;
432 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
433   case ISD::SDOPC:                                                             \
434     return EVLPOS;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437 }
438 
439 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
440   switch (ExtType) {
441   case ISD::EXTLOAD:
442     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
443   case ISD::SEXTLOAD:
444     return ISD::SIGN_EXTEND;
445   case ISD::ZEXTLOAD:
446     return ISD::ZERO_EXTEND;
447   default:
448     break;
449   }
450 
451   llvm_unreachable("Invalid LoadExtType");
452 }
453 
454 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
455   // To perform this operation, we just need to swap the L and G bits of the
456   // operation.
457   unsigned OldL = (Operation >> 2) & 1;
458   unsigned OldG = (Operation >> 1) & 1;
459   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
460                        (OldL << 1) |       // New G bit
461                        (OldG << 2));       // New L bit.
462 }
463 
464 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
465   unsigned Operation = Op;
466   if (isIntegerLike)
467     Operation ^= 7;   // Flip L, G, E bits, but not U.
468   else
469     Operation ^= 15;  // Flip all of the condition bits.
470 
471   if (Operation > ISD::SETTRUE2)
472     Operation &= ~8;  // Don't let N and U bits get set.
473 
474   return ISD::CondCode(Operation);
475 }
476 
477 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
478   return getSetCCInverseImpl(Op, Type.isInteger());
479 }
480 
481 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
482                                                bool isIntegerLike) {
483   return getSetCCInverseImpl(Op, isIntegerLike);
484 }
485 
486 /// For an integer comparison, return 1 if the comparison is a signed operation
487 /// and 2 if the result is an unsigned comparison. Return zero if the operation
488 /// does not depend on the sign of the input (setne and seteq).
489 static int isSignedOp(ISD::CondCode Opcode) {
490   switch (Opcode) {
491   default: llvm_unreachable("Illegal integer setcc operation!");
492   case ISD::SETEQ:
493   case ISD::SETNE: return 0;
494   case ISD::SETLT:
495   case ISD::SETLE:
496   case ISD::SETGT:
497   case ISD::SETGE: return 1;
498   case ISD::SETULT:
499   case ISD::SETULE:
500   case ISD::SETUGT:
501   case ISD::SETUGE: return 2;
502   }
503 }
504 
505 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
506                                        EVT Type) {
507   bool IsInteger = Type.isInteger();
508   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
509     // Cannot fold a signed integer setcc with an unsigned integer setcc.
510     return ISD::SETCC_INVALID;
511 
512   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
513 
514   // If the N and U bits get set, then the resultant comparison DOES suddenly
515   // care about orderedness, and it is true when ordered.
516   if (Op > ISD::SETTRUE2)
517     Op &= ~16;     // Clear the U bit if the N bit is set.
518 
519   // Canonicalize illegal integer setcc's.
520   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
521     Op = ISD::SETNE;
522 
523   return ISD::CondCode(Op);
524 }
525 
526 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
527                                         EVT Type) {
528   bool IsInteger = Type.isInteger();
529   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
530     // Cannot fold a signed setcc with an unsigned setcc.
531     return ISD::SETCC_INVALID;
532 
533   // Combine all of the condition bits.
534   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
535 
536   // Canonicalize illegal integer setcc's.
537   if (IsInteger) {
538     switch (Result) {
539     default: break;
540     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
541     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
542     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
543     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
544     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
545     }
546   }
547 
548   return Result;
549 }
550 
551 //===----------------------------------------------------------------------===//
552 //                           SDNode Profile Support
553 //===----------------------------------------------------------------------===//
554 
555 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
556 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
557   ID.AddInteger(OpC);
558 }
559 
560 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
561 /// solely with their pointer.
562 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
563   ID.AddPointer(VTList.VTs);
564 }
565 
566 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
567 static void AddNodeIDOperands(FoldingSetNodeID &ID,
568                               ArrayRef<SDValue> Ops) {
569   for (auto& Op : Ops) {
570     ID.AddPointer(Op.getNode());
571     ID.AddInteger(Op.getResNo());
572   }
573 }
574 
575 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
576 static void AddNodeIDOperands(FoldingSetNodeID &ID,
577                               ArrayRef<SDUse> Ops) {
578   for (auto& Op : Ops) {
579     ID.AddPointer(Op.getNode());
580     ID.AddInteger(Op.getResNo());
581   }
582 }
583 
584 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
585                           SDVTList VTList, ArrayRef<SDValue> OpList) {
586   AddNodeIDOpcode(ID, OpC);
587   AddNodeIDValueTypes(ID, VTList);
588   AddNodeIDOperands(ID, OpList);
589 }
590 
591 /// If this is an SDNode with special info, add this info to the NodeID data.
592 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
593   switch (N->getOpcode()) {
594   case ISD::TargetExternalSymbol:
595   case ISD::ExternalSymbol:
596   case ISD::MCSymbol:
597     llvm_unreachable("Should only be used on nodes with operands");
598   default: break;  // Normal nodes don't need extra info.
599   case ISD::TargetConstant:
600   case ISD::Constant: {
601     const ConstantSDNode *C = cast<ConstantSDNode>(N);
602     ID.AddPointer(C->getConstantIntValue());
603     ID.AddBoolean(C->isOpaque());
604     break;
605   }
606   case ISD::TargetConstantFP:
607   case ISD::ConstantFP:
608     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
609     break;
610   case ISD::TargetGlobalAddress:
611   case ISD::GlobalAddress:
612   case ISD::TargetGlobalTLSAddress:
613   case ISD::GlobalTLSAddress: {
614     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
615     ID.AddPointer(GA->getGlobal());
616     ID.AddInteger(GA->getOffset());
617     ID.AddInteger(GA->getTargetFlags());
618     break;
619   }
620   case ISD::BasicBlock:
621     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
622     break;
623   case ISD::Register:
624     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
625     break;
626   case ISD::RegisterMask:
627     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
628     break;
629   case ISD::SRCVALUE:
630     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
631     break;
632   case ISD::FrameIndex:
633   case ISD::TargetFrameIndex:
634     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
635     break;
636   case ISD::LIFETIME_START:
637   case ISD::LIFETIME_END:
638     if (cast<LifetimeSDNode>(N)->hasOffset()) {
639       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
640       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
641     }
642     break;
643   case ISD::PSEUDO_PROBE:
644     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
645     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
646     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
647     break;
648   case ISD::JumpTable:
649   case ISD::TargetJumpTable:
650     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
651     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
652     break;
653   case ISD::ConstantPool:
654   case ISD::TargetConstantPool: {
655     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
656     ID.AddInteger(CP->getAlign().value());
657     ID.AddInteger(CP->getOffset());
658     if (CP->isMachineConstantPoolEntry())
659       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
660     else
661       ID.AddPointer(CP->getConstVal());
662     ID.AddInteger(CP->getTargetFlags());
663     break;
664   }
665   case ISD::TargetIndex: {
666     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
667     ID.AddInteger(TI->getIndex());
668     ID.AddInteger(TI->getOffset());
669     ID.AddInteger(TI->getTargetFlags());
670     break;
671   }
672   case ISD::LOAD: {
673     const LoadSDNode *LD = cast<LoadSDNode>(N);
674     ID.AddInteger(LD->getMemoryVT().getRawBits());
675     ID.AddInteger(LD->getRawSubclassData());
676     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
677     break;
678   }
679   case ISD::STORE: {
680     const StoreSDNode *ST = cast<StoreSDNode>(N);
681     ID.AddInteger(ST->getMemoryVT().getRawBits());
682     ID.AddInteger(ST->getRawSubclassData());
683     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
684     break;
685   }
686   case ISD::MLOAD: {
687     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
688     ID.AddInteger(MLD->getMemoryVT().getRawBits());
689     ID.AddInteger(MLD->getRawSubclassData());
690     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
691     break;
692   }
693   case ISD::MSTORE: {
694     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
695     ID.AddInteger(MST->getMemoryVT().getRawBits());
696     ID.AddInteger(MST->getRawSubclassData());
697     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
698     break;
699   }
700   case ISD::MGATHER: {
701     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
702     ID.AddInteger(MG->getMemoryVT().getRawBits());
703     ID.AddInteger(MG->getRawSubclassData());
704     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
705     break;
706   }
707   case ISD::MSCATTER: {
708     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
709     ID.AddInteger(MS->getMemoryVT().getRawBits());
710     ID.AddInteger(MS->getRawSubclassData());
711     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
712     break;
713   }
714   case ISD::ATOMIC_CMP_SWAP:
715   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
716   case ISD::ATOMIC_SWAP:
717   case ISD::ATOMIC_LOAD_ADD:
718   case ISD::ATOMIC_LOAD_SUB:
719   case ISD::ATOMIC_LOAD_AND:
720   case ISD::ATOMIC_LOAD_CLR:
721   case ISD::ATOMIC_LOAD_OR:
722   case ISD::ATOMIC_LOAD_XOR:
723   case ISD::ATOMIC_LOAD_NAND:
724   case ISD::ATOMIC_LOAD_MIN:
725   case ISD::ATOMIC_LOAD_MAX:
726   case ISD::ATOMIC_LOAD_UMIN:
727   case ISD::ATOMIC_LOAD_UMAX:
728   case ISD::ATOMIC_LOAD:
729   case ISD::ATOMIC_STORE: {
730     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
731     ID.AddInteger(AT->getMemoryVT().getRawBits());
732     ID.AddInteger(AT->getRawSubclassData());
733     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
734     break;
735   }
736   case ISD::PREFETCH: {
737     const MemSDNode *PF = cast<MemSDNode>(N);
738     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
739     break;
740   }
741   case ISD::VECTOR_SHUFFLE: {
742     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
743     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
744          i != e; ++i)
745       ID.AddInteger(SVN->getMaskElt(i));
746     break;
747   }
748   case ISD::TargetBlockAddress:
749   case ISD::BlockAddress: {
750     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
751     ID.AddPointer(BA->getBlockAddress());
752     ID.AddInteger(BA->getOffset());
753     ID.AddInteger(BA->getTargetFlags());
754     break;
755   }
756   } // end switch (N->getOpcode())
757 
758   // Target specific memory nodes could also have address spaces to check.
759   if (N->isTargetMemoryOpcode())
760     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
761 }
762 
763 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
764 /// data.
765 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
766   AddNodeIDOpcode(ID, N->getOpcode());
767   // Add the return value info.
768   AddNodeIDValueTypes(ID, N->getVTList());
769   // Add the operand info.
770   AddNodeIDOperands(ID, N->ops());
771 
772   // Handle SDNode leafs with special info.
773   AddNodeIDCustom(ID, N);
774 }
775 
776 //===----------------------------------------------------------------------===//
777 //                              SelectionDAG Class
778 //===----------------------------------------------------------------------===//
779 
780 /// doNotCSE - Return true if CSE should not be performed for this node.
781 static bool doNotCSE(SDNode *N) {
782   if (N->getValueType(0) == MVT::Glue)
783     return true; // Never CSE anything that produces a flag.
784 
785   switch (N->getOpcode()) {
786   default: break;
787   case ISD::HANDLENODE:
788   case ISD::EH_LABEL:
789     return true;   // Never CSE these nodes.
790   }
791 
792   // Check that remaining values produced are not flags.
793   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
794     if (N->getValueType(i) == MVT::Glue)
795       return true; // Never CSE anything that produces a flag.
796 
797   return false;
798 }
799 
800 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
801 /// SelectionDAG.
802 void SelectionDAG::RemoveDeadNodes() {
803   // Create a dummy node (which is not added to allnodes), that adds a reference
804   // to the root node, preventing it from being deleted.
805   HandleSDNode Dummy(getRoot());
806 
807   SmallVector<SDNode*, 128> DeadNodes;
808 
809   // Add all obviously-dead nodes to the DeadNodes worklist.
810   for (SDNode &Node : allnodes())
811     if (Node.use_empty())
812       DeadNodes.push_back(&Node);
813 
814   RemoveDeadNodes(DeadNodes);
815 
816   // If the root changed (e.g. it was a dead load, update the root).
817   setRoot(Dummy.getValue());
818 }
819 
820 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
821 /// given list, and any nodes that become unreachable as a result.
822 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
823 
824   // Process the worklist, deleting the nodes and adding their uses to the
825   // worklist.
826   while (!DeadNodes.empty()) {
827     SDNode *N = DeadNodes.pop_back_val();
828     // Skip to next node if we've already managed to delete the node. This could
829     // happen if replacing a node causes a node previously added to the node to
830     // be deleted.
831     if (N->getOpcode() == ISD::DELETED_NODE)
832       continue;
833 
834     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
835       DUL->NodeDeleted(N, nullptr);
836 
837     // Take the node out of the appropriate CSE map.
838     RemoveNodeFromCSEMaps(N);
839 
840     // Next, brutally remove the operand list.  This is safe to do, as there are
841     // no cycles in the graph.
842     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
843       SDUse &Use = *I++;
844       SDNode *Operand = Use.getNode();
845       Use.set(SDValue());
846 
847       // Now that we removed this operand, see if there are no uses of it left.
848       if (Operand->use_empty())
849         DeadNodes.push_back(Operand);
850     }
851 
852     DeallocateNode(N);
853   }
854 }
855 
856 void SelectionDAG::RemoveDeadNode(SDNode *N){
857   SmallVector<SDNode*, 16> DeadNodes(1, N);
858 
859   // Create a dummy node that adds a reference to the root node, preventing
860   // it from being deleted.  (This matters if the root is an operand of the
861   // dead node.)
862   HandleSDNode Dummy(getRoot());
863 
864   RemoveDeadNodes(DeadNodes);
865 }
866 
867 void SelectionDAG::DeleteNode(SDNode *N) {
868   // First take this out of the appropriate CSE map.
869   RemoveNodeFromCSEMaps(N);
870 
871   // Finally, remove uses due to operands of this node, remove from the
872   // AllNodes list, and delete the node.
873   DeleteNodeNotInCSEMaps(N);
874 }
875 
876 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
877   assert(N->getIterator() != AllNodes.begin() &&
878          "Cannot delete the entry node!");
879   assert(N->use_empty() && "Cannot delete a node that is not dead!");
880 
881   // Drop all of the operands and decrement used node's use counts.
882   N->DropOperands();
883 
884   DeallocateNode(N);
885 }
886 
887 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
888   assert(!(V->isVariadic() && isParameter));
889   if (isParameter)
890     ByvalParmDbgValues.push_back(V);
891   else
892     DbgValues.push_back(V);
893   for (const SDNode *Node : V->getSDNodes())
894     if (Node)
895       DbgValMap[Node].push_back(V);
896 }
897 
898 void SDDbgInfo::erase(const SDNode *Node) {
899   DbgValMapType::iterator I = DbgValMap.find(Node);
900   if (I == DbgValMap.end())
901     return;
902   for (auto &Val: I->second)
903     Val->setIsInvalidated();
904   DbgValMap.erase(I);
905 }
906 
907 void SelectionDAG::DeallocateNode(SDNode *N) {
908   // If we have operands, deallocate them.
909   removeOperands(N);
910 
911   NodeAllocator.Deallocate(AllNodes.remove(N));
912 
913   // Set the opcode to DELETED_NODE to help catch bugs when node
914   // memory is reallocated.
915   // FIXME: There are places in SDag that have grown a dependency on the opcode
916   // value in the released node.
917   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
918   N->NodeType = ISD::DELETED_NODE;
919 
920   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
921   // them and forget about that node.
922   DbgInfo->erase(N);
923 }
924 
925 #ifndef NDEBUG
926 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
927 static void VerifySDNode(SDNode *N) {
928   switch (N->getOpcode()) {
929   default:
930     break;
931   case ISD::BUILD_PAIR: {
932     EVT VT = N->getValueType(0);
933     assert(N->getNumValues() == 1 && "Too many results!");
934     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
935            "Wrong return type!");
936     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
937     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
938            "Mismatched operand types!");
939     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
940            "Wrong operand type!");
941     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
942            "Wrong return type size");
943     break;
944   }
945   case ISD::BUILD_VECTOR: {
946     assert(N->getNumValues() == 1 && "Too many results!");
947     assert(N->getValueType(0).isVector() && "Wrong return type!");
948     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
949            "Wrong number of operands!");
950     EVT EltVT = N->getValueType(0).getVectorElementType();
951     for (const SDUse &Op : N->ops()) {
952       assert((Op.getValueType() == EltVT ||
953               (EltVT.isInteger() && Op.getValueType().isInteger() &&
954                EltVT.bitsLE(Op.getValueType()))) &&
955              "Wrong operand type!");
956       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
957              "Operands must all have the same type");
958     }
959     break;
960   }
961   }
962 }
963 #endif // NDEBUG
964 
965 /// Insert a newly allocated node into the DAG.
966 ///
967 /// Handles insertion into the all nodes list and CSE map, as well as
968 /// verification and other common operations when a new node is allocated.
969 void SelectionDAG::InsertNode(SDNode *N) {
970   AllNodes.push_back(N);
971 #ifndef NDEBUG
972   N->PersistentId = NextPersistentId++;
973   VerifySDNode(N);
974 #endif
975   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
976     DUL->NodeInserted(N);
977 }
978 
979 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
980 /// correspond to it.  This is useful when we're about to delete or repurpose
981 /// the node.  We don't want future request for structurally identical nodes
982 /// to return N anymore.
983 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
984   bool Erased = false;
985   switch (N->getOpcode()) {
986   case ISD::HANDLENODE: return false;  // noop.
987   case ISD::CONDCODE:
988     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
989            "Cond code doesn't exist!");
990     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
991     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
992     break;
993   case ISD::ExternalSymbol:
994     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
995     break;
996   case ISD::TargetExternalSymbol: {
997     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
998     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
999         ESN->getSymbol(), ESN->getTargetFlags()));
1000     break;
1001   }
1002   case ISD::MCSymbol: {
1003     auto *MCSN = cast<MCSymbolSDNode>(N);
1004     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1005     break;
1006   }
1007   case ISD::VALUETYPE: {
1008     EVT VT = cast<VTSDNode>(N)->getVT();
1009     if (VT.isExtended()) {
1010       Erased = ExtendedValueTypeNodes.erase(VT);
1011     } else {
1012       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1013       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1014     }
1015     break;
1016   }
1017   default:
1018     // Remove it from the CSE Map.
1019     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1020     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1021     Erased = CSEMap.RemoveNode(N);
1022     break;
1023   }
1024 #ifndef NDEBUG
1025   // Verify that the node was actually in one of the CSE maps, unless it has a
1026   // flag result (which cannot be CSE'd) or is one of the special cases that are
1027   // not subject to CSE.
1028   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1029       !N->isMachineOpcode() && !doNotCSE(N)) {
1030     N->dump(this);
1031     dbgs() << "\n";
1032     llvm_unreachable("Node is not in map!");
1033   }
1034 #endif
1035   return Erased;
1036 }
1037 
1038 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1039 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1040 /// node already exists, in which case transfer all its users to the existing
1041 /// node. This transfer can potentially trigger recursive merging.
1042 void
1043 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1044   // For node types that aren't CSE'd, just act as if no identical node
1045   // already exists.
1046   if (!doNotCSE(N)) {
1047     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1048     if (Existing != N) {
1049       // If there was already an existing matching node, use ReplaceAllUsesWith
1050       // to replace the dead one with the existing one.  This can cause
1051       // recursive merging of other unrelated nodes down the line.
1052       ReplaceAllUsesWith(N, Existing);
1053 
1054       // N is now dead. Inform the listeners and delete it.
1055       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1056         DUL->NodeDeleted(N, Existing);
1057       DeleteNodeNotInCSEMaps(N);
1058       return;
1059     }
1060   }
1061 
1062   // If the node doesn't already exist, we updated it.  Inform listeners.
1063   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1064     DUL->NodeUpdated(N);
1065 }
1066 
1067 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1068 /// were replaced with those specified.  If this node is never memoized,
1069 /// return null, otherwise return a pointer to the slot it would take.  If a
1070 /// node already exists with these operands, the slot will be non-null.
1071 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1072                                            void *&InsertPos) {
1073   if (doNotCSE(N))
1074     return nullptr;
1075 
1076   SDValue Ops[] = { Op };
1077   FoldingSetNodeID ID;
1078   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1079   AddNodeIDCustom(ID, N);
1080   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1081   if (Node)
1082     Node->intersectFlagsWith(N->getFlags());
1083   return Node;
1084 }
1085 
1086 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1087 /// were replaced with those specified.  If this node is never memoized,
1088 /// return null, otherwise return a pointer to the slot it would take.  If a
1089 /// node already exists with these operands, the slot will be non-null.
1090 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1091                                            SDValue Op1, SDValue Op2,
1092                                            void *&InsertPos) {
1093   if (doNotCSE(N))
1094     return nullptr;
1095 
1096   SDValue Ops[] = { Op1, Op2 };
1097   FoldingSetNodeID ID;
1098   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1099   AddNodeIDCustom(ID, N);
1100   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1101   if (Node)
1102     Node->intersectFlagsWith(N->getFlags());
1103   return Node;
1104 }
1105 
1106 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1107 /// were replaced with those specified.  If this node is never memoized,
1108 /// return null, otherwise return a pointer to the slot it would take.  If a
1109 /// node already exists with these operands, the slot will be non-null.
1110 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1111                                            void *&InsertPos) {
1112   if (doNotCSE(N))
1113     return nullptr;
1114 
1115   FoldingSetNodeID ID;
1116   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1117   AddNodeIDCustom(ID, N);
1118   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1119   if (Node)
1120     Node->intersectFlagsWith(N->getFlags());
1121   return Node;
1122 }
1123 
1124 Align SelectionDAG::getEVTAlign(EVT VT) const {
1125   Type *Ty = VT == MVT::iPTR ?
1126                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1127                    VT.getTypeForEVT(*getContext());
1128 
1129   return getDataLayout().getABITypeAlign(Ty);
1130 }
1131 
1132 // EntryNode could meaningfully have debug info if we can find it...
1133 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1134     : TM(tm), OptLevel(OL),
1135       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1136       Root(getEntryNode()) {
1137   InsertNode(&EntryNode);
1138   DbgInfo = new SDDbgInfo();
1139 }
1140 
1141 void SelectionDAG::init(MachineFunction &NewMF,
1142                         OptimizationRemarkEmitter &NewORE,
1143                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1144                         LegacyDivergenceAnalysis * Divergence,
1145                         ProfileSummaryInfo *PSIin,
1146                         BlockFrequencyInfo *BFIin) {
1147   MF = &NewMF;
1148   SDAGISelPass = PassPtr;
1149   ORE = &NewORE;
1150   TLI = getSubtarget().getTargetLowering();
1151   TSI = getSubtarget().getSelectionDAGInfo();
1152   LibInfo = LibraryInfo;
1153   Context = &MF->getFunction().getContext();
1154   DA = Divergence;
1155   PSI = PSIin;
1156   BFI = BFIin;
1157 }
1158 
1159 SelectionDAG::~SelectionDAG() {
1160   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1161   allnodes_clear();
1162   OperandRecycler.clear(OperandAllocator);
1163   delete DbgInfo;
1164 }
1165 
1166 bool SelectionDAG::shouldOptForSize() const {
1167   return MF->getFunction().hasOptSize() ||
1168       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1169 }
1170 
1171 void SelectionDAG::allnodes_clear() {
1172   assert(&*AllNodes.begin() == &EntryNode);
1173   AllNodes.remove(AllNodes.begin());
1174   while (!AllNodes.empty())
1175     DeallocateNode(&AllNodes.front());
1176 #ifndef NDEBUG
1177   NextPersistentId = 0;
1178 #endif
1179 }
1180 
1181 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1182                                           void *&InsertPos) {
1183   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1184   if (N) {
1185     switch (N->getOpcode()) {
1186     default: break;
1187     case ISD::Constant:
1188     case ISD::ConstantFP:
1189       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1190                        "debug location.  Use another overload.");
1191     }
1192   }
1193   return N;
1194 }
1195 
1196 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1197                                           const SDLoc &DL, void *&InsertPos) {
1198   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1199   if (N) {
1200     switch (N->getOpcode()) {
1201     case ISD::Constant:
1202     case ISD::ConstantFP:
1203       // Erase debug location from the node if the node is used at several
1204       // different places. Do not propagate one location to all uses as it
1205       // will cause a worse single stepping debugging experience.
1206       if (N->getDebugLoc() != DL.getDebugLoc())
1207         N->setDebugLoc(DebugLoc());
1208       break;
1209     default:
1210       // When the node's point of use is located earlier in the instruction
1211       // sequence than its prior point of use, update its debug info to the
1212       // earlier location.
1213       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1214         N->setDebugLoc(DL.getDebugLoc());
1215       break;
1216     }
1217   }
1218   return N;
1219 }
1220 
1221 void SelectionDAG::clear() {
1222   allnodes_clear();
1223   OperandRecycler.clear(OperandAllocator);
1224   OperandAllocator.Reset();
1225   CSEMap.clear();
1226 
1227   ExtendedValueTypeNodes.clear();
1228   ExternalSymbols.clear();
1229   TargetExternalSymbols.clear();
1230   MCSymbols.clear();
1231   SDCallSiteDbgInfo.clear();
1232   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1233             static_cast<CondCodeSDNode*>(nullptr));
1234   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1235             static_cast<SDNode*>(nullptr));
1236 
1237   EntryNode.UseList = nullptr;
1238   InsertNode(&EntryNode);
1239   Root = getEntryNode();
1240   DbgInfo->clear();
1241 }
1242 
1243 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1244   return VT.bitsGT(Op.getValueType())
1245              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1246              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1247 }
1248 
1249 std::pair<SDValue, SDValue>
1250 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1251                                        const SDLoc &DL, EVT VT) {
1252   assert(!VT.bitsEq(Op.getValueType()) &&
1253          "Strict no-op FP extend/round not allowed.");
1254   SDValue Res =
1255       VT.bitsGT(Op.getValueType())
1256           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1257           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1258                     {Chain, Op, getIntPtrConstant(0, DL)});
1259 
1260   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1261 }
1262 
1263 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1264   return VT.bitsGT(Op.getValueType()) ?
1265     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1266     getNode(ISD::TRUNCATE, DL, VT, Op);
1267 }
1268 
1269 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1270   return VT.bitsGT(Op.getValueType()) ?
1271     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1272     getNode(ISD::TRUNCATE, DL, VT, Op);
1273 }
1274 
1275 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1276   return VT.bitsGT(Op.getValueType()) ?
1277     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1278     getNode(ISD::TRUNCATE, DL, VT, Op);
1279 }
1280 
1281 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1282                                         EVT OpVT) {
1283   if (VT.bitsLE(Op.getValueType()))
1284     return getNode(ISD::TRUNCATE, SL, VT, Op);
1285 
1286   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1287   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1288 }
1289 
1290 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1291   EVT OpVT = Op.getValueType();
1292   assert(VT.isInteger() && OpVT.isInteger() &&
1293          "Cannot getZeroExtendInReg FP types");
1294   assert(VT.isVector() == OpVT.isVector() &&
1295          "getZeroExtendInReg type should be vector iff the operand "
1296          "type is vector!");
1297   assert((!VT.isVector() ||
1298           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1299          "Vector element counts must match in getZeroExtendInReg");
1300   assert(VT.bitsLE(OpVT) && "Not extending!");
1301   if (OpVT == VT)
1302     return Op;
1303   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1304                                    VT.getScalarSizeInBits());
1305   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1306 }
1307 
1308 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1309   // Only unsigned pointer semantics are supported right now. In the future this
1310   // might delegate to TLI to check pointer signedness.
1311   return getZExtOrTrunc(Op, DL, VT);
1312 }
1313 
1314 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1315   // Only unsigned pointer semantics are supported right now. In the future this
1316   // might delegate to TLI to check pointer signedness.
1317   return getZeroExtendInReg(Op, DL, VT);
1318 }
1319 
1320 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1321 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1322   EVT EltVT = VT.getScalarType();
1323   SDValue NegOne =
1324     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1325   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1326 }
1327 
1328 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1329   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1330   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1331 }
1332 
1333 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1334                                       EVT OpVT) {
1335   if (!V)
1336     return getConstant(0, DL, VT);
1337 
1338   switch (TLI->getBooleanContents(OpVT)) {
1339   case TargetLowering::ZeroOrOneBooleanContent:
1340   case TargetLowering::UndefinedBooleanContent:
1341     return getConstant(1, DL, VT);
1342   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1343     return getAllOnesConstant(DL, VT);
1344   }
1345   llvm_unreachable("Unexpected boolean content enum!");
1346 }
1347 
1348 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1349                                   bool isT, bool isO) {
1350   EVT EltVT = VT.getScalarType();
1351   assert((EltVT.getSizeInBits() >= 64 ||
1352           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1353          "getConstant with a uint64_t value that doesn't fit in the type!");
1354   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1355 }
1356 
1357 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1358                                   bool isT, bool isO) {
1359   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1360 }
1361 
1362 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1363                                   EVT VT, bool isT, bool isO) {
1364   assert(VT.isInteger() && "Cannot create FP integer constant!");
1365 
1366   EVT EltVT = VT.getScalarType();
1367   const ConstantInt *Elt = &Val;
1368 
1369   // In some cases the vector type is legal but the element type is illegal and
1370   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1371   // inserted value (the type does not need to match the vector element type).
1372   // Any extra bits introduced will be truncated away.
1373   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1374                            TargetLowering::TypePromoteInteger) {
1375     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1376     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1377     Elt = ConstantInt::get(*getContext(), NewVal);
1378   }
1379   // In other cases the element type is illegal and needs to be expanded, for
1380   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1381   // the value into n parts and use a vector type with n-times the elements.
1382   // Then bitcast to the type requested.
1383   // Legalizing constants too early makes the DAGCombiner's job harder so we
1384   // only legalize if the DAG tells us we must produce legal types.
1385   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1386            TLI->getTypeAction(*getContext(), EltVT) ==
1387                TargetLowering::TypeExpandInteger) {
1388     const APInt &NewVal = Elt->getValue();
1389     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1390     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1391 
1392     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1393     if (VT.isScalableVector()) {
1394       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1395              "Can only handle an even split!");
1396       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1397 
1398       SmallVector<SDValue, 2> ScalarParts;
1399       for (unsigned i = 0; i != Parts; ++i)
1400         ScalarParts.push_back(getConstant(
1401             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1402             ViaEltVT, isT, isO));
1403 
1404       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1405     }
1406 
1407     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1408     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1409 
1410     // Check the temporary vector is the correct size. If this fails then
1411     // getTypeToTransformTo() probably returned a type whose size (in bits)
1412     // isn't a power-of-2 factor of the requested type size.
1413     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1414 
1415     SmallVector<SDValue, 2> EltParts;
1416     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1417       EltParts.push_back(getConstant(
1418           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1419           ViaEltVT, isT, isO));
1420 
1421     // EltParts is currently in little endian order. If we actually want
1422     // big-endian order then reverse it now.
1423     if (getDataLayout().isBigEndian())
1424       std::reverse(EltParts.begin(), EltParts.end());
1425 
1426     // The elements must be reversed when the element order is different
1427     // to the endianness of the elements (because the BITCAST is itself a
1428     // vector shuffle in this situation). However, we do not need any code to
1429     // perform this reversal because getConstant() is producing a vector
1430     // splat.
1431     // This situation occurs in MIPS MSA.
1432 
1433     SmallVector<SDValue, 8> Ops;
1434     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1435       llvm::append_range(Ops, EltParts);
1436 
1437     SDValue V =
1438         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1439     return V;
1440   }
1441 
1442   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1443          "APInt size does not match type size!");
1444   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1445   FoldingSetNodeID ID;
1446   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1447   ID.AddPointer(Elt);
1448   ID.AddBoolean(isO);
1449   void *IP = nullptr;
1450   SDNode *N = nullptr;
1451   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1452     if (!VT.isVector())
1453       return SDValue(N, 0);
1454 
1455   if (!N) {
1456     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1457     CSEMap.InsertNode(N, IP);
1458     InsertNode(N);
1459     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1460   }
1461 
1462   SDValue Result(N, 0);
1463   if (VT.isScalableVector())
1464     Result = getSplatVector(VT, DL, Result);
1465   else if (VT.isVector())
1466     Result = getSplatBuildVector(VT, DL, Result);
1467 
1468   return Result;
1469 }
1470 
1471 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1472                                         bool isTarget) {
1473   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1474 }
1475 
1476 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1477                                              const SDLoc &DL, bool LegalTypes) {
1478   assert(VT.isInteger() && "Shift amount is not an integer type!");
1479   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1480   return getConstant(Val, DL, ShiftVT);
1481 }
1482 
1483 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1484                                            bool isTarget) {
1485   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1486 }
1487 
1488 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1489                                     bool isTarget) {
1490   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1491 }
1492 
1493 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1494                                     EVT VT, bool isTarget) {
1495   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1496 
1497   EVT EltVT = VT.getScalarType();
1498 
1499   // Do the map lookup using the actual bit pattern for the floating point
1500   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1501   // we don't have issues with SNANs.
1502   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1503   FoldingSetNodeID ID;
1504   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1505   ID.AddPointer(&V);
1506   void *IP = nullptr;
1507   SDNode *N = nullptr;
1508   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1509     if (!VT.isVector())
1510       return SDValue(N, 0);
1511 
1512   if (!N) {
1513     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1514     CSEMap.InsertNode(N, IP);
1515     InsertNode(N);
1516   }
1517 
1518   SDValue Result(N, 0);
1519   if (VT.isScalableVector())
1520     Result = getSplatVector(VT, DL, Result);
1521   else if (VT.isVector())
1522     Result = getSplatBuildVector(VT, DL, Result);
1523   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1524   return Result;
1525 }
1526 
1527 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1528                                     bool isTarget) {
1529   EVT EltVT = VT.getScalarType();
1530   if (EltVT == MVT::f32)
1531     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1532   if (EltVT == MVT::f64)
1533     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1534   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1535       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1536     bool Ignored;
1537     APFloat APF = APFloat(Val);
1538     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1539                 &Ignored);
1540     return getConstantFP(APF, DL, VT, isTarget);
1541   }
1542   llvm_unreachable("Unsupported type in getConstantFP");
1543 }
1544 
1545 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1546                                        EVT VT, int64_t Offset, bool isTargetGA,
1547                                        unsigned TargetFlags) {
1548   assert((TargetFlags == 0 || isTargetGA) &&
1549          "Cannot set target flags on target-independent globals");
1550 
1551   // Truncate (with sign-extension) the offset value to the pointer size.
1552   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1553   if (BitWidth < 64)
1554     Offset = SignExtend64(Offset, BitWidth);
1555 
1556   unsigned Opc;
1557   if (GV->isThreadLocal())
1558     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1559   else
1560     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1561 
1562   FoldingSetNodeID ID;
1563   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1564   ID.AddPointer(GV);
1565   ID.AddInteger(Offset);
1566   ID.AddInteger(TargetFlags);
1567   void *IP = nullptr;
1568   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1569     return SDValue(E, 0);
1570 
1571   auto *N = newSDNode<GlobalAddressSDNode>(
1572       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1573   CSEMap.InsertNode(N, IP);
1574     InsertNode(N);
1575   return SDValue(N, 0);
1576 }
1577 
1578 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1579   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1580   FoldingSetNodeID ID;
1581   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1582   ID.AddInteger(FI);
1583   void *IP = nullptr;
1584   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1585     return SDValue(E, 0);
1586 
1587   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1588   CSEMap.InsertNode(N, IP);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1594                                    unsigned TargetFlags) {
1595   assert((TargetFlags == 0 || isTarget) &&
1596          "Cannot set target flags on target-independent jump tables");
1597   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1600   ID.AddInteger(JTI);
1601   ID.AddInteger(TargetFlags);
1602   void *IP = nullptr;
1603   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1604     return SDValue(E, 0);
1605 
1606   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1607   CSEMap.InsertNode(N, IP);
1608   InsertNode(N);
1609   return SDValue(N, 0);
1610 }
1611 
1612 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1613                                       MaybeAlign Alignment, int Offset,
1614                                       bool isTarget, unsigned TargetFlags) {
1615   assert((TargetFlags == 0 || isTarget) &&
1616          "Cannot set target flags on target-independent globals");
1617   if (!Alignment)
1618     Alignment = shouldOptForSize()
1619                     ? getDataLayout().getABITypeAlign(C->getType())
1620                     : getDataLayout().getPrefTypeAlign(C->getType());
1621   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1622   FoldingSetNodeID ID;
1623   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1624   ID.AddInteger(Alignment->value());
1625   ID.AddInteger(Offset);
1626   ID.AddPointer(C);
1627   ID.AddInteger(TargetFlags);
1628   void *IP = nullptr;
1629   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1630     return SDValue(E, 0);
1631 
1632   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1633                                           TargetFlags);
1634   CSEMap.InsertNode(N, IP);
1635   InsertNode(N);
1636   SDValue V = SDValue(N, 0);
1637   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1638   return V;
1639 }
1640 
1641 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1642                                       MaybeAlign Alignment, int Offset,
1643                                       bool isTarget, unsigned TargetFlags) {
1644   assert((TargetFlags == 0 || isTarget) &&
1645          "Cannot set target flags on target-independent globals");
1646   if (!Alignment)
1647     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1648   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1649   FoldingSetNodeID ID;
1650   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1651   ID.AddInteger(Alignment->value());
1652   ID.AddInteger(Offset);
1653   C->addSelectionDAGCSEId(ID);
1654   ID.AddInteger(TargetFlags);
1655   void *IP = nullptr;
1656   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1657     return SDValue(E, 0);
1658 
1659   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1660                                           TargetFlags);
1661   CSEMap.InsertNode(N, IP);
1662   InsertNode(N);
1663   return SDValue(N, 0);
1664 }
1665 
1666 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1667                                      unsigned TargetFlags) {
1668   FoldingSetNodeID ID;
1669   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1670   ID.AddInteger(Index);
1671   ID.AddInteger(Offset);
1672   ID.AddInteger(TargetFlags);
1673   void *IP = nullptr;
1674   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1675     return SDValue(E, 0);
1676 
1677   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1678   CSEMap.InsertNode(N, IP);
1679   InsertNode(N);
1680   return SDValue(N, 0);
1681 }
1682 
1683 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1684   FoldingSetNodeID ID;
1685   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1686   ID.AddPointer(MBB);
1687   void *IP = nullptr;
1688   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1689     return SDValue(E, 0);
1690 
1691   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1692   CSEMap.InsertNode(N, IP);
1693   InsertNode(N);
1694   return SDValue(N, 0);
1695 }
1696 
1697 SDValue SelectionDAG::getValueType(EVT VT) {
1698   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1699       ValueTypeNodes.size())
1700     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1701 
1702   SDNode *&N = VT.isExtended() ?
1703     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1704 
1705   if (N) return SDValue(N, 0);
1706   N = newSDNode<VTSDNode>(VT);
1707   InsertNode(N);
1708   return SDValue(N, 0);
1709 }
1710 
1711 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1712   SDNode *&N = ExternalSymbols[Sym];
1713   if (N) return SDValue(N, 0);
1714   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1715   InsertNode(N);
1716   return SDValue(N, 0);
1717 }
1718 
1719 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1720   SDNode *&N = MCSymbols[Sym];
1721   if (N)
1722     return SDValue(N, 0);
1723   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1724   InsertNode(N);
1725   return SDValue(N, 0);
1726 }
1727 
1728 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1729                                               unsigned TargetFlags) {
1730   SDNode *&N =
1731       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1732   if (N) return SDValue(N, 0);
1733   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1734   InsertNode(N);
1735   return SDValue(N, 0);
1736 }
1737 
1738 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1739   if ((unsigned)Cond >= CondCodeNodes.size())
1740     CondCodeNodes.resize(Cond+1);
1741 
1742   if (!CondCodeNodes[Cond]) {
1743     auto *N = newSDNode<CondCodeSDNode>(Cond);
1744     CondCodeNodes[Cond] = N;
1745     InsertNode(N);
1746   }
1747 
1748   return SDValue(CondCodeNodes[Cond], 0);
1749 }
1750 
1751 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1752   APInt One(ResVT.getScalarSizeInBits(), 1);
1753   return getStepVector(DL, ResVT, One);
1754 }
1755 
1756 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1757   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1758   if (ResVT.isScalableVector())
1759     return getNode(
1760         ISD::STEP_VECTOR, DL, ResVT,
1761         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1762 
1763   SmallVector<SDValue, 16> OpsStepConstants;
1764   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1765     OpsStepConstants.push_back(
1766         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1767   return getBuildVector(ResVT, DL, OpsStepConstants);
1768 }
1769 
1770 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1771 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1772 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1773   std::swap(N1, N2);
1774   ShuffleVectorSDNode::commuteMask(M);
1775 }
1776 
1777 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1778                                        SDValue N2, ArrayRef<int> Mask) {
1779   assert(VT.getVectorNumElements() == Mask.size() &&
1780          "Must have the same number of vector elements as mask elements!");
1781   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1782          "Invalid VECTOR_SHUFFLE");
1783 
1784   // Canonicalize shuffle undef, undef -> undef
1785   if (N1.isUndef() && N2.isUndef())
1786     return getUNDEF(VT);
1787 
1788   // Validate that all indices in Mask are within the range of the elements
1789   // input to the shuffle.
1790   int NElts = Mask.size();
1791   assert(llvm::all_of(Mask,
1792                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1793          "Index out of range");
1794 
1795   // Copy the mask so we can do any needed cleanup.
1796   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1797 
1798   // Canonicalize shuffle v, v -> v, undef
1799   if (N1 == N2) {
1800     N2 = getUNDEF(VT);
1801     for (int i = 0; i != NElts; ++i)
1802       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1803   }
1804 
1805   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1806   if (N1.isUndef())
1807     commuteShuffle(N1, N2, MaskVec);
1808 
1809   if (TLI->hasVectorBlend()) {
1810     // If shuffling a splat, try to blend the splat instead. We do this here so
1811     // that even when this arises during lowering we don't have to re-handle it.
1812     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1813       BitVector UndefElements;
1814       SDValue Splat = BV->getSplatValue(&UndefElements);
1815       if (!Splat)
1816         return;
1817 
1818       for (int i = 0; i < NElts; ++i) {
1819         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1820           continue;
1821 
1822         // If this input comes from undef, mark it as such.
1823         if (UndefElements[MaskVec[i] - Offset]) {
1824           MaskVec[i] = -1;
1825           continue;
1826         }
1827 
1828         // If we can blend a non-undef lane, use that instead.
1829         if (!UndefElements[i])
1830           MaskVec[i] = i + Offset;
1831       }
1832     };
1833     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1834       BlendSplat(N1BV, 0);
1835     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1836       BlendSplat(N2BV, NElts);
1837   }
1838 
1839   // Canonicalize all index into lhs, -> shuffle lhs, undef
1840   // Canonicalize all index into rhs, -> shuffle rhs, undef
1841   bool AllLHS = true, AllRHS = true;
1842   bool N2Undef = N2.isUndef();
1843   for (int i = 0; i != NElts; ++i) {
1844     if (MaskVec[i] >= NElts) {
1845       if (N2Undef)
1846         MaskVec[i] = -1;
1847       else
1848         AllLHS = false;
1849     } else if (MaskVec[i] >= 0) {
1850       AllRHS = false;
1851     }
1852   }
1853   if (AllLHS && AllRHS)
1854     return getUNDEF(VT);
1855   if (AllLHS && !N2Undef)
1856     N2 = getUNDEF(VT);
1857   if (AllRHS) {
1858     N1 = getUNDEF(VT);
1859     commuteShuffle(N1, N2, MaskVec);
1860   }
1861   // Reset our undef status after accounting for the mask.
1862   N2Undef = N2.isUndef();
1863   // Re-check whether both sides ended up undef.
1864   if (N1.isUndef() && N2Undef)
1865     return getUNDEF(VT);
1866 
1867   // If Identity shuffle return that node.
1868   bool Identity = true, AllSame = true;
1869   for (int i = 0; i != NElts; ++i) {
1870     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1871     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1872   }
1873   if (Identity && NElts)
1874     return N1;
1875 
1876   // Shuffling a constant splat doesn't change the result.
1877   if (N2Undef) {
1878     SDValue V = N1;
1879 
1880     // Look through any bitcasts. We check that these don't change the number
1881     // (and size) of elements and just changes their types.
1882     while (V.getOpcode() == ISD::BITCAST)
1883       V = V->getOperand(0);
1884 
1885     // A splat should always show up as a build vector node.
1886     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1887       BitVector UndefElements;
1888       SDValue Splat = BV->getSplatValue(&UndefElements);
1889       // If this is a splat of an undef, shuffling it is also undef.
1890       if (Splat && Splat.isUndef())
1891         return getUNDEF(VT);
1892 
1893       bool SameNumElts =
1894           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1895 
1896       // We only have a splat which can skip shuffles if there is a splatted
1897       // value and no undef lanes rearranged by the shuffle.
1898       if (Splat && UndefElements.none()) {
1899         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1900         // number of elements match or the value splatted is a zero constant.
1901         if (SameNumElts)
1902           return N1;
1903         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1904           if (C->isNullValue())
1905             return N1;
1906       }
1907 
1908       // If the shuffle itself creates a splat, build the vector directly.
1909       if (AllSame && SameNumElts) {
1910         EVT BuildVT = BV->getValueType(0);
1911         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1912         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1913 
1914         // We may have jumped through bitcasts, so the type of the
1915         // BUILD_VECTOR may not match the type of the shuffle.
1916         if (BuildVT != VT)
1917           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1918         return NewBV;
1919       }
1920     }
1921   }
1922 
1923   FoldingSetNodeID ID;
1924   SDValue Ops[2] = { N1, N2 };
1925   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1926   for (int i = 0; i != NElts; ++i)
1927     ID.AddInteger(MaskVec[i]);
1928 
1929   void* IP = nullptr;
1930   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1931     return SDValue(E, 0);
1932 
1933   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1934   // SDNode doesn't have access to it.  This memory will be "leaked" when
1935   // the node is deallocated, but recovered when the NodeAllocator is released.
1936   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1937   llvm::copy(MaskVec, MaskAlloc);
1938 
1939   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1940                                            dl.getDebugLoc(), MaskAlloc);
1941   createOperands(N, Ops);
1942 
1943   CSEMap.InsertNode(N, IP);
1944   InsertNode(N);
1945   SDValue V = SDValue(N, 0);
1946   NewSDValueDbgMsg(V, "Creating new node: ", this);
1947   return V;
1948 }
1949 
1950 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1951   EVT VT = SV.getValueType(0);
1952   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1953   ShuffleVectorSDNode::commuteMask(MaskVec);
1954 
1955   SDValue Op0 = SV.getOperand(0);
1956   SDValue Op1 = SV.getOperand(1);
1957   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1958 }
1959 
1960 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1961   FoldingSetNodeID ID;
1962   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1963   ID.AddInteger(RegNo);
1964   void *IP = nullptr;
1965   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1966     return SDValue(E, 0);
1967 
1968   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1969   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1970   CSEMap.InsertNode(N, IP);
1971   InsertNode(N);
1972   return SDValue(N, 0);
1973 }
1974 
1975 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1976   FoldingSetNodeID ID;
1977   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1978   ID.AddPointer(RegMask);
1979   void *IP = nullptr;
1980   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1981     return SDValue(E, 0);
1982 
1983   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1984   CSEMap.InsertNode(N, IP);
1985   InsertNode(N);
1986   return SDValue(N, 0);
1987 }
1988 
1989 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1990                                  MCSymbol *Label) {
1991   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1992 }
1993 
1994 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1995                                    SDValue Root, MCSymbol *Label) {
1996   FoldingSetNodeID ID;
1997   SDValue Ops[] = { Root };
1998   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1999   ID.AddPointer(Label);
2000   void *IP = nullptr;
2001   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2002     return SDValue(E, 0);
2003 
2004   auto *N =
2005       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2006   createOperands(N, Ops);
2007 
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   return SDValue(N, 0);
2011 }
2012 
2013 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2014                                       int64_t Offset, bool isTarget,
2015                                       unsigned TargetFlags) {
2016   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2017 
2018   FoldingSetNodeID ID;
2019   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2020   ID.AddPointer(BA);
2021   ID.AddInteger(Offset);
2022   ID.AddInteger(TargetFlags);
2023   void *IP = nullptr;
2024   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2025     return SDValue(E, 0);
2026 
2027   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2028   CSEMap.InsertNode(N, IP);
2029   InsertNode(N);
2030   return SDValue(N, 0);
2031 }
2032 
2033 SDValue SelectionDAG::getSrcValue(const Value *V) {
2034   FoldingSetNodeID ID;
2035   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2036   ID.AddPointer(V);
2037 
2038   void *IP = nullptr;
2039   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2040     return SDValue(E, 0);
2041 
2042   auto *N = newSDNode<SrcValueSDNode>(V);
2043   CSEMap.InsertNode(N, IP);
2044   InsertNode(N);
2045   return SDValue(N, 0);
2046 }
2047 
2048 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2049   FoldingSetNodeID ID;
2050   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2051   ID.AddPointer(MD);
2052 
2053   void *IP = nullptr;
2054   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2055     return SDValue(E, 0);
2056 
2057   auto *N = newSDNode<MDNodeSDNode>(MD);
2058   CSEMap.InsertNode(N, IP);
2059   InsertNode(N);
2060   return SDValue(N, 0);
2061 }
2062 
2063 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2064   if (VT == V.getValueType())
2065     return V;
2066 
2067   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2068 }
2069 
2070 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2071                                        unsigned SrcAS, unsigned DestAS) {
2072   SDValue Ops[] = {Ptr};
2073   FoldingSetNodeID ID;
2074   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2075   ID.AddInteger(SrcAS);
2076   ID.AddInteger(DestAS);
2077 
2078   void *IP = nullptr;
2079   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2080     return SDValue(E, 0);
2081 
2082   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2083                                            VT, SrcAS, DestAS);
2084   createOperands(N, Ops);
2085 
2086   CSEMap.InsertNode(N, IP);
2087   InsertNode(N);
2088   return SDValue(N, 0);
2089 }
2090 
2091 SDValue SelectionDAG::getFreeze(SDValue V) {
2092   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2093 }
2094 
2095 /// getShiftAmountOperand - Return the specified value casted to
2096 /// the target's desired shift amount type.
2097 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2098   EVT OpTy = Op.getValueType();
2099   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2100   if (OpTy == ShTy || OpTy.isVector()) return Op;
2101 
2102   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2103 }
2104 
2105 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2106   SDLoc dl(Node);
2107   const TargetLowering &TLI = getTargetLoweringInfo();
2108   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2109   EVT VT = Node->getValueType(0);
2110   SDValue Tmp1 = Node->getOperand(0);
2111   SDValue Tmp2 = Node->getOperand(1);
2112   const MaybeAlign MA(Node->getConstantOperandVal(3));
2113 
2114   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2115                                Tmp2, MachinePointerInfo(V));
2116   SDValue VAList = VAListLoad;
2117 
2118   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2119     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2120                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2121 
2122     VAList =
2123         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2124                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2125   }
2126 
2127   // Increment the pointer, VAList, to the next vaarg
2128   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2129                  getConstant(getDataLayout().getTypeAllocSize(
2130                                                VT.getTypeForEVT(*getContext())),
2131                              dl, VAList.getValueType()));
2132   // Store the incremented VAList to the legalized pointer
2133   Tmp1 =
2134       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2135   // Load the actual argument out of the pointer VAList
2136   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2137 }
2138 
2139 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2140   SDLoc dl(Node);
2141   const TargetLowering &TLI = getTargetLoweringInfo();
2142   // This defaults to loading a pointer from the input and storing it to the
2143   // output, returning the chain.
2144   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2145   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2146   SDValue Tmp1 =
2147       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2148               Node->getOperand(2), MachinePointerInfo(VS));
2149   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2150                   MachinePointerInfo(VD));
2151 }
2152 
2153 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2154   const DataLayout &DL = getDataLayout();
2155   Type *Ty = VT.getTypeForEVT(*getContext());
2156   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2157 
2158   if (TLI->isTypeLegal(VT) || !VT.isVector())
2159     return RedAlign;
2160 
2161   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2162   const Align StackAlign = TFI->getStackAlign();
2163 
2164   // See if we can choose a smaller ABI alignment in cases where it's an
2165   // illegal vector type that will get broken down.
2166   if (RedAlign > StackAlign) {
2167     EVT IntermediateVT;
2168     MVT RegisterVT;
2169     unsigned NumIntermediates;
2170     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2171                                 NumIntermediates, RegisterVT);
2172     Ty = IntermediateVT.getTypeForEVT(*getContext());
2173     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2174     if (RedAlign2 < RedAlign)
2175       RedAlign = RedAlign2;
2176   }
2177 
2178   return RedAlign;
2179 }
2180 
2181 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2182   MachineFrameInfo &MFI = MF->getFrameInfo();
2183   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2184   int StackID = 0;
2185   if (Bytes.isScalable())
2186     StackID = TFI->getStackIDForScalableVectors();
2187   // The stack id gives an indication of whether the object is scalable or
2188   // not, so it's safe to pass in the minimum size here.
2189   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2190                                        false, nullptr, StackID);
2191   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2192 }
2193 
2194 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2195   Type *Ty = VT.getTypeForEVT(*getContext());
2196   Align StackAlign =
2197       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2198   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2199 }
2200 
2201 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2202   TypeSize VT1Size = VT1.getStoreSize();
2203   TypeSize VT2Size = VT2.getStoreSize();
2204   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2205          "Don't know how to choose the maximum size when creating a stack "
2206          "temporary");
2207   TypeSize Bytes =
2208       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2209 
2210   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2211   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2212   const DataLayout &DL = getDataLayout();
2213   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2214   return CreateStackTemporary(Bytes, Align);
2215 }
2216 
2217 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2218                                 ISD::CondCode Cond, const SDLoc &dl) {
2219   EVT OpVT = N1.getValueType();
2220 
2221   // These setcc operations always fold.
2222   switch (Cond) {
2223   default: break;
2224   case ISD::SETFALSE:
2225   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2226   case ISD::SETTRUE:
2227   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2228 
2229   case ISD::SETOEQ:
2230   case ISD::SETOGT:
2231   case ISD::SETOGE:
2232   case ISD::SETOLT:
2233   case ISD::SETOLE:
2234   case ISD::SETONE:
2235   case ISD::SETO:
2236   case ISD::SETUO:
2237   case ISD::SETUEQ:
2238   case ISD::SETUNE:
2239     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2240     break;
2241   }
2242 
2243   if (OpVT.isInteger()) {
2244     // For EQ and NE, we can always pick a value for the undef to make the
2245     // predicate pass or fail, so we can return undef.
2246     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2247     // icmp eq/ne X, undef -> undef.
2248     if ((N1.isUndef() || N2.isUndef()) &&
2249         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2250       return getUNDEF(VT);
2251 
2252     // If both operands are undef, we can return undef for int comparison.
2253     // icmp undef, undef -> undef.
2254     if (N1.isUndef() && N2.isUndef())
2255       return getUNDEF(VT);
2256 
2257     // icmp X, X -> true/false
2258     // icmp X, undef -> true/false because undef could be X.
2259     if (N1 == N2)
2260       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2261   }
2262 
2263   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2264     const APInt &C2 = N2C->getAPIntValue();
2265     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2266       const APInt &C1 = N1C->getAPIntValue();
2267 
2268       switch (Cond) {
2269       default: llvm_unreachable("Unknown integer setcc!");
2270       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2271       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2272       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2273       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2274       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2275       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2276       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2277       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2278       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2279       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2280       }
2281     }
2282   }
2283 
2284   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2285   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2286 
2287   if (N1CFP && N2CFP) {
2288     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2289     switch (Cond) {
2290     default: break;
2291     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2292                         return getUNDEF(VT);
2293                       LLVM_FALLTHROUGH;
2294     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2295                                              OpVT);
2296     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2297                         return getUNDEF(VT);
2298                       LLVM_FALLTHROUGH;
2299     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2300                                              R==APFloat::cmpLessThan, dl, VT,
2301                                              OpVT);
2302     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2303                         return getUNDEF(VT);
2304                       LLVM_FALLTHROUGH;
2305     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2306                                              OpVT);
2307     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2308                         return getUNDEF(VT);
2309                       LLVM_FALLTHROUGH;
2310     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2311                                              VT, OpVT);
2312     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2313                         return getUNDEF(VT);
2314                       LLVM_FALLTHROUGH;
2315     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2316                                              R==APFloat::cmpEqual, dl, VT,
2317                                              OpVT);
2318     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2319                         return getUNDEF(VT);
2320                       LLVM_FALLTHROUGH;
2321     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2322                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2323     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2324                                              OpVT);
2325     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2326                                              OpVT);
2327     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2328                                              R==APFloat::cmpEqual, dl, VT,
2329                                              OpVT);
2330     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2331                                              OpVT);
2332     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2333                                              R==APFloat::cmpLessThan, dl, VT,
2334                                              OpVT);
2335     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2336                                              R==APFloat::cmpUnordered, dl, VT,
2337                                              OpVT);
2338     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2339                                              VT, OpVT);
2340     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2341                                              OpVT);
2342     }
2343   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2344     // Ensure that the constant occurs on the RHS.
2345     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2346     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2347       return SDValue();
2348     return getSetCC(dl, VT, N2, N1, SwappedCond);
2349   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2350              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2351     // If an operand is known to be a nan (or undef that could be a nan), we can
2352     // fold it.
2353     // Choosing NaN for the undef will always make unordered comparison succeed
2354     // and ordered comparison fails.
2355     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2356     switch (ISD::getUnorderedFlavor(Cond)) {
2357     default:
2358       llvm_unreachable("Unknown flavor!");
2359     case 0: // Known false.
2360       return getBoolConstant(false, dl, VT, OpVT);
2361     case 1: // Known true.
2362       return getBoolConstant(true, dl, VT, OpVT);
2363     case 2: // Undefined.
2364       return getUNDEF(VT);
2365     }
2366   }
2367 
2368   // Could not fold it.
2369   return SDValue();
2370 }
2371 
2372 /// See if the specified operand can be simplified with the knowledge that only
2373 /// the bits specified by DemandedBits are used.
2374 /// TODO: really we should be making this into the DAG equivalent of
2375 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2376 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2377   EVT VT = V.getValueType();
2378 
2379   if (VT.isScalableVector())
2380     return SDValue();
2381 
2382   APInt DemandedElts = VT.isVector()
2383                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2384                            : APInt(1, 1);
2385   return GetDemandedBits(V, DemandedBits, DemandedElts);
2386 }
2387 
2388 /// See if the specified operand can be simplified with the knowledge that only
2389 /// the bits specified by DemandedBits are used in the elements specified by
2390 /// DemandedElts.
2391 /// TODO: really we should be making this into the DAG equivalent of
2392 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2393 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2394                                       const APInt &DemandedElts) {
2395   switch (V.getOpcode()) {
2396   default:
2397     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2398                                                 *this, 0);
2399   case ISD::Constant: {
2400     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2401     APInt NewVal = CVal & DemandedBits;
2402     if (NewVal != CVal)
2403       return getConstant(NewVal, SDLoc(V), V.getValueType());
2404     break;
2405   }
2406   case ISD::SRL:
2407     // Only look at single-use SRLs.
2408     if (!V.getNode()->hasOneUse())
2409       break;
2410     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2411       // See if we can recursively simplify the LHS.
2412       unsigned Amt = RHSC->getZExtValue();
2413 
2414       // Watch out for shift count overflow though.
2415       if (Amt >= DemandedBits.getBitWidth())
2416         break;
2417       APInt SrcDemandedBits = DemandedBits << Amt;
2418       if (SDValue SimplifyLHS =
2419               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2420         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2421                        V.getOperand(1));
2422     }
2423     break;
2424   }
2425   return SDValue();
2426 }
2427 
2428 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2429 /// use this predicate to simplify operations downstream.
2430 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2431   unsigned BitWidth = Op.getScalarValueSizeInBits();
2432   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2433 }
2434 
2435 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2436 /// this predicate to simplify operations downstream.  Mask is known to be zero
2437 /// for bits that V cannot have.
2438 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2439                                      unsigned Depth) const {
2440   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2441 }
2442 
2443 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2444 /// DemandedElts.  We use this predicate to simplify operations downstream.
2445 /// Mask is known to be zero for bits that V cannot have.
2446 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2447                                      const APInt &DemandedElts,
2448                                      unsigned Depth) const {
2449   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2450 }
2451 
2452 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2453 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2454                                         unsigned Depth) const {
2455   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2456 }
2457 
2458 /// isSplatValue - Return true if the vector V has the same value
2459 /// across all DemandedElts. For scalable vectors it does not make
2460 /// sense to specify which elements are demanded or undefined, therefore
2461 /// they are simply ignored.
2462 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2463                                 APInt &UndefElts, unsigned Depth) {
2464   EVT VT = V.getValueType();
2465   assert(VT.isVector() && "Vector type expected");
2466 
2467   if (!VT.isScalableVector() && !DemandedElts)
2468     return false; // No demanded elts, better to assume we don't know anything.
2469 
2470   if (Depth >= MaxRecursionDepth)
2471     return false; // Limit search depth.
2472 
2473   // Deal with some common cases here that work for both fixed and scalable
2474   // vector types.
2475   switch (V.getOpcode()) {
2476   case ISD::SPLAT_VECTOR:
2477     UndefElts = V.getOperand(0).isUndef()
2478                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2479                     : APInt(DemandedElts.getBitWidth(), 0);
2480     return true;
2481   case ISD::ADD:
2482   case ISD::SUB:
2483   case ISD::AND:
2484   case ISD::XOR:
2485   case ISD::OR: {
2486     APInt UndefLHS, UndefRHS;
2487     SDValue LHS = V.getOperand(0);
2488     SDValue RHS = V.getOperand(1);
2489     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2490         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2491       UndefElts = UndefLHS | UndefRHS;
2492       return true;
2493     }
2494     return false;
2495   }
2496   case ISD::ABS:
2497   case ISD::TRUNCATE:
2498   case ISD::SIGN_EXTEND:
2499   case ISD::ZERO_EXTEND:
2500     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2501   }
2502 
2503   // We don't support other cases than those above for scalable vectors at
2504   // the moment.
2505   if (VT.isScalableVector())
2506     return false;
2507 
2508   unsigned NumElts = VT.getVectorNumElements();
2509   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2510   UndefElts = APInt::getNullValue(NumElts);
2511 
2512   switch (V.getOpcode()) {
2513   case ISD::BUILD_VECTOR: {
2514     SDValue Scl;
2515     for (unsigned i = 0; i != NumElts; ++i) {
2516       SDValue Op = V.getOperand(i);
2517       if (Op.isUndef()) {
2518         UndefElts.setBit(i);
2519         continue;
2520       }
2521       if (!DemandedElts[i])
2522         continue;
2523       if (Scl && Scl != Op)
2524         return false;
2525       Scl = Op;
2526     }
2527     return true;
2528   }
2529   case ISD::VECTOR_SHUFFLE: {
2530     // Check if this is a shuffle node doing a splat.
2531     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2532     int SplatIndex = -1;
2533     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2534     for (int i = 0; i != (int)NumElts; ++i) {
2535       int M = Mask[i];
2536       if (M < 0) {
2537         UndefElts.setBit(i);
2538         continue;
2539       }
2540       if (!DemandedElts[i])
2541         continue;
2542       if (0 <= SplatIndex && SplatIndex != M)
2543         return false;
2544       SplatIndex = M;
2545     }
2546     return true;
2547   }
2548   case ISD::EXTRACT_SUBVECTOR: {
2549     // Offset the demanded elts by the subvector index.
2550     SDValue Src = V.getOperand(0);
2551     // We don't support scalable vectors at the moment.
2552     if (Src.getValueType().isScalableVector())
2553       return false;
2554     uint64_t Idx = V.getConstantOperandVal(1);
2555     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2556     APInt UndefSrcElts;
2557     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2558     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2559       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2560       return true;
2561     }
2562     break;
2563   }
2564   }
2565 
2566   return false;
2567 }
2568 
2569 /// Helper wrapper to main isSplatValue function.
2570 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2571   EVT VT = V.getValueType();
2572   assert(VT.isVector() && "Vector type expected");
2573 
2574   APInt UndefElts;
2575   APInt DemandedElts;
2576 
2577   // For now we don't support this with scalable vectors.
2578   if (!VT.isScalableVector())
2579     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2580   return isSplatValue(V, DemandedElts, UndefElts) &&
2581          (AllowUndefs || !UndefElts);
2582 }
2583 
2584 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2585   V = peekThroughExtractSubvectors(V);
2586 
2587   EVT VT = V.getValueType();
2588   unsigned Opcode = V.getOpcode();
2589   switch (Opcode) {
2590   default: {
2591     APInt UndefElts;
2592     APInt DemandedElts;
2593 
2594     if (!VT.isScalableVector())
2595       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2596 
2597     if (isSplatValue(V, DemandedElts, UndefElts)) {
2598       if (VT.isScalableVector()) {
2599         // DemandedElts and UndefElts are ignored for scalable vectors, since
2600         // the only supported cases are SPLAT_VECTOR nodes.
2601         SplatIdx = 0;
2602       } else {
2603         // Handle case where all demanded elements are UNDEF.
2604         if (DemandedElts.isSubsetOf(UndefElts)) {
2605           SplatIdx = 0;
2606           return getUNDEF(VT);
2607         }
2608         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2609       }
2610       return V;
2611     }
2612     break;
2613   }
2614   case ISD::SPLAT_VECTOR:
2615     SplatIdx = 0;
2616     return V;
2617   case ISD::VECTOR_SHUFFLE: {
2618     if (VT.isScalableVector())
2619       return SDValue();
2620 
2621     // Check if this is a shuffle node doing a splat.
2622     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2623     // getTargetVShiftNode currently struggles without the splat source.
2624     auto *SVN = cast<ShuffleVectorSDNode>(V);
2625     if (!SVN->isSplat())
2626       break;
2627     int Idx = SVN->getSplatIndex();
2628     int NumElts = V.getValueType().getVectorNumElements();
2629     SplatIdx = Idx % NumElts;
2630     return V.getOperand(Idx / NumElts);
2631   }
2632   }
2633 
2634   return SDValue();
2635 }
2636 
2637 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2638   int SplatIdx;
2639   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2640     EVT SVT = SrcVector.getValueType().getScalarType();
2641     EVT LegalSVT = SVT;
2642     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2643       if (!SVT.isInteger())
2644         return SDValue();
2645       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2646       if (LegalSVT.bitsLT(SVT))
2647         return SDValue();
2648     }
2649     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2650                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2651   }
2652   return SDValue();
2653 }
2654 
2655 const APInt *
2656 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2657                                           const APInt &DemandedElts) const {
2658   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2659           V.getOpcode() == ISD::SRA) &&
2660          "Unknown shift node");
2661   unsigned BitWidth = V.getScalarValueSizeInBits();
2662   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2663     // Shifting more than the bitwidth is not valid.
2664     const APInt &ShAmt = SA->getAPIntValue();
2665     if (ShAmt.ult(BitWidth))
2666       return &ShAmt;
2667   }
2668   return nullptr;
2669 }
2670 
2671 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2672     SDValue V, const APInt &DemandedElts) const {
2673   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2674           V.getOpcode() == ISD::SRA) &&
2675          "Unknown shift node");
2676   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2677     return ValidAmt;
2678   unsigned BitWidth = V.getScalarValueSizeInBits();
2679   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2680   if (!BV)
2681     return nullptr;
2682   const APInt *MinShAmt = nullptr;
2683   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2684     if (!DemandedElts[i])
2685       continue;
2686     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2687     if (!SA)
2688       return nullptr;
2689     // Shifting more than the bitwidth is not valid.
2690     const APInt &ShAmt = SA->getAPIntValue();
2691     if (ShAmt.uge(BitWidth))
2692       return nullptr;
2693     if (MinShAmt && MinShAmt->ule(ShAmt))
2694       continue;
2695     MinShAmt = &ShAmt;
2696   }
2697   return MinShAmt;
2698 }
2699 
2700 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2701     SDValue V, const APInt &DemandedElts) const {
2702   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2703           V.getOpcode() == ISD::SRA) &&
2704          "Unknown shift node");
2705   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2706     return ValidAmt;
2707   unsigned BitWidth = V.getScalarValueSizeInBits();
2708   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2709   if (!BV)
2710     return nullptr;
2711   const APInt *MaxShAmt = nullptr;
2712   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2713     if (!DemandedElts[i])
2714       continue;
2715     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2716     if (!SA)
2717       return nullptr;
2718     // Shifting more than the bitwidth is not valid.
2719     const APInt &ShAmt = SA->getAPIntValue();
2720     if (ShAmt.uge(BitWidth))
2721       return nullptr;
2722     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2723       continue;
2724     MaxShAmt = &ShAmt;
2725   }
2726   return MaxShAmt;
2727 }
2728 
2729 /// Determine which bits of Op are known to be either zero or one and return
2730 /// them in Known. For vectors, the known bits are those that are shared by
2731 /// every vector element.
2732 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2733   EVT VT = Op.getValueType();
2734 
2735   // TOOD: Until we have a plan for how to represent demanded elements for
2736   // scalable vectors, we can just bail out for now.
2737   if (Op.getValueType().isScalableVector()) {
2738     unsigned BitWidth = Op.getScalarValueSizeInBits();
2739     return KnownBits(BitWidth);
2740   }
2741 
2742   APInt DemandedElts = VT.isVector()
2743                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2744                            : APInt(1, 1);
2745   return computeKnownBits(Op, DemandedElts, Depth);
2746 }
2747 
2748 /// Determine which bits of Op are known to be either zero or one and return
2749 /// them in Known. The DemandedElts argument allows us to only collect the known
2750 /// bits that are shared by the requested vector elements.
2751 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2752                                          unsigned Depth) const {
2753   unsigned BitWidth = Op.getScalarValueSizeInBits();
2754 
2755   KnownBits Known(BitWidth);   // Don't know anything.
2756 
2757   // TOOD: Until we have a plan for how to represent demanded elements for
2758   // scalable vectors, we can just bail out for now.
2759   if (Op.getValueType().isScalableVector())
2760     return Known;
2761 
2762   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2763     // We know all of the bits for a constant!
2764     return KnownBits::makeConstant(C->getAPIntValue());
2765   }
2766   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2767     // We know all of the bits for a constant fp!
2768     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2769   }
2770 
2771   if (Depth >= MaxRecursionDepth)
2772     return Known;  // Limit search depth.
2773 
2774   KnownBits Known2;
2775   unsigned NumElts = DemandedElts.getBitWidth();
2776   assert((!Op.getValueType().isVector() ||
2777           NumElts == Op.getValueType().getVectorNumElements()) &&
2778          "Unexpected vector size");
2779 
2780   if (!DemandedElts)
2781     return Known;  // No demanded elts, better to assume we don't know anything.
2782 
2783   unsigned Opcode = Op.getOpcode();
2784   switch (Opcode) {
2785   case ISD::BUILD_VECTOR:
2786     // Collect the known bits that are shared by every demanded vector element.
2787     Known.Zero.setAllBits(); Known.One.setAllBits();
2788     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2789       if (!DemandedElts[i])
2790         continue;
2791 
2792       SDValue SrcOp = Op.getOperand(i);
2793       Known2 = computeKnownBits(SrcOp, Depth + 1);
2794 
2795       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2796       if (SrcOp.getValueSizeInBits() != BitWidth) {
2797         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2798                "Expected BUILD_VECTOR implicit truncation");
2799         Known2 = Known2.trunc(BitWidth);
2800       }
2801 
2802       // Known bits are the values that are shared by every demanded element.
2803       Known = KnownBits::commonBits(Known, Known2);
2804 
2805       // If we don't know any bits, early out.
2806       if (Known.isUnknown())
2807         break;
2808     }
2809     break;
2810   case ISD::VECTOR_SHUFFLE: {
2811     // Collect the known bits that are shared by every vector element referenced
2812     // by the shuffle.
2813     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2814     Known.Zero.setAllBits(); Known.One.setAllBits();
2815     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2816     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2817     for (unsigned i = 0; i != NumElts; ++i) {
2818       if (!DemandedElts[i])
2819         continue;
2820 
2821       int M = SVN->getMaskElt(i);
2822       if (M < 0) {
2823         // For UNDEF elements, we don't know anything about the common state of
2824         // the shuffle result.
2825         Known.resetAll();
2826         DemandedLHS.clearAllBits();
2827         DemandedRHS.clearAllBits();
2828         break;
2829       }
2830 
2831       if ((unsigned)M < NumElts)
2832         DemandedLHS.setBit((unsigned)M % NumElts);
2833       else
2834         DemandedRHS.setBit((unsigned)M % NumElts);
2835     }
2836     // Known bits are the values that are shared by every demanded element.
2837     if (!!DemandedLHS) {
2838       SDValue LHS = Op.getOperand(0);
2839       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2840       Known = KnownBits::commonBits(Known, Known2);
2841     }
2842     // If we don't know any bits, early out.
2843     if (Known.isUnknown())
2844       break;
2845     if (!!DemandedRHS) {
2846       SDValue RHS = Op.getOperand(1);
2847       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2848       Known = KnownBits::commonBits(Known, Known2);
2849     }
2850     break;
2851   }
2852   case ISD::CONCAT_VECTORS: {
2853     // Split DemandedElts and test each of the demanded subvectors.
2854     Known.Zero.setAllBits(); Known.One.setAllBits();
2855     EVT SubVectorVT = Op.getOperand(0).getValueType();
2856     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2857     unsigned NumSubVectors = Op.getNumOperands();
2858     for (unsigned i = 0; i != NumSubVectors; ++i) {
2859       APInt DemandedSub =
2860           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2861       if (!!DemandedSub) {
2862         SDValue Sub = Op.getOperand(i);
2863         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2864         Known = KnownBits::commonBits(Known, Known2);
2865       }
2866       // If we don't know any bits, early out.
2867       if (Known.isUnknown())
2868         break;
2869     }
2870     break;
2871   }
2872   case ISD::INSERT_SUBVECTOR: {
2873     // Demand any elements from the subvector and the remainder from the src its
2874     // inserted into.
2875     SDValue Src = Op.getOperand(0);
2876     SDValue Sub = Op.getOperand(1);
2877     uint64_t Idx = Op.getConstantOperandVal(2);
2878     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2879     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2880     APInt DemandedSrcElts = DemandedElts;
2881     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2882 
2883     Known.One.setAllBits();
2884     Known.Zero.setAllBits();
2885     if (!!DemandedSubElts) {
2886       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2887       if (Known.isUnknown())
2888         break; // early-out.
2889     }
2890     if (!!DemandedSrcElts) {
2891       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2892       Known = KnownBits::commonBits(Known, Known2);
2893     }
2894     break;
2895   }
2896   case ISD::EXTRACT_SUBVECTOR: {
2897     // Offset the demanded elts by the subvector index.
2898     SDValue Src = Op.getOperand(0);
2899     // Bail until we can represent demanded elements for scalable vectors.
2900     if (Src.getValueType().isScalableVector())
2901       break;
2902     uint64_t Idx = Op.getConstantOperandVal(1);
2903     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2904     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2905     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2906     break;
2907   }
2908   case ISD::SCALAR_TO_VECTOR: {
2909     // We know about scalar_to_vector as much as we know about it source,
2910     // which becomes the first element of otherwise unknown vector.
2911     if (DemandedElts != 1)
2912       break;
2913 
2914     SDValue N0 = Op.getOperand(0);
2915     Known = computeKnownBits(N0, Depth + 1);
2916     if (N0.getValueSizeInBits() != BitWidth)
2917       Known = Known.trunc(BitWidth);
2918 
2919     break;
2920   }
2921   case ISD::BITCAST: {
2922     SDValue N0 = Op.getOperand(0);
2923     EVT SubVT = N0.getValueType();
2924     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2925 
2926     // Ignore bitcasts from unsupported types.
2927     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2928       break;
2929 
2930     // Fast handling of 'identity' bitcasts.
2931     if (BitWidth == SubBitWidth) {
2932       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2933       break;
2934     }
2935 
2936     bool IsLE = getDataLayout().isLittleEndian();
2937 
2938     // Bitcast 'small element' vector to 'large element' scalar/vector.
2939     if ((BitWidth % SubBitWidth) == 0) {
2940       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2941 
2942       // Collect known bits for the (larger) output by collecting the known
2943       // bits from each set of sub elements and shift these into place.
2944       // We need to separately call computeKnownBits for each set of
2945       // sub elements as the knownbits for each is likely to be different.
2946       unsigned SubScale = BitWidth / SubBitWidth;
2947       APInt SubDemandedElts(NumElts * SubScale, 0);
2948       for (unsigned i = 0; i != NumElts; ++i)
2949         if (DemandedElts[i])
2950           SubDemandedElts.setBit(i * SubScale);
2951 
2952       for (unsigned i = 0; i != SubScale; ++i) {
2953         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2954                          Depth + 1);
2955         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2956         Known.insertBits(Known2, SubBitWidth * Shifts);
2957       }
2958     }
2959 
2960     // Bitcast 'large element' scalar/vector to 'small element' vector.
2961     if ((SubBitWidth % BitWidth) == 0) {
2962       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2963 
2964       // Collect known bits for the (smaller) output by collecting the known
2965       // bits from the overlapping larger input elements and extracting the
2966       // sub sections we actually care about.
2967       unsigned SubScale = SubBitWidth / BitWidth;
2968       APInt SubDemandedElts(NumElts / SubScale, 0);
2969       for (unsigned i = 0; i != NumElts; ++i)
2970         if (DemandedElts[i])
2971           SubDemandedElts.setBit(i / SubScale);
2972 
2973       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2974 
2975       Known.Zero.setAllBits(); Known.One.setAllBits();
2976       for (unsigned i = 0; i != NumElts; ++i)
2977         if (DemandedElts[i]) {
2978           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2979           unsigned Offset = (Shifts % SubScale) * BitWidth;
2980           Known = KnownBits::commonBits(Known,
2981                                         Known2.extractBits(BitWidth, Offset));
2982           // If we don't know any bits, early out.
2983           if (Known.isUnknown())
2984             break;
2985         }
2986     }
2987     break;
2988   }
2989   case ISD::AND:
2990     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2991     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2992 
2993     Known &= Known2;
2994     break;
2995   case ISD::OR:
2996     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2997     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2998 
2999     Known |= Known2;
3000     break;
3001   case ISD::XOR:
3002     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3003     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3004 
3005     Known ^= Known2;
3006     break;
3007   case ISD::MUL: {
3008     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3009     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3010     Known = KnownBits::mul(Known, Known2);
3011     break;
3012   }
3013   case ISD::MULHU: {
3014     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3015     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3016     Known = KnownBits::mulhu(Known, Known2);
3017     break;
3018   }
3019   case ISD::MULHS: {
3020     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3021     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3022     Known = KnownBits::mulhs(Known, Known2);
3023     break;
3024   }
3025   case ISD::UMUL_LOHI: {
3026     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3027     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3028     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3029     if (Op.getResNo() == 0)
3030       Known = KnownBits::mul(Known, Known2);
3031     else
3032       Known = KnownBits::mulhu(Known, Known2);
3033     break;
3034   }
3035   case ISD::SMUL_LOHI: {
3036     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3037     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3038     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3039     if (Op.getResNo() == 0)
3040       Known = KnownBits::mul(Known, Known2);
3041     else
3042       Known = KnownBits::mulhs(Known, Known2);
3043     break;
3044   }
3045   case ISD::UDIV: {
3046     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3047     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3048     Known = KnownBits::udiv(Known, Known2);
3049     break;
3050   }
3051   case ISD::SELECT:
3052   case ISD::VSELECT:
3053     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3054     // If we don't know any bits, early out.
3055     if (Known.isUnknown())
3056       break;
3057     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3058 
3059     // Only known if known in both the LHS and RHS.
3060     Known = KnownBits::commonBits(Known, Known2);
3061     break;
3062   case ISD::SELECT_CC:
3063     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3064     // If we don't know any bits, early out.
3065     if (Known.isUnknown())
3066       break;
3067     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3068 
3069     // Only known if known in both the LHS and RHS.
3070     Known = KnownBits::commonBits(Known, Known2);
3071     break;
3072   case ISD::SMULO:
3073   case ISD::UMULO:
3074     if (Op.getResNo() != 1)
3075       break;
3076     // The boolean result conforms to getBooleanContents.
3077     // If we know the result of a setcc has the top bits zero, use this info.
3078     // We know that we have an integer-based boolean since these operations
3079     // are only available for integer.
3080     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3081             TargetLowering::ZeroOrOneBooleanContent &&
3082         BitWidth > 1)
3083       Known.Zero.setBitsFrom(1);
3084     break;
3085   case ISD::SETCC:
3086   case ISD::STRICT_FSETCC:
3087   case ISD::STRICT_FSETCCS: {
3088     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3089     // If we know the result of a setcc has the top bits zero, use this info.
3090     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3091             TargetLowering::ZeroOrOneBooleanContent &&
3092         BitWidth > 1)
3093       Known.Zero.setBitsFrom(1);
3094     break;
3095   }
3096   case ISD::SHL:
3097     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3098     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3099     Known = KnownBits::shl(Known, Known2);
3100 
3101     // Minimum shift low bits are known zero.
3102     if (const APInt *ShMinAmt =
3103             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3104       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3105     break;
3106   case ISD::SRL:
3107     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3108     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3109     Known = KnownBits::lshr(Known, Known2);
3110 
3111     // Minimum shift high bits are known zero.
3112     if (const APInt *ShMinAmt =
3113             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3114       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3115     break;
3116   case ISD::SRA:
3117     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3118     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3119     Known = KnownBits::ashr(Known, Known2);
3120     // TODO: Add minimum shift high known sign bits.
3121     break;
3122   case ISD::FSHL:
3123   case ISD::FSHR:
3124     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3125       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3126 
3127       // For fshl, 0-shift returns the 1st arg.
3128       // For fshr, 0-shift returns the 2nd arg.
3129       if (Amt == 0) {
3130         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3131                                  DemandedElts, Depth + 1);
3132         break;
3133       }
3134 
3135       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3136       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3137       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3138       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3139       if (Opcode == ISD::FSHL) {
3140         Known.One <<= Amt;
3141         Known.Zero <<= Amt;
3142         Known2.One.lshrInPlace(BitWidth - Amt);
3143         Known2.Zero.lshrInPlace(BitWidth - Amt);
3144       } else {
3145         Known.One <<= BitWidth - Amt;
3146         Known.Zero <<= BitWidth - Amt;
3147         Known2.One.lshrInPlace(Amt);
3148         Known2.Zero.lshrInPlace(Amt);
3149       }
3150       Known.One |= Known2.One;
3151       Known.Zero |= Known2.Zero;
3152     }
3153     break;
3154   case ISD::SIGN_EXTEND_INREG: {
3155     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3156     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3157     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3158     break;
3159   }
3160   case ISD::CTTZ:
3161   case ISD::CTTZ_ZERO_UNDEF: {
3162     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3163     // If we have a known 1, its position is our upper bound.
3164     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3165     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3166     Known.Zero.setBitsFrom(LowBits);
3167     break;
3168   }
3169   case ISD::CTLZ:
3170   case ISD::CTLZ_ZERO_UNDEF: {
3171     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3172     // If we have a known 1, its position is our upper bound.
3173     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3174     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3175     Known.Zero.setBitsFrom(LowBits);
3176     break;
3177   }
3178   case ISD::CTPOP: {
3179     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3180     // If we know some of the bits are zero, they can't be one.
3181     unsigned PossibleOnes = Known2.countMaxPopulation();
3182     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3183     break;
3184   }
3185   case ISD::PARITY: {
3186     // Parity returns 0 everywhere but the LSB.
3187     Known.Zero.setBitsFrom(1);
3188     break;
3189   }
3190   case ISD::LOAD: {
3191     LoadSDNode *LD = cast<LoadSDNode>(Op);
3192     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3193     if (ISD::isNON_EXTLoad(LD) && Cst) {
3194       // Determine any common known bits from the loaded constant pool value.
3195       Type *CstTy = Cst->getType();
3196       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3197         // If its a vector splat, then we can (quickly) reuse the scalar path.
3198         // NOTE: We assume all elements match and none are UNDEF.
3199         if (CstTy->isVectorTy()) {
3200           if (const Constant *Splat = Cst->getSplatValue()) {
3201             Cst = Splat;
3202             CstTy = Cst->getType();
3203           }
3204         }
3205         // TODO - do we need to handle different bitwidths?
3206         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3207           // Iterate across all vector elements finding common known bits.
3208           Known.One.setAllBits();
3209           Known.Zero.setAllBits();
3210           for (unsigned i = 0; i != NumElts; ++i) {
3211             if (!DemandedElts[i])
3212               continue;
3213             if (Constant *Elt = Cst->getAggregateElement(i)) {
3214               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3215                 const APInt &Value = CInt->getValue();
3216                 Known.One &= Value;
3217                 Known.Zero &= ~Value;
3218                 continue;
3219               }
3220               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3221                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3222                 Known.One &= Value;
3223                 Known.Zero &= ~Value;
3224                 continue;
3225               }
3226             }
3227             Known.One.clearAllBits();
3228             Known.Zero.clearAllBits();
3229             break;
3230           }
3231         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3232           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3233             Known = KnownBits::makeConstant(CInt->getValue());
3234           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3235             Known =
3236                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3237           }
3238         }
3239       }
3240     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3241       // If this is a ZEXTLoad and we are looking at the loaded value.
3242       EVT VT = LD->getMemoryVT();
3243       unsigned MemBits = VT.getScalarSizeInBits();
3244       Known.Zero.setBitsFrom(MemBits);
3245     } else if (const MDNode *Ranges = LD->getRanges()) {
3246       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3247         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3248     }
3249     break;
3250   }
3251   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3252     EVT InVT = Op.getOperand(0).getValueType();
3253     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3254     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3255     Known = Known.zext(BitWidth);
3256     break;
3257   }
3258   case ISD::ZERO_EXTEND: {
3259     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3260     Known = Known.zext(BitWidth);
3261     break;
3262   }
3263   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3264     EVT InVT = Op.getOperand(0).getValueType();
3265     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3266     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3267     // If the sign bit is known to be zero or one, then sext will extend
3268     // it to the top bits, else it will just zext.
3269     Known = Known.sext(BitWidth);
3270     break;
3271   }
3272   case ISD::SIGN_EXTEND: {
3273     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3274     // If the sign bit is known to be zero or one, then sext will extend
3275     // it to the top bits, else it will just zext.
3276     Known = Known.sext(BitWidth);
3277     break;
3278   }
3279   case ISD::ANY_EXTEND_VECTOR_INREG: {
3280     EVT InVT = Op.getOperand(0).getValueType();
3281     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3282     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3283     Known = Known.anyext(BitWidth);
3284     break;
3285   }
3286   case ISD::ANY_EXTEND: {
3287     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3288     Known = Known.anyext(BitWidth);
3289     break;
3290   }
3291   case ISD::TRUNCATE: {
3292     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3293     Known = Known.trunc(BitWidth);
3294     break;
3295   }
3296   case ISD::AssertZext: {
3297     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3298     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3299     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3300     Known.Zero |= (~InMask);
3301     Known.One  &= (~Known.Zero);
3302     break;
3303   }
3304   case ISD::AssertAlign: {
3305     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3306     assert(LogOfAlign != 0);
3307     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3308     // well as clearing one bits.
3309     Known.Zero.setLowBits(LogOfAlign);
3310     Known.One.clearLowBits(LogOfAlign);
3311     break;
3312   }
3313   case ISD::FGETSIGN:
3314     // All bits are zero except the low bit.
3315     Known.Zero.setBitsFrom(1);
3316     break;
3317   case ISD::USUBO:
3318   case ISD::SSUBO:
3319     if (Op.getResNo() == 1) {
3320       // If we know the result of a setcc has the top bits zero, use this info.
3321       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3322               TargetLowering::ZeroOrOneBooleanContent &&
3323           BitWidth > 1)
3324         Known.Zero.setBitsFrom(1);
3325       break;
3326     }
3327     LLVM_FALLTHROUGH;
3328   case ISD::SUB:
3329   case ISD::SUBC: {
3330     assert(Op.getResNo() == 0 &&
3331            "We only compute knownbits for the difference here.");
3332 
3333     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3334     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3335     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3336                                         Known, Known2);
3337     break;
3338   }
3339   case ISD::UADDO:
3340   case ISD::SADDO:
3341   case ISD::ADDCARRY:
3342     if (Op.getResNo() == 1) {
3343       // If we know the result of a setcc has the top bits zero, use this info.
3344       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3345               TargetLowering::ZeroOrOneBooleanContent &&
3346           BitWidth > 1)
3347         Known.Zero.setBitsFrom(1);
3348       break;
3349     }
3350     LLVM_FALLTHROUGH;
3351   case ISD::ADD:
3352   case ISD::ADDC:
3353   case ISD::ADDE: {
3354     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3355 
3356     // With ADDE and ADDCARRY, a carry bit may be added in.
3357     KnownBits Carry(1);
3358     if (Opcode == ISD::ADDE)
3359       // Can't track carry from glue, set carry to unknown.
3360       Carry.resetAll();
3361     else if (Opcode == ISD::ADDCARRY)
3362       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3363       // the trouble (how often will we find a known carry bit). And I haven't
3364       // tested this very much yet, but something like this might work:
3365       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3366       //   Carry = Carry.zextOrTrunc(1, false);
3367       Carry.resetAll();
3368     else
3369       Carry.setAllZero();
3370 
3371     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3372     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3373     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3374     break;
3375   }
3376   case ISD::SREM: {
3377     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3378     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3379     Known = KnownBits::srem(Known, Known2);
3380     break;
3381   }
3382   case ISD::UREM: {
3383     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3384     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3385     Known = KnownBits::urem(Known, Known2);
3386     break;
3387   }
3388   case ISD::EXTRACT_ELEMENT: {
3389     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3390     const unsigned Index = Op.getConstantOperandVal(1);
3391     const unsigned EltBitWidth = Op.getValueSizeInBits();
3392 
3393     // Remove low part of known bits mask
3394     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3395     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3396 
3397     // Remove high part of known bit mask
3398     Known = Known.trunc(EltBitWidth);
3399     break;
3400   }
3401   case ISD::EXTRACT_VECTOR_ELT: {
3402     SDValue InVec = Op.getOperand(0);
3403     SDValue EltNo = Op.getOperand(1);
3404     EVT VecVT = InVec.getValueType();
3405     // computeKnownBits not yet implemented for scalable vectors.
3406     if (VecVT.isScalableVector())
3407       break;
3408     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3409     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3410 
3411     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3412     // anything about the extended bits.
3413     if (BitWidth > EltBitWidth)
3414       Known = Known.trunc(EltBitWidth);
3415 
3416     // If we know the element index, just demand that vector element, else for
3417     // an unknown element index, ignore DemandedElts and demand them all.
3418     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3419     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3420     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3421       DemandedSrcElts =
3422           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3423 
3424     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3425     if (BitWidth > EltBitWidth)
3426       Known = Known.anyext(BitWidth);
3427     break;
3428   }
3429   case ISD::INSERT_VECTOR_ELT: {
3430     // If we know the element index, split the demand between the
3431     // source vector and the inserted element, otherwise assume we need
3432     // the original demanded vector elements and the value.
3433     SDValue InVec = Op.getOperand(0);
3434     SDValue InVal = Op.getOperand(1);
3435     SDValue EltNo = Op.getOperand(2);
3436     bool DemandedVal = true;
3437     APInt DemandedVecElts = DemandedElts;
3438     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3439     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3440       unsigned EltIdx = CEltNo->getZExtValue();
3441       DemandedVal = !!DemandedElts[EltIdx];
3442       DemandedVecElts.clearBit(EltIdx);
3443     }
3444     Known.One.setAllBits();
3445     Known.Zero.setAllBits();
3446     if (DemandedVal) {
3447       Known2 = computeKnownBits(InVal, Depth + 1);
3448       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3449     }
3450     if (!!DemandedVecElts) {
3451       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3452       Known = KnownBits::commonBits(Known, Known2);
3453     }
3454     break;
3455   }
3456   case ISD::BITREVERSE: {
3457     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3458     Known = Known2.reverseBits();
3459     break;
3460   }
3461   case ISD::BSWAP: {
3462     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3463     Known = Known2.byteSwap();
3464     break;
3465   }
3466   case ISD::ABS: {
3467     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3468     Known = Known2.abs();
3469     break;
3470   }
3471   case ISD::USUBSAT: {
3472     // The result of usubsat will never be larger than the LHS.
3473     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3474     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3475     break;
3476   }
3477   case ISD::UMIN: {
3478     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3479     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3480     Known = KnownBits::umin(Known, Known2);
3481     break;
3482   }
3483   case ISD::UMAX: {
3484     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3485     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3486     Known = KnownBits::umax(Known, Known2);
3487     break;
3488   }
3489   case ISD::SMIN:
3490   case ISD::SMAX: {
3491     // If we have a clamp pattern, we know that the number of sign bits will be
3492     // the minimum of the clamp min/max range.
3493     bool IsMax = (Opcode == ISD::SMAX);
3494     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3495     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3496       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3497         CstHigh =
3498             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3499     if (CstLow && CstHigh) {
3500       if (!IsMax)
3501         std::swap(CstLow, CstHigh);
3502 
3503       const APInt &ValueLow = CstLow->getAPIntValue();
3504       const APInt &ValueHigh = CstHigh->getAPIntValue();
3505       if (ValueLow.sle(ValueHigh)) {
3506         unsigned LowSignBits = ValueLow.getNumSignBits();
3507         unsigned HighSignBits = ValueHigh.getNumSignBits();
3508         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3509         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3510           Known.One.setHighBits(MinSignBits);
3511           break;
3512         }
3513         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3514           Known.Zero.setHighBits(MinSignBits);
3515           break;
3516         }
3517       }
3518     }
3519 
3520     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3521     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3522     if (IsMax)
3523       Known = KnownBits::smax(Known, Known2);
3524     else
3525       Known = KnownBits::smin(Known, Known2);
3526     break;
3527   }
3528   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3529     if (Op.getResNo() == 1) {
3530       // The boolean result conforms to getBooleanContents.
3531       // If we know the result of a setcc has the top bits zero, use this info.
3532       // We know that we have an integer-based boolean since these operations
3533       // are only available for integer.
3534       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3535               TargetLowering::ZeroOrOneBooleanContent &&
3536           BitWidth > 1)
3537         Known.Zero.setBitsFrom(1);
3538       break;
3539     }
3540     LLVM_FALLTHROUGH;
3541   case ISD::ATOMIC_CMP_SWAP:
3542   case ISD::ATOMIC_SWAP:
3543   case ISD::ATOMIC_LOAD_ADD:
3544   case ISD::ATOMIC_LOAD_SUB:
3545   case ISD::ATOMIC_LOAD_AND:
3546   case ISD::ATOMIC_LOAD_CLR:
3547   case ISD::ATOMIC_LOAD_OR:
3548   case ISD::ATOMIC_LOAD_XOR:
3549   case ISD::ATOMIC_LOAD_NAND:
3550   case ISD::ATOMIC_LOAD_MIN:
3551   case ISD::ATOMIC_LOAD_MAX:
3552   case ISD::ATOMIC_LOAD_UMIN:
3553   case ISD::ATOMIC_LOAD_UMAX:
3554   case ISD::ATOMIC_LOAD: {
3555     unsigned MemBits =
3556         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3557     // If we are looking at the loaded value.
3558     if (Op.getResNo() == 0) {
3559       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3560         Known.Zero.setBitsFrom(MemBits);
3561     }
3562     break;
3563   }
3564   case ISD::FrameIndex:
3565   case ISD::TargetFrameIndex:
3566     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3567                                        Known, getMachineFunction());
3568     break;
3569 
3570   default:
3571     if (Opcode < ISD::BUILTIN_OP_END)
3572       break;
3573     LLVM_FALLTHROUGH;
3574   case ISD::INTRINSIC_WO_CHAIN:
3575   case ISD::INTRINSIC_W_CHAIN:
3576   case ISD::INTRINSIC_VOID:
3577     // Allow the target to implement this method for its nodes.
3578     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3579     break;
3580   }
3581 
3582   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3583   return Known;
3584 }
3585 
3586 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3587                                                              SDValue N1) const {
3588   // X + 0 never overflow
3589   if (isNullConstant(N1))
3590     return OFK_Never;
3591 
3592   KnownBits N1Known = computeKnownBits(N1);
3593   if (N1Known.Zero.getBoolValue()) {
3594     KnownBits N0Known = computeKnownBits(N0);
3595 
3596     bool overflow;
3597     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3598     if (!overflow)
3599       return OFK_Never;
3600   }
3601 
3602   // mulhi + 1 never overflow
3603   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3604       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3605     return OFK_Never;
3606 
3607   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3608     KnownBits N0Known = computeKnownBits(N0);
3609 
3610     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3611       return OFK_Never;
3612   }
3613 
3614   return OFK_Sometime;
3615 }
3616 
3617 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3618   EVT OpVT = Val.getValueType();
3619   unsigned BitWidth = OpVT.getScalarSizeInBits();
3620 
3621   // Is the constant a known power of 2?
3622   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3623     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3624 
3625   // A left-shift of a constant one will have exactly one bit set because
3626   // shifting the bit off the end is undefined.
3627   if (Val.getOpcode() == ISD::SHL) {
3628     auto *C = isConstOrConstSplat(Val.getOperand(0));
3629     if (C && C->getAPIntValue() == 1)
3630       return true;
3631   }
3632 
3633   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3634   // one bit set.
3635   if (Val.getOpcode() == ISD::SRL) {
3636     auto *C = isConstOrConstSplat(Val.getOperand(0));
3637     if (C && C->getAPIntValue().isSignMask())
3638       return true;
3639   }
3640 
3641   // Are all operands of a build vector constant powers of two?
3642   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3643     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3644           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3645             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3646           return false;
3647         }))
3648       return true;
3649 
3650   // More could be done here, though the above checks are enough
3651   // to handle some common cases.
3652 
3653   // Fall back to computeKnownBits to catch other known cases.
3654   KnownBits Known = computeKnownBits(Val);
3655   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3656 }
3657 
3658 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3659   EVT VT = Op.getValueType();
3660 
3661   // TODO: Assume we don't know anything for now.
3662   if (VT.isScalableVector())
3663     return 1;
3664 
3665   APInt DemandedElts = VT.isVector()
3666                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3667                            : APInt(1, 1);
3668   return ComputeNumSignBits(Op, DemandedElts, Depth);
3669 }
3670 
3671 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3672                                           unsigned Depth) const {
3673   EVT VT = Op.getValueType();
3674   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3675   unsigned VTBits = VT.getScalarSizeInBits();
3676   unsigned NumElts = DemandedElts.getBitWidth();
3677   unsigned Tmp, Tmp2;
3678   unsigned FirstAnswer = 1;
3679 
3680   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3681     const APInt &Val = C->getAPIntValue();
3682     return Val.getNumSignBits();
3683   }
3684 
3685   if (Depth >= MaxRecursionDepth)
3686     return 1;  // Limit search depth.
3687 
3688   if (!DemandedElts || VT.isScalableVector())
3689     return 1;  // No demanded elts, better to assume we don't know anything.
3690 
3691   unsigned Opcode = Op.getOpcode();
3692   switch (Opcode) {
3693   default: break;
3694   case ISD::AssertSext:
3695     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3696     return VTBits-Tmp+1;
3697   case ISD::AssertZext:
3698     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3699     return VTBits-Tmp;
3700 
3701   case ISD::BUILD_VECTOR:
3702     Tmp = VTBits;
3703     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3704       if (!DemandedElts[i])
3705         continue;
3706 
3707       SDValue SrcOp = Op.getOperand(i);
3708       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3709 
3710       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3711       if (SrcOp.getValueSizeInBits() != VTBits) {
3712         assert(SrcOp.getValueSizeInBits() > VTBits &&
3713                "Expected BUILD_VECTOR implicit truncation");
3714         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3715         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3716       }
3717       Tmp = std::min(Tmp, Tmp2);
3718     }
3719     return Tmp;
3720 
3721   case ISD::VECTOR_SHUFFLE: {
3722     // Collect the minimum number of sign bits that are shared by every vector
3723     // element referenced by the shuffle.
3724     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3725     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3726     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3727     for (unsigned i = 0; i != NumElts; ++i) {
3728       int M = SVN->getMaskElt(i);
3729       if (!DemandedElts[i])
3730         continue;
3731       // For UNDEF elements, we don't know anything about the common state of
3732       // the shuffle result.
3733       if (M < 0)
3734         return 1;
3735       if ((unsigned)M < NumElts)
3736         DemandedLHS.setBit((unsigned)M % NumElts);
3737       else
3738         DemandedRHS.setBit((unsigned)M % NumElts);
3739     }
3740     Tmp = std::numeric_limits<unsigned>::max();
3741     if (!!DemandedLHS)
3742       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3743     if (!!DemandedRHS) {
3744       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3745       Tmp = std::min(Tmp, Tmp2);
3746     }
3747     // If we don't know anything, early out and try computeKnownBits fall-back.
3748     if (Tmp == 1)
3749       break;
3750     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3751     return Tmp;
3752   }
3753 
3754   case ISD::BITCAST: {
3755     SDValue N0 = Op.getOperand(0);
3756     EVT SrcVT = N0.getValueType();
3757     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3758 
3759     // Ignore bitcasts from unsupported types..
3760     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3761       break;
3762 
3763     // Fast handling of 'identity' bitcasts.
3764     if (VTBits == SrcBits)
3765       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3766 
3767     bool IsLE = getDataLayout().isLittleEndian();
3768 
3769     // Bitcast 'large element' scalar/vector to 'small element' vector.
3770     if ((SrcBits % VTBits) == 0) {
3771       assert(VT.isVector() && "Expected bitcast to vector");
3772 
3773       unsigned Scale = SrcBits / VTBits;
3774       APInt SrcDemandedElts(NumElts / Scale, 0);
3775       for (unsigned i = 0; i != NumElts; ++i)
3776         if (DemandedElts[i])
3777           SrcDemandedElts.setBit(i / Scale);
3778 
3779       // Fast case - sign splat can be simply split across the small elements.
3780       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3781       if (Tmp == SrcBits)
3782         return VTBits;
3783 
3784       // Slow case - determine how far the sign extends into each sub-element.
3785       Tmp2 = VTBits;
3786       for (unsigned i = 0; i != NumElts; ++i)
3787         if (DemandedElts[i]) {
3788           unsigned SubOffset = i % Scale;
3789           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3790           SubOffset = SubOffset * VTBits;
3791           if (Tmp <= SubOffset)
3792             return 1;
3793           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3794         }
3795       return Tmp2;
3796     }
3797     break;
3798   }
3799 
3800   case ISD::SIGN_EXTEND:
3801     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3802     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3803   case ISD::SIGN_EXTEND_INREG:
3804     // Max of the input and what this extends.
3805     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3806     Tmp = VTBits-Tmp+1;
3807     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3808     return std::max(Tmp, Tmp2);
3809   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3810     SDValue Src = Op.getOperand(0);
3811     EVT SrcVT = Src.getValueType();
3812     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3813     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3814     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3815   }
3816   case ISD::SRA:
3817     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3818     // SRA X, C -> adds C sign bits.
3819     if (const APInt *ShAmt =
3820             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3821       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3822     return Tmp;
3823   case ISD::SHL:
3824     if (const APInt *ShAmt =
3825             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3826       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3827       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3828       if (ShAmt->ult(Tmp))
3829         return Tmp - ShAmt->getZExtValue();
3830     }
3831     break;
3832   case ISD::AND:
3833   case ISD::OR:
3834   case ISD::XOR:    // NOT is handled here.
3835     // Logical binary ops preserve the number of sign bits at the worst.
3836     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3837     if (Tmp != 1) {
3838       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3839       FirstAnswer = std::min(Tmp, Tmp2);
3840       // We computed what we know about the sign bits as our first
3841       // answer. Now proceed to the generic code that uses
3842       // computeKnownBits, and pick whichever answer is better.
3843     }
3844     break;
3845 
3846   case ISD::SELECT:
3847   case ISD::VSELECT:
3848     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3849     if (Tmp == 1) return 1;  // Early out.
3850     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3851     return std::min(Tmp, Tmp2);
3852   case ISD::SELECT_CC:
3853     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3854     if (Tmp == 1) return 1;  // Early out.
3855     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3856     return std::min(Tmp, Tmp2);
3857 
3858   case ISD::SMIN:
3859   case ISD::SMAX: {
3860     // If we have a clamp pattern, we know that the number of sign bits will be
3861     // the minimum of the clamp min/max range.
3862     bool IsMax = (Opcode == ISD::SMAX);
3863     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3864     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3865       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3866         CstHigh =
3867             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3868     if (CstLow && CstHigh) {
3869       if (!IsMax)
3870         std::swap(CstLow, CstHigh);
3871       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3872         Tmp = CstLow->getAPIntValue().getNumSignBits();
3873         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3874         return std::min(Tmp, Tmp2);
3875       }
3876     }
3877 
3878     // Fallback - just get the minimum number of sign bits of the operands.
3879     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3880     if (Tmp == 1)
3881       return 1;  // Early out.
3882     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3883     return std::min(Tmp, Tmp2);
3884   }
3885   case ISD::UMIN:
3886   case ISD::UMAX:
3887     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3888     if (Tmp == 1)
3889       return 1;  // Early out.
3890     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3891     return std::min(Tmp, Tmp2);
3892   case ISD::SADDO:
3893   case ISD::UADDO:
3894   case ISD::SSUBO:
3895   case ISD::USUBO:
3896   case ISD::SMULO:
3897   case ISD::UMULO:
3898     if (Op.getResNo() != 1)
3899       break;
3900     // The boolean result conforms to getBooleanContents.  Fall through.
3901     // If setcc returns 0/-1, all bits are sign bits.
3902     // We know that we have an integer-based boolean since these operations
3903     // are only available for integer.
3904     if (TLI->getBooleanContents(VT.isVector(), false) ==
3905         TargetLowering::ZeroOrNegativeOneBooleanContent)
3906       return VTBits;
3907     break;
3908   case ISD::SETCC:
3909   case ISD::STRICT_FSETCC:
3910   case ISD::STRICT_FSETCCS: {
3911     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3912     // If setcc returns 0/-1, all bits are sign bits.
3913     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3914         TargetLowering::ZeroOrNegativeOneBooleanContent)
3915       return VTBits;
3916     break;
3917   }
3918   case ISD::ROTL:
3919   case ISD::ROTR:
3920     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3921 
3922     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3923     if (Tmp == VTBits)
3924       return VTBits;
3925 
3926     if (ConstantSDNode *C =
3927             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3928       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3929 
3930       // Handle rotate right by N like a rotate left by 32-N.
3931       if (Opcode == ISD::ROTR)
3932         RotAmt = (VTBits - RotAmt) % VTBits;
3933 
3934       // If we aren't rotating out all of the known-in sign bits, return the
3935       // number that are left.  This handles rotl(sext(x), 1) for example.
3936       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3937     }
3938     break;
3939   case ISD::ADD:
3940   case ISD::ADDC:
3941     // Add can have at most one carry bit.  Thus we know that the output
3942     // is, at worst, one more bit than the inputs.
3943     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3944     if (Tmp == 1) return 1; // Early out.
3945 
3946     // Special case decrementing a value (ADD X, -1):
3947     if (ConstantSDNode *CRHS =
3948             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3949       if (CRHS->isAllOnesValue()) {
3950         KnownBits Known =
3951             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3952 
3953         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3954         // sign bits set.
3955         if ((Known.Zero | 1).isAllOnesValue())
3956           return VTBits;
3957 
3958         // If we are subtracting one from a positive number, there is no carry
3959         // out of the result.
3960         if (Known.isNonNegative())
3961           return Tmp;
3962       }
3963 
3964     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3965     if (Tmp2 == 1) return 1; // Early out.
3966     return std::min(Tmp, Tmp2) - 1;
3967   case ISD::SUB:
3968     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3969     if (Tmp2 == 1) return 1; // Early out.
3970 
3971     // Handle NEG.
3972     if (ConstantSDNode *CLHS =
3973             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3974       if (CLHS->isNullValue()) {
3975         KnownBits Known =
3976             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3977         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3978         // sign bits set.
3979         if ((Known.Zero | 1).isAllOnesValue())
3980           return VTBits;
3981 
3982         // If the input is known to be positive (the sign bit is known clear),
3983         // the output of the NEG has the same number of sign bits as the input.
3984         if (Known.isNonNegative())
3985           return Tmp2;
3986 
3987         // Otherwise, we treat this like a SUB.
3988       }
3989 
3990     // Sub can have at most one carry bit.  Thus we know that the output
3991     // is, at worst, one more bit than the inputs.
3992     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3993     if (Tmp == 1) return 1; // Early out.
3994     return std::min(Tmp, Tmp2) - 1;
3995   case ISD::MUL: {
3996     // The output of the Mul can be at most twice the valid bits in the inputs.
3997     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3998     if (SignBitsOp0 == 1)
3999       break;
4000     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4001     if (SignBitsOp1 == 1)
4002       break;
4003     unsigned OutValidBits =
4004         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4005     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4006   }
4007   case ISD::SREM:
4008     // The sign bit is the LHS's sign bit, except when the result of the
4009     // remainder is zero. The magnitude of the result should be less than or
4010     // equal to the magnitude of the LHS. Therefore, the result should have
4011     // at least as many sign bits as the left hand side.
4012     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4013   case ISD::TRUNCATE: {
4014     // Check if the sign bits of source go down as far as the truncated value.
4015     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4016     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4017     if (NumSrcSignBits > (NumSrcBits - VTBits))
4018       return NumSrcSignBits - (NumSrcBits - VTBits);
4019     break;
4020   }
4021   case ISD::EXTRACT_ELEMENT: {
4022     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4023     const int BitWidth = Op.getValueSizeInBits();
4024     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4025 
4026     // Get reverse index (starting from 1), Op1 value indexes elements from
4027     // little end. Sign starts at big end.
4028     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4029 
4030     // If the sign portion ends in our element the subtraction gives correct
4031     // result. Otherwise it gives either negative or > bitwidth result
4032     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4033   }
4034   case ISD::INSERT_VECTOR_ELT: {
4035     // If we know the element index, split the demand between the
4036     // source vector and the inserted element, otherwise assume we need
4037     // the original demanded vector elements and the value.
4038     SDValue InVec = Op.getOperand(0);
4039     SDValue InVal = Op.getOperand(1);
4040     SDValue EltNo = Op.getOperand(2);
4041     bool DemandedVal = true;
4042     APInt DemandedVecElts = DemandedElts;
4043     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4044     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4045       unsigned EltIdx = CEltNo->getZExtValue();
4046       DemandedVal = !!DemandedElts[EltIdx];
4047       DemandedVecElts.clearBit(EltIdx);
4048     }
4049     Tmp = std::numeric_limits<unsigned>::max();
4050     if (DemandedVal) {
4051       // TODO - handle implicit truncation of inserted elements.
4052       if (InVal.getScalarValueSizeInBits() != VTBits)
4053         break;
4054       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4055       Tmp = std::min(Tmp, Tmp2);
4056     }
4057     if (!!DemandedVecElts) {
4058       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4059       Tmp = std::min(Tmp, Tmp2);
4060     }
4061     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4062     return Tmp;
4063   }
4064   case ISD::EXTRACT_VECTOR_ELT: {
4065     SDValue InVec = Op.getOperand(0);
4066     SDValue EltNo = Op.getOperand(1);
4067     EVT VecVT = InVec.getValueType();
4068     // ComputeNumSignBits not yet implemented for scalable vectors.
4069     if (VecVT.isScalableVector())
4070       break;
4071     const unsigned BitWidth = Op.getValueSizeInBits();
4072     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4073     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4074 
4075     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4076     // anything about sign bits. But if the sizes match we can derive knowledge
4077     // about sign bits from the vector operand.
4078     if (BitWidth != EltBitWidth)
4079       break;
4080 
4081     // If we know the element index, just demand that vector element, else for
4082     // an unknown element index, ignore DemandedElts and demand them all.
4083     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4084     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4085     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4086       DemandedSrcElts =
4087           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4088 
4089     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4090   }
4091   case ISD::EXTRACT_SUBVECTOR: {
4092     // Offset the demanded elts by the subvector index.
4093     SDValue Src = Op.getOperand(0);
4094     // Bail until we can represent demanded elements for scalable vectors.
4095     if (Src.getValueType().isScalableVector())
4096       break;
4097     uint64_t Idx = Op.getConstantOperandVal(1);
4098     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4099     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4100     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4101   }
4102   case ISD::CONCAT_VECTORS: {
4103     // Determine the minimum number of sign bits across all demanded
4104     // elts of the input vectors. Early out if the result is already 1.
4105     Tmp = std::numeric_limits<unsigned>::max();
4106     EVT SubVectorVT = Op.getOperand(0).getValueType();
4107     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4108     unsigned NumSubVectors = Op.getNumOperands();
4109     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4110       APInt DemandedSub =
4111           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4112       if (!DemandedSub)
4113         continue;
4114       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4115       Tmp = std::min(Tmp, Tmp2);
4116     }
4117     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4118     return Tmp;
4119   }
4120   case ISD::INSERT_SUBVECTOR: {
4121     // Demand any elements from the subvector and the remainder from the src its
4122     // inserted into.
4123     SDValue Src = Op.getOperand(0);
4124     SDValue Sub = Op.getOperand(1);
4125     uint64_t Idx = Op.getConstantOperandVal(2);
4126     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4127     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4128     APInt DemandedSrcElts = DemandedElts;
4129     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4130 
4131     Tmp = std::numeric_limits<unsigned>::max();
4132     if (!!DemandedSubElts) {
4133       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4134       if (Tmp == 1)
4135         return 1; // early-out
4136     }
4137     if (!!DemandedSrcElts) {
4138       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4139       Tmp = std::min(Tmp, Tmp2);
4140     }
4141     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4142     return Tmp;
4143   }
4144   case ISD::ATOMIC_CMP_SWAP:
4145   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4146   case ISD::ATOMIC_SWAP:
4147   case ISD::ATOMIC_LOAD_ADD:
4148   case ISD::ATOMIC_LOAD_SUB:
4149   case ISD::ATOMIC_LOAD_AND:
4150   case ISD::ATOMIC_LOAD_CLR:
4151   case ISD::ATOMIC_LOAD_OR:
4152   case ISD::ATOMIC_LOAD_XOR:
4153   case ISD::ATOMIC_LOAD_NAND:
4154   case ISD::ATOMIC_LOAD_MIN:
4155   case ISD::ATOMIC_LOAD_MAX:
4156   case ISD::ATOMIC_LOAD_UMIN:
4157   case ISD::ATOMIC_LOAD_UMAX:
4158   case ISD::ATOMIC_LOAD: {
4159     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4160     // If we are looking at the loaded value.
4161     if (Op.getResNo() == 0) {
4162       if (Tmp == VTBits)
4163         return 1; // early-out
4164       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4165         return VTBits - Tmp + 1;
4166       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4167         return VTBits - Tmp;
4168     }
4169     break;
4170   }
4171   }
4172 
4173   // If we are looking at the loaded value of the SDNode.
4174   if (Op.getResNo() == 0) {
4175     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4176     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4177       unsigned ExtType = LD->getExtensionType();
4178       switch (ExtType) {
4179       default: break;
4180       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4181         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4182         return VTBits - Tmp + 1;
4183       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4184         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4185         return VTBits - Tmp;
4186       case ISD::NON_EXTLOAD:
4187         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4188           // We only need to handle vectors - computeKnownBits should handle
4189           // scalar cases.
4190           Type *CstTy = Cst->getType();
4191           if (CstTy->isVectorTy() &&
4192               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4193             Tmp = VTBits;
4194             for (unsigned i = 0; i != NumElts; ++i) {
4195               if (!DemandedElts[i])
4196                 continue;
4197               if (Constant *Elt = Cst->getAggregateElement(i)) {
4198                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4199                   const APInt &Value = CInt->getValue();
4200                   Tmp = std::min(Tmp, Value.getNumSignBits());
4201                   continue;
4202                 }
4203                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4204                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4205                   Tmp = std::min(Tmp, Value.getNumSignBits());
4206                   continue;
4207                 }
4208               }
4209               // Unknown type. Conservatively assume no bits match sign bit.
4210               return 1;
4211             }
4212             return Tmp;
4213           }
4214         }
4215         break;
4216       }
4217     }
4218   }
4219 
4220   // Allow the target to implement this method for its nodes.
4221   if (Opcode >= ISD::BUILTIN_OP_END ||
4222       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4223       Opcode == ISD::INTRINSIC_W_CHAIN ||
4224       Opcode == ISD::INTRINSIC_VOID) {
4225     unsigned NumBits =
4226         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4227     if (NumBits > 1)
4228       FirstAnswer = std::max(FirstAnswer, NumBits);
4229   }
4230 
4231   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4232   // use this information.
4233   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4234 
4235   APInt Mask;
4236   if (Known.isNonNegative()) {        // sign bit is 0
4237     Mask = Known.Zero;
4238   } else if (Known.isNegative()) {  // sign bit is 1;
4239     Mask = Known.One;
4240   } else {
4241     // Nothing known.
4242     return FirstAnswer;
4243   }
4244 
4245   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4246   // the number of identical bits in the top of the input value.
4247   Mask <<= Mask.getBitWidth()-VTBits;
4248   return std::max(FirstAnswer, Mask.countLeadingOnes());
4249 }
4250 
4251 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4252                                                     unsigned Depth) const {
4253   // Early out for FREEZE.
4254   if (Op.getOpcode() == ISD::FREEZE)
4255     return true;
4256 
4257   // TODO: Assume we don't know anything for now.
4258   EVT VT = Op.getValueType();
4259   if (VT.isScalableVector())
4260     return false;
4261 
4262   APInt DemandedElts = VT.isVector()
4263                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
4264                            : APInt(1, 1);
4265   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4266 }
4267 
4268 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4269                                                     const APInt &DemandedElts,
4270                                                     bool PoisonOnly,
4271                                                     unsigned Depth) const {
4272   unsigned Opcode = Op.getOpcode();
4273 
4274   // Early out for FREEZE.
4275   if (Opcode == ISD::FREEZE)
4276     return true;
4277 
4278   if (Depth >= MaxRecursionDepth)
4279     return false; // Limit search depth.
4280 
4281   if (isIntOrFPConstant(Op))
4282     return true;
4283 
4284   switch (Opcode) {
4285   case ISD::UNDEF:
4286     return PoisonOnly;
4287 
4288   case ISD::BUILD_VECTOR:
4289     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4290     // this shouldn't affect the result.
4291     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4292       if (!DemandedElts[i])
4293         continue;
4294       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4295                                             Depth + 1))
4296         return false;
4297     }
4298     return true;
4299 
4300   // TODO: Search for noundef attributes from library functions.
4301 
4302   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4303 
4304   default:
4305     // Allow the target to implement this method for its nodes.
4306     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4307         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4308       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4309           Op, DemandedElts, *this, PoisonOnly, Depth);
4310     break;
4311   }
4312 
4313   return false;
4314 }
4315 
4316 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4317   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4318       !isa<ConstantSDNode>(Op.getOperand(1)))
4319     return false;
4320 
4321   if (Op.getOpcode() == ISD::OR &&
4322       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4323     return false;
4324 
4325   return true;
4326 }
4327 
4328 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4329   // If we're told that NaNs won't happen, assume they won't.
4330   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4331     return true;
4332 
4333   if (Depth >= MaxRecursionDepth)
4334     return false; // Limit search depth.
4335 
4336   // TODO: Handle vectors.
4337   // If the value is a constant, we can obviously see if it is a NaN or not.
4338   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4339     return !C->getValueAPF().isNaN() ||
4340            (SNaN && !C->getValueAPF().isSignaling());
4341   }
4342 
4343   unsigned Opcode = Op.getOpcode();
4344   switch (Opcode) {
4345   case ISD::FADD:
4346   case ISD::FSUB:
4347   case ISD::FMUL:
4348   case ISD::FDIV:
4349   case ISD::FREM:
4350   case ISD::FSIN:
4351   case ISD::FCOS: {
4352     if (SNaN)
4353       return true;
4354     // TODO: Need isKnownNeverInfinity
4355     return false;
4356   }
4357   case ISD::FCANONICALIZE:
4358   case ISD::FEXP:
4359   case ISD::FEXP2:
4360   case ISD::FTRUNC:
4361   case ISD::FFLOOR:
4362   case ISD::FCEIL:
4363   case ISD::FROUND:
4364   case ISD::FROUNDEVEN:
4365   case ISD::FRINT:
4366   case ISD::FNEARBYINT: {
4367     if (SNaN)
4368       return true;
4369     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4370   }
4371   case ISD::FABS:
4372   case ISD::FNEG:
4373   case ISD::FCOPYSIGN: {
4374     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4375   }
4376   case ISD::SELECT:
4377     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4378            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4379   case ISD::FP_EXTEND:
4380   case ISD::FP_ROUND: {
4381     if (SNaN)
4382       return true;
4383     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4384   }
4385   case ISD::SINT_TO_FP:
4386   case ISD::UINT_TO_FP:
4387     return true;
4388   case ISD::FMA:
4389   case ISD::FMAD: {
4390     if (SNaN)
4391       return true;
4392     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4393            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4394            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4395   }
4396   case ISD::FSQRT: // Need is known positive
4397   case ISD::FLOG:
4398   case ISD::FLOG2:
4399   case ISD::FLOG10:
4400   case ISD::FPOWI:
4401   case ISD::FPOW: {
4402     if (SNaN)
4403       return true;
4404     // TODO: Refine on operand
4405     return false;
4406   }
4407   case ISD::FMINNUM:
4408   case ISD::FMAXNUM: {
4409     // Only one needs to be known not-nan, since it will be returned if the
4410     // other ends up being one.
4411     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4412            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4413   }
4414   case ISD::FMINNUM_IEEE:
4415   case ISD::FMAXNUM_IEEE: {
4416     if (SNaN)
4417       return true;
4418     // This can return a NaN if either operand is an sNaN, or if both operands
4419     // are NaN.
4420     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4421             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4422            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4423             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4424   }
4425   case ISD::FMINIMUM:
4426   case ISD::FMAXIMUM: {
4427     // TODO: Does this quiet or return the origina NaN as-is?
4428     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4429            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4430   }
4431   case ISD::EXTRACT_VECTOR_ELT: {
4432     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4433   }
4434   default:
4435     if (Opcode >= ISD::BUILTIN_OP_END ||
4436         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4437         Opcode == ISD::INTRINSIC_W_CHAIN ||
4438         Opcode == ISD::INTRINSIC_VOID) {
4439       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4440     }
4441 
4442     return false;
4443   }
4444 }
4445 
4446 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4447   assert(Op.getValueType().isFloatingPoint() &&
4448          "Floating point type expected");
4449 
4450   // If the value is a constant, we can obviously see if it is a zero or not.
4451   // TODO: Add BuildVector support.
4452   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4453     return !C->isZero();
4454   return false;
4455 }
4456 
4457 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4458   assert(!Op.getValueType().isFloatingPoint() &&
4459          "Floating point types unsupported - use isKnownNeverZeroFloat");
4460 
4461   // If the value is a constant, we can obviously see if it is a zero or not.
4462   if (ISD::matchUnaryPredicate(
4463           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4464     return true;
4465 
4466   // TODO: Recognize more cases here.
4467   switch (Op.getOpcode()) {
4468   default: break;
4469   case ISD::OR:
4470     if (isKnownNeverZero(Op.getOperand(1)) ||
4471         isKnownNeverZero(Op.getOperand(0)))
4472       return true;
4473     break;
4474   }
4475 
4476   return false;
4477 }
4478 
4479 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4480   // Check the obvious case.
4481   if (A == B) return true;
4482 
4483   // For for negative and positive zero.
4484   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4485     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4486       if (CA->isZero() && CB->isZero()) return true;
4487 
4488   // Otherwise they may not be equal.
4489   return false;
4490 }
4491 
4492 // FIXME: unify with llvm::haveNoCommonBitsSet.
4493 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4494 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4495   assert(A.getValueType() == B.getValueType() &&
4496          "Values must have the same type");
4497   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4498                                         computeKnownBits(B));
4499 }
4500 
4501 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4502                                SelectionDAG &DAG) {
4503   if (cast<ConstantSDNode>(Step)->isNullValue())
4504     return DAG.getConstant(0, DL, VT);
4505 
4506   return SDValue();
4507 }
4508 
4509 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4510                                 ArrayRef<SDValue> Ops,
4511                                 SelectionDAG &DAG) {
4512   int NumOps = Ops.size();
4513   assert(NumOps != 0 && "Can't build an empty vector!");
4514   assert(!VT.isScalableVector() &&
4515          "BUILD_VECTOR cannot be used with scalable types");
4516   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4517          "Incorrect element count in BUILD_VECTOR!");
4518 
4519   // BUILD_VECTOR of UNDEFs is UNDEF.
4520   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4521     return DAG.getUNDEF(VT);
4522 
4523   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4524   SDValue IdentitySrc;
4525   bool IsIdentity = true;
4526   for (int i = 0; i != NumOps; ++i) {
4527     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4528         Ops[i].getOperand(0).getValueType() != VT ||
4529         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4530         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4531         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4532       IsIdentity = false;
4533       break;
4534     }
4535     IdentitySrc = Ops[i].getOperand(0);
4536   }
4537   if (IsIdentity)
4538     return IdentitySrc;
4539 
4540   return SDValue();
4541 }
4542 
4543 /// Try to simplify vector concatenation to an input value, undef, or build
4544 /// vector.
4545 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4546                                   ArrayRef<SDValue> Ops,
4547                                   SelectionDAG &DAG) {
4548   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4549   assert(llvm::all_of(Ops,
4550                       [Ops](SDValue Op) {
4551                         return Ops[0].getValueType() == Op.getValueType();
4552                       }) &&
4553          "Concatenation of vectors with inconsistent value types!");
4554   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4555              VT.getVectorElementCount() &&
4556          "Incorrect element count in vector concatenation!");
4557 
4558   if (Ops.size() == 1)
4559     return Ops[0];
4560 
4561   // Concat of UNDEFs is UNDEF.
4562   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4563     return DAG.getUNDEF(VT);
4564 
4565   // Scan the operands and look for extract operations from a single source
4566   // that correspond to insertion at the same location via this concatenation:
4567   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4568   SDValue IdentitySrc;
4569   bool IsIdentity = true;
4570   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4571     SDValue Op = Ops[i];
4572     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4573     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4574         Op.getOperand(0).getValueType() != VT ||
4575         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4576         Op.getConstantOperandVal(1) != IdentityIndex) {
4577       IsIdentity = false;
4578       break;
4579     }
4580     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4581            "Unexpected identity source vector for concat of extracts");
4582     IdentitySrc = Op.getOperand(0);
4583   }
4584   if (IsIdentity) {
4585     assert(IdentitySrc && "Failed to set source vector of extracts");
4586     return IdentitySrc;
4587   }
4588 
4589   // The code below this point is only designed to work for fixed width
4590   // vectors, so we bail out for now.
4591   if (VT.isScalableVector())
4592     return SDValue();
4593 
4594   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4595   // simplified to one big BUILD_VECTOR.
4596   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4597   EVT SVT = VT.getScalarType();
4598   SmallVector<SDValue, 16> Elts;
4599   for (SDValue Op : Ops) {
4600     EVT OpVT = Op.getValueType();
4601     if (Op.isUndef())
4602       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4603     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4604       Elts.append(Op->op_begin(), Op->op_end());
4605     else
4606       return SDValue();
4607   }
4608 
4609   // BUILD_VECTOR requires all inputs to be of the same type, find the
4610   // maximum type and extend them all.
4611   for (SDValue Op : Elts)
4612     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4613 
4614   if (SVT.bitsGT(VT.getScalarType())) {
4615     for (SDValue &Op : Elts) {
4616       if (Op.isUndef())
4617         Op = DAG.getUNDEF(SVT);
4618       else
4619         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4620                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4621                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4622     }
4623   }
4624 
4625   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4626   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4627   return V;
4628 }
4629 
4630 /// Gets or creates the specified node.
4631 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4632   FoldingSetNodeID ID;
4633   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4634   void *IP = nullptr;
4635   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4636     return SDValue(E, 0);
4637 
4638   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4639                               getVTList(VT));
4640   CSEMap.InsertNode(N, IP);
4641 
4642   InsertNode(N);
4643   SDValue V = SDValue(N, 0);
4644   NewSDValueDbgMsg(V, "Creating new node: ", this);
4645   return V;
4646 }
4647 
4648 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4649                               SDValue Operand) {
4650   SDNodeFlags Flags;
4651   if (Inserter)
4652     Flags = Inserter->getFlags();
4653   return getNode(Opcode, DL, VT, Operand, Flags);
4654 }
4655 
4656 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4657                               SDValue Operand, const SDNodeFlags Flags) {
4658   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4659          "Operand is DELETED_NODE!");
4660   // Constant fold unary operations with an integer constant operand. Even
4661   // opaque constant will be folded, because the folding of unary operations
4662   // doesn't create new constants with different values. Nevertheless, the
4663   // opaque flag is preserved during folding to prevent future folding with
4664   // other constants.
4665   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4666     const APInt &Val = C->getAPIntValue();
4667     switch (Opcode) {
4668     default: break;
4669     case ISD::SIGN_EXTEND:
4670       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4671                          C->isTargetOpcode(), C->isOpaque());
4672     case ISD::TRUNCATE:
4673       if (C->isOpaque())
4674         break;
4675       LLVM_FALLTHROUGH;
4676     case ISD::ZERO_EXTEND:
4677       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4678                          C->isTargetOpcode(), C->isOpaque());
4679     case ISD::ANY_EXTEND:
4680       // Some targets like RISCV prefer to sign extend some types.
4681       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4682         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4683                            C->isTargetOpcode(), C->isOpaque());
4684       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4685                          C->isTargetOpcode(), C->isOpaque());
4686     case ISD::UINT_TO_FP:
4687     case ISD::SINT_TO_FP: {
4688       APFloat apf(EVTToAPFloatSemantics(VT),
4689                   APInt::getNullValue(VT.getSizeInBits()));
4690       (void)apf.convertFromAPInt(Val,
4691                                  Opcode==ISD::SINT_TO_FP,
4692                                  APFloat::rmNearestTiesToEven);
4693       return getConstantFP(apf, DL, VT);
4694     }
4695     case ISD::BITCAST:
4696       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4697         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4698       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4699         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4700       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4701         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4702       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4703         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4704       break;
4705     case ISD::ABS:
4706       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4707                          C->isOpaque());
4708     case ISD::BITREVERSE:
4709       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4710                          C->isOpaque());
4711     case ISD::BSWAP:
4712       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4713                          C->isOpaque());
4714     case ISD::CTPOP:
4715       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4716                          C->isOpaque());
4717     case ISD::CTLZ:
4718     case ISD::CTLZ_ZERO_UNDEF:
4719       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4720                          C->isOpaque());
4721     case ISD::CTTZ:
4722     case ISD::CTTZ_ZERO_UNDEF:
4723       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4724                          C->isOpaque());
4725     case ISD::FP16_TO_FP: {
4726       bool Ignored;
4727       APFloat FPV(APFloat::IEEEhalf(),
4728                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4729 
4730       // This can return overflow, underflow, or inexact; we don't care.
4731       // FIXME need to be more flexible about rounding mode.
4732       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4733                         APFloat::rmNearestTiesToEven, &Ignored);
4734       return getConstantFP(FPV, DL, VT);
4735     }
4736     case ISD::STEP_VECTOR: {
4737       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4738         return V;
4739       break;
4740     }
4741     }
4742   }
4743 
4744   // Constant fold unary operations with a floating point constant operand.
4745   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4746     APFloat V = C->getValueAPF();    // make copy
4747     switch (Opcode) {
4748     case ISD::FNEG:
4749       V.changeSign();
4750       return getConstantFP(V, DL, VT);
4751     case ISD::FABS:
4752       V.clearSign();
4753       return getConstantFP(V, DL, VT);
4754     case ISD::FCEIL: {
4755       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4756       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4757         return getConstantFP(V, DL, VT);
4758       break;
4759     }
4760     case ISD::FTRUNC: {
4761       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4762       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4763         return getConstantFP(V, DL, VT);
4764       break;
4765     }
4766     case ISD::FFLOOR: {
4767       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4768       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4769         return getConstantFP(V, DL, VT);
4770       break;
4771     }
4772     case ISD::FP_EXTEND: {
4773       bool ignored;
4774       // This can return overflow, underflow, or inexact; we don't care.
4775       // FIXME need to be more flexible about rounding mode.
4776       (void)V.convert(EVTToAPFloatSemantics(VT),
4777                       APFloat::rmNearestTiesToEven, &ignored);
4778       return getConstantFP(V, DL, VT);
4779     }
4780     case ISD::FP_TO_SINT:
4781     case ISD::FP_TO_UINT: {
4782       bool ignored;
4783       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4784       // FIXME need to be more flexible about rounding mode.
4785       APFloat::opStatus s =
4786           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4787       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4788         break;
4789       return getConstant(IntVal, DL, VT);
4790     }
4791     case ISD::BITCAST:
4792       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4793         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4794       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4795         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4796       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4797         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4798       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4799         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4800       break;
4801     case ISD::FP_TO_FP16: {
4802       bool Ignored;
4803       // This can return overflow, underflow, or inexact; we don't care.
4804       // FIXME need to be more flexible about rounding mode.
4805       (void)V.convert(APFloat::IEEEhalf(),
4806                       APFloat::rmNearestTiesToEven, &Ignored);
4807       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4808     }
4809     }
4810   }
4811 
4812   // Constant fold unary operations with a vector integer or float operand.
4813   switch (Opcode) {
4814   default:
4815     // FIXME: Entirely reasonable to perform folding of other unary
4816     // operations here as the need arises.
4817     break;
4818   case ISD::FNEG:
4819   case ISD::FABS:
4820   case ISD::FCEIL:
4821   case ISD::FTRUNC:
4822   case ISD::FFLOOR:
4823   case ISD::FP_EXTEND:
4824   case ISD::FP_TO_SINT:
4825   case ISD::FP_TO_UINT:
4826   case ISD::TRUNCATE:
4827   case ISD::ANY_EXTEND:
4828   case ISD::ZERO_EXTEND:
4829   case ISD::SIGN_EXTEND:
4830   case ISD::UINT_TO_FP:
4831   case ISD::SINT_TO_FP:
4832   case ISD::ABS:
4833   case ISD::BITREVERSE:
4834   case ISD::BSWAP:
4835   case ISD::CTLZ:
4836   case ISD::CTLZ_ZERO_UNDEF:
4837   case ISD::CTTZ:
4838   case ISD::CTTZ_ZERO_UNDEF:
4839   case ISD::CTPOP: {
4840     SDValue Ops = {Operand};
4841     if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4842       return Fold;
4843   }
4844   }
4845 
4846   unsigned OpOpcode = Operand.getNode()->getOpcode();
4847   switch (Opcode) {
4848   case ISD::STEP_VECTOR:
4849     assert(VT.isScalableVector() &&
4850            "STEP_VECTOR can only be used with scalable types");
4851     assert(OpOpcode == ISD::TargetConstant &&
4852            VT.getVectorElementType() == Operand.getValueType() &&
4853            "Unexpected step operand");
4854     break;
4855   case ISD::FREEZE:
4856     assert(VT == Operand.getValueType() && "Unexpected VT!");
4857     break;
4858   case ISD::TokenFactor:
4859   case ISD::MERGE_VALUES:
4860   case ISD::CONCAT_VECTORS:
4861     return Operand;         // Factor, merge or concat of one node?  No need.
4862   case ISD::BUILD_VECTOR: {
4863     // Attempt to simplify BUILD_VECTOR.
4864     SDValue Ops[] = {Operand};
4865     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4866       return V;
4867     break;
4868   }
4869   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4870   case ISD::FP_EXTEND:
4871     assert(VT.isFloatingPoint() &&
4872            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4873     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4874     assert((!VT.isVector() ||
4875             VT.getVectorElementCount() ==
4876             Operand.getValueType().getVectorElementCount()) &&
4877            "Vector element count mismatch!");
4878     assert(Operand.getValueType().bitsLT(VT) &&
4879            "Invalid fpext node, dst < src!");
4880     if (Operand.isUndef())
4881       return getUNDEF(VT);
4882     break;
4883   case ISD::FP_TO_SINT:
4884   case ISD::FP_TO_UINT:
4885     if (Operand.isUndef())
4886       return getUNDEF(VT);
4887     break;
4888   case ISD::SINT_TO_FP:
4889   case ISD::UINT_TO_FP:
4890     // [us]itofp(undef) = 0, because the result value is bounded.
4891     if (Operand.isUndef())
4892       return getConstantFP(0.0, DL, VT);
4893     break;
4894   case ISD::SIGN_EXTEND:
4895     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4896            "Invalid SIGN_EXTEND!");
4897     assert(VT.isVector() == Operand.getValueType().isVector() &&
4898            "SIGN_EXTEND result type type should be vector iff the operand "
4899            "type is vector!");
4900     if (Operand.getValueType() == VT) return Operand;   // noop extension
4901     assert((!VT.isVector() ||
4902             VT.getVectorElementCount() ==
4903                 Operand.getValueType().getVectorElementCount()) &&
4904            "Vector element count mismatch!");
4905     assert(Operand.getValueType().bitsLT(VT) &&
4906            "Invalid sext node, dst < src!");
4907     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4908       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4909     if (OpOpcode == ISD::UNDEF)
4910       // sext(undef) = 0, because the top bits will all be the same.
4911       return getConstant(0, DL, VT);
4912     break;
4913   case ISD::ZERO_EXTEND:
4914     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4915            "Invalid ZERO_EXTEND!");
4916     assert(VT.isVector() == Operand.getValueType().isVector() &&
4917            "ZERO_EXTEND result type type should be vector iff the operand "
4918            "type is vector!");
4919     if (Operand.getValueType() == VT) return Operand;   // noop extension
4920     assert((!VT.isVector() ||
4921             VT.getVectorElementCount() ==
4922                 Operand.getValueType().getVectorElementCount()) &&
4923            "Vector element count mismatch!");
4924     assert(Operand.getValueType().bitsLT(VT) &&
4925            "Invalid zext node, dst < src!");
4926     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4927       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4928     if (OpOpcode == ISD::UNDEF)
4929       // zext(undef) = 0, because the top bits will be zero.
4930       return getConstant(0, DL, VT);
4931     break;
4932   case ISD::ANY_EXTEND:
4933     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4934            "Invalid ANY_EXTEND!");
4935     assert(VT.isVector() == Operand.getValueType().isVector() &&
4936            "ANY_EXTEND result type type should be vector iff the operand "
4937            "type is vector!");
4938     if (Operand.getValueType() == VT) return Operand;   // noop extension
4939     assert((!VT.isVector() ||
4940             VT.getVectorElementCount() ==
4941                 Operand.getValueType().getVectorElementCount()) &&
4942            "Vector element count mismatch!");
4943     assert(Operand.getValueType().bitsLT(VT) &&
4944            "Invalid anyext node, dst < src!");
4945 
4946     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4947         OpOpcode == ISD::ANY_EXTEND)
4948       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4949       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4950     if (OpOpcode == ISD::UNDEF)
4951       return getUNDEF(VT);
4952 
4953     // (ext (trunc x)) -> x
4954     if (OpOpcode == ISD::TRUNCATE) {
4955       SDValue OpOp = Operand.getOperand(0);
4956       if (OpOp.getValueType() == VT) {
4957         transferDbgValues(Operand, OpOp);
4958         return OpOp;
4959       }
4960     }
4961     break;
4962   case ISD::TRUNCATE:
4963     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4964            "Invalid TRUNCATE!");
4965     assert(VT.isVector() == Operand.getValueType().isVector() &&
4966            "TRUNCATE result type type should be vector iff the operand "
4967            "type is vector!");
4968     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4969     assert((!VT.isVector() ||
4970             VT.getVectorElementCount() ==
4971                 Operand.getValueType().getVectorElementCount()) &&
4972            "Vector element count mismatch!");
4973     assert(Operand.getValueType().bitsGT(VT) &&
4974            "Invalid truncate node, src < dst!");
4975     if (OpOpcode == ISD::TRUNCATE)
4976       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4977     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4978         OpOpcode == ISD::ANY_EXTEND) {
4979       // If the source is smaller than the dest, we still need an extend.
4980       if (Operand.getOperand(0).getValueType().getScalarType()
4981             .bitsLT(VT.getScalarType()))
4982         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4983       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4984         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4985       return Operand.getOperand(0);
4986     }
4987     if (OpOpcode == ISD::UNDEF)
4988       return getUNDEF(VT);
4989     break;
4990   case ISD::ANY_EXTEND_VECTOR_INREG:
4991   case ISD::ZERO_EXTEND_VECTOR_INREG:
4992   case ISD::SIGN_EXTEND_VECTOR_INREG:
4993     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4994     assert(Operand.getValueType().bitsLE(VT) &&
4995            "The input must be the same size or smaller than the result.");
4996     assert(VT.getVectorMinNumElements() <
4997                Operand.getValueType().getVectorMinNumElements() &&
4998            "The destination vector type must have fewer lanes than the input.");
4999     break;
5000   case ISD::ABS:
5001     assert(VT.isInteger() && VT == Operand.getValueType() &&
5002            "Invalid ABS!");
5003     if (OpOpcode == ISD::UNDEF)
5004       return getUNDEF(VT);
5005     break;
5006   case ISD::BSWAP:
5007     assert(VT.isInteger() && VT == Operand.getValueType() &&
5008            "Invalid BSWAP!");
5009     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5010            "BSWAP types must be a multiple of 16 bits!");
5011     if (OpOpcode == ISD::UNDEF)
5012       return getUNDEF(VT);
5013     break;
5014   case ISD::BITREVERSE:
5015     assert(VT.isInteger() && VT == Operand.getValueType() &&
5016            "Invalid BITREVERSE!");
5017     if (OpOpcode == ISD::UNDEF)
5018       return getUNDEF(VT);
5019     break;
5020   case ISD::BITCAST:
5021     // Basic sanity checking.
5022     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5023            "Cannot BITCAST between types of different sizes!");
5024     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5025     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5026       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5027     if (OpOpcode == ISD::UNDEF)
5028       return getUNDEF(VT);
5029     break;
5030   case ISD::SCALAR_TO_VECTOR:
5031     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5032            (VT.getVectorElementType() == Operand.getValueType() ||
5033             (VT.getVectorElementType().isInteger() &&
5034              Operand.getValueType().isInteger() &&
5035              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5036            "Illegal SCALAR_TO_VECTOR node!");
5037     if (OpOpcode == ISD::UNDEF)
5038       return getUNDEF(VT);
5039     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5040     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5041         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5042         Operand.getConstantOperandVal(1) == 0 &&
5043         Operand.getOperand(0).getValueType() == VT)
5044       return Operand.getOperand(0);
5045     break;
5046   case ISD::FNEG:
5047     // Negation of an unknown bag of bits is still completely undefined.
5048     if (OpOpcode == ISD::UNDEF)
5049       return getUNDEF(VT);
5050 
5051     if (OpOpcode == ISD::FNEG)  // --X -> X
5052       return Operand.getOperand(0);
5053     break;
5054   case ISD::FABS:
5055     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5056       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5057     break;
5058   case ISD::VSCALE:
5059     assert(VT == Operand.getValueType() && "Unexpected VT!");
5060     break;
5061   case ISD::CTPOP:
5062     if (Operand.getValueType().getScalarType() == MVT::i1)
5063       return Operand;
5064     break;
5065   case ISD::CTLZ:
5066   case ISD::CTTZ:
5067     if (Operand.getValueType().getScalarType() == MVT::i1)
5068       return getNOT(DL, Operand, Operand.getValueType());
5069     break;
5070   case ISD::VECREDUCE_SMIN:
5071   case ISD::VECREDUCE_UMAX:
5072     if (Operand.getValueType().getScalarType() == MVT::i1)
5073       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5074     break;
5075   case ISD::VECREDUCE_SMAX:
5076   case ISD::VECREDUCE_UMIN:
5077     if (Operand.getValueType().getScalarType() == MVT::i1)
5078       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5079     break;
5080   }
5081 
5082   SDNode *N;
5083   SDVTList VTs = getVTList(VT);
5084   SDValue Ops[] = {Operand};
5085   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5086     FoldingSetNodeID ID;
5087     AddNodeIDNode(ID, Opcode, VTs, Ops);
5088     void *IP = nullptr;
5089     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5090       E->intersectFlagsWith(Flags);
5091       return SDValue(E, 0);
5092     }
5093 
5094     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5095     N->setFlags(Flags);
5096     createOperands(N, Ops);
5097     CSEMap.InsertNode(N, IP);
5098   } else {
5099     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5100     createOperands(N, Ops);
5101   }
5102 
5103   InsertNode(N);
5104   SDValue V = SDValue(N, 0);
5105   NewSDValueDbgMsg(V, "Creating new node: ", this);
5106   return V;
5107 }
5108 
5109 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5110                                        const APInt &C2) {
5111   switch (Opcode) {
5112   case ISD::ADD:  return C1 + C2;
5113   case ISD::SUB:  return C1 - C2;
5114   case ISD::MUL:  return C1 * C2;
5115   case ISD::AND:  return C1 & C2;
5116   case ISD::OR:   return C1 | C2;
5117   case ISD::XOR:  return C1 ^ C2;
5118   case ISD::SHL:  return C1 << C2;
5119   case ISD::SRL:  return C1.lshr(C2);
5120   case ISD::SRA:  return C1.ashr(C2);
5121   case ISD::ROTL: return C1.rotl(C2);
5122   case ISD::ROTR: return C1.rotr(C2);
5123   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5124   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5125   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5126   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5127   case ISD::SADDSAT: return C1.sadd_sat(C2);
5128   case ISD::UADDSAT: return C1.uadd_sat(C2);
5129   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5130   case ISD::USUBSAT: return C1.usub_sat(C2);
5131   case ISD::UDIV:
5132     if (!C2.getBoolValue())
5133       break;
5134     return C1.udiv(C2);
5135   case ISD::UREM:
5136     if (!C2.getBoolValue())
5137       break;
5138     return C1.urem(C2);
5139   case ISD::SDIV:
5140     if (!C2.getBoolValue())
5141       break;
5142     return C1.sdiv(C2);
5143   case ISD::SREM:
5144     if (!C2.getBoolValue())
5145       break;
5146     return C1.srem(C2);
5147   case ISD::MULHS: {
5148     unsigned FullWidth = C1.getBitWidth() * 2;
5149     APInt C1Ext = C1.sext(FullWidth);
5150     APInt C2Ext = C2.sext(FullWidth);
5151     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5152   }
5153   case ISD::MULHU: {
5154     unsigned FullWidth = C1.getBitWidth() * 2;
5155     APInt C1Ext = C1.zext(FullWidth);
5156     APInt C2Ext = C2.zext(FullWidth);
5157     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5158   }
5159   }
5160   return llvm::None;
5161 }
5162 
5163 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5164                                        const GlobalAddressSDNode *GA,
5165                                        const SDNode *N2) {
5166   if (GA->getOpcode() != ISD::GlobalAddress)
5167     return SDValue();
5168   if (!TLI->isOffsetFoldingLegal(GA))
5169     return SDValue();
5170   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5171   if (!C2)
5172     return SDValue();
5173   int64_t Offset = C2->getSExtValue();
5174   switch (Opcode) {
5175   case ISD::ADD: break;
5176   case ISD::SUB: Offset = -uint64_t(Offset); break;
5177   default: return SDValue();
5178   }
5179   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5180                           GA->getOffset() + uint64_t(Offset));
5181 }
5182 
5183 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5184   switch (Opcode) {
5185   case ISD::SDIV:
5186   case ISD::UDIV:
5187   case ISD::SREM:
5188   case ISD::UREM: {
5189     // If a divisor is zero/undef or any element of a divisor vector is
5190     // zero/undef, the whole op is undef.
5191     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5192     SDValue Divisor = Ops[1];
5193     if (Divisor.isUndef() || isNullConstant(Divisor))
5194       return true;
5195 
5196     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5197            llvm::any_of(Divisor->op_values(),
5198                         [](SDValue V) { return V.isUndef() ||
5199                                         isNullConstant(V); });
5200     // TODO: Handle signed overflow.
5201   }
5202   // TODO: Handle oversized shifts.
5203   default:
5204     return false;
5205   }
5206 }
5207 
5208 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5209                                              EVT VT, ArrayRef<SDValue> Ops) {
5210   // If the opcode is a target-specific ISD node, there's nothing we can
5211   // do here and the operand rules may not line up with the below, so
5212   // bail early.
5213   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5214   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5215   // foldCONCAT_VECTORS in getNode before this is called.
5216   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5217     return SDValue();
5218 
5219   // For now, the array Ops should only contain two values.
5220   // This enforcement will be removed once this function is merged with
5221   // FoldConstantVectorArithmetic
5222   if (Ops.size() != 2)
5223     return SDValue();
5224 
5225   if (isUndef(Opcode, Ops))
5226     return getUNDEF(VT);
5227 
5228   SDNode *N1 = Ops[0].getNode();
5229   SDNode *N2 = Ops[1].getNode();
5230 
5231   // Handle the case of two scalars.
5232   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5233     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5234       if (C1->isOpaque() || C2->isOpaque())
5235         return SDValue();
5236 
5237       Optional<APInt> FoldAttempt =
5238           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5239       if (!FoldAttempt)
5240         return SDValue();
5241 
5242       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5243       assert((!Folded || !VT.isVector()) &&
5244              "Can't fold vectors ops with scalar operands");
5245       return Folded;
5246     }
5247   }
5248 
5249   // fold (add Sym, c) -> Sym+c
5250   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5251     return FoldSymbolOffset(Opcode, VT, GA, N2);
5252   if (TLI->isCommutativeBinOp(Opcode))
5253     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5254       return FoldSymbolOffset(Opcode, VT, GA, N1);
5255 
5256   // For fixed width vectors, extract each constant element and fold them
5257   // individually. Either input may be an undef value.
5258   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5259                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5260   if (!IsBVOrSV1 && !N1->isUndef())
5261     return SDValue();
5262   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5263                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5264   if (!IsBVOrSV2 && !N2->isUndef())
5265     return SDValue();
5266   // If both operands are undef, that's handled the same way as scalars.
5267   if (!IsBVOrSV1 && !IsBVOrSV2)
5268     return SDValue();
5269 
5270   EVT SVT = VT.getScalarType();
5271   EVT LegalSVT = SVT;
5272   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5273     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5274     if (LegalSVT.bitsLT(SVT))
5275       return SDValue();
5276   }
5277 
5278   SmallVector<SDValue, 4> Outputs;
5279   unsigned NumOps = 0;
5280   if (IsBVOrSV1)
5281     NumOps = std::max(NumOps, N1->getNumOperands());
5282   if (IsBVOrSV2)
5283     NumOps = std::max(NumOps, N2->getNumOperands());
5284   assert(NumOps != 0 && "Expected non-zero operands");
5285   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5286   // one iteration for that.
5287   assert((!VT.isScalableVector() || NumOps == 1) &&
5288          "Scalable vector should only have one scalar");
5289 
5290   for (unsigned I = 0; I != NumOps; ++I) {
5291     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5292     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5293     SDValue V1;
5294     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5295       V1 = N1->getOperand(I);
5296     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5297       V1 = N1->getOperand(0);
5298     else
5299       V1 = getUNDEF(SVT);
5300 
5301     SDValue V2;
5302     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5303       V2 = N2->getOperand(I);
5304     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5305       V2 = N2->getOperand(0);
5306     else
5307       V2 = getUNDEF(SVT);
5308 
5309     if (SVT.isInteger()) {
5310       if (V1.getValueType().bitsGT(SVT))
5311         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5312       if (V2.getValueType().bitsGT(SVT))
5313         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5314     }
5315 
5316     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5317       return SDValue();
5318 
5319     // Fold one vector element.
5320     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5321     if (LegalSVT != SVT)
5322       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5323 
5324     // Scalar folding only succeeded if the result is a constant or UNDEF.
5325     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5326         ScalarResult.getOpcode() != ISD::ConstantFP)
5327       return SDValue();
5328     Outputs.push_back(ScalarResult);
5329   }
5330 
5331   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5332       N2->getOpcode() == ISD::BUILD_VECTOR) {
5333     assert(VT.getVectorNumElements() == Outputs.size() &&
5334            "Vector size mismatch!");
5335 
5336     // Build a big vector out of the scalar elements we generated.
5337     return getBuildVector(VT, SDLoc(), Outputs);
5338   }
5339 
5340   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5341           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5342          "One operand should be a splat vector");
5343 
5344   assert(Outputs.size() == 1 && "Vector size mismatch!");
5345   return getSplatVector(VT, SDLoc(), Outputs[0]);
5346 }
5347 
5348 // TODO: Merge with FoldConstantArithmetic
5349 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5350                                                    const SDLoc &DL, EVT VT,
5351                                                    ArrayRef<SDValue> Ops,
5352                                                    const SDNodeFlags Flags) {
5353   // If the opcode is a target-specific ISD node, there's nothing we can
5354   // do here and the operand rules may not line up with the below, so
5355   // bail early.
5356   if (Opcode >= ISD::BUILTIN_OP_END)
5357     return SDValue();
5358 
5359   if (isUndef(Opcode, Ops))
5360     return getUNDEF(VT);
5361 
5362   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5363   if (!VT.isVector())
5364     return SDValue();
5365 
5366   ElementCount NumElts = VT.getVectorElementCount();
5367 
5368   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5369     return !Op.getValueType().isVector() ||
5370            Op.getValueType().getVectorElementCount() == NumElts;
5371   };
5372 
5373   auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5374     APInt SplatVal;
5375     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5376     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5377            (BV && BV->isConstant()) ||
5378            (Op.getOpcode() == ISD::SPLAT_VECTOR &&
5379             ISD::isConstantSplatVector(Op.getNode(), SplatVal));
5380   };
5381 
5382   // All operands must be vector types with the same number of elements as
5383   // the result type and must be either UNDEF or a build vector of constant
5384   // or UNDEF scalars.
5385   if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) ||
5386       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5387     return SDValue();
5388 
5389   // If we are comparing vectors, then the result needs to be a i1 boolean
5390   // that is then sign-extended back to the legal result type.
5391   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5392 
5393   // Find legal integer scalar type for constant promotion and
5394   // ensure that its scalar size is at least as large as source.
5395   EVT LegalSVT = VT.getScalarType();
5396   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5397     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5398     if (LegalSVT.bitsLT(VT.getScalarType()))
5399       return SDValue();
5400   }
5401 
5402   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5403   // only have one operand to check. For fixed-length vector types we may have
5404   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5405   unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5406 
5407   // Constant fold each scalar lane separately.
5408   SmallVector<SDValue, 4> ScalarResults;
5409   for (unsigned I = 0; I != NumOperands; I++) {
5410     SmallVector<SDValue, 4> ScalarOps;
5411     for (SDValue Op : Ops) {
5412       EVT InSVT = Op.getValueType().getScalarType();
5413       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5414           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5415         // We've checked that this is UNDEF or a constant of some kind.
5416         if (Op.isUndef())
5417           ScalarOps.push_back(getUNDEF(InSVT));
5418         else
5419           ScalarOps.push_back(Op);
5420         continue;
5421       }
5422 
5423       SDValue ScalarOp =
5424           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5425       EVT ScalarVT = ScalarOp.getValueType();
5426 
5427       // Build vector (integer) scalar operands may need implicit
5428       // truncation - do this before constant folding.
5429       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5430         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5431 
5432       ScalarOps.push_back(ScalarOp);
5433     }
5434 
5435     // Constant fold the scalar operands.
5436     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5437 
5438     // Legalize the (integer) scalar constant if necessary.
5439     if (LegalSVT != SVT)
5440       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5441 
5442     // Scalar folding only succeeded if the result is a constant or UNDEF.
5443     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5444         ScalarResult.getOpcode() != ISD::ConstantFP)
5445       return SDValue();
5446     ScalarResults.push_back(ScalarResult);
5447   }
5448 
5449   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5450                                    : getBuildVector(VT, DL, ScalarResults);
5451   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5452   return V;
5453 }
5454 
5455 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5456                                          EVT VT, SDValue N1, SDValue N2) {
5457   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5458   //       should. That will require dealing with a potentially non-default
5459   //       rounding mode, checking the "opStatus" return value from the APFloat
5460   //       math calculations, and possibly other variations.
5461   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5462   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5463   if (N1CFP && N2CFP) {
5464     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5465     switch (Opcode) {
5466     case ISD::FADD:
5467       C1.add(C2, APFloat::rmNearestTiesToEven);
5468       return getConstantFP(C1, DL, VT);
5469     case ISD::FSUB:
5470       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5471       return getConstantFP(C1, DL, VT);
5472     case ISD::FMUL:
5473       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5474       return getConstantFP(C1, DL, VT);
5475     case ISD::FDIV:
5476       C1.divide(C2, APFloat::rmNearestTiesToEven);
5477       return getConstantFP(C1, DL, VT);
5478     case ISD::FREM:
5479       C1.mod(C2);
5480       return getConstantFP(C1, DL, VT);
5481     case ISD::FCOPYSIGN:
5482       C1.copySign(C2);
5483       return getConstantFP(C1, DL, VT);
5484     default: break;
5485     }
5486   }
5487   if (N1CFP && Opcode == ISD::FP_ROUND) {
5488     APFloat C1 = N1CFP->getValueAPF();    // make copy
5489     bool Unused;
5490     // This can return overflow, underflow, or inexact; we don't care.
5491     // FIXME need to be more flexible about rounding mode.
5492     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5493                       &Unused);
5494     return getConstantFP(C1, DL, VT);
5495   }
5496 
5497   switch (Opcode) {
5498   case ISD::FSUB:
5499     // -0.0 - undef --> undef (consistent with "fneg undef")
5500     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5501       return getUNDEF(VT);
5502     LLVM_FALLTHROUGH;
5503 
5504   case ISD::FADD:
5505   case ISD::FMUL:
5506   case ISD::FDIV:
5507   case ISD::FREM:
5508     // If both operands are undef, the result is undef. If 1 operand is undef,
5509     // the result is NaN. This should match the behavior of the IR optimizer.
5510     if (N1.isUndef() && N2.isUndef())
5511       return getUNDEF(VT);
5512     if (N1.isUndef() || N2.isUndef())
5513       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5514   }
5515   return SDValue();
5516 }
5517 
5518 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5519   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5520 
5521   // There's no need to assert on a byte-aligned pointer. All pointers are at
5522   // least byte aligned.
5523   if (A == Align(1))
5524     return Val;
5525 
5526   FoldingSetNodeID ID;
5527   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5528   ID.AddInteger(A.value());
5529 
5530   void *IP = nullptr;
5531   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5532     return SDValue(E, 0);
5533 
5534   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5535                                          Val.getValueType(), A);
5536   createOperands(N, {Val});
5537 
5538   CSEMap.InsertNode(N, IP);
5539   InsertNode(N);
5540 
5541   SDValue V(N, 0);
5542   NewSDValueDbgMsg(V, "Creating new node: ", this);
5543   return V;
5544 }
5545 
5546 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5547                               SDValue N1, SDValue N2) {
5548   SDNodeFlags Flags;
5549   if (Inserter)
5550     Flags = Inserter->getFlags();
5551   return getNode(Opcode, DL, VT, N1, N2, Flags);
5552 }
5553 
5554 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5555                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5556   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5557          N2.getOpcode() != ISD::DELETED_NODE &&
5558          "Operand is DELETED_NODE!");
5559   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5560   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5561   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5562   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5563 
5564   // Canonicalize constant to RHS if commutative.
5565   if (TLI->isCommutativeBinOp(Opcode)) {
5566     if (N1C && !N2C) {
5567       std::swap(N1C, N2C);
5568       std::swap(N1, N2);
5569     } else if (N1CFP && !N2CFP) {
5570       std::swap(N1CFP, N2CFP);
5571       std::swap(N1, N2);
5572     }
5573   }
5574 
5575   switch (Opcode) {
5576   default: break;
5577   case ISD::TokenFactor:
5578     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5579            N2.getValueType() == MVT::Other && "Invalid token factor!");
5580     // Fold trivial token factors.
5581     if (N1.getOpcode() == ISD::EntryToken) return N2;
5582     if (N2.getOpcode() == ISD::EntryToken) return N1;
5583     if (N1 == N2) return N1;
5584     break;
5585   case ISD::BUILD_VECTOR: {
5586     // Attempt to simplify BUILD_VECTOR.
5587     SDValue Ops[] = {N1, N2};
5588     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5589       return V;
5590     break;
5591   }
5592   case ISD::CONCAT_VECTORS: {
5593     SDValue Ops[] = {N1, N2};
5594     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5595       return V;
5596     break;
5597   }
5598   case ISD::AND:
5599     assert(VT.isInteger() && "This operator does not apply to FP types!");
5600     assert(N1.getValueType() == N2.getValueType() &&
5601            N1.getValueType() == VT && "Binary operator types must match!");
5602     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5603     // worth handling here.
5604     if (N2C && N2C->isNullValue())
5605       return N2;
5606     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5607       return N1;
5608     break;
5609   case ISD::OR:
5610   case ISD::XOR:
5611   case ISD::ADD:
5612   case ISD::SUB:
5613     assert(VT.isInteger() && "This operator does not apply to FP types!");
5614     assert(N1.getValueType() == N2.getValueType() &&
5615            N1.getValueType() == VT && "Binary operator types must match!");
5616     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5617     // it's worth handling here.
5618     if (N2C && N2C->isNullValue())
5619       return N1;
5620     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5621         VT.getVectorElementType() == MVT::i1)
5622       return getNode(ISD::XOR, DL, VT, N1, N2);
5623     break;
5624   case ISD::MUL:
5625     assert(VT.isInteger() && "This operator does not apply to FP types!");
5626     assert(N1.getValueType() == N2.getValueType() &&
5627            N1.getValueType() == VT && "Binary operator types must match!");
5628     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5629       return getNode(ISD::AND, DL, VT, N1, N2);
5630     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5631       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5632       const APInt &N2CImm = N2C->getAPIntValue();
5633       return getVScale(DL, VT, MulImm * N2CImm);
5634     }
5635     break;
5636   case ISD::UDIV:
5637   case ISD::UREM:
5638   case ISD::MULHU:
5639   case ISD::MULHS:
5640   case ISD::SDIV:
5641   case ISD::SREM:
5642   case ISD::SADDSAT:
5643   case ISD::SSUBSAT:
5644   case ISD::UADDSAT:
5645   case ISD::USUBSAT:
5646     assert(VT.isInteger() && "This operator does not apply to FP types!");
5647     assert(N1.getValueType() == N2.getValueType() &&
5648            N1.getValueType() == VT && "Binary operator types must match!");
5649     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5650       // fold (add_sat x, y) -> (or x, y) for bool types.
5651       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5652         return getNode(ISD::OR, DL, VT, N1, N2);
5653       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5654       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5655         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5656     }
5657     break;
5658   case ISD::SMIN:
5659   case ISD::UMAX:
5660     assert(VT.isInteger() && "This operator does not apply to FP types!");
5661     assert(N1.getValueType() == N2.getValueType() &&
5662            N1.getValueType() == VT && "Binary operator types must match!");
5663     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5664       return getNode(ISD::OR, DL, VT, N1, N2);
5665     break;
5666   case ISD::SMAX:
5667   case ISD::UMIN:
5668     assert(VT.isInteger() && "This operator does not apply to FP types!");
5669     assert(N1.getValueType() == N2.getValueType() &&
5670            N1.getValueType() == VT && "Binary operator types must match!");
5671     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5672       return getNode(ISD::AND, DL, VT, N1, N2);
5673     break;
5674   case ISD::FADD:
5675   case ISD::FSUB:
5676   case ISD::FMUL:
5677   case ISD::FDIV:
5678   case ISD::FREM:
5679     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5680     assert(N1.getValueType() == N2.getValueType() &&
5681            N1.getValueType() == VT && "Binary operator types must match!");
5682     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5683       return V;
5684     break;
5685   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5686     assert(N1.getValueType() == VT &&
5687            N1.getValueType().isFloatingPoint() &&
5688            N2.getValueType().isFloatingPoint() &&
5689            "Invalid FCOPYSIGN!");
5690     break;
5691   case ISD::SHL:
5692     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5693       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5694       const APInt &ShiftImm = N2C->getAPIntValue();
5695       return getVScale(DL, VT, MulImm << ShiftImm);
5696     }
5697     LLVM_FALLTHROUGH;
5698   case ISD::SRA:
5699   case ISD::SRL:
5700     if (SDValue V = simplifyShift(N1, N2))
5701       return V;
5702     LLVM_FALLTHROUGH;
5703   case ISD::ROTL:
5704   case ISD::ROTR:
5705     assert(VT == N1.getValueType() &&
5706            "Shift operators return type must be the same as their first arg");
5707     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5708            "Shifts only work on integers");
5709     assert((!VT.isVector() || VT == N2.getValueType()) &&
5710            "Vector shift amounts must be in the same as their first arg");
5711     // Verify that the shift amount VT is big enough to hold valid shift
5712     // amounts.  This catches things like trying to shift an i1024 value by an
5713     // i8, which is easy to fall into in generic code that uses
5714     // TLI.getShiftAmount().
5715     assert(N2.getValueType().getScalarSizeInBits() >=
5716                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5717            "Invalid use of small shift amount with oversized value!");
5718 
5719     // Always fold shifts of i1 values so the code generator doesn't need to
5720     // handle them.  Since we know the size of the shift has to be less than the
5721     // size of the value, the shift/rotate count is guaranteed to be zero.
5722     if (VT == MVT::i1)
5723       return N1;
5724     if (N2C && N2C->isNullValue())
5725       return N1;
5726     break;
5727   case ISD::FP_ROUND:
5728     assert(VT.isFloatingPoint() &&
5729            N1.getValueType().isFloatingPoint() &&
5730            VT.bitsLE(N1.getValueType()) &&
5731            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5732            "Invalid FP_ROUND!");
5733     if (N1.getValueType() == VT) return N1;  // noop conversion.
5734     break;
5735   case ISD::AssertSext:
5736   case ISD::AssertZext: {
5737     EVT EVT = cast<VTSDNode>(N2)->getVT();
5738     assert(VT == N1.getValueType() && "Not an inreg extend!");
5739     assert(VT.isInteger() && EVT.isInteger() &&
5740            "Cannot *_EXTEND_INREG FP types");
5741     assert(!EVT.isVector() &&
5742            "AssertSExt/AssertZExt type should be the vector element type "
5743            "rather than the vector type!");
5744     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5745     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5746     break;
5747   }
5748   case ISD::SIGN_EXTEND_INREG: {
5749     EVT EVT = cast<VTSDNode>(N2)->getVT();
5750     assert(VT == N1.getValueType() && "Not an inreg extend!");
5751     assert(VT.isInteger() && EVT.isInteger() &&
5752            "Cannot *_EXTEND_INREG FP types");
5753     assert(EVT.isVector() == VT.isVector() &&
5754            "SIGN_EXTEND_INREG type should be vector iff the operand "
5755            "type is vector!");
5756     assert((!EVT.isVector() ||
5757             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5758            "Vector element counts must match in SIGN_EXTEND_INREG");
5759     assert(EVT.bitsLE(VT) && "Not extending!");
5760     if (EVT == VT) return N1;  // Not actually extending
5761 
5762     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5763       unsigned FromBits = EVT.getScalarSizeInBits();
5764       Val <<= Val.getBitWidth() - FromBits;
5765       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5766       return getConstant(Val, DL, ConstantVT);
5767     };
5768 
5769     if (N1C) {
5770       const APInt &Val = N1C->getAPIntValue();
5771       return SignExtendInReg(Val, VT);
5772     }
5773 
5774     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5775       SmallVector<SDValue, 8> Ops;
5776       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5777       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5778         SDValue Op = N1.getOperand(i);
5779         if (Op.isUndef()) {
5780           Ops.push_back(getUNDEF(OpVT));
5781           continue;
5782         }
5783         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5784         APInt Val = C->getAPIntValue();
5785         Ops.push_back(SignExtendInReg(Val, OpVT));
5786       }
5787       return getBuildVector(VT, DL, Ops);
5788     }
5789     break;
5790   }
5791   case ISD::FP_TO_SINT_SAT:
5792   case ISD::FP_TO_UINT_SAT: {
5793     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5794            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5795     assert(N1.getValueType().isVector() == VT.isVector() &&
5796            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5797            "vector!");
5798     assert((!VT.isVector() || VT.getVectorNumElements() ==
5799                                   N1.getValueType().getVectorNumElements()) &&
5800            "Vector element counts must match in FP_TO_*INT_SAT");
5801     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5802            "Type to saturate to must be a scalar.");
5803     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5804            "Not extending!");
5805     break;
5806   }
5807   case ISD::EXTRACT_VECTOR_ELT:
5808     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5809            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5810              element type of the vector.");
5811 
5812     // Extract from an undefined value or using an undefined index is undefined.
5813     if (N1.isUndef() || N2.isUndef())
5814       return getUNDEF(VT);
5815 
5816     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5817     // vectors. For scalable vectors we will provide appropriate support for
5818     // dealing with arbitrary indices.
5819     if (N2C && N1.getValueType().isFixedLengthVector() &&
5820         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5821       return getUNDEF(VT);
5822 
5823     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5824     // expanding copies of large vectors from registers. This only works for
5825     // fixed length vectors, since we need to know the exact number of
5826     // elements.
5827     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5828         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5829       unsigned Factor =
5830         N1.getOperand(0).getValueType().getVectorNumElements();
5831       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5832                      N1.getOperand(N2C->getZExtValue() / Factor),
5833                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5834     }
5835 
5836     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5837     // lowering is expanding large vector constants.
5838     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5839                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5840       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5841               N1.getValueType().isFixedLengthVector()) &&
5842              "BUILD_VECTOR used for scalable vectors");
5843       unsigned Index =
5844           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5845       SDValue Elt = N1.getOperand(Index);
5846 
5847       if (VT != Elt.getValueType())
5848         // If the vector element type is not legal, the BUILD_VECTOR operands
5849         // are promoted and implicitly truncated, and the result implicitly
5850         // extended. Make that explicit here.
5851         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5852 
5853       return Elt;
5854     }
5855 
5856     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5857     // operations are lowered to scalars.
5858     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5859       // If the indices are the same, return the inserted element else
5860       // if the indices are known different, extract the element from
5861       // the original vector.
5862       SDValue N1Op2 = N1.getOperand(2);
5863       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5864 
5865       if (N1Op2C && N2C) {
5866         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5867           if (VT == N1.getOperand(1).getValueType())
5868             return N1.getOperand(1);
5869           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5870         }
5871         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5872       }
5873     }
5874 
5875     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5876     // when vector types are scalarized and v1iX is legal.
5877     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5878     // Here we are completely ignoring the extract element index (N2),
5879     // which is fine for fixed width vectors, since any index other than 0
5880     // is undefined anyway. However, this cannot be ignored for scalable
5881     // vectors - in theory we could support this, but we don't want to do this
5882     // without a profitability check.
5883     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5884         N1.getValueType().isFixedLengthVector() &&
5885         N1.getValueType().getVectorNumElements() == 1) {
5886       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5887                      N1.getOperand(1));
5888     }
5889     break;
5890   case ISD::EXTRACT_ELEMENT:
5891     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5892     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5893            (N1.getValueType().isInteger() == VT.isInteger()) &&
5894            N1.getValueType() != VT &&
5895            "Wrong types for EXTRACT_ELEMENT!");
5896 
5897     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5898     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5899     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5900     if (N1.getOpcode() == ISD::BUILD_PAIR)
5901       return N1.getOperand(N2C->getZExtValue());
5902 
5903     // EXTRACT_ELEMENT of a constant int is also very common.
5904     if (N1C) {
5905       unsigned ElementSize = VT.getSizeInBits();
5906       unsigned Shift = ElementSize * N2C->getZExtValue();
5907       const APInt &Val = N1C->getAPIntValue();
5908       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5909     }
5910     break;
5911   case ISD::EXTRACT_SUBVECTOR: {
5912     EVT N1VT = N1.getValueType();
5913     assert(VT.isVector() && N1VT.isVector() &&
5914            "Extract subvector VTs must be vectors!");
5915     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5916            "Extract subvector VTs must have the same element type!");
5917     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5918            "Cannot extract a scalable vector from a fixed length vector!");
5919     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5920             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5921            "Extract subvector must be from larger vector to smaller vector!");
5922     assert(N2C && "Extract subvector index must be a constant");
5923     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5924             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5925                 N1VT.getVectorMinNumElements()) &&
5926            "Extract subvector overflow!");
5927     assert(N2C->getAPIntValue().getBitWidth() ==
5928                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5929            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5930 
5931     // Trivial extraction.
5932     if (VT == N1VT)
5933       return N1;
5934 
5935     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5936     if (N1.isUndef())
5937       return getUNDEF(VT);
5938 
5939     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5940     // the concat have the same type as the extract.
5941     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5942         VT == N1.getOperand(0).getValueType()) {
5943       unsigned Factor = VT.getVectorMinNumElements();
5944       return N1.getOperand(N2C->getZExtValue() / Factor);
5945     }
5946 
5947     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5948     // during shuffle legalization.
5949     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5950         VT == N1.getOperand(1).getValueType())
5951       return N1.getOperand(1);
5952     break;
5953   }
5954   }
5955 
5956   // Perform trivial constant folding.
5957   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5958     return SV;
5959 
5960   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5961     return V;
5962 
5963   // Canonicalize an UNDEF to the RHS, even over a constant.
5964   if (N1.isUndef()) {
5965     if (TLI->isCommutativeBinOp(Opcode)) {
5966       std::swap(N1, N2);
5967     } else {
5968       switch (Opcode) {
5969       case ISD::SIGN_EXTEND_INREG:
5970       case ISD::SUB:
5971         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5972       case ISD::UDIV:
5973       case ISD::SDIV:
5974       case ISD::UREM:
5975       case ISD::SREM:
5976       case ISD::SSUBSAT:
5977       case ISD::USUBSAT:
5978         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5979       }
5980     }
5981   }
5982 
5983   // Fold a bunch of operators when the RHS is undef.
5984   if (N2.isUndef()) {
5985     switch (Opcode) {
5986     case ISD::XOR:
5987       if (N1.isUndef())
5988         // Handle undef ^ undef -> 0 special case. This is a common
5989         // idiom (misuse).
5990         return getConstant(0, DL, VT);
5991       LLVM_FALLTHROUGH;
5992     case ISD::ADD:
5993     case ISD::SUB:
5994     case ISD::UDIV:
5995     case ISD::SDIV:
5996     case ISD::UREM:
5997     case ISD::SREM:
5998       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5999     case ISD::MUL:
6000     case ISD::AND:
6001     case ISD::SSUBSAT:
6002     case ISD::USUBSAT:
6003       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6004     case ISD::OR:
6005     case ISD::SADDSAT:
6006     case ISD::UADDSAT:
6007       return getAllOnesConstant(DL, VT);
6008     }
6009   }
6010 
6011   // Memoize this node if possible.
6012   SDNode *N;
6013   SDVTList VTs = getVTList(VT);
6014   SDValue Ops[] = {N1, N2};
6015   if (VT != MVT::Glue) {
6016     FoldingSetNodeID ID;
6017     AddNodeIDNode(ID, Opcode, VTs, Ops);
6018     void *IP = nullptr;
6019     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6020       E->intersectFlagsWith(Flags);
6021       return SDValue(E, 0);
6022     }
6023 
6024     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6025     N->setFlags(Flags);
6026     createOperands(N, Ops);
6027     CSEMap.InsertNode(N, IP);
6028   } else {
6029     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6030     createOperands(N, Ops);
6031   }
6032 
6033   InsertNode(N);
6034   SDValue V = SDValue(N, 0);
6035   NewSDValueDbgMsg(V, "Creating new node: ", this);
6036   return V;
6037 }
6038 
6039 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6040                               SDValue N1, SDValue N2, SDValue N3) {
6041   SDNodeFlags Flags;
6042   if (Inserter)
6043     Flags = Inserter->getFlags();
6044   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6045 }
6046 
6047 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6048                               SDValue N1, SDValue N2, SDValue N3,
6049                               const SDNodeFlags Flags) {
6050   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6051          N2.getOpcode() != ISD::DELETED_NODE &&
6052          N3.getOpcode() != ISD::DELETED_NODE &&
6053          "Operand is DELETED_NODE!");
6054   // Perform various simplifications.
6055   switch (Opcode) {
6056   case ISD::FMA: {
6057     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6058     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6059            N3.getValueType() == VT && "FMA types must match!");
6060     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6061     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6062     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6063     if (N1CFP && N2CFP && N3CFP) {
6064       APFloat  V1 = N1CFP->getValueAPF();
6065       const APFloat &V2 = N2CFP->getValueAPF();
6066       const APFloat &V3 = N3CFP->getValueAPF();
6067       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6068       return getConstantFP(V1, DL, VT);
6069     }
6070     break;
6071   }
6072   case ISD::BUILD_VECTOR: {
6073     // Attempt to simplify BUILD_VECTOR.
6074     SDValue Ops[] = {N1, N2, N3};
6075     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6076       return V;
6077     break;
6078   }
6079   case ISD::CONCAT_VECTORS: {
6080     SDValue Ops[] = {N1, N2, N3};
6081     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6082       return V;
6083     break;
6084   }
6085   case ISD::SETCC: {
6086     assert(VT.isInteger() && "SETCC result type must be an integer!");
6087     assert(N1.getValueType() == N2.getValueType() &&
6088            "SETCC operands must have the same type!");
6089     assert(VT.isVector() == N1.getValueType().isVector() &&
6090            "SETCC type should be vector iff the operand type is vector!");
6091     assert((!VT.isVector() || VT.getVectorElementCount() ==
6092                                   N1.getValueType().getVectorElementCount()) &&
6093            "SETCC vector element counts must match!");
6094     // Use FoldSetCC to simplify SETCC's.
6095     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6096       return V;
6097     // Vector constant folding.
6098     SDValue Ops[] = {N1, N2, N3};
6099     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
6100       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6101       return V;
6102     }
6103     break;
6104   }
6105   case ISD::SELECT:
6106   case ISD::VSELECT:
6107     if (SDValue V = simplifySelect(N1, N2, N3))
6108       return V;
6109     break;
6110   case ISD::VECTOR_SHUFFLE:
6111     llvm_unreachable("should use getVectorShuffle constructor!");
6112   case ISD::INSERT_VECTOR_ELT: {
6113     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6114     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6115     // for scalable vectors where we will generate appropriate code to
6116     // deal with out-of-bounds cases correctly.
6117     if (N3C && N1.getValueType().isFixedLengthVector() &&
6118         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6119       return getUNDEF(VT);
6120 
6121     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6122     if (N3.isUndef())
6123       return getUNDEF(VT);
6124 
6125     // If the inserted element is an UNDEF, just use the input vector.
6126     if (N2.isUndef())
6127       return N1;
6128 
6129     break;
6130   }
6131   case ISD::INSERT_SUBVECTOR: {
6132     // Inserting undef into undef is still undef.
6133     if (N1.isUndef() && N2.isUndef())
6134       return getUNDEF(VT);
6135 
6136     EVT N2VT = N2.getValueType();
6137     assert(VT == N1.getValueType() &&
6138            "Dest and insert subvector source types must match!");
6139     assert(VT.isVector() && N2VT.isVector() &&
6140            "Insert subvector VTs must be vectors!");
6141     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6142            "Cannot insert a scalable vector into a fixed length vector!");
6143     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6144             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6145            "Insert subvector must be from smaller vector to larger vector!");
6146     assert(isa<ConstantSDNode>(N3) &&
6147            "Insert subvector index must be constant");
6148     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6149             (N2VT.getVectorMinNumElements() +
6150              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6151                 VT.getVectorMinNumElements()) &&
6152            "Insert subvector overflow!");
6153     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6154                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6155            "Constant index for INSERT_SUBVECTOR has an invalid size");
6156 
6157     // Trivial insertion.
6158     if (VT == N2VT)
6159       return N2;
6160 
6161     // If this is an insert of an extracted vector into an undef vector, we
6162     // can just use the input to the extract.
6163     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6164         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6165       return N2.getOperand(0);
6166     break;
6167   }
6168   case ISD::BITCAST:
6169     // Fold bit_convert nodes from a type to themselves.
6170     if (N1.getValueType() == VT)
6171       return N1;
6172     break;
6173   }
6174 
6175   // Memoize node if it doesn't produce a flag.
6176   SDNode *N;
6177   SDVTList VTs = getVTList(VT);
6178   SDValue Ops[] = {N1, N2, N3};
6179   if (VT != MVT::Glue) {
6180     FoldingSetNodeID ID;
6181     AddNodeIDNode(ID, Opcode, VTs, Ops);
6182     void *IP = nullptr;
6183     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6184       E->intersectFlagsWith(Flags);
6185       return SDValue(E, 0);
6186     }
6187 
6188     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6189     N->setFlags(Flags);
6190     createOperands(N, Ops);
6191     CSEMap.InsertNode(N, IP);
6192   } else {
6193     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6194     createOperands(N, Ops);
6195   }
6196 
6197   InsertNode(N);
6198   SDValue V = SDValue(N, 0);
6199   NewSDValueDbgMsg(V, "Creating new node: ", this);
6200   return V;
6201 }
6202 
6203 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6204                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6205   SDValue Ops[] = { N1, N2, N3, N4 };
6206   return getNode(Opcode, DL, VT, Ops);
6207 }
6208 
6209 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6210                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6211                               SDValue N5) {
6212   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6213   return getNode(Opcode, DL, VT, Ops);
6214 }
6215 
6216 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6217 /// the incoming stack arguments to be loaded from the stack.
6218 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6219   SmallVector<SDValue, 8> ArgChains;
6220 
6221   // Include the original chain at the beginning of the list. When this is
6222   // used by target LowerCall hooks, this helps legalize find the
6223   // CALLSEQ_BEGIN node.
6224   ArgChains.push_back(Chain);
6225 
6226   // Add a chain value for each stack argument.
6227   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6228        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6229     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6230       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6231         if (FI->getIndex() < 0)
6232           ArgChains.push_back(SDValue(L, 1));
6233 
6234   // Build a tokenfactor for all the chains.
6235   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6236 }
6237 
6238 /// getMemsetValue - Vectorized representation of the memset value
6239 /// operand.
6240 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6241                               const SDLoc &dl) {
6242   assert(!Value.isUndef());
6243 
6244   unsigned NumBits = VT.getScalarSizeInBits();
6245   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6246     assert(C->getAPIntValue().getBitWidth() == 8);
6247     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6248     if (VT.isInteger()) {
6249       bool IsOpaque = VT.getSizeInBits() > 64 ||
6250           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6251       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6252     }
6253     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6254                              VT);
6255   }
6256 
6257   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6258   EVT IntVT = VT.getScalarType();
6259   if (!IntVT.isInteger())
6260     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6261 
6262   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6263   if (NumBits > 8) {
6264     // Use a multiplication with 0x010101... to extend the input to the
6265     // required length.
6266     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6267     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6268                         DAG.getConstant(Magic, dl, IntVT));
6269   }
6270 
6271   if (VT != Value.getValueType() && !VT.isInteger())
6272     Value = DAG.getBitcast(VT.getScalarType(), Value);
6273   if (VT != Value.getValueType())
6274     Value = DAG.getSplatBuildVector(VT, dl, Value);
6275 
6276   return Value;
6277 }
6278 
6279 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6280 /// used when a memcpy is turned into a memset when the source is a constant
6281 /// string ptr.
6282 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6283                                   const TargetLowering &TLI,
6284                                   const ConstantDataArraySlice &Slice) {
6285   // Handle vector with all elements zero.
6286   if (Slice.Array == nullptr) {
6287     if (VT.isInteger())
6288       return DAG.getConstant(0, dl, VT);
6289     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6290       return DAG.getConstantFP(0.0, dl, VT);
6291     if (VT.isVector()) {
6292       unsigned NumElts = VT.getVectorNumElements();
6293       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6294       return DAG.getNode(ISD::BITCAST, dl, VT,
6295                          DAG.getConstant(0, dl,
6296                                          EVT::getVectorVT(*DAG.getContext(),
6297                                                           EltVT, NumElts)));
6298     }
6299     llvm_unreachable("Expected type!");
6300   }
6301 
6302   assert(!VT.isVector() && "Can't handle vector type here!");
6303   unsigned NumVTBits = VT.getSizeInBits();
6304   unsigned NumVTBytes = NumVTBits / 8;
6305   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6306 
6307   APInt Val(NumVTBits, 0);
6308   if (DAG.getDataLayout().isLittleEndian()) {
6309     for (unsigned i = 0; i != NumBytes; ++i)
6310       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6311   } else {
6312     for (unsigned i = 0; i != NumBytes; ++i)
6313       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6314   }
6315 
6316   // If the "cost" of materializing the integer immediate is less than the cost
6317   // of a load, then it is cost effective to turn the load into the immediate.
6318   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6319   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6320     return DAG.getConstant(Val, dl, VT);
6321   return SDValue(nullptr, 0);
6322 }
6323 
6324 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6325                                            const SDLoc &DL,
6326                                            const SDNodeFlags Flags) {
6327   EVT VT = Base.getValueType();
6328   SDValue Index;
6329 
6330   if (Offset.isScalable())
6331     Index = getVScale(DL, Base.getValueType(),
6332                       APInt(Base.getValueSizeInBits().getFixedSize(),
6333                             Offset.getKnownMinSize()));
6334   else
6335     Index = getConstant(Offset.getFixedSize(), DL, VT);
6336 
6337   return getMemBasePlusOffset(Base, Index, DL, Flags);
6338 }
6339 
6340 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6341                                            const SDLoc &DL,
6342                                            const SDNodeFlags Flags) {
6343   assert(Offset.getValueType().isInteger());
6344   EVT BasePtrVT = Ptr.getValueType();
6345   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6346 }
6347 
6348 /// Returns true if memcpy source is constant data.
6349 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6350   uint64_t SrcDelta = 0;
6351   GlobalAddressSDNode *G = nullptr;
6352   if (Src.getOpcode() == ISD::GlobalAddress)
6353     G = cast<GlobalAddressSDNode>(Src);
6354   else if (Src.getOpcode() == ISD::ADD &&
6355            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6356            Src.getOperand(1).getOpcode() == ISD::Constant) {
6357     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6358     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6359   }
6360   if (!G)
6361     return false;
6362 
6363   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6364                                   SrcDelta + G->getOffset());
6365 }
6366 
6367 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6368                                       SelectionDAG &DAG) {
6369   // On Darwin, -Os means optimize for size without hurting performance, so
6370   // only really optimize for size when -Oz (MinSize) is used.
6371   if (MF.getTarget().getTargetTriple().isOSDarwin())
6372     return MF.getFunction().hasMinSize();
6373   return DAG.shouldOptForSize();
6374 }
6375 
6376 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6377                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6378                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6379                           SmallVector<SDValue, 16> &OutStoreChains) {
6380   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6381   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6382   SmallVector<SDValue, 16> GluedLoadChains;
6383   for (unsigned i = From; i < To; ++i) {
6384     OutChains.push_back(OutLoadChains[i]);
6385     GluedLoadChains.push_back(OutLoadChains[i]);
6386   }
6387 
6388   // Chain for all loads.
6389   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6390                                   GluedLoadChains);
6391 
6392   for (unsigned i = From; i < To; ++i) {
6393     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6394     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6395                                   ST->getBasePtr(), ST->getMemoryVT(),
6396                                   ST->getMemOperand());
6397     OutChains.push_back(NewStore);
6398   }
6399 }
6400 
6401 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6402                                        SDValue Chain, SDValue Dst, SDValue Src,
6403                                        uint64_t Size, Align Alignment,
6404                                        bool isVol, bool AlwaysInline,
6405                                        MachinePointerInfo DstPtrInfo,
6406                                        MachinePointerInfo SrcPtrInfo,
6407                                        const AAMDNodes &AAInfo) {
6408   // Turn a memcpy of undef to nop.
6409   // FIXME: We need to honor volatile even is Src is undef.
6410   if (Src.isUndef())
6411     return Chain;
6412 
6413   // Expand memcpy to a series of load and store ops if the size operand falls
6414   // below a certain threshold.
6415   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6416   // rather than maybe a humongous number of loads and stores.
6417   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6418   const DataLayout &DL = DAG.getDataLayout();
6419   LLVMContext &C = *DAG.getContext();
6420   std::vector<EVT> MemOps;
6421   bool DstAlignCanChange = false;
6422   MachineFunction &MF = DAG.getMachineFunction();
6423   MachineFrameInfo &MFI = MF.getFrameInfo();
6424   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6425   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6426   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6427     DstAlignCanChange = true;
6428   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6429   if (!SrcAlign || Alignment > *SrcAlign)
6430     SrcAlign = Alignment;
6431   assert(SrcAlign && "SrcAlign must be set");
6432   ConstantDataArraySlice Slice;
6433   // If marked as volatile, perform a copy even when marked as constant.
6434   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6435   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6436   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6437   const MemOp Op = isZeroConstant
6438                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6439                                     /*IsZeroMemset*/ true, isVol)
6440                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6441                                      *SrcAlign, isVol, CopyFromConstant);
6442   if (!TLI.findOptimalMemOpLowering(
6443           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6444           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6445     return SDValue();
6446 
6447   if (DstAlignCanChange) {
6448     Type *Ty = MemOps[0].getTypeForEVT(C);
6449     Align NewAlign = DL.getABITypeAlign(Ty);
6450 
6451     // Don't promote to an alignment that would require dynamic stack
6452     // realignment.
6453     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6454     if (!TRI->hasStackRealignment(MF))
6455       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6456         NewAlign = NewAlign / 2;
6457 
6458     if (NewAlign > Alignment) {
6459       // Give the stack frame object a larger alignment if needed.
6460       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6461         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6462       Alignment = NewAlign;
6463     }
6464   }
6465 
6466   // Prepare AAInfo for loads/stores after lowering this memcpy.
6467   AAMDNodes NewAAInfo = AAInfo;
6468   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6469 
6470   MachineMemOperand::Flags MMOFlags =
6471       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6472   SmallVector<SDValue, 16> OutLoadChains;
6473   SmallVector<SDValue, 16> OutStoreChains;
6474   SmallVector<SDValue, 32> OutChains;
6475   unsigned NumMemOps = MemOps.size();
6476   uint64_t SrcOff = 0, DstOff = 0;
6477   for (unsigned i = 0; i != NumMemOps; ++i) {
6478     EVT VT = MemOps[i];
6479     unsigned VTSize = VT.getSizeInBits() / 8;
6480     SDValue Value, Store;
6481 
6482     if (VTSize > Size) {
6483       // Issuing an unaligned load / store pair  that overlaps with the previous
6484       // pair. Adjust the offset accordingly.
6485       assert(i == NumMemOps-1 && i != 0);
6486       SrcOff -= VTSize - Size;
6487       DstOff -= VTSize - Size;
6488     }
6489 
6490     if (CopyFromConstant &&
6491         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6492       // It's unlikely a store of a vector immediate can be done in a single
6493       // instruction. It would require a load from a constantpool first.
6494       // We only handle zero vectors here.
6495       // FIXME: Handle other cases where store of vector immediate is done in
6496       // a single instruction.
6497       ConstantDataArraySlice SubSlice;
6498       if (SrcOff < Slice.Length) {
6499         SubSlice = Slice;
6500         SubSlice.move(SrcOff);
6501       } else {
6502         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6503         SubSlice.Array = nullptr;
6504         SubSlice.Offset = 0;
6505         SubSlice.Length = VTSize;
6506       }
6507       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6508       if (Value.getNode()) {
6509         Store = DAG.getStore(
6510             Chain, dl, Value,
6511             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6512             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6513         OutChains.push_back(Store);
6514       }
6515     }
6516 
6517     if (!Store.getNode()) {
6518       // The type might not be legal for the target.  This should only happen
6519       // if the type is smaller than a legal type, as on PPC, so the right
6520       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6521       // to Load/Store if NVT==VT.
6522       // FIXME does the case above also need this?
6523       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6524       assert(NVT.bitsGE(VT));
6525 
6526       bool isDereferenceable =
6527         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6528       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6529       if (isDereferenceable)
6530         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6531 
6532       Value = DAG.getExtLoad(
6533           ISD::EXTLOAD, dl, NVT, Chain,
6534           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6535           SrcPtrInfo.getWithOffset(SrcOff), VT,
6536           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6537       OutLoadChains.push_back(Value.getValue(1));
6538 
6539       Store = DAG.getTruncStore(
6540           Chain, dl, Value,
6541           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6542           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6543       OutStoreChains.push_back(Store);
6544     }
6545     SrcOff += VTSize;
6546     DstOff += VTSize;
6547     Size -= VTSize;
6548   }
6549 
6550   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6551                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6552   unsigned NumLdStInMemcpy = OutStoreChains.size();
6553 
6554   if (NumLdStInMemcpy) {
6555     // It may be that memcpy might be converted to memset if it's memcpy
6556     // of constants. In such a case, we won't have loads and stores, but
6557     // just stores. In the absence of loads, there is nothing to gang up.
6558     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6559       // If target does not care, just leave as it.
6560       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6561         OutChains.push_back(OutLoadChains[i]);
6562         OutChains.push_back(OutStoreChains[i]);
6563       }
6564     } else {
6565       // Ld/St less than/equal limit set by target.
6566       if (NumLdStInMemcpy <= GluedLdStLimit) {
6567           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6568                                         NumLdStInMemcpy, OutLoadChains,
6569                                         OutStoreChains);
6570       } else {
6571         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6572         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6573         unsigned GlueIter = 0;
6574 
6575         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6576           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6577           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6578 
6579           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6580                                        OutLoadChains, OutStoreChains);
6581           GlueIter += GluedLdStLimit;
6582         }
6583 
6584         // Residual ld/st.
6585         if (RemainingLdStInMemcpy) {
6586           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6587                                         RemainingLdStInMemcpy, OutLoadChains,
6588                                         OutStoreChains);
6589         }
6590       }
6591     }
6592   }
6593   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6594 }
6595 
6596 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6597                                         SDValue Chain, SDValue Dst, SDValue Src,
6598                                         uint64_t Size, Align Alignment,
6599                                         bool isVol, bool AlwaysInline,
6600                                         MachinePointerInfo DstPtrInfo,
6601                                         MachinePointerInfo SrcPtrInfo,
6602                                         const AAMDNodes &AAInfo) {
6603   // Turn a memmove of undef to nop.
6604   // FIXME: We need to honor volatile even is Src is undef.
6605   if (Src.isUndef())
6606     return Chain;
6607 
6608   // Expand memmove to a series of load and store ops if the size operand falls
6609   // below a certain threshold.
6610   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6611   const DataLayout &DL = DAG.getDataLayout();
6612   LLVMContext &C = *DAG.getContext();
6613   std::vector<EVT> MemOps;
6614   bool DstAlignCanChange = false;
6615   MachineFunction &MF = DAG.getMachineFunction();
6616   MachineFrameInfo &MFI = MF.getFrameInfo();
6617   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6618   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6619   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6620     DstAlignCanChange = true;
6621   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6622   if (!SrcAlign || Alignment > *SrcAlign)
6623     SrcAlign = Alignment;
6624   assert(SrcAlign && "SrcAlign must be set");
6625   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6626   if (!TLI.findOptimalMemOpLowering(
6627           MemOps, Limit,
6628           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6629                       /*IsVolatile*/ true),
6630           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6631           MF.getFunction().getAttributes()))
6632     return SDValue();
6633 
6634   if (DstAlignCanChange) {
6635     Type *Ty = MemOps[0].getTypeForEVT(C);
6636     Align NewAlign = DL.getABITypeAlign(Ty);
6637     if (NewAlign > Alignment) {
6638       // Give the stack frame object a larger alignment if needed.
6639       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6640         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6641       Alignment = NewAlign;
6642     }
6643   }
6644 
6645   // Prepare AAInfo for loads/stores after lowering this memmove.
6646   AAMDNodes NewAAInfo = AAInfo;
6647   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6648 
6649   MachineMemOperand::Flags MMOFlags =
6650       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6651   uint64_t SrcOff = 0, DstOff = 0;
6652   SmallVector<SDValue, 8> LoadValues;
6653   SmallVector<SDValue, 8> LoadChains;
6654   SmallVector<SDValue, 8> OutChains;
6655   unsigned NumMemOps = MemOps.size();
6656   for (unsigned i = 0; i < NumMemOps; i++) {
6657     EVT VT = MemOps[i];
6658     unsigned VTSize = VT.getSizeInBits() / 8;
6659     SDValue Value;
6660 
6661     bool isDereferenceable =
6662       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6663     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6664     if (isDereferenceable)
6665       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6666 
6667     Value = DAG.getLoad(
6668         VT, dl, Chain,
6669         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6670         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6671     LoadValues.push_back(Value);
6672     LoadChains.push_back(Value.getValue(1));
6673     SrcOff += VTSize;
6674   }
6675   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6676   OutChains.clear();
6677   for (unsigned i = 0; i < NumMemOps; i++) {
6678     EVT VT = MemOps[i];
6679     unsigned VTSize = VT.getSizeInBits() / 8;
6680     SDValue Store;
6681 
6682     Store = DAG.getStore(
6683         Chain, dl, LoadValues[i],
6684         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6685         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6686     OutChains.push_back(Store);
6687     DstOff += VTSize;
6688   }
6689 
6690   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6691 }
6692 
6693 /// Lower the call to 'memset' intrinsic function into a series of store
6694 /// operations.
6695 ///
6696 /// \param DAG Selection DAG where lowered code is placed.
6697 /// \param dl Link to corresponding IR location.
6698 /// \param Chain Control flow dependency.
6699 /// \param Dst Pointer to destination memory location.
6700 /// \param Src Value of byte to write into the memory.
6701 /// \param Size Number of bytes to write.
6702 /// \param Alignment Alignment of the destination in bytes.
6703 /// \param isVol True if destination is volatile.
6704 /// \param DstPtrInfo IR information on the memory pointer.
6705 /// \returns New head in the control flow, if lowering was successful, empty
6706 /// SDValue otherwise.
6707 ///
6708 /// The function tries to replace 'llvm.memset' intrinsic with several store
6709 /// operations and value calculation code. This is usually profitable for small
6710 /// memory size.
6711 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6712                                SDValue Chain, SDValue Dst, SDValue Src,
6713                                uint64_t Size, Align Alignment, bool isVol,
6714                                MachinePointerInfo DstPtrInfo,
6715                                const AAMDNodes &AAInfo) {
6716   // Turn a memset of undef to nop.
6717   // FIXME: We need to honor volatile even is Src is undef.
6718   if (Src.isUndef())
6719     return Chain;
6720 
6721   // Expand memset to a series of load/store ops if the size operand
6722   // falls below a certain threshold.
6723   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6724   std::vector<EVT> MemOps;
6725   bool DstAlignCanChange = false;
6726   MachineFunction &MF = DAG.getMachineFunction();
6727   MachineFrameInfo &MFI = MF.getFrameInfo();
6728   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6729   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6730   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6731     DstAlignCanChange = true;
6732   bool IsZeroVal =
6733     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6734   if (!TLI.findOptimalMemOpLowering(
6735           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6736           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6737           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6738     return SDValue();
6739 
6740   if (DstAlignCanChange) {
6741     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6742     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6743     if (NewAlign > Alignment) {
6744       // Give the stack frame object a larger alignment if needed.
6745       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6746         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6747       Alignment = NewAlign;
6748     }
6749   }
6750 
6751   SmallVector<SDValue, 8> OutChains;
6752   uint64_t DstOff = 0;
6753   unsigned NumMemOps = MemOps.size();
6754 
6755   // Find the largest store and generate the bit pattern for it.
6756   EVT LargestVT = MemOps[0];
6757   for (unsigned i = 1; i < NumMemOps; i++)
6758     if (MemOps[i].bitsGT(LargestVT))
6759       LargestVT = MemOps[i];
6760   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6761 
6762   // Prepare AAInfo for loads/stores after lowering this memset.
6763   AAMDNodes NewAAInfo = AAInfo;
6764   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6765 
6766   for (unsigned i = 0; i < NumMemOps; i++) {
6767     EVT VT = MemOps[i];
6768     unsigned VTSize = VT.getSizeInBits() / 8;
6769     if (VTSize > Size) {
6770       // Issuing an unaligned load / store pair  that overlaps with the previous
6771       // pair. Adjust the offset accordingly.
6772       assert(i == NumMemOps-1 && i != 0);
6773       DstOff -= VTSize - Size;
6774     }
6775 
6776     // If this store is smaller than the largest store see whether we can get
6777     // the smaller value for free with a truncate.
6778     SDValue Value = MemSetValue;
6779     if (VT.bitsLT(LargestVT)) {
6780       if (!LargestVT.isVector() && !VT.isVector() &&
6781           TLI.isTruncateFree(LargestVT, VT))
6782         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6783       else
6784         Value = getMemsetValue(Src, VT, DAG, dl);
6785     }
6786     assert(Value.getValueType() == VT && "Value with wrong type.");
6787     SDValue Store = DAG.getStore(
6788         Chain, dl, Value,
6789         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6790         DstPtrInfo.getWithOffset(DstOff), Alignment,
6791         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6792         NewAAInfo);
6793     OutChains.push_back(Store);
6794     DstOff += VT.getSizeInBits() / 8;
6795     Size -= VTSize;
6796   }
6797 
6798   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6799 }
6800 
6801 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6802                                             unsigned AS) {
6803   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6804   // pointer operands can be losslessly bitcasted to pointers of address space 0
6805   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6806     report_fatal_error("cannot lower memory intrinsic in address space " +
6807                        Twine(AS));
6808   }
6809 }
6810 
6811 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6812                                 SDValue Src, SDValue Size, Align Alignment,
6813                                 bool isVol, bool AlwaysInline, bool isTailCall,
6814                                 MachinePointerInfo DstPtrInfo,
6815                                 MachinePointerInfo SrcPtrInfo,
6816                                 const AAMDNodes &AAInfo) {
6817   // Check to see if we should lower the memcpy to loads and stores first.
6818   // For cases within the target-specified limits, this is the best choice.
6819   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6820   if (ConstantSize) {
6821     // Memcpy with size zero? Just return the original chain.
6822     if (ConstantSize->isNullValue())
6823       return Chain;
6824 
6825     SDValue Result = getMemcpyLoadsAndStores(
6826         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6827         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6828     if (Result.getNode())
6829       return Result;
6830   }
6831 
6832   // Then check to see if we should lower the memcpy with target-specific
6833   // code. If the target chooses to do this, this is the next best.
6834   if (TSI) {
6835     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6836         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6837         DstPtrInfo, SrcPtrInfo);
6838     if (Result.getNode())
6839       return Result;
6840   }
6841 
6842   // If we really need inline code and the target declined to provide it,
6843   // use a (potentially long) sequence of loads and stores.
6844   if (AlwaysInline) {
6845     assert(ConstantSize && "AlwaysInline requires a constant size!");
6846     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6847                                    ConstantSize->getZExtValue(), Alignment,
6848                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6849   }
6850 
6851   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6852   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6853 
6854   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6855   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6856   // respect volatile, so they may do things like read or write memory
6857   // beyond the given memory regions. But fixing this isn't easy, and most
6858   // people don't care.
6859 
6860   // Emit a library call.
6861   TargetLowering::ArgListTy Args;
6862   TargetLowering::ArgListEntry Entry;
6863   Entry.Ty = Type::getInt8PtrTy(*getContext());
6864   Entry.Node = Dst; Args.push_back(Entry);
6865   Entry.Node = Src; Args.push_back(Entry);
6866 
6867   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6868   Entry.Node = Size; Args.push_back(Entry);
6869   // FIXME: pass in SDLoc
6870   TargetLowering::CallLoweringInfo CLI(*this);
6871   CLI.setDebugLoc(dl)
6872       .setChain(Chain)
6873       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6874                     Dst.getValueType().getTypeForEVT(*getContext()),
6875                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6876                                       TLI->getPointerTy(getDataLayout())),
6877                     std::move(Args))
6878       .setDiscardResult()
6879       .setTailCall(isTailCall);
6880 
6881   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6882   return CallResult.second;
6883 }
6884 
6885 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6886                                       SDValue Dst, unsigned DstAlign,
6887                                       SDValue Src, unsigned SrcAlign,
6888                                       SDValue Size, Type *SizeTy,
6889                                       unsigned ElemSz, bool isTailCall,
6890                                       MachinePointerInfo DstPtrInfo,
6891                                       MachinePointerInfo SrcPtrInfo) {
6892   // Emit a library call.
6893   TargetLowering::ArgListTy Args;
6894   TargetLowering::ArgListEntry Entry;
6895   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6896   Entry.Node = Dst;
6897   Args.push_back(Entry);
6898 
6899   Entry.Node = Src;
6900   Args.push_back(Entry);
6901 
6902   Entry.Ty = SizeTy;
6903   Entry.Node = Size;
6904   Args.push_back(Entry);
6905 
6906   RTLIB::Libcall LibraryCall =
6907       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6908   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6909     report_fatal_error("Unsupported element size");
6910 
6911   TargetLowering::CallLoweringInfo CLI(*this);
6912   CLI.setDebugLoc(dl)
6913       .setChain(Chain)
6914       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6915                     Type::getVoidTy(*getContext()),
6916                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6917                                       TLI->getPointerTy(getDataLayout())),
6918                     std::move(Args))
6919       .setDiscardResult()
6920       .setTailCall(isTailCall);
6921 
6922   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6923   return CallResult.second;
6924 }
6925 
6926 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6927                                  SDValue Src, SDValue Size, Align Alignment,
6928                                  bool isVol, bool isTailCall,
6929                                  MachinePointerInfo DstPtrInfo,
6930                                  MachinePointerInfo SrcPtrInfo,
6931                                  const AAMDNodes &AAInfo) {
6932   // Check to see if we should lower the memmove to loads and stores first.
6933   // For cases within the target-specified limits, this is the best choice.
6934   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6935   if (ConstantSize) {
6936     // Memmove with size zero? Just return the original chain.
6937     if (ConstantSize->isNullValue())
6938       return Chain;
6939 
6940     SDValue Result = getMemmoveLoadsAndStores(
6941         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6942         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6943     if (Result.getNode())
6944       return Result;
6945   }
6946 
6947   // Then check to see if we should lower the memmove with target-specific
6948   // code. If the target chooses to do this, this is the next best.
6949   if (TSI) {
6950     SDValue Result =
6951         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6952                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6953     if (Result.getNode())
6954       return Result;
6955   }
6956 
6957   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6958   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6959 
6960   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6961   // not be safe.  See memcpy above for more details.
6962 
6963   // Emit a library call.
6964   TargetLowering::ArgListTy Args;
6965   TargetLowering::ArgListEntry Entry;
6966   Entry.Ty = Type::getInt8PtrTy(*getContext());
6967   Entry.Node = Dst; Args.push_back(Entry);
6968   Entry.Node = Src; Args.push_back(Entry);
6969 
6970   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6971   Entry.Node = Size; Args.push_back(Entry);
6972   // FIXME:  pass in SDLoc
6973   TargetLowering::CallLoweringInfo CLI(*this);
6974   CLI.setDebugLoc(dl)
6975       .setChain(Chain)
6976       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6977                     Dst.getValueType().getTypeForEVT(*getContext()),
6978                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6979                                       TLI->getPointerTy(getDataLayout())),
6980                     std::move(Args))
6981       .setDiscardResult()
6982       .setTailCall(isTailCall);
6983 
6984   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6985   return CallResult.second;
6986 }
6987 
6988 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6989                                        SDValue Dst, unsigned DstAlign,
6990                                        SDValue Src, unsigned SrcAlign,
6991                                        SDValue Size, Type *SizeTy,
6992                                        unsigned ElemSz, bool isTailCall,
6993                                        MachinePointerInfo DstPtrInfo,
6994                                        MachinePointerInfo SrcPtrInfo) {
6995   // Emit a library call.
6996   TargetLowering::ArgListTy Args;
6997   TargetLowering::ArgListEntry Entry;
6998   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6999   Entry.Node = Dst;
7000   Args.push_back(Entry);
7001 
7002   Entry.Node = Src;
7003   Args.push_back(Entry);
7004 
7005   Entry.Ty = SizeTy;
7006   Entry.Node = Size;
7007   Args.push_back(Entry);
7008 
7009   RTLIB::Libcall LibraryCall =
7010       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7011   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7012     report_fatal_error("Unsupported element size");
7013 
7014   TargetLowering::CallLoweringInfo CLI(*this);
7015   CLI.setDebugLoc(dl)
7016       .setChain(Chain)
7017       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7018                     Type::getVoidTy(*getContext()),
7019                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7020                                       TLI->getPointerTy(getDataLayout())),
7021                     std::move(Args))
7022       .setDiscardResult()
7023       .setTailCall(isTailCall);
7024 
7025   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7026   return CallResult.second;
7027 }
7028 
7029 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7030                                 SDValue Src, SDValue Size, Align Alignment,
7031                                 bool isVol, bool isTailCall,
7032                                 MachinePointerInfo DstPtrInfo,
7033                                 const AAMDNodes &AAInfo) {
7034   // Check to see if we should lower the memset to stores first.
7035   // For cases within the target-specified limits, this is the best choice.
7036   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7037   if (ConstantSize) {
7038     // Memset with size zero? Just return the original chain.
7039     if (ConstantSize->isNullValue())
7040       return Chain;
7041 
7042     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7043                                      ConstantSize->getZExtValue(), Alignment,
7044                                      isVol, DstPtrInfo, AAInfo);
7045 
7046     if (Result.getNode())
7047       return Result;
7048   }
7049 
7050   // Then check to see if we should lower the memset with target-specific
7051   // code. If the target chooses to do this, this is the next best.
7052   if (TSI) {
7053     SDValue Result = TSI->EmitTargetCodeForMemset(
7054         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7055     if (Result.getNode())
7056       return Result;
7057   }
7058 
7059   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7060 
7061   // Emit a library call.
7062   TargetLowering::ArgListTy Args;
7063   TargetLowering::ArgListEntry Entry;
7064   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7065   Args.push_back(Entry);
7066   Entry.Node = Src;
7067   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7068   Args.push_back(Entry);
7069   Entry.Node = Size;
7070   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7071   Args.push_back(Entry);
7072 
7073   // FIXME: pass in SDLoc
7074   TargetLowering::CallLoweringInfo CLI(*this);
7075   CLI.setDebugLoc(dl)
7076       .setChain(Chain)
7077       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7078                     Dst.getValueType().getTypeForEVT(*getContext()),
7079                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7080                                       TLI->getPointerTy(getDataLayout())),
7081                     std::move(Args))
7082       .setDiscardResult()
7083       .setTailCall(isTailCall);
7084 
7085   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7086   return CallResult.second;
7087 }
7088 
7089 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7090                                       SDValue Dst, unsigned DstAlign,
7091                                       SDValue Value, SDValue Size, Type *SizeTy,
7092                                       unsigned ElemSz, bool isTailCall,
7093                                       MachinePointerInfo DstPtrInfo) {
7094   // Emit a library call.
7095   TargetLowering::ArgListTy Args;
7096   TargetLowering::ArgListEntry Entry;
7097   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7098   Entry.Node = Dst;
7099   Args.push_back(Entry);
7100 
7101   Entry.Ty = Type::getInt8Ty(*getContext());
7102   Entry.Node = Value;
7103   Args.push_back(Entry);
7104 
7105   Entry.Ty = SizeTy;
7106   Entry.Node = Size;
7107   Args.push_back(Entry);
7108 
7109   RTLIB::Libcall LibraryCall =
7110       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7111   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7112     report_fatal_error("Unsupported element size");
7113 
7114   TargetLowering::CallLoweringInfo CLI(*this);
7115   CLI.setDebugLoc(dl)
7116       .setChain(Chain)
7117       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7118                     Type::getVoidTy(*getContext()),
7119                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7120                                       TLI->getPointerTy(getDataLayout())),
7121                     std::move(Args))
7122       .setDiscardResult()
7123       .setTailCall(isTailCall);
7124 
7125   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7126   return CallResult.second;
7127 }
7128 
7129 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7130                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7131                                 MachineMemOperand *MMO) {
7132   FoldingSetNodeID ID;
7133   ID.AddInteger(MemVT.getRawBits());
7134   AddNodeIDNode(ID, Opcode, VTList, Ops);
7135   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7136   void* IP = nullptr;
7137   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7138     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7139     return SDValue(E, 0);
7140   }
7141 
7142   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7143                                     VTList, MemVT, MMO);
7144   createOperands(N, Ops);
7145 
7146   CSEMap.InsertNode(N, IP);
7147   InsertNode(N);
7148   return SDValue(N, 0);
7149 }
7150 
7151 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7152                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7153                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7154                                        MachineMemOperand *MMO) {
7155   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7156          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7157   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7158 
7159   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7160   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7161 }
7162 
7163 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7164                                 SDValue Chain, SDValue Ptr, SDValue Val,
7165                                 MachineMemOperand *MMO) {
7166   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7167           Opcode == ISD::ATOMIC_LOAD_SUB ||
7168           Opcode == ISD::ATOMIC_LOAD_AND ||
7169           Opcode == ISD::ATOMIC_LOAD_CLR ||
7170           Opcode == ISD::ATOMIC_LOAD_OR ||
7171           Opcode == ISD::ATOMIC_LOAD_XOR ||
7172           Opcode == ISD::ATOMIC_LOAD_NAND ||
7173           Opcode == ISD::ATOMIC_LOAD_MIN ||
7174           Opcode == ISD::ATOMIC_LOAD_MAX ||
7175           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7176           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7177           Opcode == ISD::ATOMIC_LOAD_FADD ||
7178           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7179           Opcode == ISD::ATOMIC_SWAP ||
7180           Opcode == ISD::ATOMIC_STORE) &&
7181          "Invalid Atomic Op");
7182 
7183   EVT VT = Val.getValueType();
7184 
7185   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7186                                                getVTList(VT, MVT::Other);
7187   SDValue Ops[] = {Chain, Ptr, Val};
7188   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7189 }
7190 
7191 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7192                                 EVT VT, SDValue Chain, SDValue Ptr,
7193                                 MachineMemOperand *MMO) {
7194   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7195 
7196   SDVTList VTs = getVTList(VT, MVT::Other);
7197   SDValue Ops[] = {Chain, Ptr};
7198   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7199 }
7200 
7201 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7202 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7203   if (Ops.size() == 1)
7204     return Ops[0];
7205 
7206   SmallVector<EVT, 4> VTs;
7207   VTs.reserve(Ops.size());
7208   for (const SDValue &Op : Ops)
7209     VTs.push_back(Op.getValueType());
7210   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7211 }
7212 
7213 SDValue SelectionDAG::getMemIntrinsicNode(
7214     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7215     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7216     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7217   if (!Size && MemVT.isScalableVector())
7218     Size = MemoryLocation::UnknownSize;
7219   else if (!Size)
7220     Size = MemVT.getStoreSize();
7221 
7222   MachineFunction &MF = getMachineFunction();
7223   MachineMemOperand *MMO =
7224       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7225 
7226   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7227 }
7228 
7229 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7230                                           SDVTList VTList,
7231                                           ArrayRef<SDValue> Ops, EVT MemVT,
7232                                           MachineMemOperand *MMO) {
7233   assert((Opcode == ISD::INTRINSIC_VOID ||
7234           Opcode == ISD::INTRINSIC_W_CHAIN ||
7235           Opcode == ISD::PREFETCH ||
7236           ((int)Opcode <= std::numeric_limits<int>::max() &&
7237            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7238          "Opcode is not a memory-accessing opcode!");
7239 
7240   // Memoize the node unless it returns a flag.
7241   MemIntrinsicSDNode *N;
7242   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7243     FoldingSetNodeID ID;
7244     AddNodeIDNode(ID, Opcode, VTList, Ops);
7245     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7246         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7247     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7248     void *IP = nullptr;
7249     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7250       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7251       return SDValue(E, 0);
7252     }
7253 
7254     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7255                                       VTList, MemVT, MMO);
7256     createOperands(N, Ops);
7257 
7258   CSEMap.InsertNode(N, IP);
7259   } else {
7260     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7261                                       VTList, MemVT, MMO);
7262     createOperands(N, Ops);
7263   }
7264   InsertNode(N);
7265   SDValue V(N, 0);
7266   NewSDValueDbgMsg(V, "Creating new node: ", this);
7267   return V;
7268 }
7269 
7270 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7271                                       SDValue Chain, int FrameIndex,
7272                                       int64_t Size, int64_t Offset) {
7273   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7274   const auto VTs = getVTList(MVT::Other);
7275   SDValue Ops[2] = {
7276       Chain,
7277       getFrameIndex(FrameIndex,
7278                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7279                     true)};
7280 
7281   FoldingSetNodeID ID;
7282   AddNodeIDNode(ID, Opcode, VTs, Ops);
7283   ID.AddInteger(FrameIndex);
7284   ID.AddInteger(Size);
7285   ID.AddInteger(Offset);
7286   void *IP = nullptr;
7287   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7288     return SDValue(E, 0);
7289 
7290   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7291       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7292   createOperands(N, Ops);
7293   CSEMap.InsertNode(N, IP);
7294   InsertNode(N);
7295   SDValue V(N, 0);
7296   NewSDValueDbgMsg(V, "Creating new node: ", this);
7297   return V;
7298 }
7299 
7300 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7301                                          uint64_t Guid, uint64_t Index,
7302                                          uint32_t Attr) {
7303   const unsigned Opcode = ISD::PSEUDO_PROBE;
7304   const auto VTs = getVTList(MVT::Other);
7305   SDValue Ops[] = {Chain};
7306   FoldingSetNodeID ID;
7307   AddNodeIDNode(ID, Opcode, VTs, Ops);
7308   ID.AddInteger(Guid);
7309   ID.AddInteger(Index);
7310   void *IP = nullptr;
7311   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7312     return SDValue(E, 0);
7313 
7314   auto *N = newSDNode<PseudoProbeSDNode>(
7315       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7316   createOperands(N, Ops);
7317   CSEMap.InsertNode(N, IP);
7318   InsertNode(N);
7319   SDValue V(N, 0);
7320   NewSDValueDbgMsg(V, "Creating new node: ", this);
7321   return V;
7322 }
7323 
7324 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7325 /// MachinePointerInfo record from it.  This is particularly useful because the
7326 /// code generator has many cases where it doesn't bother passing in a
7327 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7328 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7329                                            SelectionDAG &DAG, SDValue Ptr,
7330                                            int64_t Offset = 0) {
7331   // If this is FI+Offset, we can model it.
7332   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7333     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7334                                              FI->getIndex(), Offset);
7335 
7336   // If this is (FI+Offset1)+Offset2, we can model it.
7337   if (Ptr.getOpcode() != ISD::ADD ||
7338       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7339       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7340     return Info;
7341 
7342   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7343   return MachinePointerInfo::getFixedStack(
7344       DAG.getMachineFunction(), FI,
7345       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7346 }
7347 
7348 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7349 /// MachinePointerInfo record from it.  This is particularly useful because the
7350 /// code generator has many cases where it doesn't bother passing in a
7351 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7352 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7353                                            SelectionDAG &DAG, SDValue Ptr,
7354                                            SDValue OffsetOp) {
7355   // If the 'Offset' value isn't a constant, we can't handle this.
7356   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7357     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7358   if (OffsetOp.isUndef())
7359     return InferPointerInfo(Info, DAG, Ptr);
7360   return Info;
7361 }
7362 
7363 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7364                               EVT VT, const SDLoc &dl, SDValue Chain,
7365                               SDValue Ptr, SDValue Offset,
7366                               MachinePointerInfo PtrInfo, EVT MemVT,
7367                               Align Alignment,
7368                               MachineMemOperand::Flags MMOFlags,
7369                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7370   assert(Chain.getValueType() == MVT::Other &&
7371         "Invalid chain type");
7372 
7373   MMOFlags |= MachineMemOperand::MOLoad;
7374   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7375   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7376   // clients.
7377   if (PtrInfo.V.isNull())
7378     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7379 
7380   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7381   MachineFunction &MF = getMachineFunction();
7382   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7383                                                    Alignment, AAInfo, Ranges);
7384   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7385 }
7386 
7387 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7388                               EVT VT, const SDLoc &dl, SDValue Chain,
7389                               SDValue Ptr, SDValue Offset, EVT MemVT,
7390                               MachineMemOperand *MMO) {
7391   if (VT == MemVT) {
7392     ExtType = ISD::NON_EXTLOAD;
7393   } else if (ExtType == ISD::NON_EXTLOAD) {
7394     assert(VT == MemVT && "Non-extending load from different memory type!");
7395   } else {
7396     // Extending load.
7397     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7398            "Should only be an extending load, not truncating!");
7399     assert(VT.isInteger() == MemVT.isInteger() &&
7400            "Cannot convert from FP to Int or Int -> FP!");
7401     assert(VT.isVector() == MemVT.isVector() &&
7402            "Cannot use an ext load to convert to or from a vector!");
7403     assert((!VT.isVector() ||
7404             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7405            "Cannot use an ext load to change the number of vector elements!");
7406   }
7407 
7408   bool Indexed = AM != ISD::UNINDEXED;
7409   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7410 
7411   SDVTList VTs = Indexed ?
7412     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7413   SDValue Ops[] = { Chain, Ptr, Offset };
7414   FoldingSetNodeID ID;
7415   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7416   ID.AddInteger(MemVT.getRawBits());
7417   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7418       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7419   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7420   void *IP = nullptr;
7421   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7422     cast<LoadSDNode>(E)->refineAlignment(MMO);
7423     return SDValue(E, 0);
7424   }
7425   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7426                                   ExtType, MemVT, MMO);
7427   createOperands(N, Ops);
7428 
7429   CSEMap.InsertNode(N, IP);
7430   InsertNode(N);
7431   SDValue V(N, 0);
7432   NewSDValueDbgMsg(V, "Creating new node: ", this);
7433   return V;
7434 }
7435 
7436 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7437                               SDValue Ptr, MachinePointerInfo PtrInfo,
7438                               MaybeAlign Alignment,
7439                               MachineMemOperand::Flags MMOFlags,
7440                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7441   SDValue Undef = getUNDEF(Ptr.getValueType());
7442   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7443                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7444 }
7445 
7446 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7447                               SDValue Ptr, MachineMemOperand *MMO) {
7448   SDValue Undef = getUNDEF(Ptr.getValueType());
7449   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7450                  VT, MMO);
7451 }
7452 
7453 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7454                                  EVT VT, SDValue Chain, SDValue Ptr,
7455                                  MachinePointerInfo PtrInfo, EVT MemVT,
7456                                  MaybeAlign Alignment,
7457                                  MachineMemOperand::Flags MMOFlags,
7458                                  const AAMDNodes &AAInfo) {
7459   SDValue Undef = getUNDEF(Ptr.getValueType());
7460   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7461                  MemVT, Alignment, MMOFlags, AAInfo);
7462 }
7463 
7464 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7465                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7466                                  MachineMemOperand *MMO) {
7467   SDValue Undef = getUNDEF(Ptr.getValueType());
7468   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7469                  MemVT, MMO);
7470 }
7471 
7472 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7473                                      SDValue Base, SDValue Offset,
7474                                      ISD::MemIndexedMode AM) {
7475   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7476   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7477   // Don't propagate the invariant or dereferenceable flags.
7478   auto MMOFlags =
7479       LD->getMemOperand()->getFlags() &
7480       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7481   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7482                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7483                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7484 }
7485 
7486 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7487                                SDValue Ptr, MachinePointerInfo PtrInfo,
7488                                Align Alignment,
7489                                MachineMemOperand::Flags MMOFlags,
7490                                const AAMDNodes &AAInfo) {
7491   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7492 
7493   MMOFlags |= MachineMemOperand::MOStore;
7494   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7495 
7496   if (PtrInfo.V.isNull())
7497     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7498 
7499   MachineFunction &MF = getMachineFunction();
7500   uint64_t Size =
7501       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7502   MachineMemOperand *MMO =
7503       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7504   return getStore(Chain, dl, Val, Ptr, MMO);
7505 }
7506 
7507 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7508                                SDValue Ptr, MachineMemOperand *MMO) {
7509   assert(Chain.getValueType() == MVT::Other &&
7510         "Invalid chain type");
7511   EVT VT = Val.getValueType();
7512   SDVTList VTs = getVTList(MVT::Other);
7513   SDValue Undef = getUNDEF(Ptr.getValueType());
7514   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7515   FoldingSetNodeID ID;
7516   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7517   ID.AddInteger(VT.getRawBits());
7518   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7519       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7520   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7521   void *IP = nullptr;
7522   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7523     cast<StoreSDNode>(E)->refineAlignment(MMO);
7524     return SDValue(E, 0);
7525   }
7526   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7527                                    ISD::UNINDEXED, false, VT, MMO);
7528   createOperands(N, Ops);
7529 
7530   CSEMap.InsertNode(N, IP);
7531   InsertNode(N);
7532   SDValue V(N, 0);
7533   NewSDValueDbgMsg(V, "Creating new node: ", this);
7534   return V;
7535 }
7536 
7537 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7538                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7539                                     EVT SVT, Align Alignment,
7540                                     MachineMemOperand::Flags MMOFlags,
7541                                     const AAMDNodes &AAInfo) {
7542   assert(Chain.getValueType() == MVT::Other &&
7543         "Invalid chain type");
7544 
7545   MMOFlags |= MachineMemOperand::MOStore;
7546   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7547 
7548   if (PtrInfo.V.isNull())
7549     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7550 
7551   MachineFunction &MF = getMachineFunction();
7552   MachineMemOperand *MMO = MF.getMachineMemOperand(
7553       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7554       Alignment, AAInfo);
7555   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7556 }
7557 
7558 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7559                                     SDValue Ptr, EVT SVT,
7560                                     MachineMemOperand *MMO) {
7561   EVT VT = Val.getValueType();
7562 
7563   assert(Chain.getValueType() == MVT::Other &&
7564         "Invalid chain type");
7565   if (VT == SVT)
7566     return getStore(Chain, dl, Val, Ptr, MMO);
7567 
7568   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7569          "Should only be a truncating store, not extending!");
7570   assert(VT.isInteger() == SVT.isInteger() &&
7571          "Can't do FP-INT conversion!");
7572   assert(VT.isVector() == SVT.isVector() &&
7573          "Cannot use trunc store to convert to or from a vector!");
7574   assert((!VT.isVector() ||
7575           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7576          "Cannot use trunc store to change the number of vector elements!");
7577 
7578   SDVTList VTs = getVTList(MVT::Other);
7579   SDValue Undef = getUNDEF(Ptr.getValueType());
7580   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7581   FoldingSetNodeID ID;
7582   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7583   ID.AddInteger(SVT.getRawBits());
7584   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7585       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7586   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7587   void *IP = nullptr;
7588   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7589     cast<StoreSDNode>(E)->refineAlignment(MMO);
7590     return SDValue(E, 0);
7591   }
7592   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7593                                    ISD::UNINDEXED, true, SVT, MMO);
7594   createOperands(N, Ops);
7595 
7596   CSEMap.InsertNode(N, IP);
7597   InsertNode(N);
7598   SDValue V(N, 0);
7599   NewSDValueDbgMsg(V, "Creating new node: ", this);
7600   return V;
7601 }
7602 
7603 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7604                                       SDValue Base, SDValue Offset,
7605                                       ISD::MemIndexedMode AM) {
7606   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7607   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7608   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7609   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7610   FoldingSetNodeID ID;
7611   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7612   ID.AddInteger(ST->getMemoryVT().getRawBits());
7613   ID.AddInteger(ST->getRawSubclassData());
7614   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7615   void *IP = nullptr;
7616   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7617     return SDValue(E, 0);
7618 
7619   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7620                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7621                                    ST->getMemOperand());
7622   createOperands(N, Ops);
7623 
7624   CSEMap.InsertNode(N, IP);
7625   InsertNode(N);
7626   SDValue V(N, 0);
7627   NewSDValueDbgMsg(V, "Creating new node: ", this);
7628   return V;
7629 }
7630 
7631 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7632                                     SDValue Base, SDValue Offset, SDValue Mask,
7633                                     SDValue PassThru, EVT MemVT,
7634                                     MachineMemOperand *MMO,
7635                                     ISD::MemIndexedMode AM,
7636                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7637   bool Indexed = AM != ISD::UNINDEXED;
7638   assert((Indexed || Offset.isUndef()) &&
7639          "Unindexed masked load with an offset!");
7640   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7641                          : getVTList(VT, MVT::Other);
7642   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7643   FoldingSetNodeID ID;
7644   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7645   ID.AddInteger(MemVT.getRawBits());
7646   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7647       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7648   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7649   void *IP = nullptr;
7650   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7651     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7652     return SDValue(E, 0);
7653   }
7654   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7655                                         AM, ExtTy, isExpanding, MemVT, MMO);
7656   createOperands(N, Ops);
7657 
7658   CSEMap.InsertNode(N, IP);
7659   InsertNode(N);
7660   SDValue V(N, 0);
7661   NewSDValueDbgMsg(V, "Creating new node: ", this);
7662   return V;
7663 }
7664 
7665 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7666                                            SDValue Base, SDValue Offset,
7667                                            ISD::MemIndexedMode AM) {
7668   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7669   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7670   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7671                        Offset, LD->getMask(), LD->getPassThru(),
7672                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7673                        LD->getExtensionType(), LD->isExpandingLoad());
7674 }
7675 
7676 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7677                                      SDValue Val, SDValue Base, SDValue Offset,
7678                                      SDValue Mask, EVT MemVT,
7679                                      MachineMemOperand *MMO,
7680                                      ISD::MemIndexedMode AM, bool IsTruncating,
7681                                      bool IsCompressing) {
7682   assert(Chain.getValueType() == MVT::Other &&
7683         "Invalid chain type");
7684   bool Indexed = AM != ISD::UNINDEXED;
7685   assert((Indexed || Offset.isUndef()) &&
7686          "Unindexed masked store with an offset!");
7687   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7688                          : getVTList(MVT::Other);
7689   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7690   FoldingSetNodeID ID;
7691   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7692   ID.AddInteger(MemVT.getRawBits());
7693   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7694       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7695   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7696   void *IP = nullptr;
7697   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7698     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7699     return SDValue(E, 0);
7700   }
7701   auto *N =
7702       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7703                                    IsTruncating, IsCompressing, MemVT, MMO);
7704   createOperands(N, Ops);
7705 
7706   CSEMap.InsertNode(N, IP);
7707   InsertNode(N);
7708   SDValue V(N, 0);
7709   NewSDValueDbgMsg(V, "Creating new node: ", this);
7710   return V;
7711 }
7712 
7713 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7714                                             SDValue Base, SDValue Offset,
7715                                             ISD::MemIndexedMode AM) {
7716   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7717   assert(ST->getOffset().isUndef() &&
7718          "Masked store is already a indexed store!");
7719   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7720                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7721                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7722 }
7723 
7724 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
7725                                       ArrayRef<SDValue> Ops,
7726                                       MachineMemOperand *MMO,
7727                                       ISD::MemIndexType IndexType,
7728                                       ISD::LoadExtType ExtTy) {
7729   assert(Ops.size() == 6 && "Incompatible number of operands");
7730 
7731   FoldingSetNodeID ID;
7732   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7733   ID.AddInteger(MemVT.getRawBits());
7734   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7735       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
7736   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7737   void *IP = nullptr;
7738   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7739     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7740     return SDValue(E, 0);
7741   }
7742 
7743   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
7744   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7745                                           VTs, MemVT, MMO, IndexType, ExtTy);
7746   createOperands(N, Ops);
7747 
7748   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7749          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7750   assert(N->getMask().getValueType().getVectorElementCount() ==
7751              N->getValueType(0).getVectorElementCount() &&
7752          "Vector width mismatch between mask and data");
7753   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7754              N->getValueType(0).getVectorElementCount().isScalable() &&
7755          "Scalable flags of index and data do not match");
7756   assert(ElementCount::isKnownGE(
7757              N->getIndex().getValueType().getVectorElementCount(),
7758              N->getValueType(0).getVectorElementCount()) &&
7759          "Vector width mismatch between index and data");
7760   assert(isa<ConstantSDNode>(N->getScale()) &&
7761          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7762          "Scale should be a constant power of 2");
7763 
7764   CSEMap.InsertNode(N, IP);
7765   InsertNode(N);
7766   SDValue V(N, 0);
7767   NewSDValueDbgMsg(V, "Creating new node: ", this);
7768   return V;
7769 }
7770 
7771 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
7772                                        ArrayRef<SDValue> Ops,
7773                                        MachineMemOperand *MMO,
7774                                        ISD::MemIndexType IndexType,
7775                                        bool IsTrunc) {
7776   assert(Ops.size() == 6 && "Incompatible number of operands");
7777 
7778   FoldingSetNodeID ID;
7779   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7780   ID.AddInteger(MemVT.getRawBits());
7781   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7782       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
7783   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7784   void *IP = nullptr;
7785   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7786     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7787     return SDValue(E, 0);
7788   }
7789 
7790   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
7791   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7792                                            VTs, MemVT, MMO, IndexType, IsTrunc);
7793   createOperands(N, Ops);
7794 
7795   assert(N->getMask().getValueType().getVectorElementCount() ==
7796              N->getValue().getValueType().getVectorElementCount() &&
7797          "Vector width mismatch between mask and data");
7798   assert(
7799       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7800           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7801       "Scalable flags of index and data do not match");
7802   assert(ElementCount::isKnownGE(
7803              N->getIndex().getValueType().getVectorElementCount(),
7804              N->getValue().getValueType().getVectorElementCount()) &&
7805          "Vector width mismatch between index and data");
7806   assert(isa<ConstantSDNode>(N->getScale()) &&
7807          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7808          "Scale should be a constant power of 2");
7809 
7810   CSEMap.InsertNode(N, IP);
7811   InsertNode(N);
7812   SDValue V(N, 0);
7813   NewSDValueDbgMsg(V, "Creating new node: ", this);
7814   return V;
7815 }
7816 
7817 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7818   // select undef, T, F --> T (if T is a constant), otherwise F
7819   // select, ?, undef, F --> F
7820   // select, ?, T, undef --> T
7821   if (Cond.isUndef())
7822     return isConstantValueOfAnyType(T) ? T : F;
7823   if (T.isUndef())
7824     return F;
7825   if (F.isUndef())
7826     return T;
7827 
7828   // select true, T, F --> T
7829   // select false, T, F --> F
7830   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7831     return CondC->isNullValue() ? F : T;
7832 
7833   // TODO: This should simplify VSELECT with constant condition using something
7834   // like this (but check boolean contents to be complete?):
7835   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7836   //    return T;
7837   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7838   //    return F;
7839 
7840   // select ?, T, T --> T
7841   if (T == F)
7842     return T;
7843 
7844   return SDValue();
7845 }
7846 
7847 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7848   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7849   if (X.isUndef())
7850     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7851   // shift X, undef --> undef (because it may shift by the bitwidth)
7852   if (Y.isUndef())
7853     return getUNDEF(X.getValueType());
7854 
7855   // shift 0, Y --> 0
7856   // shift X, 0 --> X
7857   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7858     return X;
7859 
7860   // shift X, C >= bitwidth(X) --> undef
7861   // All vector elements must be too big (or undef) to avoid partial undefs.
7862   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7863     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7864   };
7865   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7866     return getUNDEF(X.getValueType());
7867 
7868   return SDValue();
7869 }
7870 
7871 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7872                                       SDNodeFlags Flags) {
7873   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7874   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7875   // operation is poison. That result can be relaxed to undef.
7876   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7877   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7878   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7879                 (YC && YC->getValueAPF().isNaN());
7880   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7881                 (YC && YC->getValueAPF().isInfinity());
7882 
7883   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7884     return getUNDEF(X.getValueType());
7885 
7886   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7887     return getUNDEF(X.getValueType());
7888 
7889   if (!YC)
7890     return SDValue();
7891 
7892   // X + -0.0 --> X
7893   if (Opcode == ISD::FADD)
7894     if (YC->getValueAPF().isNegZero())
7895       return X;
7896 
7897   // X - +0.0 --> X
7898   if (Opcode == ISD::FSUB)
7899     if (YC->getValueAPF().isPosZero())
7900       return X;
7901 
7902   // X * 1.0 --> X
7903   // X / 1.0 --> X
7904   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7905     if (YC->getValueAPF().isExactlyValue(1.0))
7906       return X;
7907 
7908   // X * 0.0 --> 0.0
7909   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7910     if (YC->getValueAPF().isZero())
7911       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7912 
7913   return SDValue();
7914 }
7915 
7916 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7917                                SDValue Ptr, SDValue SV, unsigned Align) {
7918   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7919   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7920 }
7921 
7922 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7923                               ArrayRef<SDUse> Ops) {
7924   switch (Ops.size()) {
7925   case 0: return getNode(Opcode, DL, VT);
7926   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7927   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7928   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7929   default: break;
7930   }
7931 
7932   // Copy from an SDUse array into an SDValue array for use with
7933   // the regular getNode logic.
7934   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7935   return getNode(Opcode, DL, VT, NewOps);
7936 }
7937 
7938 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7939                               ArrayRef<SDValue> Ops) {
7940   SDNodeFlags Flags;
7941   if (Inserter)
7942     Flags = Inserter->getFlags();
7943   return getNode(Opcode, DL, VT, Ops, Flags);
7944 }
7945 
7946 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7947                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7948   unsigned NumOps = Ops.size();
7949   switch (NumOps) {
7950   case 0: return getNode(Opcode, DL, VT);
7951   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7952   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7953   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7954   default: break;
7955   }
7956 
7957 #ifndef NDEBUG
7958   for (auto &Op : Ops)
7959     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7960            "Operand is DELETED_NODE!");
7961 #endif
7962 
7963   switch (Opcode) {
7964   default: break;
7965   case ISD::BUILD_VECTOR:
7966     // Attempt to simplify BUILD_VECTOR.
7967     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7968       return V;
7969     break;
7970   case ISD::CONCAT_VECTORS:
7971     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7972       return V;
7973     break;
7974   case ISD::SELECT_CC:
7975     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7976     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7977            "LHS and RHS of condition must have same type!");
7978     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7979            "True and False arms of SelectCC must have same type!");
7980     assert(Ops[2].getValueType() == VT &&
7981            "select_cc node must be of same type as true and false value!");
7982     break;
7983   case ISD::BR_CC:
7984     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7985     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7986            "LHS/RHS of comparison should match types!");
7987     break;
7988   }
7989 
7990   // Memoize nodes.
7991   SDNode *N;
7992   SDVTList VTs = getVTList(VT);
7993 
7994   if (VT != MVT::Glue) {
7995     FoldingSetNodeID ID;
7996     AddNodeIDNode(ID, Opcode, VTs, Ops);
7997     void *IP = nullptr;
7998 
7999     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8000       return SDValue(E, 0);
8001 
8002     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8003     createOperands(N, Ops);
8004 
8005     CSEMap.InsertNode(N, IP);
8006   } else {
8007     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8008     createOperands(N, Ops);
8009   }
8010 
8011   N->setFlags(Flags);
8012   InsertNode(N);
8013   SDValue V(N, 0);
8014   NewSDValueDbgMsg(V, "Creating new node: ", this);
8015   return V;
8016 }
8017 
8018 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8019                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8020   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8021 }
8022 
8023 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8024                               ArrayRef<SDValue> Ops) {
8025   SDNodeFlags Flags;
8026   if (Inserter)
8027     Flags = Inserter->getFlags();
8028   return getNode(Opcode, DL, VTList, Ops, Flags);
8029 }
8030 
8031 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8032                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8033   if (VTList.NumVTs == 1)
8034     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8035 
8036 #ifndef NDEBUG
8037   for (auto &Op : Ops)
8038     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8039            "Operand is DELETED_NODE!");
8040 #endif
8041 
8042   switch (Opcode) {
8043   case ISD::STRICT_FP_EXTEND:
8044     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8045            "Invalid STRICT_FP_EXTEND!");
8046     assert(VTList.VTs[0].isFloatingPoint() &&
8047            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8048     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8049            "STRICT_FP_EXTEND result type should be vector iff the operand "
8050            "type is vector!");
8051     assert((!VTList.VTs[0].isVector() ||
8052             VTList.VTs[0].getVectorNumElements() ==
8053             Ops[1].getValueType().getVectorNumElements()) &&
8054            "Vector element count mismatch!");
8055     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8056            "Invalid fpext node, dst <= src!");
8057     break;
8058   case ISD::STRICT_FP_ROUND:
8059     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8060     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8061            "STRICT_FP_ROUND result type should be vector iff the operand "
8062            "type is vector!");
8063     assert((!VTList.VTs[0].isVector() ||
8064             VTList.VTs[0].getVectorNumElements() ==
8065             Ops[1].getValueType().getVectorNumElements()) &&
8066            "Vector element count mismatch!");
8067     assert(VTList.VTs[0].isFloatingPoint() &&
8068            Ops[1].getValueType().isFloatingPoint() &&
8069            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8070            isa<ConstantSDNode>(Ops[2]) &&
8071            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8072             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8073            "Invalid STRICT_FP_ROUND!");
8074     break;
8075 #if 0
8076   // FIXME: figure out how to safely handle things like
8077   // int foo(int x) { return 1 << (x & 255); }
8078   // int bar() { return foo(256); }
8079   case ISD::SRA_PARTS:
8080   case ISD::SRL_PARTS:
8081   case ISD::SHL_PARTS:
8082     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8083         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8084       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8085     else if (N3.getOpcode() == ISD::AND)
8086       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8087         // If the and is only masking out bits that cannot effect the shift,
8088         // eliminate the and.
8089         unsigned NumBits = VT.getScalarSizeInBits()*2;
8090         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8091           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8092       }
8093     break;
8094 #endif
8095   }
8096 
8097   // Memoize the node unless it returns a flag.
8098   SDNode *N;
8099   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8100     FoldingSetNodeID ID;
8101     AddNodeIDNode(ID, Opcode, VTList, Ops);
8102     void *IP = nullptr;
8103     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8104       return SDValue(E, 0);
8105 
8106     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8107     createOperands(N, Ops);
8108     CSEMap.InsertNode(N, IP);
8109   } else {
8110     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8111     createOperands(N, Ops);
8112   }
8113 
8114   N->setFlags(Flags);
8115   InsertNode(N);
8116   SDValue V(N, 0);
8117   NewSDValueDbgMsg(V, "Creating new node: ", this);
8118   return V;
8119 }
8120 
8121 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8122                               SDVTList VTList) {
8123   return getNode(Opcode, DL, VTList, None);
8124 }
8125 
8126 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8127                               SDValue N1) {
8128   SDValue Ops[] = { N1 };
8129   return getNode(Opcode, DL, VTList, Ops);
8130 }
8131 
8132 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8133                               SDValue N1, SDValue N2) {
8134   SDValue Ops[] = { N1, N2 };
8135   return getNode(Opcode, DL, VTList, Ops);
8136 }
8137 
8138 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8139                               SDValue N1, SDValue N2, SDValue N3) {
8140   SDValue Ops[] = { N1, N2, N3 };
8141   return getNode(Opcode, DL, VTList, Ops);
8142 }
8143 
8144 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8145                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8146   SDValue Ops[] = { N1, N2, N3, N4 };
8147   return getNode(Opcode, DL, VTList, Ops);
8148 }
8149 
8150 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8151                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8152                               SDValue N5) {
8153   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8154   return getNode(Opcode, DL, VTList, Ops);
8155 }
8156 
8157 SDVTList SelectionDAG::getVTList(EVT VT) {
8158   return makeVTList(SDNode::getValueTypeList(VT), 1);
8159 }
8160 
8161 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8162   FoldingSetNodeID ID;
8163   ID.AddInteger(2U);
8164   ID.AddInteger(VT1.getRawBits());
8165   ID.AddInteger(VT2.getRawBits());
8166 
8167   void *IP = nullptr;
8168   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8169   if (!Result) {
8170     EVT *Array = Allocator.Allocate<EVT>(2);
8171     Array[0] = VT1;
8172     Array[1] = VT2;
8173     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8174     VTListMap.InsertNode(Result, IP);
8175   }
8176   return Result->getSDVTList();
8177 }
8178 
8179 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8180   FoldingSetNodeID ID;
8181   ID.AddInteger(3U);
8182   ID.AddInteger(VT1.getRawBits());
8183   ID.AddInteger(VT2.getRawBits());
8184   ID.AddInteger(VT3.getRawBits());
8185 
8186   void *IP = nullptr;
8187   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8188   if (!Result) {
8189     EVT *Array = Allocator.Allocate<EVT>(3);
8190     Array[0] = VT1;
8191     Array[1] = VT2;
8192     Array[2] = VT3;
8193     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8194     VTListMap.InsertNode(Result, IP);
8195   }
8196   return Result->getSDVTList();
8197 }
8198 
8199 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8200   FoldingSetNodeID ID;
8201   ID.AddInteger(4U);
8202   ID.AddInteger(VT1.getRawBits());
8203   ID.AddInteger(VT2.getRawBits());
8204   ID.AddInteger(VT3.getRawBits());
8205   ID.AddInteger(VT4.getRawBits());
8206 
8207   void *IP = nullptr;
8208   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8209   if (!Result) {
8210     EVT *Array = Allocator.Allocate<EVT>(4);
8211     Array[0] = VT1;
8212     Array[1] = VT2;
8213     Array[2] = VT3;
8214     Array[3] = VT4;
8215     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8216     VTListMap.InsertNode(Result, IP);
8217   }
8218   return Result->getSDVTList();
8219 }
8220 
8221 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8222   unsigned NumVTs = VTs.size();
8223   FoldingSetNodeID ID;
8224   ID.AddInteger(NumVTs);
8225   for (unsigned index = 0; index < NumVTs; index++) {
8226     ID.AddInteger(VTs[index].getRawBits());
8227   }
8228 
8229   void *IP = nullptr;
8230   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8231   if (!Result) {
8232     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8233     llvm::copy(VTs, Array);
8234     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8235     VTListMap.InsertNode(Result, IP);
8236   }
8237   return Result->getSDVTList();
8238 }
8239 
8240 
8241 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8242 /// specified operands.  If the resultant node already exists in the DAG,
8243 /// this does not modify the specified node, instead it returns the node that
8244 /// already exists.  If the resultant node does not exist in the DAG, the
8245 /// input node is returned.  As a degenerate case, if you specify the same
8246 /// input operands as the node already has, the input node is returned.
8247 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8248   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8249 
8250   // Check to see if there is no change.
8251   if (Op == N->getOperand(0)) return N;
8252 
8253   // See if the modified node already exists.
8254   void *InsertPos = nullptr;
8255   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8256     return Existing;
8257 
8258   // Nope it doesn't.  Remove the node from its current place in the maps.
8259   if (InsertPos)
8260     if (!RemoveNodeFromCSEMaps(N))
8261       InsertPos = nullptr;
8262 
8263   // Now we update the operands.
8264   N->OperandList[0].set(Op);
8265 
8266   updateDivergence(N);
8267   // If this gets put into a CSE map, add it.
8268   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8269   return N;
8270 }
8271 
8272 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8273   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8274 
8275   // Check to see if there is no change.
8276   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8277     return N;   // No operands changed, just return the input node.
8278 
8279   // See if the modified node already exists.
8280   void *InsertPos = nullptr;
8281   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8282     return Existing;
8283 
8284   // Nope it doesn't.  Remove the node from its current place in the maps.
8285   if (InsertPos)
8286     if (!RemoveNodeFromCSEMaps(N))
8287       InsertPos = nullptr;
8288 
8289   // Now we update the operands.
8290   if (N->OperandList[0] != Op1)
8291     N->OperandList[0].set(Op1);
8292   if (N->OperandList[1] != Op2)
8293     N->OperandList[1].set(Op2);
8294 
8295   updateDivergence(N);
8296   // If this gets put into a CSE map, add it.
8297   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8298   return N;
8299 }
8300 
8301 SDNode *SelectionDAG::
8302 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8303   SDValue Ops[] = { Op1, Op2, Op3 };
8304   return UpdateNodeOperands(N, Ops);
8305 }
8306 
8307 SDNode *SelectionDAG::
8308 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8309                    SDValue Op3, SDValue Op4) {
8310   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8311   return UpdateNodeOperands(N, Ops);
8312 }
8313 
8314 SDNode *SelectionDAG::
8315 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8316                    SDValue Op3, SDValue Op4, SDValue Op5) {
8317   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8318   return UpdateNodeOperands(N, Ops);
8319 }
8320 
8321 SDNode *SelectionDAG::
8322 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8323   unsigned NumOps = Ops.size();
8324   assert(N->getNumOperands() == NumOps &&
8325          "Update with wrong number of operands");
8326 
8327   // If no operands changed just return the input node.
8328   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8329     return N;
8330 
8331   // See if the modified node already exists.
8332   void *InsertPos = nullptr;
8333   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8334     return Existing;
8335 
8336   // Nope it doesn't.  Remove the node from its current place in the maps.
8337   if (InsertPos)
8338     if (!RemoveNodeFromCSEMaps(N))
8339       InsertPos = nullptr;
8340 
8341   // Now we update the operands.
8342   for (unsigned i = 0; i != NumOps; ++i)
8343     if (N->OperandList[i] != Ops[i])
8344       N->OperandList[i].set(Ops[i]);
8345 
8346   updateDivergence(N);
8347   // If this gets put into a CSE map, add it.
8348   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8349   return N;
8350 }
8351 
8352 /// DropOperands - Release the operands and set this node to have
8353 /// zero operands.
8354 void SDNode::DropOperands() {
8355   // Unlike the code in MorphNodeTo that does this, we don't need to
8356   // watch for dead nodes here.
8357   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8358     SDUse &Use = *I++;
8359     Use.set(SDValue());
8360   }
8361 }
8362 
8363 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8364                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8365   if (NewMemRefs.empty()) {
8366     N->clearMemRefs();
8367     return;
8368   }
8369 
8370   // Check if we can avoid allocating by storing a single reference directly.
8371   if (NewMemRefs.size() == 1) {
8372     N->MemRefs = NewMemRefs[0];
8373     N->NumMemRefs = 1;
8374     return;
8375   }
8376 
8377   MachineMemOperand **MemRefsBuffer =
8378       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8379   llvm::copy(NewMemRefs, MemRefsBuffer);
8380   N->MemRefs = MemRefsBuffer;
8381   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8382 }
8383 
8384 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8385 /// machine opcode.
8386 ///
8387 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8388                                    EVT VT) {
8389   SDVTList VTs = getVTList(VT);
8390   return SelectNodeTo(N, MachineOpc, VTs, None);
8391 }
8392 
8393 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8394                                    EVT VT, SDValue Op1) {
8395   SDVTList VTs = getVTList(VT);
8396   SDValue Ops[] = { Op1 };
8397   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8398 }
8399 
8400 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8401                                    EVT VT, SDValue Op1,
8402                                    SDValue Op2) {
8403   SDVTList VTs = getVTList(VT);
8404   SDValue Ops[] = { Op1, Op2 };
8405   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8406 }
8407 
8408 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8409                                    EVT VT, SDValue Op1,
8410                                    SDValue Op2, SDValue Op3) {
8411   SDVTList VTs = getVTList(VT);
8412   SDValue Ops[] = { Op1, Op2, Op3 };
8413   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8414 }
8415 
8416 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8417                                    EVT VT, ArrayRef<SDValue> Ops) {
8418   SDVTList VTs = getVTList(VT);
8419   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8420 }
8421 
8422 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8423                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8424   SDVTList VTs = getVTList(VT1, VT2);
8425   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8426 }
8427 
8428 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8429                                    EVT VT1, EVT VT2) {
8430   SDVTList VTs = getVTList(VT1, VT2);
8431   return SelectNodeTo(N, MachineOpc, VTs, None);
8432 }
8433 
8434 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8435                                    EVT VT1, EVT VT2, EVT VT3,
8436                                    ArrayRef<SDValue> Ops) {
8437   SDVTList VTs = getVTList(VT1, VT2, VT3);
8438   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8439 }
8440 
8441 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8442                                    EVT VT1, EVT VT2,
8443                                    SDValue Op1, SDValue Op2) {
8444   SDVTList VTs = getVTList(VT1, VT2);
8445   SDValue Ops[] = { Op1, Op2 };
8446   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8447 }
8448 
8449 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8450                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8451   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8452   // Reset the NodeID to -1.
8453   New->setNodeId(-1);
8454   if (New != N) {
8455     ReplaceAllUsesWith(N, New);
8456     RemoveDeadNode(N);
8457   }
8458   return New;
8459 }
8460 
8461 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8462 /// the line number information on the merged node since it is not possible to
8463 /// preserve the information that operation is associated with multiple lines.
8464 /// This will make the debugger working better at -O0, were there is a higher
8465 /// probability having other instructions associated with that line.
8466 ///
8467 /// For IROrder, we keep the smaller of the two
8468 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8469   DebugLoc NLoc = N->getDebugLoc();
8470   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8471     N->setDebugLoc(DebugLoc());
8472   }
8473   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8474   N->setIROrder(Order);
8475   return N;
8476 }
8477 
8478 /// MorphNodeTo - This *mutates* the specified node to have the specified
8479 /// return type, opcode, and operands.
8480 ///
8481 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8482 /// node of the specified opcode and operands, it returns that node instead of
8483 /// the current one.  Note that the SDLoc need not be the same.
8484 ///
8485 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8486 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8487 /// node, and because it doesn't require CSE recalculation for any of
8488 /// the node's users.
8489 ///
8490 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8491 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8492 /// the legalizer which maintain worklists that would need to be updated when
8493 /// deleting things.
8494 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8495                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8496   // If an identical node already exists, use it.
8497   void *IP = nullptr;
8498   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8499     FoldingSetNodeID ID;
8500     AddNodeIDNode(ID, Opc, VTs, Ops);
8501     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8502       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8503   }
8504 
8505   if (!RemoveNodeFromCSEMaps(N))
8506     IP = nullptr;
8507 
8508   // Start the morphing.
8509   N->NodeType = Opc;
8510   N->ValueList = VTs.VTs;
8511   N->NumValues = VTs.NumVTs;
8512 
8513   // Clear the operands list, updating used nodes to remove this from their
8514   // use list.  Keep track of any operands that become dead as a result.
8515   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8516   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8517     SDUse &Use = *I++;
8518     SDNode *Used = Use.getNode();
8519     Use.set(SDValue());
8520     if (Used->use_empty())
8521       DeadNodeSet.insert(Used);
8522   }
8523 
8524   // For MachineNode, initialize the memory references information.
8525   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8526     MN->clearMemRefs();
8527 
8528   // Swap for an appropriately sized array from the recycler.
8529   removeOperands(N);
8530   createOperands(N, Ops);
8531 
8532   // Delete any nodes that are still dead after adding the uses for the
8533   // new operands.
8534   if (!DeadNodeSet.empty()) {
8535     SmallVector<SDNode *, 16> DeadNodes;
8536     for (SDNode *N : DeadNodeSet)
8537       if (N->use_empty())
8538         DeadNodes.push_back(N);
8539     RemoveDeadNodes(DeadNodes);
8540   }
8541 
8542   if (IP)
8543     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8544   return N;
8545 }
8546 
8547 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8548   unsigned OrigOpc = Node->getOpcode();
8549   unsigned NewOpc;
8550   switch (OrigOpc) {
8551   default:
8552     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8553 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8554   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8555 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8556   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8557 #include "llvm/IR/ConstrainedOps.def"
8558   }
8559 
8560   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8561 
8562   // We're taking this node out of the chain, so we need to re-link things.
8563   SDValue InputChain = Node->getOperand(0);
8564   SDValue OutputChain = SDValue(Node, 1);
8565   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8566 
8567   SmallVector<SDValue, 3> Ops;
8568   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8569     Ops.push_back(Node->getOperand(i));
8570 
8571   SDVTList VTs = getVTList(Node->getValueType(0));
8572   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8573 
8574   // MorphNodeTo can operate in two ways: if an existing node with the
8575   // specified operands exists, it can just return it.  Otherwise, it
8576   // updates the node in place to have the requested operands.
8577   if (Res == Node) {
8578     // If we updated the node in place, reset the node ID.  To the isel,
8579     // this should be just like a newly allocated machine node.
8580     Res->setNodeId(-1);
8581   } else {
8582     ReplaceAllUsesWith(Node, Res);
8583     RemoveDeadNode(Node);
8584   }
8585 
8586   return Res;
8587 }
8588 
8589 /// getMachineNode - These are used for target selectors to create a new node
8590 /// with specified return type(s), MachineInstr opcode, and operands.
8591 ///
8592 /// Note that getMachineNode returns the resultant node.  If there is already a
8593 /// node of the specified opcode and operands, it returns that node instead of
8594 /// the current one.
8595 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8596                                             EVT VT) {
8597   SDVTList VTs = getVTList(VT);
8598   return getMachineNode(Opcode, dl, VTs, None);
8599 }
8600 
8601 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8602                                             EVT VT, SDValue Op1) {
8603   SDVTList VTs = getVTList(VT);
8604   SDValue Ops[] = { Op1 };
8605   return getMachineNode(Opcode, dl, VTs, Ops);
8606 }
8607 
8608 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8609                                             EVT VT, SDValue Op1, SDValue Op2) {
8610   SDVTList VTs = getVTList(VT);
8611   SDValue Ops[] = { Op1, Op2 };
8612   return getMachineNode(Opcode, dl, VTs, Ops);
8613 }
8614 
8615 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8616                                             EVT VT, SDValue Op1, SDValue Op2,
8617                                             SDValue Op3) {
8618   SDVTList VTs = getVTList(VT);
8619   SDValue Ops[] = { Op1, Op2, Op3 };
8620   return getMachineNode(Opcode, dl, VTs, Ops);
8621 }
8622 
8623 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8624                                             EVT VT, ArrayRef<SDValue> Ops) {
8625   SDVTList VTs = getVTList(VT);
8626   return getMachineNode(Opcode, dl, VTs, Ops);
8627 }
8628 
8629 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8630                                             EVT VT1, EVT VT2, SDValue Op1,
8631                                             SDValue Op2) {
8632   SDVTList VTs = getVTList(VT1, VT2);
8633   SDValue Ops[] = { Op1, Op2 };
8634   return getMachineNode(Opcode, dl, VTs, Ops);
8635 }
8636 
8637 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8638                                             EVT VT1, EVT VT2, SDValue Op1,
8639                                             SDValue Op2, SDValue Op3) {
8640   SDVTList VTs = getVTList(VT1, VT2);
8641   SDValue Ops[] = { Op1, Op2, Op3 };
8642   return getMachineNode(Opcode, dl, VTs, Ops);
8643 }
8644 
8645 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8646                                             EVT VT1, EVT VT2,
8647                                             ArrayRef<SDValue> Ops) {
8648   SDVTList VTs = getVTList(VT1, VT2);
8649   return getMachineNode(Opcode, dl, VTs, Ops);
8650 }
8651 
8652 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8653                                             EVT VT1, EVT VT2, EVT VT3,
8654                                             SDValue Op1, SDValue Op2) {
8655   SDVTList VTs = getVTList(VT1, VT2, VT3);
8656   SDValue Ops[] = { Op1, Op2 };
8657   return getMachineNode(Opcode, dl, VTs, Ops);
8658 }
8659 
8660 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8661                                             EVT VT1, EVT VT2, EVT VT3,
8662                                             SDValue Op1, SDValue Op2,
8663                                             SDValue Op3) {
8664   SDVTList VTs = getVTList(VT1, VT2, VT3);
8665   SDValue Ops[] = { Op1, Op2, Op3 };
8666   return getMachineNode(Opcode, dl, VTs, Ops);
8667 }
8668 
8669 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8670                                             EVT VT1, EVT VT2, EVT VT3,
8671                                             ArrayRef<SDValue> Ops) {
8672   SDVTList VTs = getVTList(VT1, VT2, VT3);
8673   return getMachineNode(Opcode, dl, VTs, Ops);
8674 }
8675 
8676 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8677                                             ArrayRef<EVT> ResultTys,
8678                                             ArrayRef<SDValue> Ops) {
8679   SDVTList VTs = getVTList(ResultTys);
8680   return getMachineNode(Opcode, dl, VTs, Ops);
8681 }
8682 
8683 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8684                                             SDVTList VTs,
8685                                             ArrayRef<SDValue> Ops) {
8686   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8687   MachineSDNode *N;
8688   void *IP = nullptr;
8689 
8690   if (DoCSE) {
8691     FoldingSetNodeID ID;
8692     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8693     IP = nullptr;
8694     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8695       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8696     }
8697   }
8698 
8699   // Allocate a new MachineSDNode.
8700   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8701   createOperands(N, Ops);
8702 
8703   if (DoCSE)
8704     CSEMap.InsertNode(N, IP);
8705 
8706   InsertNode(N);
8707   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8708   return N;
8709 }
8710 
8711 /// getTargetExtractSubreg - A convenience function for creating
8712 /// TargetOpcode::EXTRACT_SUBREG nodes.
8713 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8714                                              SDValue Operand) {
8715   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8716   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8717                                   VT, Operand, SRIdxVal);
8718   return SDValue(Subreg, 0);
8719 }
8720 
8721 /// getTargetInsertSubreg - A convenience function for creating
8722 /// TargetOpcode::INSERT_SUBREG nodes.
8723 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8724                                             SDValue Operand, SDValue Subreg) {
8725   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8726   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8727                                   VT, Operand, Subreg, SRIdxVal);
8728   return SDValue(Result, 0);
8729 }
8730 
8731 /// getNodeIfExists - Get the specified node if it's already available, or
8732 /// else return NULL.
8733 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8734                                       ArrayRef<SDValue> Ops) {
8735   SDNodeFlags Flags;
8736   if (Inserter)
8737     Flags = Inserter->getFlags();
8738   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8739 }
8740 
8741 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8742                                       ArrayRef<SDValue> Ops,
8743                                       const SDNodeFlags Flags) {
8744   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8745     FoldingSetNodeID ID;
8746     AddNodeIDNode(ID, Opcode, VTList, Ops);
8747     void *IP = nullptr;
8748     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8749       E->intersectFlagsWith(Flags);
8750       return E;
8751     }
8752   }
8753   return nullptr;
8754 }
8755 
8756 /// doesNodeExist - Check if a node exists without modifying its flags.
8757 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8758                                  ArrayRef<SDValue> Ops) {
8759   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8760     FoldingSetNodeID ID;
8761     AddNodeIDNode(ID, Opcode, VTList, Ops);
8762     void *IP = nullptr;
8763     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8764       return true;
8765   }
8766   return false;
8767 }
8768 
8769 /// getDbgValue - Creates a SDDbgValue node.
8770 ///
8771 /// SDNode
8772 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8773                                       SDNode *N, unsigned R, bool IsIndirect,
8774                                       const DebugLoc &DL, unsigned O) {
8775   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8776          "Expected inlined-at fields to agree");
8777   return new (DbgInfo->getAlloc())
8778       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
8779                  {}, IsIndirect, DL, O,
8780                  /*IsVariadic=*/false);
8781 }
8782 
8783 /// Constant
8784 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8785                                               DIExpression *Expr,
8786                                               const Value *C,
8787                                               const DebugLoc &DL, unsigned O) {
8788   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8789          "Expected inlined-at fields to agree");
8790   return new (DbgInfo->getAlloc())
8791       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
8792                  /*IsIndirect=*/false, DL, O,
8793                  /*IsVariadic=*/false);
8794 }
8795 
8796 /// FrameIndex
8797 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8798                                                 DIExpression *Expr, unsigned FI,
8799                                                 bool IsIndirect,
8800                                                 const DebugLoc &DL,
8801                                                 unsigned O) {
8802   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8803          "Expected inlined-at fields to agree");
8804   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8805 }
8806 
8807 /// FrameIndex with dependencies
8808 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8809                                                 DIExpression *Expr, unsigned FI,
8810                                                 ArrayRef<SDNode *> Dependencies,
8811                                                 bool IsIndirect,
8812                                                 const DebugLoc &DL,
8813                                                 unsigned O) {
8814   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8815          "Expected inlined-at fields to agree");
8816   return new (DbgInfo->getAlloc())
8817       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
8818                  Dependencies, IsIndirect, DL, O,
8819                  /*IsVariadic=*/false);
8820 }
8821 
8822 /// VReg
8823 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8824                                           unsigned VReg, bool IsIndirect,
8825                                           const DebugLoc &DL, unsigned O) {
8826   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8827          "Expected inlined-at fields to agree");
8828   return new (DbgInfo->getAlloc())
8829       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
8830                  {}, IsIndirect, DL, O,
8831                  /*IsVariadic=*/false);
8832 }
8833 
8834 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8835                                           ArrayRef<SDDbgOperand> Locs,
8836                                           ArrayRef<SDNode *> Dependencies,
8837                                           bool IsIndirect, const DebugLoc &DL,
8838                                           unsigned O, bool IsVariadic) {
8839   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8840          "Expected inlined-at fields to agree");
8841   return new (DbgInfo->getAlloc())
8842       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
8843                  DL, O, IsVariadic);
8844 }
8845 
8846 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8847                                      unsigned OffsetInBits, unsigned SizeInBits,
8848                                      bool InvalidateDbg) {
8849   SDNode *FromNode = From.getNode();
8850   SDNode *ToNode = To.getNode();
8851   assert(FromNode && ToNode && "Can't modify dbg values");
8852 
8853   // PR35338
8854   // TODO: assert(From != To && "Redundant dbg value transfer");
8855   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8856   if (From == To || FromNode == ToNode)
8857     return;
8858 
8859   if (!FromNode->getHasDebugValue())
8860     return;
8861 
8862   SDDbgOperand FromLocOp =
8863       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8864   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8865 
8866   SmallVector<SDDbgValue *, 2> ClonedDVs;
8867   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8868     if (Dbg->isInvalidated())
8869       continue;
8870 
8871     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8872 
8873     // Create a new location ops vector that is equal to the old vector, but
8874     // with each instance of FromLocOp replaced with ToLocOp.
8875     bool Changed = false;
8876     auto NewLocOps = Dbg->copyLocationOps();
8877     std::replace_if(
8878         NewLocOps.begin(), NewLocOps.end(),
8879         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8880           bool Match = Op == FromLocOp;
8881           Changed |= Match;
8882           return Match;
8883         },
8884         ToLocOp);
8885     // Ignore this SDDbgValue if we didn't find a matching location.
8886     if (!Changed)
8887       continue;
8888 
8889     DIVariable *Var = Dbg->getVariable();
8890     auto *Expr = Dbg->getExpression();
8891     // If a fragment is requested, update the expression.
8892     if (SizeInBits) {
8893       // When splitting a larger (e.g., sign-extended) value whose
8894       // lower bits are described with an SDDbgValue, do not attempt
8895       // to transfer the SDDbgValue to the upper bits.
8896       if (auto FI = Expr->getFragmentInfo())
8897         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8898           continue;
8899       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8900                                                              SizeInBits);
8901       if (!Fragment)
8902         continue;
8903       Expr = *Fragment;
8904     }
8905 
8906     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
8907     // Clone the SDDbgValue and move it to To.
8908     SDDbgValue *Clone = getDbgValueList(
8909         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
8910         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8911         Dbg->isVariadic());
8912     ClonedDVs.push_back(Clone);
8913 
8914     if (InvalidateDbg) {
8915       // Invalidate value and indicate the SDDbgValue should not be emitted.
8916       Dbg->setIsInvalidated();
8917       Dbg->setIsEmitted();
8918     }
8919   }
8920 
8921   for (SDDbgValue *Dbg : ClonedDVs) {
8922     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8923            "Transferred DbgValues should depend on the new SDNode");
8924     AddDbgValue(Dbg, false);
8925   }
8926 }
8927 
8928 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8929   if (!N.getHasDebugValue())
8930     return;
8931 
8932   SmallVector<SDDbgValue *, 2> ClonedDVs;
8933   for (auto DV : GetDbgValues(&N)) {
8934     if (DV->isInvalidated())
8935       continue;
8936     switch (N.getOpcode()) {
8937     default:
8938       break;
8939     case ISD::ADD:
8940       SDValue N0 = N.getOperand(0);
8941       SDValue N1 = N.getOperand(1);
8942       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8943           isConstantIntBuildVectorOrConstantInt(N1)) {
8944         uint64_t Offset = N.getConstantOperandVal(1);
8945 
8946         // Rewrite an ADD constant node into a DIExpression. Since we are
8947         // performing arithmetic to compute the variable's *value* in the
8948         // DIExpression, we need to mark the expression with a
8949         // DW_OP_stack_value.
8950         auto *DIExpr = DV->getExpression();
8951         auto NewLocOps = DV->copyLocationOps();
8952         bool Changed = false;
8953         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8954           // We're not given a ResNo to compare against because the whole
8955           // node is going away. We know that any ISD::ADD only has one
8956           // result, so we can assume any node match is using the result.
8957           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8958               NewLocOps[i].getSDNode() != &N)
8959             continue;
8960           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8961           SmallVector<uint64_t, 3> ExprOps;
8962           DIExpression::appendOffset(ExprOps, Offset);
8963           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8964           Changed = true;
8965         }
8966         (void)Changed;
8967         assert(Changed && "Salvage target doesn't use N");
8968 
8969         auto AdditionalDependencies = DV->getAdditionalDependencies();
8970         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8971                                             NewLocOps, AdditionalDependencies,
8972                                             DV->isIndirect(), DV->getDebugLoc(),
8973                                             DV->getOrder(), DV->isVariadic());
8974         ClonedDVs.push_back(Clone);
8975         DV->setIsInvalidated();
8976         DV->setIsEmitted();
8977         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8978                    N0.getNode()->dumprFull(this);
8979                    dbgs() << " into " << *DIExpr << '\n');
8980       }
8981     }
8982   }
8983 
8984   for (SDDbgValue *Dbg : ClonedDVs) {
8985     assert(!Dbg->getSDNodes().empty() &&
8986            "Salvaged DbgValue should depend on a new SDNode");
8987     AddDbgValue(Dbg, false);
8988   }
8989 }
8990 
8991 /// Creates a SDDbgLabel node.
8992 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8993                                       const DebugLoc &DL, unsigned O) {
8994   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8995          "Expected inlined-at fields to agree");
8996   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8997 }
8998 
8999 namespace {
9000 
9001 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9002 /// pointed to by a use iterator is deleted, increment the use iterator
9003 /// so that it doesn't dangle.
9004 ///
9005 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9006   SDNode::use_iterator &UI;
9007   SDNode::use_iterator &UE;
9008 
9009   void NodeDeleted(SDNode *N, SDNode *E) override {
9010     // Increment the iterator as needed.
9011     while (UI != UE && N == *UI)
9012       ++UI;
9013   }
9014 
9015 public:
9016   RAUWUpdateListener(SelectionDAG &d,
9017                      SDNode::use_iterator &ui,
9018                      SDNode::use_iterator &ue)
9019     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9020 };
9021 
9022 } // end anonymous namespace
9023 
9024 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9025 /// This can cause recursive merging of nodes in the DAG.
9026 ///
9027 /// This version assumes From has a single result value.
9028 ///
9029 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9030   SDNode *From = FromN.getNode();
9031   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9032          "Cannot replace with this method!");
9033   assert(From != To.getNode() && "Cannot replace uses of with self");
9034 
9035   // Preserve Debug Values
9036   transferDbgValues(FromN, To);
9037 
9038   // Iterate over all the existing uses of From. New uses will be added
9039   // to the beginning of the use list, which we avoid visiting.
9040   // This specifically avoids visiting uses of From that arise while the
9041   // replacement is happening, because any such uses would be the result
9042   // of CSE: If an existing node looks like From after one of its operands
9043   // is replaced by To, we don't want to replace of all its users with To
9044   // too. See PR3018 for more info.
9045   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9046   RAUWUpdateListener Listener(*this, UI, UE);
9047   while (UI != UE) {
9048     SDNode *User = *UI;
9049 
9050     // This node is about to morph, remove its old self from the CSE maps.
9051     RemoveNodeFromCSEMaps(User);
9052 
9053     // A user can appear in a use list multiple times, and when this
9054     // happens the uses are usually next to each other in the list.
9055     // To help reduce the number of CSE recomputations, process all
9056     // the uses of this user that we can find this way.
9057     do {
9058       SDUse &Use = UI.getUse();
9059       ++UI;
9060       Use.set(To);
9061       if (To->isDivergent() != From->isDivergent())
9062         updateDivergence(User);
9063     } while (UI != UE && *UI == User);
9064     // Now that we have modified User, add it back to the CSE maps.  If it
9065     // already exists there, recursively merge the results together.
9066     AddModifiedNodeToCSEMaps(User);
9067   }
9068 
9069   // If we just RAUW'd the root, take note.
9070   if (FromN == getRoot())
9071     setRoot(To);
9072 }
9073 
9074 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9075 /// This can cause recursive merging of nodes in the DAG.
9076 ///
9077 /// This version assumes that for each value of From, there is a
9078 /// corresponding value in To in the same position with the same type.
9079 ///
9080 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9081 #ifndef NDEBUG
9082   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9083     assert((!From->hasAnyUseOfValue(i) ||
9084             From->getValueType(i) == To->getValueType(i)) &&
9085            "Cannot use this version of ReplaceAllUsesWith!");
9086 #endif
9087 
9088   // Handle the trivial case.
9089   if (From == To)
9090     return;
9091 
9092   // Preserve Debug Info. Only do this if there's a use.
9093   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9094     if (From->hasAnyUseOfValue(i)) {
9095       assert((i < To->getNumValues()) && "Invalid To location");
9096       transferDbgValues(SDValue(From, i), SDValue(To, i));
9097     }
9098 
9099   // Iterate over just the existing users of From. See the comments in
9100   // the ReplaceAllUsesWith above.
9101   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9102   RAUWUpdateListener Listener(*this, UI, UE);
9103   while (UI != UE) {
9104     SDNode *User = *UI;
9105 
9106     // This node is about to morph, remove its old self from the CSE maps.
9107     RemoveNodeFromCSEMaps(User);
9108 
9109     // A user can appear in a use list multiple times, and when this
9110     // happens the uses are usually next to each other in the list.
9111     // To help reduce the number of CSE recomputations, process all
9112     // the uses of this user that we can find this way.
9113     do {
9114       SDUse &Use = UI.getUse();
9115       ++UI;
9116       Use.setNode(To);
9117       if (To->isDivergent() != From->isDivergent())
9118         updateDivergence(User);
9119     } while (UI != UE && *UI == User);
9120 
9121     // Now that we have modified User, add it back to the CSE maps.  If it
9122     // already exists there, recursively merge the results together.
9123     AddModifiedNodeToCSEMaps(User);
9124   }
9125 
9126   // If we just RAUW'd the root, take note.
9127   if (From == getRoot().getNode())
9128     setRoot(SDValue(To, getRoot().getResNo()));
9129 }
9130 
9131 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9132 /// This can cause recursive merging of nodes in the DAG.
9133 ///
9134 /// This version can replace From with any result values.  To must match the
9135 /// number and types of values returned by From.
9136 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9137   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9138     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9139 
9140   // Preserve Debug Info.
9141   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9142     transferDbgValues(SDValue(From, i), To[i]);
9143 
9144   // Iterate over just the existing users of From. See the comments in
9145   // the ReplaceAllUsesWith above.
9146   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9147   RAUWUpdateListener Listener(*this, UI, UE);
9148   while (UI != UE) {
9149     SDNode *User = *UI;
9150 
9151     // This node is about to morph, remove its old self from the CSE maps.
9152     RemoveNodeFromCSEMaps(User);
9153 
9154     // A user can appear in a use list multiple times, and when this happens the
9155     // uses are usually next to each other in the list.  To help reduce the
9156     // number of CSE and divergence recomputations, process all the uses of this
9157     // user that we can find this way.
9158     bool To_IsDivergent = false;
9159     do {
9160       SDUse &Use = UI.getUse();
9161       const SDValue &ToOp = To[Use.getResNo()];
9162       ++UI;
9163       Use.set(ToOp);
9164       To_IsDivergent |= ToOp->isDivergent();
9165     } while (UI != UE && *UI == User);
9166 
9167     if (To_IsDivergent != From->isDivergent())
9168       updateDivergence(User);
9169 
9170     // Now that we have modified User, add it back to the CSE maps.  If it
9171     // already exists there, recursively merge the results together.
9172     AddModifiedNodeToCSEMaps(User);
9173   }
9174 
9175   // If we just RAUW'd the root, take note.
9176   if (From == getRoot().getNode())
9177     setRoot(SDValue(To[getRoot().getResNo()]));
9178 }
9179 
9180 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9181 /// uses of other values produced by From.getNode() alone.  The Deleted
9182 /// vector is handled the same way as for ReplaceAllUsesWith.
9183 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9184   // Handle the really simple, really trivial case efficiently.
9185   if (From == To) return;
9186 
9187   // Handle the simple, trivial, case efficiently.
9188   if (From.getNode()->getNumValues() == 1) {
9189     ReplaceAllUsesWith(From, To);
9190     return;
9191   }
9192 
9193   // Preserve Debug Info.
9194   transferDbgValues(From, To);
9195 
9196   // Iterate over just the existing users of From. See the comments in
9197   // the ReplaceAllUsesWith above.
9198   SDNode::use_iterator UI = From.getNode()->use_begin(),
9199                        UE = From.getNode()->use_end();
9200   RAUWUpdateListener Listener(*this, UI, UE);
9201   while (UI != UE) {
9202     SDNode *User = *UI;
9203     bool UserRemovedFromCSEMaps = false;
9204 
9205     // A user can appear in a use list multiple times, and when this
9206     // happens the uses are usually next to each other in the list.
9207     // To help reduce the number of CSE recomputations, process all
9208     // the uses of this user that we can find this way.
9209     do {
9210       SDUse &Use = UI.getUse();
9211 
9212       // Skip uses of different values from the same node.
9213       if (Use.getResNo() != From.getResNo()) {
9214         ++UI;
9215         continue;
9216       }
9217 
9218       // If this node hasn't been modified yet, it's still in the CSE maps,
9219       // so remove its old self from the CSE maps.
9220       if (!UserRemovedFromCSEMaps) {
9221         RemoveNodeFromCSEMaps(User);
9222         UserRemovedFromCSEMaps = true;
9223       }
9224 
9225       ++UI;
9226       Use.set(To);
9227       if (To->isDivergent() != From->isDivergent())
9228         updateDivergence(User);
9229     } while (UI != UE && *UI == User);
9230     // We are iterating over all uses of the From node, so if a use
9231     // doesn't use the specific value, no changes are made.
9232     if (!UserRemovedFromCSEMaps)
9233       continue;
9234 
9235     // Now that we have modified User, add it back to the CSE maps.  If it
9236     // already exists there, recursively merge the results together.
9237     AddModifiedNodeToCSEMaps(User);
9238   }
9239 
9240   // If we just RAUW'd the root, take note.
9241   if (From == getRoot())
9242     setRoot(To);
9243 }
9244 
9245 namespace {
9246 
9247   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9248   /// to record information about a use.
9249   struct UseMemo {
9250     SDNode *User;
9251     unsigned Index;
9252     SDUse *Use;
9253   };
9254 
9255   /// operator< - Sort Memos by User.
9256   bool operator<(const UseMemo &L, const UseMemo &R) {
9257     return (intptr_t)L.User < (intptr_t)R.User;
9258   }
9259 
9260 } // end anonymous namespace
9261 
9262 bool SelectionDAG::calculateDivergence(SDNode *N) {
9263   if (TLI->isSDNodeAlwaysUniform(N)) {
9264     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9265            "Conflicting divergence information!");
9266     return false;
9267   }
9268   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9269     return true;
9270   for (auto &Op : N->ops()) {
9271     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9272       return true;
9273   }
9274   return false;
9275 }
9276 
9277 void SelectionDAG::updateDivergence(SDNode *N) {
9278   SmallVector<SDNode *, 16> Worklist(1, N);
9279   do {
9280     N = Worklist.pop_back_val();
9281     bool IsDivergent = calculateDivergence(N);
9282     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9283       N->SDNodeBits.IsDivergent = IsDivergent;
9284       llvm::append_range(Worklist, N->uses());
9285     }
9286   } while (!Worklist.empty());
9287 }
9288 
9289 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9290   DenseMap<SDNode *, unsigned> Degree;
9291   Order.reserve(AllNodes.size());
9292   for (auto &N : allnodes()) {
9293     unsigned NOps = N.getNumOperands();
9294     Degree[&N] = NOps;
9295     if (0 == NOps)
9296       Order.push_back(&N);
9297   }
9298   for (size_t I = 0; I != Order.size(); ++I) {
9299     SDNode *N = Order[I];
9300     for (auto U : N->uses()) {
9301       unsigned &UnsortedOps = Degree[U];
9302       if (0 == --UnsortedOps)
9303         Order.push_back(U);
9304     }
9305   }
9306 }
9307 
9308 #ifndef NDEBUG
9309 void SelectionDAG::VerifyDAGDiverence() {
9310   std::vector<SDNode *> TopoOrder;
9311   CreateTopologicalOrder(TopoOrder);
9312   for (auto *N : TopoOrder) {
9313     assert(calculateDivergence(N) == N->isDivergent() &&
9314            "Divergence bit inconsistency detected");
9315   }
9316 }
9317 #endif
9318 
9319 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9320 /// uses of other values produced by From.getNode() alone.  The same value
9321 /// may appear in both the From and To list.  The Deleted vector is
9322 /// handled the same way as for ReplaceAllUsesWith.
9323 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9324                                               const SDValue *To,
9325                                               unsigned Num){
9326   // Handle the simple, trivial case efficiently.
9327   if (Num == 1)
9328     return ReplaceAllUsesOfValueWith(*From, *To);
9329 
9330   transferDbgValues(*From, *To);
9331 
9332   // Read up all the uses and make records of them. This helps
9333   // processing new uses that are introduced during the
9334   // replacement process.
9335   SmallVector<UseMemo, 4> Uses;
9336   for (unsigned i = 0; i != Num; ++i) {
9337     unsigned FromResNo = From[i].getResNo();
9338     SDNode *FromNode = From[i].getNode();
9339     for (SDNode::use_iterator UI = FromNode->use_begin(),
9340          E = FromNode->use_end(); UI != E; ++UI) {
9341       SDUse &Use = UI.getUse();
9342       if (Use.getResNo() == FromResNo) {
9343         UseMemo Memo = { *UI, i, &Use };
9344         Uses.push_back(Memo);
9345       }
9346     }
9347   }
9348 
9349   // Sort the uses, so that all the uses from a given User are together.
9350   llvm::sort(Uses);
9351 
9352   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9353        UseIndex != UseIndexEnd; ) {
9354     // We know that this user uses some value of From.  If it is the right
9355     // value, update it.
9356     SDNode *User = Uses[UseIndex].User;
9357 
9358     // This node is about to morph, remove its old self from the CSE maps.
9359     RemoveNodeFromCSEMaps(User);
9360 
9361     // The Uses array is sorted, so all the uses for a given User
9362     // are next to each other in the list.
9363     // To help reduce the number of CSE recomputations, process all
9364     // the uses of this user that we can find this way.
9365     do {
9366       unsigned i = Uses[UseIndex].Index;
9367       SDUse &Use = *Uses[UseIndex].Use;
9368       ++UseIndex;
9369 
9370       Use.set(To[i]);
9371     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9372 
9373     // Now that we have modified User, add it back to the CSE maps.  If it
9374     // already exists there, recursively merge the results together.
9375     AddModifiedNodeToCSEMaps(User);
9376   }
9377 }
9378 
9379 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9380 /// based on their topological order. It returns the maximum id and a vector
9381 /// of the SDNodes* in assigned order by reference.
9382 unsigned SelectionDAG::AssignTopologicalOrder() {
9383   unsigned DAGSize = 0;
9384 
9385   // SortedPos tracks the progress of the algorithm. Nodes before it are
9386   // sorted, nodes after it are unsorted. When the algorithm completes
9387   // it is at the end of the list.
9388   allnodes_iterator SortedPos = allnodes_begin();
9389 
9390   // Visit all the nodes. Move nodes with no operands to the front of
9391   // the list immediately. Annotate nodes that do have operands with their
9392   // operand count. Before we do this, the Node Id fields of the nodes
9393   // may contain arbitrary values. After, the Node Id fields for nodes
9394   // before SortedPos will contain the topological sort index, and the
9395   // Node Id fields for nodes At SortedPos and after will contain the
9396   // count of outstanding operands.
9397   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9398     SDNode *N = &*I++;
9399     checkForCycles(N, this);
9400     unsigned Degree = N->getNumOperands();
9401     if (Degree == 0) {
9402       // A node with no uses, add it to the result array immediately.
9403       N->setNodeId(DAGSize++);
9404       allnodes_iterator Q(N);
9405       if (Q != SortedPos)
9406         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9407       assert(SortedPos != AllNodes.end() && "Overran node list");
9408       ++SortedPos;
9409     } else {
9410       // Temporarily use the Node Id as scratch space for the degree count.
9411       N->setNodeId(Degree);
9412     }
9413   }
9414 
9415   // Visit all the nodes. As we iterate, move nodes into sorted order,
9416   // such that by the time the end is reached all nodes will be sorted.
9417   for (SDNode &Node : allnodes()) {
9418     SDNode *N = &Node;
9419     checkForCycles(N, this);
9420     // N is in sorted position, so all its uses have one less operand
9421     // that needs to be sorted.
9422     for (SDNode *P : N->uses()) {
9423       unsigned Degree = P->getNodeId();
9424       assert(Degree != 0 && "Invalid node degree");
9425       --Degree;
9426       if (Degree == 0) {
9427         // All of P's operands are sorted, so P may sorted now.
9428         P->setNodeId(DAGSize++);
9429         if (P->getIterator() != SortedPos)
9430           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9431         assert(SortedPos != AllNodes.end() && "Overran node list");
9432         ++SortedPos;
9433       } else {
9434         // Update P's outstanding operand count.
9435         P->setNodeId(Degree);
9436       }
9437     }
9438     if (Node.getIterator() == SortedPos) {
9439 #ifndef NDEBUG
9440       allnodes_iterator I(N);
9441       SDNode *S = &*++I;
9442       dbgs() << "Overran sorted position:\n";
9443       S->dumprFull(this); dbgs() << "\n";
9444       dbgs() << "Checking if this is due to cycles\n";
9445       checkForCycles(this, true);
9446 #endif
9447       llvm_unreachable(nullptr);
9448     }
9449   }
9450 
9451   assert(SortedPos == AllNodes.end() &&
9452          "Topological sort incomplete!");
9453   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9454          "First node in topological sort is not the entry token!");
9455   assert(AllNodes.front().getNodeId() == 0 &&
9456          "First node in topological sort has non-zero id!");
9457   assert(AllNodes.front().getNumOperands() == 0 &&
9458          "First node in topological sort has operands!");
9459   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9460          "Last node in topologic sort has unexpected id!");
9461   assert(AllNodes.back().use_empty() &&
9462          "Last node in topologic sort has users!");
9463   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9464   return DAGSize;
9465 }
9466 
9467 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9468 /// value is produced by SD.
9469 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9470   for (SDNode *SD : DB->getSDNodes()) {
9471     if (!SD)
9472       continue;
9473     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9474     SD->setHasDebugValue(true);
9475   }
9476   DbgInfo->add(DB, isParameter);
9477 }
9478 
9479 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9480 
9481 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9482                                                    SDValue NewMemOpChain) {
9483   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9484   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9485   // The new memory operation must have the same position as the old load in
9486   // terms of memory dependency. Create a TokenFactor for the old load and new
9487   // memory operation and update uses of the old load's output chain to use that
9488   // TokenFactor.
9489   if (OldChain == NewMemOpChain || OldChain.use_empty())
9490     return NewMemOpChain;
9491 
9492   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9493                                 OldChain, NewMemOpChain);
9494   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9495   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9496   return TokenFactor;
9497 }
9498 
9499 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9500                                                    SDValue NewMemOp) {
9501   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9502   SDValue OldChain = SDValue(OldLoad, 1);
9503   SDValue NewMemOpChain = NewMemOp.getValue(1);
9504   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9505 }
9506 
9507 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9508                                                      Function **OutFunction) {
9509   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9510 
9511   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9512   auto *Module = MF->getFunction().getParent();
9513   auto *Function = Module->getFunction(Symbol);
9514 
9515   if (OutFunction != nullptr)
9516       *OutFunction = Function;
9517 
9518   if (Function != nullptr) {
9519     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9520     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9521   }
9522 
9523   std::string ErrorStr;
9524   raw_string_ostream ErrorFormatter(ErrorStr);
9525 
9526   ErrorFormatter << "Undefined external symbol ";
9527   ErrorFormatter << '"' << Symbol << '"';
9528   ErrorFormatter.flush();
9529 
9530   report_fatal_error(ErrorStr);
9531 }
9532 
9533 //===----------------------------------------------------------------------===//
9534 //                              SDNode Class
9535 //===----------------------------------------------------------------------===//
9536 
9537 bool llvm::isNullConstant(SDValue V) {
9538   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9539   return Const != nullptr && Const->isNullValue();
9540 }
9541 
9542 bool llvm::isNullFPConstant(SDValue V) {
9543   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9544   return Const != nullptr && Const->isZero() && !Const->isNegative();
9545 }
9546 
9547 bool llvm::isAllOnesConstant(SDValue V) {
9548   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9549   return Const != nullptr && Const->isAllOnesValue();
9550 }
9551 
9552 bool llvm::isOneConstant(SDValue V) {
9553   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9554   return Const != nullptr && Const->isOne();
9555 }
9556 
9557 SDValue llvm::peekThroughBitcasts(SDValue V) {
9558   while (V.getOpcode() == ISD::BITCAST)
9559     V = V.getOperand(0);
9560   return V;
9561 }
9562 
9563 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9564   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9565     V = V.getOperand(0);
9566   return V;
9567 }
9568 
9569 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9570   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9571     V = V.getOperand(0);
9572   return V;
9573 }
9574 
9575 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9576   if (V.getOpcode() != ISD::XOR)
9577     return false;
9578   V = peekThroughBitcasts(V.getOperand(1));
9579   unsigned NumBits = V.getScalarValueSizeInBits();
9580   ConstantSDNode *C =
9581       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9582   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9583 }
9584 
9585 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9586                                           bool AllowTruncation) {
9587   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9588     return CN;
9589 
9590   // SplatVectors can truncate their operands. Ignore that case here unless
9591   // AllowTruncation is set.
9592   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9593     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9594     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9595       EVT CVT = CN->getValueType(0);
9596       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9597       if (AllowTruncation || CVT == VecEltVT)
9598         return CN;
9599     }
9600   }
9601 
9602   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9603     BitVector UndefElements;
9604     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9605 
9606     // BuildVectors can truncate their operands. Ignore that case here unless
9607     // AllowTruncation is set.
9608     if (CN && (UndefElements.none() || AllowUndefs)) {
9609       EVT CVT = CN->getValueType(0);
9610       EVT NSVT = N.getValueType().getScalarType();
9611       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9612       if (AllowTruncation || (CVT == NSVT))
9613         return CN;
9614     }
9615   }
9616 
9617   return nullptr;
9618 }
9619 
9620 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9621                                           bool AllowUndefs,
9622                                           bool AllowTruncation) {
9623   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9624     return CN;
9625 
9626   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9627     BitVector UndefElements;
9628     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9629 
9630     // BuildVectors can truncate their operands. Ignore that case here unless
9631     // AllowTruncation is set.
9632     if (CN && (UndefElements.none() || AllowUndefs)) {
9633       EVT CVT = CN->getValueType(0);
9634       EVT NSVT = N.getValueType().getScalarType();
9635       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9636       if (AllowTruncation || (CVT == NSVT))
9637         return CN;
9638     }
9639   }
9640 
9641   return nullptr;
9642 }
9643 
9644 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9645   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9646     return CN;
9647 
9648   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9649     BitVector UndefElements;
9650     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9651     if (CN && (UndefElements.none() || AllowUndefs))
9652       return CN;
9653   }
9654 
9655   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9656     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9657       return CN;
9658 
9659   return nullptr;
9660 }
9661 
9662 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9663                                               const APInt &DemandedElts,
9664                                               bool AllowUndefs) {
9665   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9666     return CN;
9667 
9668   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9669     BitVector UndefElements;
9670     ConstantFPSDNode *CN =
9671         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9672     if (CN && (UndefElements.none() || AllowUndefs))
9673       return CN;
9674   }
9675 
9676   return nullptr;
9677 }
9678 
9679 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9680   // TODO: may want to use peekThroughBitcast() here.
9681   ConstantSDNode *C =
9682       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
9683   return C && C->isNullValue();
9684 }
9685 
9686 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9687   // TODO: may want to use peekThroughBitcast() here.
9688   unsigned BitWidth = N.getScalarValueSizeInBits();
9689   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9690   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9691 }
9692 
9693 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9694   N = peekThroughBitcasts(N);
9695   unsigned BitWidth = N.getScalarValueSizeInBits();
9696   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9697   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9698 }
9699 
9700 HandleSDNode::~HandleSDNode() {
9701   DropOperands();
9702 }
9703 
9704 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9705                                          const DebugLoc &DL,
9706                                          const GlobalValue *GA, EVT VT,
9707                                          int64_t o, unsigned TF)
9708     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9709   TheGlobal = GA;
9710 }
9711 
9712 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9713                                          EVT VT, unsigned SrcAS,
9714                                          unsigned DestAS)
9715     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9716       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9717 
9718 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9719                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9720     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9721   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9722   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9723   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9724   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9725 
9726   // We check here that the size of the memory operand fits within the size of
9727   // the MMO. This is because the MMO might indicate only a possible address
9728   // range instead of specifying the affected memory addresses precisely.
9729   // TODO: Make MachineMemOperands aware of scalable vectors.
9730   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9731          "Size mismatch!");
9732 }
9733 
9734 /// Profile - Gather unique data for the node.
9735 ///
9736 void SDNode::Profile(FoldingSetNodeID &ID) const {
9737   AddNodeIDNode(ID, this);
9738 }
9739 
9740 namespace {
9741 
9742   struct EVTArray {
9743     std::vector<EVT> VTs;
9744 
9745     EVTArray() {
9746       VTs.reserve(MVT::VALUETYPE_SIZE);
9747       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
9748         VTs.push_back(MVT((MVT::SimpleValueType)i));
9749     }
9750   };
9751 
9752 } // end anonymous namespace
9753 
9754 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9755 static ManagedStatic<EVTArray> SimpleVTArray;
9756 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9757 
9758 /// getValueTypeList - Return a pointer to the specified value type.
9759 ///
9760 const EVT *SDNode::getValueTypeList(EVT VT) {
9761   if (VT.isExtended()) {
9762     sys::SmartScopedLock<true> Lock(*VTMutex);
9763     return &(*EVTs->insert(VT).first);
9764   }
9765   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
9766   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9767 }
9768 
9769 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9770 /// indicated value.  This method ignores uses of other values defined by this
9771 /// operation.
9772 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9773   assert(Value < getNumValues() && "Bad value!");
9774 
9775   // TODO: Only iterate over uses of a given value of the node
9776   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9777     if (UI.getUse().getResNo() == Value) {
9778       if (NUses == 0)
9779         return false;
9780       --NUses;
9781     }
9782   }
9783 
9784   // Found exactly the right number of uses?
9785   return NUses == 0;
9786 }
9787 
9788 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9789 /// value. This method ignores uses of other values defined by this operation.
9790 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9791   assert(Value < getNumValues() && "Bad value!");
9792 
9793   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9794     if (UI.getUse().getResNo() == Value)
9795       return true;
9796 
9797   return false;
9798 }
9799 
9800 /// isOnlyUserOf - Return true if this node is the only use of N.
9801 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9802   bool Seen = false;
9803   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9804     SDNode *User = *I;
9805     if (User == this)
9806       Seen = true;
9807     else
9808       return false;
9809   }
9810 
9811   return Seen;
9812 }
9813 
9814 /// Return true if the only users of N are contained in Nodes.
9815 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9816   bool Seen = false;
9817   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9818     SDNode *User = *I;
9819     if (llvm::is_contained(Nodes, User))
9820       Seen = true;
9821     else
9822       return false;
9823   }
9824 
9825   return Seen;
9826 }
9827 
9828 /// isOperand - Return true if this node is an operand of N.
9829 bool SDValue::isOperandOf(const SDNode *N) const {
9830   return is_contained(N->op_values(), *this);
9831 }
9832 
9833 bool SDNode::isOperandOf(const SDNode *N) const {
9834   return any_of(N->op_values(),
9835                 [this](SDValue Op) { return this == Op.getNode(); });
9836 }
9837 
9838 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9839 /// be a chain) reaches the specified operand without crossing any
9840 /// side-effecting instructions on any chain path.  In practice, this looks
9841 /// through token factors and non-volatile loads.  In order to remain efficient,
9842 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9843 ///
9844 /// Note that we only need to examine chains when we're searching for
9845 /// side-effects; SelectionDAG requires that all side-effects are represented
9846 /// by chains, even if another operand would force a specific ordering. This
9847 /// constraint is necessary to allow transformations like splitting loads.
9848 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9849                                              unsigned Depth) const {
9850   if (*this == Dest) return true;
9851 
9852   // Don't search too deeply, we just want to be able to see through
9853   // TokenFactor's etc.
9854   if (Depth == 0) return false;
9855 
9856   // If this is a token factor, all inputs to the TF happen in parallel.
9857   if (getOpcode() == ISD::TokenFactor) {
9858     // First, try a shallow search.
9859     if (is_contained((*this)->ops(), Dest)) {
9860       // We found the chain we want as an operand of this TokenFactor.
9861       // Essentially, we reach the chain without side-effects if we could
9862       // serialize the TokenFactor into a simple chain of operations with
9863       // Dest as the last operation. This is automatically true if the
9864       // chain has one use: there are no other ordering constraints.
9865       // If the chain has more than one use, we give up: some other
9866       // use of Dest might force a side-effect between Dest and the current
9867       // node.
9868       if (Dest.hasOneUse())
9869         return true;
9870     }
9871     // Next, try a deep search: check whether every operand of the TokenFactor
9872     // reaches Dest.
9873     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9874       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9875     });
9876   }
9877 
9878   // Loads don't have side effects, look through them.
9879   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9880     if (Ld->isUnordered())
9881       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9882   }
9883   return false;
9884 }
9885 
9886 bool SDNode::hasPredecessor(const SDNode *N) const {
9887   SmallPtrSet<const SDNode *, 32> Visited;
9888   SmallVector<const SDNode *, 16> Worklist;
9889   Worklist.push_back(this);
9890   return hasPredecessorHelper(N, Visited, Worklist);
9891 }
9892 
9893 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9894   this->Flags.intersectWith(Flags);
9895 }
9896 
9897 SDValue
9898 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9899                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9900                                   bool AllowPartials) {
9901   // The pattern must end in an extract from index 0.
9902   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9903       !isNullConstant(Extract->getOperand(1)))
9904     return SDValue();
9905 
9906   // Match against one of the candidate binary ops.
9907   SDValue Op = Extract->getOperand(0);
9908   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9909         return Op.getOpcode() == unsigned(BinOp);
9910       }))
9911     return SDValue();
9912 
9913   // Floating-point reductions may require relaxed constraints on the final step
9914   // of the reduction because they may reorder intermediate operations.
9915   unsigned CandidateBinOp = Op.getOpcode();
9916   if (Op.getValueType().isFloatingPoint()) {
9917     SDNodeFlags Flags = Op->getFlags();
9918     switch (CandidateBinOp) {
9919     case ISD::FADD:
9920       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9921         return SDValue();
9922       break;
9923     default:
9924       llvm_unreachable("Unhandled FP opcode for binop reduction");
9925     }
9926   }
9927 
9928   // Matching failed - attempt to see if we did enough stages that a partial
9929   // reduction from a subvector is possible.
9930   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9931     if (!AllowPartials || !Op)
9932       return SDValue();
9933     EVT OpVT = Op.getValueType();
9934     EVT OpSVT = OpVT.getScalarType();
9935     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9936     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9937       return SDValue();
9938     BinOp = (ISD::NodeType)CandidateBinOp;
9939     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9940                    getVectorIdxConstant(0, SDLoc(Op)));
9941   };
9942 
9943   // At each stage, we're looking for something that looks like:
9944   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9945   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9946   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9947   // %a = binop <8 x i32> %op, %s
9948   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9949   // we expect something like:
9950   // <4,5,6,7,u,u,u,u>
9951   // <2,3,u,u,u,u,u,u>
9952   // <1,u,u,u,u,u,u,u>
9953   // While a partial reduction match would be:
9954   // <2,3,u,u,u,u,u,u>
9955   // <1,u,u,u,u,u,u,u>
9956   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9957   SDValue PrevOp;
9958   for (unsigned i = 0; i < Stages; ++i) {
9959     unsigned MaskEnd = (1 << i);
9960 
9961     if (Op.getOpcode() != CandidateBinOp)
9962       return PartialReduction(PrevOp, MaskEnd);
9963 
9964     SDValue Op0 = Op.getOperand(0);
9965     SDValue Op1 = Op.getOperand(1);
9966 
9967     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9968     if (Shuffle) {
9969       Op = Op1;
9970     } else {
9971       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9972       Op = Op0;
9973     }
9974 
9975     // The first operand of the shuffle should be the same as the other operand
9976     // of the binop.
9977     if (!Shuffle || Shuffle->getOperand(0) != Op)
9978       return PartialReduction(PrevOp, MaskEnd);
9979 
9980     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9981     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9982       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9983         return PartialReduction(PrevOp, MaskEnd);
9984 
9985     PrevOp = Op;
9986   }
9987 
9988   // Handle subvector reductions, which tend to appear after the shuffle
9989   // reduction stages.
9990   while (Op.getOpcode() == CandidateBinOp) {
9991     unsigned NumElts = Op.getValueType().getVectorNumElements();
9992     SDValue Op0 = Op.getOperand(0);
9993     SDValue Op1 = Op.getOperand(1);
9994     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9995         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9996         Op0.getOperand(0) != Op1.getOperand(0))
9997       break;
9998     SDValue Src = Op0.getOperand(0);
9999     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10000     if (NumSrcElts != (2 * NumElts))
10001       break;
10002     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10003           Op1.getConstantOperandAPInt(1) == NumElts) &&
10004         !(Op1.getConstantOperandAPInt(1) == 0 &&
10005           Op0.getConstantOperandAPInt(1) == NumElts))
10006       break;
10007     Op = Src;
10008   }
10009 
10010   BinOp = (ISD::NodeType)CandidateBinOp;
10011   return Op;
10012 }
10013 
10014 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10015   assert(N->getNumValues() == 1 &&
10016          "Can't unroll a vector with multiple results!");
10017 
10018   EVT VT = N->getValueType(0);
10019   unsigned NE = VT.getVectorNumElements();
10020   EVT EltVT = VT.getVectorElementType();
10021   SDLoc dl(N);
10022 
10023   SmallVector<SDValue, 8> Scalars;
10024   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10025 
10026   // If ResNE is 0, fully unroll the vector op.
10027   if (ResNE == 0)
10028     ResNE = NE;
10029   else if (NE > ResNE)
10030     NE = ResNE;
10031 
10032   unsigned i;
10033   for (i= 0; i != NE; ++i) {
10034     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10035       SDValue Operand = N->getOperand(j);
10036       EVT OperandVT = Operand.getValueType();
10037       if (OperandVT.isVector()) {
10038         // A vector operand; extract a single element.
10039         EVT OperandEltVT = OperandVT.getVectorElementType();
10040         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10041                               Operand, getVectorIdxConstant(i, dl));
10042       } else {
10043         // A scalar operand; just use it as is.
10044         Operands[j] = Operand;
10045       }
10046     }
10047 
10048     switch (N->getOpcode()) {
10049     default: {
10050       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10051                                 N->getFlags()));
10052       break;
10053     }
10054     case ISD::VSELECT:
10055       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10056       break;
10057     case ISD::SHL:
10058     case ISD::SRA:
10059     case ISD::SRL:
10060     case ISD::ROTL:
10061     case ISD::ROTR:
10062       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10063                                getShiftAmountOperand(Operands[0].getValueType(),
10064                                                      Operands[1])));
10065       break;
10066     case ISD::SIGN_EXTEND_INREG: {
10067       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10068       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10069                                 Operands[0],
10070                                 getValueType(ExtVT)));
10071     }
10072     }
10073   }
10074 
10075   for (; i < ResNE; ++i)
10076     Scalars.push_back(getUNDEF(EltVT));
10077 
10078   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10079   return getBuildVector(VecVT, dl, Scalars);
10080 }
10081 
10082 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10083     SDNode *N, unsigned ResNE) {
10084   unsigned Opcode = N->getOpcode();
10085   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10086           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10087           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10088          "Expected an overflow opcode");
10089 
10090   EVT ResVT = N->getValueType(0);
10091   EVT OvVT = N->getValueType(1);
10092   EVT ResEltVT = ResVT.getVectorElementType();
10093   EVT OvEltVT = OvVT.getVectorElementType();
10094   SDLoc dl(N);
10095 
10096   // If ResNE is 0, fully unroll the vector op.
10097   unsigned NE = ResVT.getVectorNumElements();
10098   if (ResNE == 0)
10099     ResNE = NE;
10100   else if (NE > ResNE)
10101     NE = ResNE;
10102 
10103   SmallVector<SDValue, 8> LHSScalars;
10104   SmallVector<SDValue, 8> RHSScalars;
10105   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10106   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10107 
10108   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10109   SDVTList VTs = getVTList(ResEltVT, SVT);
10110   SmallVector<SDValue, 8> ResScalars;
10111   SmallVector<SDValue, 8> OvScalars;
10112   for (unsigned i = 0; i < NE; ++i) {
10113     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10114     SDValue Ov =
10115         getSelect(dl, OvEltVT, Res.getValue(1),
10116                   getBoolConstant(true, dl, OvEltVT, ResVT),
10117                   getConstant(0, dl, OvEltVT));
10118 
10119     ResScalars.push_back(Res);
10120     OvScalars.push_back(Ov);
10121   }
10122 
10123   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10124   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10125 
10126   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10127   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10128   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10129                         getBuildVector(NewOvVT, dl, OvScalars));
10130 }
10131 
10132 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10133                                                   LoadSDNode *Base,
10134                                                   unsigned Bytes,
10135                                                   int Dist) const {
10136   if (LD->isVolatile() || Base->isVolatile())
10137     return false;
10138   // TODO: probably too restrictive for atomics, revisit
10139   if (!LD->isSimple())
10140     return false;
10141   if (LD->isIndexed() || Base->isIndexed())
10142     return false;
10143   if (LD->getChain() != Base->getChain())
10144     return false;
10145   EVT VT = LD->getValueType(0);
10146   if (VT.getSizeInBits() / 8 != Bytes)
10147     return false;
10148 
10149   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10150   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10151 
10152   int64_t Offset = 0;
10153   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10154     return (Dist * Bytes == Offset);
10155   return false;
10156 }
10157 
10158 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10159 /// if it cannot be inferred.
10160 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10161   // If this is a GlobalAddress + cst, return the alignment.
10162   const GlobalValue *GV = nullptr;
10163   int64_t GVOffset = 0;
10164   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10165     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10166     KnownBits Known(PtrWidth);
10167     llvm::computeKnownBits(GV, Known, getDataLayout());
10168     unsigned AlignBits = Known.countMinTrailingZeros();
10169     if (AlignBits)
10170       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10171   }
10172 
10173   // If this is a direct reference to a stack slot, use information about the
10174   // stack slot's alignment.
10175   int FrameIdx = INT_MIN;
10176   int64_t FrameOffset = 0;
10177   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10178     FrameIdx = FI->getIndex();
10179   } else if (isBaseWithConstantOffset(Ptr) &&
10180              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10181     // Handle FI+Cst
10182     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10183     FrameOffset = Ptr.getConstantOperandVal(1);
10184   }
10185 
10186   if (FrameIdx != INT_MIN) {
10187     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10188     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10189   }
10190 
10191   return None;
10192 }
10193 
10194 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10195 /// which is split (or expanded) into two not necessarily identical pieces.
10196 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10197   // Currently all types are split in half.
10198   EVT LoVT, HiVT;
10199   if (!VT.isVector())
10200     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10201   else
10202     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10203 
10204   return std::make_pair(LoVT, HiVT);
10205 }
10206 
10207 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10208 /// type, dependent on an enveloping VT that has been split into two identical
10209 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10210 std::pair<EVT, EVT>
10211 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10212                                        bool *HiIsEmpty) const {
10213   EVT EltTp = VT.getVectorElementType();
10214   // Examples:
10215   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10216   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10217   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10218   //   etc.
10219   ElementCount VTNumElts = VT.getVectorElementCount();
10220   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10221   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10222          "Mixing fixed width and scalable vectors when enveloping a type");
10223   EVT LoVT, HiVT;
10224   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10225     LoVT = EnvVT;
10226     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10227     *HiIsEmpty = false;
10228   } else {
10229     // Flag that hi type has zero storage size, but return split envelop type
10230     // (this would be easier if vector types with zero elements were allowed).
10231     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10232     HiVT = EnvVT;
10233     *HiIsEmpty = true;
10234   }
10235   return std::make_pair(LoVT, HiVT);
10236 }
10237 
10238 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10239 /// low/high part.
10240 std::pair<SDValue, SDValue>
10241 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10242                           const EVT &HiVT) {
10243   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10244          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10245          "Splitting vector with an invalid mixture of fixed and scalable "
10246          "vector types");
10247   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10248              N.getValueType().getVectorMinNumElements() &&
10249          "More vector elements requested than available!");
10250   SDValue Lo, Hi;
10251   Lo =
10252       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10253   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10254   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10255   // IDX with the runtime scaling factor of the result vector type. For
10256   // fixed-width result vectors, that runtime scaling factor is 1.
10257   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10258                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10259   return std::make_pair(Lo, Hi);
10260 }
10261 
10262 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10263 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10264   EVT VT = N.getValueType();
10265   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10266                                 NextPowerOf2(VT.getVectorNumElements()));
10267   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10268                  getVectorIdxConstant(0, DL));
10269 }
10270 
10271 void SelectionDAG::ExtractVectorElements(SDValue Op,
10272                                          SmallVectorImpl<SDValue> &Args,
10273                                          unsigned Start, unsigned Count,
10274                                          EVT EltVT) {
10275   EVT VT = Op.getValueType();
10276   if (Count == 0)
10277     Count = VT.getVectorNumElements();
10278   if (EltVT == EVT())
10279     EltVT = VT.getVectorElementType();
10280   SDLoc SL(Op);
10281   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10282     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10283                            getVectorIdxConstant(i, SL)));
10284   }
10285 }
10286 
10287 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10288 unsigned GlobalAddressSDNode::getAddressSpace() const {
10289   return getGlobal()->getType()->getAddressSpace();
10290 }
10291 
10292 Type *ConstantPoolSDNode::getType() const {
10293   if (isMachineConstantPoolEntry())
10294     return Val.MachineCPVal->getType();
10295   return Val.ConstVal->getType();
10296 }
10297 
10298 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10299                                         unsigned &SplatBitSize,
10300                                         bool &HasAnyUndefs,
10301                                         unsigned MinSplatBits,
10302                                         bool IsBigEndian) const {
10303   EVT VT = getValueType(0);
10304   assert(VT.isVector() && "Expected a vector type");
10305   unsigned VecWidth = VT.getSizeInBits();
10306   if (MinSplatBits > VecWidth)
10307     return false;
10308 
10309   // FIXME: The widths are based on this node's type, but build vectors can
10310   // truncate their operands.
10311   SplatValue = APInt(VecWidth, 0);
10312   SplatUndef = APInt(VecWidth, 0);
10313 
10314   // Get the bits. Bits with undefined values (when the corresponding element
10315   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10316   // in SplatValue. If any of the values are not constant, give up and return
10317   // false.
10318   unsigned int NumOps = getNumOperands();
10319   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10320   unsigned EltWidth = VT.getScalarSizeInBits();
10321 
10322   for (unsigned j = 0; j < NumOps; ++j) {
10323     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10324     SDValue OpVal = getOperand(i);
10325     unsigned BitPos = j * EltWidth;
10326 
10327     if (OpVal.isUndef())
10328       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10329     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10330       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10331     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10332       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10333     else
10334       return false;
10335   }
10336 
10337   // The build_vector is all constants or undefs. Find the smallest element
10338   // size that splats the vector.
10339   HasAnyUndefs = (SplatUndef != 0);
10340 
10341   // FIXME: This does not work for vectors with elements less than 8 bits.
10342   while (VecWidth > 8) {
10343     unsigned HalfSize = VecWidth / 2;
10344     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10345     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10346     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10347     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10348 
10349     // If the two halves do not match (ignoring undef bits), stop here.
10350     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10351         MinSplatBits > HalfSize)
10352       break;
10353 
10354     SplatValue = HighValue | LowValue;
10355     SplatUndef = HighUndef & LowUndef;
10356 
10357     VecWidth = HalfSize;
10358   }
10359 
10360   SplatBitSize = VecWidth;
10361   return true;
10362 }
10363 
10364 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10365                                          BitVector *UndefElements) const {
10366   unsigned NumOps = getNumOperands();
10367   if (UndefElements) {
10368     UndefElements->clear();
10369     UndefElements->resize(NumOps);
10370   }
10371   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10372   if (!DemandedElts)
10373     return SDValue();
10374   SDValue Splatted;
10375   for (unsigned i = 0; i != NumOps; ++i) {
10376     if (!DemandedElts[i])
10377       continue;
10378     SDValue Op = getOperand(i);
10379     if (Op.isUndef()) {
10380       if (UndefElements)
10381         (*UndefElements)[i] = true;
10382     } else if (!Splatted) {
10383       Splatted = Op;
10384     } else if (Splatted != Op) {
10385       return SDValue();
10386     }
10387   }
10388 
10389   if (!Splatted) {
10390     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10391     assert(getOperand(FirstDemandedIdx).isUndef() &&
10392            "Can only have a splat without a constant for all undefs.");
10393     return getOperand(FirstDemandedIdx);
10394   }
10395 
10396   return Splatted;
10397 }
10398 
10399 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10400   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10401   return getSplatValue(DemandedElts, UndefElements);
10402 }
10403 
10404 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10405                                             SmallVectorImpl<SDValue> &Sequence,
10406                                             BitVector *UndefElements) const {
10407   unsigned NumOps = getNumOperands();
10408   Sequence.clear();
10409   if (UndefElements) {
10410     UndefElements->clear();
10411     UndefElements->resize(NumOps);
10412   }
10413   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10414   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10415     return false;
10416 
10417   // Set the undefs even if we don't find a sequence (like getSplatValue).
10418   if (UndefElements)
10419     for (unsigned I = 0; I != NumOps; ++I)
10420       if (DemandedElts[I] && getOperand(I).isUndef())
10421         (*UndefElements)[I] = true;
10422 
10423   // Iteratively widen the sequence length looking for repetitions.
10424   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10425     Sequence.append(SeqLen, SDValue());
10426     for (unsigned I = 0; I != NumOps; ++I) {
10427       if (!DemandedElts[I])
10428         continue;
10429       SDValue &SeqOp = Sequence[I % SeqLen];
10430       SDValue Op = getOperand(I);
10431       if (Op.isUndef()) {
10432         if (!SeqOp)
10433           SeqOp = Op;
10434         continue;
10435       }
10436       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10437         Sequence.clear();
10438         break;
10439       }
10440       SeqOp = Op;
10441     }
10442     if (!Sequence.empty())
10443       return true;
10444   }
10445 
10446   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10447   return false;
10448 }
10449 
10450 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10451                                             BitVector *UndefElements) const {
10452   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10453   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10454 }
10455 
10456 ConstantSDNode *
10457 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10458                                         BitVector *UndefElements) const {
10459   return dyn_cast_or_null<ConstantSDNode>(
10460       getSplatValue(DemandedElts, UndefElements));
10461 }
10462 
10463 ConstantSDNode *
10464 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10465   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10466 }
10467 
10468 ConstantFPSDNode *
10469 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10470                                           BitVector *UndefElements) const {
10471   return dyn_cast_or_null<ConstantFPSDNode>(
10472       getSplatValue(DemandedElts, UndefElements));
10473 }
10474 
10475 ConstantFPSDNode *
10476 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10477   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10478 }
10479 
10480 int32_t
10481 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10482                                                    uint32_t BitWidth) const {
10483   if (ConstantFPSDNode *CN =
10484           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10485     bool IsExact;
10486     APSInt IntVal(BitWidth);
10487     const APFloat &APF = CN->getValueAPF();
10488     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10489             APFloat::opOK ||
10490         !IsExact)
10491       return -1;
10492 
10493     return IntVal.exactLogBase2();
10494   }
10495   return -1;
10496 }
10497 
10498 bool BuildVectorSDNode::isConstant() const {
10499   for (const SDValue &Op : op_values()) {
10500     unsigned Opc = Op.getOpcode();
10501     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10502       return false;
10503   }
10504   return true;
10505 }
10506 
10507 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10508   // Find the first non-undef value in the shuffle mask.
10509   unsigned i, e;
10510   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10511     /* search */;
10512 
10513   // If all elements are undefined, this shuffle can be considered a splat
10514   // (although it should eventually get simplified away completely).
10515   if (i == e)
10516     return true;
10517 
10518   // Make sure all remaining elements are either undef or the same as the first
10519   // non-undef value.
10520   for (int Idx = Mask[i]; i != e; ++i)
10521     if (Mask[i] >= 0 && Mask[i] != Idx)
10522       return false;
10523   return true;
10524 }
10525 
10526 // Returns the SDNode if it is a constant integer BuildVector
10527 // or constant integer.
10528 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10529   if (isa<ConstantSDNode>(N))
10530     return N.getNode();
10531   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10532     return N.getNode();
10533   // Treat a GlobalAddress supporting constant offset folding as a
10534   // constant integer.
10535   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10536     if (GA->getOpcode() == ISD::GlobalAddress &&
10537         TLI->isOffsetFoldingLegal(GA))
10538       return GA;
10539   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10540       isa<ConstantSDNode>(N.getOperand(0)))
10541     return N.getNode();
10542   return nullptr;
10543 }
10544 
10545 // Returns the SDNode if it is a constant float BuildVector
10546 // or constant float.
10547 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10548   if (isa<ConstantFPSDNode>(N))
10549     return N.getNode();
10550 
10551   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10552     return N.getNode();
10553 
10554   return nullptr;
10555 }
10556 
10557 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10558   assert(!Node->OperandList && "Node already has operands");
10559   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10560          "too many operands to fit into SDNode");
10561   SDUse *Ops = OperandRecycler.allocate(
10562       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10563 
10564   bool IsDivergent = false;
10565   for (unsigned I = 0; I != Vals.size(); ++I) {
10566     Ops[I].setUser(Node);
10567     Ops[I].setInitial(Vals[I]);
10568     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10569       IsDivergent |= Ops[I].getNode()->isDivergent();
10570   }
10571   Node->NumOperands = Vals.size();
10572   Node->OperandList = Ops;
10573   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10574     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10575     Node->SDNodeBits.IsDivergent = IsDivergent;
10576   }
10577   checkForCycles(Node);
10578 }
10579 
10580 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10581                                      SmallVectorImpl<SDValue> &Vals) {
10582   size_t Limit = SDNode::getMaxNumOperands();
10583   while (Vals.size() > Limit) {
10584     unsigned SliceIdx = Vals.size() - Limit;
10585     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10586     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10587     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10588     Vals.emplace_back(NewTF);
10589   }
10590   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10591 }
10592 
10593 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10594                                         EVT VT, SDNodeFlags Flags) {
10595   switch (Opcode) {
10596   default:
10597     return SDValue();
10598   case ISD::ADD:
10599   case ISD::OR:
10600   case ISD::XOR:
10601   case ISD::UMAX:
10602     return getConstant(0, DL, VT);
10603   case ISD::MUL:
10604     return getConstant(1, DL, VT);
10605   case ISD::AND:
10606   case ISD::UMIN:
10607     return getAllOnesConstant(DL, VT);
10608   case ISD::SMAX:
10609     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10610   case ISD::SMIN:
10611     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10612   case ISD::FADD:
10613     return getConstantFP(-0.0, DL, VT);
10614   case ISD::FMUL:
10615     return getConstantFP(1.0, DL, VT);
10616   case ISD::FMINNUM:
10617   case ISD::FMAXNUM: {
10618     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10619     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10620     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10621                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10622                         APFloat::getLargest(Semantics);
10623     if (Opcode == ISD::FMAXNUM)
10624       NeutralAF.changeSign();
10625 
10626     return getConstantFP(NeutralAF, DL, VT);
10627   }
10628   }
10629 }
10630 
10631 #ifndef NDEBUG
10632 static void checkForCyclesHelper(const SDNode *N,
10633                                  SmallPtrSetImpl<const SDNode*> &Visited,
10634                                  SmallPtrSetImpl<const SDNode*> &Checked,
10635                                  const llvm::SelectionDAG *DAG) {
10636   // If this node has already been checked, don't check it again.
10637   if (Checked.count(N))
10638     return;
10639 
10640   // If a node has already been visited on this depth-first walk, reject it as
10641   // a cycle.
10642   if (!Visited.insert(N).second) {
10643     errs() << "Detected cycle in SelectionDAG\n";
10644     dbgs() << "Offending node:\n";
10645     N->dumprFull(DAG); dbgs() << "\n";
10646     abort();
10647   }
10648 
10649   for (const SDValue &Op : N->op_values())
10650     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10651 
10652   Checked.insert(N);
10653   Visited.erase(N);
10654 }
10655 #endif
10656 
10657 void llvm::checkForCycles(const llvm::SDNode *N,
10658                           const llvm::SelectionDAG *DAG,
10659                           bool force) {
10660 #ifndef NDEBUG
10661   bool check = force;
10662 #ifdef EXPENSIVE_CHECKS
10663   check = true;
10664 #endif  // EXPENSIVE_CHECKS
10665   if (check) {
10666     assert(N && "Checking nonexistent SDNode");
10667     SmallPtrSet<const SDNode*, 32> visited;
10668     SmallPtrSet<const SDNode*, 32> checked;
10669     checkForCyclesHelper(N, visited, checked, DAG);
10670   }
10671 #endif  // !NDEBUG
10672 }
10673 
10674 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10675   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10676 }
10677