1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/RuntimeLibcalls.h"
36 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/KnownBits.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/ManagedStatic.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/Mutex.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <cstdlib>
71 #include <limits>
72 #include <set>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 /// makeVTList - Return an instance of the SDVTList struct initialized with the
80 /// specified members.
81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
82   SDVTList Res = {VTs, NumVTs};
83   return Res;
84 }
85 
86 // Default null implementations of the callbacks.
87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
89 
90 #define DEBUG_TYPE "selectiondag"
91 
92 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
93        cl::Hidden, cl::init(true),
94        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
95 
96 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
97        cl::desc("Number limit for gluing ld/st of memcpy."),
98        cl::Hidden, cl::init(0));
99 
100 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
101   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
102 }
103 
104 //===----------------------------------------------------------------------===//
105 //                              ConstantFPSDNode Class
106 //===----------------------------------------------------------------------===//
107 
108 /// isExactlyValue - We don't rely on operator== working on double values, as
109 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
110 /// As such, this method can be used to do an exact bit-for-bit comparison of
111 /// two floating point values.
112 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
113   return getValueAPF().bitwiseIsEqual(V);
114 }
115 
116 bool ConstantFPSDNode::isValueValidForType(EVT VT,
117                                            const APFloat& Val) {
118   assert(VT.isFloatingPoint() && "Can only convert between FP types");
119 
120   // convert modifies in place, so make a copy.
121   APFloat Val2 = APFloat(Val);
122   bool losesInfo;
123   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
124                       APFloat::rmNearestTiesToEven,
125                       &losesInfo);
126   return !losesInfo;
127 }
128 
129 //===----------------------------------------------------------------------===//
130 //                              ISD Namespace
131 //===----------------------------------------------------------------------===//
132 
133 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
134   auto *BV = dyn_cast<BuildVectorSDNode>(N);
135   if (!BV)
136     return false;
137 
138   APInt SplatUndef;
139   unsigned SplatBitSize;
140   bool HasUndefs;
141   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
142   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
143                              EltSize) &&
144          EltSize == SplatBitSize;
145 }
146 
147 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
148 // specializations of the more general isConstantSplatVector()?
149 
150 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
151   // Look through a bit convert.
152   while (N->getOpcode() == ISD::BITCAST)
153     N = N->getOperand(0).getNode();
154 
155   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156 
157   unsigned i = 0, e = N->getNumOperands();
158 
159   // Skip over all of the undef values.
160   while (i != e && N->getOperand(i).isUndef())
161     ++i;
162 
163   // Do not accept an all-undef vector.
164   if (i == e) return false;
165 
166   // Do not accept build_vectors that aren't all constants or which have non-~0
167   // elements. We have to be a bit careful here, as the type of the constant
168   // may not be the same as the type of the vector elements due to type
169   // legalization (the elements are promoted to a legal type for the target and
170   // a vector of a type may be legal when the base element type is not).
171   // We only want to check enough bits to cover the vector elements, because
172   // we care if the resultant vector is all ones, not whether the individual
173   // constants are.
174   SDValue NotZero = N->getOperand(i);
175   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
176   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
177     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
178       return false;
179   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
180     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
181       return false;
182   } else
183     return false;
184 
185   // Okay, we have at least one ~0 value, check to see if the rest match or are
186   // undefs. Even with the above element type twiddling, this should be OK, as
187   // the same type legalization should have applied to all the elements.
188   for (++i; i != e; ++i)
189     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
190       return false;
191   return true;
192 }
193 
194 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
195   // Look through a bit convert.
196   while (N->getOpcode() == ISD::BITCAST)
197     N = N->getOperand(0).getNode();
198 
199   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
200 
201   bool IsAllUndef = true;
202   for (const SDValue &Op : N->op_values()) {
203     if (Op.isUndef())
204       continue;
205     IsAllUndef = false;
206     // Do not accept build_vectors that aren't all constants or which have non-0
207     // elements. We have to be a bit careful here, as the type of the constant
208     // may not be the same as the type of the vector elements due to type
209     // legalization (the elements are promoted to a legal type for the target
210     // and a vector of a type may be legal when the base element type is not).
211     // We only want to check enough bits to cover the vector elements, because
212     // we care if the resultant vector is all zeros, not whether the individual
213     // constants are.
214     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
215     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
216       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
217         return false;
218     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
219       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
220         return false;
221     } else
222       return false;
223   }
224 
225   // Do not accept an all-undef vector.
226   if (IsAllUndef)
227     return false;
228   return true;
229 }
230 
231 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
232   if (N->getOpcode() != ISD::BUILD_VECTOR)
233     return false;
234 
235   for (const SDValue &Op : N->op_values()) {
236     if (Op.isUndef())
237       continue;
238     if (!isa<ConstantSDNode>(Op))
239       return false;
240   }
241   return true;
242 }
243 
244 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
245   if (N->getOpcode() != ISD::BUILD_VECTOR)
246     return false;
247 
248   for (const SDValue &Op : N->op_values()) {
249     if (Op.isUndef())
250       continue;
251     if (!isa<ConstantFPSDNode>(Op))
252       return false;
253   }
254   return true;
255 }
256 
257 bool ISD::allOperandsUndef(const SDNode *N) {
258   // Return false if the node has no operands.
259   // This is "logically inconsistent" with the definition of "all" but
260   // is probably the desired behavior.
261   if (N->getNumOperands() == 0)
262     return false;
263 
264   for (const SDValue &Op : N->op_values())
265     if (!Op.isUndef())
266       return false;
267 
268   return true;
269 }
270 
271 bool ISD::matchUnaryPredicate(SDValue Op,
272                               std::function<bool(ConstantSDNode *)> Match) {
273   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
274     return Match(Cst);
275 
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
282     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
283       return false;
284   }
285   return true;
286 }
287 
288 bool ISD::matchBinaryPredicate(
289     SDValue LHS, SDValue RHS,
290     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match) {
291   if (LHS.getValueType() != RHS.getValueType())
292     return false;
293 
294   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
295     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
296       return Match(LHSCst, RHSCst);
297 
298   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
299       ISD::BUILD_VECTOR != RHS.getOpcode())
300     return false;
301 
302   EVT SVT = LHS.getValueType().getScalarType();
303   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
304     auto *LHSCst = dyn_cast<ConstantSDNode>(LHS.getOperand(i));
305     auto *RHSCst = dyn_cast<ConstantSDNode>(RHS.getOperand(i));
306     if (!LHSCst || !RHSCst)
307       return false;
308     if (LHSCst->getValueType(0) != SVT ||
309         LHSCst->getValueType(0) != RHSCst->getValueType(0))
310       return false;
311     if (!Match(LHSCst, RHSCst))
312       return false;
313   }
314   return true;
315 }
316 
317 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
318   switch (ExtType) {
319   case ISD::EXTLOAD:
320     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
321   case ISD::SEXTLOAD:
322     return ISD::SIGN_EXTEND;
323   case ISD::ZEXTLOAD:
324     return ISD::ZERO_EXTEND;
325   default:
326     break;
327   }
328 
329   llvm_unreachable("Invalid LoadExtType");
330 }
331 
332 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
333   // To perform this operation, we just need to swap the L and G bits of the
334   // operation.
335   unsigned OldL = (Operation >> 2) & 1;
336   unsigned OldG = (Operation >> 1) & 1;
337   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
338                        (OldL << 1) |       // New G bit
339                        (OldG << 2));       // New L bit.
340 }
341 
342 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
343   unsigned Operation = Op;
344   if (isInteger)
345     Operation ^= 7;   // Flip L, G, E bits, but not U.
346   else
347     Operation ^= 15;  // Flip all of the condition bits.
348 
349   if (Operation > ISD::SETTRUE2)
350     Operation &= ~8;  // Don't let N and U bits get set.
351 
352   return ISD::CondCode(Operation);
353 }
354 
355 /// For an integer comparison, return 1 if the comparison is a signed operation
356 /// and 2 if the result is an unsigned comparison. Return zero if the operation
357 /// does not depend on the sign of the input (setne and seteq).
358 static int isSignedOp(ISD::CondCode Opcode) {
359   switch (Opcode) {
360   default: llvm_unreachable("Illegal integer setcc operation!");
361   case ISD::SETEQ:
362   case ISD::SETNE: return 0;
363   case ISD::SETLT:
364   case ISD::SETLE:
365   case ISD::SETGT:
366   case ISD::SETGE: return 1;
367   case ISD::SETULT:
368   case ISD::SETULE:
369   case ISD::SETUGT:
370   case ISD::SETUGE: return 2;
371   }
372 }
373 
374 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
375                                        bool IsInteger) {
376   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
377     // Cannot fold a signed integer setcc with an unsigned integer setcc.
378     return ISD::SETCC_INVALID;
379 
380   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
381 
382   // If the N and U bits get set, then the resultant comparison DOES suddenly
383   // care about orderedness, and it is true when ordered.
384   if (Op > ISD::SETTRUE2)
385     Op &= ~16;     // Clear the U bit if the N bit is set.
386 
387   // Canonicalize illegal integer setcc's.
388   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
389     Op = ISD::SETNE;
390 
391   return ISD::CondCode(Op);
392 }
393 
394 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
395                                         bool IsInteger) {
396   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
397     // Cannot fold a signed setcc with an unsigned setcc.
398     return ISD::SETCC_INVALID;
399 
400   // Combine all of the condition bits.
401   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
402 
403   // Canonicalize illegal integer setcc's.
404   if (IsInteger) {
405     switch (Result) {
406     default: break;
407     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
408     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
409     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
410     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
411     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
412     }
413   }
414 
415   return Result;
416 }
417 
418 //===----------------------------------------------------------------------===//
419 //                           SDNode Profile Support
420 //===----------------------------------------------------------------------===//
421 
422 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
423 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
424   ID.AddInteger(OpC);
425 }
426 
427 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
428 /// solely with their pointer.
429 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
430   ID.AddPointer(VTList.VTs);
431 }
432 
433 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
434 static void AddNodeIDOperands(FoldingSetNodeID &ID,
435                               ArrayRef<SDValue> Ops) {
436   for (auto& Op : Ops) {
437     ID.AddPointer(Op.getNode());
438     ID.AddInteger(Op.getResNo());
439   }
440 }
441 
442 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
443 static void AddNodeIDOperands(FoldingSetNodeID &ID,
444                               ArrayRef<SDUse> Ops) {
445   for (auto& Op : Ops) {
446     ID.AddPointer(Op.getNode());
447     ID.AddInteger(Op.getResNo());
448   }
449 }
450 
451 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
452                           SDVTList VTList, ArrayRef<SDValue> OpList) {
453   AddNodeIDOpcode(ID, OpC);
454   AddNodeIDValueTypes(ID, VTList);
455   AddNodeIDOperands(ID, OpList);
456 }
457 
458 /// If this is an SDNode with special info, add this info to the NodeID data.
459 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
460   switch (N->getOpcode()) {
461   case ISD::TargetExternalSymbol:
462   case ISD::ExternalSymbol:
463   case ISD::MCSymbol:
464     llvm_unreachable("Should only be used on nodes with operands");
465   default: break;  // Normal nodes don't need extra info.
466   case ISD::TargetConstant:
467   case ISD::Constant: {
468     const ConstantSDNode *C = cast<ConstantSDNode>(N);
469     ID.AddPointer(C->getConstantIntValue());
470     ID.AddBoolean(C->isOpaque());
471     break;
472   }
473   case ISD::TargetConstantFP:
474   case ISD::ConstantFP:
475     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
476     break;
477   case ISD::TargetGlobalAddress:
478   case ISD::GlobalAddress:
479   case ISD::TargetGlobalTLSAddress:
480   case ISD::GlobalTLSAddress: {
481     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
482     ID.AddPointer(GA->getGlobal());
483     ID.AddInteger(GA->getOffset());
484     ID.AddInteger(GA->getTargetFlags());
485     break;
486   }
487   case ISD::BasicBlock:
488     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
489     break;
490   case ISD::Register:
491     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
492     break;
493   case ISD::RegisterMask:
494     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
495     break;
496   case ISD::SRCVALUE:
497     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
498     break;
499   case ISD::FrameIndex:
500   case ISD::TargetFrameIndex:
501     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
502     break;
503   case ISD::JumpTable:
504   case ISD::TargetJumpTable:
505     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
506     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
507     break;
508   case ISD::ConstantPool:
509   case ISD::TargetConstantPool: {
510     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
511     ID.AddInteger(CP->getAlignment());
512     ID.AddInteger(CP->getOffset());
513     if (CP->isMachineConstantPoolEntry())
514       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
515     else
516       ID.AddPointer(CP->getConstVal());
517     ID.AddInteger(CP->getTargetFlags());
518     break;
519   }
520   case ISD::TargetIndex: {
521     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
522     ID.AddInteger(TI->getIndex());
523     ID.AddInteger(TI->getOffset());
524     ID.AddInteger(TI->getTargetFlags());
525     break;
526   }
527   case ISD::LOAD: {
528     const LoadSDNode *LD = cast<LoadSDNode>(N);
529     ID.AddInteger(LD->getMemoryVT().getRawBits());
530     ID.AddInteger(LD->getRawSubclassData());
531     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
532     break;
533   }
534   case ISD::STORE: {
535     const StoreSDNode *ST = cast<StoreSDNode>(N);
536     ID.AddInteger(ST->getMemoryVT().getRawBits());
537     ID.AddInteger(ST->getRawSubclassData());
538     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
539     break;
540   }
541   case ISD::MLOAD: {
542     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
543     ID.AddInteger(MLD->getMemoryVT().getRawBits());
544     ID.AddInteger(MLD->getRawSubclassData());
545     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
546     break;
547   }
548   case ISD::MSTORE: {
549     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
550     ID.AddInteger(MST->getMemoryVT().getRawBits());
551     ID.AddInteger(MST->getRawSubclassData());
552     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
553     break;
554   }
555   case ISD::MGATHER: {
556     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
557     ID.AddInteger(MG->getMemoryVT().getRawBits());
558     ID.AddInteger(MG->getRawSubclassData());
559     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
560     break;
561   }
562   case ISD::MSCATTER: {
563     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
564     ID.AddInteger(MS->getMemoryVT().getRawBits());
565     ID.AddInteger(MS->getRawSubclassData());
566     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::ATOMIC_CMP_SWAP:
570   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
571   case ISD::ATOMIC_SWAP:
572   case ISD::ATOMIC_LOAD_ADD:
573   case ISD::ATOMIC_LOAD_SUB:
574   case ISD::ATOMIC_LOAD_AND:
575   case ISD::ATOMIC_LOAD_CLR:
576   case ISD::ATOMIC_LOAD_OR:
577   case ISD::ATOMIC_LOAD_XOR:
578   case ISD::ATOMIC_LOAD_NAND:
579   case ISD::ATOMIC_LOAD_MIN:
580   case ISD::ATOMIC_LOAD_MAX:
581   case ISD::ATOMIC_LOAD_UMIN:
582   case ISD::ATOMIC_LOAD_UMAX:
583   case ISD::ATOMIC_LOAD:
584   case ISD::ATOMIC_STORE: {
585     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
586     ID.AddInteger(AT->getMemoryVT().getRawBits());
587     ID.AddInteger(AT->getRawSubclassData());
588     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
589     break;
590   }
591   case ISD::PREFETCH: {
592     const MemSDNode *PF = cast<MemSDNode>(N);
593     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
594     break;
595   }
596   case ISD::VECTOR_SHUFFLE: {
597     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
598     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
599          i != e; ++i)
600       ID.AddInteger(SVN->getMaskElt(i));
601     break;
602   }
603   case ISD::TargetBlockAddress:
604   case ISD::BlockAddress: {
605     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
606     ID.AddPointer(BA->getBlockAddress());
607     ID.AddInteger(BA->getOffset());
608     ID.AddInteger(BA->getTargetFlags());
609     break;
610   }
611   } // end switch (N->getOpcode())
612 
613   // Target specific memory nodes could also have address spaces to check.
614   if (N->isTargetMemoryOpcode())
615     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
616 }
617 
618 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
619 /// data.
620 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
621   AddNodeIDOpcode(ID, N->getOpcode());
622   // Add the return value info.
623   AddNodeIDValueTypes(ID, N->getVTList());
624   // Add the operand info.
625   AddNodeIDOperands(ID, N->ops());
626 
627   // Handle SDNode leafs with special info.
628   AddNodeIDCustom(ID, N);
629 }
630 
631 //===----------------------------------------------------------------------===//
632 //                              SelectionDAG Class
633 //===----------------------------------------------------------------------===//
634 
635 /// doNotCSE - Return true if CSE should not be performed for this node.
636 static bool doNotCSE(SDNode *N) {
637   if (N->getValueType(0) == MVT::Glue)
638     return true; // Never CSE anything that produces a flag.
639 
640   switch (N->getOpcode()) {
641   default: break;
642   case ISD::HANDLENODE:
643   case ISD::EH_LABEL:
644     return true;   // Never CSE these nodes.
645   }
646 
647   // Check that remaining values produced are not flags.
648   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
649     if (N->getValueType(i) == MVT::Glue)
650       return true; // Never CSE anything that produces a flag.
651 
652   return false;
653 }
654 
655 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
656 /// SelectionDAG.
657 void SelectionDAG::RemoveDeadNodes() {
658   // Create a dummy node (which is not added to allnodes), that adds a reference
659   // to the root node, preventing it from being deleted.
660   HandleSDNode Dummy(getRoot());
661 
662   SmallVector<SDNode*, 128> DeadNodes;
663 
664   // Add all obviously-dead nodes to the DeadNodes worklist.
665   for (SDNode &Node : allnodes())
666     if (Node.use_empty())
667       DeadNodes.push_back(&Node);
668 
669   RemoveDeadNodes(DeadNodes);
670 
671   // If the root changed (e.g. it was a dead load, update the root).
672   setRoot(Dummy.getValue());
673 }
674 
675 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
676 /// given list, and any nodes that become unreachable as a result.
677 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
678 
679   // Process the worklist, deleting the nodes and adding their uses to the
680   // worklist.
681   while (!DeadNodes.empty()) {
682     SDNode *N = DeadNodes.pop_back_val();
683     // Skip to next node if we've already managed to delete the node. This could
684     // happen if replacing a node causes a node previously added to the node to
685     // be deleted.
686     if (N->getOpcode() == ISD::DELETED_NODE)
687       continue;
688 
689     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
690       DUL->NodeDeleted(N, nullptr);
691 
692     // Take the node out of the appropriate CSE map.
693     RemoveNodeFromCSEMaps(N);
694 
695     // Next, brutally remove the operand list.  This is safe to do, as there are
696     // no cycles in the graph.
697     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
698       SDUse &Use = *I++;
699       SDNode *Operand = Use.getNode();
700       Use.set(SDValue());
701 
702       // Now that we removed this operand, see if there are no uses of it left.
703       if (Operand->use_empty())
704         DeadNodes.push_back(Operand);
705     }
706 
707     DeallocateNode(N);
708   }
709 }
710 
711 void SelectionDAG::RemoveDeadNode(SDNode *N){
712   SmallVector<SDNode*, 16> DeadNodes(1, N);
713 
714   // Create a dummy node that adds a reference to the root node, preventing
715   // it from being deleted.  (This matters if the root is an operand of the
716   // dead node.)
717   HandleSDNode Dummy(getRoot());
718 
719   RemoveDeadNodes(DeadNodes);
720 }
721 
722 void SelectionDAG::DeleteNode(SDNode *N) {
723   // First take this out of the appropriate CSE map.
724   RemoveNodeFromCSEMaps(N);
725 
726   // Finally, remove uses due to operands of this node, remove from the
727   // AllNodes list, and delete the node.
728   DeleteNodeNotInCSEMaps(N);
729 }
730 
731 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
732   assert(N->getIterator() != AllNodes.begin() &&
733          "Cannot delete the entry node!");
734   assert(N->use_empty() && "Cannot delete a node that is not dead!");
735 
736   // Drop all of the operands and decrement used node's use counts.
737   N->DropOperands();
738 
739   DeallocateNode(N);
740 }
741 
742 void SDDbgInfo::erase(const SDNode *Node) {
743   DbgValMapType::iterator I = DbgValMap.find(Node);
744   if (I == DbgValMap.end())
745     return;
746   for (auto &Val: I->second)
747     Val->setIsInvalidated();
748   DbgValMap.erase(I);
749 }
750 
751 void SelectionDAG::DeallocateNode(SDNode *N) {
752   // If we have operands, deallocate them.
753   removeOperands(N);
754 
755   NodeAllocator.Deallocate(AllNodes.remove(N));
756 
757   // Set the opcode to DELETED_NODE to help catch bugs when node
758   // memory is reallocated.
759   // FIXME: There are places in SDag that have grown a dependency on the opcode
760   // value in the released node.
761   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
762   N->NodeType = ISD::DELETED_NODE;
763 
764   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
765   // them and forget about that node.
766   DbgInfo->erase(N);
767 }
768 
769 #ifndef NDEBUG
770 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
771 static void VerifySDNode(SDNode *N) {
772   switch (N->getOpcode()) {
773   default:
774     break;
775   case ISD::BUILD_PAIR: {
776     EVT VT = N->getValueType(0);
777     assert(N->getNumValues() == 1 && "Too many results!");
778     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
779            "Wrong return type!");
780     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
781     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
782            "Mismatched operand types!");
783     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
784            "Wrong operand type!");
785     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
786            "Wrong return type size");
787     break;
788   }
789   case ISD::BUILD_VECTOR: {
790     assert(N->getNumValues() == 1 && "Too many results!");
791     assert(N->getValueType(0).isVector() && "Wrong return type!");
792     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
793            "Wrong number of operands!");
794     EVT EltVT = N->getValueType(0).getVectorElementType();
795     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
796       assert((I->getValueType() == EltVT ||
797              (EltVT.isInteger() && I->getValueType().isInteger() &&
798               EltVT.bitsLE(I->getValueType()))) &&
799             "Wrong operand type!");
800       assert(I->getValueType() == N->getOperand(0).getValueType() &&
801              "Operands must all have the same type");
802     }
803     break;
804   }
805   }
806 }
807 #endif // NDEBUG
808 
809 /// Insert a newly allocated node into the DAG.
810 ///
811 /// Handles insertion into the all nodes list and CSE map, as well as
812 /// verification and other common operations when a new node is allocated.
813 void SelectionDAG::InsertNode(SDNode *N) {
814   AllNodes.push_back(N);
815 #ifndef NDEBUG
816   N->PersistentId = NextPersistentId++;
817   VerifySDNode(N);
818 #endif
819 }
820 
821 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
822 /// correspond to it.  This is useful when we're about to delete or repurpose
823 /// the node.  We don't want future request for structurally identical nodes
824 /// to return N anymore.
825 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
826   bool Erased = false;
827   switch (N->getOpcode()) {
828   case ISD::HANDLENODE: return false;  // noop.
829   case ISD::CONDCODE:
830     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
831            "Cond code doesn't exist!");
832     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
833     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
834     break;
835   case ISD::ExternalSymbol:
836     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
837     break;
838   case ISD::TargetExternalSymbol: {
839     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
840     Erased = TargetExternalSymbols.erase(
841                std::pair<std::string,unsigned char>(ESN->getSymbol(),
842                                                     ESN->getTargetFlags()));
843     break;
844   }
845   case ISD::MCSymbol: {
846     auto *MCSN = cast<MCSymbolSDNode>(N);
847     Erased = MCSymbols.erase(MCSN->getMCSymbol());
848     break;
849   }
850   case ISD::VALUETYPE: {
851     EVT VT = cast<VTSDNode>(N)->getVT();
852     if (VT.isExtended()) {
853       Erased = ExtendedValueTypeNodes.erase(VT);
854     } else {
855       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
856       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
857     }
858     break;
859   }
860   default:
861     // Remove it from the CSE Map.
862     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
863     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
864     Erased = CSEMap.RemoveNode(N);
865     break;
866   }
867 #ifndef NDEBUG
868   // Verify that the node was actually in one of the CSE maps, unless it has a
869   // flag result (which cannot be CSE'd) or is one of the special cases that are
870   // not subject to CSE.
871   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
872       !N->isMachineOpcode() && !doNotCSE(N)) {
873     N->dump(this);
874     dbgs() << "\n";
875     llvm_unreachable("Node is not in map!");
876   }
877 #endif
878   return Erased;
879 }
880 
881 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
882 /// maps and modified in place. Add it back to the CSE maps, unless an identical
883 /// node already exists, in which case transfer all its users to the existing
884 /// node. This transfer can potentially trigger recursive merging.
885 void
886 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
887   // For node types that aren't CSE'd, just act as if no identical node
888   // already exists.
889   if (!doNotCSE(N)) {
890     SDNode *Existing = CSEMap.GetOrInsertNode(N);
891     if (Existing != N) {
892       // If there was already an existing matching node, use ReplaceAllUsesWith
893       // to replace the dead one with the existing one.  This can cause
894       // recursive merging of other unrelated nodes down the line.
895       ReplaceAllUsesWith(N, Existing);
896 
897       // N is now dead. Inform the listeners and delete it.
898       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
899         DUL->NodeDeleted(N, Existing);
900       DeleteNodeNotInCSEMaps(N);
901       return;
902     }
903   }
904 
905   // If the node doesn't already exist, we updated it.  Inform listeners.
906   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
907     DUL->NodeUpdated(N);
908 }
909 
910 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
911 /// were replaced with those specified.  If this node is never memoized,
912 /// return null, otherwise return a pointer to the slot it would take.  If a
913 /// node already exists with these operands, the slot will be non-null.
914 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
915                                            void *&InsertPos) {
916   if (doNotCSE(N))
917     return nullptr;
918 
919   SDValue Ops[] = { Op };
920   FoldingSetNodeID ID;
921   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
922   AddNodeIDCustom(ID, N);
923   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
924   if (Node)
925     Node->intersectFlagsWith(N->getFlags());
926   return Node;
927 }
928 
929 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
930 /// were replaced with those specified.  If this node is never memoized,
931 /// return null, otherwise return a pointer to the slot it would take.  If a
932 /// node already exists with these operands, the slot will be non-null.
933 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
934                                            SDValue Op1, SDValue Op2,
935                                            void *&InsertPos) {
936   if (doNotCSE(N))
937     return nullptr;
938 
939   SDValue Ops[] = { Op1, Op2 };
940   FoldingSetNodeID ID;
941   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
942   AddNodeIDCustom(ID, N);
943   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
944   if (Node)
945     Node->intersectFlagsWith(N->getFlags());
946   return Node;
947 }
948 
949 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
950 /// were replaced with those specified.  If this node is never memoized,
951 /// return null, otherwise return a pointer to the slot it would take.  If a
952 /// node already exists with these operands, the slot will be non-null.
953 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
954                                            void *&InsertPos) {
955   if (doNotCSE(N))
956     return nullptr;
957 
958   FoldingSetNodeID ID;
959   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
960   AddNodeIDCustom(ID, N);
961   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
962   if (Node)
963     Node->intersectFlagsWith(N->getFlags());
964   return Node;
965 }
966 
967 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
968   Type *Ty = VT == MVT::iPTR ?
969                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
970                    VT.getTypeForEVT(*getContext());
971 
972   return getDataLayout().getABITypeAlignment(Ty);
973 }
974 
975 // EntryNode could meaningfully have debug info if we can find it...
976 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
977     : TM(tm), OptLevel(OL),
978       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
979       Root(getEntryNode()) {
980   InsertNode(&EntryNode);
981   DbgInfo = new SDDbgInfo();
982 }
983 
984 void SelectionDAG::init(MachineFunction &NewMF,
985                         OptimizationRemarkEmitter &NewORE,
986                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
987                         LegacyDivergenceAnalysis * Divergence) {
988   MF = &NewMF;
989   SDAGISelPass = PassPtr;
990   ORE = &NewORE;
991   TLI = getSubtarget().getTargetLowering();
992   TSI = getSubtarget().getSelectionDAGInfo();
993   LibInfo = LibraryInfo;
994   Context = &MF->getFunction().getContext();
995   DA = Divergence;
996 }
997 
998 SelectionDAG::~SelectionDAG() {
999   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1000   allnodes_clear();
1001   OperandRecycler.clear(OperandAllocator);
1002   delete DbgInfo;
1003 }
1004 
1005 void SelectionDAG::allnodes_clear() {
1006   assert(&*AllNodes.begin() == &EntryNode);
1007   AllNodes.remove(AllNodes.begin());
1008   while (!AllNodes.empty())
1009     DeallocateNode(&AllNodes.front());
1010 #ifndef NDEBUG
1011   NextPersistentId = 0;
1012 #endif
1013 }
1014 
1015 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1016                                           void *&InsertPos) {
1017   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1018   if (N) {
1019     switch (N->getOpcode()) {
1020     default: break;
1021     case ISD::Constant:
1022     case ISD::ConstantFP:
1023       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1024                        "debug location.  Use another overload.");
1025     }
1026   }
1027   return N;
1028 }
1029 
1030 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1031                                           const SDLoc &DL, void *&InsertPos) {
1032   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1033   if (N) {
1034     switch (N->getOpcode()) {
1035     case ISD::Constant:
1036     case ISD::ConstantFP:
1037       // Erase debug location from the node if the node is used at several
1038       // different places. Do not propagate one location to all uses as it
1039       // will cause a worse single stepping debugging experience.
1040       if (N->getDebugLoc() != DL.getDebugLoc())
1041         N->setDebugLoc(DebugLoc());
1042       break;
1043     default:
1044       // When the node's point of use is located earlier in the instruction
1045       // sequence than its prior point of use, update its debug info to the
1046       // earlier location.
1047       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1048         N->setDebugLoc(DL.getDebugLoc());
1049       break;
1050     }
1051   }
1052   return N;
1053 }
1054 
1055 void SelectionDAG::clear() {
1056   allnodes_clear();
1057   OperandRecycler.clear(OperandAllocator);
1058   OperandAllocator.Reset();
1059   CSEMap.clear();
1060 
1061   ExtendedValueTypeNodes.clear();
1062   ExternalSymbols.clear();
1063   TargetExternalSymbols.clear();
1064   MCSymbols.clear();
1065   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1066             static_cast<CondCodeSDNode*>(nullptr));
1067   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1068             static_cast<SDNode*>(nullptr));
1069 
1070   EntryNode.UseList = nullptr;
1071   InsertNode(&EntryNode);
1072   Root = getEntryNode();
1073   DbgInfo->clear();
1074 }
1075 
1076 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1077   return VT.bitsGT(Op.getValueType())
1078              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1079              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1080 }
1081 
1082 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1083   return VT.bitsGT(Op.getValueType()) ?
1084     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1085     getNode(ISD::TRUNCATE, DL, VT, Op);
1086 }
1087 
1088 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1089   return VT.bitsGT(Op.getValueType()) ?
1090     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1091     getNode(ISD::TRUNCATE, DL, VT, Op);
1092 }
1093 
1094 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1095   return VT.bitsGT(Op.getValueType()) ?
1096     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1097     getNode(ISD::TRUNCATE, DL, VT, Op);
1098 }
1099 
1100 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1101                                         EVT OpVT) {
1102   if (VT.bitsLE(Op.getValueType()))
1103     return getNode(ISD::TRUNCATE, SL, VT, Op);
1104 
1105   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1106   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1107 }
1108 
1109 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1110   assert(!VT.isVector() &&
1111          "getZeroExtendInReg should use the vector element type instead of "
1112          "the vector type!");
1113   if (Op.getValueType().getScalarType() == VT) return Op;
1114   unsigned BitWidth = Op.getScalarValueSizeInBits();
1115   APInt Imm = APInt::getLowBitsSet(BitWidth,
1116                                    VT.getSizeInBits());
1117   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1118                  getConstant(Imm, DL, Op.getValueType()));
1119 }
1120 
1121 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1122                                               EVT VT) {
1123   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1124   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1125          "The sizes of the input and result must match in order to perform the "
1126          "extend in-register.");
1127   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1128          "The destination vector type must have fewer lanes than the input.");
1129   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1130 }
1131 
1132 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1133                                                EVT VT) {
1134   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1135   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1136          "The sizes of the input and result must match in order to perform the "
1137          "extend in-register.");
1138   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1139          "The destination vector type must have fewer lanes than the input.");
1140   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1141 }
1142 
1143 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1144                                                EVT VT) {
1145   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1146   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1147          "The sizes of the input and result must match in order to perform the "
1148          "extend in-register.");
1149   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1150          "The destination vector type must have fewer lanes than the input.");
1151   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1152 }
1153 
1154 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1155 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1156   EVT EltVT = VT.getScalarType();
1157   SDValue NegOne =
1158     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1159   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1160 }
1161 
1162 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1163   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1164   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1165 }
1166 
1167 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1168                                       EVT OpVT) {
1169   if (!V)
1170     return getConstant(0, DL, VT);
1171 
1172   switch (TLI->getBooleanContents(OpVT)) {
1173   case TargetLowering::ZeroOrOneBooleanContent:
1174   case TargetLowering::UndefinedBooleanContent:
1175     return getConstant(1, DL, VT);
1176   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1177     return getAllOnesConstant(DL, VT);
1178   }
1179   llvm_unreachable("Unexpected boolean content enum!");
1180 }
1181 
1182 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1183                                   bool isT, bool isO) {
1184   EVT EltVT = VT.getScalarType();
1185   assert((EltVT.getSizeInBits() >= 64 ||
1186          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1187          "getConstant with a uint64_t value that doesn't fit in the type!");
1188   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1189 }
1190 
1191 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1192                                   bool isT, bool isO) {
1193   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1194 }
1195 
1196 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1197                                   EVT VT, bool isT, bool isO) {
1198   assert(VT.isInteger() && "Cannot create FP integer constant!");
1199 
1200   EVT EltVT = VT.getScalarType();
1201   const ConstantInt *Elt = &Val;
1202 
1203   // In some cases the vector type is legal but the element type is illegal and
1204   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1205   // inserted value (the type does not need to match the vector element type).
1206   // Any extra bits introduced will be truncated away.
1207   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1208       TargetLowering::TypePromoteInteger) {
1209    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1210    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1211    Elt = ConstantInt::get(*getContext(), NewVal);
1212   }
1213   // In other cases the element type is illegal and needs to be expanded, for
1214   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1215   // the value into n parts and use a vector type with n-times the elements.
1216   // Then bitcast to the type requested.
1217   // Legalizing constants too early makes the DAGCombiner's job harder so we
1218   // only legalize if the DAG tells us we must produce legal types.
1219   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1220            TLI->getTypeAction(*getContext(), EltVT) ==
1221            TargetLowering::TypeExpandInteger) {
1222     const APInt &NewVal = Elt->getValue();
1223     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1224     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1225     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1226     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1227 
1228     // Check the temporary vector is the correct size. If this fails then
1229     // getTypeToTransformTo() probably returned a type whose size (in bits)
1230     // isn't a power-of-2 factor of the requested type size.
1231     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1232 
1233     SmallVector<SDValue, 2> EltParts;
1234     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1235       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1236                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1237                                      ViaEltVT, isT, isO));
1238     }
1239 
1240     // EltParts is currently in little endian order. If we actually want
1241     // big-endian order then reverse it now.
1242     if (getDataLayout().isBigEndian())
1243       std::reverse(EltParts.begin(), EltParts.end());
1244 
1245     // The elements must be reversed when the element order is different
1246     // to the endianness of the elements (because the BITCAST is itself a
1247     // vector shuffle in this situation). However, we do not need any code to
1248     // perform this reversal because getConstant() is producing a vector
1249     // splat.
1250     // This situation occurs in MIPS MSA.
1251 
1252     SmallVector<SDValue, 8> Ops;
1253     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1254       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1255 
1256     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1257     return V;
1258   }
1259 
1260   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1261          "APInt size does not match type size!");
1262   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1263   FoldingSetNodeID ID;
1264   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1265   ID.AddPointer(Elt);
1266   ID.AddBoolean(isO);
1267   void *IP = nullptr;
1268   SDNode *N = nullptr;
1269   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1270     if (!VT.isVector())
1271       return SDValue(N, 0);
1272 
1273   if (!N) {
1274     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1275     CSEMap.InsertNode(N, IP);
1276     InsertNode(N);
1277     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1278   }
1279 
1280   SDValue Result(N, 0);
1281   if (VT.isVector())
1282     Result = getSplatBuildVector(VT, DL, Result);
1283 
1284   return Result;
1285 }
1286 
1287 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1288                                         bool isTarget) {
1289   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1290 }
1291 
1292 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1293                                     bool isTarget) {
1294   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1295 }
1296 
1297 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1298                                     EVT VT, bool isTarget) {
1299   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1300 
1301   EVT EltVT = VT.getScalarType();
1302 
1303   // Do the map lookup using the actual bit pattern for the floating point
1304   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1305   // we don't have issues with SNANs.
1306   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1307   FoldingSetNodeID ID;
1308   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1309   ID.AddPointer(&V);
1310   void *IP = nullptr;
1311   SDNode *N = nullptr;
1312   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1313     if (!VT.isVector())
1314       return SDValue(N, 0);
1315 
1316   if (!N) {
1317     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1318     CSEMap.InsertNode(N, IP);
1319     InsertNode(N);
1320   }
1321 
1322   SDValue Result(N, 0);
1323   if (VT.isVector())
1324     Result = getSplatBuildVector(VT, DL, Result);
1325   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1326   return Result;
1327 }
1328 
1329 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1330                                     bool isTarget) {
1331   EVT EltVT = VT.getScalarType();
1332   if (EltVT == MVT::f32)
1333     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1334   else if (EltVT == MVT::f64)
1335     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1336   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1337            EltVT == MVT::f16) {
1338     bool Ignored;
1339     APFloat APF = APFloat(Val);
1340     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1341                 &Ignored);
1342     return getConstantFP(APF, DL, VT, isTarget);
1343   } else
1344     llvm_unreachable("Unsupported type in getConstantFP");
1345 }
1346 
1347 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1348                                        EVT VT, int64_t Offset, bool isTargetGA,
1349                                        unsigned char TargetFlags) {
1350   assert((TargetFlags == 0 || isTargetGA) &&
1351          "Cannot set target flags on target-independent globals");
1352 
1353   // Truncate (with sign-extension) the offset value to the pointer size.
1354   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1355   if (BitWidth < 64)
1356     Offset = SignExtend64(Offset, BitWidth);
1357 
1358   unsigned Opc;
1359   if (GV->isThreadLocal())
1360     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1361   else
1362     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1363 
1364   FoldingSetNodeID ID;
1365   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1366   ID.AddPointer(GV);
1367   ID.AddInteger(Offset);
1368   ID.AddInteger(TargetFlags);
1369   void *IP = nullptr;
1370   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1371     return SDValue(E, 0);
1372 
1373   auto *N = newSDNode<GlobalAddressSDNode>(
1374       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1375   CSEMap.InsertNode(N, IP);
1376     InsertNode(N);
1377   return SDValue(N, 0);
1378 }
1379 
1380 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1381   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1382   FoldingSetNodeID ID;
1383   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1384   ID.AddInteger(FI);
1385   void *IP = nullptr;
1386   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1387     return SDValue(E, 0);
1388 
1389   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1390   CSEMap.InsertNode(N, IP);
1391   InsertNode(N);
1392   return SDValue(N, 0);
1393 }
1394 
1395 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1396                                    unsigned char TargetFlags) {
1397   assert((TargetFlags == 0 || isTarget) &&
1398          "Cannot set target flags on target-independent jump tables");
1399   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1400   FoldingSetNodeID ID;
1401   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1402   ID.AddInteger(JTI);
1403   ID.AddInteger(TargetFlags);
1404   void *IP = nullptr;
1405   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1406     return SDValue(E, 0);
1407 
1408   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1409   CSEMap.InsertNode(N, IP);
1410   InsertNode(N);
1411   return SDValue(N, 0);
1412 }
1413 
1414 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1415                                       unsigned Alignment, int Offset,
1416                                       bool isTarget,
1417                                       unsigned char TargetFlags) {
1418   assert((TargetFlags == 0 || isTarget) &&
1419          "Cannot set target flags on target-independent globals");
1420   if (Alignment == 0)
1421     Alignment = MF->getFunction().optForSize()
1422                     ? getDataLayout().getABITypeAlignment(C->getType())
1423                     : getDataLayout().getPrefTypeAlignment(C->getType());
1424   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1425   FoldingSetNodeID ID;
1426   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1427   ID.AddInteger(Alignment);
1428   ID.AddInteger(Offset);
1429   ID.AddPointer(C);
1430   ID.AddInteger(TargetFlags);
1431   void *IP = nullptr;
1432   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1433     return SDValue(E, 0);
1434 
1435   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1436                                           TargetFlags);
1437   CSEMap.InsertNode(N, IP);
1438   InsertNode(N);
1439   return SDValue(N, 0);
1440 }
1441 
1442 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1443                                       unsigned Alignment, int Offset,
1444                                       bool isTarget,
1445                                       unsigned char TargetFlags) {
1446   assert((TargetFlags == 0 || isTarget) &&
1447          "Cannot set target flags on target-independent globals");
1448   if (Alignment == 0)
1449     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1450   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1451   FoldingSetNodeID ID;
1452   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1453   ID.AddInteger(Alignment);
1454   ID.AddInteger(Offset);
1455   C->addSelectionDAGCSEId(ID);
1456   ID.AddInteger(TargetFlags);
1457   void *IP = nullptr;
1458   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459     return SDValue(E, 0);
1460 
1461   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1462                                           TargetFlags);
1463   CSEMap.InsertNode(N, IP);
1464   InsertNode(N);
1465   return SDValue(N, 0);
1466 }
1467 
1468 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1469                                      unsigned char TargetFlags) {
1470   FoldingSetNodeID ID;
1471   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1472   ID.AddInteger(Index);
1473   ID.AddInteger(Offset);
1474   ID.AddInteger(TargetFlags);
1475   void *IP = nullptr;
1476   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1477     return SDValue(E, 0);
1478 
1479   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1480   CSEMap.InsertNode(N, IP);
1481   InsertNode(N);
1482   return SDValue(N, 0);
1483 }
1484 
1485 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1486   FoldingSetNodeID ID;
1487   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1488   ID.AddPointer(MBB);
1489   void *IP = nullptr;
1490   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1491     return SDValue(E, 0);
1492 
1493   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1494   CSEMap.InsertNode(N, IP);
1495   InsertNode(N);
1496   return SDValue(N, 0);
1497 }
1498 
1499 SDValue SelectionDAG::getValueType(EVT VT) {
1500   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1501       ValueTypeNodes.size())
1502     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1503 
1504   SDNode *&N = VT.isExtended() ?
1505     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1506 
1507   if (N) return SDValue(N, 0);
1508   N = newSDNode<VTSDNode>(VT);
1509   InsertNode(N);
1510   return SDValue(N, 0);
1511 }
1512 
1513 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1514   SDNode *&N = ExternalSymbols[Sym];
1515   if (N) return SDValue(N, 0);
1516   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1517   InsertNode(N);
1518   return SDValue(N, 0);
1519 }
1520 
1521 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1522   SDNode *&N = MCSymbols[Sym];
1523   if (N)
1524     return SDValue(N, 0);
1525   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1526   InsertNode(N);
1527   return SDValue(N, 0);
1528 }
1529 
1530 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1531                                               unsigned char TargetFlags) {
1532   SDNode *&N =
1533     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1534                                                                TargetFlags)];
1535   if (N) return SDValue(N, 0);
1536   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1537   InsertNode(N);
1538   return SDValue(N, 0);
1539 }
1540 
1541 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1542   if ((unsigned)Cond >= CondCodeNodes.size())
1543     CondCodeNodes.resize(Cond+1);
1544 
1545   if (!CondCodeNodes[Cond]) {
1546     auto *N = newSDNode<CondCodeSDNode>(Cond);
1547     CondCodeNodes[Cond] = N;
1548     InsertNode(N);
1549   }
1550 
1551   return SDValue(CondCodeNodes[Cond], 0);
1552 }
1553 
1554 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1555 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1556 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1557   std::swap(N1, N2);
1558   ShuffleVectorSDNode::commuteMask(M);
1559 }
1560 
1561 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1562                                        SDValue N2, ArrayRef<int> Mask) {
1563   assert(VT.getVectorNumElements() == Mask.size() &&
1564            "Must have the same number of vector elements as mask elements!");
1565   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1566          "Invalid VECTOR_SHUFFLE");
1567 
1568   // Canonicalize shuffle undef, undef -> undef
1569   if (N1.isUndef() && N2.isUndef())
1570     return getUNDEF(VT);
1571 
1572   // Validate that all indices in Mask are within the range of the elements
1573   // input to the shuffle.
1574   int NElts = Mask.size();
1575   assert(llvm::all_of(Mask,
1576                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1577          "Index out of range");
1578 
1579   // Copy the mask so we can do any needed cleanup.
1580   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1581 
1582   // Canonicalize shuffle v, v -> v, undef
1583   if (N1 == N2) {
1584     N2 = getUNDEF(VT);
1585     for (int i = 0; i != NElts; ++i)
1586       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1587   }
1588 
1589   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1590   if (N1.isUndef())
1591     commuteShuffle(N1, N2, MaskVec);
1592 
1593   if (TLI->hasVectorBlend()) {
1594     // If shuffling a splat, try to blend the splat instead. We do this here so
1595     // that even when this arises during lowering we don't have to re-handle it.
1596     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1597       BitVector UndefElements;
1598       SDValue Splat = BV->getSplatValue(&UndefElements);
1599       if (!Splat)
1600         return;
1601 
1602       for (int i = 0; i < NElts; ++i) {
1603         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1604           continue;
1605 
1606         // If this input comes from undef, mark it as such.
1607         if (UndefElements[MaskVec[i] - Offset]) {
1608           MaskVec[i] = -1;
1609           continue;
1610         }
1611 
1612         // If we can blend a non-undef lane, use that instead.
1613         if (!UndefElements[i])
1614           MaskVec[i] = i + Offset;
1615       }
1616     };
1617     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1618       BlendSplat(N1BV, 0);
1619     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1620       BlendSplat(N2BV, NElts);
1621   }
1622 
1623   // Canonicalize all index into lhs, -> shuffle lhs, undef
1624   // Canonicalize all index into rhs, -> shuffle rhs, undef
1625   bool AllLHS = true, AllRHS = true;
1626   bool N2Undef = N2.isUndef();
1627   for (int i = 0; i != NElts; ++i) {
1628     if (MaskVec[i] >= NElts) {
1629       if (N2Undef)
1630         MaskVec[i] = -1;
1631       else
1632         AllLHS = false;
1633     } else if (MaskVec[i] >= 0) {
1634       AllRHS = false;
1635     }
1636   }
1637   if (AllLHS && AllRHS)
1638     return getUNDEF(VT);
1639   if (AllLHS && !N2Undef)
1640     N2 = getUNDEF(VT);
1641   if (AllRHS) {
1642     N1 = getUNDEF(VT);
1643     commuteShuffle(N1, N2, MaskVec);
1644   }
1645   // Reset our undef status after accounting for the mask.
1646   N2Undef = N2.isUndef();
1647   // Re-check whether both sides ended up undef.
1648   if (N1.isUndef() && N2Undef)
1649     return getUNDEF(VT);
1650 
1651   // If Identity shuffle return that node.
1652   bool Identity = true, AllSame = true;
1653   for (int i = 0; i != NElts; ++i) {
1654     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1655     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1656   }
1657   if (Identity && NElts)
1658     return N1;
1659 
1660   // Shuffling a constant splat doesn't change the result.
1661   if (N2Undef) {
1662     SDValue V = N1;
1663 
1664     // Look through any bitcasts. We check that these don't change the number
1665     // (and size) of elements and just changes their types.
1666     while (V.getOpcode() == ISD::BITCAST)
1667       V = V->getOperand(0);
1668 
1669     // A splat should always show up as a build vector node.
1670     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1671       BitVector UndefElements;
1672       SDValue Splat = BV->getSplatValue(&UndefElements);
1673       // If this is a splat of an undef, shuffling it is also undef.
1674       if (Splat && Splat.isUndef())
1675         return getUNDEF(VT);
1676 
1677       bool SameNumElts =
1678           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1679 
1680       // We only have a splat which can skip shuffles if there is a splatted
1681       // value and no undef lanes rearranged by the shuffle.
1682       if (Splat && UndefElements.none()) {
1683         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1684         // number of elements match or the value splatted is a zero constant.
1685         if (SameNumElts)
1686           return N1;
1687         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1688           if (C->isNullValue())
1689             return N1;
1690       }
1691 
1692       // If the shuffle itself creates a splat, build the vector directly.
1693       if (AllSame && SameNumElts) {
1694         EVT BuildVT = BV->getValueType(0);
1695         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1696         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1697 
1698         // We may have jumped through bitcasts, so the type of the
1699         // BUILD_VECTOR may not match the type of the shuffle.
1700         if (BuildVT != VT)
1701           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1702         return NewBV;
1703       }
1704     }
1705   }
1706 
1707   FoldingSetNodeID ID;
1708   SDValue Ops[2] = { N1, N2 };
1709   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1710   for (int i = 0; i != NElts; ++i)
1711     ID.AddInteger(MaskVec[i]);
1712 
1713   void* IP = nullptr;
1714   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1715     return SDValue(E, 0);
1716 
1717   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1718   // SDNode doesn't have access to it.  This memory will be "leaked" when
1719   // the node is deallocated, but recovered when the NodeAllocator is released.
1720   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1721   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1722 
1723   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1724                                            dl.getDebugLoc(), MaskAlloc);
1725   createOperands(N, Ops);
1726 
1727   CSEMap.InsertNode(N, IP);
1728   InsertNode(N);
1729   SDValue V = SDValue(N, 0);
1730   NewSDValueDbgMsg(V, "Creating new node: ", this);
1731   return V;
1732 }
1733 
1734 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1735   EVT VT = SV.getValueType(0);
1736   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1737   ShuffleVectorSDNode::commuteMask(MaskVec);
1738 
1739   SDValue Op0 = SV.getOperand(0);
1740   SDValue Op1 = SV.getOperand(1);
1741   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1742 }
1743 
1744 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1745   FoldingSetNodeID ID;
1746   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1747   ID.AddInteger(RegNo);
1748   void *IP = nullptr;
1749   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1750     return SDValue(E, 0);
1751 
1752   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1753   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1754   CSEMap.InsertNode(N, IP);
1755   InsertNode(N);
1756   return SDValue(N, 0);
1757 }
1758 
1759 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1760   FoldingSetNodeID ID;
1761   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1762   ID.AddPointer(RegMask);
1763   void *IP = nullptr;
1764   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1765     return SDValue(E, 0);
1766 
1767   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1768   CSEMap.InsertNode(N, IP);
1769   InsertNode(N);
1770   return SDValue(N, 0);
1771 }
1772 
1773 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1774                                  MCSymbol *Label) {
1775   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1776 }
1777 
1778 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1779                                    SDValue Root, MCSymbol *Label) {
1780   FoldingSetNodeID ID;
1781   SDValue Ops[] = { Root };
1782   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1783   ID.AddPointer(Label);
1784   void *IP = nullptr;
1785   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1786     return SDValue(E, 0);
1787 
1788   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1789   createOperands(N, Ops);
1790 
1791   CSEMap.InsertNode(N, IP);
1792   InsertNode(N);
1793   return SDValue(N, 0);
1794 }
1795 
1796 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1797                                       int64_t Offset,
1798                                       bool isTarget,
1799                                       unsigned char TargetFlags) {
1800   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1801 
1802   FoldingSetNodeID ID;
1803   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1804   ID.AddPointer(BA);
1805   ID.AddInteger(Offset);
1806   ID.AddInteger(TargetFlags);
1807   void *IP = nullptr;
1808   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1809     return SDValue(E, 0);
1810 
1811   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1812   CSEMap.InsertNode(N, IP);
1813   InsertNode(N);
1814   return SDValue(N, 0);
1815 }
1816 
1817 SDValue SelectionDAG::getSrcValue(const Value *V) {
1818   assert((!V || V->getType()->isPointerTy()) &&
1819          "SrcValue is not a pointer?");
1820 
1821   FoldingSetNodeID ID;
1822   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1823   ID.AddPointer(V);
1824 
1825   void *IP = nullptr;
1826   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1827     return SDValue(E, 0);
1828 
1829   auto *N = newSDNode<SrcValueSDNode>(V);
1830   CSEMap.InsertNode(N, IP);
1831   InsertNode(N);
1832   return SDValue(N, 0);
1833 }
1834 
1835 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1836   FoldingSetNodeID ID;
1837   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1838   ID.AddPointer(MD);
1839 
1840   void *IP = nullptr;
1841   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1842     return SDValue(E, 0);
1843 
1844   auto *N = newSDNode<MDNodeSDNode>(MD);
1845   CSEMap.InsertNode(N, IP);
1846   InsertNode(N);
1847   return SDValue(N, 0);
1848 }
1849 
1850 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1851   if (VT == V.getValueType())
1852     return V;
1853 
1854   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1855 }
1856 
1857 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1858                                        unsigned SrcAS, unsigned DestAS) {
1859   SDValue Ops[] = {Ptr};
1860   FoldingSetNodeID ID;
1861   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1862   ID.AddInteger(SrcAS);
1863   ID.AddInteger(DestAS);
1864 
1865   void *IP = nullptr;
1866   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1867     return SDValue(E, 0);
1868 
1869   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1870                                            VT, SrcAS, DestAS);
1871   createOperands(N, Ops);
1872 
1873   CSEMap.InsertNode(N, IP);
1874   InsertNode(N);
1875   return SDValue(N, 0);
1876 }
1877 
1878 /// getShiftAmountOperand - Return the specified value casted to
1879 /// the target's desired shift amount type.
1880 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1881   EVT OpTy = Op.getValueType();
1882   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1883   if (OpTy == ShTy || OpTy.isVector()) return Op;
1884 
1885   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1886 }
1887 
1888 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1889   SDLoc dl(Node);
1890   const TargetLowering &TLI = getTargetLoweringInfo();
1891   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1892   EVT VT = Node->getValueType(0);
1893   SDValue Tmp1 = Node->getOperand(0);
1894   SDValue Tmp2 = Node->getOperand(1);
1895   unsigned Align = Node->getConstantOperandVal(3);
1896 
1897   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1898                                Tmp2, MachinePointerInfo(V));
1899   SDValue VAList = VAListLoad;
1900 
1901   if (Align > TLI.getMinStackArgumentAlignment()) {
1902     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1903 
1904     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1905                      getConstant(Align - 1, dl, VAList.getValueType()));
1906 
1907     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1908                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1909   }
1910 
1911   // Increment the pointer, VAList, to the next vaarg
1912   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1913                  getConstant(getDataLayout().getTypeAllocSize(
1914                                                VT.getTypeForEVT(*getContext())),
1915                              dl, VAList.getValueType()));
1916   // Store the incremented VAList to the legalized pointer
1917   Tmp1 =
1918       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1919   // Load the actual argument out of the pointer VAList
1920   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1921 }
1922 
1923 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1924   SDLoc dl(Node);
1925   const TargetLowering &TLI = getTargetLoweringInfo();
1926   // This defaults to loading a pointer from the input and storing it to the
1927   // output, returning the chain.
1928   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1929   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1930   SDValue Tmp1 =
1931       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1932               Node->getOperand(2), MachinePointerInfo(VS));
1933   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1934                   MachinePointerInfo(VD));
1935 }
1936 
1937 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1938   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1939   unsigned ByteSize = VT.getStoreSize();
1940   Type *Ty = VT.getTypeForEVT(*getContext());
1941   unsigned StackAlign =
1942       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1943 
1944   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1945   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1946 }
1947 
1948 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1949   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1950   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1951   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1952   const DataLayout &DL = getDataLayout();
1953   unsigned Align =
1954       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1955 
1956   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1957   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1958   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1959 }
1960 
1961 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1962                                 ISD::CondCode Cond, const SDLoc &dl) {
1963   EVT OpVT = N1.getValueType();
1964 
1965   // These setcc operations always fold.
1966   switch (Cond) {
1967   default: break;
1968   case ISD::SETFALSE:
1969   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1970   case ISD::SETTRUE:
1971   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1972 
1973   case ISD::SETOEQ:
1974   case ISD::SETOGT:
1975   case ISD::SETOGE:
1976   case ISD::SETOLT:
1977   case ISD::SETOLE:
1978   case ISD::SETONE:
1979   case ISD::SETO:
1980   case ISD::SETUO:
1981   case ISD::SETUEQ:
1982   case ISD::SETUNE:
1983     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1984     break;
1985   }
1986 
1987   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1988     const APInt &C2 = N2C->getAPIntValue();
1989     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1990       const APInt &C1 = N1C->getAPIntValue();
1991 
1992       switch (Cond) {
1993       default: llvm_unreachable("Unknown integer setcc!");
1994       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
1995       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
1996       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
1997       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
1998       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
1999       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2000       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2001       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2002       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2003       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2004       }
2005     }
2006   }
2007   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
2008     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
2009       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
2010       switch (Cond) {
2011       default: break;
2012       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2013                           return getUNDEF(VT);
2014                         LLVM_FALLTHROUGH;
2015       case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2016                                                OpVT);
2017       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2018                           return getUNDEF(VT);
2019                         LLVM_FALLTHROUGH;
2020       case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2021                                                R==APFloat::cmpLessThan, dl, VT,
2022                                                OpVT);
2023       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2024                           return getUNDEF(VT);
2025                         LLVM_FALLTHROUGH;
2026       case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2027                                                OpVT);
2028       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2029                           return getUNDEF(VT);
2030                         LLVM_FALLTHROUGH;
2031       case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2032                                                VT, OpVT);
2033       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2034                           return getUNDEF(VT);
2035                         LLVM_FALLTHROUGH;
2036       case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2037                                                R==APFloat::cmpEqual, dl, VT,
2038                                                OpVT);
2039       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2040                           return getUNDEF(VT);
2041                         LLVM_FALLTHROUGH;
2042       case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2043                                            R==APFloat::cmpEqual, dl, VT, OpVT);
2044       case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2045                                                OpVT);
2046       case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2047                                                OpVT);
2048       case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2049                                                R==APFloat::cmpEqual, dl, VT,
2050                                                OpVT);
2051       case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2052                                                OpVT);
2053       case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2054                                                R==APFloat::cmpLessThan, dl, VT,
2055                                                OpVT);
2056       case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2057                                                R==APFloat::cmpUnordered, dl, VT,
2058                                                OpVT);
2059       case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2060                                                VT, OpVT);
2061       case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2062                                                OpVT);
2063       }
2064     } else {
2065       // Ensure that the constant occurs on the RHS.
2066       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2067       MVT CompVT = N1.getValueType().getSimpleVT();
2068       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
2069         return SDValue();
2070 
2071       return getSetCC(dl, VT, N2, N1, SwappedCond);
2072     }
2073   }
2074 
2075   // Could not fold it.
2076   return SDValue();
2077 }
2078 
2079 /// See if the specified operand can be simplified with the knowledge that only
2080 /// the bits specified by Mask are used.
2081 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2082   switch (V.getOpcode()) {
2083   default:
2084     break;
2085   case ISD::Constant: {
2086     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2087     assert(CV && "Const value should be ConstSDNode.");
2088     const APInt &CVal = CV->getAPIntValue();
2089     APInt NewVal = CVal & Mask;
2090     if (NewVal != CVal)
2091       return getConstant(NewVal, SDLoc(V), V.getValueType());
2092     break;
2093   }
2094   case ISD::OR:
2095   case ISD::XOR:
2096     // If the LHS or RHS don't contribute bits to the or, drop them.
2097     if (MaskedValueIsZero(V.getOperand(0), Mask))
2098       return V.getOperand(1);
2099     if (MaskedValueIsZero(V.getOperand(1), Mask))
2100       return V.getOperand(0);
2101     break;
2102   case ISD::SRL:
2103     // Only look at single-use SRLs.
2104     if (!V.getNode()->hasOneUse())
2105       break;
2106     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2107       // See if we can recursively simplify the LHS.
2108       unsigned Amt = RHSC->getZExtValue();
2109 
2110       // Watch out for shift count overflow though.
2111       if (Amt >= Mask.getBitWidth())
2112         break;
2113       APInt NewMask = Mask << Amt;
2114       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2115         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2116                        V.getOperand(1));
2117     }
2118     break;
2119   case ISD::AND: {
2120     // X & -1 -> X (ignoring bits which aren't demanded).
2121     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2122     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2123       return V.getOperand(0);
2124     break;
2125   }
2126   case ISD::ANY_EXTEND: {
2127     SDValue Src = V.getOperand(0);
2128     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2129     // Being conservative here - only peek through if we only demand bits in the
2130     // non-extended source (even though the extended bits are technically undef).
2131     if (Mask.getActiveBits() > SrcBitWidth)
2132       break;
2133     APInt SrcMask = Mask.trunc(SrcBitWidth);
2134     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2135       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2136     break;
2137   }
2138   }
2139   return SDValue();
2140 }
2141 
2142 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2143 /// use this predicate to simplify operations downstream.
2144 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2145   unsigned BitWidth = Op.getScalarValueSizeInBits();
2146   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2147 }
2148 
2149 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2150 /// this predicate to simplify operations downstream.  Mask is known to be zero
2151 /// for bits that V cannot have.
2152 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2153                                      unsigned Depth) const {
2154   return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
2155 }
2156 
2157 /// Helper function that checks to see if a node is a constant or a
2158 /// build vector of splat constants at least within the demanded elts.
2159 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N,
2160                                                    const APInt &DemandedElts) {
2161   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
2162     return CN;
2163   if (N.getOpcode() != ISD::BUILD_VECTOR)
2164     return nullptr;
2165   EVT VT = N.getValueType();
2166   ConstantSDNode *Cst = nullptr;
2167   unsigned NumElts = VT.getVectorNumElements();
2168   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size");
2169   for (unsigned i = 0; i != NumElts; ++i) {
2170     if (!DemandedElts[i])
2171       continue;
2172     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i));
2173     if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) ||
2174         C->getValueType(0) != VT.getScalarType())
2175       return nullptr;
2176     Cst = C;
2177   }
2178   return Cst;
2179 }
2180 
2181 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2182 /// is less than the element bit-width of the shift node, return it.
2183 static const APInt *getValidShiftAmountConstant(SDValue V) {
2184   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2185     // Shifting more than the bitwidth is not valid.
2186     const APInt &ShAmt = SA->getAPIntValue();
2187     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2188       return &ShAmt;
2189   }
2190   return nullptr;
2191 }
2192 
2193 /// Determine which bits of Op are known to be either zero or one and return
2194 /// them in Known. For vectors, the known bits are those that are shared by
2195 /// every vector element.
2196 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2197   EVT VT = Op.getValueType();
2198   APInt DemandedElts = VT.isVector()
2199                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2200                            : APInt(1, 1);
2201   return computeKnownBits(Op, DemandedElts, Depth);
2202 }
2203 
2204 /// Determine which bits of Op are known to be either zero or one and return
2205 /// them in Known. The DemandedElts argument allows us to only collect the known
2206 /// bits that are shared by the requested vector elements.
2207 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2208                                          unsigned Depth) const {
2209   unsigned BitWidth = Op.getScalarValueSizeInBits();
2210 
2211   KnownBits Known(BitWidth);   // Don't know anything.
2212 
2213   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2214     // We know all of the bits for a constant!
2215     Known.One = C->getAPIntValue();
2216     Known.Zero = ~Known.One;
2217     return Known;
2218   }
2219   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2220     // We know all of the bits for a constant fp!
2221     Known.One = C->getValueAPF().bitcastToAPInt();
2222     Known.Zero = ~Known.One;
2223     return Known;
2224   }
2225 
2226   if (Depth == 6)
2227     return Known;  // Limit search depth.
2228 
2229   KnownBits Known2;
2230   unsigned NumElts = DemandedElts.getBitWidth();
2231 
2232   if (!DemandedElts)
2233     return Known;  // No demanded elts, better to assume we don't know anything.
2234 
2235   unsigned Opcode = Op.getOpcode();
2236   switch (Opcode) {
2237   case ISD::BUILD_VECTOR:
2238     // Collect the known bits that are shared by every demanded vector element.
2239     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2240            "Unexpected vector size");
2241     Known.Zero.setAllBits(); Known.One.setAllBits();
2242     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2243       if (!DemandedElts[i])
2244         continue;
2245 
2246       SDValue SrcOp = Op.getOperand(i);
2247       Known2 = computeKnownBits(SrcOp, Depth + 1);
2248 
2249       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2250       if (SrcOp.getValueSizeInBits() != BitWidth) {
2251         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2252                "Expected BUILD_VECTOR implicit truncation");
2253         Known2 = Known2.trunc(BitWidth);
2254       }
2255 
2256       // Known bits are the values that are shared by every demanded element.
2257       Known.One &= Known2.One;
2258       Known.Zero &= Known2.Zero;
2259 
2260       // If we don't know any bits, early out.
2261       if (Known.isUnknown())
2262         break;
2263     }
2264     break;
2265   case ISD::VECTOR_SHUFFLE: {
2266     // Collect the known bits that are shared by every vector element referenced
2267     // by the shuffle.
2268     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2269     Known.Zero.setAllBits(); Known.One.setAllBits();
2270     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2271     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2272     for (unsigned i = 0; i != NumElts; ++i) {
2273       if (!DemandedElts[i])
2274         continue;
2275 
2276       int M = SVN->getMaskElt(i);
2277       if (M < 0) {
2278         // For UNDEF elements, we don't know anything about the common state of
2279         // the shuffle result.
2280         Known.resetAll();
2281         DemandedLHS.clearAllBits();
2282         DemandedRHS.clearAllBits();
2283         break;
2284       }
2285 
2286       if ((unsigned)M < NumElts)
2287         DemandedLHS.setBit((unsigned)M % NumElts);
2288       else
2289         DemandedRHS.setBit((unsigned)M % NumElts);
2290     }
2291     // Known bits are the values that are shared by every demanded element.
2292     if (!!DemandedLHS) {
2293       SDValue LHS = Op.getOperand(0);
2294       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2295       Known.One &= Known2.One;
2296       Known.Zero &= Known2.Zero;
2297     }
2298     // If we don't know any bits, early out.
2299     if (Known.isUnknown())
2300       break;
2301     if (!!DemandedRHS) {
2302       SDValue RHS = Op.getOperand(1);
2303       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2304       Known.One &= Known2.One;
2305       Known.Zero &= Known2.Zero;
2306     }
2307     break;
2308   }
2309   case ISD::CONCAT_VECTORS: {
2310     // Split DemandedElts and test each of the demanded subvectors.
2311     Known.Zero.setAllBits(); Known.One.setAllBits();
2312     EVT SubVectorVT = Op.getOperand(0).getValueType();
2313     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2314     unsigned NumSubVectors = Op.getNumOperands();
2315     for (unsigned i = 0; i != NumSubVectors; ++i) {
2316       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2317       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2318       if (!!DemandedSub) {
2319         SDValue Sub = Op.getOperand(i);
2320         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2321         Known.One &= Known2.One;
2322         Known.Zero &= Known2.Zero;
2323       }
2324       // If we don't know any bits, early out.
2325       if (Known.isUnknown())
2326         break;
2327     }
2328     break;
2329   }
2330   case ISD::INSERT_SUBVECTOR: {
2331     // If we know the element index, demand any elements from the subvector and
2332     // the remainder from the src its inserted into, otherwise demand them all.
2333     SDValue Src = Op.getOperand(0);
2334     SDValue Sub = Op.getOperand(1);
2335     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2336     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2337     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2338       Known.One.setAllBits();
2339       Known.Zero.setAllBits();
2340       uint64_t Idx = SubIdx->getZExtValue();
2341       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2342       if (!!DemandedSubElts) {
2343         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2344         if (Known.isUnknown())
2345           break; // early-out.
2346       }
2347       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2348       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2349       if (!!DemandedSrcElts) {
2350         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2351         Known.One &= Known2.One;
2352         Known.Zero &= Known2.Zero;
2353       }
2354     } else {
2355       Known = computeKnownBits(Sub, Depth + 1);
2356       if (Known.isUnknown())
2357         break; // early-out.
2358       Known2 = computeKnownBits(Src, Depth + 1);
2359       Known.One &= Known2.One;
2360       Known.Zero &= Known2.Zero;
2361     }
2362     break;
2363   }
2364   case ISD::EXTRACT_SUBVECTOR: {
2365     // If we know the element index, just demand that subvector elements,
2366     // otherwise demand them all.
2367     SDValue Src = Op.getOperand(0);
2368     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2369     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2370     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2371       // Offset the demanded elts by the subvector index.
2372       uint64_t Idx = SubIdx->getZExtValue();
2373       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2374       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2375     } else {
2376       Known = computeKnownBits(Src, Depth + 1);
2377     }
2378     break;
2379   }
2380   case ISD::BITCAST: {
2381     SDValue N0 = Op.getOperand(0);
2382     EVT SubVT = N0.getValueType();
2383     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2384 
2385     // Ignore bitcasts from unsupported types.
2386     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2387       break;
2388 
2389     // Fast handling of 'identity' bitcasts.
2390     if (BitWidth == SubBitWidth) {
2391       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2392       break;
2393     }
2394 
2395     bool IsLE = getDataLayout().isLittleEndian();
2396 
2397     // Bitcast 'small element' vector to 'large element' scalar/vector.
2398     if ((BitWidth % SubBitWidth) == 0) {
2399       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2400 
2401       // Collect known bits for the (larger) output by collecting the known
2402       // bits from each set of sub elements and shift these into place.
2403       // We need to separately call computeKnownBits for each set of
2404       // sub elements as the knownbits for each is likely to be different.
2405       unsigned SubScale = BitWidth / SubBitWidth;
2406       APInt SubDemandedElts(NumElts * SubScale, 0);
2407       for (unsigned i = 0; i != NumElts; ++i)
2408         if (DemandedElts[i])
2409           SubDemandedElts.setBit(i * SubScale);
2410 
2411       for (unsigned i = 0; i != SubScale; ++i) {
2412         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2413                          Depth + 1);
2414         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2415         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2416         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2417       }
2418     }
2419 
2420     // Bitcast 'large element' scalar/vector to 'small element' vector.
2421     if ((SubBitWidth % BitWidth) == 0) {
2422       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2423 
2424       // Collect known bits for the (smaller) output by collecting the known
2425       // bits from the overlapping larger input elements and extracting the
2426       // sub sections we actually care about.
2427       unsigned SubScale = SubBitWidth / BitWidth;
2428       APInt SubDemandedElts(NumElts / SubScale, 0);
2429       for (unsigned i = 0; i != NumElts; ++i)
2430         if (DemandedElts[i])
2431           SubDemandedElts.setBit(i / SubScale);
2432 
2433       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2434 
2435       Known.Zero.setAllBits(); Known.One.setAllBits();
2436       for (unsigned i = 0; i != NumElts; ++i)
2437         if (DemandedElts[i]) {
2438           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2439           unsigned Offset = (Shifts % SubScale) * BitWidth;
2440           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2441           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2442           // If we don't know any bits, early out.
2443           if (Known.isUnknown())
2444             break;
2445         }
2446     }
2447     break;
2448   }
2449   case ISD::AND:
2450     // If either the LHS or the RHS are Zero, the result is zero.
2451     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2452     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2453 
2454     // Output known-1 bits are only known if set in both the LHS & RHS.
2455     Known.One &= Known2.One;
2456     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2457     Known.Zero |= Known2.Zero;
2458     break;
2459   case ISD::OR:
2460     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2461     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2462 
2463     // Output known-0 bits are only known if clear in both the LHS & RHS.
2464     Known.Zero &= Known2.Zero;
2465     // Output known-1 are known to be set if set in either the LHS | RHS.
2466     Known.One |= Known2.One;
2467     break;
2468   case ISD::XOR: {
2469     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2470     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2471 
2472     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2473     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2474     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2475     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2476     Known.Zero = KnownZeroOut;
2477     break;
2478   }
2479   case ISD::MUL: {
2480     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2481     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2482 
2483     // If low bits are zero in either operand, output low known-0 bits.
2484     // Also compute a conservative estimate for high known-0 bits.
2485     // More trickiness is possible, but this is sufficient for the
2486     // interesting case of alignment computation.
2487     unsigned TrailZ = Known.countMinTrailingZeros() +
2488                       Known2.countMinTrailingZeros();
2489     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2490                                Known2.countMinLeadingZeros(),
2491                                BitWidth) - BitWidth;
2492 
2493     Known.resetAll();
2494     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2495     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2496     break;
2497   }
2498   case ISD::UDIV: {
2499     // For the purposes of computing leading zeros we can conservatively
2500     // treat a udiv as a logical right shift by the power of 2 known to
2501     // be less than the denominator.
2502     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2503     unsigned LeadZ = Known2.countMinLeadingZeros();
2504 
2505     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2506     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2507     if (RHSMaxLeadingZeros != BitWidth)
2508       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2509 
2510     Known.Zero.setHighBits(LeadZ);
2511     break;
2512   }
2513   case ISD::SELECT:
2514   case ISD::VSELECT:
2515     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2516     // If we don't know any bits, early out.
2517     if (Known.isUnknown())
2518       break;
2519     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2520 
2521     // Only known if known in both the LHS and RHS.
2522     Known.One &= Known2.One;
2523     Known.Zero &= Known2.Zero;
2524     break;
2525   case ISD::SELECT_CC:
2526     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2527     // If we don't know any bits, early out.
2528     if (Known.isUnknown())
2529       break;
2530     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2531 
2532     // Only known if known in both the LHS and RHS.
2533     Known.One &= Known2.One;
2534     Known.Zero &= Known2.Zero;
2535     break;
2536   case ISD::SMULO:
2537   case ISD::UMULO:
2538   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2539     if (Op.getResNo() != 1)
2540       break;
2541     // The boolean result conforms to getBooleanContents.
2542     // If we know the result of a setcc has the top bits zero, use this info.
2543     // We know that we have an integer-based boolean since these operations
2544     // are only available for integer.
2545     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2546             TargetLowering::ZeroOrOneBooleanContent &&
2547         BitWidth > 1)
2548       Known.Zero.setBitsFrom(1);
2549     break;
2550   case ISD::SETCC:
2551     // If we know the result of a setcc has the top bits zero, use this info.
2552     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2553             TargetLowering::ZeroOrOneBooleanContent &&
2554         BitWidth > 1)
2555       Known.Zero.setBitsFrom(1);
2556     break;
2557   case ISD::SHL:
2558     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2559       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2560       unsigned Shift = ShAmt->getZExtValue();
2561       Known.Zero <<= Shift;
2562       Known.One <<= Shift;
2563       // Low bits are known zero.
2564       Known.Zero.setLowBits(Shift);
2565     }
2566     break;
2567   case ISD::SRL:
2568     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2569       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2570       unsigned Shift = ShAmt->getZExtValue();
2571       Known.Zero.lshrInPlace(Shift);
2572       Known.One.lshrInPlace(Shift);
2573       // High bits are known zero.
2574       Known.Zero.setHighBits(Shift);
2575     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2576       // If the shift amount is a vector of constants see if we can bound
2577       // the number of upper zero bits.
2578       unsigned ShiftAmountMin = BitWidth;
2579       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2580         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2581           const APInt &ShAmt = C->getAPIntValue();
2582           if (ShAmt.ult(BitWidth)) {
2583             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2584                                                 ShAmt.getZExtValue());
2585             continue;
2586           }
2587         }
2588         // Don't know anything.
2589         ShiftAmountMin = 0;
2590         break;
2591       }
2592 
2593       Known.Zero.setHighBits(ShiftAmountMin);
2594     }
2595     break;
2596   case ISD::SRA:
2597     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2598       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2599       unsigned Shift = ShAmt->getZExtValue();
2600       // Sign extend known zero/one bit (else is unknown).
2601       Known.Zero.ashrInPlace(Shift);
2602       Known.One.ashrInPlace(Shift);
2603     }
2604     break;
2605   case ISD::SIGN_EXTEND_INREG: {
2606     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2607     unsigned EBits = EVT.getScalarSizeInBits();
2608 
2609     // Sign extension.  Compute the demanded bits in the result that are not
2610     // present in the input.
2611     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2612 
2613     APInt InSignMask = APInt::getSignMask(EBits);
2614     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2615 
2616     // If the sign extended bits are demanded, we know that the sign
2617     // bit is demanded.
2618     InSignMask = InSignMask.zext(BitWidth);
2619     if (NewBits.getBoolValue())
2620       InputDemandedBits |= InSignMask;
2621 
2622     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2623     Known.One &= InputDemandedBits;
2624     Known.Zero &= InputDemandedBits;
2625 
2626     // If the sign bit of the input is known set or clear, then we know the
2627     // top bits of the result.
2628     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2629       Known.Zero |= NewBits;
2630       Known.One  &= ~NewBits;
2631     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2632       Known.One  |= NewBits;
2633       Known.Zero &= ~NewBits;
2634     } else {                              // Input sign bit unknown
2635       Known.Zero &= ~NewBits;
2636       Known.One  &= ~NewBits;
2637     }
2638     break;
2639   }
2640   case ISD::CTTZ:
2641   case ISD::CTTZ_ZERO_UNDEF: {
2642     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2643     // If we have a known 1, its position is our upper bound.
2644     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2645     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2646     Known.Zero.setBitsFrom(LowBits);
2647     break;
2648   }
2649   case ISD::CTLZ:
2650   case ISD::CTLZ_ZERO_UNDEF: {
2651     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2652     // If we have a known 1, its position is our upper bound.
2653     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2654     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2655     Known.Zero.setBitsFrom(LowBits);
2656     break;
2657   }
2658   case ISD::CTPOP: {
2659     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2660     // If we know some of the bits are zero, they can't be one.
2661     unsigned PossibleOnes = Known2.countMaxPopulation();
2662     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2663     break;
2664   }
2665   case ISD::LOAD: {
2666     LoadSDNode *LD = cast<LoadSDNode>(Op);
2667     // If this is a ZEXTLoad and we are looking at the loaded value.
2668     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2669       EVT VT = LD->getMemoryVT();
2670       unsigned MemBits = VT.getScalarSizeInBits();
2671       Known.Zero.setBitsFrom(MemBits);
2672     } else if (const MDNode *Ranges = LD->getRanges()) {
2673       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2674         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2675     }
2676     break;
2677   }
2678   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2679     EVT InVT = Op.getOperand(0).getValueType();
2680     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
2681     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2682     Known = Known.zext(BitWidth);
2683     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2684     break;
2685   }
2686   case ISD::ZERO_EXTEND: {
2687     EVT InVT = Op.getOperand(0).getValueType();
2688     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2689     Known = Known.zext(BitWidth);
2690     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2691     break;
2692   }
2693   // TODO ISD::SIGN_EXTEND_VECTOR_INREG
2694   case ISD::SIGN_EXTEND: {
2695     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2696     // If the sign bit is known to be zero or one, then sext will extend
2697     // it to the top bits, else it will just zext.
2698     Known = Known.sext(BitWidth);
2699     break;
2700   }
2701   case ISD::ANY_EXTEND: {
2702     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2703     Known = Known.zext(BitWidth);
2704     break;
2705   }
2706   case ISD::TRUNCATE: {
2707     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2708     Known = Known.trunc(BitWidth);
2709     break;
2710   }
2711   case ISD::AssertZext: {
2712     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2713     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2714     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2715     Known.Zero |= (~InMask);
2716     Known.One  &= (~Known.Zero);
2717     break;
2718   }
2719   case ISD::FGETSIGN:
2720     // All bits are zero except the low bit.
2721     Known.Zero.setBitsFrom(1);
2722     break;
2723   case ISD::USUBO:
2724   case ISD::SSUBO:
2725     if (Op.getResNo() == 1) {
2726       // If we know the result of a setcc has the top bits zero, use this info.
2727       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2728               TargetLowering::ZeroOrOneBooleanContent &&
2729           BitWidth > 1)
2730         Known.Zero.setBitsFrom(1);
2731       break;
2732     }
2733     LLVM_FALLTHROUGH;
2734   case ISD::SUB:
2735   case ISD::SUBC: {
2736     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2737       // We know that the top bits of C-X are clear if X contains less bits
2738       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2739       // positive if we can prove that X is >= 0 and < 16.
2740       if (CLHS->getAPIntValue().isNonNegative()) {
2741         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2742         // NLZ can't be BitWidth with no sign bit
2743         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2744         Known2 = computeKnownBits(Op.getOperand(1), DemandedElts,
2745                          Depth + 1);
2746 
2747         // If all of the MaskV bits are known to be zero, then we know the
2748         // output top bits are zero, because we now know that the output is
2749         // from [0-C].
2750         if ((Known2.Zero & MaskV) == MaskV) {
2751           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2752           // Top bits known zero.
2753           Known.Zero.setHighBits(NLZ2);
2754         }
2755       }
2756     }
2757 
2758     // If low bits are know to be zero in both operands, then we know they are
2759     // going to be 0 in the result. Both addition and complement operations
2760     // preserve the low zero bits.
2761     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2762     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2763     if (KnownZeroLow == 0)
2764       break;
2765 
2766     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2767     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2768     Known.Zero.setLowBits(KnownZeroLow);
2769     break;
2770   }
2771   case ISD::UADDO:
2772   case ISD::SADDO:
2773   case ISD::ADDCARRY:
2774     if (Op.getResNo() == 1) {
2775       // If we know the result of a setcc has the top bits zero, use this info.
2776       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2777               TargetLowering::ZeroOrOneBooleanContent &&
2778           BitWidth > 1)
2779         Known.Zero.setBitsFrom(1);
2780       break;
2781     }
2782     LLVM_FALLTHROUGH;
2783   case ISD::ADD:
2784   case ISD::ADDC:
2785   case ISD::ADDE: {
2786     // Output known-0 bits are known if clear or set in both the low clear bits
2787     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2788     // low 3 bits clear.
2789     // Output known-0 bits are also known if the top bits of each input are
2790     // known to be clear. For example, if one input has the top 10 bits clear
2791     // and the other has the top 8 bits clear, we know the top 7 bits of the
2792     // output must be clear.
2793     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2794     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2795     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2796 
2797     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2798     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2799     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2800 
2801     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2802       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2803       // use this information if we know (at least) that the low two bits are
2804       // clear. We then return to the caller that the low bit is unknown but
2805       // that other bits are known zero.
2806       if (KnownZeroLow >= 2)
2807         Known.Zero.setBits(1, KnownZeroLow);
2808       break;
2809     }
2810 
2811     Known.Zero.setLowBits(KnownZeroLow);
2812     if (KnownZeroHigh > 1)
2813       Known.Zero.setHighBits(KnownZeroHigh - 1);
2814     break;
2815   }
2816   case ISD::SREM:
2817     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2818       const APInt &RA = Rem->getAPIntValue().abs();
2819       if (RA.isPowerOf2()) {
2820         APInt LowBits = RA - 1;
2821         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2822 
2823         // The low bits of the first operand are unchanged by the srem.
2824         Known.Zero = Known2.Zero & LowBits;
2825         Known.One = Known2.One & LowBits;
2826 
2827         // If the first operand is non-negative or has all low bits zero, then
2828         // the upper bits are all zero.
2829         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2830           Known.Zero |= ~LowBits;
2831 
2832         // If the first operand is negative and not all low bits are zero, then
2833         // the upper bits are all one.
2834         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2835           Known.One |= ~LowBits;
2836         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2837       }
2838     }
2839     break;
2840   case ISD::UREM: {
2841     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2842       const APInt &RA = Rem->getAPIntValue();
2843       if (RA.isPowerOf2()) {
2844         APInt LowBits = (RA - 1);
2845         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2846 
2847         // The upper bits are all zero, the lower ones are unchanged.
2848         Known.Zero = Known2.Zero | ~LowBits;
2849         Known.One = Known2.One & LowBits;
2850         break;
2851       }
2852     }
2853 
2854     // Since the result is less than or equal to either operand, any leading
2855     // zero bits in either operand must also exist in the result.
2856     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2857     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2858 
2859     uint32_t Leaders =
2860         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
2861     Known.resetAll();
2862     Known.Zero.setHighBits(Leaders);
2863     break;
2864   }
2865   case ISD::EXTRACT_ELEMENT: {
2866     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2867     const unsigned Index = Op.getConstantOperandVal(1);
2868     const unsigned BitWidth = Op.getValueSizeInBits();
2869 
2870     // Remove low part of known bits mask
2871     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
2872     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
2873 
2874     // Remove high part of known bit mask
2875     Known = Known.trunc(BitWidth);
2876     break;
2877   }
2878   case ISD::EXTRACT_VECTOR_ELT: {
2879     SDValue InVec = Op.getOperand(0);
2880     SDValue EltNo = Op.getOperand(1);
2881     EVT VecVT = InVec.getValueType();
2882     const unsigned BitWidth = Op.getValueSizeInBits();
2883     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2884     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2885     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2886     // anything about the extended bits.
2887     if (BitWidth > EltBitWidth)
2888       Known = Known.trunc(EltBitWidth);
2889     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2890     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2891       // If we know the element index, just demand that vector element.
2892       unsigned Idx = ConstEltNo->getZExtValue();
2893       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2894       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
2895     } else {
2896       // Unknown element index, so ignore DemandedElts and demand them all.
2897       Known = computeKnownBits(InVec, Depth + 1);
2898     }
2899     if (BitWidth > EltBitWidth)
2900       Known = Known.zext(BitWidth);
2901     break;
2902   }
2903   case ISD::INSERT_VECTOR_ELT: {
2904     SDValue InVec = Op.getOperand(0);
2905     SDValue InVal = Op.getOperand(1);
2906     SDValue EltNo = Op.getOperand(2);
2907 
2908     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2909     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2910       // If we know the element index, split the demand between the
2911       // source vector and the inserted element.
2912       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
2913       unsigned EltIdx = CEltNo->getZExtValue();
2914 
2915       // If we demand the inserted element then add its common known bits.
2916       if (DemandedElts[EltIdx]) {
2917         Known2 = computeKnownBits(InVal, Depth + 1);
2918         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2919         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2920       }
2921 
2922       // If we demand the source vector then add its common known bits, ensuring
2923       // that we don't demand the inserted element.
2924       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2925       if (!!VectorElts) {
2926         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
2927         Known.One &= Known2.One;
2928         Known.Zero &= Known2.Zero;
2929       }
2930     } else {
2931       // Unknown element index, so ignore DemandedElts and demand them all.
2932       Known = computeKnownBits(InVec, Depth + 1);
2933       Known2 = computeKnownBits(InVal, Depth + 1);
2934       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2935       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2936     }
2937     break;
2938   }
2939   case ISD::BITREVERSE: {
2940     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2941     Known.Zero = Known2.Zero.reverseBits();
2942     Known.One = Known2.One.reverseBits();
2943     break;
2944   }
2945   case ISD::BSWAP: {
2946     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2947     Known.Zero = Known2.Zero.byteSwap();
2948     Known.One = Known2.One.byteSwap();
2949     break;
2950   }
2951   case ISD::ABS: {
2952     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2953 
2954     // If the source's MSB is zero then we know the rest of the bits already.
2955     if (Known2.isNonNegative()) {
2956       Known.Zero = Known2.Zero;
2957       Known.One = Known2.One;
2958       break;
2959     }
2960 
2961     // We only know that the absolute values's MSB will be zero iff there is
2962     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
2963     Known2.One.clearSignBit();
2964     if (Known2.One.getBoolValue()) {
2965       Known.Zero = APInt::getSignMask(BitWidth);
2966       break;
2967     }
2968     break;
2969   }
2970   case ISD::UMIN: {
2971     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2972     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2973 
2974     // UMIN - we know that the result will have the maximum of the
2975     // known zero leading bits of the inputs.
2976     unsigned LeadZero = Known.countMinLeadingZeros();
2977     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
2978 
2979     Known.Zero &= Known2.Zero;
2980     Known.One &= Known2.One;
2981     Known.Zero.setHighBits(LeadZero);
2982     break;
2983   }
2984   case ISD::UMAX: {
2985     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2986     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2987 
2988     // UMAX - we know that the result will have the maximum of the
2989     // known one leading bits of the inputs.
2990     unsigned LeadOne = Known.countMinLeadingOnes();
2991     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
2992 
2993     Known.Zero &= Known2.Zero;
2994     Known.One &= Known2.One;
2995     Known.One.setHighBits(LeadOne);
2996     break;
2997   }
2998   case ISD::SMIN:
2999   case ISD::SMAX: {
3000     // If we have a clamp pattern, we know that the number of sign bits will be
3001     // the minimum of the clamp min/max range.
3002     bool IsMax = (Opcode == ISD::SMAX);
3003     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3004     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3005       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3006         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3007                                               DemandedElts);
3008     if (CstLow && CstHigh) {
3009       if (!IsMax)
3010         std::swap(CstLow, CstHigh);
3011 
3012       const APInt &ValueLow = CstLow->getAPIntValue();
3013       const APInt &ValueHigh = CstHigh->getAPIntValue();
3014       if (ValueLow.sle(ValueHigh)) {
3015         unsigned LowSignBits = ValueLow.getNumSignBits();
3016         unsigned HighSignBits = ValueHigh.getNumSignBits();
3017         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3018         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3019           Known.One.setHighBits(MinSignBits);
3020           break;
3021         }
3022         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3023           Known.Zero.setHighBits(MinSignBits);
3024           break;
3025         }
3026       }
3027     }
3028 
3029     // Fallback - just get the shared known bits of the operands.
3030     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3031     if (Known.isUnknown()) break; // Early-out
3032     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3033     Known.Zero &= Known2.Zero;
3034     Known.One &= Known2.One;
3035     break;
3036   }
3037   case ISD::FrameIndex:
3038   case ISD::TargetFrameIndex:
3039     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3040     break;
3041 
3042   default:
3043     if (Opcode < ISD::BUILTIN_OP_END)
3044       break;
3045     LLVM_FALLTHROUGH;
3046   case ISD::INTRINSIC_WO_CHAIN:
3047   case ISD::INTRINSIC_W_CHAIN:
3048   case ISD::INTRINSIC_VOID:
3049     // Allow the target to implement this method for its nodes.
3050     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3051     break;
3052   }
3053 
3054   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3055   return Known;
3056 }
3057 
3058 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3059                                                              SDValue N1) const {
3060   // X + 0 never overflow
3061   if (isNullConstant(N1))
3062     return OFK_Never;
3063 
3064   KnownBits N1Known;
3065   computeKnownBits(N1, N1Known);
3066   if (N1Known.Zero.getBoolValue()) {
3067     KnownBits N0Known;
3068     computeKnownBits(N0, N0Known);
3069 
3070     bool overflow;
3071     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3072     if (!overflow)
3073       return OFK_Never;
3074   }
3075 
3076   // mulhi + 1 never overflow
3077   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3078       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3079     return OFK_Never;
3080 
3081   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3082     KnownBits N0Known;
3083     computeKnownBits(N0, N0Known);
3084 
3085     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3086       return OFK_Never;
3087   }
3088 
3089   return OFK_Sometime;
3090 }
3091 
3092 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3093   EVT OpVT = Val.getValueType();
3094   unsigned BitWidth = OpVT.getScalarSizeInBits();
3095 
3096   // Is the constant a known power of 2?
3097   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3098     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3099 
3100   // A left-shift of a constant one will have exactly one bit set because
3101   // shifting the bit off the end is undefined.
3102   if (Val.getOpcode() == ISD::SHL) {
3103     auto *C = isConstOrConstSplat(Val.getOperand(0));
3104     if (C && C->getAPIntValue() == 1)
3105       return true;
3106   }
3107 
3108   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3109   // one bit set.
3110   if (Val.getOpcode() == ISD::SRL) {
3111     auto *C = isConstOrConstSplat(Val.getOperand(0));
3112     if (C && C->getAPIntValue().isSignMask())
3113       return true;
3114   }
3115 
3116   // Are all operands of a build vector constant powers of two?
3117   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3118     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3119           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3120             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3121           return false;
3122         }))
3123       return true;
3124 
3125   // More could be done here, though the above checks are enough
3126   // to handle some common cases.
3127 
3128   // Fall back to computeKnownBits to catch other known cases.
3129   KnownBits Known = computeKnownBits(Val);
3130   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3131 }
3132 
3133 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3134   EVT VT = Op.getValueType();
3135   APInt DemandedElts = VT.isVector()
3136                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3137                            : APInt(1, 1);
3138   return ComputeNumSignBits(Op, DemandedElts, Depth);
3139 }
3140 
3141 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3142                                           unsigned Depth) const {
3143   EVT VT = Op.getValueType();
3144   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3145   unsigned VTBits = VT.getScalarSizeInBits();
3146   unsigned NumElts = DemandedElts.getBitWidth();
3147   unsigned Tmp, Tmp2;
3148   unsigned FirstAnswer = 1;
3149 
3150   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3151     const APInt &Val = C->getAPIntValue();
3152     return Val.getNumSignBits();
3153   }
3154 
3155   if (Depth == 6)
3156     return 1;  // Limit search depth.
3157 
3158   if (!DemandedElts)
3159     return 1;  // No demanded elts, better to assume we don't know anything.
3160 
3161   unsigned Opcode = Op.getOpcode();
3162   switch (Opcode) {
3163   default: break;
3164   case ISD::AssertSext:
3165     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3166     return VTBits-Tmp+1;
3167   case ISD::AssertZext:
3168     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3169     return VTBits-Tmp;
3170 
3171   case ISD::BUILD_VECTOR:
3172     Tmp = VTBits;
3173     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3174       if (!DemandedElts[i])
3175         continue;
3176 
3177       SDValue SrcOp = Op.getOperand(i);
3178       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3179 
3180       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3181       if (SrcOp.getValueSizeInBits() != VTBits) {
3182         assert(SrcOp.getValueSizeInBits() > VTBits &&
3183                "Expected BUILD_VECTOR implicit truncation");
3184         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3185         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3186       }
3187       Tmp = std::min(Tmp, Tmp2);
3188     }
3189     return Tmp;
3190 
3191   case ISD::VECTOR_SHUFFLE: {
3192     // Collect the minimum number of sign bits that are shared by every vector
3193     // element referenced by the shuffle.
3194     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3195     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3196     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3197     for (unsigned i = 0; i != NumElts; ++i) {
3198       int M = SVN->getMaskElt(i);
3199       if (!DemandedElts[i])
3200         continue;
3201       // For UNDEF elements, we don't know anything about the common state of
3202       // the shuffle result.
3203       if (M < 0)
3204         return 1;
3205       if ((unsigned)M < NumElts)
3206         DemandedLHS.setBit((unsigned)M % NumElts);
3207       else
3208         DemandedRHS.setBit((unsigned)M % NumElts);
3209     }
3210     Tmp = std::numeric_limits<unsigned>::max();
3211     if (!!DemandedLHS)
3212       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3213     if (!!DemandedRHS) {
3214       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3215       Tmp = std::min(Tmp, Tmp2);
3216     }
3217     // If we don't know anything, early out and try computeKnownBits fall-back.
3218     if (Tmp == 1)
3219       break;
3220     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3221     return Tmp;
3222   }
3223 
3224   case ISD::BITCAST: {
3225     SDValue N0 = Op.getOperand(0);
3226     EVT SrcVT = N0.getValueType();
3227     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3228 
3229     // Ignore bitcasts from unsupported types..
3230     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3231       break;
3232 
3233     // Fast handling of 'identity' bitcasts.
3234     if (VTBits == SrcBits)
3235       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3236 
3237     bool IsLE = getDataLayout().isLittleEndian();
3238 
3239     // Bitcast 'large element' scalar/vector to 'small element' vector.
3240     if ((SrcBits % VTBits) == 0) {
3241       assert(VT.isVector() && "Expected bitcast to vector");
3242 
3243       unsigned Scale = SrcBits / VTBits;
3244       APInt SrcDemandedElts(NumElts / Scale, 0);
3245       for (unsigned i = 0; i != NumElts; ++i)
3246         if (DemandedElts[i])
3247           SrcDemandedElts.setBit(i / Scale);
3248 
3249       // Fast case - sign splat can be simply split across the small elements.
3250       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3251       if (Tmp == SrcBits)
3252         return VTBits;
3253 
3254       // Slow case - determine how far the sign extends into each sub-element.
3255       Tmp2 = VTBits;
3256       for (unsigned i = 0; i != NumElts; ++i)
3257         if (DemandedElts[i]) {
3258           unsigned SubOffset = i % Scale;
3259           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3260           SubOffset = SubOffset * VTBits;
3261           if (Tmp <= SubOffset)
3262             return 1;
3263           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3264         }
3265       return Tmp2;
3266     }
3267     break;
3268   }
3269 
3270   case ISD::SIGN_EXTEND:
3271     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3272     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3273   case ISD::SIGN_EXTEND_INREG:
3274     // Max of the input and what this extends.
3275     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3276     Tmp = VTBits-Tmp+1;
3277     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3278     return std::max(Tmp, Tmp2);
3279   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3280     SDValue Src = Op.getOperand(0);
3281     EVT SrcVT = Src.getValueType();
3282     APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
3283     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3284     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3285   }
3286 
3287   case ISD::SRA:
3288     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3289     // SRA X, C   -> adds C sign bits.
3290     if (ConstantSDNode *C =
3291             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3292       APInt ShiftVal = C->getAPIntValue();
3293       ShiftVal += Tmp;
3294       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3295     }
3296     return Tmp;
3297   case ISD::SHL:
3298     if (ConstantSDNode *C =
3299             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3300       // shl destroys sign bits.
3301       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3302       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3303           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3304       return Tmp - C->getZExtValue();
3305     }
3306     break;
3307   case ISD::AND:
3308   case ISD::OR:
3309   case ISD::XOR:    // NOT is handled here.
3310     // Logical binary ops preserve the number of sign bits at the worst.
3311     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3312     if (Tmp != 1) {
3313       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3314       FirstAnswer = std::min(Tmp, Tmp2);
3315       // We computed what we know about the sign bits as our first
3316       // answer. Now proceed to the generic code that uses
3317       // computeKnownBits, and pick whichever answer is better.
3318     }
3319     break;
3320 
3321   case ISD::SELECT:
3322   case ISD::VSELECT:
3323     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3324     if (Tmp == 1) return 1;  // Early out.
3325     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3326     return std::min(Tmp, Tmp2);
3327   case ISD::SELECT_CC:
3328     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3329     if (Tmp == 1) return 1;  // Early out.
3330     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3331     return std::min(Tmp, Tmp2);
3332 
3333   case ISD::SMIN:
3334   case ISD::SMAX: {
3335     // If we have a clamp pattern, we know that the number of sign bits will be
3336     // the minimum of the clamp min/max range.
3337     bool IsMax = (Opcode == ISD::SMAX);
3338     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3339     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3340       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3341         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3342                                               DemandedElts);
3343     if (CstLow && CstHigh) {
3344       if (!IsMax)
3345         std::swap(CstLow, CstHigh);
3346       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3347         Tmp = CstLow->getAPIntValue().getNumSignBits();
3348         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3349         return std::min(Tmp, Tmp2);
3350       }
3351     }
3352 
3353     // Fallback - just get the minimum number of sign bits of the operands.
3354     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3355     if (Tmp == 1)
3356       return 1;  // Early out.
3357     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3358     return std::min(Tmp, Tmp2);
3359   }
3360   case ISD::UMIN:
3361   case ISD::UMAX:
3362     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3363     if (Tmp == 1)
3364       return 1;  // Early out.
3365     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3366     return std::min(Tmp, Tmp2);
3367   case ISD::SADDO:
3368   case ISD::UADDO:
3369   case ISD::SSUBO:
3370   case ISD::USUBO:
3371   case ISD::SMULO:
3372   case ISD::UMULO:
3373     if (Op.getResNo() != 1)
3374       break;
3375     // The boolean result conforms to getBooleanContents.  Fall through.
3376     // If setcc returns 0/-1, all bits are sign bits.
3377     // We know that we have an integer-based boolean since these operations
3378     // are only available for integer.
3379     if (TLI->getBooleanContents(VT.isVector(), false) ==
3380         TargetLowering::ZeroOrNegativeOneBooleanContent)
3381       return VTBits;
3382     break;
3383   case ISD::SETCC:
3384     // If setcc returns 0/-1, all bits are sign bits.
3385     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3386         TargetLowering::ZeroOrNegativeOneBooleanContent)
3387       return VTBits;
3388     break;
3389   case ISD::ROTL:
3390   case ISD::ROTR:
3391     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3392       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3393 
3394       // Handle rotate right by N like a rotate left by 32-N.
3395       if (Opcode == ISD::ROTR)
3396         RotAmt = (VTBits - RotAmt) % VTBits;
3397 
3398       // If we aren't rotating out all of the known-in sign bits, return the
3399       // number that are left.  This handles rotl(sext(x), 1) for example.
3400       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3401       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3402     }
3403     break;
3404   case ISD::ADD:
3405   case ISD::ADDC:
3406     // Add can have at most one carry bit.  Thus we know that the output
3407     // is, at worst, one more bit than the inputs.
3408     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3409     if (Tmp == 1) return 1;  // Early out.
3410 
3411     // Special case decrementing a value (ADD X, -1):
3412     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3413       if (CRHS->isAllOnesValue()) {
3414         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3415 
3416         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3417         // sign bits set.
3418         if ((Known.Zero | 1).isAllOnesValue())
3419           return VTBits;
3420 
3421         // If we are subtracting one from a positive number, there is no carry
3422         // out of the result.
3423         if (Known.isNonNegative())
3424           return Tmp;
3425       }
3426 
3427     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3428     if (Tmp2 == 1) return 1;
3429     return std::min(Tmp, Tmp2)-1;
3430 
3431   case ISD::SUB:
3432     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3433     if (Tmp2 == 1) return 1;
3434 
3435     // Handle NEG.
3436     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3437       if (CLHS->isNullValue()) {
3438         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3439         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3440         // sign bits set.
3441         if ((Known.Zero | 1).isAllOnesValue())
3442           return VTBits;
3443 
3444         // If the input is known to be positive (the sign bit is known clear),
3445         // the output of the NEG has the same number of sign bits as the input.
3446         if (Known.isNonNegative())
3447           return Tmp2;
3448 
3449         // Otherwise, we treat this like a SUB.
3450       }
3451 
3452     // Sub can have at most one carry bit.  Thus we know that the output
3453     // is, at worst, one more bit than the inputs.
3454     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3455     if (Tmp == 1) return 1;  // Early out.
3456     return std::min(Tmp, Tmp2)-1;
3457   case ISD::TRUNCATE: {
3458     // Check if the sign bits of source go down as far as the truncated value.
3459     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3460     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3461     if (NumSrcSignBits > (NumSrcBits - VTBits))
3462       return NumSrcSignBits - (NumSrcBits - VTBits);
3463     break;
3464   }
3465   case ISD::EXTRACT_ELEMENT: {
3466     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3467     const int BitWidth = Op.getValueSizeInBits();
3468     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3469 
3470     // Get reverse index (starting from 1), Op1 value indexes elements from
3471     // little end. Sign starts at big end.
3472     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3473 
3474     // If the sign portion ends in our element the subtraction gives correct
3475     // result. Otherwise it gives either negative or > bitwidth result
3476     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3477   }
3478   case ISD::INSERT_VECTOR_ELT: {
3479     SDValue InVec = Op.getOperand(0);
3480     SDValue InVal = Op.getOperand(1);
3481     SDValue EltNo = Op.getOperand(2);
3482     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3483 
3484     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3485     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3486       // If we know the element index, split the demand between the
3487       // source vector and the inserted element.
3488       unsigned EltIdx = CEltNo->getZExtValue();
3489 
3490       // If we demand the inserted element then get its sign bits.
3491       Tmp = std::numeric_limits<unsigned>::max();
3492       if (DemandedElts[EltIdx]) {
3493         // TODO - handle implicit truncation of inserted elements.
3494         if (InVal.getScalarValueSizeInBits() != VTBits)
3495           break;
3496         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3497       }
3498 
3499       // If we demand the source vector then get its sign bits, and determine
3500       // the minimum.
3501       APInt VectorElts = DemandedElts;
3502       VectorElts.clearBit(EltIdx);
3503       if (!!VectorElts) {
3504         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3505         Tmp = std::min(Tmp, Tmp2);
3506       }
3507     } else {
3508       // Unknown element index, so ignore DemandedElts and demand them all.
3509       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3510       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3511       Tmp = std::min(Tmp, Tmp2);
3512     }
3513     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3514     return Tmp;
3515   }
3516   case ISD::EXTRACT_VECTOR_ELT: {
3517     SDValue InVec = Op.getOperand(0);
3518     SDValue EltNo = Op.getOperand(1);
3519     EVT VecVT = InVec.getValueType();
3520     const unsigned BitWidth = Op.getValueSizeInBits();
3521     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3522     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3523 
3524     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3525     // anything about sign bits. But if the sizes match we can derive knowledge
3526     // about sign bits from the vector operand.
3527     if (BitWidth != EltBitWidth)
3528       break;
3529 
3530     // If we know the element index, just demand that vector element, else for
3531     // an unknown element index, ignore DemandedElts and demand them all.
3532     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3533     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3534     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3535       DemandedSrcElts =
3536           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3537 
3538     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3539   }
3540   case ISD::EXTRACT_SUBVECTOR: {
3541     // If we know the element index, just demand that subvector elements,
3542     // otherwise demand them all.
3543     SDValue Src = Op.getOperand(0);
3544     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3545     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3546     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3547       // Offset the demanded elts by the subvector index.
3548       uint64_t Idx = SubIdx->getZExtValue();
3549       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3550       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3551     }
3552     return ComputeNumSignBits(Src, Depth + 1);
3553   }
3554   case ISD::CONCAT_VECTORS:
3555     // Determine the minimum number of sign bits across all demanded
3556     // elts of the input vectors. Early out if the result is already 1.
3557     Tmp = std::numeric_limits<unsigned>::max();
3558     EVT SubVectorVT = Op.getOperand(0).getValueType();
3559     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3560     unsigned NumSubVectors = Op.getNumOperands();
3561     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3562       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3563       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3564       if (!DemandedSub)
3565         continue;
3566       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3567       Tmp = std::min(Tmp, Tmp2);
3568     }
3569     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3570     return Tmp;
3571   }
3572 
3573   // If we are looking at the loaded value of the SDNode.
3574   if (Op.getResNo() == 0) {
3575     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3576     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3577       unsigned ExtType = LD->getExtensionType();
3578       switch (ExtType) {
3579         default: break;
3580         case ISD::SEXTLOAD:    // '17' bits known
3581           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3582           return VTBits-Tmp+1;
3583         case ISD::ZEXTLOAD:    // '16' bits known
3584           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3585           return VTBits-Tmp;
3586       }
3587     }
3588   }
3589 
3590   // Allow the target to implement this method for its nodes.
3591   if (Opcode >= ISD::BUILTIN_OP_END ||
3592       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3593       Opcode == ISD::INTRINSIC_W_CHAIN ||
3594       Opcode == ISD::INTRINSIC_VOID) {
3595     unsigned NumBits =
3596         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3597     if (NumBits > 1)
3598       FirstAnswer = std::max(FirstAnswer, NumBits);
3599   }
3600 
3601   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3602   // use this information.
3603   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3604 
3605   APInt Mask;
3606   if (Known.isNonNegative()) {        // sign bit is 0
3607     Mask = Known.Zero;
3608   } else if (Known.isNegative()) {  // sign bit is 1;
3609     Mask = Known.One;
3610   } else {
3611     // Nothing known.
3612     return FirstAnswer;
3613   }
3614 
3615   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3616   // the number of identical bits in the top of the input value.
3617   Mask = ~Mask;
3618   Mask <<= Mask.getBitWidth()-VTBits;
3619   // Return # leading zeros.  We use 'min' here in case Val was zero before
3620   // shifting.  We don't want to return '64' as for an i32 "0".
3621   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3622 }
3623 
3624 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3625   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3626       !isa<ConstantSDNode>(Op.getOperand(1)))
3627     return false;
3628 
3629   if (Op.getOpcode() == ISD::OR &&
3630       !MaskedValueIsZero(Op.getOperand(0),
3631                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3632     return false;
3633 
3634   return true;
3635 }
3636 
3637 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3638   // If we're told that NaNs won't happen, assume they won't.
3639   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3640     return true;
3641 
3642   if (Depth == 6)
3643     return false; // Limit search depth.
3644 
3645   // TODO: Handle vectors.
3646   // If the value is a constant, we can obviously see if it is a NaN or not.
3647   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3648     return !C->getValueAPF().isNaN() ||
3649            (SNaN && !C->getValueAPF().isSignaling());
3650   }
3651 
3652   unsigned Opcode = Op.getOpcode();
3653   switch (Opcode) {
3654   case ISD::FADD:
3655   case ISD::FSUB:
3656   case ISD::FMUL:
3657   case ISD::FDIV:
3658   case ISD::FREM:
3659   case ISD::FSIN:
3660   case ISD::FCOS: {
3661     if (SNaN)
3662       return true;
3663     // TODO: Need isKnownNeverInfinity
3664     return false;
3665   }
3666   case ISD::FCANONICALIZE:
3667   case ISD::FEXP:
3668   case ISD::FEXP2:
3669   case ISD::FTRUNC:
3670   case ISD::FFLOOR:
3671   case ISD::FCEIL:
3672   case ISD::FROUND:
3673   case ISD::FRINT:
3674   case ISD::FNEARBYINT: {
3675     if (SNaN)
3676       return true;
3677     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3678   }
3679   case ISD::FABS:
3680   case ISD::FNEG:
3681   case ISD::FCOPYSIGN: {
3682     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3683   }
3684   case ISD::SELECT:
3685     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3686            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3687   case ISD::FP_EXTEND:
3688   case ISD::FP_ROUND: {
3689     if (SNaN)
3690       return true;
3691     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3692   }
3693   case ISD::SINT_TO_FP:
3694   case ISD::UINT_TO_FP:
3695     return true;
3696   case ISD::FMA:
3697   case ISD::FMAD: {
3698     if (SNaN)
3699       return true;
3700     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3701            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3702            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3703   }
3704   case ISD::FSQRT: // Need is known positive
3705   case ISD::FLOG:
3706   case ISD::FLOG2:
3707   case ISD::FLOG10:
3708   case ISD::FPOWI:
3709   case ISD::FPOW: {
3710     if (SNaN)
3711       return true;
3712     // TODO: Refine on operand
3713     return false;
3714   }
3715 
3716   // TODO: Handle FMINNUM/FMAXNUM/FMINNAN/FMAXNAN when there is an agreement on
3717   // what they should do.
3718   default:
3719     if (Opcode >= ISD::BUILTIN_OP_END ||
3720         Opcode == ISD::INTRINSIC_WO_CHAIN ||
3721         Opcode == ISD::INTRINSIC_W_CHAIN ||
3722         Opcode == ISD::INTRINSIC_VOID) {
3723       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
3724     }
3725 
3726     return false;
3727   }
3728 }
3729 
3730 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3731   assert(Op.getValueType().isFloatingPoint() &&
3732          "Floating point type expected");
3733 
3734   // If the value is a constant, we can obviously see if it is a zero or not.
3735   // TODO: Add BuildVector support.
3736   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3737     return !C->isZero();
3738   return false;
3739 }
3740 
3741 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3742   assert(!Op.getValueType().isFloatingPoint() &&
3743          "Floating point types unsupported - use isKnownNeverZeroFloat");
3744 
3745   // If the value is a constant, we can obviously see if it is a zero or not.
3746   if (ISD::matchUnaryPredicate(
3747           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3748     return true;
3749 
3750   // TODO: Recognize more cases here.
3751   switch (Op.getOpcode()) {
3752   default: break;
3753   case ISD::OR:
3754     if (isKnownNeverZero(Op.getOperand(1)) ||
3755         isKnownNeverZero(Op.getOperand(0)))
3756       return true;
3757     break;
3758   }
3759 
3760   return false;
3761 }
3762 
3763 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3764   // Check the obvious case.
3765   if (A == B) return true;
3766 
3767   // For for negative and positive zero.
3768   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3769     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3770       if (CA->isZero() && CB->isZero()) return true;
3771 
3772   // Otherwise they may not be equal.
3773   return false;
3774 }
3775 
3776 // FIXME: unify with llvm::haveNoCommonBitsSet.
3777 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
3778 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3779   assert(A.getValueType() == B.getValueType() &&
3780          "Values must have the same type");
3781   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
3782 }
3783 
3784 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3785                                   ArrayRef<SDValue> Ops,
3786                                   SelectionDAG &DAG) {
3787   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3788   assert(llvm::all_of(Ops,
3789                       [Ops](SDValue Op) {
3790                         return Ops[0].getValueType() == Op.getValueType();
3791                       }) &&
3792          "Concatenation of vectors with inconsistent value types!");
3793   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3794              VT.getVectorNumElements() &&
3795          "Incorrect element count in vector concatenation!");
3796 
3797   if (Ops.size() == 1)
3798     return Ops[0];
3799 
3800   // Concat of UNDEFs is UNDEF.
3801   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3802     return DAG.getUNDEF(VT);
3803 
3804   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3805   // simplified to one big BUILD_VECTOR.
3806   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3807   EVT SVT = VT.getScalarType();
3808   SmallVector<SDValue, 16> Elts;
3809   for (SDValue Op : Ops) {
3810     EVT OpVT = Op.getValueType();
3811     if (Op.isUndef())
3812       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3813     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3814       Elts.append(Op->op_begin(), Op->op_end());
3815     else
3816       return SDValue();
3817   }
3818 
3819   // BUILD_VECTOR requires all inputs to be of the same type, find the
3820   // maximum type and extend them all.
3821   for (SDValue Op : Elts)
3822     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3823 
3824   if (SVT.bitsGT(VT.getScalarType()))
3825     for (SDValue &Op : Elts)
3826       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3827                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3828                : DAG.getSExtOrTrunc(Op, DL, SVT);
3829 
3830   SDValue V = DAG.getBuildVector(VT, DL, Elts);
3831   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
3832   return V;
3833 }
3834 
3835 /// Gets or creates the specified node.
3836 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3837   FoldingSetNodeID ID;
3838   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3839   void *IP = nullptr;
3840   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3841     return SDValue(E, 0);
3842 
3843   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3844                               getVTList(VT));
3845   CSEMap.InsertNode(N, IP);
3846 
3847   InsertNode(N);
3848   SDValue V = SDValue(N, 0);
3849   NewSDValueDbgMsg(V, "Creating new node: ", this);
3850   return V;
3851 }
3852 
3853 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3854                               SDValue Operand, const SDNodeFlags Flags) {
3855   // Constant fold unary operations with an integer constant operand. Even
3856   // opaque constant will be folded, because the folding of unary operations
3857   // doesn't create new constants with different values. Nevertheless, the
3858   // opaque flag is preserved during folding to prevent future folding with
3859   // other constants.
3860   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3861     const APInt &Val = C->getAPIntValue();
3862     switch (Opcode) {
3863     default: break;
3864     case ISD::SIGN_EXTEND:
3865       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3866                          C->isTargetOpcode(), C->isOpaque());
3867     case ISD::ANY_EXTEND:
3868     case ISD::ZERO_EXTEND:
3869     case ISD::TRUNCATE:
3870       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3871                          C->isTargetOpcode(), C->isOpaque());
3872     case ISD::UINT_TO_FP:
3873     case ISD::SINT_TO_FP: {
3874       APFloat apf(EVTToAPFloatSemantics(VT),
3875                   APInt::getNullValue(VT.getSizeInBits()));
3876       (void)apf.convertFromAPInt(Val,
3877                                  Opcode==ISD::SINT_TO_FP,
3878                                  APFloat::rmNearestTiesToEven);
3879       return getConstantFP(apf, DL, VT);
3880     }
3881     case ISD::BITCAST:
3882       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3883         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3884       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3885         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3886       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3887         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3888       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3889         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3890       break;
3891     case ISD::ABS:
3892       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
3893                          C->isOpaque());
3894     case ISD::BITREVERSE:
3895       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3896                          C->isOpaque());
3897     case ISD::BSWAP:
3898       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3899                          C->isOpaque());
3900     case ISD::CTPOP:
3901       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3902                          C->isOpaque());
3903     case ISD::CTLZ:
3904     case ISD::CTLZ_ZERO_UNDEF:
3905       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3906                          C->isOpaque());
3907     case ISD::CTTZ:
3908     case ISD::CTTZ_ZERO_UNDEF:
3909       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3910                          C->isOpaque());
3911     case ISD::FP16_TO_FP: {
3912       bool Ignored;
3913       APFloat FPV(APFloat::IEEEhalf(),
3914                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3915 
3916       // This can return overflow, underflow, or inexact; we don't care.
3917       // FIXME need to be more flexible about rounding mode.
3918       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3919                         APFloat::rmNearestTiesToEven, &Ignored);
3920       return getConstantFP(FPV, DL, VT);
3921     }
3922     }
3923   }
3924 
3925   // Constant fold unary operations with a floating point constant operand.
3926   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3927     APFloat V = C->getValueAPF();    // make copy
3928     switch (Opcode) {
3929     case ISD::FNEG:
3930       V.changeSign();
3931       return getConstantFP(V, DL, VT);
3932     case ISD::FABS:
3933       V.clearSign();
3934       return getConstantFP(V, DL, VT);
3935     case ISD::FCEIL: {
3936       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3937       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3938         return getConstantFP(V, DL, VT);
3939       break;
3940     }
3941     case ISD::FTRUNC: {
3942       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3943       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3944         return getConstantFP(V, DL, VT);
3945       break;
3946     }
3947     case ISD::FFLOOR: {
3948       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3949       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3950         return getConstantFP(V, DL, VT);
3951       break;
3952     }
3953     case ISD::FP_EXTEND: {
3954       bool ignored;
3955       // This can return overflow, underflow, or inexact; we don't care.
3956       // FIXME need to be more flexible about rounding mode.
3957       (void)V.convert(EVTToAPFloatSemantics(VT),
3958                       APFloat::rmNearestTiesToEven, &ignored);
3959       return getConstantFP(V, DL, VT);
3960     }
3961     case ISD::FP_TO_SINT:
3962     case ISD::FP_TO_UINT: {
3963       bool ignored;
3964       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
3965       // FIXME need to be more flexible about rounding mode.
3966       APFloat::opStatus s =
3967           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
3968       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
3969         break;
3970       return getConstant(IntVal, DL, VT);
3971     }
3972     case ISD::BITCAST:
3973       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3974         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3975       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3976         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3977       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3978         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3979       break;
3980     case ISD::FP_TO_FP16: {
3981       bool Ignored;
3982       // This can return overflow, underflow, or inexact; we don't care.
3983       // FIXME need to be more flexible about rounding mode.
3984       (void)V.convert(APFloat::IEEEhalf(),
3985                       APFloat::rmNearestTiesToEven, &Ignored);
3986       return getConstant(V.bitcastToAPInt(), DL, VT);
3987     }
3988     }
3989   }
3990 
3991   // Constant fold unary operations with a vector integer or float operand.
3992   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3993     if (BV->isConstant()) {
3994       switch (Opcode) {
3995       default:
3996         // FIXME: Entirely reasonable to perform folding of other unary
3997         // operations here as the need arises.
3998         break;
3999       case ISD::FNEG:
4000       case ISD::FABS:
4001       case ISD::FCEIL:
4002       case ISD::FTRUNC:
4003       case ISD::FFLOOR:
4004       case ISD::FP_EXTEND:
4005       case ISD::FP_TO_SINT:
4006       case ISD::FP_TO_UINT:
4007       case ISD::TRUNCATE:
4008       case ISD::ANY_EXTEND:
4009       case ISD::ZERO_EXTEND:
4010       case ISD::SIGN_EXTEND:
4011       case ISD::UINT_TO_FP:
4012       case ISD::SINT_TO_FP:
4013       case ISD::ABS:
4014       case ISD::BITREVERSE:
4015       case ISD::BSWAP:
4016       case ISD::CTLZ:
4017       case ISD::CTLZ_ZERO_UNDEF:
4018       case ISD::CTTZ:
4019       case ISD::CTTZ_ZERO_UNDEF:
4020       case ISD::CTPOP: {
4021         SDValue Ops = { Operand };
4022         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4023           return Fold;
4024       }
4025       }
4026     }
4027   }
4028 
4029   unsigned OpOpcode = Operand.getNode()->getOpcode();
4030   switch (Opcode) {
4031   case ISD::TokenFactor:
4032   case ISD::MERGE_VALUES:
4033   case ISD::CONCAT_VECTORS:
4034     return Operand;         // Factor, merge or concat of one node?  No need.
4035   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4036   case ISD::FP_EXTEND:
4037     assert(VT.isFloatingPoint() &&
4038            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4039     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4040     assert((!VT.isVector() ||
4041             VT.getVectorNumElements() ==
4042             Operand.getValueType().getVectorNumElements()) &&
4043            "Vector element count mismatch!");
4044     assert(Operand.getValueType().bitsLT(VT) &&
4045            "Invalid fpext node, dst < src!");
4046     if (Operand.isUndef())
4047       return getUNDEF(VT);
4048     break;
4049   case ISD::SIGN_EXTEND:
4050     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4051            "Invalid SIGN_EXTEND!");
4052     if (Operand.getValueType() == VT) return Operand;   // noop extension
4053     assert((!VT.isVector() ||
4054             VT.getVectorNumElements() ==
4055             Operand.getValueType().getVectorNumElements()) &&
4056            "Vector element count mismatch!");
4057     assert(Operand.getValueType().bitsLT(VT) &&
4058            "Invalid sext node, dst < src!");
4059     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4060       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4061     else if (OpOpcode == ISD::UNDEF)
4062       // sext(undef) = 0, because the top bits will all be the same.
4063       return getConstant(0, DL, VT);
4064     break;
4065   case ISD::ZERO_EXTEND:
4066     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4067            "Invalid ZERO_EXTEND!");
4068     if (Operand.getValueType() == VT) return Operand;   // noop extension
4069     assert((!VT.isVector() ||
4070             VT.getVectorNumElements() ==
4071             Operand.getValueType().getVectorNumElements()) &&
4072            "Vector element count mismatch!");
4073     assert(Operand.getValueType().bitsLT(VT) &&
4074            "Invalid zext node, dst < src!");
4075     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4076       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4077     else if (OpOpcode == ISD::UNDEF)
4078       // zext(undef) = 0, because the top bits will be zero.
4079       return getConstant(0, DL, VT);
4080     break;
4081   case ISD::ANY_EXTEND:
4082     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4083            "Invalid ANY_EXTEND!");
4084     if (Operand.getValueType() == VT) return Operand;   // noop extension
4085     assert((!VT.isVector() ||
4086             VT.getVectorNumElements() ==
4087             Operand.getValueType().getVectorNumElements()) &&
4088            "Vector element count mismatch!");
4089     assert(Operand.getValueType().bitsLT(VT) &&
4090            "Invalid anyext node, dst < src!");
4091 
4092     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4093         OpOpcode == ISD::ANY_EXTEND)
4094       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4095       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4096     else if (OpOpcode == ISD::UNDEF)
4097       return getUNDEF(VT);
4098 
4099     // (ext (trunc x)) -> x
4100     if (OpOpcode == ISD::TRUNCATE) {
4101       SDValue OpOp = Operand.getOperand(0);
4102       if (OpOp.getValueType() == VT) {
4103         transferDbgValues(Operand, OpOp);
4104         return OpOp;
4105       }
4106     }
4107     break;
4108   case ISD::TRUNCATE:
4109     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4110            "Invalid TRUNCATE!");
4111     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4112     assert((!VT.isVector() ||
4113             VT.getVectorNumElements() ==
4114             Operand.getValueType().getVectorNumElements()) &&
4115            "Vector element count mismatch!");
4116     assert(Operand.getValueType().bitsGT(VT) &&
4117            "Invalid truncate node, src < dst!");
4118     if (OpOpcode == ISD::TRUNCATE)
4119       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4120     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4121         OpOpcode == ISD::ANY_EXTEND) {
4122       // If the source is smaller than the dest, we still need an extend.
4123       if (Operand.getOperand(0).getValueType().getScalarType()
4124             .bitsLT(VT.getScalarType()))
4125         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4126       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4127         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4128       return Operand.getOperand(0);
4129     }
4130     if (OpOpcode == ISD::UNDEF)
4131       return getUNDEF(VT);
4132     break;
4133   case ISD::ABS:
4134     assert(VT.isInteger() && VT == Operand.getValueType() &&
4135            "Invalid ABS!");
4136     if (OpOpcode == ISD::UNDEF)
4137       return getUNDEF(VT);
4138     break;
4139   case ISD::BSWAP:
4140     assert(VT.isInteger() && VT == Operand.getValueType() &&
4141            "Invalid BSWAP!");
4142     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4143            "BSWAP types must be a multiple of 16 bits!");
4144     if (OpOpcode == ISD::UNDEF)
4145       return getUNDEF(VT);
4146     break;
4147   case ISD::BITREVERSE:
4148     assert(VT.isInteger() && VT == Operand.getValueType() &&
4149            "Invalid BITREVERSE!");
4150     if (OpOpcode == ISD::UNDEF)
4151       return getUNDEF(VT);
4152     break;
4153   case ISD::BITCAST:
4154     // Basic sanity checking.
4155     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4156            "Cannot BITCAST between types of different sizes!");
4157     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4158     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4159       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4160     if (OpOpcode == ISD::UNDEF)
4161       return getUNDEF(VT);
4162     break;
4163   case ISD::SCALAR_TO_VECTOR:
4164     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4165            (VT.getVectorElementType() == Operand.getValueType() ||
4166             (VT.getVectorElementType().isInteger() &&
4167              Operand.getValueType().isInteger() &&
4168              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4169            "Illegal SCALAR_TO_VECTOR node!");
4170     if (OpOpcode == ISD::UNDEF)
4171       return getUNDEF(VT);
4172     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4173     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4174         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4175         Operand.getConstantOperandVal(1) == 0 &&
4176         Operand.getOperand(0).getValueType() == VT)
4177       return Operand.getOperand(0);
4178     break;
4179   case ISD::FNEG:
4180     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4181     if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4182         OpOpcode == ISD::FSUB)
4183       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4184                      Operand.getOperand(0), Flags);
4185     if (OpOpcode == ISD::FNEG)  // --X -> X
4186       return Operand.getOperand(0);
4187     break;
4188   case ISD::FABS:
4189     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4190       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4191     break;
4192   }
4193 
4194   SDNode *N;
4195   SDVTList VTs = getVTList(VT);
4196   SDValue Ops[] = {Operand};
4197   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4198     FoldingSetNodeID ID;
4199     AddNodeIDNode(ID, Opcode, VTs, Ops);
4200     void *IP = nullptr;
4201     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4202       E->intersectFlagsWith(Flags);
4203       return SDValue(E, 0);
4204     }
4205 
4206     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4207     N->setFlags(Flags);
4208     createOperands(N, Ops);
4209     CSEMap.InsertNode(N, IP);
4210   } else {
4211     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4212     createOperands(N, Ops);
4213   }
4214 
4215   InsertNode(N);
4216   SDValue V = SDValue(N, 0);
4217   NewSDValueDbgMsg(V, "Creating new node: ", this);
4218   return V;
4219 }
4220 
4221 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4222                                         const APInt &C2) {
4223   switch (Opcode) {
4224   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4225   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4226   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4227   case ISD::AND:  return std::make_pair(C1 & C2, true);
4228   case ISD::OR:   return std::make_pair(C1 | C2, true);
4229   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4230   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4231   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4232   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4233   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4234   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4235   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4236   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4237   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4238   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4239   case ISD::UDIV:
4240     if (!C2.getBoolValue())
4241       break;
4242     return std::make_pair(C1.udiv(C2), true);
4243   case ISD::UREM:
4244     if (!C2.getBoolValue())
4245       break;
4246     return std::make_pair(C1.urem(C2), true);
4247   case ISD::SDIV:
4248     if (!C2.getBoolValue())
4249       break;
4250     return std::make_pair(C1.sdiv(C2), true);
4251   case ISD::SREM:
4252     if (!C2.getBoolValue())
4253       break;
4254     return std::make_pair(C1.srem(C2), true);
4255   }
4256   return std::make_pair(APInt(1, 0), false);
4257 }
4258 
4259 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4260                                              EVT VT, const ConstantSDNode *Cst1,
4261                                              const ConstantSDNode *Cst2) {
4262   if (Cst1->isOpaque() || Cst2->isOpaque())
4263     return SDValue();
4264 
4265   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
4266                                             Cst2->getAPIntValue());
4267   if (!Folded.second)
4268     return SDValue();
4269   return getConstant(Folded.first, DL, VT);
4270 }
4271 
4272 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4273                                        const GlobalAddressSDNode *GA,
4274                                        const SDNode *N2) {
4275   if (GA->getOpcode() != ISD::GlobalAddress)
4276     return SDValue();
4277   if (!TLI->isOffsetFoldingLegal(GA))
4278     return SDValue();
4279   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
4280   if (!Cst2)
4281     return SDValue();
4282   int64_t Offset = Cst2->getSExtValue();
4283   switch (Opcode) {
4284   case ISD::ADD: break;
4285   case ISD::SUB: Offset = -uint64_t(Offset); break;
4286   default: return SDValue();
4287   }
4288   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
4289                           GA->getOffset() + uint64_t(Offset));
4290 }
4291 
4292 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4293   switch (Opcode) {
4294   case ISD::SDIV:
4295   case ISD::UDIV:
4296   case ISD::SREM:
4297   case ISD::UREM: {
4298     // If a divisor is zero/undef or any element of a divisor vector is
4299     // zero/undef, the whole op is undef.
4300     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4301     SDValue Divisor = Ops[1];
4302     if (Divisor.isUndef() || isNullConstant(Divisor))
4303       return true;
4304 
4305     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4306            llvm::any_of(Divisor->op_values(),
4307                         [](SDValue V) { return V.isUndef() ||
4308                                         isNullConstant(V); });
4309     // TODO: Handle signed overflow.
4310   }
4311   // TODO: Handle oversized shifts.
4312   default:
4313     return false;
4314   }
4315 }
4316 
4317 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4318                                              EVT VT, SDNode *Cst1,
4319                                              SDNode *Cst2) {
4320   // If the opcode is a target-specific ISD node, there's nothing we can
4321   // do here and the operand rules may not line up with the below, so
4322   // bail early.
4323   if (Opcode >= ISD::BUILTIN_OP_END)
4324     return SDValue();
4325 
4326   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
4327     return getUNDEF(VT);
4328 
4329   // Handle the case of two scalars.
4330   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
4331     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
4332       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
4333       assert((!Folded || !VT.isVector()) &&
4334              "Can't fold vectors ops with scalar operands");
4335       return Folded;
4336     }
4337   }
4338 
4339   // fold (add Sym, c) -> Sym+c
4340   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
4341     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
4342   if (TLI->isCommutativeBinOp(Opcode))
4343     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
4344       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
4345 
4346   // For vectors extract each constant element into Inputs so we can constant
4347   // fold them individually.
4348   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
4349   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
4350   if (!BV1 || !BV2)
4351     return SDValue();
4352 
4353   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
4354 
4355   EVT SVT = VT.getScalarType();
4356   EVT LegalSVT = SVT;
4357   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4358     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4359     if (LegalSVT.bitsLT(SVT))
4360       return SDValue();
4361   }
4362   SmallVector<SDValue, 4> Outputs;
4363   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
4364     SDValue V1 = BV1->getOperand(I);
4365     SDValue V2 = BV2->getOperand(I);
4366 
4367     if (SVT.isInteger()) {
4368         if (V1->getValueType(0).bitsGT(SVT))
4369           V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4370         if (V2->getValueType(0).bitsGT(SVT))
4371           V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4372     }
4373 
4374     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4375       return SDValue();
4376 
4377     // Fold one vector element.
4378     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4379     if (LegalSVT != SVT)
4380       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4381 
4382     // Scalar folding only succeeded if the result is a constant or UNDEF.
4383     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4384         ScalarResult.getOpcode() != ISD::ConstantFP)
4385       return SDValue();
4386     Outputs.push_back(ScalarResult);
4387   }
4388 
4389   assert(VT.getVectorNumElements() == Outputs.size() &&
4390          "Vector size mismatch!");
4391 
4392   // We may have a vector type but a scalar result. Create a splat.
4393   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4394 
4395   // Build a big vector out of the scalar elements we generated.
4396   return getBuildVector(VT, SDLoc(), Outputs);
4397 }
4398 
4399 // TODO: Merge with FoldConstantArithmetic
4400 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4401                                                    const SDLoc &DL, EVT VT,
4402                                                    ArrayRef<SDValue> Ops,
4403                                                    const SDNodeFlags Flags) {
4404   // If the opcode is a target-specific ISD node, there's nothing we can
4405   // do here and the operand rules may not line up with the below, so
4406   // bail early.
4407   if (Opcode >= ISD::BUILTIN_OP_END)
4408     return SDValue();
4409 
4410   if (isUndef(Opcode, Ops))
4411     return getUNDEF(VT);
4412 
4413   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4414   if (!VT.isVector())
4415     return SDValue();
4416 
4417   unsigned NumElts = VT.getVectorNumElements();
4418 
4419   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4420     return !Op.getValueType().isVector() ||
4421            Op.getValueType().getVectorNumElements() == NumElts;
4422   };
4423 
4424   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4425     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4426     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4427            (BV && BV->isConstant());
4428   };
4429 
4430   // All operands must be vector types with the same number of elements as
4431   // the result type and must be either UNDEF or a build vector of constant
4432   // or UNDEF scalars.
4433   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4434       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4435     return SDValue();
4436 
4437   // If we are comparing vectors, then the result needs to be a i1 boolean
4438   // that is then sign-extended back to the legal result type.
4439   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4440 
4441   // Find legal integer scalar type for constant promotion and
4442   // ensure that its scalar size is at least as large as source.
4443   EVT LegalSVT = VT.getScalarType();
4444   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4445     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4446     if (LegalSVT.bitsLT(VT.getScalarType()))
4447       return SDValue();
4448   }
4449 
4450   // Constant fold each scalar lane separately.
4451   SmallVector<SDValue, 4> ScalarResults;
4452   for (unsigned i = 0; i != NumElts; i++) {
4453     SmallVector<SDValue, 4> ScalarOps;
4454     for (SDValue Op : Ops) {
4455       EVT InSVT = Op.getValueType().getScalarType();
4456       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4457       if (!InBV) {
4458         // We've checked that this is UNDEF or a constant of some kind.
4459         if (Op.isUndef())
4460           ScalarOps.push_back(getUNDEF(InSVT));
4461         else
4462           ScalarOps.push_back(Op);
4463         continue;
4464       }
4465 
4466       SDValue ScalarOp = InBV->getOperand(i);
4467       EVT ScalarVT = ScalarOp.getValueType();
4468 
4469       // Build vector (integer) scalar operands may need implicit
4470       // truncation - do this before constant folding.
4471       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4472         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4473 
4474       ScalarOps.push_back(ScalarOp);
4475     }
4476 
4477     // Constant fold the scalar operands.
4478     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4479 
4480     // Legalize the (integer) scalar constant if necessary.
4481     if (LegalSVT != SVT)
4482       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4483 
4484     // Scalar folding only succeeded if the result is a constant or UNDEF.
4485     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4486         ScalarResult.getOpcode() != ISD::ConstantFP)
4487       return SDValue();
4488     ScalarResults.push_back(ScalarResult);
4489   }
4490 
4491   SDValue V = getBuildVector(VT, DL, ScalarResults);
4492   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4493   return V;
4494 }
4495 
4496 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4497                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4498   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4499   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4500   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4501   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4502 
4503   // Canonicalize constant to RHS if commutative.
4504   if (TLI->isCommutativeBinOp(Opcode)) {
4505     if (N1C && !N2C) {
4506       std::swap(N1C, N2C);
4507       std::swap(N1, N2);
4508     } else if (N1CFP && !N2CFP) {
4509       std::swap(N1CFP, N2CFP);
4510       std::swap(N1, N2);
4511     }
4512   }
4513 
4514   switch (Opcode) {
4515   default: break;
4516   case ISD::TokenFactor:
4517     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4518            N2.getValueType() == MVT::Other && "Invalid token factor!");
4519     // Fold trivial token factors.
4520     if (N1.getOpcode() == ISD::EntryToken) return N2;
4521     if (N2.getOpcode() == ISD::EntryToken) return N1;
4522     if (N1 == N2) return N1;
4523     break;
4524   case ISD::CONCAT_VECTORS: {
4525     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4526     SDValue Ops[] = {N1, N2};
4527     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4528       return V;
4529     break;
4530   }
4531   case ISD::AND:
4532     assert(VT.isInteger() && "This operator does not apply to FP types!");
4533     assert(N1.getValueType() == N2.getValueType() &&
4534            N1.getValueType() == VT && "Binary operator types must match!");
4535     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4536     // worth handling here.
4537     if (N2C && N2C->isNullValue())
4538       return N2;
4539     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4540       return N1;
4541     break;
4542   case ISD::OR:
4543   case ISD::XOR:
4544   case ISD::ADD:
4545   case ISD::SUB:
4546     assert(VT.isInteger() && "This operator does not apply to FP types!");
4547     assert(N1.getValueType() == N2.getValueType() &&
4548            N1.getValueType() == VT && "Binary operator types must match!");
4549     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4550     // it's worth handling here.
4551     if (N2C && N2C->isNullValue())
4552       return N1;
4553     break;
4554   case ISD::UDIV:
4555   case ISD::UREM:
4556   case ISD::MULHU:
4557   case ISD::MULHS:
4558   case ISD::MUL:
4559   case ISD::SDIV:
4560   case ISD::SREM:
4561   case ISD::SMIN:
4562   case ISD::SMAX:
4563   case ISD::UMIN:
4564   case ISD::UMAX:
4565     assert(VT.isInteger() && "This operator does not apply to FP types!");
4566     assert(N1.getValueType() == N2.getValueType() &&
4567            N1.getValueType() == VT && "Binary operator types must match!");
4568     break;
4569   case ISD::FADD:
4570   case ISD::FSUB:
4571   case ISD::FMUL:
4572   case ISD::FDIV:
4573   case ISD::FREM:
4574     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4575     assert(N1.getValueType() == N2.getValueType() &&
4576            N1.getValueType() == VT && "Binary operator types must match!");
4577     break;
4578   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4579     assert(N1.getValueType() == VT &&
4580            N1.getValueType().isFloatingPoint() &&
4581            N2.getValueType().isFloatingPoint() &&
4582            "Invalid FCOPYSIGN!");
4583     break;
4584   case ISD::SHL:
4585   case ISD::SRA:
4586   case ISD::SRL:
4587   case ISD::ROTL:
4588   case ISD::ROTR:
4589     assert(VT == N1.getValueType() &&
4590            "Shift operators return type must be the same as their first arg");
4591     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4592            "Shifts only work on integers");
4593     assert((!VT.isVector() || VT == N2.getValueType()) &&
4594            "Vector shift amounts must be in the same as their first arg");
4595     // Verify that the shift amount VT is bit enough to hold valid shift
4596     // amounts.  This catches things like trying to shift an i1024 value by an
4597     // i8, which is easy to fall into in generic code that uses
4598     // TLI.getShiftAmount().
4599     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4600            "Invalid use of small shift amount with oversized value!");
4601 
4602     // Always fold shifts of i1 values so the code generator doesn't need to
4603     // handle them.  Since we know the size of the shift has to be less than the
4604     // size of the value, the shift/rotate count is guaranteed to be zero.
4605     if (VT == MVT::i1)
4606       return N1;
4607     if (N2C && N2C->isNullValue())
4608       return N1;
4609     break;
4610   case ISD::FP_ROUND_INREG: {
4611     EVT EVT = cast<VTSDNode>(N2)->getVT();
4612     assert(VT == N1.getValueType() && "Not an inreg round!");
4613     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4614            "Cannot FP_ROUND_INREG integer types");
4615     assert(EVT.isVector() == VT.isVector() &&
4616            "FP_ROUND_INREG type should be vector iff the operand "
4617            "type is vector!");
4618     assert((!EVT.isVector() ||
4619             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4620            "Vector element counts must match in FP_ROUND_INREG");
4621     assert(EVT.bitsLE(VT) && "Not rounding down!");
4622     (void)EVT;
4623     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4624     break;
4625   }
4626   case ISD::FP_ROUND:
4627     assert(VT.isFloatingPoint() &&
4628            N1.getValueType().isFloatingPoint() &&
4629            VT.bitsLE(N1.getValueType()) &&
4630            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4631            "Invalid FP_ROUND!");
4632     if (N1.getValueType() == VT) return N1;  // noop conversion.
4633     break;
4634   case ISD::AssertSext:
4635   case ISD::AssertZext: {
4636     EVT EVT = cast<VTSDNode>(N2)->getVT();
4637     assert(VT == N1.getValueType() && "Not an inreg extend!");
4638     assert(VT.isInteger() && EVT.isInteger() &&
4639            "Cannot *_EXTEND_INREG FP types");
4640     assert(!EVT.isVector() &&
4641            "AssertSExt/AssertZExt type should be the vector element type "
4642            "rather than the vector type!");
4643     assert(EVT.bitsLE(VT) && "Not extending!");
4644     if (VT == EVT) return N1; // noop assertion.
4645     break;
4646   }
4647   case ISD::SIGN_EXTEND_INREG: {
4648     EVT EVT = cast<VTSDNode>(N2)->getVT();
4649     assert(VT == N1.getValueType() && "Not an inreg extend!");
4650     assert(VT.isInteger() && EVT.isInteger() &&
4651            "Cannot *_EXTEND_INREG FP types");
4652     assert(EVT.isVector() == VT.isVector() &&
4653            "SIGN_EXTEND_INREG type should be vector iff the operand "
4654            "type is vector!");
4655     assert((!EVT.isVector() ||
4656             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4657            "Vector element counts must match in SIGN_EXTEND_INREG");
4658     assert(EVT.bitsLE(VT) && "Not extending!");
4659     if (EVT == VT) return N1;  // Not actually extending
4660 
4661     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4662       unsigned FromBits = EVT.getScalarSizeInBits();
4663       Val <<= Val.getBitWidth() - FromBits;
4664       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4665       return getConstant(Val, DL, ConstantVT);
4666     };
4667 
4668     if (N1C) {
4669       const APInt &Val = N1C->getAPIntValue();
4670       return SignExtendInReg(Val, VT);
4671     }
4672     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4673       SmallVector<SDValue, 8> Ops;
4674       llvm::EVT OpVT = N1.getOperand(0).getValueType();
4675       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4676         SDValue Op = N1.getOperand(i);
4677         if (Op.isUndef()) {
4678           Ops.push_back(getUNDEF(OpVT));
4679           continue;
4680         }
4681         ConstantSDNode *C = cast<ConstantSDNode>(Op);
4682         APInt Val = C->getAPIntValue();
4683         Ops.push_back(SignExtendInReg(Val, OpVT));
4684       }
4685       return getBuildVector(VT, DL, Ops);
4686     }
4687     break;
4688   }
4689   case ISD::EXTRACT_VECTOR_ELT:
4690     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
4691            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
4692              element type of the vector.");
4693 
4694     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4695     if (N1.isUndef())
4696       return getUNDEF(VT);
4697 
4698     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4699     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
4700       return getUNDEF(VT);
4701 
4702     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4703     // expanding copies of large vectors from registers.
4704     if (N2C &&
4705         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4706         N1.getNumOperands() > 0) {
4707       unsigned Factor =
4708         N1.getOperand(0).getValueType().getVectorNumElements();
4709       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4710                      N1.getOperand(N2C->getZExtValue() / Factor),
4711                      getConstant(N2C->getZExtValue() % Factor, DL,
4712                                  N2.getValueType()));
4713     }
4714 
4715     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4716     // expanding large vector constants.
4717     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4718       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4719 
4720       if (VT != Elt.getValueType())
4721         // If the vector element type is not legal, the BUILD_VECTOR operands
4722         // are promoted and implicitly truncated, and the result implicitly
4723         // extended. Make that explicit here.
4724         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4725 
4726       return Elt;
4727     }
4728 
4729     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4730     // operations are lowered to scalars.
4731     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4732       // If the indices are the same, return the inserted element else
4733       // if the indices are known different, extract the element from
4734       // the original vector.
4735       SDValue N1Op2 = N1.getOperand(2);
4736       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4737 
4738       if (N1Op2C && N2C) {
4739         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4740           if (VT == N1.getOperand(1).getValueType())
4741             return N1.getOperand(1);
4742           else
4743             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4744         }
4745 
4746         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4747       }
4748     }
4749 
4750     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
4751     // when vector types are scalarized and v1iX is legal.
4752     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
4753     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
4754         N1.getValueType().getVectorNumElements() == 1) {
4755       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
4756                      N1.getOperand(1));
4757     }
4758     break;
4759   case ISD::EXTRACT_ELEMENT:
4760     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4761     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4762            (N1.getValueType().isInteger() == VT.isInteger()) &&
4763            N1.getValueType() != VT &&
4764            "Wrong types for EXTRACT_ELEMENT!");
4765 
4766     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4767     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4768     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4769     if (N1.getOpcode() == ISD::BUILD_PAIR)
4770       return N1.getOperand(N2C->getZExtValue());
4771 
4772     // EXTRACT_ELEMENT of a constant int is also very common.
4773     if (N1C) {
4774       unsigned ElementSize = VT.getSizeInBits();
4775       unsigned Shift = ElementSize * N2C->getZExtValue();
4776       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4777       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4778     }
4779     break;
4780   case ISD::EXTRACT_SUBVECTOR:
4781     if (VT.isSimple() && N1.getValueType().isSimple()) {
4782       assert(VT.isVector() && N1.getValueType().isVector() &&
4783              "Extract subvector VTs must be a vectors!");
4784       assert(VT.getVectorElementType() ==
4785              N1.getValueType().getVectorElementType() &&
4786              "Extract subvector VTs must have the same element type!");
4787       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4788              "Extract subvector must be from larger vector to smaller vector!");
4789 
4790       if (N2C) {
4791         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4792                 <= N1.getValueType().getVectorNumElements())
4793                && "Extract subvector overflow!");
4794       }
4795 
4796       // Trivial extraction.
4797       if (VT.getSimpleVT() == N1.getSimpleValueType())
4798         return N1;
4799 
4800       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4801       if (N1.isUndef())
4802         return getUNDEF(VT);
4803 
4804       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4805       // the concat have the same type as the extract.
4806       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4807           N1.getNumOperands() > 0 &&
4808           VT == N1.getOperand(0).getValueType()) {
4809         unsigned Factor = VT.getVectorNumElements();
4810         return N1.getOperand(N2C->getZExtValue() / Factor);
4811       }
4812 
4813       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4814       // during shuffle legalization.
4815       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4816           VT == N1.getOperand(1).getValueType())
4817         return N1.getOperand(1);
4818     }
4819     break;
4820   }
4821 
4822   // Perform trivial constant folding.
4823   if (SDValue SV =
4824           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4825     return SV;
4826 
4827   // Constant fold FP operations.
4828   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4829   if (N1CFP) {
4830     if (N2CFP) {
4831       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4832       APFloat::opStatus s;
4833       switch (Opcode) {
4834       case ISD::FADD:
4835         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4836         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4837           return getConstantFP(V1, DL, VT);
4838         break;
4839       case ISD::FSUB:
4840         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4841         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4842           return getConstantFP(V1, DL, VT);
4843         break;
4844       case ISD::FMUL:
4845         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4846         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4847           return getConstantFP(V1, DL, VT);
4848         break;
4849       case ISD::FDIV:
4850         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4851         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4852                                  s!=APFloat::opDivByZero)) {
4853           return getConstantFP(V1, DL, VT);
4854         }
4855         break;
4856       case ISD::FREM :
4857         s = V1.mod(V2);
4858         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4859                                  s!=APFloat::opDivByZero)) {
4860           return getConstantFP(V1, DL, VT);
4861         }
4862         break;
4863       case ISD::FCOPYSIGN:
4864         V1.copySign(V2);
4865         return getConstantFP(V1, DL, VT);
4866       default: break;
4867       }
4868     }
4869 
4870     if (Opcode == ISD::FP_ROUND) {
4871       APFloat V = N1CFP->getValueAPF();    // make copy
4872       bool ignored;
4873       // This can return overflow, underflow, or inexact; we don't care.
4874       // FIXME need to be more flexible about rounding mode.
4875       (void)V.convert(EVTToAPFloatSemantics(VT),
4876                       APFloat::rmNearestTiesToEven, &ignored);
4877       return getConstantFP(V, DL, VT);
4878     }
4879   }
4880 
4881   // Any FP binop with an undef operand is folded to NaN. This matches the
4882   // behavior of the IR optimizer.
4883   switch (Opcode) {
4884   case ISD::FADD:
4885   case ISD::FSUB:
4886   case ISD::FMUL:
4887   case ISD::FDIV:
4888   case ISD::FREM:
4889     if (N1.isUndef() || N2.isUndef())
4890       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
4891   }
4892 
4893   // Canonicalize an UNDEF to the RHS, even over a constant.
4894   if (N1.isUndef()) {
4895     if (TLI->isCommutativeBinOp(Opcode)) {
4896       std::swap(N1, N2);
4897     } else {
4898       switch (Opcode) {
4899       case ISD::FP_ROUND_INREG:
4900       case ISD::SIGN_EXTEND_INREG:
4901       case ISD::SUB:
4902         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
4903       case ISD::UDIV:
4904       case ISD::SDIV:
4905       case ISD::UREM:
4906       case ISD::SREM:
4907       case ISD::SRA:
4908       case ISD::SRL:
4909       case ISD::SHL:
4910         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4911       }
4912     }
4913   }
4914 
4915   // Fold a bunch of operators when the RHS is undef.
4916   if (N2.isUndef()) {
4917     switch (Opcode) {
4918     case ISD::XOR:
4919       if (N1.isUndef())
4920         // Handle undef ^ undef -> 0 special case. This is a common
4921         // idiom (misuse).
4922         return getConstant(0, DL, VT);
4923       LLVM_FALLTHROUGH;
4924     case ISD::ADD:
4925     case ISD::ADDC:
4926     case ISD::ADDE:
4927     case ISD::SUB:
4928     case ISD::UDIV:
4929     case ISD::SDIV:
4930     case ISD::UREM:
4931     case ISD::SREM:
4932     case ISD::SRA:
4933     case ISD::SRL:
4934     case ISD::SHL:
4935       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
4936     case ISD::MUL:
4937     case ISD::AND:
4938       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4939     case ISD::OR:
4940       return getAllOnesConstant(DL, VT);
4941     }
4942   }
4943 
4944   // Memoize this node if possible.
4945   SDNode *N;
4946   SDVTList VTs = getVTList(VT);
4947   SDValue Ops[] = {N1, N2};
4948   if (VT != MVT::Glue) {
4949     FoldingSetNodeID ID;
4950     AddNodeIDNode(ID, Opcode, VTs, Ops);
4951     void *IP = nullptr;
4952     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4953       E->intersectFlagsWith(Flags);
4954       return SDValue(E, 0);
4955     }
4956 
4957     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4958     N->setFlags(Flags);
4959     createOperands(N, Ops);
4960     CSEMap.InsertNode(N, IP);
4961   } else {
4962     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4963     createOperands(N, Ops);
4964   }
4965 
4966   InsertNode(N);
4967   SDValue V = SDValue(N, 0);
4968   NewSDValueDbgMsg(V, "Creating new node: ", this);
4969   return V;
4970 }
4971 
4972 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4973                               SDValue N1, SDValue N2, SDValue N3,
4974                               const SDNodeFlags Flags) {
4975   // Perform various simplifications.
4976   switch (Opcode) {
4977   case ISD::FMA: {
4978     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4979     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
4980            N3.getValueType() == VT && "FMA types must match!");
4981     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4982     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4983     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4984     if (N1CFP && N2CFP && N3CFP) {
4985       APFloat  V1 = N1CFP->getValueAPF();
4986       const APFloat &V2 = N2CFP->getValueAPF();
4987       const APFloat &V3 = N3CFP->getValueAPF();
4988       APFloat::opStatus s =
4989         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4990       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4991         return getConstantFP(V1, DL, VT);
4992     }
4993     break;
4994   }
4995   case ISD::CONCAT_VECTORS: {
4996     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4997     SDValue Ops[] = {N1, N2, N3};
4998     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4999       return V;
5000     break;
5001   }
5002   case ISD::SETCC: {
5003     // Use FoldSetCC to simplify SETCC's.
5004     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5005       return V;
5006     // Vector constant folding.
5007     SDValue Ops[] = {N1, N2, N3};
5008     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5009       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5010       return V;
5011     }
5012     break;
5013   }
5014   case ISD::SELECT:
5015     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
5016      if (N1C->getZExtValue())
5017        return N2;             // select true, X, Y -> X
5018      return N3;             // select false, X, Y -> Y
5019     }
5020 
5021     if (N2 == N3) return N2;   // select C, X, X -> X
5022     break;
5023   case ISD::VECTOR_SHUFFLE:
5024     llvm_unreachable("should use getVectorShuffle constructor!");
5025   case ISD::INSERT_VECTOR_ELT: {
5026     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5027     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5028     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5029       return getUNDEF(VT);
5030     break;
5031   }
5032   case ISD::INSERT_SUBVECTOR: {
5033     SDValue Index = N3;
5034     if (VT.isSimple() && N1.getValueType().isSimple()
5035         && N2.getValueType().isSimple()) {
5036       assert(VT.isVector() && N1.getValueType().isVector() &&
5037              N2.getValueType().isVector() &&
5038              "Insert subvector VTs must be a vectors");
5039       assert(VT == N1.getValueType() &&
5040              "Dest and insert subvector source types must match!");
5041       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5042              "Insert subvector must be from smaller vector to larger vector!");
5043       if (isa<ConstantSDNode>(Index)) {
5044         assert((N2.getValueType().getVectorNumElements() +
5045                 cast<ConstantSDNode>(Index)->getZExtValue()
5046                 <= VT.getVectorNumElements())
5047                && "Insert subvector overflow!");
5048       }
5049 
5050       // Trivial insertion.
5051       if (VT.getSimpleVT() == N2.getSimpleValueType())
5052         return N2;
5053     }
5054     break;
5055   }
5056   case ISD::BITCAST:
5057     // Fold bit_convert nodes from a type to themselves.
5058     if (N1.getValueType() == VT)
5059       return N1;
5060     break;
5061   }
5062 
5063   // Memoize node if it doesn't produce a flag.
5064   SDNode *N;
5065   SDVTList VTs = getVTList(VT);
5066   SDValue Ops[] = {N1, N2, N3};
5067   if (VT != MVT::Glue) {
5068     FoldingSetNodeID ID;
5069     AddNodeIDNode(ID, Opcode, VTs, Ops);
5070     void *IP = nullptr;
5071     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5072       E->intersectFlagsWith(Flags);
5073       return SDValue(E, 0);
5074     }
5075 
5076     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5077     N->setFlags(Flags);
5078     createOperands(N, Ops);
5079     CSEMap.InsertNode(N, IP);
5080   } else {
5081     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5082     createOperands(N, Ops);
5083   }
5084 
5085   InsertNode(N);
5086   SDValue V = SDValue(N, 0);
5087   NewSDValueDbgMsg(V, "Creating new node: ", this);
5088   return V;
5089 }
5090 
5091 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5092                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5093   SDValue Ops[] = { N1, N2, N3, N4 };
5094   return getNode(Opcode, DL, VT, Ops);
5095 }
5096 
5097 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5098                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5099                               SDValue N5) {
5100   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5101   return getNode(Opcode, DL, VT, Ops);
5102 }
5103 
5104 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5105 /// the incoming stack arguments to be loaded from the stack.
5106 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5107   SmallVector<SDValue, 8> ArgChains;
5108 
5109   // Include the original chain at the beginning of the list. When this is
5110   // used by target LowerCall hooks, this helps legalize find the
5111   // CALLSEQ_BEGIN node.
5112   ArgChains.push_back(Chain);
5113 
5114   // Add a chain value for each stack argument.
5115   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5116        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5117     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5118       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5119         if (FI->getIndex() < 0)
5120           ArgChains.push_back(SDValue(L, 1));
5121 
5122   // Build a tokenfactor for all the chains.
5123   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5124 }
5125 
5126 /// getMemsetValue - Vectorized representation of the memset value
5127 /// operand.
5128 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5129                               const SDLoc &dl) {
5130   assert(!Value.isUndef());
5131 
5132   unsigned NumBits = VT.getScalarSizeInBits();
5133   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5134     assert(C->getAPIntValue().getBitWidth() == 8);
5135     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5136     if (VT.isInteger())
5137       return DAG.getConstant(Val, dl, VT);
5138     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5139                              VT);
5140   }
5141 
5142   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5143   EVT IntVT = VT.getScalarType();
5144   if (!IntVT.isInteger())
5145     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5146 
5147   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5148   if (NumBits > 8) {
5149     // Use a multiplication with 0x010101... to extend the input to the
5150     // required length.
5151     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5152     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5153                         DAG.getConstant(Magic, dl, IntVT));
5154   }
5155 
5156   if (VT != Value.getValueType() && !VT.isInteger())
5157     Value = DAG.getBitcast(VT.getScalarType(), Value);
5158   if (VT != Value.getValueType())
5159     Value = DAG.getSplatBuildVector(VT, dl, Value);
5160 
5161   return Value;
5162 }
5163 
5164 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5165 /// used when a memcpy is turned into a memset when the source is a constant
5166 /// string ptr.
5167 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5168                                   const TargetLowering &TLI,
5169                                   const ConstantDataArraySlice &Slice) {
5170   // Handle vector with all elements zero.
5171   if (Slice.Array == nullptr) {
5172     if (VT.isInteger())
5173       return DAG.getConstant(0, dl, VT);
5174     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5175       return DAG.getConstantFP(0.0, dl, VT);
5176     else if (VT.isVector()) {
5177       unsigned NumElts = VT.getVectorNumElements();
5178       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5179       return DAG.getNode(ISD::BITCAST, dl, VT,
5180                          DAG.getConstant(0, dl,
5181                                          EVT::getVectorVT(*DAG.getContext(),
5182                                                           EltVT, NumElts)));
5183     } else
5184       llvm_unreachable("Expected type!");
5185   }
5186 
5187   assert(!VT.isVector() && "Can't handle vector type here!");
5188   unsigned NumVTBits = VT.getSizeInBits();
5189   unsigned NumVTBytes = NumVTBits / 8;
5190   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5191 
5192   APInt Val(NumVTBits, 0);
5193   if (DAG.getDataLayout().isLittleEndian()) {
5194     for (unsigned i = 0; i != NumBytes; ++i)
5195       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5196   } else {
5197     for (unsigned i = 0; i != NumBytes; ++i)
5198       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5199   }
5200 
5201   // If the "cost" of materializing the integer immediate is less than the cost
5202   // of a load, then it is cost effective to turn the load into the immediate.
5203   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5204   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5205     return DAG.getConstant(Val, dl, VT);
5206   return SDValue(nullptr, 0);
5207 }
5208 
5209 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5210                                            const SDLoc &DL) {
5211   EVT VT = Base.getValueType();
5212   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5213 }
5214 
5215 /// Returns true if memcpy source is constant data.
5216 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5217   uint64_t SrcDelta = 0;
5218   GlobalAddressSDNode *G = nullptr;
5219   if (Src.getOpcode() == ISD::GlobalAddress)
5220     G = cast<GlobalAddressSDNode>(Src);
5221   else if (Src.getOpcode() == ISD::ADD &&
5222            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5223            Src.getOperand(1).getOpcode() == ISD::Constant) {
5224     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5225     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5226   }
5227   if (!G)
5228     return false;
5229 
5230   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5231                                   SrcDelta + G->getOffset());
5232 }
5233 
5234 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5235 /// Return true if the number of memory ops is below the threshold (Limit).
5236 /// It returns the types of the sequence of memory ops to perform
5237 /// memset / memcpy by reference.
5238 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5239                                      unsigned Limit, uint64_t Size,
5240                                      unsigned DstAlign, unsigned SrcAlign,
5241                                      bool IsMemset,
5242                                      bool ZeroMemset,
5243                                      bool MemcpyStrSrc,
5244                                      bool AllowOverlap,
5245                                      unsigned DstAS, unsigned SrcAS,
5246                                      SelectionDAG &DAG,
5247                                      const TargetLowering &TLI) {
5248   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5249          "Expecting memcpy / memset source to meet alignment requirement!");
5250   // If 'SrcAlign' is zero, that means the memory operation does not need to
5251   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5252   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5253   // is the specified alignment of the memory operation. If it is zero, that
5254   // means it's possible to change the alignment of the destination.
5255   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5256   // not need to be loaded.
5257   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5258                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5259                                    DAG.getMachineFunction());
5260 
5261   if (VT == MVT::Other) {
5262     // Use the largest integer type whose alignment constraints are satisfied.
5263     // We only need to check DstAlign here as SrcAlign is always greater or
5264     // equal to DstAlign (or zero).
5265     VT = MVT::i64;
5266     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5267            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5268       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5269     assert(VT.isInteger());
5270 
5271     // Find the largest legal integer type.
5272     MVT LVT = MVT::i64;
5273     while (!TLI.isTypeLegal(LVT))
5274       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5275     assert(LVT.isInteger());
5276 
5277     // If the type we've chosen is larger than the largest legal integer type
5278     // then use that instead.
5279     if (VT.bitsGT(LVT))
5280       VT = LVT;
5281   }
5282 
5283   unsigned NumMemOps = 0;
5284   while (Size != 0) {
5285     unsigned VTSize = VT.getSizeInBits() / 8;
5286     while (VTSize > Size) {
5287       // For now, only use non-vector load / store's for the left-over pieces.
5288       EVT NewVT = VT;
5289       unsigned NewVTSize;
5290 
5291       bool Found = false;
5292       if (VT.isVector() || VT.isFloatingPoint()) {
5293         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5294         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5295             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5296           Found = true;
5297         else if (NewVT == MVT::i64 &&
5298                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5299                  TLI.isSafeMemOpType(MVT::f64)) {
5300           // i64 is usually not legal on 32-bit targets, but f64 may be.
5301           NewVT = MVT::f64;
5302           Found = true;
5303         }
5304       }
5305 
5306       if (!Found) {
5307         do {
5308           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5309           if (NewVT == MVT::i8)
5310             break;
5311         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5312       }
5313       NewVTSize = NewVT.getSizeInBits() / 8;
5314 
5315       // If the new VT cannot cover all of the remaining bits, then consider
5316       // issuing a (or a pair of) unaligned and overlapping load / store.
5317       // FIXME: Only does this for 64-bit or more since we don't have proper
5318       // cost model for unaligned load / store.
5319       bool Fast;
5320       if (NumMemOps && AllowOverlap &&
5321           VTSize >= 8 && NewVTSize < Size &&
5322           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
5323         VTSize = Size;
5324       else {
5325         VT = NewVT;
5326         VTSize = NewVTSize;
5327       }
5328     }
5329 
5330     if (++NumMemOps > Limit)
5331       return false;
5332 
5333     MemOps.push_back(VT);
5334     Size -= VTSize;
5335   }
5336 
5337   return true;
5338 }
5339 
5340 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5341   // On Darwin, -Os means optimize for size without hurting performance, so
5342   // only really optimize for size when -Oz (MinSize) is used.
5343   if (MF.getTarget().getTargetTriple().isOSDarwin())
5344     return MF.getFunction().optForMinSize();
5345   return MF.getFunction().optForSize();
5346 }
5347 
5348 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5349                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5350                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5351                           SmallVector<SDValue, 16> &OutStoreChains) {
5352   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5353   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5354   SmallVector<SDValue, 16> GluedLoadChains;
5355   for (unsigned i = From; i < To; ++i) {
5356     OutChains.push_back(OutLoadChains[i]);
5357     GluedLoadChains.push_back(OutLoadChains[i]);
5358   }
5359 
5360   // Chain for all loads.
5361   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5362                                   GluedLoadChains);
5363 
5364   for (unsigned i = From; i < To; ++i) {
5365     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5366     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5367                                   ST->getBasePtr(), ST->getMemoryVT(),
5368                                   ST->getMemOperand());
5369     OutChains.push_back(NewStore);
5370   }
5371 }
5372 
5373 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5374                                        SDValue Chain, SDValue Dst, SDValue Src,
5375                                        uint64_t Size, unsigned Align,
5376                                        bool isVol, bool AlwaysInline,
5377                                        MachinePointerInfo DstPtrInfo,
5378                                        MachinePointerInfo SrcPtrInfo) {
5379   // Turn a memcpy of undef to nop.
5380   if (Src.isUndef())
5381     return Chain;
5382 
5383   // Expand memcpy to a series of load and store ops if the size operand falls
5384   // below a certain threshold.
5385   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5386   // rather than maybe a humongous number of loads and stores.
5387   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5388   const DataLayout &DL = DAG.getDataLayout();
5389   LLVMContext &C = *DAG.getContext();
5390   std::vector<EVT> MemOps;
5391   bool DstAlignCanChange = false;
5392   MachineFunction &MF = DAG.getMachineFunction();
5393   MachineFrameInfo &MFI = MF.getFrameInfo();
5394   bool OptSize = shouldLowerMemFuncForSize(MF);
5395   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5396   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5397     DstAlignCanChange = true;
5398   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5399   if (Align > SrcAlign)
5400     SrcAlign = Align;
5401   ConstantDataArraySlice Slice;
5402   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5403   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5404   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5405 
5406   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5407                                 (DstAlignCanChange ? 0 : Align),
5408                                 (isZeroConstant ? 0 : SrcAlign),
5409                                 false, false, CopyFromConstant, true,
5410                                 DstPtrInfo.getAddrSpace(),
5411                                 SrcPtrInfo.getAddrSpace(),
5412                                 DAG, TLI))
5413     return SDValue();
5414 
5415   if (DstAlignCanChange) {
5416     Type *Ty = MemOps[0].getTypeForEVT(C);
5417     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5418 
5419     // Don't promote to an alignment that would require dynamic stack
5420     // realignment.
5421     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5422     if (!TRI->needsStackRealignment(MF))
5423       while (NewAlign > Align &&
5424              DL.exceedsNaturalStackAlignment(NewAlign))
5425           NewAlign /= 2;
5426 
5427     if (NewAlign > Align) {
5428       // Give the stack frame object a larger alignment if needed.
5429       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5430         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5431       Align = NewAlign;
5432     }
5433   }
5434 
5435   MachineMemOperand::Flags MMOFlags =
5436       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5437   SmallVector<SDValue, 16> OutLoadChains;
5438   SmallVector<SDValue, 16> OutStoreChains;
5439   SmallVector<SDValue, 32> OutChains;
5440   unsigned NumMemOps = MemOps.size();
5441   uint64_t SrcOff = 0, DstOff = 0;
5442   for (unsigned i = 0; i != NumMemOps; ++i) {
5443     EVT VT = MemOps[i];
5444     unsigned VTSize = VT.getSizeInBits() / 8;
5445     SDValue Value, Store;
5446 
5447     if (VTSize > Size) {
5448       // Issuing an unaligned load / store pair  that overlaps with the previous
5449       // pair. Adjust the offset accordingly.
5450       assert(i == NumMemOps-1 && i != 0);
5451       SrcOff -= VTSize - Size;
5452       DstOff -= VTSize - Size;
5453     }
5454 
5455     if (CopyFromConstant &&
5456         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5457       // It's unlikely a store of a vector immediate can be done in a single
5458       // instruction. It would require a load from a constantpool first.
5459       // We only handle zero vectors here.
5460       // FIXME: Handle other cases where store of vector immediate is done in
5461       // a single instruction.
5462       ConstantDataArraySlice SubSlice;
5463       if (SrcOff < Slice.Length) {
5464         SubSlice = Slice;
5465         SubSlice.move(SrcOff);
5466       } else {
5467         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5468         SubSlice.Array = nullptr;
5469         SubSlice.Offset = 0;
5470         SubSlice.Length = VTSize;
5471       }
5472       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5473       if (Value.getNode()) {
5474         Store = DAG.getStore(Chain, dl, Value,
5475                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5476                              DstPtrInfo.getWithOffset(DstOff), Align,
5477                              MMOFlags);
5478         OutChains.push_back(Store);
5479       }
5480     }
5481 
5482     if (!Store.getNode()) {
5483       // The type might not be legal for the target.  This should only happen
5484       // if the type is smaller than a legal type, as on PPC, so the right
5485       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5486       // to Load/Store if NVT==VT.
5487       // FIXME does the case above also need this?
5488       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5489       assert(NVT.bitsGE(VT));
5490 
5491       bool isDereferenceable =
5492         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5493       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5494       if (isDereferenceable)
5495         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5496 
5497       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5498                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5499                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5500                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5501       OutLoadChains.push_back(Value.getValue(1));
5502 
5503       Store = DAG.getTruncStore(
5504           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5505           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5506       OutStoreChains.push_back(Store);
5507     }
5508     SrcOff += VTSize;
5509     DstOff += VTSize;
5510     Size -= VTSize;
5511   }
5512 
5513   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5514                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5515   unsigned NumLdStInMemcpy = OutStoreChains.size();
5516 
5517   if (NumLdStInMemcpy) {
5518     // It may be that memcpy might be converted to memset if it's memcpy
5519     // of constants. In such a case, we won't have loads and stores, but
5520     // just stores. In the absence of loads, there is nothing to gang up.
5521     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5522       // If target does not care, just leave as it.
5523       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5524         OutChains.push_back(OutLoadChains[i]);
5525         OutChains.push_back(OutStoreChains[i]);
5526       }
5527     } else {
5528       // Ld/St less than/equal limit set by target.
5529       if (NumLdStInMemcpy <= GluedLdStLimit) {
5530           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5531                                         NumLdStInMemcpy, OutLoadChains,
5532                                         OutStoreChains);
5533       } else {
5534         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5535         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5536         unsigned GlueIter = 0;
5537 
5538         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5539           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5540           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5541 
5542           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5543                                        OutLoadChains, OutStoreChains);
5544           GlueIter += GluedLdStLimit;
5545         }
5546 
5547         // Residual ld/st.
5548         if (RemainingLdStInMemcpy) {
5549           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5550                                         RemainingLdStInMemcpy, OutLoadChains,
5551                                         OutStoreChains);
5552         }
5553       }
5554     }
5555   }
5556   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5557 }
5558 
5559 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5560                                         SDValue Chain, SDValue Dst, SDValue Src,
5561                                         uint64_t Size, unsigned Align,
5562                                         bool isVol, bool AlwaysInline,
5563                                         MachinePointerInfo DstPtrInfo,
5564                                         MachinePointerInfo SrcPtrInfo) {
5565   // Turn a memmove of undef to nop.
5566   if (Src.isUndef())
5567     return Chain;
5568 
5569   // Expand memmove to a series of load and store ops if the size operand falls
5570   // below a certain threshold.
5571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5572   const DataLayout &DL = DAG.getDataLayout();
5573   LLVMContext &C = *DAG.getContext();
5574   std::vector<EVT> MemOps;
5575   bool DstAlignCanChange = false;
5576   MachineFunction &MF = DAG.getMachineFunction();
5577   MachineFrameInfo &MFI = MF.getFrameInfo();
5578   bool OptSize = shouldLowerMemFuncForSize(MF);
5579   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5580   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5581     DstAlignCanChange = true;
5582   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5583   if (Align > SrcAlign)
5584     SrcAlign = Align;
5585   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5586 
5587   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5588                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5589                                 false, false, false, false,
5590                                 DstPtrInfo.getAddrSpace(),
5591                                 SrcPtrInfo.getAddrSpace(),
5592                                 DAG, TLI))
5593     return SDValue();
5594 
5595   if (DstAlignCanChange) {
5596     Type *Ty = MemOps[0].getTypeForEVT(C);
5597     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5598     if (NewAlign > Align) {
5599       // Give the stack frame object a larger alignment if needed.
5600       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5601         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5602       Align = NewAlign;
5603     }
5604   }
5605 
5606   MachineMemOperand::Flags MMOFlags =
5607       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5608   uint64_t SrcOff = 0, DstOff = 0;
5609   SmallVector<SDValue, 8> LoadValues;
5610   SmallVector<SDValue, 8> LoadChains;
5611   SmallVector<SDValue, 8> OutChains;
5612   unsigned NumMemOps = MemOps.size();
5613   for (unsigned i = 0; i < NumMemOps; i++) {
5614     EVT VT = MemOps[i];
5615     unsigned VTSize = VT.getSizeInBits() / 8;
5616     SDValue Value;
5617 
5618     bool isDereferenceable =
5619       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5620     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5621     if (isDereferenceable)
5622       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5623 
5624     Value =
5625         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5626                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5627     LoadValues.push_back(Value);
5628     LoadChains.push_back(Value.getValue(1));
5629     SrcOff += VTSize;
5630   }
5631   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5632   OutChains.clear();
5633   for (unsigned i = 0; i < NumMemOps; i++) {
5634     EVT VT = MemOps[i];
5635     unsigned VTSize = VT.getSizeInBits() / 8;
5636     SDValue Store;
5637 
5638     Store = DAG.getStore(Chain, dl, LoadValues[i],
5639                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5640                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5641     OutChains.push_back(Store);
5642     DstOff += VTSize;
5643   }
5644 
5645   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5646 }
5647 
5648 /// Lower the call to 'memset' intrinsic function into a series of store
5649 /// operations.
5650 ///
5651 /// \param DAG Selection DAG where lowered code is placed.
5652 /// \param dl Link to corresponding IR location.
5653 /// \param Chain Control flow dependency.
5654 /// \param Dst Pointer to destination memory location.
5655 /// \param Src Value of byte to write into the memory.
5656 /// \param Size Number of bytes to write.
5657 /// \param Align Alignment of the destination in bytes.
5658 /// \param isVol True if destination is volatile.
5659 /// \param DstPtrInfo IR information on the memory pointer.
5660 /// \returns New head in the control flow, if lowering was successful, empty
5661 /// SDValue otherwise.
5662 ///
5663 /// The function tries to replace 'llvm.memset' intrinsic with several store
5664 /// operations and value calculation code. This is usually profitable for small
5665 /// memory size.
5666 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5667                                SDValue Chain, SDValue Dst, SDValue Src,
5668                                uint64_t Size, unsigned Align, bool isVol,
5669                                MachinePointerInfo DstPtrInfo) {
5670   // Turn a memset of undef to nop.
5671   if (Src.isUndef())
5672     return Chain;
5673 
5674   // Expand memset to a series of load/store ops if the size operand
5675   // falls below a certain threshold.
5676   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5677   std::vector<EVT> MemOps;
5678   bool DstAlignCanChange = false;
5679   MachineFunction &MF = DAG.getMachineFunction();
5680   MachineFrameInfo &MFI = MF.getFrameInfo();
5681   bool OptSize = shouldLowerMemFuncForSize(MF);
5682   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5683   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5684     DstAlignCanChange = true;
5685   bool IsZeroVal =
5686     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5687   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5688                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5689                                 true, IsZeroVal, false, true,
5690                                 DstPtrInfo.getAddrSpace(), ~0u,
5691                                 DAG, TLI))
5692     return SDValue();
5693 
5694   if (DstAlignCanChange) {
5695     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5696     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5697     if (NewAlign > Align) {
5698       // Give the stack frame object a larger alignment if needed.
5699       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5700         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5701       Align = NewAlign;
5702     }
5703   }
5704 
5705   SmallVector<SDValue, 8> OutChains;
5706   uint64_t DstOff = 0;
5707   unsigned NumMemOps = MemOps.size();
5708 
5709   // Find the largest store and generate the bit pattern for it.
5710   EVT LargestVT = MemOps[0];
5711   for (unsigned i = 1; i < NumMemOps; i++)
5712     if (MemOps[i].bitsGT(LargestVT))
5713       LargestVT = MemOps[i];
5714   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5715 
5716   for (unsigned i = 0; i < NumMemOps; i++) {
5717     EVT VT = MemOps[i];
5718     unsigned VTSize = VT.getSizeInBits() / 8;
5719     if (VTSize > Size) {
5720       // Issuing an unaligned load / store pair  that overlaps with the previous
5721       // pair. Adjust the offset accordingly.
5722       assert(i == NumMemOps-1 && i != 0);
5723       DstOff -= VTSize - Size;
5724     }
5725 
5726     // If this store is smaller than the largest store see whether we can get
5727     // the smaller value for free with a truncate.
5728     SDValue Value = MemSetValue;
5729     if (VT.bitsLT(LargestVT)) {
5730       if (!LargestVT.isVector() && !VT.isVector() &&
5731           TLI.isTruncateFree(LargestVT, VT))
5732         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5733       else
5734         Value = getMemsetValue(Src, VT, DAG, dl);
5735     }
5736     assert(Value.getValueType() == VT && "Value with wrong type.");
5737     SDValue Store = DAG.getStore(
5738         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5739         DstPtrInfo.getWithOffset(DstOff), Align,
5740         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5741     OutChains.push_back(Store);
5742     DstOff += VT.getSizeInBits() / 8;
5743     Size -= VTSize;
5744   }
5745 
5746   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5747 }
5748 
5749 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5750                                             unsigned AS) {
5751   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5752   // pointer operands can be losslessly bitcasted to pointers of address space 0
5753   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5754     report_fatal_error("cannot lower memory intrinsic in address space " +
5755                        Twine(AS));
5756   }
5757 }
5758 
5759 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5760                                 SDValue Src, SDValue Size, unsigned Align,
5761                                 bool isVol, bool AlwaysInline, bool isTailCall,
5762                                 MachinePointerInfo DstPtrInfo,
5763                                 MachinePointerInfo SrcPtrInfo) {
5764   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5765 
5766   // Check to see if we should lower the memcpy to loads and stores first.
5767   // For cases within the target-specified limits, this is the best choice.
5768   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5769   if (ConstantSize) {
5770     // Memcpy with size zero? Just return the original chain.
5771     if (ConstantSize->isNullValue())
5772       return Chain;
5773 
5774     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5775                                              ConstantSize->getZExtValue(),Align,
5776                                 isVol, false, DstPtrInfo, SrcPtrInfo);
5777     if (Result.getNode())
5778       return Result;
5779   }
5780 
5781   // Then check to see if we should lower the memcpy with target-specific
5782   // code. If the target chooses to do this, this is the next best.
5783   if (TSI) {
5784     SDValue Result = TSI->EmitTargetCodeForMemcpy(
5785         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5786         DstPtrInfo, SrcPtrInfo);
5787     if (Result.getNode())
5788       return Result;
5789   }
5790 
5791   // If we really need inline code and the target declined to provide it,
5792   // use a (potentially long) sequence of loads and stores.
5793   if (AlwaysInline) {
5794     assert(ConstantSize && "AlwaysInline requires a constant size!");
5795     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5796                                    ConstantSize->getZExtValue(), Align, isVol,
5797                                    true, DstPtrInfo, SrcPtrInfo);
5798   }
5799 
5800   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5801   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5802 
5803   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5804   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5805   // respect volatile, so they may do things like read or write memory
5806   // beyond the given memory regions. But fixing this isn't easy, and most
5807   // people don't care.
5808 
5809   // Emit a library call.
5810   TargetLowering::ArgListTy Args;
5811   TargetLowering::ArgListEntry Entry;
5812   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5813   Entry.Node = Dst; Args.push_back(Entry);
5814   Entry.Node = Src; Args.push_back(Entry);
5815   Entry.Node = Size; Args.push_back(Entry);
5816   // FIXME: pass in SDLoc
5817   TargetLowering::CallLoweringInfo CLI(*this);
5818   CLI.setDebugLoc(dl)
5819       .setChain(Chain)
5820       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5821                     Dst.getValueType().getTypeForEVT(*getContext()),
5822                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5823                                       TLI->getPointerTy(getDataLayout())),
5824                     std::move(Args))
5825       .setDiscardResult()
5826       .setTailCall(isTailCall);
5827 
5828   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5829   return CallResult.second;
5830 }
5831 
5832 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
5833                                       SDValue Dst, unsigned DstAlign,
5834                                       SDValue Src, unsigned SrcAlign,
5835                                       SDValue Size, Type *SizeTy,
5836                                       unsigned ElemSz, bool isTailCall,
5837                                       MachinePointerInfo DstPtrInfo,
5838                                       MachinePointerInfo SrcPtrInfo) {
5839   // Emit a library call.
5840   TargetLowering::ArgListTy Args;
5841   TargetLowering::ArgListEntry Entry;
5842   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5843   Entry.Node = Dst;
5844   Args.push_back(Entry);
5845 
5846   Entry.Node = Src;
5847   Args.push_back(Entry);
5848 
5849   Entry.Ty = SizeTy;
5850   Entry.Node = Size;
5851   Args.push_back(Entry);
5852 
5853   RTLIB::Libcall LibraryCall =
5854       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5855   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5856     report_fatal_error("Unsupported element size");
5857 
5858   TargetLowering::CallLoweringInfo CLI(*this);
5859   CLI.setDebugLoc(dl)
5860       .setChain(Chain)
5861       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5862                     Type::getVoidTy(*getContext()),
5863                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5864                                       TLI->getPointerTy(getDataLayout())),
5865                     std::move(Args))
5866       .setDiscardResult()
5867       .setTailCall(isTailCall);
5868 
5869   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5870   return CallResult.second;
5871 }
5872 
5873 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5874                                  SDValue Src, SDValue Size, unsigned Align,
5875                                  bool isVol, bool isTailCall,
5876                                  MachinePointerInfo DstPtrInfo,
5877                                  MachinePointerInfo SrcPtrInfo) {
5878   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5879 
5880   // Check to see if we should lower the memmove to loads and stores first.
5881   // For cases within the target-specified limits, this is the best choice.
5882   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5883   if (ConstantSize) {
5884     // Memmove with size zero? Just return the original chain.
5885     if (ConstantSize->isNullValue())
5886       return Chain;
5887 
5888     SDValue Result =
5889       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5890                                ConstantSize->getZExtValue(), Align, isVol,
5891                                false, DstPtrInfo, SrcPtrInfo);
5892     if (Result.getNode())
5893       return Result;
5894   }
5895 
5896   // Then check to see if we should lower the memmove with target-specific
5897   // code. If the target chooses to do this, this is the next best.
5898   if (TSI) {
5899     SDValue Result = TSI->EmitTargetCodeForMemmove(
5900         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5901     if (Result.getNode())
5902       return Result;
5903   }
5904 
5905   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5906   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5907 
5908   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5909   // not be safe.  See memcpy above for more details.
5910 
5911   // Emit a library call.
5912   TargetLowering::ArgListTy Args;
5913   TargetLowering::ArgListEntry Entry;
5914   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5915   Entry.Node = Dst; Args.push_back(Entry);
5916   Entry.Node = Src; Args.push_back(Entry);
5917   Entry.Node = Size; Args.push_back(Entry);
5918   // FIXME:  pass in SDLoc
5919   TargetLowering::CallLoweringInfo CLI(*this);
5920   CLI.setDebugLoc(dl)
5921       .setChain(Chain)
5922       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5923                     Dst.getValueType().getTypeForEVT(*getContext()),
5924                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5925                                       TLI->getPointerTy(getDataLayout())),
5926                     std::move(Args))
5927       .setDiscardResult()
5928       .setTailCall(isTailCall);
5929 
5930   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5931   return CallResult.second;
5932 }
5933 
5934 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
5935                                        SDValue Dst, unsigned DstAlign,
5936                                        SDValue Src, unsigned SrcAlign,
5937                                        SDValue Size, Type *SizeTy,
5938                                        unsigned ElemSz, bool isTailCall,
5939                                        MachinePointerInfo DstPtrInfo,
5940                                        MachinePointerInfo SrcPtrInfo) {
5941   // Emit a library call.
5942   TargetLowering::ArgListTy Args;
5943   TargetLowering::ArgListEntry Entry;
5944   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5945   Entry.Node = Dst;
5946   Args.push_back(Entry);
5947 
5948   Entry.Node = Src;
5949   Args.push_back(Entry);
5950 
5951   Entry.Ty = SizeTy;
5952   Entry.Node = Size;
5953   Args.push_back(Entry);
5954 
5955   RTLIB::Libcall LibraryCall =
5956       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5957   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5958     report_fatal_error("Unsupported element size");
5959 
5960   TargetLowering::CallLoweringInfo CLI(*this);
5961   CLI.setDebugLoc(dl)
5962       .setChain(Chain)
5963       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5964                     Type::getVoidTy(*getContext()),
5965                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5966                                       TLI->getPointerTy(getDataLayout())),
5967                     std::move(Args))
5968       .setDiscardResult()
5969       .setTailCall(isTailCall);
5970 
5971   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5972   return CallResult.second;
5973 }
5974 
5975 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5976                                 SDValue Src, SDValue Size, unsigned Align,
5977                                 bool isVol, bool isTailCall,
5978                                 MachinePointerInfo DstPtrInfo) {
5979   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5980 
5981   // Check to see if we should lower the memset to stores first.
5982   // For cases within the target-specified limits, this is the best choice.
5983   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5984   if (ConstantSize) {
5985     // Memset with size zero? Just return the original chain.
5986     if (ConstantSize->isNullValue())
5987       return Chain;
5988 
5989     SDValue Result =
5990       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5991                       Align, isVol, DstPtrInfo);
5992 
5993     if (Result.getNode())
5994       return Result;
5995   }
5996 
5997   // Then check to see if we should lower the memset with target-specific
5998   // code. If the target chooses to do this, this is the next best.
5999   if (TSI) {
6000     SDValue Result = TSI->EmitTargetCodeForMemset(
6001         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6002     if (Result.getNode())
6003       return Result;
6004   }
6005 
6006   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6007 
6008   // Emit a library call.
6009   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
6010   TargetLowering::ArgListTy Args;
6011   TargetLowering::ArgListEntry Entry;
6012   Entry.Node = Dst; Entry.Ty = IntPtrTy;
6013   Args.push_back(Entry);
6014   Entry.Node = Src;
6015   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6016   Args.push_back(Entry);
6017   Entry.Node = Size;
6018   Entry.Ty = IntPtrTy;
6019   Args.push_back(Entry);
6020 
6021   // FIXME: pass in SDLoc
6022   TargetLowering::CallLoweringInfo CLI(*this);
6023   CLI.setDebugLoc(dl)
6024       .setChain(Chain)
6025       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6026                     Dst.getValueType().getTypeForEVT(*getContext()),
6027                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6028                                       TLI->getPointerTy(getDataLayout())),
6029                     std::move(Args))
6030       .setDiscardResult()
6031       .setTailCall(isTailCall);
6032 
6033   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6034   return CallResult.second;
6035 }
6036 
6037 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6038                                       SDValue Dst, unsigned DstAlign,
6039                                       SDValue Value, SDValue Size, Type *SizeTy,
6040                                       unsigned ElemSz, bool isTailCall,
6041                                       MachinePointerInfo DstPtrInfo) {
6042   // Emit a library call.
6043   TargetLowering::ArgListTy Args;
6044   TargetLowering::ArgListEntry Entry;
6045   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6046   Entry.Node = Dst;
6047   Args.push_back(Entry);
6048 
6049   Entry.Ty = Type::getInt8Ty(*getContext());
6050   Entry.Node = Value;
6051   Args.push_back(Entry);
6052 
6053   Entry.Ty = SizeTy;
6054   Entry.Node = Size;
6055   Args.push_back(Entry);
6056 
6057   RTLIB::Libcall LibraryCall =
6058       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6059   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6060     report_fatal_error("Unsupported element size");
6061 
6062   TargetLowering::CallLoweringInfo CLI(*this);
6063   CLI.setDebugLoc(dl)
6064       .setChain(Chain)
6065       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6066                     Type::getVoidTy(*getContext()),
6067                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6068                                       TLI->getPointerTy(getDataLayout())),
6069                     std::move(Args))
6070       .setDiscardResult()
6071       .setTailCall(isTailCall);
6072 
6073   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6074   return CallResult.second;
6075 }
6076 
6077 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6078                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6079                                 MachineMemOperand *MMO) {
6080   FoldingSetNodeID ID;
6081   ID.AddInteger(MemVT.getRawBits());
6082   AddNodeIDNode(ID, Opcode, VTList, Ops);
6083   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6084   void* IP = nullptr;
6085   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6086     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6087     return SDValue(E, 0);
6088   }
6089 
6090   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6091                                     VTList, MemVT, MMO);
6092   createOperands(N, Ops);
6093 
6094   CSEMap.InsertNode(N, IP);
6095   InsertNode(N);
6096   return SDValue(N, 0);
6097 }
6098 
6099 SDValue SelectionDAG::getAtomicCmpSwap(
6100     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
6101     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
6102     unsigned Alignment, AtomicOrdering SuccessOrdering,
6103     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
6104   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6105          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6106   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6107 
6108   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6109     Alignment = getEVTAlignment(MemVT);
6110 
6111   MachineFunction &MF = getMachineFunction();
6112 
6113   // FIXME: Volatile isn't really correct; we should keep track of atomic
6114   // orderings in the memoperand.
6115   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
6116                MachineMemOperand::MOStore;
6117   MachineMemOperand *MMO =
6118     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
6119                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
6120                             FailureOrdering);
6121 
6122   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
6123 }
6124 
6125 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6126                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6127                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6128                                        MachineMemOperand *MMO) {
6129   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6130          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6131   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6132 
6133   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6134   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6135 }
6136 
6137 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6138                                 SDValue Chain, SDValue Ptr, SDValue Val,
6139                                 const Value *PtrVal, unsigned Alignment,
6140                                 AtomicOrdering Ordering,
6141                                 SyncScope::ID SSID) {
6142   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6143     Alignment = getEVTAlignment(MemVT);
6144 
6145   MachineFunction &MF = getMachineFunction();
6146   // An atomic store does not load. An atomic load does not store.
6147   // (An atomicrmw obviously both loads and stores.)
6148   // For now, atomics are considered to be volatile always, and they are
6149   // chained as such.
6150   // FIXME: Volatile isn't really correct; we should keep track of atomic
6151   // orderings in the memoperand.
6152   auto Flags = MachineMemOperand::MOVolatile;
6153   if (Opcode != ISD::ATOMIC_STORE)
6154     Flags |= MachineMemOperand::MOLoad;
6155   if (Opcode != ISD::ATOMIC_LOAD)
6156     Flags |= MachineMemOperand::MOStore;
6157 
6158   MachineMemOperand *MMO =
6159     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
6160                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
6161                             nullptr, SSID, Ordering);
6162 
6163   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
6164 }
6165 
6166 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6167                                 SDValue Chain, SDValue Ptr, SDValue Val,
6168                                 MachineMemOperand *MMO) {
6169   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6170           Opcode == ISD::ATOMIC_LOAD_SUB ||
6171           Opcode == ISD::ATOMIC_LOAD_AND ||
6172           Opcode == ISD::ATOMIC_LOAD_CLR ||
6173           Opcode == ISD::ATOMIC_LOAD_OR ||
6174           Opcode == ISD::ATOMIC_LOAD_XOR ||
6175           Opcode == ISD::ATOMIC_LOAD_NAND ||
6176           Opcode == ISD::ATOMIC_LOAD_MIN ||
6177           Opcode == ISD::ATOMIC_LOAD_MAX ||
6178           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6179           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6180           Opcode == ISD::ATOMIC_SWAP ||
6181           Opcode == ISD::ATOMIC_STORE) &&
6182          "Invalid Atomic Op");
6183 
6184   EVT VT = Val.getValueType();
6185 
6186   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6187                                                getVTList(VT, MVT::Other);
6188   SDValue Ops[] = {Chain, Ptr, Val};
6189   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6190 }
6191 
6192 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6193                                 EVT VT, SDValue Chain, SDValue Ptr,
6194                                 MachineMemOperand *MMO) {
6195   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6196 
6197   SDVTList VTs = getVTList(VT, MVT::Other);
6198   SDValue Ops[] = {Chain, Ptr};
6199   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6200 }
6201 
6202 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6203 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6204   if (Ops.size() == 1)
6205     return Ops[0];
6206 
6207   SmallVector<EVT, 4> VTs;
6208   VTs.reserve(Ops.size());
6209   for (unsigned i = 0; i < Ops.size(); ++i)
6210     VTs.push_back(Ops[i].getValueType());
6211   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6212 }
6213 
6214 SDValue SelectionDAG::getMemIntrinsicNode(
6215     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6216     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6217     MachineMemOperand::Flags Flags, unsigned Size) {
6218   if (Align == 0)  // Ensure that codegen never sees alignment 0
6219     Align = getEVTAlignment(MemVT);
6220 
6221   if (!Size)
6222     Size = MemVT.getStoreSize();
6223 
6224   MachineFunction &MF = getMachineFunction();
6225   MachineMemOperand *MMO =
6226     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6227 
6228   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6229 }
6230 
6231 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6232                                           SDVTList VTList,
6233                                           ArrayRef<SDValue> Ops, EVT MemVT,
6234                                           MachineMemOperand *MMO) {
6235   assert((Opcode == ISD::INTRINSIC_VOID ||
6236           Opcode == ISD::INTRINSIC_W_CHAIN ||
6237           Opcode == ISD::PREFETCH ||
6238           Opcode == ISD::LIFETIME_START ||
6239           Opcode == ISD::LIFETIME_END ||
6240           ((int)Opcode <= std::numeric_limits<int>::max() &&
6241            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6242          "Opcode is not a memory-accessing opcode!");
6243 
6244   // Memoize the node unless it returns a flag.
6245   MemIntrinsicSDNode *N;
6246   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6247     FoldingSetNodeID ID;
6248     AddNodeIDNode(ID, Opcode, VTList, Ops);
6249     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6250         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6251     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6252     void *IP = nullptr;
6253     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6254       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6255       return SDValue(E, 0);
6256     }
6257 
6258     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6259                                       VTList, MemVT, MMO);
6260     createOperands(N, Ops);
6261 
6262   CSEMap.InsertNode(N, IP);
6263   } else {
6264     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6265                                       VTList, MemVT, MMO);
6266     createOperands(N, Ops);
6267   }
6268   InsertNode(N);
6269   return SDValue(N, 0);
6270 }
6271 
6272 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6273 /// MachinePointerInfo record from it.  This is particularly useful because the
6274 /// code generator has many cases where it doesn't bother passing in a
6275 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6276 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6277                                            SelectionDAG &DAG, SDValue Ptr,
6278                                            int64_t Offset = 0) {
6279   // If this is FI+Offset, we can model it.
6280   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6281     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6282                                              FI->getIndex(), Offset);
6283 
6284   // If this is (FI+Offset1)+Offset2, we can model it.
6285   if (Ptr.getOpcode() != ISD::ADD ||
6286       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6287       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6288     return Info;
6289 
6290   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6291   return MachinePointerInfo::getFixedStack(
6292       DAG.getMachineFunction(), FI,
6293       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6294 }
6295 
6296 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6297 /// MachinePointerInfo record from it.  This is particularly useful because the
6298 /// code generator has many cases where it doesn't bother passing in a
6299 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6300 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6301                                            SelectionDAG &DAG, SDValue Ptr,
6302                                            SDValue OffsetOp) {
6303   // If the 'Offset' value isn't a constant, we can't handle this.
6304   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6305     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6306   if (OffsetOp.isUndef())
6307     return InferPointerInfo(Info, DAG, Ptr);
6308   return Info;
6309 }
6310 
6311 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6312                               EVT VT, const SDLoc &dl, SDValue Chain,
6313                               SDValue Ptr, SDValue Offset,
6314                               MachinePointerInfo PtrInfo, EVT MemVT,
6315                               unsigned Alignment,
6316                               MachineMemOperand::Flags MMOFlags,
6317                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6318   assert(Chain.getValueType() == MVT::Other &&
6319         "Invalid chain type");
6320   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6321     Alignment = getEVTAlignment(MemVT);
6322 
6323   MMOFlags |= MachineMemOperand::MOLoad;
6324   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6325   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6326   // clients.
6327   if (PtrInfo.V.isNull())
6328     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6329 
6330   MachineFunction &MF = getMachineFunction();
6331   MachineMemOperand *MMO = MF.getMachineMemOperand(
6332       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6333   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6334 }
6335 
6336 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6337                               EVT VT, const SDLoc &dl, SDValue Chain,
6338                               SDValue Ptr, SDValue Offset, EVT MemVT,
6339                               MachineMemOperand *MMO) {
6340   if (VT == MemVT) {
6341     ExtType = ISD::NON_EXTLOAD;
6342   } else if (ExtType == ISD::NON_EXTLOAD) {
6343     assert(VT == MemVT && "Non-extending load from different memory type!");
6344   } else {
6345     // Extending load.
6346     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6347            "Should only be an extending load, not truncating!");
6348     assert(VT.isInteger() == MemVT.isInteger() &&
6349            "Cannot convert from FP to Int or Int -> FP!");
6350     assert(VT.isVector() == MemVT.isVector() &&
6351            "Cannot use an ext load to convert to or from a vector!");
6352     assert((!VT.isVector() ||
6353             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6354            "Cannot use an ext load to change the number of vector elements!");
6355   }
6356 
6357   bool Indexed = AM != ISD::UNINDEXED;
6358   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6359 
6360   SDVTList VTs = Indexed ?
6361     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6362   SDValue Ops[] = { Chain, Ptr, Offset };
6363   FoldingSetNodeID ID;
6364   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6365   ID.AddInteger(MemVT.getRawBits());
6366   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6367       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6368   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6369   void *IP = nullptr;
6370   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6371     cast<LoadSDNode>(E)->refineAlignment(MMO);
6372     return SDValue(E, 0);
6373   }
6374   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6375                                   ExtType, MemVT, MMO);
6376   createOperands(N, Ops);
6377 
6378   CSEMap.InsertNode(N, IP);
6379   InsertNode(N);
6380   SDValue V(N, 0);
6381   NewSDValueDbgMsg(V, "Creating new node: ", this);
6382   return V;
6383 }
6384 
6385 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6386                               SDValue Ptr, MachinePointerInfo PtrInfo,
6387                               unsigned Alignment,
6388                               MachineMemOperand::Flags MMOFlags,
6389                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6390   SDValue Undef = getUNDEF(Ptr.getValueType());
6391   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6392                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6393 }
6394 
6395 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6396                               SDValue Ptr, MachineMemOperand *MMO) {
6397   SDValue Undef = getUNDEF(Ptr.getValueType());
6398   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6399                  VT, MMO);
6400 }
6401 
6402 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6403                                  EVT VT, SDValue Chain, SDValue Ptr,
6404                                  MachinePointerInfo PtrInfo, EVT MemVT,
6405                                  unsigned Alignment,
6406                                  MachineMemOperand::Flags MMOFlags,
6407                                  const AAMDNodes &AAInfo) {
6408   SDValue Undef = getUNDEF(Ptr.getValueType());
6409   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6410                  MemVT, Alignment, MMOFlags, AAInfo);
6411 }
6412 
6413 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6414                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6415                                  MachineMemOperand *MMO) {
6416   SDValue Undef = getUNDEF(Ptr.getValueType());
6417   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6418                  MemVT, MMO);
6419 }
6420 
6421 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6422                                      SDValue Base, SDValue Offset,
6423                                      ISD::MemIndexedMode AM) {
6424   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6425   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6426   // Don't propagate the invariant or dereferenceable flags.
6427   auto MMOFlags =
6428       LD->getMemOperand()->getFlags() &
6429       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6430   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6431                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6432                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6433                  LD->getAAInfo());
6434 }
6435 
6436 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6437                                SDValue Ptr, MachinePointerInfo PtrInfo,
6438                                unsigned Alignment,
6439                                MachineMemOperand::Flags MMOFlags,
6440                                const AAMDNodes &AAInfo) {
6441   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6442   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6443     Alignment = getEVTAlignment(Val.getValueType());
6444 
6445   MMOFlags |= MachineMemOperand::MOStore;
6446   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6447 
6448   if (PtrInfo.V.isNull())
6449     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6450 
6451   MachineFunction &MF = getMachineFunction();
6452   MachineMemOperand *MMO = MF.getMachineMemOperand(
6453       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6454   return getStore(Chain, dl, Val, Ptr, MMO);
6455 }
6456 
6457 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6458                                SDValue Ptr, MachineMemOperand *MMO) {
6459   assert(Chain.getValueType() == MVT::Other &&
6460         "Invalid chain type");
6461   EVT VT = Val.getValueType();
6462   SDVTList VTs = getVTList(MVT::Other);
6463   SDValue Undef = getUNDEF(Ptr.getValueType());
6464   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6465   FoldingSetNodeID ID;
6466   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6467   ID.AddInteger(VT.getRawBits());
6468   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6469       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6470   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6471   void *IP = nullptr;
6472   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6473     cast<StoreSDNode>(E)->refineAlignment(MMO);
6474     return SDValue(E, 0);
6475   }
6476   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6477                                    ISD::UNINDEXED, false, VT, MMO);
6478   createOperands(N, Ops);
6479 
6480   CSEMap.InsertNode(N, IP);
6481   InsertNode(N);
6482   SDValue V(N, 0);
6483   NewSDValueDbgMsg(V, "Creating new node: ", this);
6484   return V;
6485 }
6486 
6487 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6488                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6489                                     EVT SVT, unsigned Alignment,
6490                                     MachineMemOperand::Flags MMOFlags,
6491                                     const AAMDNodes &AAInfo) {
6492   assert(Chain.getValueType() == MVT::Other &&
6493         "Invalid chain type");
6494   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6495     Alignment = getEVTAlignment(SVT);
6496 
6497   MMOFlags |= MachineMemOperand::MOStore;
6498   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6499 
6500   if (PtrInfo.V.isNull())
6501     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6502 
6503   MachineFunction &MF = getMachineFunction();
6504   MachineMemOperand *MMO = MF.getMachineMemOperand(
6505       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6506   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6507 }
6508 
6509 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6510                                     SDValue Ptr, EVT SVT,
6511                                     MachineMemOperand *MMO) {
6512   EVT VT = Val.getValueType();
6513 
6514   assert(Chain.getValueType() == MVT::Other &&
6515         "Invalid chain type");
6516   if (VT == SVT)
6517     return getStore(Chain, dl, Val, Ptr, MMO);
6518 
6519   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6520          "Should only be a truncating store, not extending!");
6521   assert(VT.isInteger() == SVT.isInteger() &&
6522          "Can't do FP-INT conversion!");
6523   assert(VT.isVector() == SVT.isVector() &&
6524          "Cannot use trunc store to convert to or from a vector!");
6525   assert((!VT.isVector() ||
6526           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6527          "Cannot use trunc store to change the number of vector elements!");
6528 
6529   SDVTList VTs = getVTList(MVT::Other);
6530   SDValue Undef = getUNDEF(Ptr.getValueType());
6531   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6532   FoldingSetNodeID ID;
6533   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6534   ID.AddInteger(SVT.getRawBits());
6535   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6536       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6537   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6538   void *IP = nullptr;
6539   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6540     cast<StoreSDNode>(E)->refineAlignment(MMO);
6541     return SDValue(E, 0);
6542   }
6543   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6544                                    ISD::UNINDEXED, true, SVT, MMO);
6545   createOperands(N, Ops);
6546 
6547   CSEMap.InsertNode(N, IP);
6548   InsertNode(N);
6549   SDValue V(N, 0);
6550   NewSDValueDbgMsg(V, "Creating new node: ", this);
6551   return V;
6552 }
6553 
6554 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6555                                       SDValue Base, SDValue Offset,
6556                                       ISD::MemIndexedMode AM) {
6557   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6558   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6559   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6560   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6561   FoldingSetNodeID ID;
6562   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6563   ID.AddInteger(ST->getMemoryVT().getRawBits());
6564   ID.AddInteger(ST->getRawSubclassData());
6565   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6566   void *IP = nullptr;
6567   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6568     return SDValue(E, 0);
6569 
6570   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6571                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6572                                    ST->getMemOperand());
6573   createOperands(N, Ops);
6574 
6575   CSEMap.InsertNode(N, IP);
6576   InsertNode(N);
6577   SDValue V(N, 0);
6578   NewSDValueDbgMsg(V, "Creating new node: ", this);
6579   return V;
6580 }
6581 
6582 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6583                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6584                                     EVT MemVT, MachineMemOperand *MMO,
6585                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6586   SDVTList VTs = getVTList(VT, MVT::Other);
6587   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6588   FoldingSetNodeID ID;
6589   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6590   ID.AddInteger(VT.getRawBits());
6591   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6592       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6593   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6594   void *IP = nullptr;
6595   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6596     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6597     return SDValue(E, 0);
6598   }
6599   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6600                                         ExtTy, isExpanding, MemVT, MMO);
6601   createOperands(N, Ops);
6602 
6603   CSEMap.InsertNode(N, IP);
6604   InsertNode(N);
6605   SDValue V(N, 0);
6606   NewSDValueDbgMsg(V, "Creating new node: ", this);
6607   return V;
6608 }
6609 
6610 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6611                                      SDValue Val, SDValue Ptr, SDValue Mask,
6612                                      EVT MemVT, MachineMemOperand *MMO,
6613                                      bool IsTruncating, bool IsCompressing) {
6614   assert(Chain.getValueType() == MVT::Other &&
6615         "Invalid chain type");
6616   EVT VT = Val.getValueType();
6617   SDVTList VTs = getVTList(MVT::Other);
6618   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6619   FoldingSetNodeID ID;
6620   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6621   ID.AddInteger(VT.getRawBits());
6622   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6623       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6624   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6625   void *IP = nullptr;
6626   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6627     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6628     return SDValue(E, 0);
6629   }
6630   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6631                                          IsTruncating, IsCompressing, MemVT, MMO);
6632   createOperands(N, Ops);
6633 
6634   CSEMap.InsertNode(N, IP);
6635   InsertNode(N);
6636   SDValue V(N, 0);
6637   NewSDValueDbgMsg(V, "Creating new node: ", this);
6638   return V;
6639 }
6640 
6641 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6642                                       ArrayRef<SDValue> Ops,
6643                                       MachineMemOperand *MMO) {
6644   assert(Ops.size() == 6 && "Incompatible number of operands");
6645 
6646   FoldingSetNodeID ID;
6647   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6648   ID.AddInteger(VT.getRawBits());
6649   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6650       dl.getIROrder(), VTs, VT, MMO));
6651   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6652   void *IP = nullptr;
6653   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6654     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6655     return SDValue(E, 0);
6656   }
6657 
6658   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6659                                           VTs, VT, MMO);
6660   createOperands(N, Ops);
6661 
6662   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
6663          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6664   assert(N->getMask().getValueType().getVectorNumElements() ==
6665              N->getValueType(0).getVectorNumElements() &&
6666          "Vector width mismatch between mask and data");
6667   assert(N->getIndex().getValueType().getVectorNumElements() >=
6668              N->getValueType(0).getVectorNumElements() &&
6669          "Vector width mismatch between index and data");
6670   assert(isa<ConstantSDNode>(N->getScale()) &&
6671          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6672          "Scale should be a constant power of 2");
6673 
6674   CSEMap.InsertNode(N, IP);
6675   InsertNode(N);
6676   SDValue V(N, 0);
6677   NewSDValueDbgMsg(V, "Creating new node: ", this);
6678   return V;
6679 }
6680 
6681 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6682                                        ArrayRef<SDValue> Ops,
6683                                        MachineMemOperand *MMO) {
6684   assert(Ops.size() == 6 && "Incompatible number of operands");
6685 
6686   FoldingSetNodeID ID;
6687   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6688   ID.AddInteger(VT.getRawBits());
6689   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6690       dl.getIROrder(), VTs, VT, MMO));
6691   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6692   void *IP = nullptr;
6693   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6694     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6695     return SDValue(E, 0);
6696   }
6697   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6698                                            VTs, VT, MMO);
6699   createOperands(N, Ops);
6700 
6701   assert(N->getMask().getValueType().getVectorNumElements() ==
6702              N->getValue().getValueType().getVectorNumElements() &&
6703          "Vector width mismatch between mask and data");
6704   assert(N->getIndex().getValueType().getVectorNumElements() >=
6705              N->getValue().getValueType().getVectorNumElements() &&
6706          "Vector width mismatch between index and data");
6707   assert(isa<ConstantSDNode>(N->getScale()) &&
6708          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6709          "Scale should be a constant power of 2");
6710 
6711   CSEMap.InsertNode(N, IP);
6712   InsertNode(N);
6713   SDValue V(N, 0);
6714   NewSDValueDbgMsg(V, "Creating new node: ", this);
6715   return V;
6716 }
6717 
6718 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
6719                                SDValue Ptr, SDValue SV, unsigned Align) {
6720   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
6721   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
6722 }
6723 
6724 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6725                               ArrayRef<SDUse> Ops) {
6726   switch (Ops.size()) {
6727   case 0: return getNode(Opcode, DL, VT);
6728   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
6729   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
6730   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6731   default: break;
6732   }
6733 
6734   // Copy from an SDUse array into an SDValue array for use with
6735   // the regular getNode logic.
6736   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
6737   return getNode(Opcode, DL, VT, NewOps);
6738 }
6739 
6740 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6741                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
6742   unsigned NumOps = Ops.size();
6743   switch (NumOps) {
6744   case 0: return getNode(Opcode, DL, VT);
6745   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
6746   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
6747   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
6748   default: break;
6749   }
6750 
6751   switch (Opcode) {
6752   default: break;
6753   case ISD::CONCAT_VECTORS:
6754     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
6755     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
6756       return V;
6757     break;
6758   case ISD::SELECT_CC:
6759     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
6760     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
6761            "LHS and RHS of condition must have same type!");
6762     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6763            "True and False arms of SelectCC must have same type!");
6764     assert(Ops[2].getValueType() == VT &&
6765            "select_cc node must be of same type as true and false value!");
6766     break;
6767   case ISD::BR_CC:
6768     assert(NumOps == 5 && "BR_CC takes 5 operands!");
6769     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6770            "LHS/RHS of comparison should match types!");
6771     break;
6772   }
6773 
6774   // Memoize nodes.
6775   SDNode *N;
6776   SDVTList VTs = getVTList(VT);
6777 
6778   if (VT != MVT::Glue) {
6779     FoldingSetNodeID ID;
6780     AddNodeIDNode(ID, Opcode, VTs, Ops);
6781     void *IP = nullptr;
6782 
6783     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6784       return SDValue(E, 0);
6785 
6786     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6787     createOperands(N, Ops);
6788 
6789     CSEMap.InsertNode(N, IP);
6790   } else {
6791     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6792     createOperands(N, Ops);
6793   }
6794 
6795   InsertNode(N);
6796   SDValue V(N, 0);
6797   NewSDValueDbgMsg(V, "Creating new node: ", this);
6798   return V;
6799 }
6800 
6801 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6802                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
6803   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
6804 }
6805 
6806 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6807                               ArrayRef<SDValue> Ops) {
6808   if (VTList.NumVTs == 1)
6809     return getNode(Opcode, DL, VTList.VTs[0], Ops);
6810 
6811 #if 0
6812   switch (Opcode) {
6813   // FIXME: figure out how to safely handle things like
6814   // int foo(int x) { return 1 << (x & 255); }
6815   // int bar() { return foo(256); }
6816   case ISD::SRA_PARTS:
6817   case ISD::SRL_PARTS:
6818   case ISD::SHL_PARTS:
6819     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6820         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
6821       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6822     else if (N3.getOpcode() == ISD::AND)
6823       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
6824         // If the and is only masking out bits that cannot effect the shift,
6825         // eliminate the and.
6826         unsigned NumBits = VT.getScalarSizeInBits()*2;
6827         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
6828           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6829       }
6830     break;
6831   }
6832 #endif
6833 
6834   // Memoize the node unless it returns a flag.
6835   SDNode *N;
6836   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6837     FoldingSetNodeID ID;
6838     AddNodeIDNode(ID, Opcode, VTList, Ops);
6839     void *IP = nullptr;
6840     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6841       return SDValue(E, 0);
6842 
6843     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6844     createOperands(N, Ops);
6845     CSEMap.InsertNode(N, IP);
6846   } else {
6847     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6848     createOperands(N, Ops);
6849   }
6850   InsertNode(N);
6851   SDValue V(N, 0);
6852   NewSDValueDbgMsg(V, "Creating new node: ", this);
6853   return V;
6854 }
6855 
6856 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6857                               SDVTList VTList) {
6858   return getNode(Opcode, DL, VTList, None);
6859 }
6860 
6861 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6862                               SDValue N1) {
6863   SDValue Ops[] = { N1 };
6864   return getNode(Opcode, DL, VTList, Ops);
6865 }
6866 
6867 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6868                               SDValue N1, SDValue N2) {
6869   SDValue Ops[] = { N1, N2 };
6870   return getNode(Opcode, DL, VTList, Ops);
6871 }
6872 
6873 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6874                               SDValue N1, SDValue N2, SDValue N3) {
6875   SDValue Ops[] = { N1, N2, N3 };
6876   return getNode(Opcode, DL, VTList, Ops);
6877 }
6878 
6879 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6880                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6881   SDValue Ops[] = { N1, N2, N3, N4 };
6882   return getNode(Opcode, DL, VTList, Ops);
6883 }
6884 
6885 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6886                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6887                               SDValue N5) {
6888   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6889   return getNode(Opcode, DL, VTList, Ops);
6890 }
6891 
6892 SDVTList SelectionDAG::getVTList(EVT VT) {
6893   return makeVTList(SDNode::getValueTypeList(VT), 1);
6894 }
6895 
6896 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
6897   FoldingSetNodeID ID;
6898   ID.AddInteger(2U);
6899   ID.AddInteger(VT1.getRawBits());
6900   ID.AddInteger(VT2.getRawBits());
6901 
6902   void *IP = nullptr;
6903   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6904   if (!Result) {
6905     EVT *Array = Allocator.Allocate<EVT>(2);
6906     Array[0] = VT1;
6907     Array[1] = VT2;
6908     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
6909     VTListMap.InsertNode(Result, IP);
6910   }
6911   return Result->getSDVTList();
6912 }
6913 
6914 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
6915   FoldingSetNodeID ID;
6916   ID.AddInteger(3U);
6917   ID.AddInteger(VT1.getRawBits());
6918   ID.AddInteger(VT2.getRawBits());
6919   ID.AddInteger(VT3.getRawBits());
6920 
6921   void *IP = nullptr;
6922   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6923   if (!Result) {
6924     EVT *Array = Allocator.Allocate<EVT>(3);
6925     Array[0] = VT1;
6926     Array[1] = VT2;
6927     Array[2] = VT3;
6928     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
6929     VTListMap.InsertNode(Result, IP);
6930   }
6931   return Result->getSDVTList();
6932 }
6933 
6934 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
6935   FoldingSetNodeID ID;
6936   ID.AddInteger(4U);
6937   ID.AddInteger(VT1.getRawBits());
6938   ID.AddInteger(VT2.getRawBits());
6939   ID.AddInteger(VT3.getRawBits());
6940   ID.AddInteger(VT4.getRawBits());
6941 
6942   void *IP = nullptr;
6943   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6944   if (!Result) {
6945     EVT *Array = Allocator.Allocate<EVT>(4);
6946     Array[0] = VT1;
6947     Array[1] = VT2;
6948     Array[2] = VT3;
6949     Array[3] = VT4;
6950     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6951     VTListMap.InsertNode(Result, IP);
6952   }
6953   return Result->getSDVTList();
6954 }
6955 
6956 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6957   unsigned NumVTs = VTs.size();
6958   FoldingSetNodeID ID;
6959   ID.AddInteger(NumVTs);
6960   for (unsigned index = 0; index < NumVTs; index++) {
6961     ID.AddInteger(VTs[index].getRawBits());
6962   }
6963 
6964   void *IP = nullptr;
6965   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6966   if (!Result) {
6967     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6968     std::copy(VTs.begin(), VTs.end(), Array);
6969     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6970     VTListMap.InsertNode(Result, IP);
6971   }
6972   return Result->getSDVTList();
6973 }
6974 
6975 
6976 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6977 /// specified operands.  If the resultant node already exists in the DAG,
6978 /// this does not modify the specified node, instead it returns the node that
6979 /// already exists.  If the resultant node does not exist in the DAG, the
6980 /// input node is returned.  As a degenerate case, if you specify the same
6981 /// input operands as the node already has, the input node is returned.
6982 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6983   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6984 
6985   // Check to see if there is no change.
6986   if (Op == N->getOperand(0)) return N;
6987 
6988   // See if the modified node already exists.
6989   void *InsertPos = nullptr;
6990   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6991     return Existing;
6992 
6993   // Nope it doesn't.  Remove the node from its current place in the maps.
6994   if (InsertPos)
6995     if (!RemoveNodeFromCSEMaps(N))
6996       InsertPos = nullptr;
6997 
6998   // Now we update the operands.
6999   N->OperandList[0].set(Op);
7000 
7001   updateDivergence(N);
7002   // If this gets put into a CSE map, add it.
7003   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7004   return N;
7005 }
7006 
7007 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7008   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7009 
7010   // Check to see if there is no change.
7011   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7012     return N;   // No operands changed, just return the input node.
7013 
7014   // See if the modified node already exists.
7015   void *InsertPos = nullptr;
7016   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7017     return Existing;
7018 
7019   // Nope it doesn't.  Remove the node from its current place in the maps.
7020   if (InsertPos)
7021     if (!RemoveNodeFromCSEMaps(N))
7022       InsertPos = nullptr;
7023 
7024   // Now we update the operands.
7025   if (N->OperandList[0] != Op1)
7026     N->OperandList[0].set(Op1);
7027   if (N->OperandList[1] != Op2)
7028     N->OperandList[1].set(Op2);
7029 
7030   updateDivergence(N);
7031   // If this gets put into a CSE map, add it.
7032   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7033   return N;
7034 }
7035 
7036 SDNode *SelectionDAG::
7037 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7038   SDValue Ops[] = { Op1, Op2, Op3 };
7039   return UpdateNodeOperands(N, Ops);
7040 }
7041 
7042 SDNode *SelectionDAG::
7043 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7044                    SDValue Op3, SDValue Op4) {
7045   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7046   return UpdateNodeOperands(N, Ops);
7047 }
7048 
7049 SDNode *SelectionDAG::
7050 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7051                    SDValue Op3, SDValue Op4, SDValue Op5) {
7052   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7053   return UpdateNodeOperands(N, Ops);
7054 }
7055 
7056 SDNode *SelectionDAG::
7057 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7058   unsigned NumOps = Ops.size();
7059   assert(N->getNumOperands() == NumOps &&
7060          "Update with wrong number of operands");
7061 
7062   // If no operands changed just return the input node.
7063   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7064     return N;
7065 
7066   // See if the modified node already exists.
7067   void *InsertPos = nullptr;
7068   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7069     return Existing;
7070 
7071   // Nope it doesn't.  Remove the node from its current place in the maps.
7072   if (InsertPos)
7073     if (!RemoveNodeFromCSEMaps(N))
7074       InsertPos = nullptr;
7075 
7076   // Now we update the operands.
7077   for (unsigned i = 0; i != NumOps; ++i)
7078     if (N->OperandList[i] != Ops[i])
7079       N->OperandList[i].set(Ops[i]);
7080 
7081   updateDivergence(N);
7082   // If this gets put into a CSE map, add it.
7083   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7084   return N;
7085 }
7086 
7087 /// DropOperands - Release the operands and set this node to have
7088 /// zero operands.
7089 void SDNode::DropOperands() {
7090   // Unlike the code in MorphNodeTo that does this, we don't need to
7091   // watch for dead nodes here.
7092   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7093     SDUse &Use = *I++;
7094     Use.set(SDValue());
7095   }
7096 }
7097 
7098 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7099                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7100   if (NewMemRefs.empty()) {
7101     N->clearMemRefs();
7102     return;
7103   }
7104 
7105   // Check if we can avoid allocating by storing a single reference directly.
7106   if (NewMemRefs.size() == 1) {
7107     N->MemRefs = NewMemRefs[0];
7108     N->NumMemRefs = 1;
7109     return;
7110   }
7111 
7112   MachineMemOperand **MemRefsBuffer =
7113       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7114   std::copy(NewMemRefs.begin(), NewMemRefs.end(), MemRefsBuffer);
7115   N->MemRefs = MemRefsBuffer;
7116   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7117 }
7118 
7119 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7120 /// machine opcode.
7121 ///
7122 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7123                                    EVT VT) {
7124   SDVTList VTs = getVTList(VT);
7125   return SelectNodeTo(N, MachineOpc, VTs, None);
7126 }
7127 
7128 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7129                                    EVT VT, SDValue Op1) {
7130   SDVTList VTs = getVTList(VT);
7131   SDValue Ops[] = { Op1 };
7132   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7133 }
7134 
7135 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7136                                    EVT VT, SDValue Op1,
7137                                    SDValue Op2) {
7138   SDVTList VTs = getVTList(VT);
7139   SDValue Ops[] = { Op1, Op2 };
7140   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7141 }
7142 
7143 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7144                                    EVT VT, SDValue Op1,
7145                                    SDValue Op2, SDValue Op3) {
7146   SDVTList VTs = getVTList(VT);
7147   SDValue Ops[] = { Op1, Op2, Op3 };
7148   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7149 }
7150 
7151 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7152                                    EVT VT, ArrayRef<SDValue> Ops) {
7153   SDVTList VTs = getVTList(VT);
7154   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7155 }
7156 
7157 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7158                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7159   SDVTList VTs = getVTList(VT1, VT2);
7160   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7161 }
7162 
7163 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7164                                    EVT VT1, EVT VT2) {
7165   SDVTList VTs = getVTList(VT1, VT2);
7166   return SelectNodeTo(N, MachineOpc, VTs, None);
7167 }
7168 
7169 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7170                                    EVT VT1, EVT VT2, EVT VT3,
7171                                    ArrayRef<SDValue> Ops) {
7172   SDVTList VTs = getVTList(VT1, VT2, VT3);
7173   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7174 }
7175 
7176 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7177                                    EVT VT1, EVT VT2,
7178                                    SDValue Op1, SDValue Op2) {
7179   SDVTList VTs = getVTList(VT1, VT2);
7180   SDValue Ops[] = { Op1, Op2 };
7181   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7182 }
7183 
7184 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7185                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7186   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7187   // Reset the NodeID to -1.
7188   New->setNodeId(-1);
7189   if (New != N) {
7190     ReplaceAllUsesWith(N, New);
7191     RemoveDeadNode(N);
7192   }
7193   return New;
7194 }
7195 
7196 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7197 /// the line number information on the merged node since it is not possible to
7198 /// preserve the information that operation is associated with multiple lines.
7199 /// This will make the debugger working better at -O0, were there is a higher
7200 /// probability having other instructions associated with that line.
7201 ///
7202 /// For IROrder, we keep the smaller of the two
7203 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7204   DebugLoc NLoc = N->getDebugLoc();
7205   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7206     N->setDebugLoc(DebugLoc());
7207   }
7208   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7209   N->setIROrder(Order);
7210   return N;
7211 }
7212 
7213 /// MorphNodeTo - This *mutates* the specified node to have the specified
7214 /// return type, opcode, and operands.
7215 ///
7216 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7217 /// node of the specified opcode and operands, it returns that node instead of
7218 /// the current one.  Note that the SDLoc need not be the same.
7219 ///
7220 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7221 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7222 /// node, and because it doesn't require CSE recalculation for any of
7223 /// the node's users.
7224 ///
7225 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7226 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7227 /// the legalizer which maintain worklists that would need to be updated when
7228 /// deleting things.
7229 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7230                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7231   // If an identical node already exists, use it.
7232   void *IP = nullptr;
7233   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7234     FoldingSetNodeID ID;
7235     AddNodeIDNode(ID, Opc, VTs, Ops);
7236     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7237       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7238   }
7239 
7240   if (!RemoveNodeFromCSEMaps(N))
7241     IP = nullptr;
7242 
7243   // Start the morphing.
7244   N->NodeType = Opc;
7245   N->ValueList = VTs.VTs;
7246   N->NumValues = VTs.NumVTs;
7247 
7248   // Clear the operands list, updating used nodes to remove this from their
7249   // use list.  Keep track of any operands that become dead as a result.
7250   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7251   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7252     SDUse &Use = *I++;
7253     SDNode *Used = Use.getNode();
7254     Use.set(SDValue());
7255     if (Used->use_empty())
7256       DeadNodeSet.insert(Used);
7257   }
7258 
7259   // For MachineNode, initialize the memory references information.
7260   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7261     MN->clearMemRefs();
7262 
7263   // Swap for an appropriately sized array from the recycler.
7264   removeOperands(N);
7265   createOperands(N, Ops);
7266 
7267   // Delete any nodes that are still dead after adding the uses for the
7268   // new operands.
7269   if (!DeadNodeSet.empty()) {
7270     SmallVector<SDNode *, 16> DeadNodes;
7271     for (SDNode *N : DeadNodeSet)
7272       if (N->use_empty())
7273         DeadNodes.push_back(N);
7274     RemoveDeadNodes(DeadNodes);
7275   }
7276 
7277   if (IP)
7278     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7279   return N;
7280 }
7281 
7282 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7283   unsigned OrigOpc = Node->getOpcode();
7284   unsigned NewOpc;
7285   bool IsUnary = false;
7286   bool IsTernary = false;
7287   switch (OrigOpc) {
7288   default:
7289     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7290   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7291   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7292   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7293   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7294   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7295   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7296   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7297   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7298   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7299   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7300   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7301   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7302   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7303   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7304   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7305   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7306   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7307   case ISD::STRICT_FNEARBYINT:
7308     NewOpc = ISD::FNEARBYINT;
7309     IsUnary = true;
7310     break;
7311   }
7312 
7313   // We're taking this node out of the chain, so we need to re-link things.
7314   SDValue InputChain = Node->getOperand(0);
7315   SDValue OutputChain = SDValue(Node, 1);
7316   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7317 
7318   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7319   SDNode *Res = nullptr;
7320   if (IsUnary)
7321     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7322   else if (IsTernary)
7323     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7324                                            Node->getOperand(2),
7325                                            Node->getOperand(3)});
7326   else
7327     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7328                                            Node->getOperand(2) });
7329 
7330   // MorphNodeTo can operate in two ways: if an existing node with the
7331   // specified operands exists, it can just return it.  Otherwise, it
7332   // updates the node in place to have the requested operands.
7333   if (Res == Node) {
7334     // If we updated the node in place, reset the node ID.  To the isel,
7335     // this should be just like a newly allocated machine node.
7336     Res->setNodeId(-1);
7337   } else {
7338     ReplaceAllUsesWith(Node, Res);
7339     RemoveDeadNode(Node);
7340   }
7341 
7342   return Res;
7343 }
7344 
7345 /// getMachineNode - These are used for target selectors to create a new node
7346 /// with specified return type(s), MachineInstr opcode, and operands.
7347 ///
7348 /// Note that getMachineNode returns the resultant node.  If there is already a
7349 /// node of the specified opcode and operands, it returns that node instead of
7350 /// the current one.
7351 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7352                                             EVT VT) {
7353   SDVTList VTs = getVTList(VT);
7354   return getMachineNode(Opcode, dl, VTs, None);
7355 }
7356 
7357 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7358                                             EVT VT, SDValue Op1) {
7359   SDVTList VTs = getVTList(VT);
7360   SDValue Ops[] = { Op1 };
7361   return getMachineNode(Opcode, dl, VTs, Ops);
7362 }
7363 
7364 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7365                                             EVT VT, SDValue Op1, SDValue Op2) {
7366   SDVTList VTs = getVTList(VT);
7367   SDValue Ops[] = { Op1, Op2 };
7368   return getMachineNode(Opcode, dl, VTs, Ops);
7369 }
7370 
7371 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7372                                             EVT VT, SDValue Op1, SDValue Op2,
7373                                             SDValue Op3) {
7374   SDVTList VTs = getVTList(VT);
7375   SDValue Ops[] = { Op1, Op2, Op3 };
7376   return getMachineNode(Opcode, dl, VTs, Ops);
7377 }
7378 
7379 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7380                                             EVT VT, ArrayRef<SDValue> Ops) {
7381   SDVTList VTs = getVTList(VT);
7382   return getMachineNode(Opcode, dl, VTs, Ops);
7383 }
7384 
7385 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7386                                             EVT VT1, EVT VT2, SDValue Op1,
7387                                             SDValue Op2) {
7388   SDVTList VTs = getVTList(VT1, VT2);
7389   SDValue Ops[] = { Op1, Op2 };
7390   return getMachineNode(Opcode, dl, VTs, Ops);
7391 }
7392 
7393 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7394                                             EVT VT1, EVT VT2, SDValue Op1,
7395                                             SDValue Op2, SDValue Op3) {
7396   SDVTList VTs = getVTList(VT1, VT2);
7397   SDValue Ops[] = { Op1, Op2, Op3 };
7398   return getMachineNode(Opcode, dl, VTs, Ops);
7399 }
7400 
7401 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7402                                             EVT VT1, EVT VT2,
7403                                             ArrayRef<SDValue> Ops) {
7404   SDVTList VTs = getVTList(VT1, VT2);
7405   return getMachineNode(Opcode, dl, VTs, Ops);
7406 }
7407 
7408 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7409                                             EVT VT1, EVT VT2, EVT VT3,
7410                                             SDValue Op1, SDValue Op2) {
7411   SDVTList VTs = getVTList(VT1, VT2, VT3);
7412   SDValue Ops[] = { Op1, Op2 };
7413   return getMachineNode(Opcode, dl, VTs, Ops);
7414 }
7415 
7416 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7417                                             EVT VT1, EVT VT2, EVT VT3,
7418                                             SDValue Op1, SDValue Op2,
7419                                             SDValue Op3) {
7420   SDVTList VTs = getVTList(VT1, VT2, VT3);
7421   SDValue Ops[] = { Op1, Op2, Op3 };
7422   return getMachineNode(Opcode, dl, VTs, Ops);
7423 }
7424 
7425 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7426                                             EVT VT1, EVT VT2, EVT VT3,
7427                                             ArrayRef<SDValue> Ops) {
7428   SDVTList VTs = getVTList(VT1, VT2, VT3);
7429   return getMachineNode(Opcode, dl, VTs, Ops);
7430 }
7431 
7432 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7433                                             ArrayRef<EVT> ResultTys,
7434                                             ArrayRef<SDValue> Ops) {
7435   SDVTList VTs = getVTList(ResultTys);
7436   return getMachineNode(Opcode, dl, VTs, Ops);
7437 }
7438 
7439 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7440                                             SDVTList VTs,
7441                                             ArrayRef<SDValue> Ops) {
7442   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7443   MachineSDNode *N;
7444   void *IP = nullptr;
7445 
7446   if (DoCSE) {
7447     FoldingSetNodeID ID;
7448     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7449     IP = nullptr;
7450     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7451       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7452     }
7453   }
7454 
7455   // Allocate a new MachineSDNode.
7456   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7457   createOperands(N, Ops);
7458 
7459   if (DoCSE)
7460     CSEMap.InsertNode(N, IP);
7461 
7462   InsertNode(N);
7463   return N;
7464 }
7465 
7466 /// getTargetExtractSubreg - A convenience function for creating
7467 /// TargetOpcode::EXTRACT_SUBREG nodes.
7468 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7469                                              SDValue Operand) {
7470   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7471   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7472                                   VT, Operand, SRIdxVal);
7473   return SDValue(Subreg, 0);
7474 }
7475 
7476 /// getTargetInsertSubreg - A convenience function for creating
7477 /// TargetOpcode::INSERT_SUBREG nodes.
7478 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7479                                             SDValue Operand, SDValue Subreg) {
7480   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7481   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7482                                   VT, Operand, Subreg, SRIdxVal);
7483   return SDValue(Result, 0);
7484 }
7485 
7486 /// getNodeIfExists - Get the specified node if it's already available, or
7487 /// else return NULL.
7488 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7489                                       ArrayRef<SDValue> Ops,
7490                                       const SDNodeFlags Flags) {
7491   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7492     FoldingSetNodeID ID;
7493     AddNodeIDNode(ID, Opcode, VTList, Ops);
7494     void *IP = nullptr;
7495     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7496       E->intersectFlagsWith(Flags);
7497       return E;
7498     }
7499   }
7500   return nullptr;
7501 }
7502 
7503 /// getDbgValue - Creates a SDDbgValue node.
7504 ///
7505 /// SDNode
7506 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7507                                       SDNode *N, unsigned R, bool IsIndirect,
7508                                       const DebugLoc &DL, unsigned O) {
7509   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7510          "Expected inlined-at fields to agree");
7511   return new (DbgInfo->getAlloc())
7512       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7513 }
7514 
7515 /// Constant
7516 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7517                                               DIExpression *Expr,
7518                                               const Value *C,
7519                                               const DebugLoc &DL, unsigned O) {
7520   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7521          "Expected inlined-at fields to agree");
7522   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7523 }
7524 
7525 /// FrameIndex
7526 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7527                                                 DIExpression *Expr, unsigned FI,
7528                                                 bool IsIndirect,
7529                                                 const DebugLoc &DL,
7530                                                 unsigned O) {
7531   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7532          "Expected inlined-at fields to agree");
7533   return new (DbgInfo->getAlloc())
7534       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7535 }
7536 
7537 /// VReg
7538 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7539                                           DIExpression *Expr,
7540                                           unsigned VReg, bool IsIndirect,
7541                                           const DebugLoc &DL, unsigned O) {
7542   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7543          "Expected inlined-at fields to agree");
7544   return new (DbgInfo->getAlloc())
7545       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7546 }
7547 
7548 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7549                                      unsigned OffsetInBits, unsigned SizeInBits,
7550                                      bool InvalidateDbg) {
7551   SDNode *FromNode = From.getNode();
7552   SDNode *ToNode = To.getNode();
7553   assert(FromNode && ToNode && "Can't modify dbg values");
7554 
7555   // PR35338
7556   // TODO: assert(From != To && "Redundant dbg value transfer");
7557   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7558   if (From == To || FromNode == ToNode)
7559     return;
7560 
7561   if (!FromNode->getHasDebugValue())
7562     return;
7563 
7564   SmallVector<SDDbgValue *, 2> ClonedDVs;
7565   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7566     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7567       continue;
7568 
7569     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7570 
7571     // Just transfer the dbg value attached to From.
7572     if (Dbg->getResNo() != From.getResNo())
7573       continue;
7574 
7575     DIVariable *Var = Dbg->getVariable();
7576     auto *Expr = Dbg->getExpression();
7577     // If a fragment is requested, update the expression.
7578     if (SizeInBits) {
7579       // When splitting a larger (e.g., sign-extended) value whose
7580       // lower bits are described with an SDDbgValue, do not attempt
7581       // to transfer the SDDbgValue to the upper bits.
7582       if (auto FI = Expr->getFragmentInfo())
7583         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7584           continue;
7585       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7586                                                              SizeInBits);
7587       if (!Fragment)
7588         continue;
7589       Expr = *Fragment;
7590     }
7591     // Clone the SDDbgValue and move it to To.
7592     SDDbgValue *Clone =
7593         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7594                     Dbg->getDebugLoc(), Dbg->getOrder());
7595     ClonedDVs.push_back(Clone);
7596 
7597     if (InvalidateDbg)
7598       Dbg->setIsInvalidated();
7599   }
7600 
7601   for (SDDbgValue *Dbg : ClonedDVs)
7602     AddDbgValue(Dbg, ToNode, false);
7603 }
7604 
7605 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7606   if (!N.getHasDebugValue())
7607     return;
7608 
7609   SmallVector<SDDbgValue *, 2> ClonedDVs;
7610   for (auto DV : GetDbgValues(&N)) {
7611     if (DV->isInvalidated())
7612       continue;
7613     switch (N.getOpcode()) {
7614     default:
7615       break;
7616     case ISD::ADD:
7617       SDValue N0 = N.getOperand(0);
7618       SDValue N1 = N.getOperand(1);
7619       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7620           isConstantIntBuildVectorOrConstantInt(N1)) {
7621         uint64_t Offset = N.getConstantOperandVal(1);
7622         // Rewrite an ADD constant node into a DIExpression. Since we are
7623         // performing arithmetic to compute the variable's *value* in the
7624         // DIExpression, we need to mark the expression with a
7625         // DW_OP_stack_value.
7626         auto *DIExpr = DV->getExpression();
7627         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7628                                        DIExpression::NoDeref,
7629                                        DIExpression::WithStackValue);
7630         SDDbgValue *Clone =
7631             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7632                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7633         ClonedDVs.push_back(Clone);
7634         DV->setIsInvalidated();
7635         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7636                    N0.getNode()->dumprFull(this);
7637                    dbgs() << " into " << *DIExpr << '\n');
7638       }
7639     }
7640   }
7641 
7642   for (SDDbgValue *Dbg : ClonedDVs)
7643     AddDbgValue(Dbg, Dbg->getSDNode(), false);
7644 }
7645 
7646 /// Creates a SDDbgLabel node.
7647 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
7648                                       const DebugLoc &DL, unsigned O) {
7649   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
7650          "Expected inlined-at fields to agree");
7651   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
7652 }
7653 
7654 namespace {
7655 
7656 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7657 /// pointed to by a use iterator is deleted, increment the use iterator
7658 /// so that it doesn't dangle.
7659 ///
7660 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
7661   SDNode::use_iterator &UI;
7662   SDNode::use_iterator &UE;
7663 
7664   void NodeDeleted(SDNode *N, SDNode *E) override {
7665     // Increment the iterator as needed.
7666     while (UI != UE && N == *UI)
7667       ++UI;
7668   }
7669 
7670 public:
7671   RAUWUpdateListener(SelectionDAG &d,
7672                      SDNode::use_iterator &ui,
7673                      SDNode::use_iterator &ue)
7674     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
7675 };
7676 
7677 } // end anonymous namespace
7678 
7679 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7680 /// This can cause recursive merging of nodes in the DAG.
7681 ///
7682 /// This version assumes From has a single result value.
7683 ///
7684 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
7685   SDNode *From = FromN.getNode();
7686   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
7687          "Cannot replace with this method!");
7688   assert(From != To.getNode() && "Cannot replace uses of with self");
7689 
7690   // Preserve Debug Values
7691   transferDbgValues(FromN, To);
7692 
7693   // Iterate over all the existing uses of From. New uses will be added
7694   // to the beginning of the use list, which we avoid visiting.
7695   // This specifically avoids visiting uses of From that arise while the
7696   // replacement is happening, because any such uses would be the result
7697   // of CSE: If an existing node looks like From after one of its operands
7698   // is replaced by To, we don't want to replace of all its users with To
7699   // too. See PR3018 for more info.
7700   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7701   RAUWUpdateListener Listener(*this, UI, UE);
7702   while (UI != UE) {
7703     SDNode *User = *UI;
7704 
7705     // This node is about to morph, remove its old self from the CSE maps.
7706     RemoveNodeFromCSEMaps(User);
7707 
7708     // A user can appear in a use list multiple times, and when this
7709     // happens the uses are usually next to each other in the list.
7710     // To help reduce the number of CSE recomputations, process all
7711     // the uses of this user that we can find this way.
7712     do {
7713       SDUse &Use = UI.getUse();
7714       ++UI;
7715       Use.set(To);
7716       if (To->isDivergent() != From->isDivergent())
7717         updateDivergence(User);
7718     } while (UI != UE && *UI == User);
7719     // Now that we have modified User, add it back to the CSE maps.  If it
7720     // already exists there, recursively merge the results together.
7721     AddModifiedNodeToCSEMaps(User);
7722   }
7723 
7724   // If we just RAUW'd the root, take note.
7725   if (FromN == getRoot())
7726     setRoot(To);
7727 }
7728 
7729 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7730 /// This can cause recursive merging of nodes in the DAG.
7731 ///
7732 /// This version assumes that for each value of From, there is a
7733 /// corresponding value in To in the same position with the same type.
7734 ///
7735 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
7736 #ifndef NDEBUG
7737   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7738     assert((!From->hasAnyUseOfValue(i) ||
7739             From->getValueType(i) == To->getValueType(i)) &&
7740            "Cannot use this version of ReplaceAllUsesWith!");
7741 #endif
7742 
7743   // Handle the trivial case.
7744   if (From == To)
7745     return;
7746 
7747   // Preserve Debug Info. Only do this if there's a use.
7748   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7749     if (From->hasAnyUseOfValue(i)) {
7750       assert((i < To->getNumValues()) && "Invalid To location");
7751       transferDbgValues(SDValue(From, i), SDValue(To, i));
7752     }
7753 
7754   // Iterate over just the existing users of From. See the comments in
7755   // the ReplaceAllUsesWith above.
7756   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7757   RAUWUpdateListener Listener(*this, UI, UE);
7758   while (UI != UE) {
7759     SDNode *User = *UI;
7760 
7761     // This node is about to morph, remove its old self from the CSE maps.
7762     RemoveNodeFromCSEMaps(User);
7763 
7764     // A user can appear in a use list multiple times, and when this
7765     // happens the uses are usually next to each other in the list.
7766     // To help reduce the number of CSE recomputations, process all
7767     // the uses of this user that we can find this way.
7768     do {
7769       SDUse &Use = UI.getUse();
7770       ++UI;
7771       Use.setNode(To);
7772       if (To->isDivergent() != From->isDivergent())
7773         updateDivergence(User);
7774     } while (UI != UE && *UI == User);
7775 
7776     // Now that we have modified User, add it back to the CSE maps.  If it
7777     // already exists there, recursively merge the results together.
7778     AddModifiedNodeToCSEMaps(User);
7779   }
7780 
7781   // If we just RAUW'd the root, take note.
7782   if (From == getRoot().getNode())
7783     setRoot(SDValue(To, getRoot().getResNo()));
7784 }
7785 
7786 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7787 /// This can cause recursive merging of nodes in the DAG.
7788 ///
7789 /// This version can replace From with any result values.  To must match the
7790 /// number and types of values returned by From.
7791 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
7792   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
7793     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
7794 
7795   // Preserve Debug Info.
7796   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7797     transferDbgValues(SDValue(From, i), *To);
7798 
7799   // Iterate over just the existing users of From. See the comments in
7800   // the ReplaceAllUsesWith above.
7801   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7802   RAUWUpdateListener Listener(*this, UI, UE);
7803   while (UI != UE) {
7804     SDNode *User = *UI;
7805 
7806     // This node is about to morph, remove its old self from the CSE maps.
7807     RemoveNodeFromCSEMaps(User);
7808 
7809     // A user can appear in a use list multiple times, and when this happens the
7810     // uses are usually next to each other in the list.  To help reduce the
7811     // number of CSE and divergence recomputations, process all the uses of this
7812     // user that we can find this way.
7813     bool To_IsDivergent = false;
7814     do {
7815       SDUse &Use = UI.getUse();
7816       const SDValue &ToOp = To[Use.getResNo()];
7817       ++UI;
7818       Use.set(ToOp);
7819       To_IsDivergent |= ToOp->isDivergent();
7820     } while (UI != UE && *UI == User);
7821 
7822     if (To_IsDivergent != From->isDivergent())
7823       updateDivergence(User);
7824 
7825     // Now that we have modified User, add it back to the CSE maps.  If it
7826     // already exists there, recursively merge the results together.
7827     AddModifiedNodeToCSEMaps(User);
7828   }
7829 
7830   // If we just RAUW'd the root, take note.
7831   if (From == getRoot().getNode())
7832     setRoot(SDValue(To[getRoot().getResNo()]));
7833 }
7834 
7835 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
7836 /// uses of other values produced by From.getNode() alone.  The Deleted
7837 /// vector is handled the same way as for ReplaceAllUsesWith.
7838 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
7839   // Handle the really simple, really trivial case efficiently.
7840   if (From == To) return;
7841 
7842   // Handle the simple, trivial, case efficiently.
7843   if (From.getNode()->getNumValues() == 1) {
7844     ReplaceAllUsesWith(From, To);
7845     return;
7846   }
7847 
7848   // Preserve Debug Info.
7849   transferDbgValues(From, To);
7850 
7851   // Iterate over just the existing users of From. See the comments in
7852   // the ReplaceAllUsesWith above.
7853   SDNode::use_iterator UI = From.getNode()->use_begin(),
7854                        UE = From.getNode()->use_end();
7855   RAUWUpdateListener Listener(*this, UI, UE);
7856   while (UI != UE) {
7857     SDNode *User = *UI;
7858     bool UserRemovedFromCSEMaps = false;
7859 
7860     // A user can appear in a use list multiple times, and when this
7861     // happens the uses are usually next to each other in the list.
7862     // To help reduce the number of CSE recomputations, process all
7863     // the uses of this user that we can find this way.
7864     do {
7865       SDUse &Use = UI.getUse();
7866 
7867       // Skip uses of different values from the same node.
7868       if (Use.getResNo() != From.getResNo()) {
7869         ++UI;
7870         continue;
7871       }
7872 
7873       // If this node hasn't been modified yet, it's still in the CSE maps,
7874       // so remove its old self from the CSE maps.
7875       if (!UserRemovedFromCSEMaps) {
7876         RemoveNodeFromCSEMaps(User);
7877         UserRemovedFromCSEMaps = true;
7878       }
7879 
7880       ++UI;
7881       Use.set(To);
7882       if (To->isDivergent() != From->isDivergent())
7883         updateDivergence(User);
7884     } while (UI != UE && *UI == User);
7885     // We are iterating over all uses of the From node, so if a use
7886     // doesn't use the specific value, no changes are made.
7887     if (!UserRemovedFromCSEMaps)
7888       continue;
7889 
7890     // Now that we have modified User, add it back to the CSE maps.  If it
7891     // already exists there, recursively merge the results together.
7892     AddModifiedNodeToCSEMaps(User);
7893   }
7894 
7895   // If we just RAUW'd the root, take note.
7896   if (From == getRoot())
7897     setRoot(To);
7898 }
7899 
7900 namespace {
7901 
7902   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
7903   /// to record information about a use.
7904   struct UseMemo {
7905     SDNode *User;
7906     unsigned Index;
7907     SDUse *Use;
7908   };
7909 
7910   /// operator< - Sort Memos by User.
7911   bool operator<(const UseMemo &L, const UseMemo &R) {
7912     return (intptr_t)L.User < (intptr_t)R.User;
7913   }
7914 
7915 } // end anonymous namespace
7916 
7917 void SelectionDAG::updateDivergence(SDNode * N)
7918 {
7919   if (TLI->isSDNodeAlwaysUniform(N))
7920     return;
7921   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
7922   for (auto &Op : N->ops()) {
7923     if (Op.Val.getValueType() != MVT::Other)
7924       IsDivergent |= Op.getNode()->isDivergent();
7925   }
7926   if (N->SDNodeBits.IsDivergent != IsDivergent) {
7927     N->SDNodeBits.IsDivergent = IsDivergent;
7928     for (auto U : N->uses()) {
7929       updateDivergence(U);
7930     }
7931   }
7932 }
7933 
7934 
7935 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
7936   DenseMap<SDNode *, unsigned> Degree;
7937   Order.reserve(AllNodes.size());
7938   for (auto & N : allnodes()) {
7939     unsigned NOps = N.getNumOperands();
7940     Degree[&N] = NOps;
7941     if (0 == NOps)
7942       Order.push_back(&N);
7943   }
7944   for (std::vector<SDNode *>::iterator I = Order.begin();
7945   I!=Order.end();++I) {
7946     SDNode * N = *I;
7947     for (auto U : N->uses()) {
7948       unsigned &UnsortedOps = Degree[U];
7949       if (0 == --UnsortedOps)
7950         Order.push_back(U);
7951     }
7952   }
7953 }
7954 
7955 void SelectionDAG::VerifyDAGDiverence()
7956 {
7957   std::vector<SDNode*> TopoOrder;
7958   CreateTopologicalOrder(TopoOrder);
7959   const TargetLowering &TLI = getTargetLoweringInfo();
7960   DenseMap<const SDNode *, bool> DivergenceMap;
7961   for (auto &N : allnodes()) {
7962     DivergenceMap[&N] = false;
7963   }
7964   for (auto N : TopoOrder) {
7965     bool IsDivergent = DivergenceMap[N];
7966     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
7967     for (auto &Op : N->ops()) {
7968       if (Op.Val.getValueType() != MVT::Other)
7969         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
7970     }
7971     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
7972       DivergenceMap[N] = true;
7973     }
7974   }
7975   for (auto &N : allnodes()) {
7976     (void)N;
7977     assert(DivergenceMap[&N] == N.isDivergent() &&
7978            "Divergence bit inconsistency detected\n");
7979   }
7980 }
7981 
7982 
7983 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
7984 /// uses of other values produced by From.getNode() alone.  The same value
7985 /// may appear in both the From and To list.  The Deleted vector is
7986 /// handled the same way as for ReplaceAllUsesWith.
7987 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
7988                                               const SDValue *To,
7989                                               unsigned Num){
7990   // Handle the simple, trivial case efficiently.
7991   if (Num == 1)
7992     return ReplaceAllUsesOfValueWith(*From, *To);
7993 
7994   transferDbgValues(*From, *To);
7995 
7996   // Read up all the uses and make records of them. This helps
7997   // processing new uses that are introduced during the
7998   // replacement process.
7999   SmallVector<UseMemo, 4> Uses;
8000   for (unsigned i = 0; i != Num; ++i) {
8001     unsigned FromResNo = From[i].getResNo();
8002     SDNode *FromNode = From[i].getNode();
8003     for (SDNode::use_iterator UI = FromNode->use_begin(),
8004          E = FromNode->use_end(); UI != E; ++UI) {
8005       SDUse &Use = UI.getUse();
8006       if (Use.getResNo() == FromResNo) {
8007         UseMemo Memo = { *UI, i, &Use };
8008         Uses.push_back(Memo);
8009       }
8010     }
8011   }
8012 
8013   // Sort the uses, so that all the uses from a given User are together.
8014   llvm::sort(Uses.begin(), Uses.end());
8015 
8016   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8017        UseIndex != UseIndexEnd; ) {
8018     // We know that this user uses some value of From.  If it is the right
8019     // value, update it.
8020     SDNode *User = Uses[UseIndex].User;
8021 
8022     // This node is about to morph, remove its old self from the CSE maps.
8023     RemoveNodeFromCSEMaps(User);
8024 
8025     // The Uses array is sorted, so all the uses for a given User
8026     // are next to each other in the list.
8027     // To help reduce the number of CSE recomputations, process all
8028     // the uses of this user that we can find this way.
8029     do {
8030       unsigned i = Uses[UseIndex].Index;
8031       SDUse &Use = *Uses[UseIndex].Use;
8032       ++UseIndex;
8033 
8034       Use.set(To[i]);
8035     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8036 
8037     // Now that we have modified User, add it back to the CSE maps.  If it
8038     // already exists there, recursively merge the results together.
8039     AddModifiedNodeToCSEMaps(User);
8040   }
8041 }
8042 
8043 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8044 /// based on their topological order. It returns the maximum id and a vector
8045 /// of the SDNodes* in assigned order by reference.
8046 unsigned SelectionDAG::AssignTopologicalOrder() {
8047   unsigned DAGSize = 0;
8048 
8049   // SortedPos tracks the progress of the algorithm. Nodes before it are
8050   // sorted, nodes after it are unsorted. When the algorithm completes
8051   // it is at the end of the list.
8052   allnodes_iterator SortedPos = allnodes_begin();
8053 
8054   // Visit all the nodes. Move nodes with no operands to the front of
8055   // the list immediately. Annotate nodes that do have operands with their
8056   // operand count. Before we do this, the Node Id fields of the nodes
8057   // may contain arbitrary values. After, the Node Id fields for nodes
8058   // before SortedPos will contain the topological sort index, and the
8059   // Node Id fields for nodes At SortedPos and after will contain the
8060   // count of outstanding operands.
8061   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8062     SDNode *N = &*I++;
8063     checkForCycles(N, this);
8064     unsigned Degree = N->getNumOperands();
8065     if (Degree == 0) {
8066       // A node with no uses, add it to the result array immediately.
8067       N->setNodeId(DAGSize++);
8068       allnodes_iterator Q(N);
8069       if (Q != SortedPos)
8070         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8071       assert(SortedPos != AllNodes.end() && "Overran node list");
8072       ++SortedPos;
8073     } else {
8074       // Temporarily use the Node Id as scratch space for the degree count.
8075       N->setNodeId(Degree);
8076     }
8077   }
8078 
8079   // Visit all the nodes. As we iterate, move nodes into sorted order,
8080   // such that by the time the end is reached all nodes will be sorted.
8081   for (SDNode &Node : allnodes()) {
8082     SDNode *N = &Node;
8083     checkForCycles(N, this);
8084     // N is in sorted position, so all its uses have one less operand
8085     // that needs to be sorted.
8086     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8087          UI != UE; ++UI) {
8088       SDNode *P = *UI;
8089       unsigned Degree = P->getNodeId();
8090       assert(Degree != 0 && "Invalid node degree");
8091       --Degree;
8092       if (Degree == 0) {
8093         // All of P's operands are sorted, so P may sorted now.
8094         P->setNodeId(DAGSize++);
8095         if (P->getIterator() != SortedPos)
8096           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8097         assert(SortedPos != AllNodes.end() && "Overran node list");
8098         ++SortedPos;
8099       } else {
8100         // Update P's outstanding operand count.
8101         P->setNodeId(Degree);
8102       }
8103     }
8104     if (Node.getIterator() == SortedPos) {
8105 #ifndef NDEBUG
8106       allnodes_iterator I(N);
8107       SDNode *S = &*++I;
8108       dbgs() << "Overran sorted position:\n";
8109       S->dumprFull(this); dbgs() << "\n";
8110       dbgs() << "Checking if this is due to cycles\n";
8111       checkForCycles(this, true);
8112 #endif
8113       llvm_unreachable(nullptr);
8114     }
8115   }
8116 
8117   assert(SortedPos == AllNodes.end() &&
8118          "Topological sort incomplete!");
8119   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8120          "First node in topological sort is not the entry token!");
8121   assert(AllNodes.front().getNodeId() == 0 &&
8122          "First node in topological sort has non-zero id!");
8123   assert(AllNodes.front().getNumOperands() == 0 &&
8124          "First node in topological sort has operands!");
8125   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8126          "Last node in topologic sort has unexpected id!");
8127   assert(AllNodes.back().use_empty() &&
8128          "Last node in topologic sort has users!");
8129   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8130   return DAGSize;
8131 }
8132 
8133 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8134 /// value is produced by SD.
8135 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8136   if (SD) {
8137     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8138     SD->setHasDebugValue(true);
8139   }
8140   DbgInfo->add(DB, SD, isParameter);
8141 }
8142 
8143 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8144   DbgInfo->add(DB);
8145 }
8146 
8147 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8148                                                    SDValue NewMemOp) {
8149   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8150   // The new memory operation must have the same position as the old load in
8151   // terms of memory dependency. Create a TokenFactor for the old load and new
8152   // memory operation and update uses of the old load's output chain to use that
8153   // TokenFactor.
8154   SDValue OldChain = SDValue(OldLoad, 1);
8155   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8156   if (!OldLoad->hasAnyUseOfValue(1))
8157     return NewChain;
8158 
8159   SDValue TokenFactor =
8160       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8161   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8162   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8163   return TokenFactor;
8164 }
8165 
8166 //===----------------------------------------------------------------------===//
8167 //                              SDNode Class
8168 //===----------------------------------------------------------------------===//
8169 
8170 bool llvm::isNullConstant(SDValue V) {
8171   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8172   return Const != nullptr && Const->isNullValue();
8173 }
8174 
8175 bool llvm::isNullFPConstant(SDValue V) {
8176   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8177   return Const != nullptr && Const->isZero() && !Const->isNegative();
8178 }
8179 
8180 bool llvm::isAllOnesConstant(SDValue V) {
8181   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8182   return Const != nullptr && Const->isAllOnesValue();
8183 }
8184 
8185 bool llvm::isOneConstant(SDValue V) {
8186   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8187   return Const != nullptr && Const->isOne();
8188 }
8189 
8190 bool llvm::isBitwiseNot(SDValue V) {
8191   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
8192 }
8193 
8194 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
8195   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8196     return CN;
8197 
8198   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8199     BitVector UndefElements;
8200     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8201 
8202     // BuildVectors can truncate their operands. Ignore that case here.
8203     // FIXME: We blindly ignore splats which include undef which is overly
8204     // pessimistic.
8205     if (CN && UndefElements.none() &&
8206         CN->getValueType(0) == N.getValueType().getScalarType())
8207       return CN;
8208   }
8209 
8210   return nullptr;
8211 }
8212 
8213 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
8214   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8215     return CN;
8216 
8217   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8218     BitVector UndefElements;
8219     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8220 
8221     if (CN && UndefElements.none())
8222       return CN;
8223   }
8224 
8225   return nullptr;
8226 }
8227 
8228 HandleSDNode::~HandleSDNode() {
8229   DropOperands();
8230 }
8231 
8232 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8233                                          const DebugLoc &DL,
8234                                          const GlobalValue *GA, EVT VT,
8235                                          int64_t o, unsigned char TF)
8236     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8237   TheGlobal = GA;
8238 }
8239 
8240 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8241                                          EVT VT, unsigned SrcAS,
8242                                          unsigned DestAS)
8243     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8244       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8245 
8246 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8247                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8248     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8249   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8250   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8251   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8252   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8253 
8254   // We check here that the size of the memory operand fits within the size of
8255   // the MMO. This is because the MMO might indicate only a possible address
8256   // range instead of specifying the affected memory addresses precisely.
8257   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8258 }
8259 
8260 /// Profile - Gather unique data for the node.
8261 ///
8262 void SDNode::Profile(FoldingSetNodeID &ID) const {
8263   AddNodeIDNode(ID, this);
8264 }
8265 
8266 namespace {
8267 
8268   struct EVTArray {
8269     std::vector<EVT> VTs;
8270 
8271     EVTArray() {
8272       VTs.reserve(MVT::LAST_VALUETYPE);
8273       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8274         VTs.push_back(MVT((MVT::SimpleValueType)i));
8275     }
8276   };
8277 
8278 } // end anonymous namespace
8279 
8280 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8281 static ManagedStatic<EVTArray> SimpleVTArray;
8282 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8283 
8284 /// getValueTypeList - Return a pointer to the specified value type.
8285 ///
8286 const EVT *SDNode::getValueTypeList(EVT VT) {
8287   if (VT.isExtended()) {
8288     sys::SmartScopedLock<true> Lock(*VTMutex);
8289     return &(*EVTs->insert(VT).first);
8290   } else {
8291     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8292            "Value type out of range!");
8293     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8294   }
8295 }
8296 
8297 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8298 /// indicated value.  This method ignores uses of other values defined by this
8299 /// operation.
8300 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8301   assert(Value < getNumValues() && "Bad value!");
8302 
8303   // TODO: Only iterate over uses of a given value of the node
8304   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8305     if (UI.getUse().getResNo() == Value) {
8306       if (NUses == 0)
8307         return false;
8308       --NUses;
8309     }
8310   }
8311 
8312   // Found exactly the right number of uses?
8313   return NUses == 0;
8314 }
8315 
8316 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8317 /// value. This method ignores uses of other values defined by this operation.
8318 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8319   assert(Value < getNumValues() && "Bad value!");
8320 
8321   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8322     if (UI.getUse().getResNo() == Value)
8323       return true;
8324 
8325   return false;
8326 }
8327 
8328 /// isOnlyUserOf - Return true if this node is the only use of N.
8329 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8330   bool Seen = false;
8331   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8332     SDNode *User = *I;
8333     if (User == this)
8334       Seen = true;
8335     else
8336       return false;
8337   }
8338 
8339   return Seen;
8340 }
8341 
8342 /// Return true if the only users of N are contained in Nodes.
8343 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8344   bool Seen = false;
8345   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8346     SDNode *User = *I;
8347     if (llvm::any_of(Nodes,
8348                      [&User](const SDNode *Node) { return User == Node; }))
8349       Seen = true;
8350     else
8351       return false;
8352   }
8353 
8354   return Seen;
8355 }
8356 
8357 /// isOperand - Return true if this node is an operand of N.
8358 bool SDValue::isOperandOf(const SDNode *N) const {
8359   for (const SDValue &Op : N->op_values())
8360     if (*this == Op)
8361       return true;
8362   return false;
8363 }
8364 
8365 bool SDNode::isOperandOf(const SDNode *N) const {
8366   for (const SDValue &Op : N->op_values())
8367     if (this == Op.getNode())
8368       return true;
8369   return false;
8370 }
8371 
8372 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8373 /// be a chain) reaches the specified operand without crossing any
8374 /// side-effecting instructions on any chain path.  In practice, this looks
8375 /// through token factors and non-volatile loads.  In order to remain efficient,
8376 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8377 ///
8378 /// Note that we only need to examine chains when we're searching for
8379 /// side-effects; SelectionDAG requires that all side-effects are represented
8380 /// by chains, even if another operand would force a specific ordering. This
8381 /// constraint is necessary to allow transformations like splitting loads.
8382 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8383                                              unsigned Depth) const {
8384   if (*this == Dest) return true;
8385 
8386   // Don't search too deeply, we just want to be able to see through
8387   // TokenFactor's etc.
8388   if (Depth == 0) return false;
8389 
8390   // If this is a token factor, all inputs to the TF happen in parallel.
8391   if (getOpcode() == ISD::TokenFactor) {
8392     // First, try a shallow search.
8393     if (is_contained((*this)->ops(), Dest)) {
8394       // We found the chain we want as an operand of this TokenFactor.
8395       // Essentially, we reach the chain without side-effects if we could
8396       // serialize the TokenFactor into a simple chain of operations with
8397       // Dest as the last operation. This is automatically true if the
8398       // chain has one use: there are no other ordering constraints.
8399       // If the chain has more than one use, we give up: some other
8400       // use of Dest might force a side-effect between Dest and the current
8401       // node.
8402       if (Dest.hasOneUse())
8403         return true;
8404     }
8405     // Next, try a deep search: check whether every operand of the TokenFactor
8406     // reaches Dest.
8407     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8408       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8409     });
8410   }
8411 
8412   // Loads don't have side effects, look through them.
8413   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8414     if (!Ld->isVolatile())
8415       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8416   }
8417   return false;
8418 }
8419 
8420 bool SDNode::hasPredecessor(const SDNode *N) const {
8421   SmallPtrSet<const SDNode *, 32> Visited;
8422   SmallVector<const SDNode *, 16> Worklist;
8423   Worklist.push_back(this);
8424   return hasPredecessorHelper(N, Visited, Worklist);
8425 }
8426 
8427 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8428   this->Flags.intersectWith(Flags);
8429 }
8430 
8431 SDValue
8432 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8433                                   ArrayRef<ISD::NodeType> CandidateBinOps) {
8434   // The pattern must end in an extract from index 0.
8435   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8436       !isNullConstant(Extract->getOperand(1)))
8437     return SDValue();
8438 
8439   SDValue Op = Extract->getOperand(0);
8440   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
8441 
8442   // Match against one of the candidate binary ops.
8443   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
8444         return Op.getOpcode() == unsigned(BinOp);
8445       }))
8446     return SDValue();
8447 
8448   // At each stage, we're looking for something that looks like:
8449   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
8450   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
8451   //                               i32 undef, i32 undef, i32 undef, i32 undef>
8452   // %a = binop <8 x i32> %op, %s
8453   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
8454   // we expect something like:
8455   // <4,5,6,7,u,u,u,u>
8456   // <2,3,u,u,u,u,u,u>
8457   // <1,u,u,u,u,u,u,u>
8458   unsigned CandidateBinOp = Op.getOpcode();
8459   for (unsigned i = 0; i < Stages; ++i) {
8460     if (Op.getOpcode() != CandidateBinOp)
8461       return SDValue();
8462 
8463     SDValue Op0 = Op.getOperand(0);
8464     SDValue Op1 = Op.getOperand(1);
8465 
8466     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
8467     if (Shuffle) {
8468       Op = Op1;
8469     } else {
8470       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
8471       Op = Op0;
8472     }
8473 
8474     // The first operand of the shuffle should be the same as the other operand
8475     // of the binop.
8476     if (!Shuffle || Shuffle->getOperand(0) != Op)
8477       return SDValue();
8478 
8479     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
8480     for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
8481       if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
8482         return SDValue();
8483   }
8484 
8485   BinOp = (ISD::NodeType)CandidateBinOp;
8486   return Op;
8487 }
8488 
8489 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8490   assert(N->getNumValues() == 1 &&
8491          "Can't unroll a vector with multiple results!");
8492 
8493   EVT VT = N->getValueType(0);
8494   unsigned NE = VT.getVectorNumElements();
8495   EVT EltVT = VT.getVectorElementType();
8496   SDLoc dl(N);
8497 
8498   SmallVector<SDValue, 8> Scalars;
8499   SmallVector<SDValue, 4> Operands(N->getNumOperands());
8500 
8501   // If ResNE is 0, fully unroll the vector op.
8502   if (ResNE == 0)
8503     ResNE = NE;
8504   else if (NE > ResNE)
8505     NE = ResNE;
8506 
8507   unsigned i;
8508   for (i= 0; i != NE; ++i) {
8509     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8510       SDValue Operand = N->getOperand(j);
8511       EVT OperandVT = Operand.getValueType();
8512       if (OperandVT.isVector()) {
8513         // A vector operand; extract a single element.
8514         EVT OperandEltVT = OperandVT.getVectorElementType();
8515         Operands[j] =
8516             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8517                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8518       } else {
8519         // A scalar operand; just use it as is.
8520         Operands[j] = Operand;
8521       }
8522     }
8523 
8524     switch (N->getOpcode()) {
8525     default: {
8526       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8527                                 N->getFlags()));
8528       break;
8529     }
8530     case ISD::VSELECT:
8531       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8532       break;
8533     case ISD::SHL:
8534     case ISD::SRA:
8535     case ISD::SRL:
8536     case ISD::ROTL:
8537     case ISD::ROTR:
8538       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8539                                getShiftAmountOperand(Operands[0].getValueType(),
8540                                                      Operands[1])));
8541       break;
8542     case ISD::SIGN_EXTEND_INREG:
8543     case ISD::FP_ROUND_INREG: {
8544       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8545       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8546                                 Operands[0],
8547                                 getValueType(ExtVT)));
8548     }
8549     }
8550   }
8551 
8552   for (; i < ResNE; ++i)
8553     Scalars.push_back(getUNDEF(EltVT));
8554 
8555   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8556   return getBuildVector(VecVT, dl, Scalars);
8557 }
8558 
8559 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
8560                                                   LoadSDNode *Base,
8561                                                   unsigned Bytes,
8562                                                   int Dist) const {
8563   if (LD->isVolatile() || Base->isVolatile())
8564     return false;
8565   if (LD->isIndexed() || Base->isIndexed())
8566     return false;
8567   if (LD->getChain() != Base->getChain())
8568     return false;
8569   EVT VT = LD->getValueType(0);
8570   if (VT.getSizeInBits() / 8 != Bytes)
8571     return false;
8572 
8573   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
8574   auto LocDecomp = BaseIndexOffset::match(LD, *this);
8575 
8576   int64_t Offset = 0;
8577   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
8578     return (Dist * Bytes == Offset);
8579   return false;
8580 }
8581 
8582 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
8583 /// it cannot be inferred.
8584 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
8585   // If this is a GlobalAddress + cst, return the alignment.
8586   const GlobalValue *GV;
8587   int64_t GVOffset = 0;
8588   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
8589     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
8590     KnownBits Known(IdxWidth);
8591     llvm::computeKnownBits(GV, Known, getDataLayout());
8592     unsigned AlignBits = Known.countMinTrailingZeros();
8593     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
8594     if (Align)
8595       return MinAlign(Align, GVOffset);
8596   }
8597 
8598   // If this is a direct reference to a stack slot, use information about the
8599   // stack slot's alignment.
8600   int FrameIdx = 1 << 31;
8601   int64_t FrameOffset = 0;
8602   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
8603     FrameIdx = FI->getIndex();
8604   } else if (isBaseWithConstantOffset(Ptr) &&
8605              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
8606     // Handle FI+Cst
8607     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
8608     FrameOffset = Ptr.getConstantOperandVal(1);
8609   }
8610 
8611   if (FrameIdx != (1 << 31)) {
8612     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
8613     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
8614                                     FrameOffset);
8615     return FIInfoAlign;
8616   }
8617 
8618   return 0;
8619 }
8620 
8621 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
8622 /// which is split (or expanded) into two not necessarily identical pieces.
8623 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
8624   // Currently all types are split in half.
8625   EVT LoVT, HiVT;
8626   if (!VT.isVector())
8627     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
8628   else
8629     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
8630 
8631   return std::make_pair(LoVT, HiVT);
8632 }
8633 
8634 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
8635 /// low/high part.
8636 std::pair<SDValue, SDValue>
8637 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
8638                           const EVT &HiVT) {
8639   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
8640          N.getValueType().getVectorNumElements() &&
8641          "More vector elements requested than available!");
8642   SDValue Lo, Hi;
8643   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
8644                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
8645   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
8646                getConstant(LoVT.getVectorNumElements(), DL,
8647                            TLI->getVectorIdxTy(getDataLayout())));
8648   return std::make_pair(Lo, Hi);
8649 }
8650 
8651 void SelectionDAG::ExtractVectorElements(SDValue Op,
8652                                          SmallVectorImpl<SDValue> &Args,
8653                                          unsigned Start, unsigned Count) {
8654   EVT VT = Op.getValueType();
8655   if (Count == 0)
8656     Count = VT.getVectorNumElements();
8657 
8658   EVT EltVT = VT.getVectorElementType();
8659   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
8660   SDLoc SL(Op);
8661   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
8662     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
8663                            Op, getConstant(i, SL, IdxTy)));
8664   }
8665 }
8666 
8667 // getAddressSpace - Return the address space this GlobalAddress belongs to.
8668 unsigned GlobalAddressSDNode::getAddressSpace() const {
8669   return getGlobal()->getType()->getAddressSpace();
8670 }
8671 
8672 Type *ConstantPoolSDNode::getType() const {
8673   if (isMachineConstantPoolEntry())
8674     return Val.MachineCPVal->getType();
8675   return Val.ConstVal->getType();
8676 }
8677 
8678 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
8679                                         unsigned &SplatBitSize,
8680                                         bool &HasAnyUndefs,
8681                                         unsigned MinSplatBits,
8682                                         bool IsBigEndian) const {
8683   EVT VT = getValueType(0);
8684   assert(VT.isVector() && "Expected a vector type");
8685   unsigned VecWidth = VT.getSizeInBits();
8686   if (MinSplatBits > VecWidth)
8687     return false;
8688 
8689   // FIXME: The widths are based on this node's type, but build vectors can
8690   // truncate their operands.
8691   SplatValue = APInt(VecWidth, 0);
8692   SplatUndef = APInt(VecWidth, 0);
8693 
8694   // Get the bits. Bits with undefined values (when the corresponding element
8695   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
8696   // in SplatValue. If any of the values are not constant, give up and return
8697   // false.
8698   unsigned int NumOps = getNumOperands();
8699   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
8700   unsigned EltWidth = VT.getScalarSizeInBits();
8701 
8702   for (unsigned j = 0; j < NumOps; ++j) {
8703     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
8704     SDValue OpVal = getOperand(i);
8705     unsigned BitPos = j * EltWidth;
8706 
8707     if (OpVal.isUndef())
8708       SplatUndef.setBits(BitPos, BitPos + EltWidth);
8709     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
8710       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
8711     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
8712       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
8713     else
8714       return false;
8715   }
8716 
8717   // The build_vector is all constants or undefs. Find the smallest element
8718   // size that splats the vector.
8719   HasAnyUndefs = (SplatUndef != 0);
8720 
8721   // FIXME: This does not work for vectors with elements less than 8 bits.
8722   while (VecWidth > 8) {
8723     unsigned HalfSize = VecWidth / 2;
8724     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
8725     APInt LowValue = SplatValue.trunc(HalfSize);
8726     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
8727     APInt LowUndef = SplatUndef.trunc(HalfSize);
8728 
8729     // If the two halves do not match (ignoring undef bits), stop here.
8730     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
8731         MinSplatBits > HalfSize)
8732       break;
8733 
8734     SplatValue = HighValue | LowValue;
8735     SplatUndef = HighUndef & LowUndef;
8736 
8737     VecWidth = HalfSize;
8738   }
8739 
8740   SplatBitSize = VecWidth;
8741   return true;
8742 }
8743 
8744 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
8745   if (UndefElements) {
8746     UndefElements->clear();
8747     UndefElements->resize(getNumOperands());
8748   }
8749   SDValue Splatted;
8750   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
8751     SDValue Op = getOperand(i);
8752     if (Op.isUndef()) {
8753       if (UndefElements)
8754         (*UndefElements)[i] = true;
8755     } else if (!Splatted) {
8756       Splatted = Op;
8757     } else if (Splatted != Op) {
8758       return SDValue();
8759     }
8760   }
8761 
8762   if (!Splatted) {
8763     assert(getOperand(0).isUndef() &&
8764            "Can only have a splat without a constant for all undefs.");
8765     return getOperand(0);
8766   }
8767 
8768   return Splatted;
8769 }
8770 
8771 ConstantSDNode *
8772 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
8773   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
8774 }
8775 
8776 ConstantFPSDNode *
8777 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
8778   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
8779 }
8780 
8781 int32_t
8782 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
8783                                                    uint32_t BitWidth) const {
8784   if (ConstantFPSDNode *CN =
8785           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
8786     bool IsExact;
8787     APSInt IntVal(BitWidth);
8788     const APFloat &APF = CN->getValueAPF();
8789     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
8790             APFloat::opOK ||
8791         !IsExact)
8792       return -1;
8793 
8794     return IntVal.exactLogBase2();
8795   }
8796   return -1;
8797 }
8798 
8799 bool BuildVectorSDNode::isConstant() const {
8800   for (const SDValue &Op : op_values()) {
8801     unsigned Opc = Op.getOpcode();
8802     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
8803       return false;
8804   }
8805   return true;
8806 }
8807 
8808 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
8809   // Find the first non-undef value in the shuffle mask.
8810   unsigned i, e;
8811   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
8812     /* search */;
8813 
8814   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
8815 
8816   // Make sure all remaining elements are either undef or the same as the first
8817   // non-undef value.
8818   for (int Idx = Mask[i]; i != e; ++i)
8819     if (Mask[i] >= 0 && Mask[i] != Idx)
8820       return false;
8821   return true;
8822 }
8823 
8824 // Returns the SDNode if it is a constant integer BuildVector
8825 // or constant integer.
8826 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
8827   if (isa<ConstantSDNode>(N))
8828     return N.getNode();
8829   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
8830     return N.getNode();
8831   // Treat a GlobalAddress supporting constant offset folding as a
8832   // constant integer.
8833   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
8834     if (GA->getOpcode() == ISD::GlobalAddress &&
8835         TLI->isOffsetFoldingLegal(GA))
8836       return GA;
8837   return nullptr;
8838 }
8839 
8840 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
8841   if (isa<ConstantFPSDNode>(N))
8842     return N.getNode();
8843 
8844   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
8845     return N.getNode();
8846 
8847   return nullptr;
8848 }
8849 
8850 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
8851   assert(!Node->OperandList && "Node already has operands");
8852   SDUse *Ops = OperandRecycler.allocate(
8853     ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
8854 
8855   bool IsDivergent = false;
8856   for (unsigned I = 0; I != Vals.size(); ++I) {
8857     Ops[I].setUser(Node);
8858     Ops[I].setInitial(Vals[I]);
8859     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
8860       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
8861   }
8862   Node->NumOperands = Vals.size();
8863   Node->OperandList = Ops;
8864   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
8865   if (!TLI->isSDNodeAlwaysUniform(Node))
8866     Node->SDNodeBits.IsDivergent = IsDivergent;
8867   checkForCycles(Node);
8868 }
8869 
8870 #ifndef NDEBUG
8871 static void checkForCyclesHelper(const SDNode *N,
8872                                  SmallPtrSetImpl<const SDNode*> &Visited,
8873                                  SmallPtrSetImpl<const SDNode*> &Checked,
8874                                  const llvm::SelectionDAG *DAG) {
8875   // If this node has already been checked, don't check it again.
8876   if (Checked.count(N))
8877     return;
8878 
8879   // If a node has already been visited on this depth-first walk, reject it as
8880   // a cycle.
8881   if (!Visited.insert(N).second) {
8882     errs() << "Detected cycle in SelectionDAG\n";
8883     dbgs() << "Offending node:\n";
8884     N->dumprFull(DAG); dbgs() << "\n";
8885     abort();
8886   }
8887 
8888   for (const SDValue &Op : N->op_values())
8889     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
8890 
8891   Checked.insert(N);
8892   Visited.erase(N);
8893 }
8894 #endif
8895 
8896 void llvm::checkForCycles(const llvm::SDNode *N,
8897                           const llvm::SelectionDAG *DAG,
8898                           bool force) {
8899 #ifndef NDEBUG
8900   bool check = force;
8901 #ifdef EXPENSIVE_CHECKS
8902   check = true;
8903 #endif  // EXPENSIVE_CHECKS
8904   if (check) {
8905     assert(N && "Checking nonexistent SDNode");
8906     SmallPtrSet<const SDNode*, 32> visited;
8907     SmallPtrSet<const SDNode*, 32> checked;
8908     checkForCyclesHelper(N, visited, checked, DAG);
8909   }
8910 #endif  // !NDEBUG
8911 }
8912 
8913 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
8914   checkForCycles(DAG->getRoot().getNode(), DAG, force);
8915 }
8916