1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/APSInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/RuntimeLibcalls.h" 36 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/KnownBits.h" 60 #include "llvm/Support/MachineValueType.h" 61 #include "llvm/Support/ManagedStatic.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/Mutex.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <cstdlib> 71 #include <limits> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 /// makeVTList - Return an instance of the SDVTList struct initialized with the 80 /// specified members. 81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 82 SDVTList Res = {VTs, NumVTs}; 83 return Res; 84 } 85 86 // Default null implementations of the callbacks. 87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 89 90 #define DEBUG_TYPE "selectiondag" 91 92 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 93 cl::Hidden, cl::init(true), 94 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 95 96 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 97 cl::desc("Number limit for gluing ld/st of memcpy."), 98 cl::Hidden, cl::init(0)); 99 100 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 101 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 102 } 103 104 //===----------------------------------------------------------------------===// 105 // ConstantFPSDNode Class 106 //===----------------------------------------------------------------------===// 107 108 /// isExactlyValue - We don't rely on operator== working on double values, as 109 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 110 /// As such, this method can be used to do an exact bit-for-bit comparison of 111 /// two floating point values. 112 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 113 return getValueAPF().bitwiseIsEqual(V); 114 } 115 116 bool ConstantFPSDNode::isValueValidForType(EVT VT, 117 const APFloat& Val) { 118 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 119 120 // convert modifies in place, so make a copy. 121 APFloat Val2 = APFloat(Val); 122 bool losesInfo; 123 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 124 APFloat::rmNearestTiesToEven, 125 &losesInfo); 126 return !losesInfo; 127 } 128 129 //===----------------------------------------------------------------------===// 130 // ISD Namespace 131 //===----------------------------------------------------------------------===// 132 133 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 134 auto *BV = dyn_cast<BuildVectorSDNode>(N); 135 if (!BV) 136 return false; 137 138 APInt SplatUndef; 139 unsigned SplatBitSize; 140 bool HasUndefs; 141 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 142 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 143 EltSize) && 144 EltSize == SplatBitSize; 145 } 146 147 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 148 // specializations of the more general isConstantSplatVector()? 149 150 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 151 // Look through a bit convert. 152 while (N->getOpcode() == ISD::BITCAST) 153 N = N->getOperand(0).getNode(); 154 155 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 156 157 unsigned i = 0, e = N->getNumOperands(); 158 159 // Skip over all of the undef values. 160 while (i != e && N->getOperand(i).isUndef()) 161 ++i; 162 163 // Do not accept an all-undef vector. 164 if (i == e) return false; 165 166 // Do not accept build_vectors that aren't all constants or which have non-~0 167 // elements. We have to be a bit careful here, as the type of the constant 168 // may not be the same as the type of the vector elements due to type 169 // legalization (the elements are promoted to a legal type for the target and 170 // a vector of a type may be legal when the base element type is not). 171 // We only want to check enough bits to cover the vector elements, because 172 // we care if the resultant vector is all ones, not whether the individual 173 // constants are. 174 SDValue NotZero = N->getOperand(i); 175 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 176 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 177 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 178 return false; 179 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 180 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 181 return false; 182 } else 183 return false; 184 185 // Okay, we have at least one ~0 value, check to see if the rest match or are 186 // undefs. Even with the above element type twiddling, this should be OK, as 187 // the same type legalization should have applied to all the elements. 188 for (++i; i != e; ++i) 189 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 190 return false; 191 return true; 192 } 193 194 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 195 // Look through a bit convert. 196 while (N->getOpcode() == ISD::BITCAST) 197 N = N->getOperand(0).getNode(); 198 199 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 200 201 bool IsAllUndef = true; 202 for (const SDValue &Op : N->op_values()) { 203 if (Op.isUndef()) 204 continue; 205 IsAllUndef = false; 206 // Do not accept build_vectors that aren't all constants or which have non-0 207 // elements. We have to be a bit careful here, as the type of the constant 208 // may not be the same as the type of the vector elements due to type 209 // legalization (the elements are promoted to a legal type for the target 210 // and a vector of a type may be legal when the base element type is not). 211 // We only want to check enough bits to cover the vector elements, because 212 // we care if the resultant vector is all zeros, not whether the individual 213 // constants are. 214 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 215 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 216 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 217 return false; 218 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 219 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 220 return false; 221 } else 222 return false; 223 } 224 225 // Do not accept an all-undef vector. 226 if (IsAllUndef) 227 return false; 228 return true; 229 } 230 231 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 232 if (N->getOpcode() != ISD::BUILD_VECTOR) 233 return false; 234 235 for (const SDValue &Op : N->op_values()) { 236 if (Op.isUndef()) 237 continue; 238 if (!isa<ConstantSDNode>(Op)) 239 return false; 240 } 241 return true; 242 } 243 244 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 245 if (N->getOpcode() != ISD::BUILD_VECTOR) 246 return false; 247 248 for (const SDValue &Op : N->op_values()) { 249 if (Op.isUndef()) 250 continue; 251 if (!isa<ConstantFPSDNode>(Op)) 252 return false; 253 } 254 return true; 255 } 256 257 bool ISD::allOperandsUndef(const SDNode *N) { 258 // Return false if the node has no operands. 259 // This is "logically inconsistent" with the definition of "all" but 260 // is probably the desired behavior. 261 if (N->getNumOperands() == 0) 262 return false; 263 264 for (const SDValue &Op : N->op_values()) 265 if (!Op.isUndef()) 266 return false; 267 268 return true; 269 } 270 271 bool ISD::matchUnaryPredicate(SDValue Op, 272 std::function<bool(ConstantSDNode *)> Match) { 273 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 274 return Match(Cst); 275 276 if (ISD::BUILD_VECTOR != Op.getOpcode()) 277 return false; 278 279 EVT SVT = Op.getValueType().getScalarType(); 280 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 281 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 282 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 283 return false; 284 } 285 return true; 286 } 287 288 bool ISD::matchBinaryPredicate( 289 SDValue LHS, SDValue RHS, 290 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match) { 291 if (LHS.getValueType() != RHS.getValueType()) 292 return false; 293 294 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 295 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 296 return Match(LHSCst, RHSCst); 297 298 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 299 ISD::BUILD_VECTOR != RHS.getOpcode()) 300 return false; 301 302 EVT SVT = LHS.getValueType().getScalarType(); 303 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 304 auto *LHSCst = dyn_cast<ConstantSDNode>(LHS.getOperand(i)); 305 auto *RHSCst = dyn_cast<ConstantSDNode>(RHS.getOperand(i)); 306 if (!LHSCst || !RHSCst) 307 return false; 308 if (LHSCst->getValueType(0) != SVT || 309 LHSCst->getValueType(0) != RHSCst->getValueType(0)) 310 return false; 311 if (!Match(LHSCst, RHSCst)) 312 return false; 313 } 314 return true; 315 } 316 317 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 318 switch (ExtType) { 319 case ISD::EXTLOAD: 320 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 321 case ISD::SEXTLOAD: 322 return ISD::SIGN_EXTEND; 323 case ISD::ZEXTLOAD: 324 return ISD::ZERO_EXTEND; 325 default: 326 break; 327 } 328 329 llvm_unreachable("Invalid LoadExtType"); 330 } 331 332 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 333 // To perform this operation, we just need to swap the L and G bits of the 334 // operation. 335 unsigned OldL = (Operation >> 2) & 1; 336 unsigned OldG = (Operation >> 1) & 1; 337 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 338 (OldL << 1) | // New G bit 339 (OldG << 2)); // New L bit. 340 } 341 342 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 343 unsigned Operation = Op; 344 if (isInteger) 345 Operation ^= 7; // Flip L, G, E bits, but not U. 346 else 347 Operation ^= 15; // Flip all of the condition bits. 348 349 if (Operation > ISD::SETTRUE2) 350 Operation &= ~8; // Don't let N and U bits get set. 351 352 return ISD::CondCode(Operation); 353 } 354 355 /// For an integer comparison, return 1 if the comparison is a signed operation 356 /// and 2 if the result is an unsigned comparison. Return zero if the operation 357 /// does not depend on the sign of the input (setne and seteq). 358 static int isSignedOp(ISD::CondCode Opcode) { 359 switch (Opcode) { 360 default: llvm_unreachable("Illegal integer setcc operation!"); 361 case ISD::SETEQ: 362 case ISD::SETNE: return 0; 363 case ISD::SETLT: 364 case ISD::SETLE: 365 case ISD::SETGT: 366 case ISD::SETGE: return 1; 367 case ISD::SETULT: 368 case ISD::SETULE: 369 case ISD::SETUGT: 370 case ISD::SETUGE: return 2; 371 } 372 } 373 374 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 375 bool IsInteger) { 376 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 377 // Cannot fold a signed integer setcc with an unsigned integer setcc. 378 return ISD::SETCC_INVALID; 379 380 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 381 382 // If the N and U bits get set, then the resultant comparison DOES suddenly 383 // care about orderedness, and it is true when ordered. 384 if (Op > ISD::SETTRUE2) 385 Op &= ~16; // Clear the U bit if the N bit is set. 386 387 // Canonicalize illegal integer setcc's. 388 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 389 Op = ISD::SETNE; 390 391 return ISD::CondCode(Op); 392 } 393 394 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 395 bool IsInteger) { 396 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 397 // Cannot fold a signed setcc with an unsigned setcc. 398 return ISD::SETCC_INVALID; 399 400 // Combine all of the condition bits. 401 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 402 403 // Canonicalize illegal integer setcc's. 404 if (IsInteger) { 405 switch (Result) { 406 default: break; 407 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 408 case ISD::SETOEQ: // SETEQ & SETU[LG]E 409 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 410 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 411 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 412 } 413 } 414 415 return Result; 416 } 417 418 //===----------------------------------------------------------------------===// 419 // SDNode Profile Support 420 //===----------------------------------------------------------------------===// 421 422 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 423 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 424 ID.AddInteger(OpC); 425 } 426 427 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 428 /// solely with their pointer. 429 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 430 ID.AddPointer(VTList.VTs); 431 } 432 433 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 434 static void AddNodeIDOperands(FoldingSetNodeID &ID, 435 ArrayRef<SDValue> Ops) { 436 for (auto& Op : Ops) { 437 ID.AddPointer(Op.getNode()); 438 ID.AddInteger(Op.getResNo()); 439 } 440 } 441 442 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 443 static void AddNodeIDOperands(FoldingSetNodeID &ID, 444 ArrayRef<SDUse> Ops) { 445 for (auto& Op : Ops) { 446 ID.AddPointer(Op.getNode()); 447 ID.AddInteger(Op.getResNo()); 448 } 449 } 450 451 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 452 SDVTList VTList, ArrayRef<SDValue> OpList) { 453 AddNodeIDOpcode(ID, OpC); 454 AddNodeIDValueTypes(ID, VTList); 455 AddNodeIDOperands(ID, OpList); 456 } 457 458 /// If this is an SDNode with special info, add this info to the NodeID data. 459 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 460 switch (N->getOpcode()) { 461 case ISD::TargetExternalSymbol: 462 case ISD::ExternalSymbol: 463 case ISD::MCSymbol: 464 llvm_unreachable("Should only be used on nodes with operands"); 465 default: break; // Normal nodes don't need extra info. 466 case ISD::TargetConstant: 467 case ISD::Constant: { 468 const ConstantSDNode *C = cast<ConstantSDNode>(N); 469 ID.AddPointer(C->getConstantIntValue()); 470 ID.AddBoolean(C->isOpaque()); 471 break; 472 } 473 case ISD::TargetConstantFP: 474 case ISD::ConstantFP: 475 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 476 break; 477 case ISD::TargetGlobalAddress: 478 case ISD::GlobalAddress: 479 case ISD::TargetGlobalTLSAddress: 480 case ISD::GlobalTLSAddress: { 481 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 482 ID.AddPointer(GA->getGlobal()); 483 ID.AddInteger(GA->getOffset()); 484 ID.AddInteger(GA->getTargetFlags()); 485 break; 486 } 487 case ISD::BasicBlock: 488 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 489 break; 490 case ISD::Register: 491 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 492 break; 493 case ISD::RegisterMask: 494 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 495 break; 496 case ISD::SRCVALUE: 497 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 498 break; 499 case ISD::FrameIndex: 500 case ISD::TargetFrameIndex: 501 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 502 break; 503 case ISD::JumpTable: 504 case ISD::TargetJumpTable: 505 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 506 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 507 break; 508 case ISD::ConstantPool: 509 case ISD::TargetConstantPool: { 510 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 511 ID.AddInteger(CP->getAlignment()); 512 ID.AddInteger(CP->getOffset()); 513 if (CP->isMachineConstantPoolEntry()) 514 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 515 else 516 ID.AddPointer(CP->getConstVal()); 517 ID.AddInteger(CP->getTargetFlags()); 518 break; 519 } 520 case ISD::TargetIndex: { 521 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 522 ID.AddInteger(TI->getIndex()); 523 ID.AddInteger(TI->getOffset()); 524 ID.AddInteger(TI->getTargetFlags()); 525 break; 526 } 527 case ISD::LOAD: { 528 const LoadSDNode *LD = cast<LoadSDNode>(N); 529 ID.AddInteger(LD->getMemoryVT().getRawBits()); 530 ID.AddInteger(LD->getRawSubclassData()); 531 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 532 break; 533 } 534 case ISD::STORE: { 535 const StoreSDNode *ST = cast<StoreSDNode>(N); 536 ID.AddInteger(ST->getMemoryVT().getRawBits()); 537 ID.AddInteger(ST->getRawSubclassData()); 538 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 539 break; 540 } 541 case ISD::MLOAD: { 542 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 543 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 544 ID.AddInteger(MLD->getRawSubclassData()); 545 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 546 break; 547 } 548 case ISD::MSTORE: { 549 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 550 ID.AddInteger(MST->getMemoryVT().getRawBits()); 551 ID.AddInteger(MST->getRawSubclassData()); 552 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 553 break; 554 } 555 case ISD::MGATHER: { 556 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 557 ID.AddInteger(MG->getMemoryVT().getRawBits()); 558 ID.AddInteger(MG->getRawSubclassData()); 559 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 560 break; 561 } 562 case ISD::MSCATTER: { 563 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 564 ID.AddInteger(MS->getMemoryVT().getRawBits()); 565 ID.AddInteger(MS->getRawSubclassData()); 566 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 567 break; 568 } 569 case ISD::ATOMIC_CMP_SWAP: 570 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 571 case ISD::ATOMIC_SWAP: 572 case ISD::ATOMIC_LOAD_ADD: 573 case ISD::ATOMIC_LOAD_SUB: 574 case ISD::ATOMIC_LOAD_AND: 575 case ISD::ATOMIC_LOAD_CLR: 576 case ISD::ATOMIC_LOAD_OR: 577 case ISD::ATOMIC_LOAD_XOR: 578 case ISD::ATOMIC_LOAD_NAND: 579 case ISD::ATOMIC_LOAD_MIN: 580 case ISD::ATOMIC_LOAD_MAX: 581 case ISD::ATOMIC_LOAD_UMIN: 582 case ISD::ATOMIC_LOAD_UMAX: 583 case ISD::ATOMIC_LOAD: 584 case ISD::ATOMIC_STORE: { 585 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 586 ID.AddInteger(AT->getMemoryVT().getRawBits()); 587 ID.AddInteger(AT->getRawSubclassData()); 588 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 589 break; 590 } 591 case ISD::PREFETCH: { 592 const MemSDNode *PF = cast<MemSDNode>(N); 593 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 594 break; 595 } 596 case ISD::VECTOR_SHUFFLE: { 597 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 598 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 599 i != e; ++i) 600 ID.AddInteger(SVN->getMaskElt(i)); 601 break; 602 } 603 case ISD::TargetBlockAddress: 604 case ISD::BlockAddress: { 605 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 606 ID.AddPointer(BA->getBlockAddress()); 607 ID.AddInteger(BA->getOffset()); 608 ID.AddInteger(BA->getTargetFlags()); 609 break; 610 } 611 } // end switch (N->getOpcode()) 612 613 // Target specific memory nodes could also have address spaces to check. 614 if (N->isTargetMemoryOpcode()) 615 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 616 } 617 618 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 619 /// data. 620 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 621 AddNodeIDOpcode(ID, N->getOpcode()); 622 // Add the return value info. 623 AddNodeIDValueTypes(ID, N->getVTList()); 624 // Add the operand info. 625 AddNodeIDOperands(ID, N->ops()); 626 627 // Handle SDNode leafs with special info. 628 AddNodeIDCustom(ID, N); 629 } 630 631 //===----------------------------------------------------------------------===// 632 // SelectionDAG Class 633 //===----------------------------------------------------------------------===// 634 635 /// doNotCSE - Return true if CSE should not be performed for this node. 636 static bool doNotCSE(SDNode *N) { 637 if (N->getValueType(0) == MVT::Glue) 638 return true; // Never CSE anything that produces a flag. 639 640 switch (N->getOpcode()) { 641 default: break; 642 case ISD::HANDLENODE: 643 case ISD::EH_LABEL: 644 return true; // Never CSE these nodes. 645 } 646 647 // Check that remaining values produced are not flags. 648 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 649 if (N->getValueType(i) == MVT::Glue) 650 return true; // Never CSE anything that produces a flag. 651 652 return false; 653 } 654 655 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 656 /// SelectionDAG. 657 void SelectionDAG::RemoveDeadNodes() { 658 // Create a dummy node (which is not added to allnodes), that adds a reference 659 // to the root node, preventing it from being deleted. 660 HandleSDNode Dummy(getRoot()); 661 662 SmallVector<SDNode*, 128> DeadNodes; 663 664 // Add all obviously-dead nodes to the DeadNodes worklist. 665 for (SDNode &Node : allnodes()) 666 if (Node.use_empty()) 667 DeadNodes.push_back(&Node); 668 669 RemoveDeadNodes(DeadNodes); 670 671 // If the root changed (e.g. it was a dead load, update the root). 672 setRoot(Dummy.getValue()); 673 } 674 675 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 676 /// given list, and any nodes that become unreachable as a result. 677 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 678 679 // Process the worklist, deleting the nodes and adding their uses to the 680 // worklist. 681 while (!DeadNodes.empty()) { 682 SDNode *N = DeadNodes.pop_back_val(); 683 // Skip to next node if we've already managed to delete the node. This could 684 // happen if replacing a node causes a node previously added to the node to 685 // be deleted. 686 if (N->getOpcode() == ISD::DELETED_NODE) 687 continue; 688 689 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 690 DUL->NodeDeleted(N, nullptr); 691 692 // Take the node out of the appropriate CSE map. 693 RemoveNodeFromCSEMaps(N); 694 695 // Next, brutally remove the operand list. This is safe to do, as there are 696 // no cycles in the graph. 697 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 698 SDUse &Use = *I++; 699 SDNode *Operand = Use.getNode(); 700 Use.set(SDValue()); 701 702 // Now that we removed this operand, see if there are no uses of it left. 703 if (Operand->use_empty()) 704 DeadNodes.push_back(Operand); 705 } 706 707 DeallocateNode(N); 708 } 709 } 710 711 void SelectionDAG::RemoveDeadNode(SDNode *N){ 712 SmallVector<SDNode*, 16> DeadNodes(1, N); 713 714 // Create a dummy node that adds a reference to the root node, preventing 715 // it from being deleted. (This matters if the root is an operand of the 716 // dead node.) 717 HandleSDNode Dummy(getRoot()); 718 719 RemoveDeadNodes(DeadNodes); 720 } 721 722 void SelectionDAG::DeleteNode(SDNode *N) { 723 // First take this out of the appropriate CSE map. 724 RemoveNodeFromCSEMaps(N); 725 726 // Finally, remove uses due to operands of this node, remove from the 727 // AllNodes list, and delete the node. 728 DeleteNodeNotInCSEMaps(N); 729 } 730 731 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 732 assert(N->getIterator() != AllNodes.begin() && 733 "Cannot delete the entry node!"); 734 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 735 736 // Drop all of the operands and decrement used node's use counts. 737 N->DropOperands(); 738 739 DeallocateNode(N); 740 } 741 742 void SDDbgInfo::erase(const SDNode *Node) { 743 DbgValMapType::iterator I = DbgValMap.find(Node); 744 if (I == DbgValMap.end()) 745 return; 746 for (auto &Val: I->second) 747 Val->setIsInvalidated(); 748 DbgValMap.erase(I); 749 } 750 751 void SelectionDAG::DeallocateNode(SDNode *N) { 752 // If we have operands, deallocate them. 753 removeOperands(N); 754 755 NodeAllocator.Deallocate(AllNodes.remove(N)); 756 757 // Set the opcode to DELETED_NODE to help catch bugs when node 758 // memory is reallocated. 759 // FIXME: There are places in SDag that have grown a dependency on the opcode 760 // value in the released node. 761 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 762 N->NodeType = ISD::DELETED_NODE; 763 764 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 765 // them and forget about that node. 766 DbgInfo->erase(N); 767 } 768 769 #ifndef NDEBUG 770 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 771 static void VerifySDNode(SDNode *N) { 772 switch (N->getOpcode()) { 773 default: 774 break; 775 case ISD::BUILD_PAIR: { 776 EVT VT = N->getValueType(0); 777 assert(N->getNumValues() == 1 && "Too many results!"); 778 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 779 "Wrong return type!"); 780 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 781 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 782 "Mismatched operand types!"); 783 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 784 "Wrong operand type!"); 785 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 786 "Wrong return type size"); 787 break; 788 } 789 case ISD::BUILD_VECTOR: { 790 assert(N->getNumValues() == 1 && "Too many results!"); 791 assert(N->getValueType(0).isVector() && "Wrong return type!"); 792 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 793 "Wrong number of operands!"); 794 EVT EltVT = N->getValueType(0).getVectorElementType(); 795 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 796 assert((I->getValueType() == EltVT || 797 (EltVT.isInteger() && I->getValueType().isInteger() && 798 EltVT.bitsLE(I->getValueType()))) && 799 "Wrong operand type!"); 800 assert(I->getValueType() == N->getOperand(0).getValueType() && 801 "Operands must all have the same type"); 802 } 803 break; 804 } 805 } 806 } 807 #endif // NDEBUG 808 809 /// Insert a newly allocated node into the DAG. 810 /// 811 /// Handles insertion into the all nodes list and CSE map, as well as 812 /// verification and other common operations when a new node is allocated. 813 void SelectionDAG::InsertNode(SDNode *N) { 814 AllNodes.push_back(N); 815 #ifndef NDEBUG 816 N->PersistentId = NextPersistentId++; 817 VerifySDNode(N); 818 #endif 819 } 820 821 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 822 /// correspond to it. This is useful when we're about to delete or repurpose 823 /// the node. We don't want future request for structurally identical nodes 824 /// to return N anymore. 825 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 826 bool Erased = false; 827 switch (N->getOpcode()) { 828 case ISD::HANDLENODE: return false; // noop. 829 case ISD::CONDCODE: 830 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 831 "Cond code doesn't exist!"); 832 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 833 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 834 break; 835 case ISD::ExternalSymbol: 836 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 837 break; 838 case ISD::TargetExternalSymbol: { 839 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 840 Erased = TargetExternalSymbols.erase( 841 std::pair<std::string,unsigned char>(ESN->getSymbol(), 842 ESN->getTargetFlags())); 843 break; 844 } 845 case ISD::MCSymbol: { 846 auto *MCSN = cast<MCSymbolSDNode>(N); 847 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 848 break; 849 } 850 case ISD::VALUETYPE: { 851 EVT VT = cast<VTSDNode>(N)->getVT(); 852 if (VT.isExtended()) { 853 Erased = ExtendedValueTypeNodes.erase(VT); 854 } else { 855 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 856 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 857 } 858 break; 859 } 860 default: 861 // Remove it from the CSE Map. 862 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 863 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 864 Erased = CSEMap.RemoveNode(N); 865 break; 866 } 867 #ifndef NDEBUG 868 // Verify that the node was actually in one of the CSE maps, unless it has a 869 // flag result (which cannot be CSE'd) or is one of the special cases that are 870 // not subject to CSE. 871 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 872 !N->isMachineOpcode() && !doNotCSE(N)) { 873 N->dump(this); 874 dbgs() << "\n"; 875 llvm_unreachable("Node is not in map!"); 876 } 877 #endif 878 return Erased; 879 } 880 881 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 882 /// maps and modified in place. Add it back to the CSE maps, unless an identical 883 /// node already exists, in which case transfer all its users to the existing 884 /// node. This transfer can potentially trigger recursive merging. 885 void 886 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 887 // For node types that aren't CSE'd, just act as if no identical node 888 // already exists. 889 if (!doNotCSE(N)) { 890 SDNode *Existing = CSEMap.GetOrInsertNode(N); 891 if (Existing != N) { 892 // If there was already an existing matching node, use ReplaceAllUsesWith 893 // to replace the dead one with the existing one. This can cause 894 // recursive merging of other unrelated nodes down the line. 895 ReplaceAllUsesWith(N, Existing); 896 897 // N is now dead. Inform the listeners and delete it. 898 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 899 DUL->NodeDeleted(N, Existing); 900 DeleteNodeNotInCSEMaps(N); 901 return; 902 } 903 } 904 905 // If the node doesn't already exist, we updated it. Inform listeners. 906 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 907 DUL->NodeUpdated(N); 908 } 909 910 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 911 /// were replaced with those specified. If this node is never memoized, 912 /// return null, otherwise return a pointer to the slot it would take. If a 913 /// node already exists with these operands, the slot will be non-null. 914 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 915 void *&InsertPos) { 916 if (doNotCSE(N)) 917 return nullptr; 918 919 SDValue Ops[] = { Op }; 920 FoldingSetNodeID ID; 921 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 922 AddNodeIDCustom(ID, N); 923 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 924 if (Node) 925 Node->intersectFlagsWith(N->getFlags()); 926 return Node; 927 } 928 929 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 930 /// were replaced with those specified. If this node is never memoized, 931 /// return null, otherwise return a pointer to the slot it would take. If a 932 /// node already exists with these operands, the slot will be non-null. 933 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 934 SDValue Op1, SDValue Op2, 935 void *&InsertPos) { 936 if (doNotCSE(N)) 937 return nullptr; 938 939 SDValue Ops[] = { Op1, Op2 }; 940 FoldingSetNodeID ID; 941 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 942 AddNodeIDCustom(ID, N); 943 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 944 if (Node) 945 Node->intersectFlagsWith(N->getFlags()); 946 return Node; 947 } 948 949 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 950 /// were replaced with those specified. If this node is never memoized, 951 /// return null, otherwise return a pointer to the slot it would take. If a 952 /// node already exists with these operands, the slot will be non-null. 953 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 954 void *&InsertPos) { 955 if (doNotCSE(N)) 956 return nullptr; 957 958 FoldingSetNodeID ID; 959 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 960 AddNodeIDCustom(ID, N); 961 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 962 if (Node) 963 Node->intersectFlagsWith(N->getFlags()); 964 return Node; 965 } 966 967 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 968 Type *Ty = VT == MVT::iPTR ? 969 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 970 VT.getTypeForEVT(*getContext()); 971 972 return getDataLayout().getABITypeAlignment(Ty); 973 } 974 975 // EntryNode could meaningfully have debug info if we can find it... 976 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 977 : TM(tm), OptLevel(OL), 978 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 979 Root(getEntryNode()) { 980 InsertNode(&EntryNode); 981 DbgInfo = new SDDbgInfo(); 982 } 983 984 void SelectionDAG::init(MachineFunction &NewMF, 985 OptimizationRemarkEmitter &NewORE, 986 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 987 LegacyDivergenceAnalysis * Divergence) { 988 MF = &NewMF; 989 SDAGISelPass = PassPtr; 990 ORE = &NewORE; 991 TLI = getSubtarget().getTargetLowering(); 992 TSI = getSubtarget().getSelectionDAGInfo(); 993 LibInfo = LibraryInfo; 994 Context = &MF->getFunction().getContext(); 995 DA = Divergence; 996 } 997 998 SelectionDAG::~SelectionDAG() { 999 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1000 allnodes_clear(); 1001 OperandRecycler.clear(OperandAllocator); 1002 delete DbgInfo; 1003 } 1004 1005 void SelectionDAG::allnodes_clear() { 1006 assert(&*AllNodes.begin() == &EntryNode); 1007 AllNodes.remove(AllNodes.begin()); 1008 while (!AllNodes.empty()) 1009 DeallocateNode(&AllNodes.front()); 1010 #ifndef NDEBUG 1011 NextPersistentId = 0; 1012 #endif 1013 } 1014 1015 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1016 void *&InsertPos) { 1017 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1018 if (N) { 1019 switch (N->getOpcode()) { 1020 default: break; 1021 case ISD::Constant: 1022 case ISD::ConstantFP: 1023 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1024 "debug location. Use another overload."); 1025 } 1026 } 1027 return N; 1028 } 1029 1030 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1031 const SDLoc &DL, void *&InsertPos) { 1032 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1033 if (N) { 1034 switch (N->getOpcode()) { 1035 case ISD::Constant: 1036 case ISD::ConstantFP: 1037 // Erase debug location from the node if the node is used at several 1038 // different places. Do not propagate one location to all uses as it 1039 // will cause a worse single stepping debugging experience. 1040 if (N->getDebugLoc() != DL.getDebugLoc()) 1041 N->setDebugLoc(DebugLoc()); 1042 break; 1043 default: 1044 // When the node's point of use is located earlier in the instruction 1045 // sequence than its prior point of use, update its debug info to the 1046 // earlier location. 1047 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1048 N->setDebugLoc(DL.getDebugLoc()); 1049 break; 1050 } 1051 } 1052 return N; 1053 } 1054 1055 void SelectionDAG::clear() { 1056 allnodes_clear(); 1057 OperandRecycler.clear(OperandAllocator); 1058 OperandAllocator.Reset(); 1059 CSEMap.clear(); 1060 1061 ExtendedValueTypeNodes.clear(); 1062 ExternalSymbols.clear(); 1063 TargetExternalSymbols.clear(); 1064 MCSymbols.clear(); 1065 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1066 static_cast<CondCodeSDNode*>(nullptr)); 1067 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1068 static_cast<SDNode*>(nullptr)); 1069 1070 EntryNode.UseList = nullptr; 1071 InsertNode(&EntryNode); 1072 Root = getEntryNode(); 1073 DbgInfo->clear(); 1074 } 1075 1076 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1077 return VT.bitsGT(Op.getValueType()) 1078 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1079 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1080 } 1081 1082 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1083 return VT.bitsGT(Op.getValueType()) ? 1084 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1085 getNode(ISD::TRUNCATE, DL, VT, Op); 1086 } 1087 1088 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1089 return VT.bitsGT(Op.getValueType()) ? 1090 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1091 getNode(ISD::TRUNCATE, DL, VT, Op); 1092 } 1093 1094 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1095 return VT.bitsGT(Op.getValueType()) ? 1096 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1097 getNode(ISD::TRUNCATE, DL, VT, Op); 1098 } 1099 1100 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1101 EVT OpVT) { 1102 if (VT.bitsLE(Op.getValueType())) 1103 return getNode(ISD::TRUNCATE, SL, VT, Op); 1104 1105 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1106 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1107 } 1108 1109 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1110 assert(!VT.isVector() && 1111 "getZeroExtendInReg should use the vector element type instead of " 1112 "the vector type!"); 1113 if (Op.getValueType().getScalarType() == VT) return Op; 1114 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1115 APInt Imm = APInt::getLowBitsSet(BitWidth, 1116 VT.getSizeInBits()); 1117 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1118 getConstant(Imm, DL, Op.getValueType())); 1119 } 1120 1121 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1122 EVT VT) { 1123 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1124 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1125 "The sizes of the input and result must match in order to perform the " 1126 "extend in-register."); 1127 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1128 "The destination vector type must have fewer lanes than the input."); 1129 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1130 } 1131 1132 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1133 EVT VT) { 1134 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1135 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1136 "The sizes of the input and result must match in order to perform the " 1137 "extend in-register."); 1138 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1139 "The destination vector type must have fewer lanes than the input."); 1140 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1141 } 1142 1143 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1144 EVT VT) { 1145 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1146 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1147 "The sizes of the input and result must match in order to perform the " 1148 "extend in-register."); 1149 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1150 "The destination vector type must have fewer lanes than the input."); 1151 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1152 } 1153 1154 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1155 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1156 EVT EltVT = VT.getScalarType(); 1157 SDValue NegOne = 1158 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1159 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1160 } 1161 1162 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1163 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1164 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1165 } 1166 1167 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1168 EVT OpVT) { 1169 if (!V) 1170 return getConstant(0, DL, VT); 1171 1172 switch (TLI->getBooleanContents(OpVT)) { 1173 case TargetLowering::ZeroOrOneBooleanContent: 1174 case TargetLowering::UndefinedBooleanContent: 1175 return getConstant(1, DL, VT); 1176 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1177 return getAllOnesConstant(DL, VT); 1178 } 1179 llvm_unreachable("Unexpected boolean content enum!"); 1180 } 1181 1182 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1183 bool isT, bool isO) { 1184 EVT EltVT = VT.getScalarType(); 1185 assert((EltVT.getSizeInBits() >= 64 || 1186 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1187 "getConstant with a uint64_t value that doesn't fit in the type!"); 1188 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1189 } 1190 1191 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1192 bool isT, bool isO) { 1193 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1194 } 1195 1196 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1197 EVT VT, bool isT, bool isO) { 1198 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1199 1200 EVT EltVT = VT.getScalarType(); 1201 const ConstantInt *Elt = &Val; 1202 1203 // In some cases the vector type is legal but the element type is illegal and 1204 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1205 // inserted value (the type does not need to match the vector element type). 1206 // Any extra bits introduced will be truncated away. 1207 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1208 TargetLowering::TypePromoteInteger) { 1209 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1210 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1211 Elt = ConstantInt::get(*getContext(), NewVal); 1212 } 1213 // In other cases the element type is illegal and needs to be expanded, for 1214 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1215 // the value into n parts and use a vector type with n-times the elements. 1216 // Then bitcast to the type requested. 1217 // Legalizing constants too early makes the DAGCombiner's job harder so we 1218 // only legalize if the DAG tells us we must produce legal types. 1219 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1220 TLI->getTypeAction(*getContext(), EltVT) == 1221 TargetLowering::TypeExpandInteger) { 1222 const APInt &NewVal = Elt->getValue(); 1223 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1224 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1225 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1226 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1227 1228 // Check the temporary vector is the correct size. If this fails then 1229 // getTypeToTransformTo() probably returned a type whose size (in bits) 1230 // isn't a power-of-2 factor of the requested type size. 1231 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1232 1233 SmallVector<SDValue, 2> EltParts; 1234 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1235 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1236 .zextOrTrunc(ViaEltSizeInBits), DL, 1237 ViaEltVT, isT, isO)); 1238 } 1239 1240 // EltParts is currently in little endian order. If we actually want 1241 // big-endian order then reverse it now. 1242 if (getDataLayout().isBigEndian()) 1243 std::reverse(EltParts.begin(), EltParts.end()); 1244 1245 // The elements must be reversed when the element order is different 1246 // to the endianness of the elements (because the BITCAST is itself a 1247 // vector shuffle in this situation). However, we do not need any code to 1248 // perform this reversal because getConstant() is producing a vector 1249 // splat. 1250 // This situation occurs in MIPS MSA. 1251 1252 SmallVector<SDValue, 8> Ops; 1253 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1254 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1255 1256 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1257 return V; 1258 } 1259 1260 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1261 "APInt size does not match type size!"); 1262 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1263 FoldingSetNodeID ID; 1264 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1265 ID.AddPointer(Elt); 1266 ID.AddBoolean(isO); 1267 void *IP = nullptr; 1268 SDNode *N = nullptr; 1269 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1270 if (!VT.isVector()) 1271 return SDValue(N, 0); 1272 1273 if (!N) { 1274 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1275 CSEMap.InsertNode(N, IP); 1276 InsertNode(N); 1277 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1278 } 1279 1280 SDValue Result(N, 0); 1281 if (VT.isVector()) 1282 Result = getSplatBuildVector(VT, DL, Result); 1283 1284 return Result; 1285 } 1286 1287 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1288 bool isTarget) { 1289 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1290 } 1291 1292 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1293 bool isTarget) { 1294 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1295 } 1296 1297 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1298 EVT VT, bool isTarget) { 1299 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1300 1301 EVT EltVT = VT.getScalarType(); 1302 1303 // Do the map lookup using the actual bit pattern for the floating point 1304 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1305 // we don't have issues with SNANs. 1306 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1307 FoldingSetNodeID ID; 1308 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1309 ID.AddPointer(&V); 1310 void *IP = nullptr; 1311 SDNode *N = nullptr; 1312 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1313 if (!VT.isVector()) 1314 return SDValue(N, 0); 1315 1316 if (!N) { 1317 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1318 CSEMap.InsertNode(N, IP); 1319 InsertNode(N); 1320 } 1321 1322 SDValue Result(N, 0); 1323 if (VT.isVector()) 1324 Result = getSplatBuildVector(VT, DL, Result); 1325 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1326 return Result; 1327 } 1328 1329 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1330 bool isTarget) { 1331 EVT EltVT = VT.getScalarType(); 1332 if (EltVT == MVT::f32) 1333 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1334 else if (EltVT == MVT::f64) 1335 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1336 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1337 EltVT == MVT::f16) { 1338 bool Ignored; 1339 APFloat APF = APFloat(Val); 1340 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1341 &Ignored); 1342 return getConstantFP(APF, DL, VT, isTarget); 1343 } else 1344 llvm_unreachable("Unsupported type in getConstantFP"); 1345 } 1346 1347 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1348 EVT VT, int64_t Offset, bool isTargetGA, 1349 unsigned char TargetFlags) { 1350 assert((TargetFlags == 0 || isTargetGA) && 1351 "Cannot set target flags on target-independent globals"); 1352 1353 // Truncate (with sign-extension) the offset value to the pointer size. 1354 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1355 if (BitWidth < 64) 1356 Offset = SignExtend64(Offset, BitWidth); 1357 1358 unsigned Opc; 1359 if (GV->isThreadLocal()) 1360 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1361 else 1362 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1363 1364 FoldingSetNodeID ID; 1365 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1366 ID.AddPointer(GV); 1367 ID.AddInteger(Offset); 1368 ID.AddInteger(TargetFlags); 1369 void *IP = nullptr; 1370 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1371 return SDValue(E, 0); 1372 1373 auto *N = newSDNode<GlobalAddressSDNode>( 1374 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1375 CSEMap.InsertNode(N, IP); 1376 InsertNode(N); 1377 return SDValue(N, 0); 1378 } 1379 1380 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1381 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1382 FoldingSetNodeID ID; 1383 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1384 ID.AddInteger(FI); 1385 void *IP = nullptr; 1386 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1387 return SDValue(E, 0); 1388 1389 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1390 CSEMap.InsertNode(N, IP); 1391 InsertNode(N); 1392 return SDValue(N, 0); 1393 } 1394 1395 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1396 unsigned char TargetFlags) { 1397 assert((TargetFlags == 0 || isTarget) && 1398 "Cannot set target flags on target-independent jump tables"); 1399 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1400 FoldingSetNodeID ID; 1401 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1402 ID.AddInteger(JTI); 1403 ID.AddInteger(TargetFlags); 1404 void *IP = nullptr; 1405 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1406 return SDValue(E, 0); 1407 1408 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1409 CSEMap.InsertNode(N, IP); 1410 InsertNode(N); 1411 return SDValue(N, 0); 1412 } 1413 1414 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1415 unsigned Alignment, int Offset, 1416 bool isTarget, 1417 unsigned char TargetFlags) { 1418 assert((TargetFlags == 0 || isTarget) && 1419 "Cannot set target flags on target-independent globals"); 1420 if (Alignment == 0) 1421 Alignment = MF->getFunction().optForSize() 1422 ? getDataLayout().getABITypeAlignment(C->getType()) 1423 : getDataLayout().getPrefTypeAlignment(C->getType()); 1424 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1425 FoldingSetNodeID ID; 1426 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1427 ID.AddInteger(Alignment); 1428 ID.AddInteger(Offset); 1429 ID.AddPointer(C); 1430 ID.AddInteger(TargetFlags); 1431 void *IP = nullptr; 1432 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1433 return SDValue(E, 0); 1434 1435 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1436 TargetFlags); 1437 CSEMap.InsertNode(N, IP); 1438 InsertNode(N); 1439 return SDValue(N, 0); 1440 } 1441 1442 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1443 unsigned Alignment, int Offset, 1444 bool isTarget, 1445 unsigned char TargetFlags) { 1446 assert((TargetFlags == 0 || isTarget) && 1447 "Cannot set target flags on target-independent globals"); 1448 if (Alignment == 0) 1449 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1450 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1451 FoldingSetNodeID ID; 1452 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1453 ID.AddInteger(Alignment); 1454 ID.AddInteger(Offset); 1455 C->addSelectionDAGCSEId(ID); 1456 ID.AddInteger(TargetFlags); 1457 void *IP = nullptr; 1458 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1459 return SDValue(E, 0); 1460 1461 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1462 TargetFlags); 1463 CSEMap.InsertNode(N, IP); 1464 InsertNode(N); 1465 return SDValue(N, 0); 1466 } 1467 1468 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1469 unsigned char TargetFlags) { 1470 FoldingSetNodeID ID; 1471 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1472 ID.AddInteger(Index); 1473 ID.AddInteger(Offset); 1474 ID.AddInteger(TargetFlags); 1475 void *IP = nullptr; 1476 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1477 return SDValue(E, 0); 1478 1479 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1480 CSEMap.InsertNode(N, IP); 1481 InsertNode(N); 1482 return SDValue(N, 0); 1483 } 1484 1485 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1486 FoldingSetNodeID ID; 1487 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1488 ID.AddPointer(MBB); 1489 void *IP = nullptr; 1490 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1491 return SDValue(E, 0); 1492 1493 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1494 CSEMap.InsertNode(N, IP); 1495 InsertNode(N); 1496 return SDValue(N, 0); 1497 } 1498 1499 SDValue SelectionDAG::getValueType(EVT VT) { 1500 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1501 ValueTypeNodes.size()) 1502 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1503 1504 SDNode *&N = VT.isExtended() ? 1505 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1506 1507 if (N) return SDValue(N, 0); 1508 N = newSDNode<VTSDNode>(VT); 1509 InsertNode(N); 1510 return SDValue(N, 0); 1511 } 1512 1513 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1514 SDNode *&N = ExternalSymbols[Sym]; 1515 if (N) return SDValue(N, 0); 1516 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1517 InsertNode(N); 1518 return SDValue(N, 0); 1519 } 1520 1521 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1522 SDNode *&N = MCSymbols[Sym]; 1523 if (N) 1524 return SDValue(N, 0); 1525 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1526 InsertNode(N); 1527 return SDValue(N, 0); 1528 } 1529 1530 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1531 unsigned char TargetFlags) { 1532 SDNode *&N = 1533 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1534 TargetFlags)]; 1535 if (N) return SDValue(N, 0); 1536 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1537 InsertNode(N); 1538 return SDValue(N, 0); 1539 } 1540 1541 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1542 if ((unsigned)Cond >= CondCodeNodes.size()) 1543 CondCodeNodes.resize(Cond+1); 1544 1545 if (!CondCodeNodes[Cond]) { 1546 auto *N = newSDNode<CondCodeSDNode>(Cond); 1547 CondCodeNodes[Cond] = N; 1548 InsertNode(N); 1549 } 1550 1551 return SDValue(CondCodeNodes[Cond], 0); 1552 } 1553 1554 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1555 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1556 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1557 std::swap(N1, N2); 1558 ShuffleVectorSDNode::commuteMask(M); 1559 } 1560 1561 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1562 SDValue N2, ArrayRef<int> Mask) { 1563 assert(VT.getVectorNumElements() == Mask.size() && 1564 "Must have the same number of vector elements as mask elements!"); 1565 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1566 "Invalid VECTOR_SHUFFLE"); 1567 1568 // Canonicalize shuffle undef, undef -> undef 1569 if (N1.isUndef() && N2.isUndef()) 1570 return getUNDEF(VT); 1571 1572 // Validate that all indices in Mask are within the range of the elements 1573 // input to the shuffle. 1574 int NElts = Mask.size(); 1575 assert(llvm::all_of(Mask, 1576 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1577 "Index out of range"); 1578 1579 // Copy the mask so we can do any needed cleanup. 1580 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1581 1582 // Canonicalize shuffle v, v -> v, undef 1583 if (N1 == N2) { 1584 N2 = getUNDEF(VT); 1585 for (int i = 0; i != NElts; ++i) 1586 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1587 } 1588 1589 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1590 if (N1.isUndef()) 1591 commuteShuffle(N1, N2, MaskVec); 1592 1593 if (TLI->hasVectorBlend()) { 1594 // If shuffling a splat, try to blend the splat instead. We do this here so 1595 // that even when this arises during lowering we don't have to re-handle it. 1596 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1597 BitVector UndefElements; 1598 SDValue Splat = BV->getSplatValue(&UndefElements); 1599 if (!Splat) 1600 return; 1601 1602 for (int i = 0; i < NElts; ++i) { 1603 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1604 continue; 1605 1606 // If this input comes from undef, mark it as such. 1607 if (UndefElements[MaskVec[i] - Offset]) { 1608 MaskVec[i] = -1; 1609 continue; 1610 } 1611 1612 // If we can blend a non-undef lane, use that instead. 1613 if (!UndefElements[i]) 1614 MaskVec[i] = i + Offset; 1615 } 1616 }; 1617 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1618 BlendSplat(N1BV, 0); 1619 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1620 BlendSplat(N2BV, NElts); 1621 } 1622 1623 // Canonicalize all index into lhs, -> shuffle lhs, undef 1624 // Canonicalize all index into rhs, -> shuffle rhs, undef 1625 bool AllLHS = true, AllRHS = true; 1626 bool N2Undef = N2.isUndef(); 1627 for (int i = 0; i != NElts; ++i) { 1628 if (MaskVec[i] >= NElts) { 1629 if (N2Undef) 1630 MaskVec[i] = -1; 1631 else 1632 AllLHS = false; 1633 } else if (MaskVec[i] >= 0) { 1634 AllRHS = false; 1635 } 1636 } 1637 if (AllLHS && AllRHS) 1638 return getUNDEF(VT); 1639 if (AllLHS && !N2Undef) 1640 N2 = getUNDEF(VT); 1641 if (AllRHS) { 1642 N1 = getUNDEF(VT); 1643 commuteShuffle(N1, N2, MaskVec); 1644 } 1645 // Reset our undef status after accounting for the mask. 1646 N2Undef = N2.isUndef(); 1647 // Re-check whether both sides ended up undef. 1648 if (N1.isUndef() && N2Undef) 1649 return getUNDEF(VT); 1650 1651 // If Identity shuffle return that node. 1652 bool Identity = true, AllSame = true; 1653 for (int i = 0; i != NElts; ++i) { 1654 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1655 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1656 } 1657 if (Identity && NElts) 1658 return N1; 1659 1660 // Shuffling a constant splat doesn't change the result. 1661 if (N2Undef) { 1662 SDValue V = N1; 1663 1664 // Look through any bitcasts. We check that these don't change the number 1665 // (and size) of elements and just changes their types. 1666 while (V.getOpcode() == ISD::BITCAST) 1667 V = V->getOperand(0); 1668 1669 // A splat should always show up as a build vector node. 1670 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1671 BitVector UndefElements; 1672 SDValue Splat = BV->getSplatValue(&UndefElements); 1673 // If this is a splat of an undef, shuffling it is also undef. 1674 if (Splat && Splat.isUndef()) 1675 return getUNDEF(VT); 1676 1677 bool SameNumElts = 1678 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1679 1680 // We only have a splat which can skip shuffles if there is a splatted 1681 // value and no undef lanes rearranged by the shuffle. 1682 if (Splat && UndefElements.none()) { 1683 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1684 // number of elements match or the value splatted is a zero constant. 1685 if (SameNumElts) 1686 return N1; 1687 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1688 if (C->isNullValue()) 1689 return N1; 1690 } 1691 1692 // If the shuffle itself creates a splat, build the vector directly. 1693 if (AllSame && SameNumElts) { 1694 EVT BuildVT = BV->getValueType(0); 1695 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1696 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1697 1698 // We may have jumped through bitcasts, so the type of the 1699 // BUILD_VECTOR may not match the type of the shuffle. 1700 if (BuildVT != VT) 1701 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1702 return NewBV; 1703 } 1704 } 1705 } 1706 1707 FoldingSetNodeID ID; 1708 SDValue Ops[2] = { N1, N2 }; 1709 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1710 for (int i = 0; i != NElts; ++i) 1711 ID.AddInteger(MaskVec[i]); 1712 1713 void* IP = nullptr; 1714 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1715 return SDValue(E, 0); 1716 1717 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1718 // SDNode doesn't have access to it. This memory will be "leaked" when 1719 // the node is deallocated, but recovered when the NodeAllocator is released. 1720 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1721 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1722 1723 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1724 dl.getDebugLoc(), MaskAlloc); 1725 createOperands(N, Ops); 1726 1727 CSEMap.InsertNode(N, IP); 1728 InsertNode(N); 1729 SDValue V = SDValue(N, 0); 1730 NewSDValueDbgMsg(V, "Creating new node: ", this); 1731 return V; 1732 } 1733 1734 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1735 EVT VT = SV.getValueType(0); 1736 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1737 ShuffleVectorSDNode::commuteMask(MaskVec); 1738 1739 SDValue Op0 = SV.getOperand(0); 1740 SDValue Op1 = SV.getOperand(1); 1741 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1742 } 1743 1744 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1745 FoldingSetNodeID ID; 1746 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1747 ID.AddInteger(RegNo); 1748 void *IP = nullptr; 1749 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1750 return SDValue(E, 0); 1751 1752 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1753 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1754 CSEMap.InsertNode(N, IP); 1755 InsertNode(N); 1756 return SDValue(N, 0); 1757 } 1758 1759 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1760 FoldingSetNodeID ID; 1761 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1762 ID.AddPointer(RegMask); 1763 void *IP = nullptr; 1764 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1765 return SDValue(E, 0); 1766 1767 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1768 CSEMap.InsertNode(N, IP); 1769 InsertNode(N); 1770 return SDValue(N, 0); 1771 } 1772 1773 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1774 MCSymbol *Label) { 1775 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1776 } 1777 1778 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1779 SDValue Root, MCSymbol *Label) { 1780 FoldingSetNodeID ID; 1781 SDValue Ops[] = { Root }; 1782 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1783 ID.AddPointer(Label); 1784 void *IP = nullptr; 1785 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1786 return SDValue(E, 0); 1787 1788 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1789 createOperands(N, Ops); 1790 1791 CSEMap.InsertNode(N, IP); 1792 InsertNode(N); 1793 return SDValue(N, 0); 1794 } 1795 1796 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1797 int64_t Offset, 1798 bool isTarget, 1799 unsigned char TargetFlags) { 1800 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1801 1802 FoldingSetNodeID ID; 1803 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1804 ID.AddPointer(BA); 1805 ID.AddInteger(Offset); 1806 ID.AddInteger(TargetFlags); 1807 void *IP = nullptr; 1808 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1809 return SDValue(E, 0); 1810 1811 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1812 CSEMap.InsertNode(N, IP); 1813 InsertNode(N); 1814 return SDValue(N, 0); 1815 } 1816 1817 SDValue SelectionDAG::getSrcValue(const Value *V) { 1818 assert((!V || V->getType()->isPointerTy()) && 1819 "SrcValue is not a pointer?"); 1820 1821 FoldingSetNodeID ID; 1822 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1823 ID.AddPointer(V); 1824 1825 void *IP = nullptr; 1826 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1827 return SDValue(E, 0); 1828 1829 auto *N = newSDNode<SrcValueSDNode>(V); 1830 CSEMap.InsertNode(N, IP); 1831 InsertNode(N); 1832 return SDValue(N, 0); 1833 } 1834 1835 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1836 FoldingSetNodeID ID; 1837 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1838 ID.AddPointer(MD); 1839 1840 void *IP = nullptr; 1841 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1842 return SDValue(E, 0); 1843 1844 auto *N = newSDNode<MDNodeSDNode>(MD); 1845 CSEMap.InsertNode(N, IP); 1846 InsertNode(N); 1847 return SDValue(N, 0); 1848 } 1849 1850 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1851 if (VT == V.getValueType()) 1852 return V; 1853 1854 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1855 } 1856 1857 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1858 unsigned SrcAS, unsigned DestAS) { 1859 SDValue Ops[] = {Ptr}; 1860 FoldingSetNodeID ID; 1861 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1862 ID.AddInteger(SrcAS); 1863 ID.AddInteger(DestAS); 1864 1865 void *IP = nullptr; 1866 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1867 return SDValue(E, 0); 1868 1869 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1870 VT, SrcAS, DestAS); 1871 createOperands(N, Ops); 1872 1873 CSEMap.InsertNode(N, IP); 1874 InsertNode(N); 1875 return SDValue(N, 0); 1876 } 1877 1878 /// getShiftAmountOperand - Return the specified value casted to 1879 /// the target's desired shift amount type. 1880 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1881 EVT OpTy = Op.getValueType(); 1882 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1883 if (OpTy == ShTy || OpTy.isVector()) return Op; 1884 1885 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1886 } 1887 1888 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1889 SDLoc dl(Node); 1890 const TargetLowering &TLI = getTargetLoweringInfo(); 1891 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1892 EVT VT = Node->getValueType(0); 1893 SDValue Tmp1 = Node->getOperand(0); 1894 SDValue Tmp2 = Node->getOperand(1); 1895 unsigned Align = Node->getConstantOperandVal(3); 1896 1897 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1898 Tmp2, MachinePointerInfo(V)); 1899 SDValue VAList = VAListLoad; 1900 1901 if (Align > TLI.getMinStackArgumentAlignment()) { 1902 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1903 1904 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1905 getConstant(Align - 1, dl, VAList.getValueType())); 1906 1907 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1908 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1909 } 1910 1911 // Increment the pointer, VAList, to the next vaarg 1912 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1913 getConstant(getDataLayout().getTypeAllocSize( 1914 VT.getTypeForEVT(*getContext())), 1915 dl, VAList.getValueType())); 1916 // Store the incremented VAList to the legalized pointer 1917 Tmp1 = 1918 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1919 // Load the actual argument out of the pointer VAList 1920 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1921 } 1922 1923 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1924 SDLoc dl(Node); 1925 const TargetLowering &TLI = getTargetLoweringInfo(); 1926 // This defaults to loading a pointer from the input and storing it to the 1927 // output, returning the chain. 1928 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1929 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1930 SDValue Tmp1 = 1931 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1932 Node->getOperand(2), MachinePointerInfo(VS)); 1933 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1934 MachinePointerInfo(VD)); 1935 } 1936 1937 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1938 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1939 unsigned ByteSize = VT.getStoreSize(); 1940 Type *Ty = VT.getTypeForEVT(*getContext()); 1941 unsigned StackAlign = 1942 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1943 1944 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1945 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1946 } 1947 1948 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1949 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1950 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1951 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1952 const DataLayout &DL = getDataLayout(); 1953 unsigned Align = 1954 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1955 1956 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1957 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1958 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1959 } 1960 1961 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1962 ISD::CondCode Cond, const SDLoc &dl) { 1963 EVT OpVT = N1.getValueType(); 1964 1965 // These setcc operations always fold. 1966 switch (Cond) { 1967 default: break; 1968 case ISD::SETFALSE: 1969 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1970 case ISD::SETTRUE: 1971 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1972 1973 case ISD::SETOEQ: 1974 case ISD::SETOGT: 1975 case ISD::SETOGE: 1976 case ISD::SETOLT: 1977 case ISD::SETOLE: 1978 case ISD::SETONE: 1979 case ISD::SETO: 1980 case ISD::SETUO: 1981 case ISD::SETUEQ: 1982 case ISD::SETUNE: 1983 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1984 break; 1985 } 1986 1987 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1988 const APInt &C2 = N2C->getAPIntValue(); 1989 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1990 const APInt &C1 = N1C->getAPIntValue(); 1991 1992 switch (Cond) { 1993 default: llvm_unreachable("Unknown integer setcc!"); 1994 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 1995 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 1996 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 1997 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 1998 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 1999 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2000 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2001 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2002 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2003 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2004 } 2005 } 2006 } 2007 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 2008 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 2009 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 2010 switch (Cond) { 2011 default: break; 2012 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2013 return getUNDEF(VT); 2014 LLVM_FALLTHROUGH; 2015 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2016 OpVT); 2017 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2018 return getUNDEF(VT); 2019 LLVM_FALLTHROUGH; 2020 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2021 R==APFloat::cmpLessThan, dl, VT, 2022 OpVT); 2023 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2024 return getUNDEF(VT); 2025 LLVM_FALLTHROUGH; 2026 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2027 OpVT); 2028 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2029 return getUNDEF(VT); 2030 LLVM_FALLTHROUGH; 2031 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2032 VT, OpVT); 2033 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2034 return getUNDEF(VT); 2035 LLVM_FALLTHROUGH; 2036 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2037 R==APFloat::cmpEqual, dl, VT, 2038 OpVT); 2039 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2040 return getUNDEF(VT); 2041 LLVM_FALLTHROUGH; 2042 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2043 R==APFloat::cmpEqual, dl, VT, OpVT); 2044 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2045 OpVT); 2046 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2047 OpVT); 2048 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2049 R==APFloat::cmpEqual, dl, VT, 2050 OpVT); 2051 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2052 OpVT); 2053 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2054 R==APFloat::cmpLessThan, dl, VT, 2055 OpVT); 2056 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2057 R==APFloat::cmpUnordered, dl, VT, 2058 OpVT); 2059 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2060 VT, OpVT); 2061 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2062 OpVT); 2063 } 2064 } else { 2065 // Ensure that the constant occurs on the RHS. 2066 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2067 MVT CompVT = N1.getValueType().getSimpleVT(); 2068 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 2069 return SDValue(); 2070 2071 return getSetCC(dl, VT, N2, N1, SwappedCond); 2072 } 2073 } 2074 2075 // Could not fold it. 2076 return SDValue(); 2077 } 2078 2079 /// See if the specified operand can be simplified with the knowledge that only 2080 /// the bits specified by Mask are used. 2081 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 2082 switch (V.getOpcode()) { 2083 default: 2084 break; 2085 case ISD::Constant: { 2086 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 2087 assert(CV && "Const value should be ConstSDNode."); 2088 const APInt &CVal = CV->getAPIntValue(); 2089 APInt NewVal = CVal & Mask; 2090 if (NewVal != CVal) 2091 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2092 break; 2093 } 2094 case ISD::OR: 2095 case ISD::XOR: 2096 // If the LHS or RHS don't contribute bits to the or, drop them. 2097 if (MaskedValueIsZero(V.getOperand(0), Mask)) 2098 return V.getOperand(1); 2099 if (MaskedValueIsZero(V.getOperand(1), Mask)) 2100 return V.getOperand(0); 2101 break; 2102 case ISD::SRL: 2103 // Only look at single-use SRLs. 2104 if (!V.getNode()->hasOneUse()) 2105 break; 2106 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2107 // See if we can recursively simplify the LHS. 2108 unsigned Amt = RHSC->getZExtValue(); 2109 2110 // Watch out for shift count overflow though. 2111 if (Amt >= Mask.getBitWidth()) 2112 break; 2113 APInt NewMask = Mask << Amt; 2114 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 2115 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2116 V.getOperand(1)); 2117 } 2118 break; 2119 case ISD::AND: { 2120 // X & -1 -> X (ignoring bits which aren't demanded). 2121 ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); 2122 if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue())) 2123 return V.getOperand(0); 2124 break; 2125 } 2126 case ISD::ANY_EXTEND: { 2127 SDValue Src = V.getOperand(0); 2128 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2129 // Being conservative here - only peek through if we only demand bits in the 2130 // non-extended source (even though the extended bits are technically undef). 2131 if (Mask.getActiveBits() > SrcBitWidth) 2132 break; 2133 APInt SrcMask = Mask.trunc(SrcBitWidth); 2134 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) 2135 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2136 break; 2137 } 2138 } 2139 return SDValue(); 2140 } 2141 2142 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2143 /// use this predicate to simplify operations downstream. 2144 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2145 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2146 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2147 } 2148 2149 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2150 /// this predicate to simplify operations downstream. Mask is known to be zero 2151 /// for bits that V cannot have. 2152 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2153 unsigned Depth) const { 2154 return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero); 2155 } 2156 2157 /// Helper function that checks to see if a node is a constant or a 2158 /// build vector of splat constants at least within the demanded elts. 2159 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N, 2160 const APInt &DemandedElts) { 2161 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 2162 return CN; 2163 if (N.getOpcode() != ISD::BUILD_VECTOR) 2164 return nullptr; 2165 EVT VT = N.getValueType(); 2166 ConstantSDNode *Cst = nullptr; 2167 unsigned NumElts = VT.getVectorNumElements(); 2168 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size"); 2169 for (unsigned i = 0; i != NumElts; ++i) { 2170 if (!DemandedElts[i]) 2171 continue; 2172 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i)); 2173 if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) || 2174 C->getValueType(0) != VT.getScalarType()) 2175 return nullptr; 2176 Cst = C; 2177 } 2178 return Cst; 2179 } 2180 2181 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2182 /// is less than the element bit-width of the shift node, return it. 2183 static const APInt *getValidShiftAmountConstant(SDValue V) { 2184 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2185 // Shifting more than the bitwidth is not valid. 2186 const APInt &ShAmt = SA->getAPIntValue(); 2187 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2188 return &ShAmt; 2189 } 2190 return nullptr; 2191 } 2192 2193 /// Determine which bits of Op are known to be either zero or one and return 2194 /// them in Known. For vectors, the known bits are those that are shared by 2195 /// every vector element. 2196 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2197 EVT VT = Op.getValueType(); 2198 APInt DemandedElts = VT.isVector() 2199 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2200 : APInt(1, 1); 2201 return computeKnownBits(Op, DemandedElts, Depth); 2202 } 2203 2204 /// Determine which bits of Op are known to be either zero or one and return 2205 /// them in Known. The DemandedElts argument allows us to only collect the known 2206 /// bits that are shared by the requested vector elements. 2207 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2208 unsigned Depth) const { 2209 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2210 2211 KnownBits Known(BitWidth); // Don't know anything. 2212 2213 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2214 // We know all of the bits for a constant! 2215 Known.One = C->getAPIntValue(); 2216 Known.Zero = ~Known.One; 2217 return Known; 2218 } 2219 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2220 // We know all of the bits for a constant fp! 2221 Known.One = C->getValueAPF().bitcastToAPInt(); 2222 Known.Zero = ~Known.One; 2223 return Known; 2224 } 2225 2226 if (Depth == 6) 2227 return Known; // Limit search depth. 2228 2229 KnownBits Known2; 2230 unsigned NumElts = DemandedElts.getBitWidth(); 2231 2232 if (!DemandedElts) 2233 return Known; // No demanded elts, better to assume we don't know anything. 2234 2235 unsigned Opcode = Op.getOpcode(); 2236 switch (Opcode) { 2237 case ISD::BUILD_VECTOR: 2238 // Collect the known bits that are shared by every demanded vector element. 2239 assert(NumElts == Op.getValueType().getVectorNumElements() && 2240 "Unexpected vector size"); 2241 Known.Zero.setAllBits(); Known.One.setAllBits(); 2242 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2243 if (!DemandedElts[i]) 2244 continue; 2245 2246 SDValue SrcOp = Op.getOperand(i); 2247 Known2 = computeKnownBits(SrcOp, Depth + 1); 2248 2249 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2250 if (SrcOp.getValueSizeInBits() != BitWidth) { 2251 assert(SrcOp.getValueSizeInBits() > BitWidth && 2252 "Expected BUILD_VECTOR implicit truncation"); 2253 Known2 = Known2.trunc(BitWidth); 2254 } 2255 2256 // Known bits are the values that are shared by every demanded element. 2257 Known.One &= Known2.One; 2258 Known.Zero &= Known2.Zero; 2259 2260 // If we don't know any bits, early out. 2261 if (Known.isUnknown()) 2262 break; 2263 } 2264 break; 2265 case ISD::VECTOR_SHUFFLE: { 2266 // Collect the known bits that are shared by every vector element referenced 2267 // by the shuffle. 2268 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2269 Known.Zero.setAllBits(); Known.One.setAllBits(); 2270 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2271 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2272 for (unsigned i = 0; i != NumElts; ++i) { 2273 if (!DemandedElts[i]) 2274 continue; 2275 2276 int M = SVN->getMaskElt(i); 2277 if (M < 0) { 2278 // For UNDEF elements, we don't know anything about the common state of 2279 // the shuffle result. 2280 Known.resetAll(); 2281 DemandedLHS.clearAllBits(); 2282 DemandedRHS.clearAllBits(); 2283 break; 2284 } 2285 2286 if ((unsigned)M < NumElts) 2287 DemandedLHS.setBit((unsigned)M % NumElts); 2288 else 2289 DemandedRHS.setBit((unsigned)M % NumElts); 2290 } 2291 // Known bits are the values that are shared by every demanded element. 2292 if (!!DemandedLHS) { 2293 SDValue LHS = Op.getOperand(0); 2294 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2295 Known.One &= Known2.One; 2296 Known.Zero &= Known2.Zero; 2297 } 2298 // If we don't know any bits, early out. 2299 if (Known.isUnknown()) 2300 break; 2301 if (!!DemandedRHS) { 2302 SDValue RHS = Op.getOperand(1); 2303 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2304 Known.One &= Known2.One; 2305 Known.Zero &= Known2.Zero; 2306 } 2307 break; 2308 } 2309 case ISD::CONCAT_VECTORS: { 2310 // Split DemandedElts and test each of the demanded subvectors. 2311 Known.Zero.setAllBits(); Known.One.setAllBits(); 2312 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2313 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2314 unsigned NumSubVectors = Op.getNumOperands(); 2315 for (unsigned i = 0; i != NumSubVectors; ++i) { 2316 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2317 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2318 if (!!DemandedSub) { 2319 SDValue Sub = Op.getOperand(i); 2320 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2321 Known.One &= Known2.One; 2322 Known.Zero &= Known2.Zero; 2323 } 2324 // If we don't know any bits, early out. 2325 if (Known.isUnknown()) 2326 break; 2327 } 2328 break; 2329 } 2330 case ISD::INSERT_SUBVECTOR: { 2331 // If we know the element index, demand any elements from the subvector and 2332 // the remainder from the src its inserted into, otherwise demand them all. 2333 SDValue Src = Op.getOperand(0); 2334 SDValue Sub = Op.getOperand(1); 2335 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2336 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2337 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2338 Known.One.setAllBits(); 2339 Known.Zero.setAllBits(); 2340 uint64_t Idx = SubIdx->getZExtValue(); 2341 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2342 if (!!DemandedSubElts) { 2343 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2344 if (Known.isUnknown()) 2345 break; // early-out. 2346 } 2347 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2348 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2349 if (!!DemandedSrcElts) { 2350 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2351 Known.One &= Known2.One; 2352 Known.Zero &= Known2.Zero; 2353 } 2354 } else { 2355 Known = computeKnownBits(Sub, Depth + 1); 2356 if (Known.isUnknown()) 2357 break; // early-out. 2358 Known2 = computeKnownBits(Src, Depth + 1); 2359 Known.One &= Known2.One; 2360 Known.Zero &= Known2.Zero; 2361 } 2362 break; 2363 } 2364 case ISD::EXTRACT_SUBVECTOR: { 2365 // If we know the element index, just demand that subvector elements, 2366 // otherwise demand them all. 2367 SDValue Src = Op.getOperand(0); 2368 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2369 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2370 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2371 // Offset the demanded elts by the subvector index. 2372 uint64_t Idx = SubIdx->getZExtValue(); 2373 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2374 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2375 } else { 2376 Known = computeKnownBits(Src, Depth + 1); 2377 } 2378 break; 2379 } 2380 case ISD::BITCAST: { 2381 SDValue N0 = Op.getOperand(0); 2382 EVT SubVT = N0.getValueType(); 2383 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2384 2385 // Ignore bitcasts from unsupported types. 2386 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2387 break; 2388 2389 // Fast handling of 'identity' bitcasts. 2390 if (BitWidth == SubBitWidth) { 2391 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2392 break; 2393 } 2394 2395 bool IsLE = getDataLayout().isLittleEndian(); 2396 2397 // Bitcast 'small element' vector to 'large element' scalar/vector. 2398 if ((BitWidth % SubBitWidth) == 0) { 2399 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2400 2401 // Collect known bits for the (larger) output by collecting the known 2402 // bits from each set of sub elements and shift these into place. 2403 // We need to separately call computeKnownBits for each set of 2404 // sub elements as the knownbits for each is likely to be different. 2405 unsigned SubScale = BitWidth / SubBitWidth; 2406 APInt SubDemandedElts(NumElts * SubScale, 0); 2407 for (unsigned i = 0; i != NumElts; ++i) 2408 if (DemandedElts[i]) 2409 SubDemandedElts.setBit(i * SubScale); 2410 2411 for (unsigned i = 0; i != SubScale; ++i) { 2412 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2413 Depth + 1); 2414 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2415 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2416 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2417 } 2418 } 2419 2420 // Bitcast 'large element' scalar/vector to 'small element' vector. 2421 if ((SubBitWidth % BitWidth) == 0) { 2422 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2423 2424 // Collect known bits for the (smaller) output by collecting the known 2425 // bits from the overlapping larger input elements and extracting the 2426 // sub sections we actually care about. 2427 unsigned SubScale = SubBitWidth / BitWidth; 2428 APInt SubDemandedElts(NumElts / SubScale, 0); 2429 for (unsigned i = 0; i != NumElts; ++i) 2430 if (DemandedElts[i]) 2431 SubDemandedElts.setBit(i / SubScale); 2432 2433 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2434 2435 Known.Zero.setAllBits(); Known.One.setAllBits(); 2436 for (unsigned i = 0; i != NumElts; ++i) 2437 if (DemandedElts[i]) { 2438 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2439 unsigned Offset = (Shifts % SubScale) * BitWidth; 2440 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2441 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2442 // If we don't know any bits, early out. 2443 if (Known.isUnknown()) 2444 break; 2445 } 2446 } 2447 break; 2448 } 2449 case ISD::AND: 2450 // If either the LHS or the RHS are Zero, the result is zero. 2451 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2452 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2453 2454 // Output known-1 bits are only known if set in both the LHS & RHS. 2455 Known.One &= Known2.One; 2456 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2457 Known.Zero |= Known2.Zero; 2458 break; 2459 case ISD::OR: 2460 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2461 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2462 2463 // Output known-0 bits are only known if clear in both the LHS & RHS. 2464 Known.Zero &= Known2.Zero; 2465 // Output known-1 are known to be set if set in either the LHS | RHS. 2466 Known.One |= Known2.One; 2467 break; 2468 case ISD::XOR: { 2469 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2470 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2471 2472 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2473 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2474 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2475 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2476 Known.Zero = KnownZeroOut; 2477 break; 2478 } 2479 case ISD::MUL: { 2480 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2481 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2482 2483 // If low bits are zero in either operand, output low known-0 bits. 2484 // Also compute a conservative estimate for high known-0 bits. 2485 // More trickiness is possible, but this is sufficient for the 2486 // interesting case of alignment computation. 2487 unsigned TrailZ = Known.countMinTrailingZeros() + 2488 Known2.countMinTrailingZeros(); 2489 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2490 Known2.countMinLeadingZeros(), 2491 BitWidth) - BitWidth; 2492 2493 Known.resetAll(); 2494 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2495 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2496 break; 2497 } 2498 case ISD::UDIV: { 2499 // For the purposes of computing leading zeros we can conservatively 2500 // treat a udiv as a logical right shift by the power of 2 known to 2501 // be less than the denominator. 2502 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2503 unsigned LeadZ = Known2.countMinLeadingZeros(); 2504 2505 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2506 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2507 if (RHSMaxLeadingZeros != BitWidth) 2508 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2509 2510 Known.Zero.setHighBits(LeadZ); 2511 break; 2512 } 2513 case ISD::SELECT: 2514 case ISD::VSELECT: 2515 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2516 // If we don't know any bits, early out. 2517 if (Known.isUnknown()) 2518 break; 2519 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2520 2521 // Only known if known in both the LHS and RHS. 2522 Known.One &= Known2.One; 2523 Known.Zero &= Known2.Zero; 2524 break; 2525 case ISD::SELECT_CC: 2526 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2527 // If we don't know any bits, early out. 2528 if (Known.isUnknown()) 2529 break; 2530 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2531 2532 // Only known if known in both the LHS and RHS. 2533 Known.One &= Known2.One; 2534 Known.Zero &= Known2.Zero; 2535 break; 2536 case ISD::SMULO: 2537 case ISD::UMULO: 2538 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2539 if (Op.getResNo() != 1) 2540 break; 2541 // The boolean result conforms to getBooleanContents. 2542 // If we know the result of a setcc has the top bits zero, use this info. 2543 // We know that we have an integer-based boolean since these operations 2544 // are only available for integer. 2545 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2546 TargetLowering::ZeroOrOneBooleanContent && 2547 BitWidth > 1) 2548 Known.Zero.setBitsFrom(1); 2549 break; 2550 case ISD::SETCC: 2551 // If we know the result of a setcc has the top bits zero, use this info. 2552 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2553 TargetLowering::ZeroOrOneBooleanContent && 2554 BitWidth > 1) 2555 Known.Zero.setBitsFrom(1); 2556 break; 2557 case ISD::SHL: 2558 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2559 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2560 unsigned Shift = ShAmt->getZExtValue(); 2561 Known.Zero <<= Shift; 2562 Known.One <<= Shift; 2563 // Low bits are known zero. 2564 Known.Zero.setLowBits(Shift); 2565 } 2566 break; 2567 case ISD::SRL: 2568 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2569 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2570 unsigned Shift = ShAmt->getZExtValue(); 2571 Known.Zero.lshrInPlace(Shift); 2572 Known.One.lshrInPlace(Shift); 2573 // High bits are known zero. 2574 Known.Zero.setHighBits(Shift); 2575 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2576 // If the shift amount is a vector of constants see if we can bound 2577 // the number of upper zero bits. 2578 unsigned ShiftAmountMin = BitWidth; 2579 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2580 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2581 const APInt &ShAmt = C->getAPIntValue(); 2582 if (ShAmt.ult(BitWidth)) { 2583 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2584 ShAmt.getZExtValue()); 2585 continue; 2586 } 2587 } 2588 // Don't know anything. 2589 ShiftAmountMin = 0; 2590 break; 2591 } 2592 2593 Known.Zero.setHighBits(ShiftAmountMin); 2594 } 2595 break; 2596 case ISD::SRA: 2597 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2598 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2599 unsigned Shift = ShAmt->getZExtValue(); 2600 // Sign extend known zero/one bit (else is unknown). 2601 Known.Zero.ashrInPlace(Shift); 2602 Known.One.ashrInPlace(Shift); 2603 } 2604 break; 2605 case ISD::SIGN_EXTEND_INREG: { 2606 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2607 unsigned EBits = EVT.getScalarSizeInBits(); 2608 2609 // Sign extension. Compute the demanded bits in the result that are not 2610 // present in the input. 2611 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2612 2613 APInt InSignMask = APInt::getSignMask(EBits); 2614 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2615 2616 // If the sign extended bits are demanded, we know that the sign 2617 // bit is demanded. 2618 InSignMask = InSignMask.zext(BitWidth); 2619 if (NewBits.getBoolValue()) 2620 InputDemandedBits |= InSignMask; 2621 2622 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2623 Known.One &= InputDemandedBits; 2624 Known.Zero &= InputDemandedBits; 2625 2626 // If the sign bit of the input is known set or clear, then we know the 2627 // top bits of the result. 2628 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2629 Known.Zero |= NewBits; 2630 Known.One &= ~NewBits; 2631 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2632 Known.One |= NewBits; 2633 Known.Zero &= ~NewBits; 2634 } else { // Input sign bit unknown 2635 Known.Zero &= ~NewBits; 2636 Known.One &= ~NewBits; 2637 } 2638 break; 2639 } 2640 case ISD::CTTZ: 2641 case ISD::CTTZ_ZERO_UNDEF: { 2642 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2643 // If we have a known 1, its position is our upper bound. 2644 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2645 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2646 Known.Zero.setBitsFrom(LowBits); 2647 break; 2648 } 2649 case ISD::CTLZ: 2650 case ISD::CTLZ_ZERO_UNDEF: { 2651 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2652 // If we have a known 1, its position is our upper bound. 2653 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2654 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2655 Known.Zero.setBitsFrom(LowBits); 2656 break; 2657 } 2658 case ISD::CTPOP: { 2659 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2660 // If we know some of the bits are zero, they can't be one. 2661 unsigned PossibleOnes = Known2.countMaxPopulation(); 2662 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2663 break; 2664 } 2665 case ISD::LOAD: { 2666 LoadSDNode *LD = cast<LoadSDNode>(Op); 2667 // If this is a ZEXTLoad and we are looking at the loaded value. 2668 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2669 EVT VT = LD->getMemoryVT(); 2670 unsigned MemBits = VT.getScalarSizeInBits(); 2671 Known.Zero.setBitsFrom(MemBits); 2672 } else if (const MDNode *Ranges = LD->getRanges()) { 2673 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2674 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2675 } 2676 break; 2677 } 2678 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2679 EVT InVT = Op.getOperand(0).getValueType(); 2680 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 2681 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2682 Known = Known.zext(BitWidth); 2683 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2684 break; 2685 } 2686 case ISD::ZERO_EXTEND: { 2687 EVT InVT = Op.getOperand(0).getValueType(); 2688 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2689 Known = Known.zext(BitWidth); 2690 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2691 break; 2692 } 2693 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2694 case ISD::SIGN_EXTEND: { 2695 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2696 // If the sign bit is known to be zero or one, then sext will extend 2697 // it to the top bits, else it will just zext. 2698 Known = Known.sext(BitWidth); 2699 break; 2700 } 2701 case ISD::ANY_EXTEND: { 2702 Known = computeKnownBits(Op.getOperand(0), Depth+1); 2703 Known = Known.zext(BitWidth); 2704 break; 2705 } 2706 case ISD::TRUNCATE: { 2707 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2708 Known = Known.trunc(BitWidth); 2709 break; 2710 } 2711 case ISD::AssertZext: { 2712 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2713 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2714 Known = computeKnownBits(Op.getOperand(0), Depth+1); 2715 Known.Zero |= (~InMask); 2716 Known.One &= (~Known.Zero); 2717 break; 2718 } 2719 case ISD::FGETSIGN: 2720 // All bits are zero except the low bit. 2721 Known.Zero.setBitsFrom(1); 2722 break; 2723 case ISD::USUBO: 2724 case ISD::SSUBO: 2725 if (Op.getResNo() == 1) { 2726 // If we know the result of a setcc has the top bits zero, use this info. 2727 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2728 TargetLowering::ZeroOrOneBooleanContent && 2729 BitWidth > 1) 2730 Known.Zero.setBitsFrom(1); 2731 break; 2732 } 2733 LLVM_FALLTHROUGH; 2734 case ISD::SUB: 2735 case ISD::SUBC: { 2736 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2737 // We know that the top bits of C-X are clear if X contains less bits 2738 // than C (i.e. no wrap-around can happen). For example, 20-X is 2739 // positive if we can prove that X is >= 0 and < 16. 2740 if (CLHS->getAPIntValue().isNonNegative()) { 2741 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2742 // NLZ can't be BitWidth with no sign bit 2743 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2744 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, 2745 Depth + 1); 2746 2747 // If all of the MaskV bits are known to be zero, then we know the 2748 // output top bits are zero, because we now know that the output is 2749 // from [0-C]. 2750 if ((Known2.Zero & MaskV) == MaskV) { 2751 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2752 // Top bits known zero. 2753 Known.Zero.setHighBits(NLZ2); 2754 } 2755 } 2756 } 2757 2758 // If low bits are know to be zero in both operands, then we know they are 2759 // going to be 0 in the result. Both addition and complement operations 2760 // preserve the low zero bits. 2761 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2762 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2763 if (KnownZeroLow == 0) 2764 break; 2765 2766 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2767 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2768 Known.Zero.setLowBits(KnownZeroLow); 2769 break; 2770 } 2771 case ISD::UADDO: 2772 case ISD::SADDO: 2773 case ISD::ADDCARRY: 2774 if (Op.getResNo() == 1) { 2775 // If we know the result of a setcc has the top bits zero, use this info. 2776 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2777 TargetLowering::ZeroOrOneBooleanContent && 2778 BitWidth > 1) 2779 Known.Zero.setBitsFrom(1); 2780 break; 2781 } 2782 LLVM_FALLTHROUGH; 2783 case ISD::ADD: 2784 case ISD::ADDC: 2785 case ISD::ADDE: { 2786 // Output known-0 bits are known if clear or set in both the low clear bits 2787 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2788 // low 3 bits clear. 2789 // Output known-0 bits are also known if the top bits of each input are 2790 // known to be clear. For example, if one input has the top 10 bits clear 2791 // and the other has the top 8 bits clear, we know the top 7 bits of the 2792 // output must be clear. 2793 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2794 unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); 2795 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2796 2797 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2798 KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); 2799 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2800 2801 if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { 2802 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only 2803 // use this information if we know (at least) that the low two bits are 2804 // clear. We then return to the caller that the low bit is unknown but 2805 // that other bits are known zero. 2806 if (KnownZeroLow >= 2) 2807 Known.Zero.setBits(1, KnownZeroLow); 2808 break; 2809 } 2810 2811 Known.Zero.setLowBits(KnownZeroLow); 2812 if (KnownZeroHigh > 1) 2813 Known.Zero.setHighBits(KnownZeroHigh - 1); 2814 break; 2815 } 2816 case ISD::SREM: 2817 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2818 const APInt &RA = Rem->getAPIntValue().abs(); 2819 if (RA.isPowerOf2()) { 2820 APInt LowBits = RA - 1; 2821 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2822 2823 // The low bits of the first operand are unchanged by the srem. 2824 Known.Zero = Known2.Zero & LowBits; 2825 Known.One = Known2.One & LowBits; 2826 2827 // If the first operand is non-negative or has all low bits zero, then 2828 // the upper bits are all zero. 2829 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 2830 Known.Zero |= ~LowBits; 2831 2832 // If the first operand is negative and not all low bits are zero, then 2833 // the upper bits are all one. 2834 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 2835 Known.One |= ~LowBits; 2836 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 2837 } 2838 } 2839 break; 2840 case ISD::UREM: { 2841 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2842 const APInt &RA = Rem->getAPIntValue(); 2843 if (RA.isPowerOf2()) { 2844 APInt LowBits = (RA - 1); 2845 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2846 2847 // The upper bits are all zero, the lower ones are unchanged. 2848 Known.Zero = Known2.Zero | ~LowBits; 2849 Known.One = Known2.One & LowBits; 2850 break; 2851 } 2852 } 2853 2854 // Since the result is less than or equal to either operand, any leading 2855 // zero bits in either operand must also exist in the result. 2856 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2857 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2858 2859 uint32_t Leaders = 2860 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 2861 Known.resetAll(); 2862 Known.Zero.setHighBits(Leaders); 2863 break; 2864 } 2865 case ISD::EXTRACT_ELEMENT: { 2866 Known = computeKnownBits(Op.getOperand(0), Depth+1); 2867 const unsigned Index = Op.getConstantOperandVal(1); 2868 const unsigned BitWidth = Op.getValueSizeInBits(); 2869 2870 // Remove low part of known bits mask 2871 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); 2872 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); 2873 2874 // Remove high part of known bit mask 2875 Known = Known.trunc(BitWidth); 2876 break; 2877 } 2878 case ISD::EXTRACT_VECTOR_ELT: { 2879 SDValue InVec = Op.getOperand(0); 2880 SDValue EltNo = Op.getOperand(1); 2881 EVT VecVT = InVec.getValueType(); 2882 const unsigned BitWidth = Op.getValueSizeInBits(); 2883 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2884 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2885 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2886 // anything about the extended bits. 2887 if (BitWidth > EltBitWidth) 2888 Known = Known.trunc(EltBitWidth); 2889 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2890 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2891 // If we know the element index, just demand that vector element. 2892 unsigned Idx = ConstEltNo->getZExtValue(); 2893 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2894 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 2895 } else { 2896 // Unknown element index, so ignore DemandedElts and demand them all. 2897 Known = computeKnownBits(InVec, Depth + 1); 2898 } 2899 if (BitWidth > EltBitWidth) 2900 Known = Known.zext(BitWidth); 2901 break; 2902 } 2903 case ISD::INSERT_VECTOR_ELT: { 2904 SDValue InVec = Op.getOperand(0); 2905 SDValue InVal = Op.getOperand(1); 2906 SDValue EltNo = Op.getOperand(2); 2907 2908 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2909 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2910 // If we know the element index, split the demand between the 2911 // source vector and the inserted element. 2912 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 2913 unsigned EltIdx = CEltNo->getZExtValue(); 2914 2915 // If we demand the inserted element then add its common known bits. 2916 if (DemandedElts[EltIdx]) { 2917 Known2 = computeKnownBits(InVal, Depth + 1); 2918 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2919 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2920 } 2921 2922 // If we demand the source vector then add its common known bits, ensuring 2923 // that we don't demand the inserted element. 2924 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2925 if (!!VectorElts) { 2926 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 2927 Known.One &= Known2.One; 2928 Known.Zero &= Known2.Zero; 2929 } 2930 } else { 2931 // Unknown element index, so ignore DemandedElts and demand them all. 2932 Known = computeKnownBits(InVec, Depth + 1); 2933 Known2 = computeKnownBits(InVal, Depth + 1); 2934 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2935 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2936 } 2937 break; 2938 } 2939 case ISD::BITREVERSE: { 2940 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2941 Known.Zero = Known2.Zero.reverseBits(); 2942 Known.One = Known2.One.reverseBits(); 2943 break; 2944 } 2945 case ISD::BSWAP: { 2946 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2947 Known.Zero = Known2.Zero.byteSwap(); 2948 Known.One = Known2.One.byteSwap(); 2949 break; 2950 } 2951 case ISD::ABS: { 2952 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2953 2954 // If the source's MSB is zero then we know the rest of the bits already. 2955 if (Known2.isNonNegative()) { 2956 Known.Zero = Known2.Zero; 2957 Known.One = Known2.One; 2958 break; 2959 } 2960 2961 // We only know that the absolute values's MSB will be zero iff there is 2962 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 2963 Known2.One.clearSignBit(); 2964 if (Known2.One.getBoolValue()) { 2965 Known.Zero = APInt::getSignMask(BitWidth); 2966 break; 2967 } 2968 break; 2969 } 2970 case ISD::UMIN: { 2971 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2972 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2973 2974 // UMIN - we know that the result will have the maximum of the 2975 // known zero leading bits of the inputs. 2976 unsigned LeadZero = Known.countMinLeadingZeros(); 2977 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 2978 2979 Known.Zero &= Known2.Zero; 2980 Known.One &= Known2.One; 2981 Known.Zero.setHighBits(LeadZero); 2982 break; 2983 } 2984 case ISD::UMAX: { 2985 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2986 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2987 2988 // UMAX - we know that the result will have the maximum of the 2989 // known one leading bits of the inputs. 2990 unsigned LeadOne = Known.countMinLeadingOnes(); 2991 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 2992 2993 Known.Zero &= Known2.Zero; 2994 Known.One &= Known2.One; 2995 Known.One.setHighBits(LeadOne); 2996 break; 2997 } 2998 case ISD::SMIN: 2999 case ISD::SMAX: { 3000 // If we have a clamp pattern, we know that the number of sign bits will be 3001 // the minimum of the clamp min/max range. 3002 bool IsMax = (Opcode == ISD::SMAX); 3003 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3004 if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts))) 3005 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3006 CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1), 3007 DemandedElts); 3008 if (CstLow && CstHigh) { 3009 if (!IsMax) 3010 std::swap(CstLow, CstHigh); 3011 3012 const APInt &ValueLow = CstLow->getAPIntValue(); 3013 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3014 if (ValueLow.sle(ValueHigh)) { 3015 unsigned LowSignBits = ValueLow.getNumSignBits(); 3016 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3017 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3018 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3019 Known.One.setHighBits(MinSignBits); 3020 break; 3021 } 3022 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3023 Known.Zero.setHighBits(MinSignBits); 3024 break; 3025 } 3026 } 3027 } 3028 3029 // Fallback - just get the shared known bits of the operands. 3030 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3031 if (Known.isUnknown()) break; // Early-out 3032 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3033 Known.Zero &= Known2.Zero; 3034 Known.One &= Known2.One; 3035 break; 3036 } 3037 case ISD::FrameIndex: 3038 case ISD::TargetFrameIndex: 3039 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3040 break; 3041 3042 default: 3043 if (Opcode < ISD::BUILTIN_OP_END) 3044 break; 3045 LLVM_FALLTHROUGH; 3046 case ISD::INTRINSIC_WO_CHAIN: 3047 case ISD::INTRINSIC_W_CHAIN: 3048 case ISD::INTRINSIC_VOID: 3049 // Allow the target to implement this method for its nodes. 3050 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3051 break; 3052 } 3053 3054 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3055 return Known; 3056 } 3057 3058 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3059 SDValue N1) const { 3060 // X + 0 never overflow 3061 if (isNullConstant(N1)) 3062 return OFK_Never; 3063 3064 KnownBits N1Known; 3065 computeKnownBits(N1, N1Known); 3066 if (N1Known.Zero.getBoolValue()) { 3067 KnownBits N0Known; 3068 computeKnownBits(N0, N0Known); 3069 3070 bool overflow; 3071 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3072 if (!overflow) 3073 return OFK_Never; 3074 } 3075 3076 // mulhi + 1 never overflow 3077 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3078 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3079 return OFK_Never; 3080 3081 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3082 KnownBits N0Known; 3083 computeKnownBits(N0, N0Known); 3084 3085 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3086 return OFK_Never; 3087 } 3088 3089 return OFK_Sometime; 3090 } 3091 3092 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3093 EVT OpVT = Val.getValueType(); 3094 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3095 3096 // Is the constant a known power of 2? 3097 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3098 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3099 3100 // A left-shift of a constant one will have exactly one bit set because 3101 // shifting the bit off the end is undefined. 3102 if (Val.getOpcode() == ISD::SHL) { 3103 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3104 if (C && C->getAPIntValue() == 1) 3105 return true; 3106 } 3107 3108 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3109 // one bit set. 3110 if (Val.getOpcode() == ISD::SRL) { 3111 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3112 if (C && C->getAPIntValue().isSignMask()) 3113 return true; 3114 } 3115 3116 // Are all operands of a build vector constant powers of two? 3117 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3118 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3119 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3120 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3121 return false; 3122 })) 3123 return true; 3124 3125 // More could be done here, though the above checks are enough 3126 // to handle some common cases. 3127 3128 // Fall back to computeKnownBits to catch other known cases. 3129 KnownBits Known = computeKnownBits(Val); 3130 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3131 } 3132 3133 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3134 EVT VT = Op.getValueType(); 3135 APInt DemandedElts = VT.isVector() 3136 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3137 : APInt(1, 1); 3138 return ComputeNumSignBits(Op, DemandedElts, Depth); 3139 } 3140 3141 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3142 unsigned Depth) const { 3143 EVT VT = Op.getValueType(); 3144 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3145 unsigned VTBits = VT.getScalarSizeInBits(); 3146 unsigned NumElts = DemandedElts.getBitWidth(); 3147 unsigned Tmp, Tmp2; 3148 unsigned FirstAnswer = 1; 3149 3150 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3151 const APInt &Val = C->getAPIntValue(); 3152 return Val.getNumSignBits(); 3153 } 3154 3155 if (Depth == 6) 3156 return 1; // Limit search depth. 3157 3158 if (!DemandedElts) 3159 return 1; // No demanded elts, better to assume we don't know anything. 3160 3161 unsigned Opcode = Op.getOpcode(); 3162 switch (Opcode) { 3163 default: break; 3164 case ISD::AssertSext: 3165 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3166 return VTBits-Tmp+1; 3167 case ISD::AssertZext: 3168 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3169 return VTBits-Tmp; 3170 3171 case ISD::BUILD_VECTOR: 3172 Tmp = VTBits; 3173 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3174 if (!DemandedElts[i]) 3175 continue; 3176 3177 SDValue SrcOp = Op.getOperand(i); 3178 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3179 3180 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3181 if (SrcOp.getValueSizeInBits() != VTBits) { 3182 assert(SrcOp.getValueSizeInBits() > VTBits && 3183 "Expected BUILD_VECTOR implicit truncation"); 3184 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3185 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3186 } 3187 Tmp = std::min(Tmp, Tmp2); 3188 } 3189 return Tmp; 3190 3191 case ISD::VECTOR_SHUFFLE: { 3192 // Collect the minimum number of sign bits that are shared by every vector 3193 // element referenced by the shuffle. 3194 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3195 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3196 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3197 for (unsigned i = 0; i != NumElts; ++i) { 3198 int M = SVN->getMaskElt(i); 3199 if (!DemandedElts[i]) 3200 continue; 3201 // For UNDEF elements, we don't know anything about the common state of 3202 // the shuffle result. 3203 if (M < 0) 3204 return 1; 3205 if ((unsigned)M < NumElts) 3206 DemandedLHS.setBit((unsigned)M % NumElts); 3207 else 3208 DemandedRHS.setBit((unsigned)M % NumElts); 3209 } 3210 Tmp = std::numeric_limits<unsigned>::max(); 3211 if (!!DemandedLHS) 3212 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3213 if (!!DemandedRHS) { 3214 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3215 Tmp = std::min(Tmp, Tmp2); 3216 } 3217 // If we don't know anything, early out and try computeKnownBits fall-back. 3218 if (Tmp == 1) 3219 break; 3220 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3221 return Tmp; 3222 } 3223 3224 case ISD::BITCAST: { 3225 SDValue N0 = Op.getOperand(0); 3226 EVT SrcVT = N0.getValueType(); 3227 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3228 3229 // Ignore bitcasts from unsupported types.. 3230 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3231 break; 3232 3233 // Fast handling of 'identity' bitcasts. 3234 if (VTBits == SrcBits) 3235 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3236 3237 bool IsLE = getDataLayout().isLittleEndian(); 3238 3239 // Bitcast 'large element' scalar/vector to 'small element' vector. 3240 if ((SrcBits % VTBits) == 0) { 3241 assert(VT.isVector() && "Expected bitcast to vector"); 3242 3243 unsigned Scale = SrcBits / VTBits; 3244 APInt SrcDemandedElts(NumElts / Scale, 0); 3245 for (unsigned i = 0; i != NumElts; ++i) 3246 if (DemandedElts[i]) 3247 SrcDemandedElts.setBit(i / Scale); 3248 3249 // Fast case - sign splat can be simply split across the small elements. 3250 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3251 if (Tmp == SrcBits) 3252 return VTBits; 3253 3254 // Slow case - determine how far the sign extends into each sub-element. 3255 Tmp2 = VTBits; 3256 for (unsigned i = 0; i != NumElts; ++i) 3257 if (DemandedElts[i]) { 3258 unsigned SubOffset = i % Scale; 3259 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3260 SubOffset = SubOffset * VTBits; 3261 if (Tmp <= SubOffset) 3262 return 1; 3263 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3264 } 3265 return Tmp2; 3266 } 3267 break; 3268 } 3269 3270 case ISD::SIGN_EXTEND: 3271 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3272 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3273 case ISD::SIGN_EXTEND_INREG: 3274 // Max of the input and what this extends. 3275 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3276 Tmp = VTBits-Tmp+1; 3277 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3278 return std::max(Tmp, Tmp2); 3279 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3280 SDValue Src = Op.getOperand(0); 3281 EVT SrcVT = Src.getValueType(); 3282 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 3283 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3284 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3285 } 3286 3287 case ISD::SRA: 3288 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3289 // SRA X, C -> adds C sign bits. 3290 if (ConstantSDNode *C = 3291 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3292 APInt ShiftVal = C->getAPIntValue(); 3293 ShiftVal += Tmp; 3294 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3295 } 3296 return Tmp; 3297 case ISD::SHL: 3298 if (ConstantSDNode *C = 3299 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3300 // shl destroys sign bits. 3301 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3302 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3303 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3304 return Tmp - C->getZExtValue(); 3305 } 3306 break; 3307 case ISD::AND: 3308 case ISD::OR: 3309 case ISD::XOR: // NOT is handled here. 3310 // Logical binary ops preserve the number of sign bits at the worst. 3311 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3312 if (Tmp != 1) { 3313 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3314 FirstAnswer = std::min(Tmp, Tmp2); 3315 // We computed what we know about the sign bits as our first 3316 // answer. Now proceed to the generic code that uses 3317 // computeKnownBits, and pick whichever answer is better. 3318 } 3319 break; 3320 3321 case ISD::SELECT: 3322 case ISD::VSELECT: 3323 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3324 if (Tmp == 1) return 1; // Early out. 3325 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3326 return std::min(Tmp, Tmp2); 3327 case ISD::SELECT_CC: 3328 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3329 if (Tmp == 1) return 1; // Early out. 3330 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3331 return std::min(Tmp, Tmp2); 3332 3333 case ISD::SMIN: 3334 case ISD::SMAX: { 3335 // If we have a clamp pattern, we know that the number of sign bits will be 3336 // the minimum of the clamp min/max range. 3337 bool IsMax = (Opcode == ISD::SMAX); 3338 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3339 if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts))) 3340 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3341 CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1), 3342 DemandedElts); 3343 if (CstLow && CstHigh) { 3344 if (!IsMax) 3345 std::swap(CstLow, CstHigh); 3346 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3347 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3348 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3349 return std::min(Tmp, Tmp2); 3350 } 3351 } 3352 3353 // Fallback - just get the minimum number of sign bits of the operands. 3354 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3355 if (Tmp == 1) 3356 return 1; // Early out. 3357 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3358 return std::min(Tmp, Tmp2); 3359 } 3360 case ISD::UMIN: 3361 case ISD::UMAX: 3362 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3363 if (Tmp == 1) 3364 return 1; // Early out. 3365 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3366 return std::min(Tmp, Tmp2); 3367 case ISD::SADDO: 3368 case ISD::UADDO: 3369 case ISD::SSUBO: 3370 case ISD::USUBO: 3371 case ISD::SMULO: 3372 case ISD::UMULO: 3373 if (Op.getResNo() != 1) 3374 break; 3375 // The boolean result conforms to getBooleanContents. Fall through. 3376 // If setcc returns 0/-1, all bits are sign bits. 3377 // We know that we have an integer-based boolean since these operations 3378 // are only available for integer. 3379 if (TLI->getBooleanContents(VT.isVector(), false) == 3380 TargetLowering::ZeroOrNegativeOneBooleanContent) 3381 return VTBits; 3382 break; 3383 case ISD::SETCC: 3384 // If setcc returns 0/-1, all bits are sign bits. 3385 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3386 TargetLowering::ZeroOrNegativeOneBooleanContent) 3387 return VTBits; 3388 break; 3389 case ISD::ROTL: 3390 case ISD::ROTR: 3391 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3392 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3393 3394 // Handle rotate right by N like a rotate left by 32-N. 3395 if (Opcode == ISD::ROTR) 3396 RotAmt = (VTBits - RotAmt) % VTBits; 3397 3398 // If we aren't rotating out all of the known-in sign bits, return the 3399 // number that are left. This handles rotl(sext(x), 1) for example. 3400 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3401 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3402 } 3403 break; 3404 case ISD::ADD: 3405 case ISD::ADDC: 3406 // Add can have at most one carry bit. Thus we know that the output 3407 // is, at worst, one more bit than the inputs. 3408 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3409 if (Tmp == 1) return 1; // Early out. 3410 3411 // Special case decrementing a value (ADD X, -1): 3412 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3413 if (CRHS->isAllOnesValue()) { 3414 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3415 3416 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3417 // sign bits set. 3418 if ((Known.Zero | 1).isAllOnesValue()) 3419 return VTBits; 3420 3421 // If we are subtracting one from a positive number, there is no carry 3422 // out of the result. 3423 if (Known.isNonNegative()) 3424 return Tmp; 3425 } 3426 3427 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3428 if (Tmp2 == 1) return 1; 3429 return std::min(Tmp, Tmp2)-1; 3430 3431 case ISD::SUB: 3432 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3433 if (Tmp2 == 1) return 1; 3434 3435 // Handle NEG. 3436 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3437 if (CLHS->isNullValue()) { 3438 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3439 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3440 // sign bits set. 3441 if ((Known.Zero | 1).isAllOnesValue()) 3442 return VTBits; 3443 3444 // If the input is known to be positive (the sign bit is known clear), 3445 // the output of the NEG has the same number of sign bits as the input. 3446 if (Known.isNonNegative()) 3447 return Tmp2; 3448 3449 // Otherwise, we treat this like a SUB. 3450 } 3451 3452 // Sub can have at most one carry bit. Thus we know that the output 3453 // is, at worst, one more bit than the inputs. 3454 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3455 if (Tmp == 1) return 1; // Early out. 3456 return std::min(Tmp, Tmp2)-1; 3457 case ISD::TRUNCATE: { 3458 // Check if the sign bits of source go down as far as the truncated value. 3459 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3460 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3461 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3462 return NumSrcSignBits - (NumSrcBits - VTBits); 3463 break; 3464 } 3465 case ISD::EXTRACT_ELEMENT: { 3466 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3467 const int BitWidth = Op.getValueSizeInBits(); 3468 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3469 3470 // Get reverse index (starting from 1), Op1 value indexes elements from 3471 // little end. Sign starts at big end. 3472 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3473 3474 // If the sign portion ends in our element the subtraction gives correct 3475 // result. Otherwise it gives either negative or > bitwidth result 3476 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3477 } 3478 case ISD::INSERT_VECTOR_ELT: { 3479 SDValue InVec = Op.getOperand(0); 3480 SDValue InVal = Op.getOperand(1); 3481 SDValue EltNo = Op.getOperand(2); 3482 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 3483 3484 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3485 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3486 // If we know the element index, split the demand between the 3487 // source vector and the inserted element. 3488 unsigned EltIdx = CEltNo->getZExtValue(); 3489 3490 // If we demand the inserted element then get its sign bits. 3491 Tmp = std::numeric_limits<unsigned>::max(); 3492 if (DemandedElts[EltIdx]) { 3493 // TODO - handle implicit truncation of inserted elements. 3494 if (InVal.getScalarValueSizeInBits() != VTBits) 3495 break; 3496 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3497 } 3498 3499 // If we demand the source vector then get its sign bits, and determine 3500 // the minimum. 3501 APInt VectorElts = DemandedElts; 3502 VectorElts.clearBit(EltIdx); 3503 if (!!VectorElts) { 3504 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3505 Tmp = std::min(Tmp, Tmp2); 3506 } 3507 } else { 3508 // Unknown element index, so ignore DemandedElts and demand them all. 3509 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3510 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3511 Tmp = std::min(Tmp, Tmp2); 3512 } 3513 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3514 return Tmp; 3515 } 3516 case ISD::EXTRACT_VECTOR_ELT: { 3517 SDValue InVec = Op.getOperand(0); 3518 SDValue EltNo = Op.getOperand(1); 3519 EVT VecVT = InVec.getValueType(); 3520 const unsigned BitWidth = Op.getValueSizeInBits(); 3521 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3522 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3523 3524 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3525 // anything about sign bits. But if the sizes match we can derive knowledge 3526 // about sign bits from the vector operand. 3527 if (BitWidth != EltBitWidth) 3528 break; 3529 3530 // If we know the element index, just demand that vector element, else for 3531 // an unknown element index, ignore DemandedElts and demand them all. 3532 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3533 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3534 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3535 DemandedSrcElts = 3536 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3537 3538 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3539 } 3540 case ISD::EXTRACT_SUBVECTOR: { 3541 // If we know the element index, just demand that subvector elements, 3542 // otherwise demand them all. 3543 SDValue Src = Op.getOperand(0); 3544 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3545 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3546 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3547 // Offset the demanded elts by the subvector index. 3548 uint64_t Idx = SubIdx->getZExtValue(); 3549 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3550 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3551 } 3552 return ComputeNumSignBits(Src, Depth + 1); 3553 } 3554 case ISD::CONCAT_VECTORS: 3555 // Determine the minimum number of sign bits across all demanded 3556 // elts of the input vectors. Early out if the result is already 1. 3557 Tmp = std::numeric_limits<unsigned>::max(); 3558 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3559 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3560 unsigned NumSubVectors = Op.getNumOperands(); 3561 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3562 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3563 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3564 if (!DemandedSub) 3565 continue; 3566 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3567 Tmp = std::min(Tmp, Tmp2); 3568 } 3569 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3570 return Tmp; 3571 } 3572 3573 // If we are looking at the loaded value of the SDNode. 3574 if (Op.getResNo() == 0) { 3575 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3576 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3577 unsigned ExtType = LD->getExtensionType(); 3578 switch (ExtType) { 3579 default: break; 3580 case ISD::SEXTLOAD: // '17' bits known 3581 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3582 return VTBits-Tmp+1; 3583 case ISD::ZEXTLOAD: // '16' bits known 3584 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3585 return VTBits-Tmp; 3586 } 3587 } 3588 } 3589 3590 // Allow the target to implement this method for its nodes. 3591 if (Opcode >= ISD::BUILTIN_OP_END || 3592 Opcode == ISD::INTRINSIC_WO_CHAIN || 3593 Opcode == ISD::INTRINSIC_W_CHAIN || 3594 Opcode == ISD::INTRINSIC_VOID) { 3595 unsigned NumBits = 3596 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3597 if (NumBits > 1) 3598 FirstAnswer = std::max(FirstAnswer, NumBits); 3599 } 3600 3601 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3602 // use this information. 3603 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3604 3605 APInt Mask; 3606 if (Known.isNonNegative()) { // sign bit is 0 3607 Mask = Known.Zero; 3608 } else if (Known.isNegative()) { // sign bit is 1; 3609 Mask = Known.One; 3610 } else { 3611 // Nothing known. 3612 return FirstAnswer; 3613 } 3614 3615 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3616 // the number of identical bits in the top of the input value. 3617 Mask = ~Mask; 3618 Mask <<= Mask.getBitWidth()-VTBits; 3619 // Return # leading zeros. We use 'min' here in case Val was zero before 3620 // shifting. We don't want to return '64' as for an i32 "0". 3621 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3622 } 3623 3624 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3625 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3626 !isa<ConstantSDNode>(Op.getOperand(1))) 3627 return false; 3628 3629 if (Op.getOpcode() == ISD::OR && 3630 !MaskedValueIsZero(Op.getOperand(0), 3631 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3632 return false; 3633 3634 return true; 3635 } 3636 3637 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 3638 // If we're told that NaNs won't happen, assume they won't. 3639 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 3640 return true; 3641 3642 if (Depth == 6) 3643 return false; // Limit search depth. 3644 3645 // TODO: Handle vectors. 3646 // If the value is a constant, we can obviously see if it is a NaN or not. 3647 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 3648 return !C->getValueAPF().isNaN() || 3649 (SNaN && !C->getValueAPF().isSignaling()); 3650 } 3651 3652 unsigned Opcode = Op.getOpcode(); 3653 switch (Opcode) { 3654 case ISD::FADD: 3655 case ISD::FSUB: 3656 case ISD::FMUL: 3657 case ISD::FDIV: 3658 case ISD::FREM: 3659 case ISD::FSIN: 3660 case ISD::FCOS: { 3661 if (SNaN) 3662 return true; 3663 // TODO: Need isKnownNeverInfinity 3664 return false; 3665 } 3666 case ISD::FCANONICALIZE: 3667 case ISD::FEXP: 3668 case ISD::FEXP2: 3669 case ISD::FTRUNC: 3670 case ISD::FFLOOR: 3671 case ISD::FCEIL: 3672 case ISD::FROUND: 3673 case ISD::FRINT: 3674 case ISD::FNEARBYINT: { 3675 if (SNaN) 3676 return true; 3677 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3678 } 3679 case ISD::FABS: 3680 case ISD::FNEG: 3681 case ISD::FCOPYSIGN: { 3682 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3683 } 3684 case ISD::SELECT: 3685 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 3686 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 3687 case ISD::FP_EXTEND: 3688 case ISD::FP_ROUND: { 3689 if (SNaN) 3690 return true; 3691 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3692 } 3693 case ISD::SINT_TO_FP: 3694 case ISD::UINT_TO_FP: 3695 return true; 3696 case ISD::FMA: 3697 case ISD::FMAD: { 3698 if (SNaN) 3699 return true; 3700 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 3701 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 3702 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 3703 } 3704 case ISD::FSQRT: // Need is known positive 3705 case ISD::FLOG: 3706 case ISD::FLOG2: 3707 case ISD::FLOG10: 3708 case ISD::FPOWI: 3709 case ISD::FPOW: { 3710 if (SNaN) 3711 return true; 3712 // TODO: Refine on operand 3713 return false; 3714 } 3715 3716 // TODO: Handle FMINNUM/FMAXNUM/FMINNAN/FMAXNAN when there is an agreement on 3717 // what they should do. 3718 default: 3719 if (Opcode >= ISD::BUILTIN_OP_END || 3720 Opcode == ISD::INTRINSIC_WO_CHAIN || 3721 Opcode == ISD::INTRINSIC_W_CHAIN || 3722 Opcode == ISD::INTRINSIC_VOID) { 3723 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 3724 } 3725 3726 return false; 3727 } 3728 } 3729 3730 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 3731 assert(Op.getValueType().isFloatingPoint() && 3732 "Floating point type expected"); 3733 3734 // If the value is a constant, we can obviously see if it is a zero or not. 3735 // TODO: Add BuildVector support. 3736 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3737 return !C->isZero(); 3738 return false; 3739 } 3740 3741 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3742 assert(!Op.getValueType().isFloatingPoint() && 3743 "Floating point types unsupported - use isKnownNeverZeroFloat"); 3744 3745 // If the value is a constant, we can obviously see if it is a zero or not. 3746 if (ISD::matchUnaryPredicate( 3747 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 3748 return true; 3749 3750 // TODO: Recognize more cases here. 3751 switch (Op.getOpcode()) { 3752 default: break; 3753 case ISD::OR: 3754 if (isKnownNeverZero(Op.getOperand(1)) || 3755 isKnownNeverZero(Op.getOperand(0))) 3756 return true; 3757 break; 3758 } 3759 3760 return false; 3761 } 3762 3763 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3764 // Check the obvious case. 3765 if (A == B) return true; 3766 3767 // For for negative and positive zero. 3768 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3769 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3770 if (CA->isZero() && CB->isZero()) return true; 3771 3772 // Otherwise they may not be equal. 3773 return false; 3774 } 3775 3776 // FIXME: unify with llvm::haveNoCommonBitsSet. 3777 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 3778 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3779 assert(A.getValueType() == B.getValueType() && 3780 "Values must have the same type"); 3781 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 3782 } 3783 3784 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3785 ArrayRef<SDValue> Ops, 3786 SelectionDAG &DAG) { 3787 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3788 assert(llvm::all_of(Ops, 3789 [Ops](SDValue Op) { 3790 return Ops[0].getValueType() == Op.getValueType(); 3791 }) && 3792 "Concatenation of vectors with inconsistent value types!"); 3793 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3794 VT.getVectorNumElements() && 3795 "Incorrect element count in vector concatenation!"); 3796 3797 if (Ops.size() == 1) 3798 return Ops[0]; 3799 3800 // Concat of UNDEFs is UNDEF. 3801 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3802 return DAG.getUNDEF(VT); 3803 3804 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3805 // simplified to one big BUILD_VECTOR. 3806 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3807 EVT SVT = VT.getScalarType(); 3808 SmallVector<SDValue, 16> Elts; 3809 for (SDValue Op : Ops) { 3810 EVT OpVT = Op.getValueType(); 3811 if (Op.isUndef()) 3812 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3813 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3814 Elts.append(Op->op_begin(), Op->op_end()); 3815 else 3816 return SDValue(); 3817 } 3818 3819 // BUILD_VECTOR requires all inputs to be of the same type, find the 3820 // maximum type and extend them all. 3821 for (SDValue Op : Elts) 3822 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3823 3824 if (SVT.bitsGT(VT.getScalarType())) 3825 for (SDValue &Op : Elts) 3826 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3827 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3828 : DAG.getSExtOrTrunc(Op, DL, SVT); 3829 3830 SDValue V = DAG.getBuildVector(VT, DL, Elts); 3831 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 3832 return V; 3833 } 3834 3835 /// Gets or creates the specified node. 3836 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3837 FoldingSetNodeID ID; 3838 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3839 void *IP = nullptr; 3840 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3841 return SDValue(E, 0); 3842 3843 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3844 getVTList(VT)); 3845 CSEMap.InsertNode(N, IP); 3846 3847 InsertNode(N); 3848 SDValue V = SDValue(N, 0); 3849 NewSDValueDbgMsg(V, "Creating new node: ", this); 3850 return V; 3851 } 3852 3853 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3854 SDValue Operand, const SDNodeFlags Flags) { 3855 // Constant fold unary operations with an integer constant operand. Even 3856 // opaque constant will be folded, because the folding of unary operations 3857 // doesn't create new constants with different values. Nevertheless, the 3858 // opaque flag is preserved during folding to prevent future folding with 3859 // other constants. 3860 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3861 const APInt &Val = C->getAPIntValue(); 3862 switch (Opcode) { 3863 default: break; 3864 case ISD::SIGN_EXTEND: 3865 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3866 C->isTargetOpcode(), C->isOpaque()); 3867 case ISD::ANY_EXTEND: 3868 case ISD::ZERO_EXTEND: 3869 case ISD::TRUNCATE: 3870 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3871 C->isTargetOpcode(), C->isOpaque()); 3872 case ISD::UINT_TO_FP: 3873 case ISD::SINT_TO_FP: { 3874 APFloat apf(EVTToAPFloatSemantics(VT), 3875 APInt::getNullValue(VT.getSizeInBits())); 3876 (void)apf.convertFromAPInt(Val, 3877 Opcode==ISD::SINT_TO_FP, 3878 APFloat::rmNearestTiesToEven); 3879 return getConstantFP(apf, DL, VT); 3880 } 3881 case ISD::BITCAST: 3882 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3883 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3884 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3885 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3886 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3887 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3888 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3889 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3890 break; 3891 case ISD::ABS: 3892 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 3893 C->isOpaque()); 3894 case ISD::BITREVERSE: 3895 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3896 C->isOpaque()); 3897 case ISD::BSWAP: 3898 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3899 C->isOpaque()); 3900 case ISD::CTPOP: 3901 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3902 C->isOpaque()); 3903 case ISD::CTLZ: 3904 case ISD::CTLZ_ZERO_UNDEF: 3905 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3906 C->isOpaque()); 3907 case ISD::CTTZ: 3908 case ISD::CTTZ_ZERO_UNDEF: 3909 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3910 C->isOpaque()); 3911 case ISD::FP16_TO_FP: { 3912 bool Ignored; 3913 APFloat FPV(APFloat::IEEEhalf(), 3914 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3915 3916 // This can return overflow, underflow, or inexact; we don't care. 3917 // FIXME need to be more flexible about rounding mode. 3918 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3919 APFloat::rmNearestTiesToEven, &Ignored); 3920 return getConstantFP(FPV, DL, VT); 3921 } 3922 } 3923 } 3924 3925 // Constant fold unary operations with a floating point constant operand. 3926 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3927 APFloat V = C->getValueAPF(); // make copy 3928 switch (Opcode) { 3929 case ISD::FNEG: 3930 V.changeSign(); 3931 return getConstantFP(V, DL, VT); 3932 case ISD::FABS: 3933 V.clearSign(); 3934 return getConstantFP(V, DL, VT); 3935 case ISD::FCEIL: { 3936 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3937 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3938 return getConstantFP(V, DL, VT); 3939 break; 3940 } 3941 case ISD::FTRUNC: { 3942 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3943 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3944 return getConstantFP(V, DL, VT); 3945 break; 3946 } 3947 case ISD::FFLOOR: { 3948 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3949 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3950 return getConstantFP(V, DL, VT); 3951 break; 3952 } 3953 case ISD::FP_EXTEND: { 3954 bool ignored; 3955 // This can return overflow, underflow, or inexact; we don't care. 3956 // FIXME need to be more flexible about rounding mode. 3957 (void)V.convert(EVTToAPFloatSemantics(VT), 3958 APFloat::rmNearestTiesToEven, &ignored); 3959 return getConstantFP(V, DL, VT); 3960 } 3961 case ISD::FP_TO_SINT: 3962 case ISD::FP_TO_UINT: { 3963 bool ignored; 3964 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 3965 // FIXME need to be more flexible about rounding mode. 3966 APFloat::opStatus s = 3967 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 3968 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 3969 break; 3970 return getConstant(IntVal, DL, VT); 3971 } 3972 case ISD::BITCAST: 3973 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3974 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3975 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3976 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3977 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3978 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3979 break; 3980 case ISD::FP_TO_FP16: { 3981 bool Ignored; 3982 // This can return overflow, underflow, or inexact; we don't care. 3983 // FIXME need to be more flexible about rounding mode. 3984 (void)V.convert(APFloat::IEEEhalf(), 3985 APFloat::rmNearestTiesToEven, &Ignored); 3986 return getConstant(V.bitcastToAPInt(), DL, VT); 3987 } 3988 } 3989 } 3990 3991 // Constant fold unary operations with a vector integer or float operand. 3992 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3993 if (BV->isConstant()) { 3994 switch (Opcode) { 3995 default: 3996 // FIXME: Entirely reasonable to perform folding of other unary 3997 // operations here as the need arises. 3998 break; 3999 case ISD::FNEG: 4000 case ISD::FABS: 4001 case ISD::FCEIL: 4002 case ISD::FTRUNC: 4003 case ISD::FFLOOR: 4004 case ISD::FP_EXTEND: 4005 case ISD::FP_TO_SINT: 4006 case ISD::FP_TO_UINT: 4007 case ISD::TRUNCATE: 4008 case ISD::ANY_EXTEND: 4009 case ISD::ZERO_EXTEND: 4010 case ISD::SIGN_EXTEND: 4011 case ISD::UINT_TO_FP: 4012 case ISD::SINT_TO_FP: 4013 case ISD::ABS: 4014 case ISD::BITREVERSE: 4015 case ISD::BSWAP: 4016 case ISD::CTLZ: 4017 case ISD::CTLZ_ZERO_UNDEF: 4018 case ISD::CTTZ: 4019 case ISD::CTTZ_ZERO_UNDEF: 4020 case ISD::CTPOP: { 4021 SDValue Ops = { Operand }; 4022 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4023 return Fold; 4024 } 4025 } 4026 } 4027 } 4028 4029 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4030 switch (Opcode) { 4031 case ISD::TokenFactor: 4032 case ISD::MERGE_VALUES: 4033 case ISD::CONCAT_VECTORS: 4034 return Operand; // Factor, merge or concat of one node? No need. 4035 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4036 case ISD::FP_EXTEND: 4037 assert(VT.isFloatingPoint() && 4038 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4039 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4040 assert((!VT.isVector() || 4041 VT.getVectorNumElements() == 4042 Operand.getValueType().getVectorNumElements()) && 4043 "Vector element count mismatch!"); 4044 assert(Operand.getValueType().bitsLT(VT) && 4045 "Invalid fpext node, dst < src!"); 4046 if (Operand.isUndef()) 4047 return getUNDEF(VT); 4048 break; 4049 case ISD::SIGN_EXTEND: 4050 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4051 "Invalid SIGN_EXTEND!"); 4052 if (Operand.getValueType() == VT) return Operand; // noop extension 4053 assert((!VT.isVector() || 4054 VT.getVectorNumElements() == 4055 Operand.getValueType().getVectorNumElements()) && 4056 "Vector element count mismatch!"); 4057 assert(Operand.getValueType().bitsLT(VT) && 4058 "Invalid sext node, dst < src!"); 4059 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4060 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4061 else if (OpOpcode == ISD::UNDEF) 4062 // sext(undef) = 0, because the top bits will all be the same. 4063 return getConstant(0, DL, VT); 4064 break; 4065 case ISD::ZERO_EXTEND: 4066 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4067 "Invalid ZERO_EXTEND!"); 4068 if (Operand.getValueType() == VT) return Operand; // noop extension 4069 assert((!VT.isVector() || 4070 VT.getVectorNumElements() == 4071 Operand.getValueType().getVectorNumElements()) && 4072 "Vector element count mismatch!"); 4073 assert(Operand.getValueType().bitsLT(VT) && 4074 "Invalid zext node, dst < src!"); 4075 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4076 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4077 else if (OpOpcode == ISD::UNDEF) 4078 // zext(undef) = 0, because the top bits will be zero. 4079 return getConstant(0, DL, VT); 4080 break; 4081 case ISD::ANY_EXTEND: 4082 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4083 "Invalid ANY_EXTEND!"); 4084 if (Operand.getValueType() == VT) return Operand; // noop extension 4085 assert((!VT.isVector() || 4086 VT.getVectorNumElements() == 4087 Operand.getValueType().getVectorNumElements()) && 4088 "Vector element count mismatch!"); 4089 assert(Operand.getValueType().bitsLT(VT) && 4090 "Invalid anyext node, dst < src!"); 4091 4092 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4093 OpOpcode == ISD::ANY_EXTEND) 4094 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4095 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4096 else if (OpOpcode == ISD::UNDEF) 4097 return getUNDEF(VT); 4098 4099 // (ext (trunc x)) -> x 4100 if (OpOpcode == ISD::TRUNCATE) { 4101 SDValue OpOp = Operand.getOperand(0); 4102 if (OpOp.getValueType() == VT) { 4103 transferDbgValues(Operand, OpOp); 4104 return OpOp; 4105 } 4106 } 4107 break; 4108 case ISD::TRUNCATE: 4109 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4110 "Invalid TRUNCATE!"); 4111 if (Operand.getValueType() == VT) return Operand; // noop truncate 4112 assert((!VT.isVector() || 4113 VT.getVectorNumElements() == 4114 Operand.getValueType().getVectorNumElements()) && 4115 "Vector element count mismatch!"); 4116 assert(Operand.getValueType().bitsGT(VT) && 4117 "Invalid truncate node, src < dst!"); 4118 if (OpOpcode == ISD::TRUNCATE) 4119 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4120 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4121 OpOpcode == ISD::ANY_EXTEND) { 4122 // If the source is smaller than the dest, we still need an extend. 4123 if (Operand.getOperand(0).getValueType().getScalarType() 4124 .bitsLT(VT.getScalarType())) 4125 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4126 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4127 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4128 return Operand.getOperand(0); 4129 } 4130 if (OpOpcode == ISD::UNDEF) 4131 return getUNDEF(VT); 4132 break; 4133 case ISD::ABS: 4134 assert(VT.isInteger() && VT == Operand.getValueType() && 4135 "Invalid ABS!"); 4136 if (OpOpcode == ISD::UNDEF) 4137 return getUNDEF(VT); 4138 break; 4139 case ISD::BSWAP: 4140 assert(VT.isInteger() && VT == Operand.getValueType() && 4141 "Invalid BSWAP!"); 4142 assert((VT.getScalarSizeInBits() % 16 == 0) && 4143 "BSWAP types must be a multiple of 16 bits!"); 4144 if (OpOpcode == ISD::UNDEF) 4145 return getUNDEF(VT); 4146 break; 4147 case ISD::BITREVERSE: 4148 assert(VT.isInteger() && VT == Operand.getValueType() && 4149 "Invalid BITREVERSE!"); 4150 if (OpOpcode == ISD::UNDEF) 4151 return getUNDEF(VT); 4152 break; 4153 case ISD::BITCAST: 4154 // Basic sanity checking. 4155 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4156 "Cannot BITCAST between types of different sizes!"); 4157 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4158 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4159 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4160 if (OpOpcode == ISD::UNDEF) 4161 return getUNDEF(VT); 4162 break; 4163 case ISD::SCALAR_TO_VECTOR: 4164 assert(VT.isVector() && !Operand.getValueType().isVector() && 4165 (VT.getVectorElementType() == Operand.getValueType() || 4166 (VT.getVectorElementType().isInteger() && 4167 Operand.getValueType().isInteger() && 4168 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4169 "Illegal SCALAR_TO_VECTOR node!"); 4170 if (OpOpcode == ISD::UNDEF) 4171 return getUNDEF(VT); 4172 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4173 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4174 isa<ConstantSDNode>(Operand.getOperand(1)) && 4175 Operand.getConstantOperandVal(1) == 0 && 4176 Operand.getOperand(0).getValueType() == VT) 4177 return Operand.getOperand(0); 4178 break; 4179 case ISD::FNEG: 4180 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4181 if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) && 4182 OpOpcode == ISD::FSUB) 4183 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4184 Operand.getOperand(0), Flags); 4185 if (OpOpcode == ISD::FNEG) // --X -> X 4186 return Operand.getOperand(0); 4187 break; 4188 case ISD::FABS: 4189 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4190 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4191 break; 4192 } 4193 4194 SDNode *N; 4195 SDVTList VTs = getVTList(VT); 4196 SDValue Ops[] = {Operand}; 4197 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4198 FoldingSetNodeID ID; 4199 AddNodeIDNode(ID, Opcode, VTs, Ops); 4200 void *IP = nullptr; 4201 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4202 E->intersectFlagsWith(Flags); 4203 return SDValue(E, 0); 4204 } 4205 4206 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4207 N->setFlags(Flags); 4208 createOperands(N, Ops); 4209 CSEMap.InsertNode(N, IP); 4210 } else { 4211 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4212 createOperands(N, Ops); 4213 } 4214 4215 InsertNode(N); 4216 SDValue V = SDValue(N, 0); 4217 NewSDValueDbgMsg(V, "Creating new node: ", this); 4218 return V; 4219 } 4220 4221 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4222 const APInt &C2) { 4223 switch (Opcode) { 4224 case ISD::ADD: return std::make_pair(C1 + C2, true); 4225 case ISD::SUB: return std::make_pair(C1 - C2, true); 4226 case ISD::MUL: return std::make_pair(C1 * C2, true); 4227 case ISD::AND: return std::make_pair(C1 & C2, true); 4228 case ISD::OR: return std::make_pair(C1 | C2, true); 4229 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4230 case ISD::SHL: return std::make_pair(C1 << C2, true); 4231 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4232 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4233 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4234 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4235 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4236 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4237 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4238 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4239 case ISD::UDIV: 4240 if (!C2.getBoolValue()) 4241 break; 4242 return std::make_pair(C1.udiv(C2), true); 4243 case ISD::UREM: 4244 if (!C2.getBoolValue()) 4245 break; 4246 return std::make_pair(C1.urem(C2), true); 4247 case ISD::SDIV: 4248 if (!C2.getBoolValue()) 4249 break; 4250 return std::make_pair(C1.sdiv(C2), true); 4251 case ISD::SREM: 4252 if (!C2.getBoolValue()) 4253 break; 4254 return std::make_pair(C1.srem(C2), true); 4255 } 4256 return std::make_pair(APInt(1, 0), false); 4257 } 4258 4259 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4260 EVT VT, const ConstantSDNode *Cst1, 4261 const ConstantSDNode *Cst2) { 4262 if (Cst1->isOpaque() || Cst2->isOpaque()) 4263 return SDValue(); 4264 4265 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 4266 Cst2->getAPIntValue()); 4267 if (!Folded.second) 4268 return SDValue(); 4269 return getConstant(Folded.first, DL, VT); 4270 } 4271 4272 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4273 const GlobalAddressSDNode *GA, 4274 const SDNode *N2) { 4275 if (GA->getOpcode() != ISD::GlobalAddress) 4276 return SDValue(); 4277 if (!TLI->isOffsetFoldingLegal(GA)) 4278 return SDValue(); 4279 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 4280 if (!Cst2) 4281 return SDValue(); 4282 int64_t Offset = Cst2->getSExtValue(); 4283 switch (Opcode) { 4284 case ISD::ADD: break; 4285 case ISD::SUB: Offset = -uint64_t(Offset); break; 4286 default: return SDValue(); 4287 } 4288 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 4289 GA->getOffset() + uint64_t(Offset)); 4290 } 4291 4292 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4293 switch (Opcode) { 4294 case ISD::SDIV: 4295 case ISD::UDIV: 4296 case ISD::SREM: 4297 case ISD::UREM: { 4298 // If a divisor is zero/undef or any element of a divisor vector is 4299 // zero/undef, the whole op is undef. 4300 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4301 SDValue Divisor = Ops[1]; 4302 if (Divisor.isUndef() || isNullConstant(Divisor)) 4303 return true; 4304 4305 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4306 llvm::any_of(Divisor->op_values(), 4307 [](SDValue V) { return V.isUndef() || 4308 isNullConstant(V); }); 4309 // TODO: Handle signed overflow. 4310 } 4311 // TODO: Handle oversized shifts. 4312 default: 4313 return false; 4314 } 4315 } 4316 4317 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4318 EVT VT, SDNode *Cst1, 4319 SDNode *Cst2) { 4320 // If the opcode is a target-specific ISD node, there's nothing we can 4321 // do here and the operand rules may not line up with the below, so 4322 // bail early. 4323 if (Opcode >= ISD::BUILTIN_OP_END) 4324 return SDValue(); 4325 4326 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 4327 return getUNDEF(VT); 4328 4329 // Handle the case of two scalars. 4330 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 4331 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 4332 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 4333 assert((!Folded || !VT.isVector()) && 4334 "Can't fold vectors ops with scalar operands"); 4335 return Folded; 4336 } 4337 } 4338 4339 // fold (add Sym, c) -> Sym+c 4340 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 4341 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 4342 if (TLI->isCommutativeBinOp(Opcode)) 4343 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 4344 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 4345 4346 // For vectors extract each constant element into Inputs so we can constant 4347 // fold them individually. 4348 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 4349 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 4350 if (!BV1 || !BV2) 4351 return SDValue(); 4352 4353 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 4354 4355 EVT SVT = VT.getScalarType(); 4356 EVT LegalSVT = SVT; 4357 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4358 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4359 if (LegalSVT.bitsLT(SVT)) 4360 return SDValue(); 4361 } 4362 SmallVector<SDValue, 4> Outputs; 4363 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 4364 SDValue V1 = BV1->getOperand(I); 4365 SDValue V2 = BV2->getOperand(I); 4366 4367 if (SVT.isInteger()) { 4368 if (V1->getValueType(0).bitsGT(SVT)) 4369 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4370 if (V2->getValueType(0).bitsGT(SVT)) 4371 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4372 } 4373 4374 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4375 return SDValue(); 4376 4377 // Fold one vector element. 4378 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4379 if (LegalSVT != SVT) 4380 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4381 4382 // Scalar folding only succeeded if the result is a constant or UNDEF. 4383 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4384 ScalarResult.getOpcode() != ISD::ConstantFP) 4385 return SDValue(); 4386 Outputs.push_back(ScalarResult); 4387 } 4388 4389 assert(VT.getVectorNumElements() == Outputs.size() && 4390 "Vector size mismatch!"); 4391 4392 // We may have a vector type but a scalar result. Create a splat. 4393 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4394 4395 // Build a big vector out of the scalar elements we generated. 4396 return getBuildVector(VT, SDLoc(), Outputs); 4397 } 4398 4399 // TODO: Merge with FoldConstantArithmetic 4400 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4401 const SDLoc &DL, EVT VT, 4402 ArrayRef<SDValue> Ops, 4403 const SDNodeFlags Flags) { 4404 // If the opcode is a target-specific ISD node, there's nothing we can 4405 // do here and the operand rules may not line up with the below, so 4406 // bail early. 4407 if (Opcode >= ISD::BUILTIN_OP_END) 4408 return SDValue(); 4409 4410 if (isUndef(Opcode, Ops)) 4411 return getUNDEF(VT); 4412 4413 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4414 if (!VT.isVector()) 4415 return SDValue(); 4416 4417 unsigned NumElts = VT.getVectorNumElements(); 4418 4419 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4420 return !Op.getValueType().isVector() || 4421 Op.getValueType().getVectorNumElements() == NumElts; 4422 }; 4423 4424 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4425 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4426 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4427 (BV && BV->isConstant()); 4428 }; 4429 4430 // All operands must be vector types with the same number of elements as 4431 // the result type and must be either UNDEF or a build vector of constant 4432 // or UNDEF scalars. 4433 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4434 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4435 return SDValue(); 4436 4437 // If we are comparing vectors, then the result needs to be a i1 boolean 4438 // that is then sign-extended back to the legal result type. 4439 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4440 4441 // Find legal integer scalar type for constant promotion and 4442 // ensure that its scalar size is at least as large as source. 4443 EVT LegalSVT = VT.getScalarType(); 4444 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4445 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4446 if (LegalSVT.bitsLT(VT.getScalarType())) 4447 return SDValue(); 4448 } 4449 4450 // Constant fold each scalar lane separately. 4451 SmallVector<SDValue, 4> ScalarResults; 4452 for (unsigned i = 0; i != NumElts; i++) { 4453 SmallVector<SDValue, 4> ScalarOps; 4454 for (SDValue Op : Ops) { 4455 EVT InSVT = Op.getValueType().getScalarType(); 4456 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4457 if (!InBV) { 4458 // We've checked that this is UNDEF or a constant of some kind. 4459 if (Op.isUndef()) 4460 ScalarOps.push_back(getUNDEF(InSVT)); 4461 else 4462 ScalarOps.push_back(Op); 4463 continue; 4464 } 4465 4466 SDValue ScalarOp = InBV->getOperand(i); 4467 EVT ScalarVT = ScalarOp.getValueType(); 4468 4469 // Build vector (integer) scalar operands may need implicit 4470 // truncation - do this before constant folding. 4471 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4472 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4473 4474 ScalarOps.push_back(ScalarOp); 4475 } 4476 4477 // Constant fold the scalar operands. 4478 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4479 4480 // Legalize the (integer) scalar constant if necessary. 4481 if (LegalSVT != SVT) 4482 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4483 4484 // Scalar folding only succeeded if the result is a constant or UNDEF. 4485 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4486 ScalarResult.getOpcode() != ISD::ConstantFP) 4487 return SDValue(); 4488 ScalarResults.push_back(ScalarResult); 4489 } 4490 4491 SDValue V = getBuildVector(VT, DL, ScalarResults); 4492 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4493 return V; 4494 } 4495 4496 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4497 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4498 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4499 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4500 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4501 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4502 4503 // Canonicalize constant to RHS if commutative. 4504 if (TLI->isCommutativeBinOp(Opcode)) { 4505 if (N1C && !N2C) { 4506 std::swap(N1C, N2C); 4507 std::swap(N1, N2); 4508 } else if (N1CFP && !N2CFP) { 4509 std::swap(N1CFP, N2CFP); 4510 std::swap(N1, N2); 4511 } 4512 } 4513 4514 switch (Opcode) { 4515 default: break; 4516 case ISD::TokenFactor: 4517 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4518 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4519 // Fold trivial token factors. 4520 if (N1.getOpcode() == ISD::EntryToken) return N2; 4521 if (N2.getOpcode() == ISD::EntryToken) return N1; 4522 if (N1 == N2) return N1; 4523 break; 4524 case ISD::CONCAT_VECTORS: { 4525 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4526 SDValue Ops[] = {N1, N2}; 4527 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4528 return V; 4529 break; 4530 } 4531 case ISD::AND: 4532 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4533 assert(N1.getValueType() == N2.getValueType() && 4534 N1.getValueType() == VT && "Binary operator types must match!"); 4535 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4536 // worth handling here. 4537 if (N2C && N2C->isNullValue()) 4538 return N2; 4539 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4540 return N1; 4541 break; 4542 case ISD::OR: 4543 case ISD::XOR: 4544 case ISD::ADD: 4545 case ISD::SUB: 4546 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4547 assert(N1.getValueType() == N2.getValueType() && 4548 N1.getValueType() == VT && "Binary operator types must match!"); 4549 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4550 // it's worth handling here. 4551 if (N2C && N2C->isNullValue()) 4552 return N1; 4553 break; 4554 case ISD::UDIV: 4555 case ISD::UREM: 4556 case ISD::MULHU: 4557 case ISD::MULHS: 4558 case ISD::MUL: 4559 case ISD::SDIV: 4560 case ISD::SREM: 4561 case ISD::SMIN: 4562 case ISD::SMAX: 4563 case ISD::UMIN: 4564 case ISD::UMAX: 4565 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4566 assert(N1.getValueType() == N2.getValueType() && 4567 N1.getValueType() == VT && "Binary operator types must match!"); 4568 break; 4569 case ISD::FADD: 4570 case ISD::FSUB: 4571 case ISD::FMUL: 4572 case ISD::FDIV: 4573 case ISD::FREM: 4574 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4575 assert(N1.getValueType() == N2.getValueType() && 4576 N1.getValueType() == VT && "Binary operator types must match!"); 4577 break; 4578 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4579 assert(N1.getValueType() == VT && 4580 N1.getValueType().isFloatingPoint() && 4581 N2.getValueType().isFloatingPoint() && 4582 "Invalid FCOPYSIGN!"); 4583 break; 4584 case ISD::SHL: 4585 case ISD::SRA: 4586 case ISD::SRL: 4587 case ISD::ROTL: 4588 case ISD::ROTR: 4589 assert(VT == N1.getValueType() && 4590 "Shift operators return type must be the same as their first arg"); 4591 assert(VT.isInteger() && N2.getValueType().isInteger() && 4592 "Shifts only work on integers"); 4593 assert((!VT.isVector() || VT == N2.getValueType()) && 4594 "Vector shift amounts must be in the same as their first arg"); 4595 // Verify that the shift amount VT is bit enough to hold valid shift 4596 // amounts. This catches things like trying to shift an i1024 value by an 4597 // i8, which is easy to fall into in generic code that uses 4598 // TLI.getShiftAmount(). 4599 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4600 "Invalid use of small shift amount with oversized value!"); 4601 4602 // Always fold shifts of i1 values so the code generator doesn't need to 4603 // handle them. Since we know the size of the shift has to be less than the 4604 // size of the value, the shift/rotate count is guaranteed to be zero. 4605 if (VT == MVT::i1) 4606 return N1; 4607 if (N2C && N2C->isNullValue()) 4608 return N1; 4609 break; 4610 case ISD::FP_ROUND_INREG: { 4611 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4612 assert(VT == N1.getValueType() && "Not an inreg round!"); 4613 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4614 "Cannot FP_ROUND_INREG integer types"); 4615 assert(EVT.isVector() == VT.isVector() && 4616 "FP_ROUND_INREG type should be vector iff the operand " 4617 "type is vector!"); 4618 assert((!EVT.isVector() || 4619 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4620 "Vector element counts must match in FP_ROUND_INREG"); 4621 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4622 (void)EVT; 4623 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4624 break; 4625 } 4626 case ISD::FP_ROUND: 4627 assert(VT.isFloatingPoint() && 4628 N1.getValueType().isFloatingPoint() && 4629 VT.bitsLE(N1.getValueType()) && 4630 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4631 "Invalid FP_ROUND!"); 4632 if (N1.getValueType() == VT) return N1; // noop conversion. 4633 break; 4634 case ISD::AssertSext: 4635 case ISD::AssertZext: { 4636 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4637 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4638 assert(VT.isInteger() && EVT.isInteger() && 4639 "Cannot *_EXTEND_INREG FP types"); 4640 assert(!EVT.isVector() && 4641 "AssertSExt/AssertZExt type should be the vector element type " 4642 "rather than the vector type!"); 4643 assert(EVT.bitsLE(VT) && "Not extending!"); 4644 if (VT == EVT) return N1; // noop assertion. 4645 break; 4646 } 4647 case ISD::SIGN_EXTEND_INREG: { 4648 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4649 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4650 assert(VT.isInteger() && EVT.isInteger() && 4651 "Cannot *_EXTEND_INREG FP types"); 4652 assert(EVT.isVector() == VT.isVector() && 4653 "SIGN_EXTEND_INREG type should be vector iff the operand " 4654 "type is vector!"); 4655 assert((!EVT.isVector() || 4656 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4657 "Vector element counts must match in SIGN_EXTEND_INREG"); 4658 assert(EVT.bitsLE(VT) && "Not extending!"); 4659 if (EVT == VT) return N1; // Not actually extending 4660 4661 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 4662 unsigned FromBits = EVT.getScalarSizeInBits(); 4663 Val <<= Val.getBitWidth() - FromBits; 4664 Val.ashrInPlace(Val.getBitWidth() - FromBits); 4665 return getConstant(Val, DL, ConstantVT); 4666 }; 4667 4668 if (N1C) { 4669 const APInt &Val = N1C->getAPIntValue(); 4670 return SignExtendInReg(Val, VT); 4671 } 4672 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4673 SmallVector<SDValue, 8> Ops; 4674 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 4675 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4676 SDValue Op = N1.getOperand(i); 4677 if (Op.isUndef()) { 4678 Ops.push_back(getUNDEF(OpVT)); 4679 continue; 4680 } 4681 ConstantSDNode *C = cast<ConstantSDNode>(Op); 4682 APInt Val = C->getAPIntValue(); 4683 Ops.push_back(SignExtendInReg(Val, OpVT)); 4684 } 4685 return getBuildVector(VT, DL, Ops); 4686 } 4687 break; 4688 } 4689 case ISD::EXTRACT_VECTOR_ELT: 4690 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 4691 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 4692 element type of the vector."); 4693 4694 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4695 if (N1.isUndef()) 4696 return getUNDEF(VT); 4697 4698 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4699 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 4700 return getUNDEF(VT); 4701 4702 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4703 // expanding copies of large vectors from registers. 4704 if (N2C && 4705 N1.getOpcode() == ISD::CONCAT_VECTORS && 4706 N1.getNumOperands() > 0) { 4707 unsigned Factor = 4708 N1.getOperand(0).getValueType().getVectorNumElements(); 4709 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4710 N1.getOperand(N2C->getZExtValue() / Factor), 4711 getConstant(N2C->getZExtValue() % Factor, DL, 4712 N2.getValueType())); 4713 } 4714 4715 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4716 // expanding large vector constants. 4717 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4718 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4719 4720 if (VT != Elt.getValueType()) 4721 // If the vector element type is not legal, the BUILD_VECTOR operands 4722 // are promoted and implicitly truncated, and the result implicitly 4723 // extended. Make that explicit here. 4724 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4725 4726 return Elt; 4727 } 4728 4729 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4730 // operations are lowered to scalars. 4731 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4732 // If the indices are the same, return the inserted element else 4733 // if the indices are known different, extract the element from 4734 // the original vector. 4735 SDValue N1Op2 = N1.getOperand(2); 4736 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4737 4738 if (N1Op2C && N2C) { 4739 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4740 if (VT == N1.getOperand(1).getValueType()) 4741 return N1.getOperand(1); 4742 else 4743 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4744 } 4745 4746 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4747 } 4748 } 4749 4750 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 4751 // when vector types are scalarized and v1iX is legal. 4752 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 4753 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 4754 N1.getValueType().getVectorNumElements() == 1) { 4755 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 4756 N1.getOperand(1)); 4757 } 4758 break; 4759 case ISD::EXTRACT_ELEMENT: 4760 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4761 assert(!N1.getValueType().isVector() && !VT.isVector() && 4762 (N1.getValueType().isInteger() == VT.isInteger()) && 4763 N1.getValueType() != VT && 4764 "Wrong types for EXTRACT_ELEMENT!"); 4765 4766 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4767 // 64-bit integers into 32-bit parts. Instead of building the extract of 4768 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4769 if (N1.getOpcode() == ISD::BUILD_PAIR) 4770 return N1.getOperand(N2C->getZExtValue()); 4771 4772 // EXTRACT_ELEMENT of a constant int is also very common. 4773 if (N1C) { 4774 unsigned ElementSize = VT.getSizeInBits(); 4775 unsigned Shift = ElementSize * N2C->getZExtValue(); 4776 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4777 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4778 } 4779 break; 4780 case ISD::EXTRACT_SUBVECTOR: 4781 if (VT.isSimple() && N1.getValueType().isSimple()) { 4782 assert(VT.isVector() && N1.getValueType().isVector() && 4783 "Extract subvector VTs must be a vectors!"); 4784 assert(VT.getVectorElementType() == 4785 N1.getValueType().getVectorElementType() && 4786 "Extract subvector VTs must have the same element type!"); 4787 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4788 "Extract subvector must be from larger vector to smaller vector!"); 4789 4790 if (N2C) { 4791 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4792 <= N1.getValueType().getVectorNumElements()) 4793 && "Extract subvector overflow!"); 4794 } 4795 4796 // Trivial extraction. 4797 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4798 return N1; 4799 4800 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4801 if (N1.isUndef()) 4802 return getUNDEF(VT); 4803 4804 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4805 // the concat have the same type as the extract. 4806 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4807 N1.getNumOperands() > 0 && 4808 VT == N1.getOperand(0).getValueType()) { 4809 unsigned Factor = VT.getVectorNumElements(); 4810 return N1.getOperand(N2C->getZExtValue() / Factor); 4811 } 4812 4813 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4814 // during shuffle legalization. 4815 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4816 VT == N1.getOperand(1).getValueType()) 4817 return N1.getOperand(1); 4818 } 4819 break; 4820 } 4821 4822 // Perform trivial constant folding. 4823 if (SDValue SV = 4824 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4825 return SV; 4826 4827 // Constant fold FP operations. 4828 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4829 if (N1CFP) { 4830 if (N2CFP) { 4831 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4832 APFloat::opStatus s; 4833 switch (Opcode) { 4834 case ISD::FADD: 4835 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4836 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4837 return getConstantFP(V1, DL, VT); 4838 break; 4839 case ISD::FSUB: 4840 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4841 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4842 return getConstantFP(V1, DL, VT); 4843 break; 4844 case ISD::FMUL: 4845 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4846 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4847 return getConstantFP(V1, DL, VT); 4848 break; 4849 case ISD::FDIV: 4850 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4851 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4852 s!=APFloat::opDivByZero)) { 4853 return getConstantFP(V1, DL, VT); 4854 } 4855 break; 4856 case ISD::FREM : 4857 s = V1.mod(V2); 4858 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4859 s!=APFloat::opDivByZero)) { 4860 return getConstantFP(V1, DL, VT); 4861 } 4862 break; 4863 case ISD::FCOPYSIGN: 4864 V1.copySign(V2); 4865 return getConstantFP(V1, DL, VT); 4866 default: break; 4867 } 4868 } 4869 4870 if (Opcode == ISD::FP_ROUND) { 4871 APFloat V = N1CFP->getValueAPF(); // make copy 4872 bool ignored; 4873 // This can return overflow, underflow, or inexact; we don't care. 4874 // FIXME need to be more flexible about rounding mode. 4875 (void)V.convert(EVTToAPFloatSemantics(VT), 4876 APFloat::rmNearestTiesToEven, &ignored); 4877 return getConstantFP(V, DL, VT); 4878 } 4879 } 4880 4881 // Any FP binop with an undef operand is folded to NaN. This matches the 4882 // behavior of the IR optimizer. 4883 switch (Opcode) { 4884 case ISD::FADD: 4885 case ISD::FSUB: 4886 case ISD::FMUL: 4887 case ISD::FDIV: 4888 case ISD::FREM: 4889 if (N1.isUndef() || N2.isUndef()) 4890 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 4891 } 4892 4893 // Canonicalize an UNDEF to the RHS, even over a constant. 4894 if (N1.isUndef()) { 4895 if (TLI->isCommutativeBinOp(Opcode)) { 4896 std::swap(N1, N2); 4897 } else { 4898 switch (Opcode) { 4899 case ISD::FP_ROUND_INREG: 4900 case ISD::SIGN_EXTEND_INREG: 4901 case ISD::SUB: 4902 return getUNDEF(VT); // fold op(undef, arg2) -> undef 4903 case ISD::UDIV: 4904 case ISD::SDIV: 4905 case ISD::UREM: 4906 case ISD::SREM: 4907 case ISD::SRA: 4908 case ISD::SRL: 4909 case ISD::SHL: 4910 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4911 } 4912 } 4913 } 4914 4915 // Fold a bunch of operators when the RHS is undef. 4916 if (N2.isUndef()) { 4917 switch (Opcode) { 4918 case ISD::XOR: 4919 if (N1.isUndef()) 4920 // Handle undef ^ undef -> 0 special case. This is a common 4921 // idiom (misuse). 4922 return getConstant(0, DL, VT); 4923 LLVM_FALLTHROUGH; 4924 case ISD::ADD: 4925 case ISD::ADDC: 4926 case ISD::ADDE: 4927 case ISD::SUB: 4928 case ISD::UDIV: 4929 case ISD::SDIV: 4930 case ISD::UREM: 4931 case ISD::SREM: 4932 case ISD::SRA: 4933 case ISD::SRL: 4934 case ISD::SHL: 4935 return getUNDEF(VT); // fold op(arg1, undef) -> undef 4936 case ISD::MUL: 4937 case ISD::AND: 4938 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4939 case ISD::OR: 4940 return getAllOnesConstant(DL, VT); 4941 } 4942 } 4943 4944 // Memoize this node if possible. 4945 SDNode *N; 4946 SDVTList VTs = getVTList(VT); 4947 SDValue Ops[] = {N1, N2}; 4948 if (VT != MVT::Glue) { 4949 FoldingSetNodeID ID; 4950 AddNodeIDNode(ID, Opcode, VTs, Ops); 4951 void *IP = nullptr; 4952 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4953 E->intersectFlagsWith(Flags); 4954 return SDValue(E, 0); 4955 } 4956 4957 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4958 N->setFlags(Flags); 4959 createOperands(N, Ops); 4960 CSEMap.InsertNode(N, IP); 4961 } else { 4962 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4963 createOperands(N, Ops); 4964 } 4965 4966 InsertNode(N); 4967 SDValue V = SDValue(N, 0); 4968 NewSDValueDbgMsg(V, "Creating new node: ", this); 4969 return V; 4970 } 4971 4972 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4973 SDValue N1, SDValue N2, SDValue N3, 4974 const SDNodeFlags Flags) { 4975 // Perform various simplifications. 4976 switch (Opcode) { 4977 case ISD::FMA: { 4978 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4979 assert(N1.getValueType() == VT && N2.getValueType() == VT && 4980 N3.getValueType() == VT && "FMA types must match!"); 4981 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4982 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4983 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4984 if (N1CFP && N2CFP && N3CFP) { 4985 APFloat V1 = N1CFP->getValueAPF(); 4986 const APFloat &V2 = N2CFP->getValueAPF(); 4987 const APFloat &V3 = N3CFP->getValueAPF(); 4988 APFloat::opStatus s = 4989 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4990 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4991 return getConstantFP(V1, DL, VT); 4992 } 4993 break; 4994 } 4995 case ISD::CONCAT_VECTORS: { 4996 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4997 SDValue Ops[] = {N1, N2, N3}; 4998 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4999 return V; 5000 break; 5001 } 5002 case ISD::SETCC: { 5003 // Use FoldSetCC to simplify SETCC's. 5004 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5005 return V; 5006 // Vector constant folding. 5007 SDValue Ops[] = {N1, N2, N3}; 5008 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5009 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5010 return V; 5011 } 5012 break; 5013 } 5014 case ISD::SELECT: 5015 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 5016 if (N1C->getZExtValue()) 5017 return N2; // select true, X, Y -> X 5018 return N3; // select false, X, Y -> Y 5019 } 5020 5021 if (N2 == N3) return N2; // select C, X, X -> X 5022 break; 5023 case ISD::VECTOR_SHUFFLE: 5024 llvm_unreachable("should use getVectorShuffle constructor!"); 5025 case ISD::INSERT_VECTOR_ELT: { 5026 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5027 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5028 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5029 return getUNDEF(VT); 5030 break; 5031 } 5032 case ISD::INSERT_SUBVECTOR: { 5033 SDValue Index = N3; 5034 if (VT.isSimple() && N1.getValueType().isSimple() 5035 && N2.getValueType().isSimple()) { 5036 assert(VT.isVector() && N1.getValueType().isVector() && 5037 N2.getValueType().isVector() && 5038 "Insert subvector VTs must be a vectors"); 5039 assert(VT == N1.getValueType() && 5040 "Dest and insert subvector source types must match!"); 5041 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5042 "Insert subvector must be from smaller vector to larger vector!"); 5043 if (isa<ConstantSDNode>(Index)) { 5044 assert((N2.getValueType().getVectorNumElements() + 5045 cast<ConstantSDNode>(Index)->getZExtValue() 5046 <= VT.getVectorNumElements()) 5047 && "Insert subvector overflow!"); 5048 } 5049 5050 // Trivial insertion. 5051 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5052 return N2; 5053 } 5054 break; 5055 } 5056 case ISD::BITCAST: 5057 // Fold bit_convert nodes from a type to themselves. 5058 if (N1.getValueType() == VT) 5059 return N1; 5060 break; 5061 } 5062 5063 // Memoize node if it doesn't produce a flag. 5064 SDNode *N; 5065 SDVTList VTs = getVTList(VT); 5066 SDValue Ops[] = {N1, N2, N3}; 5067 if (VT != MVT::Glue) { 5068 FoldingSetNodeID ID; 5069 AddNodeIDNode(ID, Opcode, VTs, Ops); 5070 void *IP = nullptr; 5071 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5072 E->intersectFlagsWith(Flags); 5073 return SDValue(E, 0); 5074 } 5075 5076 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5077 N->setFlags(Flags); 5078 createOperands(N, Ops); 5079 CSEMap.InsertNode(N, IP); 5080 } else { 5081 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5082 createOperands(N, Ops); 5083 } 5084 5085 InsertNode(N); 5086 SDValue V = SDValue(N, 0); 5087 NewSDValueDbgMsg(V, "Creating new node: ", this); 5088 return V; 5089 } 5090 5091 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5092 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5093 SDValue Ops[] = { N1, N2, N3, N4 }; 5094 return getNode(Opcode, DL, VT, Ops); 5095 } 5096 5097 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5098 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5099 SDValue N5) { 5100 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5101 return getNode(Opcode, DL, VT, Ops); 5102 } 5103 5104 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5105 /// the incoming stack arguments to be loaded from the stack. 5106 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5107 SmallVector<SDValue, 8> ArgChains; 5108 5109 // Include the original chain at the beginning of the list. When this is 5110 // used by target LowerCall hooks, this helps legalize find the 5111 // CALLSEQ_BEGIN node. 5112 ArgChains.push_back(Chain); 5113 5114 // Add a chain value for each stack argument. 5115 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5116 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5117 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5118 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5119 if (FI->getIndex() < 0) 5120 ArgChains.push_back(SDValue(L, 1)); 5121 5122 // Build a tokenfactor for all the chains. 5123 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5124 } 5125 5126 /// getMemsetValue - Vectorized representation of the memset value 5127 /// operand. 5128 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5129 const SDLoc &dl) { 5130 assert(!Value.isUndef()); 5131 5132 unsigned NumBits = VT.getScalarSizeInBits(); 5133 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5134 assert(C->getAPIntValue().getBitWidth() == 8); 5135 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5136 if (VT.isInteger()) 5137 return DAG.getConstant(Val, dl, VT); 5138 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5139 VT); 5140 } 5141 5142 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5143 EVT IntVT = VT.getScalarType(); 5144 if (!IntVT.isInteger()) 5145 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5146 5147 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5148 if (NumBits > 8) { 5149 // Use a multiplication with 0x010101... to extend the input to the 5150 // required length. 5151 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5152 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5153 DAG.getConstant(Magic, dl, IntVT)); 5154 } 5155 5156 if (VT != Value.getValueType() && !VT.isInteger()) 5157 Value = DAG.getBitcast(VT.getScalarType(), Value); 5158 if (VT != Value.getValueType()) 5159 Value = DAG.getSplatBuildVector(VT, dl, Value); 5160 5161 return Value; 5162 } 5163 5164 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5165 /// used when a memcpy is turned into a memset when the source is a constant 5166 /// string ptr. 5167 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5168 const TargetLowering &TLI, 5169 const ConstantDataArraySlice &Slice) { 5170 // Handle vector with all elements zero. 5171 if (Slice.Array == nullptr) { 5172 if (VT.isInteger()) 5173 return DAG.getConstant(0, dl, VT); 5174 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5175 return DAG.getConstantFP(0.0, dl, VT); 5176 else if (VT.isVector()) { 5177 unsigned NumElts = VT.getVectorNumElements(); 5178 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5179 return DAG.getNode(ISD::BITCAST, dl, VT, 5180 DAG.getConstant(0, dl, 5181 EVT::getVectorVT(*DAG.getContext(), 5182 EltVT, NumElts))); 5183 } else 5184 llvm_unreachable("Expected type!"); 5185 } 5186 5187 assert(!VT.isVector() && "Can't handle vector type here!"); 5188 unsigned NumVTBits = VT.getSizeInBits(); 5189 unsigned NumVTBytes = NumVTBits / 8; 5190 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5191 5192 APInt Val(NumVTBits, 0); 5193 if (DAG.getDataLayout().isLittleEndian()) { 5194 for (unsigned i = 0; i != NumBytes; ++i) 5195 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5196 } else { 5197 for (unsigned i = 0; i != NumBytes; ++i) 5198 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5199 } 5200 5201 // If the "cost" of materializing the integer immediate is less than the cost 5202 // of a load, then it is cost effective to turn the load into the immediate. 5203 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5204 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5205 return DAG.getConstant(Val, dl, VT); 5206 return SDValue(nullptr, 0); 5207 } 5208 5209 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5210 const SDLoc &DL) { 5211 EVT VT = Base.getValueType(); 5212 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5213 } 5214 5215 /// Returns true if memcpy source is constant data. 5216 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5217 uint64_t SrcDelta = 0; 5218 GlobalAddressSDNode *G = nullptr; 5219 if (Src.getOpcode() == ISD::GlobalAddress) 5220 G = cast<GlobalAddressSDNode>(Src); 5221 else if (Src.getOpcode() == ISD::ADD && 5222 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5223 Src.getOperand(1).getOpcode() == ISD::Constant) { 5224 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5225 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5226 } 5227 if (!G) 5228 return false; 5229 5230 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5231 SrcDelta + G->getOffset()); 5232 } 5233 5234 /// Determines the optimal series of memory ops to replace the memset / memcpy. 5235 /// Return true if the number of memory ops is below the threshold (Limit). 5236 /// It returns the types of the sequence of memory ops to perform 5237 /// memset / memcpy by reference. 5238 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 5239 unsigned Limit, uint64_t Size, 5240 unsigned DstAlign, unsigned SrcAlign, 5241 bool IsMemset, 5242 bool ZeroMemset, 5243 bool MemcpyStrSrc, 5244 bool AllowOverlap, 5245 unsigned DstAS, unsigned SrcAS, 5246 SelectionDAG &DAG, 5247 const TargetLowering &TLI) { 5248 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 5249 "Expecting memcpy / memset source to meet alignment requirement!"); 5250 // If 'SrcAlign' is zero, that means the memory operation does not need to 5251 // load the value, i.e. memset or memcpy from constant string. Otherwise, 5252 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 5253 // is the specified alignment of the memory operation. If it is zero, that 5254 // means it's possible to change the alignment of the destination. 5255 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 5256 // not need to be loaded. 5257 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 5258 IsMemset, ZeroMemset, MemcpyStrSrc, 5259 DAG.getMachineFunction()); 5260 5261 if (VT == MVT::Other) { 5262 // Use the largest integer type whose alignment constraints are satisfied. 5263 // We only need to check DstAlign here as SrcAlign is always greater or 5264 // equal to DstAlign (or zero). 5265 VT = MVT::i64; 5266 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 5267 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 5268 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 5269 assert(VT.isInteger()); 5270 5271 // Find the largest legal integer type. 5272 MVT LVT = MVT::i64; 5273 while (!TLI.isTypeLegal(LVT)) 5274 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 5275 assert(LVT.isInteger()); 5276 5277 // If the type we've chosen is larger than the largest legal integer type 5278 // then use that instead. 5279 if (VT.bitsGT(LVT)) 5280 VT = LVT; 5281 } 5282 5283 unsigned NumMemOps = 0; 5284 while (Size != 0) { 5285 unsigned VTSize = VT.getSizeInBits() / 8; 5286 while (VTSize > Size) { 5287 // For now, only use non-vector load / store's for the left-over pieces. 5288 EVT NewVT = VT; 5289 unsigned NewVTSize; 5290 5291 bool Found = false; 5292 if (VT.isVector() || VT.isFloatingPoint()) { 5293 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 5294 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 5295 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 5296 Found = true; 5297 else if (NewVT == MVT::i64 && 5298 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 5299 TLI.isSafeMemOpType(MVT::f64)) { 5300 // i64 is usually not legal on 32-bit targets, but f64 may be. 5301 NewVT = MVT::f64; 5302 Found = true; 5303 } 5304 } 5305 5306 if (!Found) { 5307 do { 5308 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 5309 if (NewVT == MVT::i8) 5310 break; 5311 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 5312 } 5313 NewVTSize = NewVT.getSizeInBits() / 8; 5314 5315 // If the new VT cannot cover all of the remaining bits, then consider 5316 // issuing a (or a pair of) unaligned and overlapping load / store. 5317 // FIXME: Only does this for 64-bit or more since we don't have proper 5318 // cost model for unaligned load / store. 5319 bool Fast; 5320 if (NumMemOps && AllowOverlap && 5321 VTSize >= 8 && NewVTSize < Size && 5322 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 5323 VTSize = Size; 5324 else { 5325 VT = NewVT; 5326 VTSize = NewVTSize; 5327 } 5328 } 5329 5330 if (++NumMemOps > Limit) 5331 return false; 5332 5333 MemOps.push_back(VT); 5334 Size -= VTSize; 5335 } 5336 5337 return true; 5338 } 5339 5340 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5341 // On Darwin, -Os means optimize for size without hurting performance, so 5342 // only really optimize for size when -Oz (MinSize) is used. 5343 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5344 return MF.getFunction().optForMinSize(); 5345 return MF.getFunction().optForSize(); 5346 } 5347 5348 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5349 SmallVector<SDValue, 32> &OutChains, unsigned From, 5350 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5351 SmallVector<SDValue, 16> &OutStoreChains) { 5352 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5353 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5354 SmallVector<SDValue, 16> GluedLoadChains; 5355 for (unsigned i = From; i < To; ++i) { 5356 OutChains.push_back(OutLoadChains[i]); 5357 GluedLoadChains.push_back(OutLoadChains[i]); 5358 } 5359 5360 // Chain for all loads. 5361 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5362 GluedLoadChains); 5363 5364 for (unsigned i = From; i < To; ++i) { 5365 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5366 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5367 ST->getBasePtr(), ST->getMemoryVT(), 5368 ST->getMemOperand()); 5369 OutChains.push_back(NewStore); 5370 } 5371 } 5372 5373 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5374 SDValue Chain, SDValue Dst, SDValue Src, 5375 uint64_t Size, unsigned Align, 5376 bool isVol, bool AlwaysInline, 5377 MachinePointerInfo DstPtrInfo, 5378 MachinePointerInfo SrcPtrInfo) { 5379 // Turn a memcpy of undef to nop. 5380 if (Src.isUndef()) 5381 return Chain; 5382 5383 // Expand memcpy to a series of load and store ops if the size operand falls 5384 // below a certain threshold. 5385 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5386 // rather than maybe a humongous number of loads and stores. 5387 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5388 const DataLayout &DL = DAG.getDataLayout(); 5389 LLVMContext &C = *DAG.getContext(); 5390 std::vector<EVT> MemOps; 5391 bool DstAlignCanChange = false; 5392 MachineFunction &MF = DAG.getMachineFunction(); 5393 MachineFrameInfo &MFI = MF.getFrameInfo(); 5394 bool OptSize = shouldLowerMemFuncForSize(MF); 5395 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5396 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5397 DstAlignCanChange = true; 5398 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5399 if (Align > SrcAlign) 5400 SrcAlign = Align; 5401 ConstantDataArraySlice Slice; 5402 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5403 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5404 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5405 5406 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5407 (DstAlignCanChange ? 0 : Align), 5408 (isZeroConstant ? 0 : SrcAlign), 5409 false, false, CopyFromConstant, true, 5410 DstPtrInfo.getAddrSpace(), 5411 SrcPtrInfo.getAddrSpace(), 5412 DAG, TLI)) 5413 return SDValue(); 5414 5415 if (DstAlignCanChange) { 5416 Type *Ty = MemOps[0].getTypeForEVT(C); 5417 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5418 5419 // Don't promote to an alignment that would require dynamic stack 5420 // realignment. 5421 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5422 if (!TRI->needsStackRealignment(MF)) 5423 while (NewAlign > Align && 5424 DL.exceedsNaturalStackAlignment(NewAlign)) 5425 NewAlign /= 2; 5426 5427 if (NewAlign > Align) { 5428 // Give the stack frame object a larger alignment if needed. 5429 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5430 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5431 Align = NewAlign; 5432 } 5433 } 5434 5435 MachineMemOperand::Flags MMOFlags = 5436 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5437 SmallVector<SDValue, 16> OutLoadChains; 5438 SmallVector<SDValue, 16> OutStoreChains; 5439 SmallVector<SDValue, 32> OutChains; 5440 unsigned NumMemOps = MemOps.size(); 5441 uint64_t SrcOff = 0, DstOff = 0; 5442 for (unsigned i = 0; i != NumMemOps; ++i) { 5443 EVT VT = MemOps[i]; 5444 unsigned VTSize = VT.getSizeInBits() / 8; 5445 SDValue Value, Store; 5446 5447 if (VTSize > Size) { 5448 // Issuing an unaligned load / store pair that overlaps with the previous 5449 // pair. Adjust the offset accordingly. 5450 assert(i == NumMemOps-1 && i != 0); 5451 SrcOff -= VTSize - Size; 5452 DstOff -= VTSize - Size; 5453 } 5454 5455 if (CopyFromConstant && 5456 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5457 // It's unlikely a store of a vector immediate can be done in a single 5458 // instruction. It would require a load from a constantpool first. 5459 // We only handle zero vectors here. 5460 // FIXME: Handle other cases where store of vector immediate is done in 5461 // a single instruction. 5462 ConstantDataArraySlice SubSlice; 5463 if (SrcOff < Slice.Length) { 5464 SubSlice = Slice; 5465 SubSlice.move(SrcOff); 5466 } else { 5467 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5468 SubSlice.Array = nullptr; 5469 SubSlice.Offset = 0; 5470 SubSlice.Length = VTSize; 5471 } 5472 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5473 if (Value.getNode()) { 5474 Store = DAG.getStore(Chain, dl, Value, 5475 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5476 DstPtrInfo.getWithOffset(DstOff), Align, 5477 MMOFlags); 5478 OutChains.push_back(Store); 5479 } 5480 } 5481 5482 if (!Store.getNode()) { 5483 // The type might not be legal for the target. This should only happen 5484 // if the type is smaller than a legal type, as on PPC, so the right 5485 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5486 // to Load/Store if NVT==VT. 5487 // FIXME does the case above also need this? 5488 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5489 assert(NVT.bitsGE(VT)); 5490 5491 bool isDereferenceable = 5492 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5493 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5494 if (isDereferenceable) 5495 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5496 5497 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5498 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5499 SrcPtrInfo.getWithOffset(SrcOff), VT, 5500 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5501 OutLoadChains.push_back(Value.getValue(1)); 5502 5503 Store = DAG.getTruncStore( 5504 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5505 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5506 OutStoreChains.push_back(Store); 5507 } 5508 SrcOff += VTSize; 5509 DstOff += VTSize; 5510 Size -= VTSize; 5511 } 5512 5513 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5514 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5515 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5516 5517 if (NumLdStInMemcpy) { 5518 // It may be that memcpy might be converted to memset if it's memcpy 5519 // of constants. In such a case, we won't have loads and stores, but 5520 // just stores. In the absence of loads, there is nothing to gang up. 5521 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5522 // If target does not care, just leave as it. 5523 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5524 OutChains.push_back(OutLoadChains[i]); 5525 OutChains.push_back(OutStoreChains[i]); 5526 } 5527 } else { 5528 // Ld/St less than/equal limit set by target. 5529 if (NumLdStInMemcpy <= GluedLdStLimit) { 5530 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5531 NumLdStInMemcpy, OutLoadChains, 5532 OutStoreChains); 5533 } else { 5534 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5535 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5536 unsigned GlueIter = 0; 5537 5538 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5539 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5540 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5541 5542 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5543 OutLoadChains, OutStoreChains); 5544 GlueIter += GluedLdStLimit; 5545 } 5546 5547 // Residual ld/st. 5548 if (RemainingLdStInMemcpy) { 5549 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5550 RemainingLdStInMemcpy, OutLoadChains, 5551 OutStoreChains); 5552 } 5553 } 5554 } 5555 } 5556 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5557 } 5558 5559 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5560 SDValue Chain, SDValue Dst, SDValue Src, 5561 uint64_t Size, unsigned Align, 5562 bool isVol, bool AlwaysInline, 5563 MachinePointerInfo DstPtrInfo, 5564 MachinePointerInfo SrcPtrInfo) { 5565 // Turn a memmove of undef to nop. 5566 if (Src.isUndef()) 5567 return Chain; 5568 5569 // Expand memmove to a series of load and store ops if the size operand falls 5570 // below a certain threshold. 5571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5572 const DataLayout &DL = DAG.getDataLayout(); 5573 LLVMContext &C = *DAG.getContext(); 5574 std::vector<EVT> MemOps; 5575 bool DstAlignCanChange = false; 5576 MachineFunction &MF = DAG.getMachineFunction(); 5577 MachineFrameInfo &MFI = MF.getFrameInfo(); 5578 bool OptSize = shouldLowerMemFuncForSize(MF); 5579 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5580 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5581 DstAlignCanChange = true; 5582 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5583 if (Align > SrcAlign) 5584 SrcAlign = Align; 5585 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5586 5587 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5588 (DstAlignCanChange ? 0 : Align), SrcAlign, 5589 false, false, false, false, 5590 DstPtrInfo.getAddrSpace(), 5591 SrcPtrInfo.getAddrSpace(), 5592 DAG, TLI)) 5593 return SDValue(); 5594 5595 if (DstAlignCanChange) { 5596 Type *Ty = MemOps[0].getTypeForEVT(C); 5597 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5598 if (NewAlign > Align) { 5599 // Give the stack frame object a larger alignment if needed. 5600 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5601 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5602 Align = NewAlign; 5603 } 5604 } 5605 5606 MachineMemOperand::Flags MMOFlags = 5607 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5608 uint64_t SrcOff = 0, DstOff = 0; 5609 SmallVector<SDValue, 8> LoadValues; 5610 SmallVector<SDValue, 8> LoadChains; 5611 SmallVector<SDValue, 8> OutChains; 5612 unsigned NumMemOps = MemOps.size(); 5613 for (unsigned i = 0; i < NumMemOps; i++) { 5614 EVT VT = MemOps[i]; 5615 unsigned VTSize = VT.getSizeInBits() / 8; 5616 SDValue Value; 5617 5618 bool isDereferenceable = 5619 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5620 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5621 if (isDereferenceable) 5622 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5623 5624 Value = 5625 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5626 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5627 LoadValues.push_back(Value); 5628 LoadChains.push_back(Value.getValue(1)); 5629 SrcOff += VTSize; 5630 } 5631 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5632 OutChains.clear(); 5633 for (unsigned i = 0; i < NumMemOps; i++) { 5634 EVT VT = MemOps[i]; 5635 unsigned VTSize = VT.getSizeInBits() / 8; 5636 SDValue Store; 5637 5638 Store = DAG.getStore(Chain, dl, LoadValues[i], 5639 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5640 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5641 OutChains.push_back(Store); 5642 DstOff += VTSize; 5643 } 5644 5645 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5646 } 5647 5648 /// Lower the call to 'memset' intrinsic function into a series of store 5649 /// operations. 5650 /// 5651 /// \param DAG Selection DAG where lowered code is placed. 5652 /// \param dl Link to corresponding IR location. 5653 /// \param Chain Control flow dependency. 5654 /// \param Dst Pointer to destination memory location. 5655 /// \param Src Value of byte to write into the memory. 5656 /// \param Size Number of bytes to write. 5657 /// \param Align Alignment of the destination in bytes. 5658 /// \param isVol True if destination is volatile. 5659 /// \param DstPtrInfo IR information on the memory pointer. 5660 /// \returns New head in the control flow, if lowering was successful, empty 5661 /// SDValue otherwise. 5662 /// 5663 /// The function tries to replace 'llvm.memset' intrinsic with several store 5664 /// operations and value calculation code. This is usually profitable for small 5665 /// memory size. 5666 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5667 SDValue Chain, SDValue Dst, SDValue Src, 5668 uint64_t Size, unsigned Align, bool isVol, 5669 MachinePointerInfo DstPtrInfo) { 5670 // Turn a memset of undef to nop. 5671 if (Src.isUndef()) 5672 return Chain; 5673 5674 // Expand memset to a series of load/store ops if the size operand 5675 // falls below a certain threshold. 5676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5677 std::vector<EVT> MemOps; 5678 bool DstAlignCanChange = false; 5679 MachineFunction &MF = DAG.getMachineFunction(); 5680 MachineFrameInfo &MFI = MF.getFrameInfo(); 5681 bool OptSize = shouldLowerMemFuncForSize(MF); 5682 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5683 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5684 DstAlignCanChange = true; 5685 bool IsZeroVal = 5686 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5687 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5688 Size, (DstAlignCanChange ? 0 : Align), 0, 5689 true, IsZeroVal, false, true, 5690 DstPtrInfo.getAddrSpace(), ~0u, 5691 DAG, TLI)) 5692 return SDValue(); 5693 5694 if (DstAlignCanChange) { 5695 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5696 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5697 if (NewAlign > Align) { 5698 // Give the stack frame object a larger alignment if needed. 5699 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5700 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5701 Align = NewAlign; 5702 } 5703 } 5704 5705 SmallVector<SDValue, 8> OutChains; 5706 uint64_t DstOff = 0; 5707 unsigned NumMemOps = MemOps.size(); 5708 5709 // Find the largest store and generate the bit pattern for it. 5710 EVT LargestVT = MemOps[0]; 5711 for (unsigned i = 1; i < NumMemOps; i++) 5712 if (MemOps[i].bitsGT(LargestVT)) 5713 LargestVT = MemOps[i]; 5714 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5715 5716 for (unsigned i = 0; i < NumMemOps; i++) { 5717 EVT VT = MemOps[i]; 5718 unsigned VTSize = VT.getSizeInBits() / 8; 5719 if (VTSize > Size) { 5720 // Issuing an unaligned load / store pair that overlaps with the previous 5721 // pair. Adjust the offset accordingly. 5722 assert(i == NumMemOps-1 && i != 0); 5723 DstOff -= VTSize - Size; 5724 } 5725 5726 // If this store is smaller than the largest store see whether we can get 5727 // the smaller value for free with a truncate. 5728 SDValue Value = MemSetValue; 5729 if (VT.bitsLT(LargestVT)) { 5730 if (!LargestVT.isVector() && !VT.isVector() && 5731 TLI.isTruncateFree(LargestVT, VT)) 5732 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5733 else 5734 Value = getMemsetValue(Src, VT, DAG, dl); 5735 } 5736 assert(Value.getValueType() == VT && "Value with wrong type."); 5737 SDValue Store = DAG.getStore( 5738 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5739 DstPtrInfo.getWithOffset(DstOff), Align, 5740 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5741 OutChains.push_back(Store); 5742 DstOff += VT.getSizeInBits() / 8; 5743 Size -= VTSize; 5744 } 5745 5746 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5747 } 5748 5749 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5750 unsigned AS) { 5751 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5752 // pointer operands can be losslessly bitcasted to pointers of address space 0 5753 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5754 report_fatal_error("cannot lower memory intrinsic in address space " + 5755 Twine(AS)); 5756 } 5757 } 5758 5759 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5760 SDValue Src, SDValue Size, unsigned Align, 5761 bool isVol, bool AlwaysInline, bool isTailCall, 5762 MachinePointerInfo DstPtrInfo, 5763 MachinePointerInfo SrcPtrInfo) { 5764 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5765 5766 // Check to see if we should lower the memcpy to loads and stores first. 5767 // For cases within the target-specified limits, this is the best choice. 5768 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5769 if (ConstantSize) { 5770 // Memcpy with size zero? Just return the original chain. 5771 if (ConstantSize->isNullValue()) 5772 return Chain; 5773 5774 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5775 ConstantSize->getZExtValue(),Align, 5776 isVol, false, DstPtrInfo, SrcPtrInfo); 5777 if (Result.getNode()) 5778 return Result; 5779 } 5780 5781 // Then check to see if we should lower the memcpy with target-specific 5782 // code. If the target chooses to do this, this is the next best. 5783 if (TSI) { 5784 SDValue Result = TSI->EmitTargetCodeForMemcpy( 5785 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 5786 DstPtrInfo, SrcPtrInfo); 5787 if (Result.getNode()) 5788 return Result; 5789 } 5790 5791 // If we really need inline code and the target declined to provide it, 5792 // use a (potentially long) sequence of loads and stores. 5793 if (AlwaysInline) { 5794 assert(ConstantSize && "AlwaysInline requires a constant size!"); 5795 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5796 ConstantSize->getZExtValue(), Align, isVol, 5797 true, DstPtrInfo, SrcPtrInfo); 5798 } 5799 5800 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5801 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5802 5803 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5804 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5805 // respect volatile, so they may do things like read or write memory 5806 // beyond the given memory regions. But fixing this isn't easy, and most 5807 // people don't care. 5808 5809 // Emit a library call. 5810 TargetLowering::ArgListTy Args; 5811 TargetLowering::ArgListEntry Entry; 5812 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5813 Entry.Node = Dst; Args.push_back(Entry); 5814 Entry.Node = Src; Args.push_back(Entry); 5815 Entry.Node = Size; Args.push_back(Entry); 5816 // FIXME: pass in SDLoc 5817 TargetLowering::CallLoweringInfo CLI(*this); 5818 CLI.setDebugLoc(dl) 5819 .setChain(Chain) 5820 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5821 Dst.getValueType().getTypeForEVT(*getContext()), 5822 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5823 TLI->getPointerTy(getDataLayout())), 5824 std::move(Args)) 5825 .setDiscardResult() 5826 .setTailCall(isTailCall); 5827 5828 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5829 return CallResult.second; 5830 } 5831 5832 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 5833 SDValue Dst, unsigned DstAlign, 5834 SDValue Src, unsigned SrcAlign, 5835 SDValue Size, Type *SizeTy, 5836 unsigned ElemSz, bool isTailCall, 5837 MachinePointerInfo DstPtrInfo, 5838 MachinePointerInfo SrcPtrInfo) { 5839 // Emit a library call. 5840 TargetLowering::ArgListTy Args; 5841 TargetLowering::ArgListEntry Entry; 5842 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5843 Entry.Node = Dst; 5844 Args.push_back(Entry); 5845 5846 Entry.Node = Src; 5847 Args.push_back(Entry); 5848 5849 Entry.Ty = SizeTy; 5850 Entry.Node = Size; 5851 Args.push_back(Entry); 5852 5853 RTLIB::Libcall LibraryCall = 5854 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 5855 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5856 report_fatal_error("Unsupported element size"); 5857 5858 TargetLowering::CallLoweringInfo CLI(*this); 5859 CLI.setDebugLoc(dl) 5860 .setChain(Chain) 5861 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 5862 Type::getVoidTy(*getContext()), 5863 getExternalSymbol(TLI->getLibcallName(LibraryCall), 5864 TLI->getPointerTy(getDataLayout())), 5865 std::move(Args)) 5866 .setDiscardResult() 5867 .setTailCall(isTailCall); 5868 5869 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 5870 return CallResult.second; 5871 } 5872 5873 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5874 SDValue Src, SDValue Size, unsigned Align, 5875 bool isVol, bool isTailCall, 5876 MachinePointerInfo DstPtrInfo, 5877 MachinePointerInfo SrcPtrInfo) { 5878 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5879 5880 // Check to see if we should lower the memmove to loads and stores first. 5881 // For cases within the target-specified limits, this is the best choice. 5882 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5883 if (ConstantSize) { 5884 // Memmove with size zero? Just return the original chain. 5885 if (ConstantSize->isNullValue()) 5886 return Chain; 5887 5888 SDValue Result = 5889 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5890 ConstantSize->getZExtValue(), Align, isVol, 5891 false, DstPtrInfo, SrcPtrInfo); 5892 if (Result.getNode()) 5893 return Result; 5894 } 5895 5896 // Then check to see if we should lower the memmove with target-specific 5897 // code. If the target chooses to do this, this is the next best. 5898 if (TSI) { 5899 SDValue Result = TSI->EmitTargetCodeForMemmove( 5900 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5901 if (Result.getNode()) 5902 return Result; 5903 } 5904 5905 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5906 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5907 5908 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5909 // not be safe. See memcpy above for more details. 5910 5911 // Emit a library call. 5912 TargetLowering::ArgListTy Args; 5913 TargetLowering::ArgListEntry Entry; 5914 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5915 Entry.Node = Dst; Args.push_back(Entry); 5916 Entry.Node = Src; Args.push_back(Entry); 5917 Entry.Node = Size; Args.push_back(Entry); 5918 // FIXME: pass in SDLoc 5919 TargetLowering::CallLoweringInfo CLI(*this); 5920 CLI.setDebugLoc(dl) 5921 .setChain(Chain) 5922 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5923 Dst.getValueType().getTypeForEVT(*getContext()), 5924 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5925 TLI->getPointerTy(getDataLayout())), 5926 std::move(Args)) 5927 .setDiscardResult() 5928 .setTailCall(isTailCall); 5929 5930 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5931 return CallResult.second; 5932 } 5933 5934 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 5935 SDValue Dst, unsigned DstAlign, 5936 SDValue Src, unsigned SrcAlign, 5937 SDValue Size, Type *SizeTy, 5938 unsigned ElemSz, bool isTailCall, 5939 MachinePointerInfo DstPtrInfo, 5940 MachinePointerInfo SrcPtrInfo) { 5941 // Emit a library call. 5942 TargetLowering::ArgListTy Args; 5943 TargetLowering::ArgListEntry Entry; 5944 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5945 Entry.Node = Dst; 5946 Args.push_back(Entry); 5947 5948 Entry.Node = Src; 5949 Args.push_back(Entry); 5950 5951 Entry.Ty = SizeTy; 5952 Entry.Node = Size; 5953 Args.push_back(Entry); 5954 5955 RTLIB::Libcall LibraryCall = 5956 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 5957 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5958 report_fatal_error("Unsupported element size"); 5959 5960 TargetLowering::CallLoweringInfo CLI(*this); 5961 CLI.setDebugLoc(dl) 5962 .setChain(Chain) 5963 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 5964 Type::getVoidTy(*getContext()), 5965 getExternalSymbol(TLI->getLibcallName(LibraryCall), 5966 TLI->getPointerTy(getDataLayout())), 5967 std::move(Args)) 5968 .setDiscardResult() 5969 .setTailCall(isTailCall); 5970 5971 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 5972 return CallResult.second; 5973 } 5974 5975 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5976 SDValue Src, SDValue Size, unsigned Align, 5977 bool isVol, bool isTailCall, 5978 MachinePointerInfo DstPtrInfo) { 5979 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5980 5981 // Check to see if we should lower the memset to stores first. 5982 // For cases within the target-specified limits, this is the best choice. 5983 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5984 if (ConstantSize) { 5985 // Memset with size zero? Just return the original chain. 5986 if (ConstantSize->isNullValue()) 5987 return Chain; 5988 5989 SDValue Result = 5990 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5991 Align, isVol, DstPtrInfo); 5992 5993 if (Result.getNode()) 5994 return Result; 5995 } 5996 5997 // Then check to see if we should lower the memset with target-specific 5998 // code. If the target chooses to do this, this is the next best. 5999 if (TSI) { 6000 SDValue Result = TSI->EmitTargetCodeForMemset( 6001 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6002 if (Result.getNode()) 6003 return Result; 6004 } 6005 6006 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6007 6008 // Emit a library call. 6009 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 6010 TargetLowering::ArgListTy Args; 6011 TargetLowering::ArgListEntry Entry; 6012 Entry.Node = Dst; Entry.Ty = IntPtrTy; 6013 Args.push_back(Entry); 6014 Entry.Node = Src; 6015 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6016 Args.push_back(Entry); 6017 Entry.Node = Size; 6018 Entry.Ty = IntPtrTy; 6019 Args.push_back(Entry); 6020 6021 // FIXME: pass in SDLoc 6022 TargetLowering::CallLoweringInfo CLI(*this); 6023 CLI.setDebugLoc(dl) 6024 .setChain(Chain) 6025 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6026 Dst.getValueType().getTypeForEVT(*getContext()), 6027 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6028 TLI->getPointerTy(getDataLayout())), 6029 std::move(Args)) 6030 .setDiscardResult() 6031 .setTailCall(isTailCall); 6032 6033 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6034 return CallResult.second; 6035 } 6036 6037 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6038 SDValue Dst, unsigned DstAlign, 6039 SDValue Value, SDValue Size, Type *SizeTy, 6040 unsigned ElemSz, bool isTailCall, 6041 MachinePointerInfo DstPtrInfo) { 6042 // Emit a library call. 6043 TargetLowering::ArgListTy Args; 6044 TargetLowering::ArgListEntry Entry; 6045 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6046 Entry.Node = Dst; 6047 Args.push_back(Entry); 6048 6049 Entry.Ty = Type::getInt8Ty(*getContext()); 6050 Entry.Node = Value; 6051 Args.push_back(Entry); 6052 6053 Entry.Ty = SizeTy; 6054 Entry.Node = Size; 6055 Args.push_back(Entry); 6056 6057 RTLIB::Libcall LibraryCall = 6058 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6059 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6060 report_fatal_error("Unsupported element size"); 6061 6062 TargetLowering::CallLoweringInfo CLI(*this); 6063 CLI.setDebugLoc(dl) 6064 .setChain(Chain) 6065 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6066 Type::getVoidTy(*getContext()), 6067 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6068 TLI->getPointerTy(getDataLayout())), 6069 std::move(Args)) 6070 .setDiscardResult() 6071 .setTailCall(isTailCall); 6072 6073 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6074 return CallResult.second; 6075 } 6076 6077 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6078 SDVTList VTList, ArrayRef<SDValue> Ops, 6079 MachineMemOperand *MMO) { 6080 FoldingSetNodeID ID; 6081 ID.AddInteger(MemVT.getRawBits()); 6082 AddNodeIDNode(ID, Opcode, VTList, Ops); 6083 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6084 void* IP = nullptr; 6085 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6086 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6087 return SDValue(E, 0); 6088 } 6089 6090 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6091 VTList, MemVT, MMO); 6092 createOperands(N, Ops); 6093 6094 CSEMap.InsertNode(N, IP); 6095 InsertNode(N); 6096 return SDValue(N, 0); 6097 } 6098 6099 SDValue SelectionDAG::getAtomicCmpSwap( 6100 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 6101 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 6102 unsigned Alignment, AtomicOrdering SuccessOrdering, 6103 AtomicOrdering FailureOrdering, SyncScope::ID SSID) { 6104 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6105 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6106 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6107 6108 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6109 Alignment = getEVTAlignment(MemVT); 6110 6111 MachineFunction &MF = getMachineFunction(); 6112 6113 // FIXME: Volatile isn't really correct; we should keep track of atomic 6114 // orderings in the memoperand. 6115 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 6116 MachineMemOperand::MOStore; 6117 MachineMemOperand *MMO = 6118 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 6119 AAMDNodes(), nullptr, SSID, SuccessOrdering, 6120 FailureOrdering); 6121 6122 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 6123 } 6124 6125 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6126 EVT MemVT, SDVTList VTs, SDValue Chain, 6127 SDValue Ptr, SDValue Cmp, SDValue Swp, 6128 MachineMemOperand *MMO) { 6129 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6130 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6131 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6132 6133 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6134 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6135 } 6136 6137 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6138 SDValue Chain, SDValue Ptr, SDValue Val, 6139 const Value *PtrVal, unsigned Alignment, 6140 AtomicOrdering Ordering, 6141 SyncScope::ID SSID) { 6142 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6143 Alignment = getEVTAlignment(MemVT); 6144 6145 MachineFunction &MF = getMachineFunction(); 6146 // An atomic store does not load. An atomic load does not store. 6147 // (An atomicrmw obviously both loads and stores.) 6148 // For now, atomics are considered to be volatile always, and they are 6149 // chained as such. 6150 // FIXME: Volatile isn't really correct; we should keep track of atomic 6151 // orderings in the memoperand. 6152 auto Flags = MachineMemOperand::MOVolatile; 6153 if (Opcode != ISD::ATOMIC_STORE) 6154 Flags |= MachineMemOperand::MOLoad; 6155 if (Opcode != ISD::ATOMIC_LOAD) 6156 Flags |= MachineMemOperand::MOStore; 6157 6158 MachineMemOperand *MMO = 6159 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 6160 MemVT.getStoreSize(), Alignment, AAMDNodes(), 6161 nullptr, SSID, Ordering); 6162 6163 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 6164 } 6165 6166 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6167 SDValue Chain, SDValue Ptr, SDValue Val, 6168 MachineMemOperand *MMO) { 6169 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6170 Opcode == ISD::ATOMIC_LOAD_SUB || 6171 Opcode == ISD::ATOMIC_LOAD_AND || 6172 Opcode == ISD::ATOMIC_LOAD_CLR || 6173 Opcode == ISD::ATOMIC_LOAD_OR || 6174 Opcode == ISD::ATOMIC_LOAD_XOR || 6175 Opcode == ISD::ATOMIC_LOAD_NAND || 6176 Opcode == ISD::ATOMIC_LOAD_MIN || 6177 Opcode == ISD::ATOMIC_LOAD_MAX || 6178 Opcode == ISD::ATOMIC_LOAD_UMIN || 6179 Opcode == ISD::ATOMIC_LOAD_UMAX || 6180 Opcode == ISD::ATOMIC_SWAP || 6181 Opcode == ISD::ATOMIC_STORE) && 6182 "Invalid Atomic Op"); 6183 6184 EVT VT = Val.getValueType(); 6185 6186 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6187 getVTList(VT, MVT::Other); 6188 SDValue Ops[] = {Chain, Ptr, Val}; 6189 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6190 } 6191 6192 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6193 EVT VT, SDValue Chain, SDValue Ptr, 6194 MachineMemOperand *MMO) { 6195 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6196 6197 SDVTList VTs = getVTList(VT, MVT::Other); 6198 SDValue Ops[] = {Chain, Ptr}; 6199 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6200 } 6201 6202 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6203 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6204 if (Ops.size() == 1) 6205 return Ops[0]; 6206 6207 SmallVector<EVT, 4> VTs; 6208 VTs.reserve(Ops.size()); 6209 for (unsigned i = 0; i < Ops.size(); ++i) 6210 VTs.push_back(Ops[i].getValueType()); 6211 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6212 } 6213 6214 SDValue SelectionDAG::getMemIntrinsicNode( 6215 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6216 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6217 MachineMemOperand::Flags Flags, unsigned Size) { 6218 if (Align == 0) // Ensure that codegen never sees alignment 0 6219 Align = getEVTAlignment(MemVT); 6220 6221 if (!Size) 6222 Size = MemVT.getStoreSize(); 6223 6224 MachineFunction &MF = getMachineFunction(); 6225 MachineMemOperand *MMO = 6226 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 6227 6228 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6229 } 6230 6231 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6232 SDVTList VTList, 6233 ArrayRef<SDValue> Ops, EVT MemVT, 6234 MachineMemOperand *MMO) { 6235 assert((Opcode == ISD::INTRINSIC_VOID || 6236 Opcode == ISD::INTRINSIC_W_CHAIN || 6237 Opcode == ISD::PREFETCH || 6238 Opcode == ISD::LIFETIME_START || 6239 Opcode == ISD::LIFETIME_END || 6240 ((int)Opcode <= std::numeric_limits<int>::max() && 6241 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6242 "Opcode is not a memory-accessing opcode!"); 6243 6244 // Memoize the node unless it returns a flag. 6245 MemIntrinsicSDNode *N; 6246 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6247 FoldingSetNodeID ID; 6248 AddNodeIDNode(ID, Opcode, VTList, Ops); 6249 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6250 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6251 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6252 void *IP = nullptr; 6253 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6254 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6255 return SDValue(E, 0); 6256 } 6257 6258 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6259 VTList, MemVT, MMO); 6260 createOperands(N, Ops); 6261 6262 CSEMap.InsertNode(N, IP); 6263 } else { 6264 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6265 VTList, MemVT, MMO); 6266 createOperands(N, Ops); 6267 } 6268 InsertNode(N); 6269 return SDValue(N, 0); 6270 } 6271 6272 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6273 /// MachinePointerInfo record from it. This is particularly useful because the 6274 /// code generator has many cases where it doesn't bother passing in a 6275 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6276 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6277 SelectionDAG &DAG, SDValue Ptr, 6278 int64_t Offset = 0) { 6279 // If this is FI+Offset, we can model it. 6280 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6281 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6282 FI->getIndex(), Offset); 6283 6284 // If this is (FI+Offset1)+Offset2, we can model it. 6285 if (Ptr.getOpcode() != ISD::ADD || 6286 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6287 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6288 return Info; 6289 6290 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6291 return MachinePointerInfo::getFixedStack( 6292 DAG.getMachineFunction(), FI, 6293 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6294 } 6295 6296 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6297 /// MachinePointerInfo record from it. This is particularly useful because the 6298 /// code generator has many cases where it doesn't bother passing in a 6299 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6300 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6301 SelectionDAG &DAG, SDValue Ptr, 6302 SDValue OffsetOp) { 6303 // If the 'Offset' value isn't a constant, we can't handle this. 6304 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6305 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6306 if (OffsetOp.isUndef()) 6307 return InferPointerInfo(Info, DAG, Ptr); 6308 return Info; 6309 } 6310 6311 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6312 EVT VT, const SDLoc &dl, SDValue Chain, 6313 SDValue Ptr, SDValue Offset, 6314 MachinePointerInfo PtrInfo, EVT MemVT, 6315 unsigned Alignment, 6316 MachineMemOperand::Flags MMOFlags, 6317 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6318 assert(Chain.getValueType() == MVT::Other && 6319 "Invalid chain type"); 6320 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6321 Alignment = getEVTAlignment(MemVT); 6322 6323 MMOFlags |= MachineMemOperand::MOLoad; 6324 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6325 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6326 // clients. 6327 if (PtrInfo.V.isNull()) 6328 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6329 6330 MachineFunction &MF = getMachineFunction(); 6331 MachineMemOperand *MMO = MF.getMachineMemOperand( 6332 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6333 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6334 } 6335 6336 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6337 EVT VT, const SDLoc &dl, SDValue Chain, 6338 SDValue Ptr, SDValue Offset, EVT MemVT, 6339 MachineMemOperand *MMO) { 6340 if (VT == MemVT) { 6341 ExtType = ISD::NON_EXTLOAD; 6342 } else if (ExtType == ISD::NON_EXTLOAD) { 6343 assert(VT == MemVT && "Non-extending load from different memory type!"); 6344 } else { 6345 // Extending load. 6346 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6347 "Should only be an extending load, not truncating!"); 6348 assert(VT.isInteger() == MemVT.isInteger() && 6349 "Cannot convert from FP to Int or Int -> FP!"); 6350 assert(VT.isVector() == MemVT.isVector() && 6351 "Cannot use an ext load to convert to or from a vector!"); 6352 assert((!VT.isVector() || 6353 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6354 "Cannot use an ext load to change the number of vector elements!"); 6355 } 6356 6357 bool Indexed = AM != ISD::UNINDEXED; 6358 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6359 6360 SDVTList VTs = Indexed ? 6361 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6362 SDValue Ops[] = { Chain, Ptr, Offset }; 6363 FoldingSetNodeID ID; 6364 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6365 ID.AddInteger(MemVT.getRawBits()); 6366 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6367 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6368 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6369 void *IP = nullptr; 6370 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6371 cast<LoadSDNode>(E)->refineAlignment(MMO); 6372 return SDValue(E, 0); 6373 } 6374 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6375 ExtType, MemVT, MMO); 6376 createOperands(N, Ops); 6377 6378 CSEMap.InsertNode(N, IP); 6379 InsertNode(N); 6380 SDValue V(N, 0); 6381 NewSDValueDbgMsg(V, "Creating new node: ", this); 6382 return V; 6383 } 6384 6385 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6386 SDValue Ptr, MachinePointerInfo PtrInfo, 6387 unsigned Alignment, 6388 MachineMemOperand::Flags MMOFlags, 6389 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6390 SDValue Undef = getUNDEF(Ptr.getValueType()); 6391 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6392 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6393 } 6394 6395 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6396 SDValue Ptr, MachineMemOperand *MMO) { 6397 SDValue Undef = getUNDEF(Ptr.getValueType()); 6398 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6399 VT, MMO); 6400 } 6401 6402 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6403 EVT VT, SDValue Chain, SDValue Ptr, 6404 MachinePointerInfo PtrInfo, EVT MemVT, 6405 unsigned Alignment, 6406 MachineMemOperand::Flags MMOFlags, 6407 const AAMDNodes &AAInfo) { 6408 SDValue Undef = getUNDEF(Ptr.getValueType()); 6409 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6410 MemVT, Alignment, MMOFlags, AAInfo); 6411 } 6412 6413 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6414 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6415 MachineMemOperand *MMO) { 6416 SDValue Undef = getUNDEF(Ptr.getValueType()); 6417 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6418 MemVT, MMO); 6419 } 6420 6421 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6422 SDValue Base, SDValue Offset, 6423 ISD::MemIndexedMode AM) { 6424 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6425 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6426 // Don't propagate the invariant or dereferenceable flags. 6427 auto MMOFlags = 6428 LD->getMemOperand()->getFlags() & 6429 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6430 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6431 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6432 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6433 LD->getAAInfo()); 6434 } 6435 6436 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6437 SDValue Ptr, MachinePointerInfo PtrInfo, 6438 unsigned Alignment, 6439 MachineMemOperand::Flags MMOFlags, 6440 const AAMDNodes &AAInfo) { 6441 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6442 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6443 Alignment = getEVTAlignment(Val.getValueType()); 6444 6445 MMOFlags |= MachineMemOperand::MOStore; 6446 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6447 6448 if (PtrInfo.V.isNull()) 6449 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6450 6451 MachineFunction &MF = getMachineFunction(); 6452 MachineMemOperand *MMO = MF.getMachineMemOperand( 6453 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6454 return getStore(Chain, dl, Val, Ptr, MMO); 6455 } 6456 6457 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6458 SDValue Ptr, MachineMemOperand *MMO) { 6459 assert(Chain.getValueType() == MVT::Other && 6460 "Invalid chain type"); 6461 EVT VT = Val.getValueType(); 6462 SDVTList VTs = getVTList(MVT::Other); 6463 SDValue Undef = getUNDEF(Ptr.getValueType()); 6464 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6465 FoldingSetNodeID ID; 6466 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6467 ID.AddInteger(VT.getRawBits()); 6468 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6469 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6470 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6471 void *IP = nullptr; 6472 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6473 cast<StoreSDNode>(E)->refineAlignment(MMO); 6474 return SDValue(E, 0); 6475 } 6476 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6477 ISD::UNINDEXED, false, VT, MMO); 6478 createOperands(N, Ops); 6479 6480 CSEMap.InsertNode(N, IP); 6481 InsertNode(N); 6482 SDValue V(N, 0); 6483 NewSDValueDbgMsg(V, "Creating new node: ", this); 6484 return V; 6485 } 6486 6487 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6488 SDValue Ptr, MachinePointerInfo PtrInfo, 6489 EVT SVT, unsigned Alignment, 6490 MachineMemOperand::Flags MMOFlags, 6491 const AAMDNodes &AAInfo) { 6492 assert(Chain.getValueType() == MVT::Other && 6493 "Invalid chain type"); 6494 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6495 Alignment = getEVTAlignment(SVT); 6496 6497 MMOFlags |= MachineMemOperand::MOStore; 6498 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6499 6500 if (PtrInfo.V.isNull()) 6501 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6502 6503 MachineFunction &MF = getMachineFunction(); 6504 MachineMemOperand *MMO = MF.getMachineMemOperand( 6505 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6506 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6507 } 6508 6509 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6510 SDValue Ptr, EVT SVT, 6511 MachineMemOperand *MMO) { 6512 EVT VT = Val.getValueType(); 6513 6514 assert(Chain.getValueType() == MVT::Other && 6515 "Invalid chain type"); 6516 if (VT == SVT) 6517 return getStore(Chain, dl, Val, Ptr, MMO); 6518 6519 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6520 "Should only be a truncating store, not extending!"); 6521 assert(VT.isInteger() == SVT.isInteger() && 6522 "Can't do FP-INT conversion!"); 6523 assert(VT.isVector() == SVT.isVector() && 6524 "Cannot use trunc store to convert to or from a vector!"); 6525 assert((!VT.isVector() || 6526 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6527 "Cannot use trunc store to change the number of vector elements!"); 6528 6529 SDVTList VTs = getVTList(MVT::Other); 6530 SDValue Undef = getUNDEF(Ptr.getValueType()); 6531 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6532 FoldingSetNodeID ID; 6533 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6534 ID.AddInteger(SVT.getRawBits()); 6535 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6536 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6537 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6538 void *IP = nullptr; 6539 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6540 cast<StoreSDNode>(E)->refineAlignment(MMO); 6541 return SDValue(E, 0); 6542 } 6543 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6544 ISD::UNINDEXED, true, SVT, MMO); 6545 createOperands(N, Ops); 6546 6547 CSEMap.InsertNode(N, IP); 6548 InsertNode(N); 6549 SDValue V(N, 0); 6550 NewSDValueDbgMsg(V, "Creating new node: ", this); 6551 return V; 6552 } 6553 6554 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6555 SDValue Base, SDValue Offset, 6556 ISD::MemIndexedMode AM) { 6557 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6558 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6559 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6560 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6561 FoldingSetNodeID ID; 6562 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6563 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6564 ID.AddInteger(ST->getRawSubclassData()); 6565 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6566 void *IP = nullptr; 6567 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6568 return SDValue(E, 0); 6569 6570 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6571 ST->isTruncatingStore(), ST->getMemoryVT(), 6572 ST->getMemOperand()); 6573 createOperands(N, Ops); 6574 6575 CSEMap.InsertNode(N, IP); 6576 InsertNode(N); 6577 SDValue V(N, 0); 6578 NewSDValueDbgMsg(V, "Creating new node: ", this); 6579 return V; 6580 } 6581 6582 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6583 SDValue Ptr, SDValue Mask, SDValue PassThru, 6584 EVT MemVT, MachineMemOperand *MMO, 6585 ISD::LoadExtType ExtTy, bool isExpanding) { 6586 SDVTList VTs = getVTList(VT, MVT::Other); 6587 SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; 6588 FoldingSetNodeID ID; 6589 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6590 ID.AddInteger(VT.getRawBits()); 6591 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6592 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6593 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6594 void *IP = nullptr; 6595 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6596 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6597 return SDValue(E, 0); 6598 } 6599 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6600 ExtTy, isExpanding, MemVT, MMO); 6601 createOperands(N, Ops); 6602 6603 CSEMap.InsertNode(N, IP); 6604 InsertNode(N); 6605 SDValue V(N, 0); 6606 NewSDValueDbgMsg(V, "Creating new node: ", this); 6607 return V; 6608 } 6609 6610 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6611 SDValue Val, SDValue Ptr, SDValue Mask, 6612 EVT MemVT, MachineMemOperand *MMO, 6613 bool IsTruncating, bool IsCompressing) { 6614 assert(Chain.getValueType() == MVT::Other && 6615 "Invalid chain type"); 6616 EVT VT = Val.getValueType(); 6617 SDVTList VTs = getVTList(MVT::Other); 6618 SDValue Ops[] = { Chain, Val, Ptr, Mask }; 6619 FoldingSetNodeID ID; 6620 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6621 ID.AddInteger(VT.getRawBits()); 6622 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6623 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6624 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6625 void *IP = nullptr; 6626 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6627 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6628 return SDValue(E, 0); 6629 } 6630 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6631 IsTruncating, IsCompressing, MemVT, MMO); 6632 createOperands(N, Ops); 6633 6634 CSEMap.InsertNode(N, IP); 6635 InsertNode(N); 6636 SDValue V(N, 0); 6637 NewSDValueDbgMsg(V, "Creating new node: ", this); 6638 return V; 6639 } 6640 6641 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6642 ArrayRef<SDValue> Ops, 6643 MachineMemOperand *MMO) { 6644 assert(Ops.size() == 6 && "Incompatible number of operands"); 6645 6646 FoldingSetNodeID ID; 6647 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6648 ID.AddInteger(VT.getRawBits()); 6649 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6650 dl.getIROrder(), VTs, VT, MMO)); 6651 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6652 void *IP = nullptr; 6653 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6654 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6655 return SDValue(E, 0); 6656 } 6657 6658 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6659 VTs, VT, MMO); 6660 createOperands(N, Ops); 6661 6662 assert(N->getPassThru().getValueType() == N->getValueType(0) && 6663 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6664 assert(N->getMask().getValueType().getVectorNumElements() == 6665 N->getValueType(0).getVectorNumElements() && 6666 "Vector width mismatch between mask and data"); 6667 assert(N->getIndex().getValueType().getVectorNumElements() >= 6668 N->getValueType(0).getVectorNumElements() && 6669 "Vector width mismatch between index and data"); 6670 assert(isa<ConstantSDNode>(N->getScale()) && 6671 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6672 "Scale should be a constant power of 2"); 6673 6674 CSEMap.InsertNode(N, IP); 6675 InsertNode(N); 6676 SDValue V(N, 0); 6677 NewSDValueDbgMsg(V, "Creating new node: ", this); 6678 return V; 6679 } 6680 6681 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6682 ArrayRef<SDValue> Ops, 6683 MachineMemOperand *MMO) { 6684 assert(Ops.size() == 6 && "Incompatible number of operands"); 6685 6686 FoldingSetNodeID ID; 6687 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6688 ID.AddInteger(VT.getRawBits()); 6689 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6690 dl.getIROrder(), VTs, VT, MMO)); 6691 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6692 void *IP = nullptr; 6693 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6694 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6695 return SDValue(E, 0); 6696 } 6697 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6698 VTs, VT, MMO); 6699 createOperands(N, Ops); 6700 6701 assert(N->getMask().getValueType().getVectorNumElements() == 6702 N->getValue().getValueType().getVectorNumElements() && 6703 "Vector width mismatch between mask and data"); 6704 assert(N->getIndex().getValueType().getVectorNumElements() >= 6705 N->getValue().getValueType().getVectorNumElements() && 6706 "Vector width mismatch between index and data"); 6707 assert(isa<ConstantSDNode>(N->getScale()) && 6708 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6709 "Scale should be a constant power of 2"); 6710 6711 CSEMap.InsertNode(N, IP); 6712 InsertNode(N); 6713 SDValue V(N, 0); 6714 NewSDValueDbgMsg(V, "Creating new node: ", this); 6715 return V; 6716 } 6717 6718 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 6719 SDValue Ptr, SDValue SV, unsigned Align) { 6720 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 6721 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 6722 } 6723 6724 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6725 ArrayRef<SDUse> Ops) { 6726 switch (Ops.size()) { 6727 case 0: return getNode(Opcode, DL, VT); 6728 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 6729 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 6730 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6731 default: break; 6732 } 6733 6734 // Copy from an SDUse array into an SDValue array for use with 6735 // the regular getNode logic. 6736 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 6737 return getNode(Opcode, DL, VT, NewOps); 6738 } 6739 6740 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6741 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 6742 unsigned NumOps = Ops.size(); 6743 switch (NumOps) { 6744 case 0: return getNode(Opcode, DL, VT); 6745 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 6746 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 6747 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 6748 default: break; 6749 } 6750 6751 switch (Opcode) { 6752 default: break; 6753 case ISD::CONCAT_VECTORS: 6754 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 6755 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 6756 return V; 6757 break; 6758 case ISD::SELECT_CC: 6759 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 6760 assert(Ops[0].getValueType() == Ops[1].getValueType() && 6761 "LHS and RHS of condition must have same type!"); 6762 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6763 "True and False arms of SelectCC must have same type!"); 6764 assert(Ops[2].getValueType() == VT && 6765 "select_cc node must be of same type as true and false value!"); 6766 break; 6767 case ISD::BR_CC: 6768 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 6769 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6770 "LHS/RHS of comparison should match types!"); 6771 break; 6772 } 6773 6774 // Memoize nodes. 6775 SDNode *N; 6776 SDVTList VTs = getVTList(VT); 6777 6778 if (VT != MVT::Glue) { 6779 FoldingSetNodeID ID; 6780 AddNodeIDNode(ID, Opcode, VTs, Ops); 6781 void *IP = nullptr; 6782 6783 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6784 return SDValue(E, 0); 6785 6786 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6787 createOperands(N, Ops); 6788 6789 CSEMap.InsertNode(N, IP); 6790 } else { 6791 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6792 createOperands(N, Ops); 6793 } 6794 6795 InsertNode(N); 6796 SDValue V(N, 0); 6797 NewSDValueDbgMsg(V, "Creating new node: ", this); 6798 return V; 6799 } 6800 6801 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6802 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 6803 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 6804 } 6805 6806 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6807 ArrayRef<SDValue> Ops) { 6808 if (VTList.NumVTs == 1) 6809 return getNode(Opcode, DL, VTList.VTs[0], Ops); 6810 6811 #if 0 6812 switch (Opcode) { 6813 // FIXME: figure out how to safely handle things like 6814 // int foo(int x) { return 1 << (x & 255); } 6815 // int bar() { return foo(256); } 6816 case ISD::SRA_PARTS: 6817 case ISD::SRL_PARTS: 6818 case ISD::SHL_PARTS: 6819 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 6820 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 6821 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6822 else if (N3.getOpcode() == ISD::AND) 6823 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 6824 // If the and is only masking out bits that cannot effect the shift, 6825 // eliminate the and. 6826 unsigned NumBits = VT.getScalarSizeInBits()*2; 6827 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 6828 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6829 } 6830 break; 6831 } 6832 #endif 6833 6834 // Memoize the node unless it returns a flag. 6835 SDNode *N; 6836 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6837 FoldingSetNodeID ID; 6838 AddNodeIDNode(ID, Opcode, VTList, Ops); 6839 void *IP = nullptr; 6840 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6841 return SDValue(E, 0); 6842 6843 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6844 createOperands(N, Ops); 6845 CSEMap.InsertNode(N, IP); 6846 } else { 6847 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6848 createOperands(N, Ops); 6849 } 6850 InsertNode(N); 6851 SDValue V(N, 0); 6852 NewSDValueDbgMsg(V, "Creating new node: ", this); 6853 return V; 6854 } 6855 6856 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6857 SDVTList VTList) { 6858 return getNode(Opcode, DL, VTList, None); 6859 } 6860 6861 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6862 SDValue N1) { 6863 SDValue Ops[] = { N1 }; 6864 return getNode(Opcode, DL, VTList, Ops); 6865 } 6866 6867 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6868 SDValue N1, SDValue N2) { 6869 SDValue Ops[] = { N1, N2 }; 6870 return getNode(Opcode, DL, VTList, Ops); 6871 } 6872 6873 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6874 SDValue N1, SDValue N2, SDValue N3) { 6875 SDValue Ops[] = { N1, N2, N3 }; 6876 return getNode(Opcode, DL, VTList, Ops); 6877 } 6878 6879 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6880 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6881 SDValue Ops[] = { N1, N2, N3, N4 }; 6882 return getNode(Opcode, DL, VTList, Ops); 6883 } 6884 6885 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6886 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6887 SDValue N5) { 6888 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6889 return getNode(Opcode, DL, VTList, Ops); 6890 } 6891 6892 SDVTList SelectionDAG::getVTList(EVT VT) { 6893 return makeVTList(SDNode::getValueTypeList(VT), 1); 6894 } 6895 6896 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 6897 FoldingSetNodeID ID; 6898 ID.AddInteger(2U); 6899 ID.AddInteger(VT1.getRawBits()); 6900 ID.AddInteger(VT2.getRawBits()); 6901 6902 void *IP = nullptr; 6903 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6904 if (!Result) { 6905 EVT *Array = Allocator.Allocate<EVT>(2); 6906 Array[0] = VT1; 6907 Array[1] = VT2; 6908 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 6909 VTListMap.InsertNode(Result, IP); 6910 } 6911 return Result->getSDVTList(); 6912 } 6913 6914 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 6915 FoldingSetNodeID ID; 6916 ID.AddInteger(3U); 6917 ID.AddInteger(VT1.getRawBits()); 6918 ID.AddInteger(VT2.getRawBits()); 6919 ID.AddInteger(VT3.getRawBits()); 6920 6921 void *IP = nullptr; 6922 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6923 if (!Result) { 6924 EVT *Array = Allocator.Allocate<EVT>(3); 6925 Array[0] = VT1; 6926 Array[1] = VT2; 6927 Array[2] = VT3; 6928 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 6929 VTListMap.InsertNode(Result, IP); 6930 } 6931 return Result->getSDVTList(); 6932 } 6933 6934 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 6935 FoldingSetNodeID ID; 6936 ID.AddInteger(4U); 6937 ID.AddInteger(VT1.getRawBits()); 6938 ID.AddInteger(VT2.getRawBits()); 6939 ID.AddInteger(VT3.getRawBits()); 6940 ID.AddInteger(VT4.getRawBits()); 6941 6942 void *IP = nullptr; 6943 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6944 if (!Result) { 6945 EVT *Array = Allocator.Allocate<EVT>(4); 6946 Array[0] = VT1; 6947 Array[1] = VT2; 6948 Array[2] = VT3; 6949 Array[3] = VT4; 6950 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6951 VTListMap.InsertNode(Result, IP); 6952 } 6953 return Result->getSDVTList(); 6954 } 6955 6956 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6957 unsigned NumVTs = VTs.size(); 6958 FoldingSetNodeID ID; 6959 ID.AddInteger(NumVTs); 6960 for (unsigned index = 0; index < NumVTs; index++) { 6961 ID.AddInteger(VTs[index].getRawBits()); 6962 } 6963 6964 void *IP = nullptr; 6965 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6966 if (!Result) { 6967 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6968 std::copy(VTs.begin(), VTs.end(), Array); 6969 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6970 VTListMap.InsertNode(Result, IP); 6971 } 6972 return Result->getSDVTList(); 6973 } 6974 6975 6976 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6977 /// specified operands. If the resultant node already exists in the DAG, 6978 /// this does not modify the specified node, instead it returns the node that 6979 /// already exists. If the resultant node does not exist in the DAG, the 6980 /// input node is returned. As a degenerate case, if you specify the same 6981 /// input operands as the node already has, the input node is returned. 6982 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6983 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6984 6985 // Check to see if there is no change. 6986 if (Op == N->getOperand(0)) return N; 6987 6988 // See if the modified node already exists. 6989 void *InsertPos = nullptr; 6990 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6991 return Existing; 6992 6993 // Nope it doesn't. Remove the node from its current place in the maps. 6994 if (InsertPos) 6995 if (!RemoveNodeFromCSEMaps(N)) 6996 InsertPos = nullptr; 6997 6998 // Now we update the operands. 6999 N->OperandList[0].set(Op); 7000 7001 updateDivergence(N); 7002 // If this gets put into a CSE map, add it. 7003 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7004 return N; 7005 } 7006 7007 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7008 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7009 7010 // Check to see if there is no change. 7011 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7012 return N; // No operands changed, just return the input node. 7013 7014 // See if the modified node already exists. 7015 void *InsertPos = nullptr; 7016 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7017 return Existing; 7018 7019 // Nope it doesn't. Remove the node from its current place in the maps. 7020 if (InsertPos) 7021 if (!RemoveNodeFromCSEMaps(N)) 7022 InsertPos = nullptr; 7023 7024 // Now we update the operands. 7025 if (N->OperandList[0] != Op1) 7026 N->OperandList[0].set(Op1); 7027 if (N->OperandList[1] != Op2) 7028 N->OperandList[1].set(Op2); 7029 7030 updateDivergence(N); 7031 // If this gets put into a CSE map, add it. 7032 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7033 return N; 7034 } 7035 7036 SDNode *SelectionDAG:: 7037 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7038 SDValue Ops[] = { Op1, Op2, Op3 }; 7039 return UpdateNodeOperands(N, Ops); 7040 } 7041 7042 SDNode *SelectionDAG:: 7043 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7044 SDValue Op3, SDValue Op4) { 7045 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7046 return UpdateNodeOperands(N, Ops); 7047 } 7048 7049 SDNode *SelectionDAG:: 7050 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7051 SDValue Op3, SDValue Op4, SDValue Op5) { 7052 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7053 return UpdateNodeOperands(N, Ops); 7054 } 7055 7056 SDNode *SelectionDAG:: 7057 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7058 unsigned NumOps = Ops.size(); 7059 assert(N->getNumOperands() == NumOps && 7060 "Update with wrong number of operands"); 7061 7062 // If no operands changed just return the input node. 7063 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7064 return N; 7065 7066 // See if the modified node already exists. 7067 void *InsertPos = nullptr; 7068 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7069 return Existing; 7070 7071 // Nope it doesn't. Remove the node from its current place in the maps. 7072 if (InsertPos) 7073 if (!RemoveNodeFromCSEMaps(N)) 7074 InsertPos = nullptr; 7075 7076 // Now we update the operands. 7077 for (unsigned i = 0; i != NumOps; ++i) 7078 if (N->OperandList[i] != Ops[i]) 7079 N->OperandList[i].set(Ops[i]); 7080 7081 updateDivergence(N); 7082 // If this gets put into a CSE map, add it. 7083 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7084 return N; 7085 } 7086 7087 /// DropOperands - Release the operands and set this node to have 7088 /// zero operands. 7089 void SDNode::DropOperands() { 7090 // Unlike the code in MorphNodeTo that does this, we don't need to 7091 // watch for dead nodes here. 7092 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7093 SDUse &Use = *I++; 7094 Use.set(SDValue()); 7095 } 7096 } 7097 7098 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7099 ArrayRef<MachineMemOperand *> NewMemRefs) { 7100 if (NewMemRefs.empty()) { 7101 N->clearMemRefs(); 7102 return; 7103 } 7104 7105 // Check if we can avoid allocating by storing a single reference directly. 7106 if (NewMemRefs.size() == 1) { 7107 N->MemRefs = NewMemRefs[0]; 7108 N->NumMemRefs = 1; 7109 return; 7110 } 7111 7112 MachineMemOperand **MemRefsBuffer = 7113 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7114 std::copy(NewMemRefs.begin(), NewMemRefs.end(), MemRefsBuffer); 7115 N->MemRefs = MemRefsBuffer; 7116 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7117 } 7118 7119 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7120 /// machine opcode. 7121 /// 7122 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7123 EVT VT) { 7124 SDVTList VTs = getVTList(VT); 7125 return SelectNodeTo(N, MachineOpc, VTs, None); 7126 } 7127 7128 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7129 EVT VT, SDValue Op1) { 7130 SDVTList VTs = getVTList(VT); 7131 SDValue Ops[] = { Op1 }; 7132 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7133 } 7134 7135 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7136 EVT VT, SDValue Op1, 7137 SDValue Op2) { 7138 SDVTList VTs = getVTList(VT); 7139 SDValue Ops[] = { Op1, Op2 }; 7140 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7141 } 7142 7143 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7144 EVT VT, SDValue Op1, 7145 SDValue Op2, SDValue Op3) { 7146 SDVTList VTs = getVTList(VT); 7147 SDValue Ops[] = { Op1, Op2, Op3 }; 7148 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7149 } 7150 7151 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7152 EVT VT, ArrayRef<SDValue> Ops) { 7153 SDVTList VTs = getVTList(VT); 7154 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7155 } 7156 7157 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7158 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7159 SDVTList VTs = getVTList(VT1, VT2); 7160 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7161 } 7162 7163 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7164 EVT VT1, EVT VT2) { 7165 SDVTList VTs = getVTList(VT1, VT2); 7166 return SelectNodeTo(N, MachineOpc, VTs, None); 7167 } 7168 7169 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7170 EVT VT1, EVT VT2, EVT VT3, 7171 ArrayRef<SDValue> Ops) { 7172 SDVTList VTs = getVTList(VT1, VT2, VT3); 7173 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7174 } 7175 7176 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7177 EVT VT1, EVT VT2, 7178 SDValue Op1, SDValue Op2) { 7179 SDVTList VTs = getVTList(VT1, VT2); 7180 SDValue Ops[] = { Op1, Op2 }; 7181 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7182 } 7183 7184 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7185 SDVTList VTs,ArrayRef<SDValue> Ops) { 7186 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7187 // Reset the NodeID to -1. 7188 New->setNodeId(-1); 7189 if (New != N) { 7190 ReplaceAllUsesWith(N, New); 7191 RemoveDeadNode(N); 7192 } 7193 return New; 7194 } 7195 7196 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7197 /// the line number information on the merged node since it is not possible to 7198 /// preserve the information that operation is associated with multiple lines. 7199 /// This will make the debugger working better at -O0, were there is a higher 7200 /// probability having other instructions associated with that line. 7201 /// 7202 /// For IROrder, we keep the smaller of the two 7203 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7204 DebugLoc NLoc = N->getDebugLoc(); 7205 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7206 N->setDebugLoc(DebugLoc()); 7207 } 7208 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7209 N->setIROrder(Order); 7210 return N; 7211 } 7212 7213 /// MorphNodeTo - This *mutates* the specified node to have the specified 7214 /// return type, opcode, and operands. 7215 /// 7216 /// Note that MorphNodeTo returns the resultant node. If there is already a 7217 /// node of the specified opcode and operands, it returns that node instead of 7218 /// the current one. Note that the SDLoc need not be the same. 7219 /// 7220 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7221 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7222 /// node, and because it doesn't require CSE recalculation for any of 7223 /// the node's users. 7224 /// 7225 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7226 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7227 /// the legalizer which maintain worklists that would need to be updated when 7228 /// deleting things. 7229 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7230 SDVTList VTs, ArrayRef<SDValue> Ops) { 7231 // If an identical node already exists, use it. 7232 void *IP = nullptr; 7233 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7234 FoldingSetNodeID ID; 7235 AddNodeIDNode(ID, Opc, VTs, Ops); 7236 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7237 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7238 } 7239 7240 if (!RemoveNodeFromCSEMaps(N)) 7241 IP = nullptr; 7242 7243 // Start the morphing. 7244 N->NodeType = Opc; 7245 N->ValueList = VTs.VTs; 7246 N->NumValues = VTs.NumVTs; 7247 7248 // Clear the operands list, updating used nodes to remove this from their 7249 // use list. Keep track of any operands that become dead as a result. 7250 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7251 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7252 SDUse &Use = *I++; 7253 SDNode *Used = Use.getNode(); 7254 Use.set(SDValue()); 7255 if (Used->use_empty()) 7256 DeadNodeSet.insert(Used); 7257 } 7258 7259 // For MachineNode, initialize the memory references information. 7260 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7261 MN->clearMemRefs(); 7262 7263 // Swap for an appropriately sized array from the recycler. 7264 removeOperands(N); 7265 createOperands(N, Ops); 7266 7267 // Delete any nodes that are still dead after adding the uses for the 7268 // new operands. 7269 if (!DeadNodeSet.empty()) { 7270 SmallVector<SDNode *, 16> DeadNodes; 7271 for (SDNode *N : DeadNodeSet) 7272 if (N->use_empty()) 7273 DeadNodes.push_back(N); 7274 RemoveDeadNodes(DeadNodes); 7275 } 7276 7277 if (IP) 7278 CSEMap.InsertNode(N, IP); // Memoize the new node. 7279 return N; 7280 } 7281 7282 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7283 unsigned OrigOpc = Node->getOpcode(); 7284 unsigned NewOpc; 7285 bool IsUnary = false; 7286 bool IsTernary = false; 7287 switch (OrigOpc) { 7288 default: 7289 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7290 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 7291 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 7292 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 7293 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 7294 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 7295 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; 7296 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 7297 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 7298 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 7299 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 7300 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 7301 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 7302 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 7303 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 7304 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 7305 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 7306 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 7307 case ISD::STRICT_FNEARBYINT: 7308 NewOpc = ISD::FNEARBYINT; 7309 IsUnary = true; 7310 break; 7311 } 7312 7313 // We're taking this node out of the chain, so we need to re-link things. 7314 SDValue InputChain = Node->getOperand(0); 7315 SDValue OutputChain = SDValue(Node, 1); 7316 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7317 7318 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 7319 SDNode *Res = nullptr; 7320 if (IsUnary) 7321 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 7322 else if (IsTernary) 7323 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 7324 Node->getOperand(2), 7325 Node->getOperand(3)}); 7326 else 7327 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 7328 Node->getOperand(2) }); 7329 7330 // MorphNodeTo can operate in two ways: if an existing node with the 7331 // specified operands exists, it can just return it. Otherwise, it 7332 // updates the node in place to have the requested operands. 7333 if (Res == Node) { 7334 // If we updated the node in place, reset the node ID. To the isel, 7335 // this should be just like a newly allocated machine node. 7336 Res->setNodeId(-1); 7337 } else { 7338 ReplaceAllUsesWith(Node, Res); 7339 RemoveDeadNode(Node); 7340 } 7341 7342 return Res; 7343 } 7344 7345 /// getMachineNode - These are used for target selectors to create a new node 7346 /// with specified return type(s), MachineInstr opcode, and operands. 7347 /// 7348 /// Note that getMachineNode returns the resultant node. If there is already a 7349 /// node of the specified opcode and operands, it returns that node instead of 7350 /// the current one. 7351 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7352 EVT VT) { 7353 SDVTList VTs = getVTList(VT); 7354 return getMachineNode(Opcode, dl, VTs, None); 7355 } 7356 7357 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7358 EVT VT, SDValue Op1) { 7359 SDVTList VTs = getVTList(VT); 7360 SDValue Ops[] = { Op1 }; 7361 return getMachineNode(Opcode, dl, VTs, Ops); 7362 } 7363 7364 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7365 EVT VT, SDValue Op1, SDValue Op2) { 7366 SDVTList VTs = getVTList(VT); 7367 SDValue Ops[] = { Op1, Op2 }; 7368 return getMachineNode(Opcode, dl, VTs, Ops); 7369 } 7370 7371 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7372 EVT VT, SDValue Op1, SDValue Op2, 7373 SDValue Op3) { 7374 SDVTList VTs = getVTList(VT); 7375 SDValue Ops[] = { Op1, Op2, Op3 }; 7376 return getMachineNode(Opcode, dl, VTs, Ops); 7377 } 7378 7379 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7380 EVT VT, ArrayRef<SDValue> Ops) { 7381 SDVTList VTs = getVTList(VT); 7382 return getMachineNode(Opcode, dl, VTs, Ops); 7383 } 7384 7385 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7386 EVT VT1, EVT VT2, SDValue Op1, 7387 SDValue Op2) { 7388 SDVTList VTs = getVTList(VT1, VT2); 7389 SDValue Ops[] = { Op1, Op2 }; 7390 return getMachineNode(Opcode, dl, VTs, Ops); 7391 } 7392 7393 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7394 EVT VT1, EVT VT2, SDValue Op1, 7395 SDValue Op2, SDValue Op3) { 7396 SDVTList VTs = getVTList(VT1, VT2); 7397 SDValue Ops[] = { Op1, Op2, Op3 }; 7398 return getMachineNode(Opcode, dl, VTs, Ops); 7399 } 7400 7401 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7402 EVT VT1, EVT VT2, 7403 ArrayRef<SDValue> Ops) { 7404 SDVTList VTs = getVTList(VT1, VT2); 7405 return getMachineNode(Opcode, dl, VTs, Ops); 7406 } 7407 7408 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7409 EVT VT1, EVT VT2, EVT VT3, 7410 SDValue Op1, SDValue Op2) { 7411 SDVTList VTs = getVTList(VT1, VT2, VT3); 7412 SDValue Ops[] = { Op1, Op2 }; 7413 return getMachineNode(Opcode, dl, VTs, Ops); 7414 } 7415 7416 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7417 EVT VT1, EVT VT2, EVT VT3, 7418 SDValue Op1, SDValue Op2, 7419 SDValue Op3) { 7420 SDVTList VTs = getVTList(VT1, VT2, VT3); 7421 SDValue Ops[] = { Op1, Op2, Op3 }; 7422 return getMachineNode(Opcode, dl, VTs, Ops); 7423 } 7424 7425 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7426 EVT VT1, EVT VT2, EVT VT3, 7427 ArrayRef<SDValue> Ops) { 7428 SDVTList VTs = getVTList(VT1, VT2, VT3); 7429 return getMachineNode(Opcode, dl, VTs, Ops); 7430 } 7431 7432 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7433 ArrayRef<EVT> ResultTys, 7434 ArrayRef<SDValue> Ops) { 7435 SDVTList VTs = getVTList(ResultTys); 7436 return getMachineNode(Opcode, dl, VTs, Ops); 7437 } 7438 7439 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7440 SDVTList VTs, 7441 ArrayRef<SDValue> Ops) { 7442 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7443 MachineSDNode *N; 7444 void *IP = nullptr; 7445 7446 if (DoCSE) { 7447 FoldingSetNodeID ID; 7448 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7449 IP = nullptr; 7450 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7451 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7452 } 7453 } 7454 7455 // Allocate a new MachineSDNode. 7456 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7457 createOperands(N, Ops); 7458 7459 if (DoCSE) 7460 CSEMap.InsertNode(N, IP); 7461 7462 InsertNode(N); 7463 return N; 7464 } 7465 7466 /// getTargetExtractSubreg - A convenience function for creating 7467 /// TargetOpcode::EXTRACT_SUBREG nodes. 7468 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7469 SDValue Operand) { 7470 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7471 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7472 VT, Operand, SRIdxVal); 7473 return SDValue(Subreg, 0); 7474 } 7475 7476 /// getTargetInsertSubreg - A convenience function for creating 7477 /// TargetOpcode::INSERT_SUBREG nodes. 7478 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7479 SDValue Operand, SDValue Subreg) { 7480 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7481 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7482 VT, Operand, Subreg, SRIdxVal); 7483 return SDValue(Result, 0); 7484 } 7485 7486 /// getNodeIfExists - Get the specified node if it's already available, or 7487 /// else return NULL. 7488 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7489 ArrayRef<SDValue> Ops, 7490 const SDNodeFlags Flags) { 7491 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7492 FoldingSetNodeID ID; 7493 AddNodeIDNode(ID, Opcode, VTList, Ops); 7494 void *IP = nullptr; 7495 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7496 E->intersectFlagsWith(Flags); 7497 return E; 7498 } 7499 } 7500 return nullptr; 7501 } 7502 7503 /// getDbgValue - Creates a SDDbgValue node. 7504 /// 7505 /// SDNode 7506 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7507 SDNode *N, unsigned R, bool IsIndirect, 7508 const DebugLoc &DL, unsigned O) { 7509 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7510 "Expected inlined-at fields to agree"); 7511 return new (DbgInfo->getAlloc()) 7512 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7513 } 7514 7515 /// Constant 7516 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7517 DIExpression *Expr, 7518 const Value *C, 7519 const DebugLoc &DL, unsigned O) { 7520 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7521 "Expected inlined-at fields to agree"); 7522 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7523 } 7524 7525 /// FrameIndex 7526 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7527 DIExpression *Expr, unsigned FI, 7528 bool IsIndirect, 7529 const DebugLoc &DL, 7530 unsigned O) { 7531 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7532 "Expected inlined-at fields to agree"); 7533 return new (DbgInfo->getAlloc()) 7534 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 7535 } 7536 7537 /// VReg 7538 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 7539 DIExpression *Expr, 7540 unsigned VReg, bool IsIndirect, 7541 const DebugLoc &DL, unsigned O) { 7542 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7543 "Expected inlined-at fields to agree"); 7544 return new (DbgInfo->getAlloc()) 7545 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 7546 } 7547 7548 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 7549 unsigned OffsetInBits, unsigned SizeInBits, 7550 bool InvalidateDbg) { 7551 SDNode *FromNode = From.getNode(); 7552 SDNode *ToNode = To.getNode(); 7553 assert(FromNode && ToNode && "Can't modify dbg values"); 7554 7555 // PR35338 7556 // TODO: assert(From != To && "Redundant dbg value transfer"); 7557 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 7558 if (From == To || FromNode == ToNode) 7559 return; 7560 7561 if (!FromNode->getHasDebugValue()) 7562 return; 7563 7564 SmallVector<SDDbgValue *, 2> ClonedDVs; 7565 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 7566 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 7567 continue; 7568 7569 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 7570 7571 // Just transfer the dbg value attached to From. 7572 if (Dbg->getResNo() != From.getResNo()) 7573 continue; 7574 7575 DIVariable *Var = Dbg->getVariable(); 7576 auto *Expr = Dbg->getExpression(); 7577 // If a fragment is requested, update the expression. 7578 if (SizeInBits) { 7579 // When splitting a larger (e.g., sign-extended) value whose 7580 // lower bits are described with an SDDbgValue, do not attempt 7581 // to transfer the SDDbgValue to the upper bits. 7582 if (auto FI = Expr->getFragmentInfo()) 7583 if (OffsetInBits + SizeInBits > FI->SizeInBits) 7584 continue; 7585 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 7586 SizeInBits); 7587 if (!Fragment) 7588 continue; 7589 Expr = *Fragment; 7590 } 7591 // Clone the SDDbgValue and move it to To. 7592 SDDbgValue *Clone = 7593 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 7594 Dbg->getDebugLoc(), Dbg->getOrder()); 7595 ClonedDVs.push_back(Clone); 7596 7597 if (InvalidateDbg) 7598 Dbg->setIsInvalidated(); 7599 } 7600 7601 for (SDDbgValue *Dbg : ClonedDVs) 7602 AddDbgValue(Dbg, ToNode, false); 7603 } 7604 7605 void SelectionDAG::salvageDebugInfo(SDNode &N) { 7606 if (!N.getHasDebugValue()) 7607 return; 7608 7609 SmallVector<SDDbgValue *, 2> ClonedDVs; 7610 for (auto DV : GetDbgValues(&N)) { 7611 if (DV->isInvalidated()) 7612 continue; 7613 switch (N.getOpcode()) { 7614 default: 7615 break; 7616 case ISD::ADD: 7617 SDValue N0 = N.getOperand(0); 7618 SDValue N1 = N.getOperand(1); 7619 if (!isConstantIntBuildVectorOrConstantInt(N0) && 7620 isConstantIntBuildVectorOrConstantInt(N1)) { 7621 uint64_t Offset = N.getConstantOperandVal(1); 7622 // Rewrite an ADD constant node into a DIExpression. Since we are 7623 // performing arithmetic to compute the variable's *value* in the 7624 // DIExpression, we need to mark the expression with a 7625 // DW_OP_stack_value. 7626 auto *DIExpr = DV->getExpression(); 7627 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 7628 DIExpression::NoDeref, 7629 DIExpression::WithStackValue); 7630 SDDbgValue *Clone = 7631 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 7632 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 7633 ClonedDVs.push_back(Clone); 7634 DV->setIsInvalidated(); 7635 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 7636 N0.getNode()->dumprFull(this); 7637 dbgs() << " into " << *DIExpr << '\n'); 7638 } 7639 } 7640 } 7641 7642 for (SDDbgValue *Dbg : ClonedDVs) 7643 AddDbgValue(Dbg, Dbg->getSDNode(), false); 7644 } 7645 7646 /// Creates a SDDbgLabel node. 7647 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 7648 const DebugLoc &DL, unsigned O) { 7649 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 7650 "Expected inlined-at fields to agree"); 7651 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 7652 } 7653 7654 namespace { 7655 7656 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 7657 /// pointed to by a use iterator is deleted, increment the use iterator 7658 /// so that it doesn't dangle. 7659 /// 7660 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 7661 SDNode::use_iterator &UI; 7662 SDNode::use_iterator &UE; 7663 7664 void NodeDeleted(SDNode *N, SDNode *E) override { 7665 // Increment the iterator as needed. 7666 while (UI != UE && N == *UI) 7667 ++UI; 7668 } 7669 7670 public: 7671 RAUWUpdateListener(SelectionDAG &d, 7672 SDNode::use_iterator &ui, 7673 SDNode::use_iterator &ue) 7674 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 7675 }; 7676 7677 } // end anonymous namespace 7678 7679 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7680 /// This can cause recursive merging of nodes in the DAG. 7681 /// 7682 /// This version assumes From has a single result value. 7683 /// 7684 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 7685 SDNode *From = FromN.getNode(); 7686 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 7687 "Cannot replace with this method!"); 7688 assert(From != To.getNode() && "Cannot replace uses of with self"); 7689 7690 // Preserve Debug Values 7691 transferDbgValues(FromN, To); 7692 7693 // Iterate over all the existing uses of From. New uses will be added 7694 // to the beginning of the use list, which we avoid visiting. 7695 // This specifically avoids visiting uses of From that arise while the 7696 // replacement is happening, because any such uses would be the result 7697 // of CSE: If an existing node looks like From after one of its operands 7698 // is replaced by To, we don't want to replace of all its users with To 7699 // too. See PR3018 for more info. 7700 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7701 RAUWUpdateListener Listener(*this, UI, UE); 7702 while (UI != UE) { 7703 SDNode *User = *UI; 7704 7705 // This node is about to morph, remove its old self from the CSE maps. 7706 RemoveNodeFromCSEMaps(User); 7707 7708 // A user can appear in a use list multiple times, and when this 7709 // happens the uses are usually next to each other in the list. 7710 // To help reduce the number of CSE recomputations, process all 7711 // the uses of this user that we can find this way. 7712 do { 7713 SDUse &Use = UI.getUse(); 7714 ++UI; 7715 Use.set(To); 7716 if (To->isDivergent() != From->isDivergent()) 7717 updateDivergence(User); 7718 } while (UI != UE && *UI == User); 7719 // Now that we have modified User, add it back to the CSE maps. If it 7720 // already exists there, recursively merge the results together. 7721 AddModifiedNodeToCSEMaps(User); 7722 } 7723 7724 // If we just RAUW'd the root, take note. 7725 if (FromN == getRoot()) 7726 setRoot(To); 7727 } 7728 7729 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7730 /// This can cause recursive merging of nodes in the DAG. 7731 /// 7732 /// This version assumes that for each value of From, there is a 7733 /// corresponding value in To in the same position with the same type. 7734 /// 7735 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 7736 #ifndef NDEBUG 7737 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7738 assert((!From->hasAnyUseOfValue(i) || 7739 From->getValueType(i) == To->getValueType(i)) && 7740 "Cannot use this version of ReplaceAllUsesWith!"); 7741 #endif 7742 7743 // Handle the trivial case. 7744 if (From == To) 7745 return; 7746 7747 // Preserve Debug Info. Only do this if there's a use. 7748 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7749 if (From->hasAnyUseOfValue(i)) { 7750 assert((i < To->getNumValues()) && "Invalid To location"); 7751 transferDbgValues(SDValue(From, i), SDValue(To, i)); 7752 } 7753 7754 // Iterate over just the existing users of From. See the comments in 7755 // the ReplaceAllUsesWith above. 7756 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7757 RAUWUpdateListener Listener(*this, UI, UE); 7758 while (UI != UE) { 7759 SDNode *User = *UI; 7760 7761 // This node is about to morph, remove its old self from the CSE maps. 7762 RemoveNodeFromCSEMaps(User); 7763 7764 // A user can appear in a use list multiple times, and when this 7765 // happens the uses are usually next to each other in the list. 7766 // To help reduce the number of CSE recomputations, process all 7767 // the uses of this user that we can find this way. 7768 do { 7769 SDUse &Use = UI.getUse(); 7770 ++UI; 7771 Use.setNode(To); 7772 if (To->isDivergent() != From->isDivergent()) 7773 updateDivergence(User); 7774 } while (UI != UE && *UI == User); 7775 7776 // Now that we have modified User, add it back to the CSE maps. If it 7777 // already exists there, recursively merge the results together. 7778 AddModifiedNodeToCSEMaps(User); 7779 } 7780 7781 // If we just RAUW'd the root, take note. 7782 if (From == getRoot().getNode()) 7783 setRoot(SDValue(To, getRoot().getResNo())); 7784 } 7785 7786 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7787 /// This can cause recursive merging of nodes in the DAG. 7788 /// 7789 /// This version can replace From with any result values. To must match the 7790 /// number and types of values returned by From. 7791 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 7792 if (From->getNumValues() == 1) // Handle the simple case efficiently. 7793 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 7794 7795 // Preserve Debug Info. 7796 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7797 transferDbgValues(SDValue(From, i), *To); 7798 7799 // Iterate over just the existing users of From. See the comments in 7800 // the ReplaceAllUsesWith above. 7801 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7802 RAUWUpdateListener Listener(*this, UI, UE); 7803 while (UI != UE) { 7804 SDNode *User = *UI; 7805 7806 // This node is about to morph, remove its old self from the CSE maps. 7807 RemoveNodeFromCSEMaps(User); 7808 7809 // A user can appear in a use list multiple times, and when this happens the 7810 // uses are usually next to each other in the list. To help reduce the 7811 // number of CSE and divergence recomputations, process all the uses of this 7812 // user that we can find this way. 7813 bool To_IsDivergent = false; 7814 do { 7815 SDUse &Use = UI.getUse(); 7816 const SDValue &ToOp = To[Use.getResNo()]; 7817 ++UI; 7818 Use.set(ToOp); 7819 To_IsDivergent |= ToOp->isDivergent(); 7820 } while (UI != UE && *UI == User); 7821 7822 if (To_IsDivergent != From->isDivergent()) 7823 updateDivergence(User); 7824 7825 // Now that we have modified User, add it back to the CSE maps. If it 7826 // already exists there, recursively merge the results together. 7827 AddModifiedNodeToCSEMaps(User); 7828 } 7829 7830 // If we just RAUW'd the root, take note. 7831 if (From == getRoot().getNode()) 7832 setRoot(SDValue(To[getRoot().getResNo()])); 7833 } 7834 7835 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 7836 /// uses of other values produced by From.getNode() alone. The Deleted 7837 /// vector is handled the same way as for ReplaceAllUsesWith. 7838 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 7839 // Handle the really simple, really trivial case efficiently. 7840 if (From == To) return; 7841 7842 // Handle the simple, trivial, case efficiently. 7843 if (From.getNode()->getNumValues() == 1) { 7844 ReplaceAllUsesWith(From, To); 7845 return; 7846 } 7847 7848 // Preserve Debug Info. 7849 transferDbgValues(From, To); 7850 7851 // Iterate over just the existing users of From. See the comments in 7852 // the ReplaceAllUsesWith above. 7853 SDNode::use_iterator UI = From.getNode()->use_begin(), 7854 UE = From.getNode()->use_end(); 7855 RAUWUpdateListener Listener(*this, UI, UE); 7856 while (UI != UE) { 7857 SDNode *User = *UI; 7858 bool UserRemovedFromCSEMaps = false; 7859 7860 // A user can appear in a use list multiple times, and when this 7861 // happens the uses are usually next to each other in the list. 7862 // To help reduce the number of CSE recomputations, process all 7863 // the uses of this user that we can find this way. 7864 do { 7865 SDUse &Use = UI.getUse(); 7866 7867 // Skip uses of different values from the same node. 7868 if (Use.getResNo() != From.getResNo()) { 7869 ++UI; 7870 continue; 7871 } 7872 7873 // If this node hasn't been modified yet, it's still in the CSE maps, 7874 // so remove its old self from the CSE maps. 7875 if (!UserRemovedFromCSEMaps) { 7876 RemoveNodeFromCSEMaps(User); 7877 UserRemovedFromCSEMaps = true; 7878 } 7879 7880 ++UI; 7881 Use.set(To); 7882 if (To->isDivergent() != From->isDivergent()) 7883 updateDivergence(User); 7884 } while (UI != UE && *UI == User); 7885 // We are iterating over all uses of the From node, so if a use 7886 // doesn't use the specific value, no changes are made. 7887 if (!UserRemovedFromCSEMaps) 7888 continue; 7889 7890 // Now that we have modified User, add it back to the CSE maps. If it 7891 // already exists there, recursively merge the results together. 7892 AddModifiedNodeToCSEMaps(User); 7893 } 7894 7895 // If we just RAUW'd the root, take note. 7896 if (From == getRoot()) 7897 setRoot(To); 7898 } 7899 7900 namespace { 7901 7902 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 7903 /// to record information about a use. 7904 struct UseMemo { 7905 SDNode *User; 7906 unsigned Index; 7907 SDUse *Use; 7908 }; 7909 7910 /// operator< - Sort Memos by User. 7911 bool operator<(const UseMemo &L, const UseMemo &R) { 7912 return (intptr_t)L.User < (intptr_t)R.User; 7913 } 7914 7915 } // end anonymous namespace 7916 7917 void SelectionDAG::updateDivergence(SDNode * N) 7918 { 7919 if (TLI->isSDNodeAlwaysUniform(N)) 7920 return; 7921 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 7922 for (auto &Op : N->ops()) { 7923 if (Op.Val.getValueType() != MVT::Other) 7924 IsDivergent |= Op.getNode()->isDivergent(); 7925 } 7926 if (N->SDNodeBits.IsDivergent != IsDivergent) { 7927 N->SDNodeBits.IsDivergent = IsDivergent; 7928 for (auto U : N->uses()) { 7929 updateDivergence(U); 7930 } 7931 } 7932 } 7933 7934 7935 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) { 7936 DenseMap<SDNode *, unsigned> Degree; 7937 Order.reserve(AllNodes.size()); 7938 for (auto & N : allnodes()) { 7939 unsigned NOps = N.getNumOperands(); 7940 Degree[&N] = NOps; 7941 if (0 == NOps) 7942 Order.push_back(&N); 7943 } 7944 for (std::vector<SDNode *>::iterator I = Order.begin(); 7945 I!=Order.end();++I) { 7946 SDNode * N = *I; 7947 for (auto U : N->uses()) { 7948 unsigned &UnsortedOps = Degree[U]; 7949 if (0 == --UnsortedOps) 7950 Order.push_back(U); 7951 } 7952 } 7953 } 7954 7955 void SelectionDAG::VerifyDAGDiverence() 7956 { 7957 std::vector<SDNode*> TopoOrder; 7958 CreateTopologicalOrder(TopoOrder); 7959 const TargetLowering &TLI = getTargetLoweringInfo(); 7960 DenseMap<const SDNode *, bool> DivergenceMap; 7961 for (auto &N : allnodes()) { 7962 DivergenceMap[&N] = false; 7963 } 7964 for (auto N : TopoOrder) { 7965 bool IsDivergent = DivergenceMap[N]; 7966 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 7967 for (auto &Op : N->ops()) { 7968 if (Op.Val.getValueType() != MVT::Other) 7969 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 7970 } 7971 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 7972 DivergenceMap[N] = true; 7973 } 7974 } 7975 for (auto &N : allnodes()) { 7976 (void)N; 7977 assert(DivergenceMap[&N] == N.isDivergent() && 7978 "Divergence bit inconsistency detected\n"); 7979 } 7980 } 7981 7982 7983 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 7984 /// uses of other values produced by From.getNode() alone. The same value 7985 /// may appear in both the From and To list. The Deleted vector is 7986 /// handled the same way as for ReplaceAllUsesWith. 7987 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 7988 const SDValue *To, 7989 unsigned Num){ 7990 // Handle the simple, trivial case efficiently. 7991 if (Num == 1) 7992 return ReplaceAllUsesOfValueWith(*From, *To); 7993 7994 transferDbgValues(*From, *To); 7995 7996 // Read up all the uses and make records of them. This helps 7997 // processing new uses that are introduced during the 7998 // replacement process. 7999 SmallVector<UseMemo, 4> Uses; 8000 for (unsigned i = 0; i != Num; ++i) { 8001 unsigned FromResNo = From[i].getResNo(); 8002 SDNode *FromNode = From[i].getNode(); 8003 for (SDNode::use_iterator UI = FromNode->use_begin(), 8004 E = FromNode->use_end(); UI != E; ++UI) { 8005 SDUse &Use = UI.getUse(); 8006 if (Use.getResNo() == FromResNo) { 8007 UseMemo Memo = { *UI, i, &Use }; 8008 Uses.push_back(Memo); 8009 } 8010 } 8011 } 8012 8013 // Sort the uses, so that all the uses from a given User are together. 8014 llvm::sort(Uses.begin(), Uses.end()); 8015 8016 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8017 UseIndex != UseIndexEnd; ) { 8018 // We know that this user uses some value of From. If it is the right 8019 // value, update it. 8020 SDNode *User = Uses[UseIndex].User; 8021 8022 // This node is about to morph, remove its old self from the CSE maps. 8023 RemoveNodeFromCSEMaps(User); 8024 8025 // The Uses array is sorted, so all the uses for a given User 8026 // are next to each other in the list. 8027 // To help reduce the number of CSE recomputations, process all 8028 // the uses of this user that we can find this way. 8029 do { 8030 unsigned i = Uses[UseIndex].Index; 8031 SDUse &Use = *Uses[UseIndex].Use; 8032 ++UseIndex; 8033 8034 Use.set(To[i]); 8035 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8036 8037 // Now that we have modified User, add it back to the CSE maps. If it 8038 // already exists there, recursively merge the results together. 8039 AddModifiedNodeToCSEMaps(User); 8040 } 8041 } 8042 8043 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8044 /// based on their topological order. It returns the maximum id and a vector 8045 /// of the SDNodes* in assigned order by reference. 8046 unsigned SelectionDAG::AssignTopologicalOrder() { 8047 unsigned DAGSize = 0; 8048 8049 // SortedPos tracks the progress of the algorithm. Nodes before it are 8050 // sorted, nodes after it are unsorted. When the algorithm completes 8051 // it is at the end of the list. 8052 allnodes_iterator SortedPos = allnodes_begin(); 8053 8054 // Visit all the nodes. Move nodes with no operands to the front of 8055 // the list immediately. Annotate nodes that do have operands with their 8056 // operand count. Before we do this, the Node Id fields of the nodes 8057 // may contain arbitrary values. After, the Node Id fields for nodes 8058 // before SortedPos will contain the topological sort index, and the 8059 // Node Id fields for nodes At SortedPos and after will contain the 8060 // count of outstanding operands. 8061 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8062 SDNode *N = &*I++; 8063 checkForCycles(N, this); 8064 unsigned Degree = N->getNumOperands(); 8065 if (Degree == 0) { 8066 // A node with no uses, add it to the result array immediately. 8067 N->setNodeId(DAGSize++); 8068 allnodes_iterator Q(N); 8069 if (Q != SortedPos) 8070 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8071 assert(SortedPos != AllNodes.end() && "Overran node list"); 8072 ++SortedPos; 8073 } else { 8074 // Temporarily use the Node Id as scratch space for the degree count. 8075 N->setNodeId(Degree); 8076 } 8077 } 8078 8079 // Visit all the nodes. As we iterate, move nodes into sorted order, 8080 // such that by the time the end is reached all nodes will be sorted. 8081 for (SDNode &Node : allnodes()) { 8082 SDNode *N = &Node; 8083 checkForCycles(N, this); 8084 // N is in sorted position, so all its uses have one less operand 8085 // that needs to be sorted. 8086 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8087 UI != UE; ++UI) { 8088 SDNode *P = *UI; 8089 unsigned Degree = P->getNodeId(); 8090 assert(Degree != 0 && "Invalid node degree"); 8091 --Degree; 8092 if (Degree == 0) { 8093 // All of P's operands are sorted, so P may sorted now. 8094 P->setNodeId(DAGSize++); 8095 if (P->getIterator() != SortedPos) 8096 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8097 assert(SortedPos != AllNodes.end() && "Overran node list"); 8098 ++SortedPos; 8099 } else { 8100 // Update P's outstanding operand count. 8101 P->setNodeId(Degree); 8102 } 8103 } 8104 if (Node.getIterator() == SortedPos) { 8105 #ifndef NDEBUG 8106 allnodes_iterator I(N); 8107 SDNode *S = &*++I; 8108 dbgs() << "Overran sorted position:\n"; 8109 S->dumprFull(this); dbgs() << "\n"; 8110 dbgs() << "Checking if this is due to cycles\n"; 8111 checkForCycles(this, true); 8112 #endif 8113 llvm_unreachable(nullptr); 8114 } 8115 } 8116 8117 assert(SortedPos == AllNodes.end() && 8118 "Topological sort incomplete!"); 8119 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8120 "First node in topological sort is not the entry token!"); 8121 assert(AllNodes.front().getNodeId() == 0 && 8122 "First node in topological sort has non-zero id!"); 8123 assert(AllNodes.front().getNumOperands() == 0 && 8124 "First node in topological sort has operands!"); 8125 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8126 "Last node in topologic sort has unexpected id!"); 8127 assert(AllNodes.back().use_empty() && 8128 "Last node in topologic sort has users!"); 8129 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8130 return DAGSize; 8131 } 8132 8133 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8134 /// value is produced by SD. 8135 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8136 if (SD) { 8137 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8138 SD->setHasDebugValue(true); 8139 } 8140 DbgInfo->add(DB, SD, isParameter); 8141 } 8142 8143 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8144 DbgInfo->add(DB); 8145 } 8146 8147 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8148 SDValue NewMemOp) { 8149 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8150 // The new memory operation must have the same position as the old load in 8151 // terms of memory dependency. Create a TokenFactor for the old load and new 8152 // memory operation and update uses of the old load's output chain to use that 8153 // TokenFactor. 8154 SDValue OldChain = SDValue(OldLoad, 1); 8155 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8156 if (!OldLoad->hasAnyUseOfValue(1)) 8157 return NewChain; 8158 8159 SDValue TokenFactor = 8160 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8161 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8162 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8163 return TokenFactor; 8164 } 8165 8166 //===----------------------------------------------------------------------===// 8167 // SDNode Class 8168 //===----------------------------------------------------------------------===// 8169 8170 bool llvm::isNullConstant(SDValue V) { 8171 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8172 return Const != nullptr && Const->isNullValue(); 8173 } 8174 8175 bool llvm::isNullFPConstant(SDValue V) { 8176 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8177 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8178 } 8179 8180 bool llvm::isAllOnesConstant(SDValue V) { 8181 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8182 return Const != nullptr && Const->isAllOnesValue(); 8183 } 8184 8185 bool llvm::isOneConstant(SDValue V) { 8186 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8187 return Const != nullptr && Const->isOne(); 8188 } 8189 8190 bool llvm::isBitwiseNot(SDValue V) { 8191 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 8192 } 8193 8194 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 8195 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8196 return CN; 8197 8198 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8199 BitVector UndefElements; 8200 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8201 8202 // BuildVectors can truncate their operands. Ignore that case here. 8203 // FIXME: We blindly ignore splats which include undef which is overly 8204 // pessimistic. 8205 if (CN && UndefElements.none() && 8206 CN->getValueType(0) == N.getValueType().getScalarType()) 8207 return CN; 8208 } 8209 8210 return nullptr; 8211 } 8212 8213 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 8214 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8215 return CN; 8216 8217 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8218 BitVector UndefElements; 8219 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8220 8221 if (CN && UndefElements.none()) 8222 return CN; 8223 } 8224 8225 return nullptr; 8226 } 8227 8228 HandleSDNode::~HandleSDNode() { 8229 DropOperands(); 8230 } 8231 8232 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8233 const DebugLoc &DL, 8234 const GlobalValue *GA, EVT VT, 8235 int64_t o, unsigned char TF) 8236 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8237 TheGlobal = GA; 8238 } 8239 8240 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8241 EVT VT, unsigned SrcAS, 8242 unsigned DestAS) 8243 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8244 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8245 8246 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8247 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8248 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8249 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8250 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8251 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8252 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8253 8254 // We check here that the size of the memory operand fits within the size of 8255 // the MMO. This is because the MMO might indicate only a possible address 8256 // range instead of specifying the affected memory addresses precisely. 8257 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 8258 } 8259 8260 /// Profile - Gather unique data for the node. 8261 /// 8262 void SDNode::Profile(FoldingSetNodeID &ID) const { 8263 AddNodeIDNode(ID, this); 8264 } 8265 8266 namespace { 8267 8268 struct EVTArray { 8269 std::vector<EVT> VTs; 8270 8271 EVTArray() { 8272 VTs.reserve(MVT::LAST_VALUETYPE); 8273 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8274 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8275 } 8276 }; 8277 8278 } // end anonymous namespace 8279 8280 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8281 static ManagedStatic<EVTArray> SimpleVTArray; 8282 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8283 8284 /// getValueTypeList - Return a pointer to the specified value type. 8285 /// 8286 const EVT *SDNode::getValueTypeList(EVT VT) { 8287 if (VT.isExtended()) { 8288 sys::SmartScopedLock<true> Lock(*VTMutex); 8289 return &(*EVTs->insert(VT).first); 8290 } else { 8291 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8292 "Value type out of range!"); 8293 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8294 } 8295 } 8296 8297 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8298 /// indicated value. This method ignores uses of other values defined by this 8299 /// operation. 8300 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8301 assert(Value < getNumValues() && "Bad value!"); 8302 8303 // TODO: Only iterate over uses of a given value of the node 8304 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8305 if (UI.getUse().getResNo() == Value) { 8306 if (NUses == 0) 8307 return false; 8308 --NUses; 8309 } 8310 } 8311 8312 // Found exactly the right number of uses? 8313 return NUses == 0; 8314 } 8315 8316 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8317 /// value. This method ignores uses of other values defined by this operation. 8318 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8319 assert(Value < getNumValues() && "Bad value!"); 8320 8321 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8322 if (UI.getUse().getResNo() == Value) 8323 return true; 8324 8325 return false; 8326 } 8327 8328 /// isOnlyUserOf - Return true if this node is the only use of N. 8329 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8330 bool Seen = false; 8331 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8332 SDNode *User = *I; 8333 if (User == this) 8334 Seen = true; 8335 else 8336 return false; 8337 } 8338 8339 return Seen; 8340 } 8341 8342 /// Return true if the only users of N are contained in Nodes. 8343 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8344 bool Seen = false; 8345 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8346 SDNode *User = *I; 8347 if (llvm::any_of(Nodes, 8348 [&User](const SDNode *Node) { return User == Node; })) 8349 Seen = true; 8350 else 8351 return false; 8352 } 8353 8354 return Seen; 8355 } 8356 8357 /// isOperand - Return true if this node is an operand of N. 8358 bool SDValue::isOperandOf(const SDNode *N) const { 8359 for (const SDValue &Op : N->op_values()) 8360 if (*this == Op) 8361 return true; 8362 return false; 8363 } 8364 8365 bool SDNode::isOperandOf(const SDNode *N) const { 8366 for (const SDValue &Op : N->op_values()) 8367 if (this == Op.getNode()) 8368 return true; 8369 return false; 8370 } 8371 8372 /// reachesChainWithoutSideEffects - Return true if this operand (which must 8373 /// be a chain) reaches the specified operand without crossing any 8374 /// side-effecting instructions on any chain path. In practice, this looks 8375 /// through token factors and non-volatile loads. In order to remain efficient, 8376 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8377 /// 8378 /// Note that we only need to examine chains when we're searching for 8379 /// side-effects; SelectionDAG requires that all side-effects are represented 8380 /// by chains, even if another operand would force a specific ordering. This 8381 /// constraint is necessary to allow transformations like splitting loads. 8382 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8383 unsigned Depth) const { 8384 if (*this == Dest) return true; 8385 8386 // Don't search too deeply, we just want to be able to see through 8387 // TokenFactor's etc. 8388 if (Depth == 0) return false; 8389 8390 // If this is a token factor, all inputs to the TF happen in parallel. 8391 if (getOpcode() == ISD::TokenFactor) { 8392 // First, try a shallow search. 8393 if (is_contained((*this)->ops(), Dest)) { 8394 // We found the chain we want as an operand of this TokenFactor. 8395 // Essentially, we reach the chain without side-effects if we could 8396 // serialize the TokenFactor into a simple chain of operations with 8397 // Dest as the last operation. This is automatically true if the 8398 // chain has one use: there are no other ordering constraints. 8399 // If the chain has more than one use, we give up: some other 8400 // use of Dest might force a side-effect between Dest and the current 8401 // node. 8402 if (Dest.hasOneUse()) 8403 return true; 8404 } 8405 // Next, try a deep search: check whether every operand of the TokenFactor 8406 // reaches Dest. 8407 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8408 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8409 }); 8410 } 8411 8412 // Loads don't have side effects, look through them. 8413 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8414 if (!Ld->isVolatile()) 8415 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8416 } 8417 return false; 8418 } 8419 8420 bool SDNode::hasPredecessor(const SDNode *N) const { 8421 SmallPtrSet<const SDNode *, 32> Visited; 8422 SmallVector<const SDNode *, 16> Worklist; 8423 Worklist.push_back(this); 8424 return hasPredecessorHelper(N, Visited, Worklist); 8425 } 8426 8427 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 8428 this->Flags.intersectWith(Flags); 8429 } 8430 8431 SDValue 8432 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 8433 ArrayRef<ISD::NodeType> CandidateBinOps) { 8434 // The pattern must end in an extract from index 0. 8435 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 8436 !isNullConstant(Extract->getOperand(1))) 8437 return SDValue(); 8438 8439 SDValue Op = Extract->getOperand(0); 8440 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 8441 8442 // Match against one of the candidate binary ops. 8443 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 8444 return Op.getOpcode() == unsigned(BinOp); 8445 })) 8446 return SDValue(); 8447 8448 // At each stage, we're looking for something that looks like: 8449 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 8450 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 8451 // i32 undef, i32 undef, i32 undef, i32 undef> 8452 // %a = binop <8 x i32> %op, %s 8453 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 8454 // we expect something like: 8455 // <4,5,6,7,u,u,u,u> 8456 // <2,3,u,u,u,u,u,u> 8457 // <1,u,u,u,u,u,u,u> 8458 unsigned CandidateBinOp = Op.getOpcode(); 8459 for (unsigned i = 0; i < Stages; ++i) { 8460 if (Op.getOpcode() != CandidateBinOp) 8461 return SDValue(); 8462 8463 SDValue Op0 = Op.getOperand(0); 8464 SDValue Op1 = Op.getOperand(1); 8465 8466 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 8467 if (Shuffle) { 8468 Op = Op1; 8469 } else { 8470 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 8471 Op = Op0; 8472 } 8473 8474 // The first operand of the shuffle should be the same as the other operand 8475 // of the binop. 8476 if (!Shuffle || Shuffle->getOperand(0) != Op) 8477 return SDValue(); 8478 8479 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 8480 for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index) 8481 if (Shuffle->getMaskElt(Index) != MaskEnd + Index) 8482 return SDValue(); 8483 } 8484 8485 BinOp = (ISD::NodeType)CandidateBinOp; 8486 return Op; 8487 } 8488 8489 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 8490 assert(N->getNumValues() == 1 && 8491 "Can't unroll a vector with multiple results!"); 8492 8493 EVT VT = N->getValueType(0); 8494 unsigned NE = VT.getVectorNumElements(); 8495 EVT EltVT = VT.getVectorElementType(); 8496 SDLoc dl(N); 8497 8498 SmallVector<SDValue, 8> Scalars; 8499 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 8500 8501 // If ResNE is 0, fully unroll the vector op. 8502 if (ResNE == 0) 8503 ResNE = NE; 8504 else if (NE > ResNE) 8505 NE = ResNE; 8506 8507 unsigned i; 8508 for (i= 0; i != NE; ++i) { 8509 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 8510 SDValue Operand = N->getOperand(j); 8511 EVT OperandVT = Operand.getValueType(); 8512 if (OperandVT.isVector()) { 8513 // A vector operand; extract a single element. 8514 EVT OperandEltVT = OperandVT.getVectorElementType(); 8515 Operands[j] = 8516 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 8517 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 8518 } else { 8519 // A scalar operand; just use it as is. 8520 Operands[j] = Operand; 8521 } 8522 } 8523 8524 switch (N->getOpcode()) { 8525 default: { 8526 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 8527 N->getFlags())); 8528 break; 8529 } 8530 case ISD::VSELECT: 8531 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 8532 break; 8533 case ISD::SHL: 8534 case ISD::SRA: 8535 case ISD::SRL: 8536 case ISD::ROTL: 8537 case ISD::ROTR: 8538 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 8539 getShiftAmountOperand(Operands[0].getValueType(), 8540 Operands[1]))); 8541 break; 8542 case ISD::SIGN_EXTEND_INREG: 8543 case ISD::FP_ROUND_INREG: { 8544 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 8545 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 8546 Operands[0], 8547 getValueType(ExtVT))); 8548 } 8549 } 8550 } 8551 8552 for (; i < ResNE; ++i) 8553 Scalars.push_back(getUNDEF(EltVT)); 8554 8555 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 8556 return getBuildVector(VecVT, dl, Scalars); 8557 } 8558 8559 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 8560 LoadSDNode *Base, 8561 unsigned Bytes, 8562 int Dist) const { 8563 if (LD->isVolatile() || Base->isVolatile()) 8564 return false; 8565 if (LD->isIndexed() || Base->isIndexed()) 8566 return false; 8567 if (LD->getChain() != Base->getChain()) 8568 return false; 8569 EVT VT = LD->getValueType(0); 8570 if (VT.getSizeInBits() / 8 != Bytes) 8571 return false; 8572 8573 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 8574 auto LocDecomp = BaseIndexOffset::match(LD, *this); 8575 8576 int64_t Offset = 0; 8577 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 8578 return (Dist * Bytes == Offset); 8579 return false; 8580 } 8581 8582 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 8583 /// it cannot be inferred. 8584 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 8585 // If this is a GlobalAddress + cst, return the alignment. 8586 const GlobalValue *GV; 8587 int64_t GVOffset = 0; 8588 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 8589 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 8590 KnownBits Known(IdxWidth); 8591 llvm::computeKnownBits(GV, Known, getDataLayout()); 8592 unsigned AlignBits = Known.countMinTrailingZeros(); 8593 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 8594 if (Align) 8595 return MinAlign(Align, GVOffset); 8596 } 8597 8598 // If this is a direct reference to a stack slot, use information about the 8599 // stack slot's alignment. 8600 int FrameIdx = 1 << 31; 8601 int64_t FrameOffset = 0; 8602 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 8603 FrameIdx = FI->getIndex(); 8604 } else if (isBaseWithConstantOffset(Ptr) && 8605 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 8606 // Handle FI+Cst 8607 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 8608 FrameOffset = Ptr.getConstantOperandVal(1); 8609 } 8610 8611 if (FrameIdx != (1 << 31)) { 8612 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 8613 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 8614 FrameOffset); 8615 return FIInfoAlign; 8616 } 8617 8618 return 0; 8619 } 8620 8621 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 8622 /// which is split (or expanded) into two not necessarily identical pieces. 8623 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 8624 // Currently all types are split in half. 8625 EVT LoVT, HiVT; 8626 if (!VT.isVector()) 8627 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 8628 else 8629 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 8630 8631 return std::make_pair(LoVT, HiVT); 8632 } 8633 8634 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 8635 /// low/high part. 8636 std::pair<SDValue, SDValue> 8637 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 8638 const EVT &HiVT) { 8639 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 8640 N.getValueType().getVectorNumElements() && 8641 "More vector elements requested than available!"); 8642 SDValue Lo, Hi; 8643 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 8644 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 8645 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 8646 getConstant(LoVT.getVectorNumElements(), DL, 8647 TLI->getVectorIdxTy(getDataLayout()))); 8648 return std::make_pair(Lo, Hi); 8649 } 8650 8651 void SelectionDAG::ExtractVectorElements(SDValue Op, 8652 SmallVectorImpl<SDValue> &Args, 8653 unsigned Start, unsigned Count) { 8654 EVT VT = Op.getValueType(); 8655 if (Count == 0) 8656 Count = VT.getVectorNumElements(); 8657 8658 EVT EltVT = VT.getVectorElementType(); 8659 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 8660 SDLoc SL(Op); 8661 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 8662 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 8663 Op, getConstant(i, SL, IdxTy))); 8664 } 8665 } 8666 8667 // getAddressSpace - Return the address space this GlobalAddress belongs to. 8668 unsigned GlobalAddressSDNode::getAddressSpace() const { 8669 return getGlobal()->getType()->getAddressSpace(); 8670 } 8671 8672 Type *ConstantPoolSDNode::getType() const { 8673 if (isMachineConstantPoolEntry()) 8674 return Val.MachineCPVal->getType(); 8675 return Val.ConstVal->getType(); 8676 } 8677 8678 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 8679 unsigned &SplatBitSize, 8680 bool &HasAnyUndefs, 8681 unsigned MinSplatBits, 8682 bool IsBigEndian) const { 8683 EVT VT = getValueType(0); 8684 assert(VT.isVector() && "Expected a vector type"); 8685 unsigned VecWidth = VT.getSizeInBits(); 8686 if (MinSplatBits > VecWidth) 8687 return false; 8688 8689 // FIXME: The widths are based on this node's type, but build vectors can 8690 // truncate their operands. 8691 SplatValue = APInt(VecWidth, 0); 8692 SplatUndef = APInt(VecWidth, 0); 8693 8694 // Get the bits. Bits with undefined values (when the corresponding element 8695 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 8696 // in SplatValue. If any of the values are not constant, give up and return 8697 // false. 8698 unsigned int NumOps = getNumOperands(); 8699 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 8700 unsigned EltWidth = VT.getScalarSizeInBits(); 8701 8702 for (unsigned j = 0; j < NumOps; ++j) { 8703 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 8704 SDValue OpVal = getOperand(i); 8705 unsigned BitPos = j * EltWidth; 8706 8707 if (OpVal.isUndef()) 8708 SplatUndef.setBits(BitPos, BitPos + EltWidth); 8709 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 8710 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 8711 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 8712 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 8713 else 8714 return false; 8715 } 8716 8717 // The build_vector is all constants or undefs. Find the smallest element 8718 // size that splats the vector. 8719 HasAnyUndefs = (SplatUndef != 0); 8720 8721 // FIXME: This does not work for vectors with elements less than 8 bits. 8722 while (VecWidth > 8) { 8723 unsigned HalfSize = VecWidth / 2; 8724 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 8725 APInt LowValue = SplatValue.trunc(HalfSize); 8726 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 8727 APInt LowUndef = SplatUndef.trunc(HalfSize); 8728 8729 // If the two halves do not match (ignoring undef bits), stop here. 8730 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 8731 MinSplatBits > HalfSize) 8732 break; 8733 8734 SplatValue = HighValue | LowValue; 8735 SplatUndef = HighUndef & LowUndef; 8736 8737 VecWidth = HalfSize; 8738 } 8739 8740 SplatBitSize = VecWidth; 8741 return true; 8742 } 8743 8744 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 8745 if (UndefElements) { 8746 UndefElements->clear(); 8747 UndefElements->resize(getNumOperands()); 8748 } 8749 SDValue Splatted; 8750 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 8751 SDValue Op = getOperand(i); 8752 if (Op.isUndef()) { 8753 if (UndefElements) 8754 (*UndefElements)[i] = true; 8755 } else if (!Splatted) { 8756 Splatted = Op; 8757 } else if (Splatted != Op) { 8758 return SDValue(); 8759 } 8760 } 8761 8762 if (!Splatted) { 8763 assert(getOperand(0).isUndef() && 8764 "Can only have a splat without a constant for all undefs."); 8765 return getOperand(0); 8766 } 8767 8768 return Splatted; 8769 } 8770 8771 ConstantSDNode * 8772 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 8773 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 8774 } 8775 8776 ConstantFPSDNode * 8777 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 8778 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 8779 } 8780 8781 int32_t 8782 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 8783 uint32_t BitWidth) const { 8784 if (ConstantFPSDNode *CN = 8785 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 8786 bool IsExact; 8787 APSInt IntVal(BitWidth); 8788 const APFloat &APF = CN->getValueAPF(); 8789 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 8790 APFloat::opOK || 8791 !IsExact) 8792 return -1; 8793 8794 return IntVal.exactLogBase2(); 8795 } 8796 return -1; 8797 } 8798 8799 bool BuildVectorSDNode::isConstant() const { 8800 for (const SDValue &Op : op_values()) { 8801 unsigned Opc = Op.getOpcode(); 8802 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 8803 return false; 8804 } 8805 return true; 8806 } 8807 8808 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 8809 // Find the first non-undef value in the shuffle mask. 8810 unsigned i, e; 8811 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 8812 /* search */; 8813 8814 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 8815 8816 // Make sure all remaining elements are either undef or the same as the first 8817 // non-undef value. 8818 for (int Idx = Mask[i]; i != e; ++i) 8819 if (Mask[i] >= 0 && Mask[i] != Idx) 8820 return false; 8821 return true; 8822 } 8823 8824 // Returns the SDNode if it is a constant integer BuildVector 8825 // or constant integer. 8826 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 8827 if (isa<ConstantSDNode>(N)) 8828 return N.getNode(); 8829 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 8830 return N.getNode(); 8831 // Treat a GlobalAddress supporting constant offset folding as a 8832 // constant integer. 8833 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 8834 if (GA->getOpcode() == ISD::GlobalAddress && 8835 TLI->isOffsetFoldingLegal(GA)) 8836 return GA; 8837 return nullptr; 8838 } 8839 8840 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 8841 if (isa<ConstantFPSDNode>(N)) 8842 return N.getNode(); 8843 8844 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 8845 return N.getNode(); 8846 8847 return nullptr; 8848 } 8849 8850 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 8851 assert(!Node->OperandList && "Node already has operands"); 8852 SDUse *Ops = OperandRecycler.allocate( 8853 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 8854 8855 bool IsDivergent = false; 8856 for (unsigned I = 0; I != Vals.size(); ++I) { 8857 Ops[I].setUser(Node); 8858 Ops[I].setInitial(Vals[I]); 8859 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 8860 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 8861 } 8862 Node->NumOperands = Vals.size(); 8863 Node->OperandList = Ops; 8864 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 8865 if (!TLI->isSDNodeAlwaysUniform(Node)) 8866 Node->SDNodeBits.IsDivergent = IsDivergent; 8867 checkForCycles(Node); 8868 } 8869 8870 #ifndef NDEBUG 8871 static void checkForCyclesHelper(const SDNode *N, 8872 SmallPtrSetImpl<const SDNode*> &Visited, 8873 SmallPtrSetImpl<const SDNode*> &Checked, 8874 const llvm::SelectionDAG *DAG) { 8875 // If this node has already been checked, don't check it again. 8876 if (Checked.count(N)) 8877 return; 8878 8879 // If a node has already been visited on this depth-first walk, reject it as 8880 // a cycle. 8881 if (!Visited.insert(N).second) { 8882 errs() << "Detected cycle in SelectionDAG\n"; 8883 dbgs() << "Offending node:\n"; 8884 N->dumprFull(DAG); dbgs() << "\n"; 8885 abort(); 8886 } 8887 8888 for (const SDValue &Op : N->op_values()) 8889 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 8890 8891 Checked.insert(N); 8892 Visited.erase(N); 8893 } 8894 #endif 8895 8896 void llvm::checkForCycles(const llvm::SDNode *N, 8897 const llvm::SelectionDAG *DAG, 8898 bool force) { 8899 #ifndef NDEBUG 8900 bool check = force; 8901 #ifdef EXPENSIVE_CHECKS 8902 check = true; 8903 #endif // EXPENSIVE_CHECKS 8904 if (check) { 8905 assert(N && "Checking nonexistent SDNode"); 8906 SmallPtrSet<const SDNode*, 32> visited; 8907 SmallPtrSet<const SDNode*, 32> checked; 8908 checkForCyclesHelper(N, visited, checked, DAG); 8909 } 8910 #endif // !NDEBUG 8911 } 8912 8913 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 8914 checkForCycles(DAG->getRoot().getNode(), DAG, force); 8915 } 8916