1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } else if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 149 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 150 return true; 151 } 152 } 153 154 auto *BV = dyn_cast<BuildVectorSDNode>(N); 155 if (!BV) 156 return false; 157 158 APInt SplatUndef; 159 unsigned SplatBitSize; 160 bool HasUndefs; 161 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 162 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 163 EltSize) && 164 EltSize == SplatBitSize; 165 } 166 167 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 168 // specializations of the more general isConstantSplatVector()? 169 170 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 171 // Look through a bit convert. 172 while (N->getOpcode() == ISD::BITCAST) 173 N = N->getOperand(0).getNode(); 174 175 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 176 APInt SplatVal; 177 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 178 } 179 180 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 181 182 unsigned i = 0, e = N->getNumOperands(); 183 184 // Skip over all of the undef values. 185 while (i != e && N->getOperand(i).isUndef()) 186 ++i; 187 188 // Do not accept an all-undef vector. 189 if (i == e) return false; 190 191 // Do not accept build_vectors that aren't all constants or which have non-~0 192 // elements. We have to be a bit careful here, as the type of the constant 193 // may not be the same as the type of the vector elements due to type 194 // legalization (the elements are promoted to a legal type for the target and 195 // a vector of a type may be legal when the base element type is not). 196 // We only want to check enough bits to cover the vector elements, because 197 // we care if the resultant vector is all ones, not whether the individual 198 // constants are. 199 SDValue NotZero = N->getOperand(i); 200 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 201 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 202 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 203 return false; 204 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 205 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 206 return false; 207 } else 208 return false; 209 210 // Okay, we have at least one ~0 value, check to see if the rest match or are 211 // undefs. Even with the above element type twiddling, this should be OK, as 212 // the same type legalization should have applied to all the elements. 213 for (++i; i != e; ++i) 214 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 215 return false; 216 return true; 217 } 218 219 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 220 // Look through a bit convert. 221 while (N->getOpcode() == ISD::BITCAST) 222 N = N->getOperand(0).getNode(); 223 224 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 225 APInt SplatVal; 226 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 227 } 228 229 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 230 231 bool IsAllUndef = true; 232 for (const SDValue &Op : N->op_values()) { 233 if (Op.isUndef()) 234 continue; 235 IsAllUndef = false; 236 // Do not accept build_vectors that aren't all constants or which have non-0 237 // elements. We have to be a bit careful here, as the type of the constant 238 // may not be the same as the type of the vector elements due to type 239 // legalization (the elements are promoted to a legal type for the target 240 // and a vector of a type may be legal when the base element type is not). 241 // We only want to check enough bits to cover the vector elements, because 242 // we care if the resultant vector is all zeros, not whether the individual 243 // constants are. 244 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 245 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 246 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 247 return false; 248 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 249 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 250 return false; 251 } else 252 return false; 253 } 254 255 // Do not accept an all-undef vector. 256 if (IsAllUndef) 257 return false; 258 return true; 259 } 260 261 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 262 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 263 } 264 265 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 266 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 267 } 268 269 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 270 if (N->getOpcode() != ISD::BUILD_VECTOR) 271 return false; 272 273 for (const SDValue &Op : N->op_values()) { 274 if (Op.isUndef()) 275 continue; 276 if (!isa<ConstantSDNode>(Op)) 277 return false; 278 } 279 return true; 280 } 281 282 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 283 if (N->getOpcode() != ISD::BUILD_VECTOR) 284 return false; 285 286 for (const SDValue &Op : N->op_values()) { 287 if (Op.isUndef()) 288 continue; 289 if (!isa<ConstantFPSDNode>(Op)) 290 return false; 291 } 292 return true; 293 } 294 295 bool ISD::allOperandsUndef(const SDNode *N) { 296 // Return false if the node has no operands. 297 // This is "logically inconsistent" with the definition of "all" but 298 // is probably the desired behavior. 299 if (N->getNumOperands() == 0) 300 return false; 301 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 302 } 303 304 bool ISD::matchUnaryPredicate(SDValue Op, 305 std::function<bool(ConstantSDNode *)> Match, 306 bool AllowUndefs) { 307 // FIXME: Add support for scalar UNDEF cases? 308 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 309 return Match(Cst); 310 311 // FIXME: Add support for vector UNDEF cases? 312 if (ISD::BUILD_VECTOR != Op.getOpcode() && 313 ISD::SPLAT_VECTOR != Op.getOpcode()) 314 return false; 315 316 EVT SVT = Op.getValueType().getScalarType(); 317 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 318 if (AllowUndefs && Op.getOperand(i).isUndef()) { 319 if (!Match(nullptr)) 320 return false; 321 continue; 322 } 323 324 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 325 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 326 return false; 327 } 328 return true; 329 } 330 331 bool ISD::matchBinaryPredicate( 332 SDValue LHS, SDValue RHS, 333 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 334 bool AllowUndefs, bool AllowTypeMismatch) { 335 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 336 return false; 337 338 // TODO: Add support for scalar UNDEF cases? 339 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 340 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 341 return Match(LHSCst, RHSCst); 342 343 // TODO: Add support for vector UNDEF cases? 344 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 345 ISD::BUILD_VECTOR != RHS.getOpcode()) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 return ISD::FADD; 374 case ISD::VECREDUCE_FMUL: 375 case ISD::VECREDUCE_SEQ_FMUL: 376 return ISD::FMUL; 377 case ISD::VECREDUCE_ADD: 378 return ISD::ADD; 379 case ISD::VECREDUCE_MUL: 380 return ISD::MUL; 381 case ISD::VECREDUCE_AND: 382 return ISD::AND; 383 case ISD::VECREDUCE_OR: 384 return ISD::OR; 385 case ISD::VECREDUCE_XOR: 386 return ISD::XOR; 387 case ISD::VECREDUCE_SMAX: 388 return ISD::SMAX; 389 case ISD::VECREDUCE_SMIN: 390 return ISD::SMIN; 391 case ISD::VECREDUCE_UMAX: 392 return ISD::UMAX; 393 case ISD::VECREDUCE_UMIN: 394 return ISD::UMIN; 395 case ISD::VECREDUCE_FMAX: 396 return ISD::FMAXNUM; 397 case ISD::VECREDUCE_FMIN: 398 return ISD::FMINNUM; 399 } 400 } 401 402 bool ISD::isVPOpcode(unsigned Opcode) { 403 switch (Opcode) { 404 default: 405 return false; 406 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 407 case ISD::SDOPC: \ 408 return true; 409 #include "llvm/IR/VPIntrinsics.def" 410 } 411 } 412 413 /// The operand position of the vector mask. 414 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 415 switch (Opcode) { 416 default: 417 return None; 418 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 419 case ISD::SDOPC: \ 420 return MASKPOS; 421 #include "llvm/IR/VPIntrinsics.def" 422 } 423 } 424 425 /// The operand position of the explicit vector length parameter. 426 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 427 switch (Opcode) { 428 default: 429 return None; 430 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 431 case ISD::SDOPC: \ 432 return EVLPOS; 433 #include "llvm/IR/VPIntrinsics.def" 434 } 435 } 436 437 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 438 switch (ExtType) { 439 case ISD::EXTLOAD: 440 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 441 case ISD::SEXTLOAD: 442 return ISD::SIGN_EXTEND; 443 case ISD::ZEXTLOAD: 444 return ISD::ZERO_EXTEND; 445 default: 446 break; 447 } 448 449 llvm_unreachable("Invalid LoadExtType"); 450 } 451 452 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 453 // To perform this operation, we just need to swap the L and G bits of the 454 // operation. 455 unsigned OldL = (Operation >> 2) & 1; 456 unsigned OldG = (Operation >> 1) & 1; 457 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 458 (OldL << 1) | // New G bit 459 (OldG << 2)); // New L bit. 460 } 461 462 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 463 unsigned Operation = Op; 464 if (isIntegerLike) 465 Operation ^= 7; // Flip L, G, E bits, but not U. 466 else 467 Operation ^= 15; // Flip all of the condition bits. 468 469 if (Operation > ISD::SETTRUE2) 470 Operation &= ~8; // Don't let N and U bits get set. 471 472 return ISD::CondCode(Operation); 473 } 474 475 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 476 return getSetCCInverseImpl(Op, Type.isInteger()); 477 } 478 479 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 480 bool isIntegerLike) { 481 return getSetCCInverseImpl(Op, isIntegerLike); 482 } 483 484 /// For an integer comparison, return 1 if the comparison is a signed operation 485 /// and 2 if the result is an unsigned comparison. Return zero if the operation 486 /// does not depend on the sign of the input (setne and seteq). 487 static int isSignedOp(ISD::CondCode Opcode) { 488 switch (Opcode) { 489 default: llvm_unreachable("Illegal integer setcc operation!"); 490 case ISD::SETEQ: 491 case ISD::SETNE: return 0; 492 case ISD::SETLT: 493 case ISD::SETLE: 494 case ISD::SETGT: 495 case ISD::SETGE: return 1; 496 case ISD::SETULT: 497 case ISD::SETULE: 498 case ISD::SETUGT: 499 case ISD::SETUGE: return 2; 500 } 501 } 502 503 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 504 EVT Type) { 505 bool IsInteger = Type.isInteger(); 506 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 507 // Cannot fold a signed integer setcc with an unsigned integer setcc. 508 return ISD::SETCC_INVALID; 509 510 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 511 512 // If the N and U bits get set, then the resultant comparison DOES suddenly 513 // care about orderedness, and it is true when ordered. 514 if (Op > ISD::SETTRUE2) 515 Op &= ~16; // Clear the U bit if the N bit is set. 516 517 // Canonicalize illegal integer setcc's. 518 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 519 Op = ISD::SETNE; 520 521 return ISD::CondCode(Op); 522 } 523 524 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 525 EVT Type) { 526 bool IsInteger = Type.isInteger(); 527 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 528 // Cannot fold a signed setcc with an unsigned setcc. 529 return ISD::SETCC_INVALID; 530 531 // Combine all of the condition bits. 532 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 533 534 // Canonicalize illegal integer setcc's. 535 if (IsInteger) { 536 switch (Result) { 537 default: break; 538 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 539 case ISD::SETOEQ: // SETEQ & SETU[LG]E 540 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 541 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 542 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 543 } 544 } 545 546 return Result; 547 } 548 549 //===----------------------------------------------------------------------===// 550 // SDNode Profile Support 551 //===----------------------------------------------------------------------===// 552 553 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 554 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 555 ID.AddInteger(OpC); 556 } 557 558 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 559 /// solely with their pointer. 560 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 561 ID.AddPointer(VTList.VTs); 562 } 563 564 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 565 static void AddNodeIDOperands(FoldingSetNodeID &ID, 566 ArrayRef<SDValue> Ops) { 567 for (auto& Op : Ops) { 568 ID.AddPointer(Op.getNode()); 569 ID.AddInteger(Op.getResNo()); 570 } 571 } 572 573 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 574 static void AddNodeIDOperands(FoldingSetNodeID &ID, 575 ArrayRef<SDUse> Ops) { 576 for (auto& Op : Ops) { 577 ID.AddPointer(Op.getNode()); 578 ID.AddInteger(Op.getResNo()); 579 } 580 } 581 582 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 583 SDVTList VTList, ArrayRef<SDValue> OpList) { 584 AddNodeIDOpcode(ID, OpC); 585 AddNodeIDValueTypes(ID, VTList); 586 AddNodeIDOperands(ID, OpList); 587 } 588 589 /// If this is an SDNode with special info, add this info to the NodeID data. 590 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 591 switch (N->getOpcode()) { 592 case ISD::TargetExternalSymbol: 593 case ISD::ExternalSymbol: 594 case ISD::MCSymbol: 595 llvm_unreachable("Should only be used on nodes with operands"); 596 default: break; // Normal nodes don't need extra info. 597 case ISD::TargetConstant: 598 case ISD::Constant: { 599 const ConstantSDNode *C = cast<ConstantSDNode>(N); 600 ID.AddPointer(C->getConstantIntValue()); 601 ID.AddBoolean(C->isOpaque()); 602 break; 603 } 604 case ISD::TargetConstantFP: 605 case ISD::ConstantFP: 606 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 607 break; 608 case ISD::TargetGlobalAddress: 609 case ISD::GlobalAddress: 610 case ISD::TargetGlobalTLSAddress: 611 case ISD::GlobalTLSAddress: { 612 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 613 ID.AddPointer(GA->getGlobal()); 614 ID.AddInteger(GA->getOffset()); 615 ID.AddInteger(GA->getTargetFlags()); 616 break; 617 } 618 case ISD::BasicBlock: 619 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 620 break; 621 case ISD::Register: 622 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 623 break; 624 case ISD::RegisterMask: 625 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 626 break; 627 case ISD::SRCVALUE: 628 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 629 break; 630 case ISD::FrameIndex: 631 case ISD::TargetFrameIndex: 632 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 633 break; 634 case ISD::LIFETIME_START: 635 case ISD::LIFETIME_END: 636 if (cast<LifetimeSDNode>(N)->hasOffset()) { 637 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 638 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 639 } 640 break; 641 case ISD::PSEUDO_PROBE: 642 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 643 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 644 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 645 break; 646 case ISD::JumpTable: 647 case ISD::TargetJumpTable: 648 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 649 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 650 break; 651 case ISD::ConstantPool: 652 case ISD::TargetConstantPool: { 653 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 654 ID.AddInteger(CP->getAlign().value()); 655 ID.AddInteger(CP->getOffset()); 656 if (CP->isMachineConstantPoolEntry()) 657 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 658 else 659 ID.AddPointer(CP->getConstVal()); 660 ID.AddInteger(CP->getTargetFlags()); 661 break; 662 } 663 case ISD::TargetIndex: { 664 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 665 ID.AddInteger(TI->getIndex()); 666 ID.AddInteger(TI->getOffset()); 667 ID.AddInteger(TI->getTargetFlags()); 668 break; 669 } 670 case ISD::LOAD: { 671 const LoadSDNode *LD = cast<LoadSDNode>(N); 672 ID.AddInteger(LD->getMemoryVT().getRawBits()); 673 ID.AddInteger(LD->getRawSubclassData()); 674 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 675 break; 676 } 677 case ISD::STORE: { 678 const StoreSDNode *ST = cast<StoreSDNode>(N); 679 ID.AddInteger(ST->getMemoryVT().getRawBits()); 680 ID.AddInteger(ST->getRawSubclassData()); 681 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 682 break; 683 } 684 case ISD::MLOAD: { 685 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 686 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 687 ID.AddInteger(MLD->getRawSubclassData()); 688 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 689 break; 690 } 691 case ISD::MSTORE: { 692 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 693 ID.AddInteger(MST->getMemoryVT().getRawBits()); 694 ID.AddInteger(MST->getRawSubclassData()); 695 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 696 break; 697 } 698 case ISD::MGATHER: { 699 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 700 ID.AddInteger(MG->getMemoryVT().getRawBits()); 701 ID.AddInteger(MG->getRawSubclassData()); 702 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 703 break; 704 } 705 case ISD::MSCATTER: { 706 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 707 ID.AddInteger(MS->getMemoryVT().getRawBits()); 708 ID.AddInteger(MS->getRawSubclassData()); 709 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 710 break; 711 } 712 case ISD::ATOMIC_CMP_SWAP: 713 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 714 case ISD::ATOMIC_SWAP: 715 case ISD::ATOMIC_LOAD_ADD: 716 case ISD::ATOMIC_LOAD_SUB: 717 case ISD::ATOMIC_LOAD_AND: 718 case ISD::ATOMIC_LOAD_CLR: 719 case ISD::ATOMIC_LOAD_OR: 720 case ISD::ATOMIC_LOAD_XOR: 721 case ISD::ATOMIC_LOAD_NAND: 722 case ISD::ATOMIC_LOAD_MIN: 723 case ISD::ATOMIC_LOAD_MAX: 724 case ISD::ATOMIC_LOAD_UMIN: 725 case ISD::ATOMIC_LOAD_UMAX: 726 case ISD::ATOMIC_LOAD: 727 case ISD::ATOMIC_STORE: { 728 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 729 ID.AddInteger(AT->getMemoryVT().getRawBits()); 730 ID.AddInteger(AT->getRawSubclassData()); 731 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 732 break; 733 } 734 case ISD::PREFETCH: { 735 const MemSDNode *PF = cast<MemSDNode>(N); 736 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 737 break; 738 } 739 case ISD::VECTOR_SHUFFLE: { 740 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 741 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 742 i != e; ++i) 743 ID.AddInteger(SVN->getMaskElt(i)); 744 break; 745 } 746 case ISD::TargetBlockAddress: 747 case ISD::BlockAddress: { 748 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 749 ID.AddPointer(BA->getBlockAddress()); 750 ID.AddInteger(BA->getOffset()); 751 ID.AddInteger(BA->getTargetFlags()); 752 break; 753 } 754 } // end switch (N->getOpcode()) 755 756 // Target specific memory nodes could also have address spaces to check. 757 if (N->isTargetMemoryOpcode()) 758 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 759 } 760 761 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 762 /// data. 763 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 764 AddNodeIDOpcode(ID, N->getOpcode()); 765 // Add the return value info. 766 AddNodeIDValueTypes(ID, N->getVTList()); 767 // Add the operand info. 768 AddNodeIDOperands(ID, N->ops()); 769 770 // Handle SDNode leafs with special info. 771 AddNodeIDCustom(ID, N); 772 } 773 774 //===----------------------------------------------------------------------===// 775 // SelectionDAG Class 776 //===----------------------------------------------------------------------===// 777 778 /// doNotCSE - Return true if CSE should not be performed for this node. 779 static bool doNotCSE(SDNode *N) { 780 if (N->getValueType(0) == MVT::Glue) 781 return true; // Never CSE anything that produces a flag. 782 783 switch (N->getOpcode()) { 784 default: break; 785 case ISD::HANDLENODE: 786 case ISD::EH_LABEL: 787 return true; // Never CSE these nodes. 788 } 789 790 // Check that remaining values produced are not flags. 791 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 792 if (N->getValueType(i) == MVT::Glue) 793 return true; // Never CSE anything that produces a flag. 794 795 return false; 796 } 797 798 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 799 /// SelectionDAG. 800 void SelectionDAG::RemoveDeadNodes() { 801 // Create a dummy node (which is not added to allnodes), that adds a reference 802 // to the root node, preventing it from being deleted. 803 HandleSDNode Dummy(getRoot()); 804 805 SmallVector<SDNode*, 128> DeadNodes; 806 807 // Add all obviously-dead nodes to the DeadNodes worklist. 808 for (SDNode &Node : allnodes()) 809 if (Node.use_empty()) 810 DeadNodes.push_back(&Node); 811 812 RemoveDeadNodes(DeadNodes); 813 814 // If the root changed (e.g. it was a dead load, update the root). 815 setRoot(Dummy.getValue()); 816 } 817 818 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 819 /// given list, and any nodes that become unreachable as a result. 820 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 821 822 // Process the worklist, deleting the nodes and adding their uses to the 823 // worklist. 824 while (!DeadNodes.empty()) { 825 SDNode *N = DeadNodes.pop_back_val(); 826 // Skip to next node if we've already managed to delete the node. This could 827 // happen if replacing a node causes a node previously added to the node to 828 // be deleted. 829 if (N->getOpcode() == ISD::DELETED_NODE) 830 continue; 831 832 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 833 DUL->NodeDeleted(N, nullptr); 834 835 // Take the node out of the appropriate CSE map. 836 RemoveNodeFromCSEMaps(N); 837 838 // Next, brutally remove the operand list. This is safe to do, as there are 839 // no cycles in the graph. 840 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 841 SDUse &Use = *I++; 842 SDNode *Operand = Use.getNode(); 843 Use.set(SDValue()); 844 845 // Now that we removed this operand, see if there are no uses of it left. 846 if (Operand->use_empty()) 847 DeadNodes.push_back(Operand); 848 } 849 850 DeallocateNode(N); 851 } 852 } 853 854 void SelectionDAG::RemoveDeadNode(SDNode *N){ 855 SmallVector<SDNode*, 16> DeadNodes(1, N); 856 857 // Create a dummy node that adds a reference to the root node, preventing 858 // it from being deleted. (This matters if the root is an operand of the 859 // dead node.) 860 HandleSDNode Dummy(getRoot()); 861 862 RemoveDeadNodes(DeadNodes); 863 } 864 865 void SelectionDAG::DeleteNode(SDNode *N) { 866 // First take this out of the appropriate CSE map. 867 RemoveNodeFromCSEMaps(N); 868 869 // Finally, remove uses due to operands of this node, remove from the 870 // AllNodes list, and delete the node. 871 DeleteNodeNotInCSEMaps(N); 872 } 873 874 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 875 assert(N->getIterator() != AllNodes.begin() && 876 "Cannot delete the entry node!"); 877 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 878 879 // Drop all of the operands and decrement used node's use counts. 880 N->DropOperands(); 881 882 DeallocateNode(N); 883 } 884 885 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 886 assert(!(V->isVariadic() && isParameter)); 887 if (isParameter) 888 ByvalParmDbgValues.push_back(V); 889 else 890 DbgValues.push_back(V); 891 for (const SDNode *Node : V->getSDNodes()) 892 if (Node) 893 DbgValMap[Node].push_back(V); 894 } 895 896 void SDDbgInfo::erase(const SDNode *Node) { 897 DbgValMapType::iterator I = DbgValMap.find(Node); 898 if (I == DbgValMap.end()) 899 return; 900 for (auto &Val: I->second) 901 Val->setIsInvalidated(); 902 DbgValMap.erase(I); 903 } 904 905 void SelectionDAG::DeallocateNode(SDNode *N) { 906 // If we have operands, deallocate them. 907 removeOperands(N); 908 909 NodeAllocator.Deallocate(AllNodes.remove(N)); 910 911 // Set the opcode to DELETED_NODE to help catch bugs when node 912 // memory is reallocated. 913 // FIXME: There are places in SDag that have grown a dependency on the opcode 914 // value in the released node. 915 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 916 N->NodeType = ISD::DELETED_NODE; 917 918 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 919 // them and forget about that node. 920 DbgInfo->erase(N); 921 } 922 923 #ifndef NDEBUG 924 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 925 static void VerifySDNode(SDNode *N) { 926 switch (N->getOpcode()) { 927 default: 928 break; 929 case ISD::BUILD_PAIR: { 930 EVT VT = N->getValueType(0); 931 assert(N->getNumValues() == 1 && "Too many results!"); 932 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 933 "Wrong return type!"); 934 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 935 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 936 "Mismatched operand types!"); 937 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 938 "Wrong operand type!"); 939 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 940 "Wrong return type size"); 941 break; 942 } 943 case ISD::BUILD_VECTOR: { 944 assert(N->getNumValues() == 1 && "Too many results!"); 945 assert(N->getValueType(0).isVector() && "Wrong return type!"); 946 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 947 "Wrong number of operands!"); 948 EVT EltVT = N->getValueType(0).getVectorElementType(); 949 for (const SDUse &Op : N->ops()) { 950 assert((Op.getValueType() == EltVT || 951 (EltVT.isInteger() && Op.getValueType().isInteger() && 952 EltVT.bitsLE(Op.getValueType()))) && 953 "Wrong operand type!"); 954 assert(Op.getValueType() == N->getOperand(0).getValueType() && 955 "Operands must all have the same type"); 956 } 957 break; 958 } 959 } 960 } 961 #endif // NDEBUG 962 963 /// Insert a newly allocated node into the DAG. 964 /// 965 /// Handles insertion into the all nodes list and CSE map, as well as 966 /// verification and other common operations when a new node is allocated. 967 void SelectionDAG::InsertNode(SDNode *N) { 968 AllNodes.push_back(N); 969 #ifndef NDEBUG 970 N->PersistentId = NextPersistentId++; 971 VerifySDNode(N); 972 #endif 973 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 974 DUL->NodeInserted(N); 975 } 976 977 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 978 /// correspond to it. This is useful when we're about to delete or repurpose 979 /// the node. We don't want future request for structurally identical nodes 980 /// to return N anymore. 981 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 982 bool Erased = false; 983 switch (N->getOpcode()) { 984 case ISD::HANDLENODE: return false; // noop. 985 case ISD::CONDCODE: 986 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 987 "Cond code doesn't exist!"); 988 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 989 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 990 break; 991 case ISD::ExternalSymbol: 992 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 993 break; 994 case ISD::TargetExternalSymbol: { 995 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 996 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 997 ESN->getSymbol(), ESN->getTargetFlags())); 998 break; 999 } 1000 case ISD::MCSymbol: { 1001 auto *MCSN = cast<MCSymbolSDNode>(N); 1002 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1003 break; 1004 } 1005 case ISD::VALUETYPE: { 1006 EVT VT = cast<VTSDNode>(N)->getVT(); 1007 if (VT.isExtended()) { 1008 Erased = ExtendedValueTypeNodes.erase(VT); 1009 } else { 1010 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1011 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1012 } 1013 break; 1014 } 1015 default: 1016 // Remove it from the CSE Map. 1017 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1018 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1019 Erased = CSEMap.RemoveNode(N); 1020 break; 1021 } 1022 #ifndef NDEBUG 1023 // Verify that the node was actually in one of the CSE maps, unless it has a 1024 // flag result (which cannot be CSE'd) or is one of the special cases that are 1025 // not subject to CSE. 1026 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1027 !N->isMachineOpcode() && !doNotCSE(N)) { 1028 N->dump(this); 1029 dbgs() << "\n"; 1030 llvm_unreachable("Node is not in map!"); 1031 } 1032 #endif 1033 return Erased; 1034 } 1035 1036 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1037 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1038 /// node already exists, in which case transfer all its users to the existing 1039 /// node. This transfer can potentially trigger recursive merging. 1040 void 1041 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1042 // For node types that aren't CSE'd, just act as if no identical node 1043 // already exists. 1044 if (!doNotCSE(N)) { 1045 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1046 if (Existing != N) { 1047 // If there was already an existing matching node, use ReplaceAllUsesWith 1048 // to replace the dead one with the existing one. This can cause 1049 // recursive merging of other unrelated nodes down the line. 1050 ReplaceAllUsesWith(N, Existing); 1051 1052 // N is now dead. Inform the listeners and delete it. 1053 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1054 DUL->NodeDeleted(N, Existing); 1055 DeleteNodeNotInCSEMaps(N); 1056 return; 1057 } 1058 } 1059 1060 // If the node doesn't already exist, we updated it. Inform listeners. 1061 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1062 DUL->NodeUpdated(N); 1063 } 1064 1065 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1066 /// were replaced with those specified. If this node is never memoized, 1067 /// return null, otherwise return a pointer to the slot it would take. If a 1068 /// node already exists with these operands, the slot will be non-null. 1069 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1070 void *&InsertPos) { 1071 if (doNotCSE(N)) 1072 return nullptr; 1073 1074 SDValue Ops[] = { Op }; 1075 FoldingSetNodeID ID; 1076 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1077 AddNodeIDCustom(ID, N); 1078 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1079 if (Node) 1080 Node->intersectFlagsWith(N->getFlags()); 1081 return Node; 1082 } 1083 1084 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1085 /// were replaced with those specified. If this node is never memoized, 1086 /// return null, otherwise return a pointer to the slot it would take. If a 1087 /// node already exists with these operands, the slot will be non-null. 1088 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1089 SDValue Op1, SDValue Op2, 1090 void *&InsertPos) { 1091 if (doNotCSE(N)) 1092 return nullptr; 1093 1094 SDValue Ops[] = { Op1, Op2 }; 1095 FoldingSetNodeID ID; 1096 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1097 AddNodeIDCustom(ID, N); 1098 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1099 if (Node) 1100 Node->intersectFlagsWith(N->getFlags()); 1101 return Node; 1102 } 1103 1104 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1105 /// were replaced with those specified. If this node is never memoized, 1106 /// return null, otherwise return a pointer to the slot it would take. If a 1107 /// node already exists with these operands, the slot will be non-null. 1108 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1109 void *&InsertPos) { 1110 if (doNotCSE(N)) 1111 return nullptr; 1112 1113 FoldingSetNodeID ID; 1114 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1115 AddNodeIDCustom(ID, N); 1116 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1117 if (Node) 1118 Node->intersectFlagsWith(N->getFlags()); 1119 return Node; 1120 } 1121 1122 Align SelectionDAG::getEVTAlign(EVT VT) const { 1123 Type *Ty = VT == MVT::iPTR ? 1124 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1125 VT.getTypeForEVT(*getContext()); 1126 1127 return getDataLayout().getABITypeAlign(Ty); 1128 } 1129 1130 // EntryNode could meaningfully have debug info if we can find it... 1131 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1132 : TM(tm), OptLevel(OL), 1133 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1134 Root(getEntryNode()) { 1135 InsertNode(&EntryNode); 1136 DbgInfo = new SDDbgInfo(); 1137 } 1138 1139 void SelectionDAG::init(MachineFunction &NewMF, 1140 OptimizationRemarkEmitter &NewORE, 1141 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1142 LegacyDivergenceAnalysis * Divergence, 1143 ProfileSummaryInfo *PSIin, 1144 BlockFrequencyInfo *BFIin) { 1145 MF = &NewMF; 1146 SDAGISelPass = PassPtr; 1147 ORE = &NewORE; 1148 TLI = getSubtarget().getTargetLowering(); 1149 TSI = getSubtarget().getSelectionDAGInfo(); 1150 LibInfo = LibraryInfo; 1151 Context = &MF->getFunction().getContext(); 1152 DA = Divergence; 1153 PSI = PSIin; 1154 BFI = BFIin; 1155 } 1156 1157 SelectionDAG::~SelectionDAG() { 1158 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1159 allnodes_clear(); 1160 OperandRecycler.clear(OperandAllocator); 1161 delete DbgInfo; 1162 } 1163 1164 bool SelectionDAG::shouldOptForSize() const { 1165 return MF->getFunction().hasOptSize() || 1166 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1167 } 1168 1169 void SelectionDAG::allnodes_clear() { 1170 assert(&*AllNodes.begin() == &EntryNode); 1171 AllNodes.remove(AllNodes.begin()); 1172 while (!AllNodes.empty()) 1173 DeallocateNode(&AllNodes.front()); 1174 #ifndef NDEBUG 1175 NextPersistentId = 0; 1176 #endif 1177 } 1178 1179 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1180 void *&InsertPos) { 1181 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1182 if (N) { 1183 switch (N->getOpcode()) { 1184 default: break; 1185 case ISD::Constant: 1186 case ISD::ConstantFP: 1187 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1188 "debug location. Use another overload."); 1189 } 1190 } 1191 return N; 1192 } 1193 1194 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1195 const SDLoc &DL, void *&InsertPos) { 1196 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1197 if (N) { 1198 switch (N->getOpcode()) { 1199 case ISD::Constant: 1200 case ISD::ConstantFP: 1201 // Erase debug location from the node if the node is used at several 1202 // different places. Do not propagate one location to all uses as it 1203 // will cause a worse single stepping debugging experience. 1204 if (N->getDebugLoc() != DL.getDebugLoc()) 1205 N->setDebugLoc(DebugLoc()); 1206 break; 1207 default: 1208 // When the node's point of use is located earlier in the instruction 1209 // sequence than its prior point of use, update its debug info to the 1210 // earlier location. 1211 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1212 N->setDebugLoc(DL.getDebugLoc()); 1213 break; 1214 } 1215 } 1216 return N; 1217 } 1218 1219 void SelectionDAG::clear() { 1220 allnodes_clear(); 1221 OperandRecycler.clear(OperandAllocator); 1222 OperandAllocator.Reset(); 1223 CSEMap.clear(); 1224 1225 ExtendedValueTypeNodes.clear(); 1226 ExternalSymbols.clear(); 1227 TargetExternalSymbols.clear(); 1228 MCSymbols.clear(); 1229 SDCallSiteDbgInfo.clear(); 1230 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1231 static_cast<CondCodeSDNode*>(nullptr)); 1232 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1233 static_cast<SDNode*>(nullptr)); 1234 1235 EntryNode.UseList = nullptr; 1236 InsertNode(&EntryNode); 1237 Root = getEntryNode(); 1238 DbgInfo->clear(); 1239 } 1240 1241 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1242 return VT.bitsGT(Op.getValueType()) 1243 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1244 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1245 } 1246 1247 std::pair<SDValue, SDValue> 1248 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1249 const SDLoc &DL, EVT VT) { 1250 assert(!VT.bitsEq(Op.getValueType()) && 1251 "Strict no-op FP extend/round not allowed."); 1252 SDValue Res = 1253 VT.bitsGT(Op.getValueType()) 1254 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1255 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1256 {Chain, Op, getIntPtrConstant(0, DL)}); 1257 1258 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1259 } 1260 1261 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1262 return VT.bitsGT(Op.getValueType()) ? 1263 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1264 getNode(ISD::TRUNCATE, DL, VT, Op); 1265 } 1266 1267 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1268 return VT.bitsGT(Op.getValueType()) ? 1269 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1270 getNode(ISD::TRUNCATE, DL, VT, Op); 1271 } 1272 1273 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1274 return VT.bitsGT(Op.getValueType()) ? 1275 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1276 getNode(ISD::TRUNCATE, DL, VT, Op); 1277 } 1278 1279 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1280 EVT OpVT) { 1281 if (VT.bitsLE(Op.getValueType())) 1282 return getNode(ISD::TRUNCATE, SL, VT, Op); 1283 1284 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1285 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1286 } 1287 1288 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1289 EVT OpVT = Op.getValueType(); 1290 assert(VT.isInteger() && OpVT.isInteger() && 1291 "Cannot getZeroExtendInReg FP types"); 1292 assert(VT.isVector() == OpVT.isVector() && 1293 "getZeroExtendInReg type should be vector iff the operand " 1294 "type is vector!"); 1295 assert((!VT.isVector() || 1296 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1297 "Vector element counts must match in getZeroExtendInReg"); 1298 assert(VT.bitsLE(OpVT) && "Not extending!"); 1299 if (OpVT == VT) 1300 return Op; 1301 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1302 VT.getScalarSizeInBits()); 1303 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1304 } 1305 1306 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1307 // Only unsigned pointer semantics are supported right now. In the future this 1308 // might delegate to TLI to check pointer signedness. 1309 return getZExtOrTrunc(Op, DL, VT); 1310 } 1311 1312 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1313 // Only unsigned pointer semantics are supported right now. In the future this 1314 // might delegate to TLI to check pointer signedness. 1315 return getZeroExtendInReg(Op, DL, VT); 1316 } 1317 1318 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1319 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1320 EVT EltVT = VT.getScalarType(); 1321 SDValue NegOne = 1322 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1323 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1324 } 1325 1326 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1327 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1328 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1329 } 1330 1331 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1332 EVT OpVT) { 1333 if (!V) 1334 return getConstant(0, DL, VT); 1335 1336 switch (TLI->getBooleanContents(OpVT)) { 1337 case TargetLowering::ZeroOrOneBooleanContent: 1338 case TargetLowering::UndefinedBooleanContent: 1339 return getConstant(1, DL, VT); 1340 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1341 return getAllOnesConstant(DL, VT); 1342 } 1343 llvm_unreachable("Unexpected boolean content enum!"); 1344 } 1345 1346 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1347 bool isT, bool isO) { 1348 EVT EltVT = VT.getScalarType(); 1349 assert((EltVT.getSizeInBits() >= 64 || 1350 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1351 "getConstant with a uint64_t value that doesn't fit in the type!"); 1352 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1353 } 1354 1355 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1356 bool isT, bool isO) { 1357 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1358 } 1359 1360 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1361 EVT VT, bool isT, bool isO) { 1362 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1363 1364 EVT EltVT = VT.getScalarType(); 1365 const ConstantInt *Elt = &Val; 1366 1367 // In some cases the vector type is legal but the element type is illegal and 1368 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1369 // inserted value (the type does not need to match the vector element type). 1370 // Any extra bits introduced will be truncated away. 1371 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1372 TargetLowering::TypePromoteInteger) { 1373 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1374 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1375 Elt = ConstantInt::get(*getContext(), NewVal); 1376 } 1377 // In other cases the element type is illegal and needs to be expanded, for 1378 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1379 // the value into n parts and use a vector type with n-times the elements. 1380 // Then bitcast to the type requested. 1381 // Legalizing constants too early makes the DAGCombiner's job harder so we 1382 // only legalize if the DAG tells us we must produce legal types. 1383 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1384 TLI->getTypeAction(*getContext(), EltVT) == 1385 TargetLowering::TypeExpandInteger) { 1386 const APInt &NewVal = Elt->getValue(); 1387 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1388 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1389 1390 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1391 if (VT.isScalableVector()) { 1392 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1393 "Can only handle an even split!"); 1394 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1395 1396 SmallVector<SDValue, 2> ScalarParts; 1397 for (unsigned i = 0; i != Parts; ++i) 1398 ScalarParts.push_back(getConstant( 1399 NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL, 1400 ViaEltVT, isT, isO)); 1401 1402 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1403 } 1404 1405 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1406 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1407 1408 // Check the temporary vector is the correct size. If this fails then 1409 // getTypeToTransformTo() probably returned a type whose size (in bits) 1410 // isn't a power-of-2 factor of the requested type size. 1411 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1412 1413 SmallVector<SDValue, 2> EltParts; 1414 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1415 EltParts.push_back(getConstant( 1416 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1417 ViaEltVT, isT, isO)); 1418 } 1419 1420 // EltParts is currently in little endian order. If we actually want 1421 // big-endian order then reverse it now. 1422 if (getDataLayout().isBigEndian()) 1423 std::reverse(EltParts.begin(), EltParts.end()); 1424 1425 // The elements must be reversed when the element order is different 1426 // to the endianness of the elements (because the BITCAST is itself a 1427 // vector shuffle in this situation). However, we do not need any code to 1428 // perform this reversal because getConstant() is producing a vector 1429 // splat. 1430 // This situation occurs in MIPS MSA. 1431 1432 SmallVector<SDValue, 8> Ops; 1433 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1434 llvm::append_range(Ops, EltParts); 1435 1436 SDValue V = 1437 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1438 return V; 1439 } 1440 1441 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1442 "APInt size does not match type size!"); 1443 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1444 FoldingSetNodeID ID; 1445 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1446 ID.AddPointer(Elt); 1447 ID.AddBoolean(isO); 1448 void *IP = nullptr; 1449 SDNode *N = nullptr; 1450 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1451 if (!VT.isVector()) 1452 return SDValue(N, 0); 1453 1454 if (!N) { 1455 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1456 CSEMap.InsertNode(N, IP); 1457 InsertNode(N); 1458 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1459 } 1460 1461 SDValue Result(N, 0); 1462 if (VT.isScalableVector()) 1463 Result = getSplatVector(VT, DL, Result); 1464 else if (VT.isVector()) 1465 Result = getSplatBuildVector(VT, DL, Result); 1466 1467 return Result; 1468 } 1469 1470 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1471 bool isTarget) { 1472 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1473 } 1474 1475 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1476 const SDLoc &DL, bool LegalTypes) { 1477 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1478 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1479 return getConstant(Val, DL, ShiftVT); 1480 } 1481 1482 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1483 bool isTarget) { 1484 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1485 } 1486 1487 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1488 bool isTarget) { 1489 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1490 } 1491 1492 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1493 EVT VT, bool isTarget) { 1494 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1495 1496 EVT EltVT = VT.getScalarType(); 1497 1498 // Do the map lookup using the actual bit pattern for the floating point 1499 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1500 // we don't have issues with SNANs. 1501 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1502 FoldingSetNodeID ID; 1503 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1504 ID.AddPointer(&V); 1505 void *IP = nullptr; 1506 SDNode *N = nullptr; 1507 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1508 if (!VT.isVector()) 1509 return SDValue(N, 0); 1510 1511 if (!N) { 1512 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1513 CSEMap.InsertNode(N, IP); 1514 InsertNode(N); 1515 } 1516 1517 SDValue Result(N, 0); 1518 if (VT.isScalableVector()) 1519 Result = getSplatVector(VT, DL, Result); 1520 else if (VT.isVector()) 1521 Result = getSplatBuildVector(VT, DL, Result); 1522 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1523 return Result; 1524 } 1525 1526 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1527 bool isTarget) { 1528 EVT EltVT = VT.getScalarType(); 1529 if (EltVT == MVT::f32) 1530 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1531 else if (EltVT == MVT::f64) 1532 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1533 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1534 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1535 bool Ignored; 1536 APFloat APF = APFloat(Val); 1537 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1538 &Ignored); 1539 return getConstantFP(APF, DL, VT, isTarget); 1540 } else 1541 llvm_unreachable("Unsupported type in getConstantFP"); 1542 } 1543 1544 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1545 EVT VT, int64_t Offset, bool isTargetGA, 1546 unsigned TargetFlags) { 1547 assert((TargetFlags == 0 || isTargetGA) && 1548 "Cannot set target flags on target-independent globals"); 1549 1550 // Truncate (with sign-extension) the offset value to the pointer size. 1551 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1552 if (BitWidth < 64) 1553 Offset = SignExtend64(Offset, BitWidth); 1554 1555 unsigned Opc; 1556 if (GV->isThreadLocal()) 1557 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1558 else 1559 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1560 1561 FoldingSetNodeID ID; 1562 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1563 ID.AddPointer(GV); 1564 ID.AddInteger(Offset); 1565 ID.AddInteger(TargetFlags); 1566 void *IP = nullptr; 1567 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1568 return SDValue(E, 0); 1569 1570 auto *N = newSDNode<GlobalAddressSDNode>( 1571 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1572 CSEMap.InsertNode(N, IP); 1573 InsertNode(N); 1574 return SDValue(N, 0); 1575 } 1576 1577 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1578 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1579 FoldingSetNodeID ID; 1580 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1581 ID.AddInteger(FI); 1582 void *IP = nullptr; 1583 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1584 return SDValue(E, 0); 1585 1586 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1587 CSEMap.InsertNode(N, IP); 1588 InsertNode(N); 1589 return SDValue(N, 0); 1590 } 1591 1592 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1593 unsigned TargetFlags) { 1594 assert((TargetFlags == 0 || isTarget) && 1595 "Cannot set target flags on target-independent jump tables"); 1596 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1597 FoldingSetNodeID ID; 1598 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1599 ID.AddInteger(JTI); 1600 ID.AddInteger(TargetFlags); 1601 void *IP = nullptr; 1602 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1603 return SDValue(E, 0); 1604 1605 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1606 CSEMap.InsertNode(N, IP); 1607 InsertNode(N); 1608 return SDValue(N, 0); 1609 } 1610 1611 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1612 MaybeAlign Alignment, int Offset, 1613 bool isTarget, unsigned TargetFlags) { 1614 assert((TargetFlags == 0 || isTarget) && 1615 "Cannot set target flags on target-independent globals"); 1616 if (!Alignment) 1617 Alignment = shouldOptForSize() 1618 ? getDataLayout().getABITypeAlign(C->getType()) 1619 : getDataLayout().getPrefTypeAlign(C->getType()); 1620 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1621 FoldingSetNodeID ID; 1622 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1623 ID.AddInteger(Alignment->value()); 1624 ID.AddInteger(Offset); 1625 ID.AddPointer(C); 1626 ID.AddInteger(TargetFlags); 1627 void *IP = nullptr; 1628 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1629 return SDValue(E, 0); 1630 1631 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1632 TargetFlags); 1633 CSEMap.InsertNode(N, IP); 1634 InsertNode(N); 1635 SDValue V = SDValue(N, 0); 1636 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1637 return V; 1638 } 1639 1640 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1641 MaybeAlign Alignment, int Offset, 1642 bool isTarget, unsigned TargetFlags) { 1643 assert((TargetFlags == 0 || isTarget) && 1644 "Cannot set target flags on target-independent globals"); 1645 if (!Alignment) 1646 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1647 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1650 ID.AddInteger(Alignment->value()); 1651 ID.AddInteger(Offset); 1652 C->addSelectionDAGCSEId(ID); 1653 ID.AddInteger(TargetFlags); 1654 void *IP = nullptr; 1655 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1656 return SDValue(E, 0); 1657 1658 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1659 TargetFlags); 1660 CSEMap.InsertNode(N, IP); 1661 InsertNode(N); 1662 return SDValue(N, 0); 1663 } 1664 1665 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1666 unsigned TargetFlags) { 1667 FoldingSetNodeID ID; 1668 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1669 ID.AddInteger(Index); 1670 ID.AddInteger(Offset); 1671 ID.AddInteger(TargetFlags); 1672 void *IP = nullptr; 1673 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1674 return SDValue(E, 0); 1675 1676 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1677 CSEMap.InsertNode(N, IP); 1678 InsertNode(N); 1679 return SDValue(N, 0); 1680 } 1681 1682 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1683 FoldingSetNodeID ID; 1684 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1685 ID.AddPointer(MBB); 1686 void *IP = nullptr; 1687 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1688 return SDValue(E, 0); 1689 1690 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1691 CSEMap.InsertNode(N, IP); 1692 InsertNode(N); 1693 return SDValue(N, 0); 1694 } 1695 1696 SDValue SelectionDAG::getValueType(EVT VT) { 1697 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1698 ValueTypeNodes.size()) 1699 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1700 1701 SDNode *&N = VT.isExtended() ? 1702 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1703 1704 if (N) return SDValue(N, 0); 1705 N = newSDNode<VTSDNode>(VT); 1706 InsertNode(N); 1707 return SDValue(N, 0); 1708 } 1709 1710 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1711 SDNode *&N = ExternalSymbols[Sym]; 1712 if (N) return SDValue(N, 0); 1713 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1714 InsertNode(N); 1715 return SDValue(N, 0); 1716 } 1717 1718 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1719 SDNode *&N = MCSymbols[Sym]; 1720 if (N) 1721 return SDValue(N, 0); 1722 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1723 InsertNode(N); 1724 return SDValue(N, 0); 1725 } 1726 1727 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1728 unsigned TargetFlags) { 1729 SDNode *&N = 1730 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1731 if (N) return SDValue(N, 0); 1732 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1733 InsertNode(N); 1734 return SDValue(N, 0); 1735 } 1736 1737 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1738 if ((unsigned)Cond >= CondCodeNodes.size()) 1739 CondCodeNodes.resize(Cond+1); 1740 1741 if (!CondCodeNodes[Cond]) { 1742 auto *N = newSDNode<CondCodeSDNode>(Cond); 1743 CondCodeNodes[Cond] = N; 1744 InsertNode(N); 1745 } 1746 1747 return SDValue(CondCodeNodes[Cond], 0); 1748 } 1749 1750 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) { 1751 if (ResVT.isScalableVector()) 1752 return getNode(ISD::STEP_VECTOR, DL, ResVT, Step); 1753 1754 EVT OpVT = Step.getValueType(); 1755 APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue(); 1756 SmallVector<SDValue, 16> OpsStepConstants; 1757 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1758 OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT)); 1759 return getBuildVector(ResVT, DL, OpsStepConstants); 1760 } 1761 1762 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1763 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1764 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1765 std::swap(N1, N2); 1766 ShuffleVectorSDNode::commuteMask(M); 1767 } 1768 1769 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1770 SDValue N2, ArrayRef<int> Mask) { 1771 assert(VT.getVectorNumElements() == Mask.size() && 1772 "Must have the same number of vector elements as mask elements!"); 1773 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1774 "Invalid VECTOR_SHUFFLE"); 1775 1776 // Canonicalize shuffle undef, undef -> undef 1777 if (N1.isUndef() && N2.isUndef()) 1778 return getUNDEF(VT); 1779 1780 // Validate that all indices in Mask are within the range of the elements 1781 // input to the shuffle. 1782 int NElts = Mask.size(); 1783 assert(llvm::all_of(Mask, 1784 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1785 "Index out of range"); 1786 1787 // Copy the mask so we can do any needed cleanup. 1788 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1789 1790 // Canonicalize shuffle v, v -> v, undef 1791 if (N1 == N2) { 1792 N2 = getUNDEF(VT); 1793 for (int i = 0; i != NElts; ++i) 1794 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1795 } 1796 1797 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1798 if (N1.isUndef()) 1799 commuteShuffle(N1, N2, MaskVec); 1800 1801 if (TLI->hasVectorBlend()) { 1802 // If shuffling a splat, try to blend the splat instead. We do this here so 1803 // that even when this arises during lowering we don't have to re-handle it. 1804 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1805 BitVector UndefElements; 1806 SDValue Splat = BV->getSplatValue(&UndefElements); 1807 if (!Splat) 1808 return; 1809 1810 for (int i = 0; i < NElts; ++i) { 1811 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1812 continue; 1813 1814 // If this input comes from undef, mark it as such. 1815 if (UndefElements[MaskVec[i] - Offset]) { 1816 MaskVec[i] = -1; 1817 continue; 1818 } 1819 1820 // If we can blend a non-undef lane, use that instead. 1821 if (!UndefElements[i]) 1822 MaskVec[i] = i + Offset; 1823 } 1824 }; 1825 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1826 BlendSplat(N1BV, 0); 1827 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1828 BlendSplat(N2BV, NElts); 1829 } 1830 1831 // Canonicalize all index into lhs, -> shuffle lhs, undef 1832 // Canonicalize all index into rhs, -> shuffle rhs, undef 1833 bool AllLHS = true, AllRHS = true; 1834 bool N2Undef = N2.isUndef(); 1835 for (int i = 0; i != NElts; ++i) { 1836 if (MaskVec[i] >= NElts) { 1837 if (N2Undef) 1838 MaskVec[i] = -1; 1839 else 1840 AllLHS = false; 1841 } else if (MaskVec[i] >= 0) { 1842 AllRHS = false; 1843 } 1844 } 1845 if (AllLHS && AllRHS) 1846 return getUNDEF(VT); 1847 if (AllLHS && !N2Undef) 1848 N2 = getUNDEF(VT); 1849 if (AllRHS) { 1850 N1 = getUNDEF(VT); 1851 commuteShuffle(N1, N2, MaskVec); 1852 } 1853 // Reset our undef status after accounting for the mask. 1854 N2Undef = N2.isUndef(); 1855 // Re-check whether both sides ended up undef. 1856 if (N1.isUndef() && N2Undef) 1857 return getUNDEF(VT); 1858 1859 // If Identity shuffle return that node. 1860 bool Identity = true, AllSame = true; 1861 for (int i = 0; i != NElts; ++i) { 1862 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1863 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1864 } 1865 if (Identity && NElts) 1866 return N1; 1867 1868 // Shuffling a constant splat doesn't change the result. 1869 if (N2Undef) { 1870 SDValue V = N1; 1871 1872 // Look through any bitcasts. We check that these don't change the number 1873 // (and size) of elements and just changes their types. 1874 while (V.getOpcode() == ISD::BITCAST) 1875 V = V->getOperand(0); 1876 1877 // A splat should always show up as a build vector node. 1878 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1879 BitVector UndefElements; 1880 SDValue Splat = BV->getSplatValue(&UndefElements); 1881 // If this is a splat of an undef, shuffling it is also undef. 1882 if (Splat && Splat.isUndef()) 1883 return getUNDEF(VT); 1884 1885 bool SameNumElts = 1886 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1887 1888 // We only have a splat which can skip shuffles if there is a splatted 1889 // value and no undef lanes rearranged by the shuffle. 1890 if (Splat && UndefElements.none()) { 1891 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1892 // number of elements match or the value splatted is a zero constant. 1893 if (SameNumElts) 1894 return N1; 1895 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1896 if (C->isNullValue()) 1897 return N1; 1898 } 1899 1900 // If the shuffle itself creates a splat, build the vector directly. 1901 if (AllSame && SameNumElts) { 1902 EVT BuildVT = BV->getValueType(0); 1903 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1904 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1905 1906 // We may have jumped through bitcasts, so the type of the 1907 // BUILD_VECTOR may not match the type of the shuffle. 1908 if (BuildVT != VT) 1909 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1910 return NewBV; 1911 } 1912 } 1913 } 1914 1915 FoldingSetNodeID ID; 1916 SDValue Ops[2] = { N1, N2 }; 1917 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1918 for (int i = 0; i != NElts; ++i) 1919 ID.AddInteger(MaskVec[i]); 1920 1921 void* IP = nullptr; 1922 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1923 return SDValue(E, 0); 1924 1925 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1926 // SDNode doesn't have access to it. This memory will be "leaked" when 1927 // the node is deallocated, but recovered when the NodeAllocator is released. 1928 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1929 llvm::copy(MaskVec, MaskAlloc); 1930 1931 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1932 dl.getDebugLoc(), MaskAlloc); 1933 createOperands(N, Ops); 1934 1935 CSEMap.InsertNode(N, IP); 1936 InsertNode(N); 1937 SDValue V = SDValue(N, 0); 1938 NewSDValueDbgMsg(V, "Creating new node: ", this); 1939 return V; 1940 } 1941 1942 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1943 EVT VT = SV.getValueType(0); 1944 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1945 ShuffleVectorSDNode::commuteMask(MaskVec); 1946 1947 SDValue Op0 = SV.getOperand(0); 1948 SDValue Op1 = SV.getOperand(1); 1949 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1950 } 1951 1952 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1953 FoldingSetNodeID ID; 1954 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1955 ID.AddInteger(RegNo); 1956 void *IP = nullptr; 1957 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1958 return SDValue(E, 0); 1959 1960 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1961 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1962 CSEMap.InsertNode(N, IP); 1963 InsertNode(N); 1964 return SDValue(N, 0); 1965 } 1966 1967 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1968 FoldingSetNodeID ID; 1969 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1970 ID.AddPointer(RegMask); 1971 void *IP = nullptr; 1972 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1973 return SDValue(E, 0); 1974 1975 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1976 CSEMap.InsertNode(N, IP); 1977 InsertNode(N); 1978 return SDValue(N, 0); 1979 } 1980 1981 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1982 MCSymbol *Label) { 1983 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1984 } 1985 1986 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1987 SDValue Root, MCSymbol *Label) { 1988 FoldingSetNodeID ID; 1989 SDValue Ops[] = { Root }; 1990 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1991 ID.AddPointer(Label); 1992 void *IP = nullptr; 1993 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1994 return SDValue(E, 0); 1995 1996 auto *N = 1997 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1998 createOperands(N, Ops); 1999 2000 CSEMap.InsertNode(N, IP); 2001 InsertNode(N); 2002 return SDValue(N, 0); 2003 } 2004 2005 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2006 int64_t Offset, bool isTarget, 2007 unsigned TargetFlags) { 2008 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2009 2010 FoldingSetNodeID ID; 2011 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2012 ID.AddPointer(BA); 2013 ID.AddInteger(Offset); 2014 ID.AddInteger(TargetFlags); 2015 void *IP = nullptr; 2016 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2017 return SDValue(E, 0); 2018 2019 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getSrcValue(const Value *V) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2028 ID.AddPointer(V); 2029 2030 void *IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2032 return SDValue(E, 0); 2033 2034 auto *N = newSDNode<SrcValueSDNode>(V); 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2041 FoldingSetNodeID ID; 2042 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2043 ID.AddPointer(MD); 2044 2045 void *IP = nullptr; 2046 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2047 return SDValue(E, 0); 2048 2049 auto *N = newSDNode<MDNodeSDNode>(MD); 2050 CSEMap.InsertNode(N, IP); 2051 InsertNode(N); 2052 return SDValue(N, 0); 2053 } 2054 2055 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2056 if (VT == V.getValueType()) 2057 return V; 2058 2059 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2060 } 2061 2062 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2063 unsigned SrcAS, unsigned DestAS) { 2064 SDValue Ops[] = {Ptr}; 2065 FoldingSetNodeID ID; 2066 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2067 ID.AddInteger(SrcAS); 2068 ID.AddInteger(DestAS); 2069 2070 void *IP = nullptr; 2071 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2072 return SDValue(E, 0); 2073 2074 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2075 VT, SrcAS, DestAS); 2076 createOperands(N, Ops); 2077 2078 CSEMap.InsertNode(N, IP); 2079 InsertNode(N); 2080 return SDValue(N, 0); 2081 } 2082 2083 SDValue SelectionDAG::getFreeze(SDValue V) { 2084 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2085 } 2086 2087 /// getShiftAmountOperand - Return the specified value casted to 2088 /// the target's desired shift amount type. 2089 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2090 EVT OpTy = Op.getValueType(); 2091 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2092 if (OpTy == ShTy || OpTy.isVector()) return Op; 2093 2094 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2095 } 2096 2097 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2098 SDLoc dl(Node); 2099 const TargetLowering &TLI = getTargetLoweringInfo(); 2100 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2101 EVT VT = Node->getValueType(0); 2102 SDValue Tmp1 = Node->getOperand(0); 2103 SDValue Tmp2 = Node->getOperand(1); 2104 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2105 2106 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2107 Tmp2, MachinePointerInfo(V)); 2108 SDValue VAList = VAListLoad; 2109 2110 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2111 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2112 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2113 2114 VAList = 2115 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2116 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2117 } 2118 2119 // Increment the pointer, VAList, to the next vaarg 2120 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2121 getConstant(getDataLayout().getTypeAllocSize( 2122 VT.getTypeForEVT(*getContext())), 2123 dl, VAList.getValueType())); 2124 // Store the incremented VAList to the legalized pointer 2125 Tmp1 = 2126 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2127 // Load the actual argument out of the pointer VAList 2128 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2129 } 2130 2131 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2132 SDLoc dl(Node); 2133 const TargetLowering &TLI = getTargetLoweringInfo(); 2134 // This defaults to loading a pointer from the input and storing it to the 2135 // output, returning the chain. 2136 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2137 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2138 SDValue Tmp1 = 2139 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2140 Node->getOperand(2), MachinePointerInfo(VS)); 2141 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2142 MachinePointerInfo(VD)); 2143 } 2144 2145 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2146 const DataLayout &DL = getDataLayout(); 2147 Type *Ty = VT.getTypeForEVT(*getContext()); 2148 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2149 2150 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2151 return RedAlign; 2152 2153 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2154 const Align StackAlign = TFI->getStackAlign(); 2155 2156 // See if we can choose a smaller ABI alignment in cases where it's an 2157 // illegal vector type that will get broken down. 2158 if (RedAlign > StackAlign) { 2159 EVT IntermediateVT; 2160 MVT RegisterVT; 2161 unsigned NumIntermediates; 2162 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2163 NumIntermediates, RegisterVT); 2164 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2165 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2166 if (RedAlign2 < RedAlign) 2167 RedAlign = RedAlign2; 2168 } 2169 2170 return RedAlign; 2171 } 2172 2173 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2174 MachineFrameInfo &MFI = MF->getFrameInfo(); 2175 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2176 int StackID = 0; 2177 if (Bytes.isScalable()) 2178 StackID = TFI->getStackIDForScalableVectors(); 2179 // The stack id gives an indication of whether the object is scalable or 2180 // not, so it's safe to pass in the minimum size here. 2181 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2182 false, nullptr, StackID); 2183 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2184 } 2185 2186 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2187 Type *Ty = VT.getTypeForEVT(*getContext()); 2188 Align StackAlign = 2189 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2190 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2191 } 2192 2193 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2194 TypeSize VT1Size = VT1.getStoreSize(); 2195 TypeSize VT2Size = VT2.getStoreSize(); 2196 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2197 "Don't know how to choose the maximum size when creating a stack " 2198 "temporary"); 2199 TypeSize Bytes = 2200 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2201 2202 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2203 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2204 const DataLayout &DL = getDataLayout(); 2205 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2206 return CreateStackTemporary(Bytes, Align); 2207 } 2208 2209 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2210 ISD::CondCode Cond, const SDLoc &dl) { 2211 EVT OpVT = N1.getValueType(); 2212 2213 // These setcc operations always fold. 2214 switch (Cond) { 2215 default: break; 2216 case ISD::SETFALSE: 2217 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2218 case ISD::SETTRUE: 2219 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2220 2221 case ISD::SETOEQ: 2222 case ISD::SETOGT: 2223 case ISD::SETOGE: 2224 case ISD::SETOLT: 2225 case ISD::SETOLE: 2226 case ISD::SETONE: 2227 case ISD::SETO: 2228 case ISD::SETUO: 2229 case ISD::SETUEQ: 2230 case ISD::SETUNE: 2231 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2232 break; 2233 } 2234 2235 if (OpVT.isInteger()) { 2236 // For EQ and NE, we can always pick a value for the undef to make the 2237 // predicate pass or fail, so we can return undef. 2238 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2239 // icmp eq/ne X, undef -> undef. 2240 if ((N1.isUndef() || N2.isUndef()) && 2241 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2242 return getUNDEF(VT); 2243 2244 // If both operands are undef, we can return undef for int comparison. 2245 // icmp undef, undef -> undef. 2246 if (N1.isUndef() && N2.isUndef()) 2247 return getUNDEF(VT); 2248 2249 // icmp X, X -> true/false 2250 // icmp X, undef -> true/false because undef could be X. 2251 if (N1 == N2) 2252 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2253 } 2254 2255 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2256 const APInt &C2 = N2C->getAPIntValue(); 2257 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2258 const APInt &C1 = N1C->getAPIntValue(); 2259 2260 switch (Cond) { 2261 default: llvm_unreachable("Unknown integer setcc!"); 2262 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2263 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2264 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2265 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2266 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2267 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2268 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2269 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2270 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2271 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2272 } 2273 } 2274 } 2275 2276 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2277 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2278 2279 if (N1CFP && N2CFP) { 2280 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2281 switch (Cond) { 2282 default: break; 2283 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2284 return getUNDEF(VT); 2285 LLVM_FALLTHROUGH; 2286 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2287 OpVT); 2288 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2289 return getUNDEF(VT); 2290 LLVM_FALLTHROUGH; 2291 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2292 R==APFloat::cmpLessThan, dl, VT, 2293 OpVT); 2294 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2295 return getUNDEF(VT); 2296 LLVM_FALLTHROUGH; 2297 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2298 OpVT); 2299 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2300 return getUNDEF(VT); 2301 LLVM_FALLTHROUGH; 2302 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2303 VT, OpVT); 2304 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2305 return getUNDEF(VT); 2306 LLVM_FALLTHROUGH; 2307 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2308 R==APFloat::cmpEqual, dl, VT, 2309 OpVT); 2310 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2311 return getUNDEF(VT); 2312 LLVM_FALLTHROUGH; 2313 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2314 R==APFloat::cmpEqual, dl, VT, OpVT); 2315 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2316 OpVT); 2317 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2318 OpVT); 2319 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2320 R==APFloat::cmpEqual, dl, VT, 2321 OpVT); 2322 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2323 OpVT); 2324 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2325 R==APFloat::cmpLessThan, dl, VT, 2326 OpVT); 2327 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2328 R==APFloat::cmpUnordered, dl, VT, 2329 OpVT); 2330 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2331 VT, OpVT); 2332 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2333 OpVT); 2334 } 2335 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2336 // Ensure that the constant occurs on the RHS. 2337 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2338 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2339 return SDValue(); 2340 return getSetCC(dl, VT, N2, N1, SwappedCond); 2341 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2342 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2343 // If an operand is known to be a nan (or undef that could be a nan), we can 2344 // fold it. 2345 // Choosing NaN for the undef will always make unordered comparison succeed 2346 // and ordered comparison fails. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 switch (ISD::getUnorderedFlavor(Cond)) { 2349 default: 2350 llvm_unreachable("Unknown flavor!"); 2351 case 0: // Known false. 2352 return getBoolConstant(false, dl, VT, OpVT); 2353 case 1: // Known true. 2354 return getBoolConstant(true, dl, VT, OpVT); 2355 case 2: // Undefined. 2356 return getUNDEF(VT); 2357 } 2358 } 2359 2360 // Could not fold it. 2361 return SDValue(); 2362 } 2363 2364 /// See if the specified operand can be simplified with the knowledge that only 2365 /// the bits specified by DemandedBits are used. 2366 /// TODO: really we should be making this into the DAG equivalent of 2367 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2368 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2369 EVT VT = V.getValueType(); 2370 2371 if (VT.isScalableVector()) 2372 return SDValue(); 2373 2374 APInt DemandedElts = VT.isVector() 2375 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2376 : APInt(1, 1); 2377 return GetDemandedBits(V, DemandedBits, DemandedElts); 2378 } 2379 2380 /// See if the specified operand can be simplified with the knowledge that only 2381 /// the bits specified by DemandedBits are used in the elements specified by 2382 /// DemandedElts. 2383 /// TODO: really we should be making this into the DAG equivalent of 2384 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2385 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2386 const APInt &DemandedElts) { 2387 switch (V.getOpcode()) { 2388 default: 2389 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2390 *this, 0); 2391 case ISD::Constant: { 2392 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2393 APInt NewVal = CVal & DemandedBits; 2394 if (NewVal != CVal) 2395 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2396 break; 2397 } 2398 case ISD::SRL: 2399 // Only look at single-use SRLs. 2400 if (!V.getNode()->hasOneUse()) 2401 break; 2402 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2403 // See if we can recursively simplify the LHS. 2404 unsigned Amt = RHSC->getZExtValue(); 2405 2406 // Watch out for shift count overflow though. 2407 if (Amt >= DemandedBits.getBitWidth()) 2408 break; 2409 APInt SrcDemandedBits = DemandedBits << Amt; 2410 if (SDValue SimplifyLHS = 2411 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2412 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2413 V.getOperand(1)); 2414 } 2415 break; 2416 } 2417 return SDValue(); 2418 } 2419 2420 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2421 /// use this predicate to simplify operations downstream. 2422 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2423 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2424 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2425 } 2426 2427 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2428 /// this predicate to simplify operations downstream. Mask is known to be zero 2429 /// for bits that V cannot have. 2430 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2431 unsigned Depth) const { 2432 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2433 } 2434 2435 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2436 /// DemandedElts. We use this predicate to simplify operations downstream. 2437 /// Mask is known to be zero for bits that V cannot have. 2438 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2439 const APInt &DemandedElts, 2440 unsigned Depth) const { 2441 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2442 } 2443 2444 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2445 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2446 unsigned Depth) const { 2447 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2448 } 2449 2450 /// isSplatValue - Return true if the vector V has the same value 2451 /// across all DemandedElts. For scalable vectors it does not make 2452 /// sense to specify which elements are demanded or undefined, therefore 2453 /// they are simply ignored. 2454 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2455 APInt &UndefElts, unsigned Depth) { 2456 EVT VT = V.getValueType(); 2457 assert(VT.isVector() && "Vector type expected"); 2458 2459 if (!VT.isScalableVector() && !DemandedElts) 2460 return false; // No demanded elts, better to assume we don't know anything. 2461 2462 if (Depth >= MaxRecursionDepth) 2463 return false; // Limit search depth. 2464 2465 // Deal with some common cases here that work for both fixed and scalable 2466 // vector types. 2467 switch (V.getOpcode()) { 2468 case ISD::SPLAT_VECTOR: 2469 UndefElts = V.getOperand(0).isUndef() 2470 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2471 : APInt(DemandedElts.getBitWidth(), 0); 2472 return true; 2473 case ISD::ADD: 2474 case ISD::SUB: 2475 case ISD::AND: 2476 case ISD::XOR: 2477 case ISD::OR: { 2478 APInt UndefLHS, UndefRHS; 2479 SDValue LHS = V.getOperand(0); 2480 SDValue RHS = V.getOperand(1); 2481 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2482 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2483 UndefElts = UndefLHS | UndefRHS; 2484 return true; 2485 } 2486 break; 2487 } 2488 case ISD::ABS: 2489 case ISD::TRUNCATE: 2490 case ISD::SIGN_EXTEND: 2491 case ISD::ZERO_EXTEND: 2492 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2493 } 2494 2495 // We don't support other cases than those above for scalable vectors at 2496 // the moment. 2497 if (VT.isScalableVector()) 2498 return false; 2499 2500 unsigned NumElts = VT.getVectorNumElements(); 2501 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2502 UndefElts = APInt::getNullValue(NumElts); 2503 2504 switch (V.getOpcode()) { 2505 case ISD::BUILD_VECTOR: { 2506 SDValue Scl; 2507 for (unsigned i = 0; i != NumElts; ++i) { 2508 SDValue Op = V.getOperand(i); 2509 if (Op.isUndef()) { 2510 UndefElts.setBit(i); 2511 continue; 2512 } 2513 if (!DemandedElts[i]) 2514 continue; 2515 if (Scl && Scl != Op) 2516 return false; 2517 Scl = Op; 2518 } 2519 return true; 2520 } 2521 case ISD::VECTOR_SHUFFLE: { 2522 // Check if this is a shuffle node doing a splat. 2523 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2524 int SplatIndex = -1; 2525 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2526 for (int i = 0; i != (int)NumElts; ++i) { 2527 int M = Mask[i]; 2528 if (M < 0) { 2529 UndefElts.setBit(i); 2530 continue; 2531 } 2532 if (!DemandedElts[i]) 2533 continue; 2534 if (0 <= SplatIndex && SplatIndex != M) 2535 return false; 2536 SplatIndex = M; 2537 } 2538 return true; 2539 } 2540 case ISD::EXTRACT_SUBVECTOR: { 2541 // Offset the demanded elts by the subvector index. 2542 SDValue Src = V.getOperand(0); 2543 // We don't support scalable vectors at the moment. 2544 if (Src.getValueType().isScalableVector()) 2545 return false; 2546 uint64_t Idx = V.getConstantOperandVal(1); 2547 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2548 APInt UndefSrcElts; 2549 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2550 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2551 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2552 return true; 2553 } 2554 break; 2555 } 2556 } 2557 2558 return false; 2559 } 2560 2561 /// Helper wrapper to main isSplatValue function. 2562 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2563 EVT VT = V.getValueType(); 2564 assert(VT.isVector() && "Vector type expected"); 2565 2566 APInt UndefElts; 2567 APInt DemandedElts; 2568 2569 // For now we don't support this with scalable vectors. 2570 if (!VT.isScalableVector()) 2571 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2572 return isSplatValue(V, DemandedElts, UndefElts) && 2573 (AllowUndefs || !UndefElts); 2574 } 2575 2576 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2577 V = peekThroughExtractSubvectors(V); 2578 2579 EVT VT = V.getValueType(); 2580 unsigned Opcode = V.getOpcode(); 2581 switch (Opcode) { 2582 default: { 2583 APInt UndefElts; 2584 APInt DemandedElts; 2585 2586 if (!VT.isScalableVector()) 2587 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2588 2589 if (isSplatValue(V, DemandedElts, UndefElts)) { 2590 if (VT.isScalableVector()) { 2591 // DemandedElts and UndefElts are ignored for scalable vectors, since 2592 // the only supported cases are SPLAT_VECTOR nodes. 2593 SplatIdx = 0; 2594 } else { 2595 // Handle case where all demanded elements are UNDEF. 2596 if (DemandedElts.isSubsetOf(UndefElts)) { 2597 SplatIdx = 0; 2598 return getUNDEF(VT); 2599 } 2600 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2601 } 2602 return V; 2603 } 2604 break; 2605 } 2606 case ISD::SPLAT_VECTOR: 2607 SplatIdx = 0; 2608 return V; 2609 case ISD::VECTOR_SHUFFLE: { 2610 if (VT.isScalableVector()) 2611 return SDValue(); 2612 2613 // Check if this is a shuffle node doing a splat. 2614 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2615 // getTargetVShiftNode currently struggles without the splat source. 2616 auto *SVN = cast<ShuffleVectorSDNode>(V); 2617 if (!SVN->isSplat()) 2618 break; 2619 int Idx = SVN->getSplatIndex(); 2620 int NumElts = V.getValueType().getVectorNumElements(); 2621 SplatIdx = Idx % NumElts; 2622 return V.getOperand(Idx / NumElts); 2623 } 2624 } 2625 2626 return SDValue(); 2627 } 2628 2629 SDValue SelectionDAG::getSplatValue(SDValue V) { 2630 int SplatIdx; 2631 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2632 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2633 SrcVector.getValueType().getScalarType(), SrcVector, 2634 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2635 return SDValue(); 2636 } 2637 2638 const APInt * 2639 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2640 const APInt &DemandedElts) const { 2641 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2642 V.getOpcode() == ISD::SRA) && 2643 "Unknown shift node"); 2644 unsigned BitWidth = V.getScalarValueSizeInBits(); 2645 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2646 // Shifting more than the bitwidth is not valid. 2647 const APInt &ShAmt = SA->getAPIntValue(); 2648 if (ShAmt.ult(BitWidth)) 2649 return &ShAmt; 2650 } 2651 return nullptr; 2652 } 2653 2654 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2655 SDValue V, const APInt &DemandedElts) const { 2656 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2657 V.getOpcode() == ISD::SRA) && 2658 "Unknown shift node"); 2659 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2660 return ValidAmt; 2661 unsigned BitWidth = V.getScalarValueSizeInBits(); 2662 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2663 if (!BV) 2664 return nullptr; 2665 const APInt *MinShAmt = nullptr; 2666 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2667 if (!DemandedElts[i]) 2668 continue; 2669 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2670 if (!SA) 2671 return nullptr; 2672 // Shifting more than the bitwidth is not valid. 2673 const APInt &ShAmt = SA->getAPIntValue(); 2674 if (ShAmt.uge(BitWidth)) 2675 return nullptr; 2676 if (MinShAmt && MinShAmt->ule(ShAmt)) 2677 continue; 2678 MinShAmt = &ShAmt; 2679 } 2680 return MinShAmt; 2681 } 2682 2683 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2684 SDValue V, const APInt &DemandedElts) const { 2685 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2686 V.getOpcode() == ISD::SRA) && 2687 "Unknown shift node"); 2688 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2689 return ValidAmt; 2690 unsigned BitWidth = V.getScalarValueSizeInBits(); 2691 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2692 if (!BV) 2693 return nullptr; 2694 const APInt *MaxShAmt = nullptr; 2695 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2696 if (!DemandedElts[i]) 2697 continue; 2698 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2699 if (!SA) 2700 return nullptr; 2701 // Shifting more than the bitwidth is not valid. 2702 const APInt &ShAmt = SA->getAPIntValue(); 2703 if (ShAmt.uge(BitWidth)) 2704 return nullptr; 2705 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2706 continue; 2707 MaxShAmt = &ShAmt; 2708 } 2709 return MaxShAmt; 2710 } 2711 2712 /// Determine which bits of Op are known to be either zero or one and return 2713 /// them in Known. For vectors, the known bits are those that are shared by 2714 /// every vector element. 2715 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2716 EVT VT = Op.getValueType(); 2717 2718 // TOOD: Until we have a plan for how to represent demanded elements for 2719 // scalable vectors, we can just bail out for now. 2720 if (Op.getValueType().isScalableVector()) { 2721 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2722 return KnownBits(BitWidth); 2723 } 2724 2725 APInt DemandedElts = VT.isVector() 2726 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2727 : APInt(1, 1); 2728 return computeKnownBits(Op, DemandedElts, Depth); 2729 } 2730 2731 /// Determine which bits of Op are known to be either zero or one and return 2732 /// them in Known. The DemandedElts argument allows us to only collect the known 2733 /// bits that are shared by the requested vector elements. 2734 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2735 unsigned Depth) const { 2736 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2737 2738 KnownBits Known(BitWidth); // Don't know anything. 2739 2740 // TOOD: Until we have a plan for how to represent demanded elements for 2741 // scalable vectors, we can just bail out for now. 2742 if (Op.getValueType().isScalableVector()) 2743 return Known; 2744 2745 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2746 // We know all of the bits for a constant! 2747 return KnownBits::makeConstant(C->getAPIntValue()); 2748 } 2749 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2750 // We know all of the bits for a constant fp! 2751 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2752 } 2753 2754 if (Depth >= MaxRecursionDepth) 2755 return Known; // Limit search depth. 2756 2757 KnownBits Known2; 2758 unsigned NumElts = DemandedElts.getBitWidth(); 2759 assert((!Op.getValueType().isVector() || 2760 NumElts == Op.getValueType().getVectorNumElements()) && 2761 "Unexpected vector size"); 2762 2763 if (!DemandedElts) 2764 return Known; // No demanded elts, better to assume we don't know anything. 2765 2766 unsigned Opcode = Op.getOpcode(); 2767 switch (Opcode) { 2768 case ISD::BUILD_VECTOR: 2769 // Collect the known bits that are shared by every demanded vector element. 2770 Known.Zero.setAllBits(); Known.One.setAllBits(); 2771 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2772 if (!DemandedElts[i]) 2773 continue; 2774 2775 SDValue SrcOp = Op.getOperand(i); 2776 Known2 = computeKnownBits(SrcOp, Depth + 1); 2777 2778 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2779 if (SrcOp.getValueSizeInBits() != BitWidth) { 2780 assert(SrcOp.getValueSizeInBits() > BitWidth && 2781 "Expected BUILD_VECTOR implicit truncation"); 2782 Known2 = Known2.trunc(BitWidth); 2783 } 2784 2785 // Known bits are the values that are shared by every demanded element. 2786 Known = KnownBits::commonBits(Known, Known2); 2787 2788 // If we don't know any bits, early out. 2789 if (Known.isUnknown()) 2790 break; 2791 } 2792 break; 2793 case ISD::VECTOR_SHUFFLE: { 2794 // Collect the known bits that are shared by every vector element referenced 2795 // by the shuffle. 2796 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2797 Known.Zero.setAllBits(); Known.One.setAllBits(); 2798 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2799 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2800 for (unsigned i = 0; i != NumElts; ++i) { 2801 if (!DemandedElts[i]) 2802 continue; 2803 2804 int M = SVN->getMaskElt(i); 2805 if (M < 0) { 2806 // For UNDEF elements, we don't know anything about the common state of 2807 // the shuffle result. 2808 Known.resetAll(); 2809 DemandedLHS.clearAllBits(); 2810 DemandedRHS.clearAllBits(); 2811 break; 2812 } 2813 2814 if ((unsigned)M < NumElts) 2815 DemandedLHS.setBit((unsigned)M % NumElts); 2816 else 2817 DemandedRHS.setBit((unsigned)M % NumElts); 2818 } 2819 // Known bits are the values that are shared by every demanded element. 2820 if (!!DemandedLHS) { 2821 SDValue LHS = Op.getOperand(0); 2822 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2823 Known = KnownBits::commonBits(Known, Known2); 2824 } 2825 // If we don't know any bits, early out. 2826 if (Known.isUnknown()) 2827 break; 2828 if (!!DemandedRHS) { 2829 SDValue RHS = Op.getOperand(1); 2830 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2831 Known = KnownBits::commonBits(Known, Known2); 2832 } 2833 break; 2834 } 2835 case ISD::CONCAT_VECTORS: { 2836 // Split DemandedElts and test each of the demanded subvectors. 2837 Known.Zero.setAllBits(); Known.One.setAllBits(); 2838 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2839 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2840 unsigned NumSubVectors = Op.getNumOperands(); 2841 for (unsigned i = 0; i != NumSubVectors; ++i) { 2842 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2843 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2844 if (!!DemandedSub) { 2845 SDValue Sub = Op.getOperand(i); 2846 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2847 Known = KnownBits::commonBits(Known, Known2); 2848 } 2849 // If we don't know any bits, early out. 2850 if (Known.isUnknown()) 2851 break; 2852 } 2853 break; 2854 } 2855 case ISD::INSERT_SUBVECTOR: { 2856 // Demand any elements from the subvector and the remainder from the src its 2857 // inserted into. 2858 SDValue Src = Op.getOperand(0); 2859 SDValue Sub = Op.getOperand(1); 2860 uint64_t Idx = Op.getConstantOperandVal(2); 2861 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2862 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2863 APInt DemandedSrcElts = DemandedElts; 2864 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2865 2866 Known.One.setAllBits(); 2867 Known.Zero.setAllBits(); 2868 if (!!DemandedSubElts) { 2869 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2870 if (Known.isUnknown()) 2871 break; // early-out. 2872 } 2873 if (!!DemandedSrcElts) { 2874 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2875 Known = KnownBits::commonBits(Known, Known2); 2876 } 2877 break; 2878 } 2879 case ISD::EXTRACT_SUBVECTOR: { 2880 // Offset the demanded elts by the subvector index. 2881 SDValue Src = Op.getOperand(0); 2882 // Bail until we can represent demanded elements for scalable vectors. 2883 if (Src.getValueType().isScalableVector()) 2884 break; 2885 uint64_t Idx = Op.getConstantOperandVal(1); 2886 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2887 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2888 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2889 break; 2890 } 2891 case ISD::SCALAR_TO_VECTOR: { 2892 // We know about scalar_to_vector as much as we know about it source, 2893 // which becomes the first element of otherwise unknown vector. 2894 if (DemandedElts != 1) 2895 break; 2896 2897 SDValue N0 = Op.getOperand(0); 2898 Known = computeKnownBits(N0, Depth + 1); 2899 if (N0.getValueSizeInBits() != BitWidth) 2900 Known = Known.trunc(BitWidth); 2901 2902 break; 2903 } 2904 case ISD::BITCAST: { 2905 SDValue N0 = Op.getOperand(0); 2906 EVT SubVT = N0.getValueType(); 2907 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2908 2909 // Ignore bitcasts from unsupported types. 2910 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2911 break; 2912 2913 // Fast handling of 'identity' bitcasts. 2914 if (BitWidth == SubBitWidth) { 2915 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2916 break; 2917 } 2918 2919 bool IsLE = getDataLayout().isLittleEndian(); 2920 2921 // Bitcast 'small element' vector to 'large element' scalar/vector. 2922 if ((BitWidth % SubBitWidth) == 0) { 2923 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2924 2925 // Collect known bits for the (larger) output by collecting the known 2926 // bits from each set of sub elements and shift these into place. 2927 // We need to separately call computeKnownBits for each set of 2928 // sub elements as the knownbits for each is likely to be different. 2929 unsigned SubScale = BitWidth / SubBitWidth; 2930 APInt SubDemandedElts(NumElts * SubScale, 0); 2931 for (unsigned i = 0; i != NumElts; ++i) 2932 if (DemandedElts[i]) 2933 SubDemandedElts.setBit(i * SubScale); 2934 2935 for (unsigned i = 0; i != SubScale; ++i) { 2936 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2937 Depth + 1); 2938 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2939 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2940 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2941 } 2942 } 2943 2944 // Bitcast 'large element' scalar/vector to 'small element' vector. 2945 if ((SubBitWidth % BitWidth) == 0) { 2946 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2947 2948 // Collect known bits for the (smaller) output by collecting the known 2949 // bits from the overlapping larger input elements and extracting the 2950 // sub sections we actually care about. 2951 unsigned SubScale = SubBitWidth / BitWidth; 2952 APInt SubDemandedElts(NumElts / SubScale, 0); 2953 for (unsigned i = 0; i != NumElts; ++i) 2954 if (DemandedElts[i]) 2955 SubDemandedElts.setBit(i / SubScale); 2956 2957 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2958 2959 Known.Zero.setAllBits(); Known.One.setAllBits(); 2960 for (unsigned i = 0; i != NumElts; ++i) 2961 if (DemandedElts[i]) { 2962 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2963 unsigned Offset = (Shifts % SubScale) * BitWidth; 2964 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2965 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2966 // If we don't know any bits, early out. 2967 if (Known.isUnknown()) 2968 break; 2969 } 2970 } 2971 break; 2972 } 2973 case ISD::AND: 2974 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2975 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2976 2977 Known &= Known2; 2978 break; 2979 case ISD::OR: 2980 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2981 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2982 2983 Known |= Known2; 2984 break; 2985 case ISD::XOR: 2986 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2987 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2988 2989 Known ^= Known2; 2990 break; 2991 case ISD::MUL: { 2992 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2993 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2994 Known = KnownBits::computeForMul(Known, Known2); 2995 break; 2996 } 2997 case ISD::MULHU: { 2998 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2999 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3000 Known = KnownBits::mulhu(Known, Known2); 3001 break; 3002 } 3003 case ISD::MULHS: { 3004 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3005 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3006 Known = KnownBits::mulhs(Known, Known2); 3007 break; 3008 } 3009 case ISD::UMUL_LOHI: { 3010 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3011 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3012 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3013 if (Op.getResNo() == 0) 3014 Known = KnownBits::computeForMul(Known, Known2); 3015 else 3016 Known = KnownBits::mulhu(Known, Known2); 3017 break; 3018 } 3019 case ISD::SMUL_LOHI: { 3020 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3021 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3022 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3023 if (Op.getResNo() == 0) 3024 Known = KnownBits::computeForMul(Known, Known2); 3025 else 3026 Known = KnownBits::mulhs(Known, Known2); 3027 break; 3028 } 3029 case ISD::UDIV: { 3030 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3031 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3032 Known = KnownBits::udiv(Known, Known2); 3033 break; 3034 } 3035 case ISD::SELECT: 3036 case ISD::VSELECT: 3037 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3038 // If we don't know any bits, early out. 3039 if (Known.isUnknown()) 3040 break; 3041 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3042 3043 // Only known if known in both the LHS and RHS. 3044 Known = KnownBits::commonBits(Known, Known2); 3045 break; 3046 case ISD::SELECT_CC: 3047 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3048 // If we don't know any bits, early out. 3049 if (Known.isUnknown()) 3050 break; 3051 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3052 3053 // Only known if known in both the LHS and RHS. 3054 Known = KnownBits::commonBits(Known, Known2); 3055 break; 3056 case ISD::SMULO: 3057 case ISD::UMULO: 3058 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3059 if (Op.getResNo() != 1) 3060 break; 3061 // The boolean result conforms to getBooleanContents. 3062 // If we know the result of a setcc has the top bits zero, use this info. 3063 // We know that we have an integer-based boolean since these operations 3064 // are only available for integer. 3065 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3066 TargetLowering::ZeroOrOneBooleanContent && 3067 BitWidth > 1) 3068 Known.Zero.setBitsFrom(1); 3069 break; 3070 case ISD::SETCC: 3071 case ISD::STRICT_FSETCC: 3072 case ISD::STRICT_FSETCCS: { 3073 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3074 // If we know the result of a setcc has the top bits zero, use this info. 3075 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3076 TargetLowering::ZeroOrOneBooleanContent && 3077 BitWidth > 1) 3078 Known.Zero.setBitsFrom(1); 3079 break; 3080 } 3081 case ISD::SHL: 3082 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3083 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3084 Known = KnownBits::shl(Known, Known2); 3085 3086 // Minimum shift low bits are known zero. 3087 if (const APInt *ShMinAmt = 3088 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3089 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3090 break; 3091 case ISD::SRL: 3092 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3093 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3094 Known = KnownBits::lshr(Known, Known2); 3095 3096 // Minimum shift high bits are known zero. 3097 if (const APInt *ShMinAmt = 3098 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3099 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3100 break; 3101 case ISD::SRA: 3102 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3103 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3104 Known = KnownBits::ashr(Known, Known2); 3105 // TODO: Add minimum shift high known sign bits. 3106 break; 3107 case ISD::FSHL: 3108 case ISD::FSHR: 3109 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3110 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3111 3112 // For fshl, 0-shift returns the 1st arg. 3113 // For fshr, 0-shift returns the 2nd arg. 3114 if (Amt == 0) { 3115 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3116 DemandedElts, Depth + 1); 3117 break; 3118 } 3119 3120 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3121 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3122 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3123 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3124 if (Opcode == ISD::FSHL) { 3125 Known.One <<= Amt; 3126 Known.Zero <<= Amt; 3127 Known2.One.lshrInPlace(BitWidth - Amt); 3128 Known2.Zero.lshrInPlace(BitWidth - Amt); 3129 } else { 3130 Known.One <<= BitWidth - Amt; 3131 Known.Zero <<= BitWidth - Amt; 3132 Known2.One.lshrInPlace(Amt); 3133 Known2.Zero.lshrInPlace(Amt); 3134 } 3135 Known.One |= Known2.One; 3136 Known.Zero |= Known2.Zero; 3137 } 3138 break; 3139 case ISD::SIGN_EXTEND_INREG: { 3140 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3141 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3142 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3143 break; 3144 } 3145 case ISD::CTTZ: 3146 case ISD::CTTZ_ZERO_UNDEF: { 3147 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3148 // If we have a known 1, its position is our upper bound. 3149 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3150 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3151 Known.Zero.setBitsFrom(LowBits); 3152 break; 3153 } 3154 case ISD::CTLZ: 3155 case ISD::CTLZ_ZERO_UNDEF: { 3156 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3157 // If we have a known 1, its position is our upper bound. 3158 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3159 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3160 Known.Zero.setBitsFrom(LowBits); 3161 break; 3162 } 3163 case ISD::CTPOP: { 3164 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3165 // If we know some of the bits are zero, they can't be one. 3166 unsigned PossibleOnes = Known2.countMaxPopulation(); 3167 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3168 break; 3169 } 3170 case ISD::PARITY: { 3171 // Parity returns 0 everywhere but the LSB. 3172 Known.Zero.setBitsFrom(1); 3173 break; 3174 } 3175 case ISD::LOAD: { 3176 LoadSDNode *LD = cast<LoadSDNode>(Op); 3177 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3178 if (ISD::isNON_EXTLoad(LD) && Cst) { 3179 // Determine any common known bits from the loaded constant pool value. 3180 Type *CstTy = Cst->getType(); 3181 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3182 // If its a vector splat, then we can (quickly) reuse the scalar path. 3183 // NOTE: We assume all elements match and none are UNDEF. 3184 if (CstTy->isVectorTy()) { 3185 if (const Constant *Splat = Cst->getSplatValue()) { 3186 Cst = Splat; 3187 CstTy = Cst->getType(); 3188 } 3189 } 3190 // TODO - do we need to handle different bitwidths? 3191 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3192 // Iterate across all vector elements finding common known bits. 3193 Known.One.setAllBits(); 3194 Known.Zero.setAllBits(); 3195 for (unsigned i = 0; i != NumElts; ++i) { 3196 if (!DemandedElts[i]) 3197 continue; 3198 if (Constant *Elt = Cst->getAggregateElement(i)) { 3199 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3200 const APInt &Value = CInt->getValue(); 3201 Known.One &= Value; 3202 Known.Zero &= ~Value; 3203 continue; 3204 } 3205 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3206 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3207 Known.One &= Value; 3208 Known.Zero &= ~Value; 3209 continue; 3210 } 3211 } 3212 Known.One.clearAllBits(); 3213 Known.Zero.clearAllBits(); 3214 break; 3215 } 3216 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3217 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3218 Known = KnownBits::makeConstant(CInt->getValue()); 3219 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3220 Known = 3221 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3222 } 3223 } 3224 } 3225 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3226 // If this is a ZEXTLoad and we are looking at the loaded value. 3227 EVT VT = LD->getMemoryVT(); 3228 unsigned MemBits = VT.getScalarSizeInBits(); 3229 Known.Zero.setBitsFrom(MemBits); 3230 } else if (const MDNode *Ranges = LD->getRanges()) { 3231 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3232 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3233 } 3234 break; 3235 } 3236 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3237 EVT InVT = Op.getOperand(0).getValueType(); 3238 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3239 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3240 Known = Known.zext(BitWidth); 3241 break; 3242 } 3243 case ISD::ZERO_EXTEND: { 3244 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3245 Known = Known.zext(BitWidth); 3246 break; 3247 } 3248 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3249 EVT InVT = Op.getOperand(0).getValueType(); 3250 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3251 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3252 // If the sign bit is known to be zero or one, then sext will extend 3253 // it to the top bits, else it will just zext. 3254 Known = Known.sext(BitWidth); 3255 break; 3256 } 3257 case ISD::SIGN_EXTEND: { 3258 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3259 // If the sign bit is known to be zero or one, then sext will extend 3260 // it to the top bits, else it will just zext. 3261 Known = Known.sext(BitWidth); 3262 break; 3263 } 3264 case ISD::ANY_EXTEND_VECTOR_INREG: { 3265 EVT InVT = Op.getOperand(0).getValueType(); 3266 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3267 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3268 Known = Known.anyext(BitWidth); 3269 break; 3270 } 3271 case ISD::ANY_EXTEND: { 3272 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3273 Known = Known.anyext(BitWidth); 3274 break; 3275 } 3276 case ISD::TRUNCATE: { 3277 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3278 Known = Known.trunc(BitWidth); 3279 break; 3280 } 3281 case ISD::AssertZext: { 3282 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3283 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3284 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3285 Known.Zero |= (~InMask); 3286 Known.One &= (~Known.Zero); 3287 break; 3288 } 3289 case ISD::AssertAlign: { 3290 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3291 assert(LogOfAlign != 0); 3292 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3293 // well as clearing one bits. 3294 Known.Zero.setLowBits(LogOfAlign); 3295 Known.One.clearLowBits(LogOfAlign); 3296 break; 3297 } 3298 case ISD::FGETSIGN: 3299 // All bits are zero except the low bit. 3300 Known.Zero.setBitsFrom(1); 3301 break; 3302 case ISD::USUBO: 3303 case ISD::SSUBO: 3304 if (Op.getResNo() == 1) { 3305 // If we know the result of a setcc has the top bits zero, use this info. 3306 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3307 TargetLowering::ZeroOrOneBooleanContent && 3308 BitWidth > 1) 3309 Known.Zero.setBitsFrom(1); 3310 break; 3311 } 3312 LLVM_FALLTHROUGH; 3313 case ISD::SUB: 3314 case ISD::SUBC: { 3315 assert(Op.getResNo() == 0 && 3316 "We only compute knownbits for the difference here."); 3317 3318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3319 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3320 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3321 Known, Known2); 3322 break; 3323 } 3324 case ISD::UADDO: 3325 case ISD::SADDO: 3326 case ISD::ADDCARRY: 3327 if (Op.getResNo() == 1) { 3328 // If we know the result of a setcc has the top bits zero, use this info. 3329 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3330 TargetLowering::ZeroOrOneBooleanContent && 3331 BitWidth > 1) 3332 Known.Zero.setBitsFrom(1); 3333 break; 3334 } 3335 LLVM_FALLTHROUGH; 3336 case ISD::ADD: 3337 case ISD::ADDC: 3338 case ISD::ADDE: { 3339 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3340 3341 // With ADDE and ADDCARRY, a carry bit may be added in. 3342 KnownBits Carry(1); 3343 if (Opcode == ISD::ADDE) 3344 // Can't track carry from glue, set carry to unknown. 3345 Carry.resetAll(); 3346 else if (Opcode == ISD::ADDCARRY) 3347 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3348 // the trouble (how often will we find a known carry bit). And I haven't 3349 // tested this very much yet, but something like this might work: 3350 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3351 // Carry = Carry.zextOrTrunc(1, false); 3352 Carry.resetAll(); 3353 else 3354 Carry.setAllZero(); 3355 3356 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3357 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3358 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3359 break; 3360 } 3361 case ISD::SREM: { 3362 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3363 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3364 Known = KnownBits::srem(Known, Known2); 3365 break; 3366 } 3367 case ISD::UREM: { 3368 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3369 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3370 Known = KnownBits::urem(Known, Known2); 3371 break; 3372 } 3373 case ISD::EXTRACT_ELEMENT: { 3374 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3375 const unsigned Index = Op.getConstantOperandVal(1); 3376 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3377 3378 // Remove low part of known bits mask 3379 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3380 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3381 3382 // Remove high part of known bit mask 3383 Known = Known.trunc(EltBitWidth); 3384 break; 3385 } 3386 case ISD::EXTRACT_VECTOR_ELT: { 3387 SDValue InVec = Op.getOperand(0); 3388 SDValue EltNo = Op.getOperand(1); 3389 EVT VecVT = InVec.getValueType(); 3390 // computeKnownBits not yet implemented for scalable vectors. 3391 if (VecVT.isScalableVector()) 3392 break; 3393 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3394 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3395 3396 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3397 // anything about the extended bits. 3398 if (BitWidth > EltBitWidth) 3399 Known = Known.trunc(EltBitWidth); 3400 3401 // If we know the element index, just demand that vector element, else for 3402 // an unknown element index, ignore DemandedElts and demand them all. 3403 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3404 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3405 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3406 DemandedSrcElts = 3407 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3408 3409 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3410 if (BitWidth > EltBitWidth) 3411 Known = Known.anyext(BitWidth); 3412 break; 3413 } 3414 case ISD::INSERT_VECTOR_ELT: { 3415 // If we know the element index, split the demand between the 3416 // source vector and the inserted element, otherwise assume we need 3417 // the original demanded vector elements and the value. 3418 SDValue InVec = Op.getOperand(0); 3419 SDValue InVal = Op.getOperand(1); 3420 SDValue EltNo = Op.getOperand(2); 3421 bool DemandedVal = true; 3422 APInt DemandedVecElts = DemandedElts; 3423 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3424 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3425 unsigned EltIdx = CEltNo->getZExtValue(); 3426 DemandedVal = !!DemandedElts[EltIdx]; 3427 DemandedVecElts.clearBit(EltIdx); 3428 } 3429 Known.One.setAllBits(); 3430 Known.Zero.setAllBits(); 3431 if (DemandedVal) { 3432 Known2 = computeKnownBits(InVal, Depth + 1); 3433 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3434 } 3435 if (!!DemandedVecElts) { 3436 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3437 Known = KnownBits::commonBits(Known, Known2); 3438 } 3439 break; 3440 } 3441 case ISD::BITREVERSE: { 3442 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3443 Known = Known2.reverseBits(); 3444 break; 3445 } 3446 case ISD::BSWAP: { 3447 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3448 Known = Known2.byteSwap(); 3449 break; 3450 } 3451 case ISD::ABS: { 3452 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3453 Known = Known2.abs(); 3454 break; 3455 } 3456 case ISD::USUBSAT: { 3457 // The result of usubsat will never be larger than the LHS. 3458 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3459 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3460 break; 3461 } 3462 case ISD::UMIN: { 3463 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3464 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3465 Known = KnownBits::umin(Known, Known2); 3466 break; 3467 } 3468 case ISD::UMAX: { 3469 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3470 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3471 Known = KnownBits::umax(Known, Known2); 3472 break; 3473 } 3474 case ISD::SMIN: 3475 case ISD::SMAX: { 3476 // If we have a clamp pattern, we know that the number of sign bits will be 3477 // the minimum of the clamp min/max range. 3478 bool IsMax = (Opcode == ISD::SMAX); 3479 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3480 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3481 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3482 CstHigh = 3483 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3484 if (CstLow && CstHigh) { 3485 if (!IsMax) 3486 std::swap(CstLow, CstHigh); 3487 3488 const APInt &ValueLow = CstLow->getAPIntValue(); 3489 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3490 if (ValueLow.sle(ValueHigh)) { 3491 unsigned LowSignBits = ValueLow.getNumSignBits(); 3492 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3493 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3494 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3495 Known.One.setHighBits(MinSignBits); 3496 break; 3497 } 3498 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3499 Known.Zero.setHighBits(MinSignBits); 3500 break; 3501 } 3502 } 3503 } 3504 3505 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3506 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3507 if (IsMax) 3508 Known = KnownBits::smax(Known, Known2); 3509 else 3510 Known = KnownBits::smin(Known, Known2); 3511 break; 3512 } 3513 case ISD::FrameIndex: 3514 case ISD::TargetFrameIndex: 3515 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3516 Known, getMachineFunction()); 3517 break; 3518 3519 default: 3520 if (Opcode < ISD::BUILTIN_OP_END) 3521 break; 3522 LLVM_FALLTHROUGH; 3523 case ISD::INTRINSIC_WO_CHAIN: 3524 case ISD::INTRINSIC_W_CHAIN: 3525 case ISD::INTRINSIC_VOID: 3526 // Allow the target to implement this method for its nodes. 3527 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3528 break; 3529 } 3530 3531 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3532 return Known; 3533 } 3534 3535 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3536 SDValue N1) const { 3537 // X + 0 never overflow 3538 if (isNullConstant(N1)) 3539 return OFK_Never; 3540 3541 KnownBits N1Known = computeKnownBits(N1); 3542 if (N1Known.Zero.getBoolValue()) { 3543 KnownBits N0Known = computeKnownBits(N0); 3544 3545 bool overflow; 3546 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3547 if (!overflow) 3548 return OFK_Never; 3549 } 3550 3551 // mulhi + 1 never overflow 3552 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3553 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3554 return OFK_Never; 3555 3556 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3557 KnownBits N0Known = computeKnownBits(N0); 3558 3559 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3560 return OFK_Never; 3561 } 3562 3563 return OFK_Sometime; 3564 } 3565 3566 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3567 EVT OpVT = Val.getValueType(); 3568 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3569 3570 // Is the constant a known power of 2? 3571 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3572 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3573 3574 // A left-shift of a constant one will have exactly one bit set because 3575 // shifting the bit off the end is undefined. 3576 if (Val.getOpcode() == ISD::SHL) { 3577 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3578 if (C && C->getAPIntValue() == 1) 3579 return true; 3580 } 3581 3582 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3583 // one bit set. 3584 if (Val.getOpcode() == ISD::SRL) { 3585 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3586 if (C && C->getAPIntValue().isSignMask()) 3587 return true; 3588 } 3589 3590 // Are all operands of a build vector constant powers of two? 3591 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3592 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3593 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3594 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3595 return false; 3596 })) 3597 return true; 3598 3599 // More could be done here, though the above checks are enough 3600 // to handle some common cases. 3601 3602 // Fall back to computeKnownBits to catch other known cases. 3603 KnownBits Known = computeKnownBits(Val); 3604 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3605 } 3606 3607 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3608 EVT VT = Op.getValueType(); 3609 3610 // TODO: Assume we don't know anything for now. 3611 if (VT.isScalableVector()) 3612 return 1; 3613 3614 APInt DemandedElts = VT.isVector() 3615 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3616 : APInt(1, 1); 3617 return ComputeNumSignBits(Op, DemandedElts, Depth); 3618 } 3619 3620 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3621 unsigned Depth) const { 3622 EVT VT = Op.getValueType(); 3623 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3624 unsigned VTBits = VT.getScalarSizeInBits(); 3625 unsigned NumElts = DemandedElts.getBitWidth(); 3626 unsigned Tmp, Tmp2; 3627 unsigned FirstAnswer = 1; 3628 3629 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3630 const APInt &Val = C->getAPIntValue(); 3631 return Val.getNumSignBits(); 3632 } 3633 3634 if (Depth >= MaxRecursionDepth) 3635 return 1; // Limit search depth. 3636 3637 if (!DemandedElts || VT.isScalableVector()) 3638 return 1; // No demanded elts, better to assume we don't know anything. 3639 3640 unsigned Opcode = Op.getOpcode(); 3641 switch (Opcode) { 3642 default: break; 3643 case ISD::AssertSext: 3644 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3645 return VTBits-Tmp+1; 3646 case ISD::AssertZext: 3647 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3648 return VTBits-Tmp; 3649 3650 case ISD::BUILD_VECTOR: 3651 Tmp = VTBits; 3652 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3653 if (!DemandedElts[i]) 3654 continue; 3655 3656 SDValue SrcOp = Op.getOperand(i); 3657 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3658 3659 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3660 if (SrcOp.getValueSizeInBits() != VTBits) { 3661 assert(SrcOp.getValueSizeInBits() > VTBits && 3662 "Expected BUILD_VECTOR implicit truncation"); 3663 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3664 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3665 } 3666 Tmp = std::min(Tmp, Tmp2); 3667 } 3668 return Tmp; 3669 3670 case ISD::VECTOR_SHUFFLE: { 3671 // Collect the minimum number of sign bits that are shared by every vector 3672 // element referenced by the shuffle. 3673 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3674 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3675 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3676 for (unsigned i = 0; i != NumElts; ++i) { 3677 int M = SVN->getMaskElt(i); 3678 if (!DemandedElts[i]) 3679 continue; 3680 // For UNDEF elements, we don't know anything about the common state of 3681 // the shuffle result. 3682 if (M < 0) 3683 return 1; 3684 if ((unsigned)M < NumElts) 3685 DemandedLHS.setBit((unsigned)M % NumElts); 3686 else 3687 DemandedRHS.setBit((unsigned)M % NumElts); 3688 } 3689 Tmp = std::numeric_limits<unsigned>::max(); 3690 if (!!DemandedLHS) 3691 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3692 if (!!DemandedRHS) { 3693 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3694 Tmp = std::min(Tmp, Tmp2); 3695 } 3696 // If we don't know anything, early out and try computeKnownBits fall-back. 3697 if (Tmp == 1) 3698 break; 3699 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3700 return Tmp; 3701 } 3702 3703 case ISD::BITCAST: { 3704 SDValue N0 = Op.getOperand(0); 3705 EVT SrcVT = N0.getValueType(); 3706 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3707 3708 // Ignore bitcasts from unsupported types.. 3709 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3710 break; 3711 3712 // Fast handling of 'identity' bitcasts. 3713 if (VTBits == SrcBits) 3714 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3715 3716 bool IsLE = getDataLayout().isLittleEndian(); 3717 3718 // Bitcast 'large element' scalar/vector to 'small element' vector. 3719 if ((SrcBits % VTBits) == 0) { 3720 assert(VT.isVector() && "Expected bitcast to vector"); 3721 3722 unsigned Scale = SrcBits / VTBits; 3723 APInt SrcDemandedElts(NumElts / Scale, 0); 3724 for (unsigned i = 0; i != NumElts; ++i) 3725 if (DemandedElts[i]) 3726 SrcDemandedElts.setBit(i / Scale); 3727 3728 // Fast case - sign splat can be simply split across the small elements. 3729 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3730 if (Tmp == SrcBits) 3731 return VTBits; 3732 3733 // Slow case - determine how far the sign extends into each sub-element. 3734 Tmp2 = VTBits; 3735 for (unsigned i = 0; i != NumElts; ++i) 3736 if (DemandedElts[i]) { 3737 unsigned SubOffset = i % Scale; 3738 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3739 SubOffset = SubOffset * VTBits; 3740 if (Tmp <= SubOffset) 3741 return 1; 3742 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3743 } 3744 return Tmp2; 3745 } 3746 break; 3747 } 3748 3749 case ISD::SIGN_EXTEND: 3750 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3751 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3752 case ISD::SIGN_EXTEND_INREG: 3753 // Max of the input and what this extends. 3754 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3755 Tmp = VTBits-Tmp+1; 3756 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3757 return std::max(Tmp, Tmp2); 3758 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3759 SDValue Src = Op.getOperand(0); 3760 EVT SrcVT = Src.getValueType(); 3761 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3762 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3763 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3764 } 3765 case ISD::SRA: 3766 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3767 // SRA X, C -> adds C sign bits. 3768 if (const APInt *ShAmt = 3769 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3770 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3771 return Tmp; 3772 case ISD::SHL: 3773 if (const APInt *ShAmt = 3774 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3775 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3776 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3777 if (ShAmt->ult(Tmp)) 3778 return Tmp - ShAmt->getZExtValue(); 3779 } 3780 break; 3781 case ISD::AND: 3782 case ISD::OR: 3783 case ISD::XOR: // NOT is handled here. 3784 // Logical binary ops preserve the number of sign bits at the worst. 3785 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3786 if (Tmp != 1) { 3787 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3788 FirstAnswer = std::min(Tmp, Tmp2); 3789 // We computed what we know about the sign bits as our first 3790 // answer. Now proceed to the generic code that uses 3791 // computeKnownBits, and pick whichever answer is better. 3792 } 3793 break; 3794 3795 case ISD::SELECT: 3796 case ISD::VSELECT: 3797 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3798 if (Tmp == 1) return 1; // Early out. 3799 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3800 return std::min(Tmp, Tmp2); 3801 case ISD::SELECT_CC: 3802 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3803 if (Tmp == 1) return 1; // Early out. 3804 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3805 return std::min(Tmp, Tmp2); 3806 3807 case ISD::SMIN: 3808 case ISD::SMAX: { 3809 // If we have a clamp pattern, we know that the number of sign bits will be 3810 // the minimum of the clamp min/max range. 3811 bool IsMax = (Opcode == ISD::SMAX); 3812 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3813 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3814 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3815 CstHigh = 3816 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3817 if (CstLow && CstHigh) { 3818 if (!IsMax) 3819 std::swap(CstLow, CstHigh); 3820 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3821 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3822 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3823 return std::min(Tmp, Tmp2); 3824 } 3825 } 3826 3827 // Fallback - just get the minimum number of sign bits of the operands. 3828 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3829 if (Tmp == 1) 3830 return 1; // Early out. 3831 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3832 return std::min(Tmp, Tmp2); 3833 } 3834 case ISD::UMIN: 3835 case ISD::UMAX: 3836 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3837 if (Tmp == 1) 3838 return 1; // Early out. 3839 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3840 return std::min(Tmp, Tmp2); 3841 case ISD::SADDO: 3842 case ISD::UADDO: 3843 case ISD::SSUBO: 3844 case ISD::USUBO: 3845 case ISD::SMULO: 3846 case ISD::UMULO: 3847 if (Op.getResNo() != 1) 3848 break; 3849 // The boolean result conforms to getBooleanContents. Fall through. 3850 // If setcc returns 0/-1, all bits are sign bits. 3851 // We know that we have an integer-based boolean since these operations 3852 // are only available for integer. 3853 if (TLI->getBooleanContents(VT.isVector(), false) == 3854 TargetLowering::ZeroOrNegativeOneBooleanContent) 3855 return VTBits; 3856 break; 3857 case ISD::SETCC: 3858 case ISD::STRICT_FSETCC: 3859 case ISD::STRICT_FSETCCS: { 3860 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3861 // If setcc returns 0/-1, all bits are sign bits. 3862 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3863 TargetLowering::ZeroOrNegativeOneBooleanContent) 3864 return VTBits; 3865 break; 3866 } 3867 case ISD::ROTL: 3868 case ISD::ROTR: 3869 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3870 3871 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3872 if (Tmp == VTBits) 3873 return VTBits; 3874 3875 if (ConstantSDNode *C = 3876 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3877 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3878 3879 // Handle rotate right by N like a rotate left by 32-N. 3880 if (Opcode == ISD::ROTR) 3881 RotAmt = (VTBits - RotAmt) % VTBits; 3882 3883 // If we aren't rotating out all of the known-in sign bits, return the 3884 // number that are left. This handles rotl(sext(x), 1) for example. 3885 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3886 } 3887 break; 3888 case ISD::ADD: 3889 case ISD::ADDC: 3890 // Add can have at most one carry bit. Thus we know that the output 3891 // is, at worst, one more bit than the inputs. 3892 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3893 if (Tmp == 1) return 1; // Early out. 3894 3895 // Special case decrementing a value (ADD X, -1): 3896 if (ConstantSDNode *CRHS = 3897 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3898 if (CRHS->isAllOnesValue()) { 3899 KnownBits Known = 3900 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3901 3902 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3903 // sign bits set. 3904 if ((Known.Zero | 1).isAllOnesValue()) 3905 return VTBits; 3906 3907 // If we are subtracting one from a positive number, there is no carry 3908 // out of the result. 3909 if (Known.isNonNegative()) 3910 return Tmp; 3911 } 3912 3913 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3914 if (Tmp2 == 1) return 1; // Early out. 3915 return std::min(Tmp, Tmp2) - 1; 3916 case ISD::SUB: 3917 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3918 if (Tmp2 == 1) return 1; // Early out. 3919 3920 // Handle NEG. 3921 if (ConstantSDNode *CLHS = 3922 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3923 if (CLHS->isNullValue()) { 3924 KnownBits Known = 3925 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3926 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3927 // sign bits set. 3928 if ((Known.Zero | 1).isAllOnesValue()) 3929 return VTBits; 3930 3931 // If the input is known to be positive (the sign bit is known clear), 3932 // the output of the NEG has the same number of sign bits as the input. 3933 if (Known.isNonNegative()) 3934 return Tmp2; 3935 3936 // Otherwise, we treat this like a SUB. 3937 } 3938 3939 // Sub can have at most one carry bit. Thus we know that the output 3940 // is, at worst, one more bit than the inputs. 3941 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3942 if (Tmp == 1) return 1; // Early out. 3943 return std::min(Tmp, Tmp2) - 1; 3944 case ISD::MUL: { 3945 // The output of the Mul can be at most twice the valid bits in the inputs. 3946 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3947 if (SignBitsOp0 == 1) 3948 break; 3949 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3950 if (SignBitsOp1 == 1) 3951 break; 3952 unsigned OutValidBits = 3953 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3954 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3955 } 3956 case ISD::SREM: 3957 // The sign bit is the LHS's sign bit, except when the result of the 3958 // remainder is zero. The magnitude of the result should be less than or 3959 // equal to the magnitude of the LHS. Therefore, the result should have 3960 // at least as many sign bits as the left hand side. 3961 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3962 case ISD::TRUNCATE: { 3963 // Check if the sign bits of source go down as far as the truncated value. 3964 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3965 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3966 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3967 return NumSrcSignBits - (NumSrcBits - VTBits); 3968 break; 3969 } 3970 case ISD::EXTRACT_ELEMENT: { 3971 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3972 const int BitWidth = Op.getValueSizeInBits(); 3973 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3974 3975 // Get reverse index (starting from 1), Op1 value indexes elements from 3976 // little end. Sign starts at big end. 3977 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3978 3979 // If the sign portion ends in our element the subtraction gives correct 3980 // result. Otherwise it gives either negative or > bitwidth result 3981 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3982 } 3983 case ISD::INSERT_VECTOR_ELT: { 3984 // If we know the element index, split the demand between the 3985 // source vector and the inserted element, otherwise assume we need 3986 // the original demanded vector elements and the value. 3987 SDValue InVec = Op.getOperand(0); 3988 SDValue InVal = Op.getOperand(1); 3989 SDValue EltNo = Op.getOperand(2); 3990 bool DemandedVal = true; 3991 APInt DemandedVecElts = DemandedElts; 3992 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3993 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3994 unsigned EltIdx = CEltNo->getZExtValue(); 3995 DemandedVal = !!DemandedElts[EltIdx]; 3996 DemandedVecElts.clearBit(EltIdx); 3997 } 3998 Tmp = std::numeric_limits<unsigned>::max(); 3999 if (DemandedVal) { 4000 // TODO - handle implicit truncation of inserted elements. 4001 if (InVal.getScalarValueSizeInBits() != VTBits) 4002 break; 4003 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4004 Tmp = std::min(Tmp, Tmp2); 4005 } 4006 if (!!DemandedVecElts) { 4007 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4008 Tmp = std::min(Tmp, Tmp2); 4009 } 4010 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4011 return Tmp; 4012 } 4013 case ISD::EXTRACT_VECTOR_ELT: { 4014 SDValue InVec = Op.getOperand(0); 4015 SDValue EltNo = Op.getOperand(1); 4016 EVT VecVT = InVec.getValueType(); 4017 // ComputeNumSignBits not yet implemented for scalable vectors. 4018 if (VecVT.isScalableVector()) 4019 break; 4020 const unsigned BitWidth = Op.getValueSizeInBits(); 4021 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4022 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4023 4024 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4025 // anything about sign bits. But if the sizes match we can derive knowledge 4026 // about sign bits from the vector operand. 4027 if (BitWidth != EltBitWidth) 4028 break; 4029 4030 // If we know the element index, just demand that vector element, else for 4031 // an unknown element index, ignore DemandedElts and demand them all. 4032 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 4033 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4034 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4035 DemandedSrcElts = 4036 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4037 4038 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4039 } 4040 case ISD::EXTRACT_SUBVECTOR: { 4041 // Offset the demanded elts by the subvector index. 4042 SDValue Src = Op.getOperand(0); 4043 // Bail until we can represent demanded elements for scalable vectors. 4044 if (Src.getValueType().isScalableVector()) 4045 break; 4046 uint64_t Idx = Op.getConstantOperandVal(1); 4047 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4048 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4049 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4050 } 4051 case ISD::CONCAT_VECTORS: { 4052 // Determine the minimum number of sign bits across all demanded 4053 // elts of the input vectors. Early out if the result is already 1. 4054 Tmp = std::numeric_limits<unsigned>::max(); 4055 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4056 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4057 unsigned NumSubVectors = Op.getNumOperands(); 4058 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4059 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 4060 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 4061 if (!DemandedSub) 4062 continue; 4063 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4064 Tmp = std::min(Tmp, Tmp2); 4065 } 4066 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4067 return Tmp; 4068 } 4069 case ISD::INSERT_SUBVECTOR: { 4070 // Demand any elements from the subvector and the remainder from the src its 4071 // inserted into. 4072 SDValue Src = Op.getOperand(0); 4073 SDValue Sub = Op.getOperand(1); 4074 uint64_t Idx = Op.getConstantOperandVal(2); 4075 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4076 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4077 APInt DemandedSrcElts = DemandedElts; 4078 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4079 4080 Tmp = std::numeric_limits<unsigned>::max(); 4081 if (!!DemandedSubElts) { 4082 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4083 if (Tmp == 1) 4084 return 1; // early-out 4085 } 4086 if (!!DemandedSrcElts) { 4087 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4088 Tmp = std::min(Tmp, Tmp2); 4089 } 4090 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4091 return Tmp; 4092 } 4093 } 4094 4095 // If we are looking at the loaded value of the SDNode. 4096 if (Op.getResNo() == 0) { 4097 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4098 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4099 unsigned ExtType = LD->getExtensionType(); 4100 switch (ExtType) { 4101 default: break; 4102 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4103 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4104 return VTBits - Tmp + 1; 4105 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4106 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4107 return VTBits - Tmp; 4108 case ISD::NON_EXTLOAD: 4109 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4110 // We only need to handle vectors - computeKnownBits should handle 4111 // scalar cases. 4112 Type *CstTy = Cst->getType(); 4113 if (CstTy->isVectorTy() && 4114 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4115 Tmp = VTBits; 4116 for (unsigned i = 0; i != NumElts; ++i) { 4117 if (!DemandedElts[i]) 4118 continue; 4119 if (Constant *Elt = Cst->getAggregateElement(i)) { 4120 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4121 const APInt &Value = CInt->getValue(); 4122 Tmp = std::min(Tmp, Value.getNumSignBits()); 4123 continue; 4124 } 4125 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4126 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4127 Tmp = std::min(Tmp, Value.getNumSignBits()); 4128 continue; 4129 } 4130 } 4131 // Unknown type. Conservatively assume no bits match sign bit. 4132 return 1; 4133 } 4134 return Tmp; 4135 } 4136 } 4137 break; 4138 } 4139 } 4140 } 4141 4142 // Allow the target to implement this method for its nodes. 4143 if (Opcode >= ISD::BUILTIN_OP_END || 4144 Opcode == ISD::INTRINSIC_WO_CHAIN || 4145 Opcode == ISD::INTRINSIC_W_CHAIN || 4146 Opcode == ISD::INTRINSIC_VOID) { 4147 unsigned NumBits = 4148 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4149 if (NumBits > 1) 4150 FirstAnswer = std::max(FirstAnswer, NumBits); 4151 } 4152 4153 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4154 // use this information. 4155 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4156 4157 APInt Mask; 4158 if (Known.isNonNegative()) { // sign bit is 0 4159 Mask = Known.Zero; 4160 } else if (Known.isNegative()) { // sign bit is 1; 4161 Mask = Known.One; 4162 } else { 4163 // Nothing known. 4164 return FirstAnswer; 4165 } 4166 4167 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4168 // the number of identical bits in the top of the input value. 4169 Mask <<= Mask.getBitWidth()-VTBits; 4170 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4171 } 4172 4173 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4174 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4175 !isa<ConstantSDNode>(Op.getOperand(1))) 4176 return false; 4177 4178 if (Op.getOpcode() == ISD::OR && 4179 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4180 return false; 4181 4182 return true; 4183 } 4184 4185 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4186 // If we're told that NaNs won't happen, assume they won't. 4187 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4188 return true; 4189 4190 if (Depth >= MaxRecursionDepth) 4191 return false; // Limit search depth. 4192 4193 // TODO: Handle vectors. 4194 // If the value is a constant, we can obviously see if it is a NaN or not. 4195 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4196 return !C->getValueAPF().isNaN() || 4197 (SNaN && !C->getValueAPF().isSignaling()); 4198 } 4199 4200 unsigned Opcode = Op.getOpcode(); 4201 switch (Opcode) { 4202 case ISD::FADD: 4203 case ISD::FSUB: 4204 case ISD::FMUL: 4205 case ISD::FDIV: 4206 case ISD::FREM: 4207 case ISD::FSIN: 4208 case ISD::FCOS: { 4209 if (SNaN) 4210 return true; 4211 // TODO: Need isKnownNeverInfinity 4212 return false; 4213 } 4214 case ISD::FCANONICALIZE: 4215 case ISD::FEXP: 4216 case ISD::FEXP2: 4217 case ISD::FTRUNC: 4218 case ISD::FFLOOR: 4219 case ISD::FCEIL: 4220 case ISD::FROUND: 4221 case ISD::FROUNDEVEN: 4222 case ISD::FRINT: 4223 case ISD::FNEARBYINT: { 4224 if (SNaN) 4225 return true; 4226 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4227 } 4228 case ISD::FABS: 4229 case ISD::FNEG: 4230 case ISD::FCOPYSIGN: { 4231 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4232 } 4233 case ISD::SELECT: 4234 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4235 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4236 case ISD::FP_EXTEND: 4237 case ISD::FP_ROUND: { 4238 if (SNaN) 4239 return true; 4240 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4241 } 4242 case ISD::SINT_TO_FP: 4243 case ISD::UINT_TO_FP: 4244 return true; 4245 case ISD::FMA: 4246 case ISD::FMAD: { 4247 if (SNaN) 4248 return true; 4249 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4250 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4251 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4252 } 4253 case ISD::FSQRT: // Need is known positive 4254 case ISD::FLOG: 4255 case ISD::FLOG2: 4256 case ISD::FLOG10: 4257 case ISD::FPOWI: 4258 case ISD::FPOW: { 4259 if (SNaN) 4260 return true; 4261 // TODO: Refine on operand 4262 return false; 4263 } 4264 case ISD::FMINNUM: 4265 case ISD::FMAXNUM: { 4266 // Only one needs to be known not-nan, since it will be returned if the 4267 // other ends up being one. 4268 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4269 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4270 } 4271 case ISD::FMINNUM_IEEE: 4272 case ISD::FMAXNUM_IEEE: { 4273 if (SNaN) 4274 return true; 4275 // This can return a NaN if either operand is an sNaN, or if both operands 4276 // are NaN. 4277 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4278 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4279 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4280 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4281 } 4282 case ISD::FMINIMUM: 4283 case ISD::FMAXIMUM: { 4284 // TODO: Does this quiet or return the origina NaN as-is? 4285 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4286 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4287 } 4288 case ISD::EXTRACT_VECTOR_ELT: { 4289 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4290 } 4291 default: 4292 if (Opcode >= ISD::BUILTIN_OP_END || 4293 Opcode == ISD::INTRINSIC_WO_CHAIN || 4294 Opcode == ISD::INTRINSIC_W_CHAIN || 4295 Opcode == ISD::INTRINSIC_VOID) { 4296 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4297 } 4298 4299 return false; 4300 } 4301 } 4302 4303 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4304 assert(Op.getValueType().isFloatingPoint() && 4305 "Floating point type expected"); 4306 4307 // If the value is a constant, we can obviously see if it is a zero or not. 4308 // TODO: Add BuildVector support. 4309 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4310 return !C->isZero(); 4311 return false; 4312 } 4313 4314 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4315 assert(!Op.getValueType().isFloatingPoint() && 4316 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4317 4318 // If the value is a constant, we can obviously see if it is a zero or not. 4319 if (ISD::matchUnaryPredicate( 4320 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4321 return true; 4322 4323 // TODO: Recognize more cases here. 4324 switch (Op.getOpcode()) { 4325 default: break; 4326 case ISD::OR: 4327 if (isKnownNeverZero(Op.getOperand(1)) || 4328 isKnownNeverZero(Op.getOperand(0))) 4329 return true; 4330 break; 4331 } 4332 4333 return false; 4334 } 4335 4336 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4337 // Check the obvious case. 4338 if (A == B) return true; 4339 4340 // For for negative and positive zero. 4341 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4342 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4343 if (CA->isZero() && CB->isZero()) return true; 4344 4345 // Otherwise they may not be equal. 4346 return false; 4347 } 4348 4349 // FIXME: unify with llvm::haveNoCommonBitsSet. 4350 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4351 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4352 assert(A.getValueType() == B.getValueType() && 4353 "Values must have the same type"); 4354 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4355 computeKnownBits(B)); 4356 } 4357 4358 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4359 SelectionDAG &DAG) { 4360 if (cast<ConstantSDNode>(Step)->isNullValue()) 4361 return DAG.getConstant(0, DL, VT); 4362 4363 return SDValue(); 4364 } 4365 4366 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4367 ArrayRef<SDValue> Ops, 4368 SelectionDAG &DAG) { 4369 int NumOps = Ops.size(); 4370 assert(NumOps != 0 && "Can't build an empty vector!"); 4371 assert(!VT.isScalableVector() && 4372 "BUILD_VECTOR cannot be used with scalable types"); 4373 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4374 "Incorrect element count in BUILD_VECTOR!"); 4375 4376 // BUILD_VECTOR of UNDEFs is UNDEF. 4377 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4378 return DAG.getUNDEF(VT); 4379 4380 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4381 SDValue IdentitySrc; 4382 bool IsIdentity = true; 4383 for (int i = 0; i != NumOps; ++i) { 4384 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4385 Ops[i].getOperand(0).getValueType() != VT || 4386 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4387 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4388 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4389 IsIdentity = false; 4390 break; 4391 } 4392 IdentitySrc = Ops[i].getOperand(0); 4393 } 4394 if (IsIdentity) 4395 return IdentitySrc; 4396 4397 return SDValue(); 4398 } 4399 4400 /// Try to simplify vector concatenation to an input value, undef, or build 4401 /// vector. 4402 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4403 ArrayRef<SDValue> Ops, 4404 SelectionDAG &DAG) { 4405 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4406 assert(llvm::all_of(Ops, 4407 [Ops](SDValue Op) { 4408 return Ops[0].getValueType() == Op.getValueType(); 4409 }) && 4410 "Concatenation of vectors with inconsistent value types!"); 4411 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4412 VT.getVectorElementCount() && 4413 "Incorrect element count in vector concatenation!"); 4414 4415 if (Ops.size() == 1) 4416 return Ops[0]; 4417 4418 // Concat of UNDEFs is UNDEF. 4419 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4420 return DAG.getUNDEF(VT); 4421 4422 // Scan the operands and look for extract operations from a single source 4423 // that correspond to insertion at the same location via this concatenation: 4424 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4425 SDValue IdentitySrc; 4426 bool IsIdentity = true; 4427 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4428 SDValue Op = Ops[i]; 4429 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4430 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4431 Op.getOperand(0).getValueType() != VT || 4432 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4433 Op.getConstantOperandVal(1) != IdentityIndex) { 4434 IsIdentity = false; 4435 break; 4436 } 4437 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4438 "Unexpected identity source vector for concat of extracts"); 4439 IdentitySrc = Op.getOperand(0); 4440 } 4441 if (IsIdentity) { 4442 assert(IdentitySrc && "Failed to set source vector of extracts"); 4443 return IdentitySrc; 4444 } 4445 4446 // The code below this point is only designed to work for fixed width 4447 // vectors, so we bail out for now. 4448 if (VT.isScalableVector()) 4449 return SDValue(); 4450 4451 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4452 // simplified to one big BUILD_VECTOR. 4453 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4454 EVT SVT = VT.getScalarType(); 4455 SmallVector<SDValue, 16> Elts; 4456 for (SDValue Op : Ops) { 4457 EVT OpVT = Op.getValueType(); 4458 if (Op.isUndef()) 4459 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4460 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4461 Elts.append(Op->op_begin(), Op->op_end()); 4462 else 4463 return SDValue(); 4464 } 4465 4466 // BUILD_VECTOR requires all inputs to be of the same type, find the 4467 // maximum type and extend them all. 4468 for (SDValue Op : Elts) 4469 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4470 4471 if (SVT.bitsGT(VT.getScalarType())) { 4472 for (SDValue &Op : Elts) { 4473 if (Op.isUndef()) 4474 Op = DAG.getUNDEF(SVT); 4475 else 4476 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4477 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4478 : DAG.getSExtOrTrunc(Op, DL, SVT); 4479 } 4480 } 4481 4482 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4483 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4484 return V; 4485 } 4486 4487 /// Gets or creates the specified node. 4488 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4489 FoldingSetNodeID ID; 4490 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4491 void *IP = nullptr; 4492 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4493 return SDValue(E, 0); 4494 4495 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4496 getVTList(VT)); 4497 CSEMap.InsertNode(N, IP); 4498 4499 InsertNode(N); 4500 SDValue V = SDValue(N, 0); 4501 NewSDValueDbgMsg(V, "Creating new node: ", this); 4502 return V; 4503 } 4504 4505 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4506 SDValue Operand) { 4507 SDNodeFlags Flags; 4508 if (Inserter) 4509 Flags = Inserter->getFlags(); 4510 return getNode(Opcode, DL, VT, Operand, Flags); 4511 } 4512 4513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4514 SDValue Operand, const SDNodeFlags Flags) { 4515 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4516 "Operand is DELETED_NODE!"); 4517 // Constant fold unary operations with an integer constant operand. Even 4518 // opaque constant will be folded, because the folding of unary operations 4519 // doesn't create new constants with different values. Nevertheless, the 4520 // opaque flag is preserved during folding to prevent future folding with 4521 // other constants. 4522 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4523 const APInt &Val = C->getAPIntValue(); 4524 switch (Opcode) { 4525 default: break; 4526 case ISD::SIGN_EXTEND: 4527 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4528 C->isTargetOpcode(), C->isOpaque()); 4529 case ISD::TRUNCATE: 4530 if (C->isOpaque()) 4531 break; 4532 LLVM_FALLTHROUGH; 4533 case ISD::ANY_EXTEND: 4534 case ISD::ZERO_EXTEND: 4535 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4536 C->isTargetOpcode(), C->isOpaque()); 4537 case ISD::UINT_TO_FP: 4538 case ISD::SINT_TO_FP: { 4539 APFloat apf(EVTToAPFloatSemantics(VT), 4540 APInt::getNullValue(VT.getSizeInBits())); 4541 (void)apf.convertFromAPInt(Val, 4542 Opcode==ISD::SINT_TO_FP, 4543 APFloat::rmNearestTiesToEven); 4544 return getConstantFP(apf, DL, VT); 4545 } 4546 case ISD::BITCAST: 4547 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4548 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4549 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4550 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4551 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4552 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4553 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4554 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4555 break; 4556 case ISD::ABS: 4557 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4558 C->isOpaque()); 4559 case ISD::BITREVERSE: 4560 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4561 C->isOpaque()); 4562 case ISD::BSWAP: 4563 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4564 C->isOpaque()); 4565 case ISD::CTPOP: 4566 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4567 C->isOpaque()); 4568 case ISD::CTLZ: 4569 case ISD::CTLZ_ZERO_UNDEF: 4570 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4571 C->isOpaque()); 4572 case ISD::CTTZ: 4573 case ISD::CTTZ_ZERO_UNDEF: 4574 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4575 C->isOpaque()); 4576 case ISD::FP16_TO_FP: { 4577 bool Ignored; 4578 APFloat FPV(APFloat::IEEEhalf(), 4579 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4580 4581 // This can return overflow, underflow, or inexact; we don't care. 4582 // FIXME need to be more flexible about rounding mode. 4583 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4584 APFloat::rmNearestTiesToEven, &Ignored); 4585 return getConstantFP(FPV, DL, VT); 4586 } 4587 case ISD::STEP_VECTOR: { 4588 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4589 return V; 4590 break; 4591 } 4592 } 4593 } 4594 4595 // Constant fold unary operations with a floating point constant operand. 4596 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4597 APFloat V = C->getValueAPF(); // make copy 4598 switch (Opcode) { 4599 case ISD::FNEG: 4600 V.changeSign(); 4601 return getConstantFP(V, DL, VT); 4602 case ISD::FABS: 4603 V.clearSign(); 4604 return getConstantFP(V, DL, VT); 4605 case ISD::FCEIL: { 4606 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4607 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4608 return getConstantFP(V, DL, VT); 4609 break; 4610 } 4611 case ISD::FTRUNC: { 4612 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4613 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4614 return getConstantFP(V, DL, VT); 4615 break; 4616 } 4617 case ISD::FFLOOR: { 4618 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4619 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4620 return getConstantFP(V, DL, VT); 4621 break; 4622 } 4623 case ISD::FP_EXTEND: { 4624 bool ignored; 4625 // This can return overflow, underflow, or inexact; we don't care. 4626 // FIXME need to be more flexible about rounding mode. 4627 (void)V.convert(EVTToAPFloatSemantics(VT), 4628 APFloat::rmNearestTiesToEven, &ignored); 4629 return getConstantFP(V, DL, VT); 4630 } 4631 case ISD::FP_TO_SINT: 4632 case ISD::FP_TO_UINT: { 4633 bool ignored; 4634 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4635 // FIXME need to be more flexible about rounding mode. 4636 APFloat::opStatus s = 4637 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4638 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4639 break; 4640 return getConstant(IntVal, DL, VT); 4641 } 4642 case ISD::BITCAST: 4643 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4644 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4645 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4646 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4647 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4648 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4649 break; 4650 case ISD::FP_TO_FP16: { 4651 bool Ignored; 4652 // This can return overflow, underflow, or inexact; we don't care. 4653 // FIXME need to be more flexible about rounding mode. 4654 (void)V.convert(APFloat::IEEEhalf(), 4655 APFloat::rmNearestTiesToEven, &Ignored); 4656 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4657 } 4658 } 4659 } 4660 4661 // Constant fold unary operations with a vector integer or float operand. 4662 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4663 if (BV->isConstant()) { 4664 switch (Opcode) { 4665 default: 4666 // FIXME: Entirely reasonable to perform folding of other unary 4667 // operations here as the need arises. 4668 break; 4669 case ISD::FNEG: 4670 case ISD::FABS: 4671 case ISD::FCEIL: 4672 case ISD::FTRUNC: 4673 case ISD::FFLOOR: 4674 case ISD::FP_EXTEND: 4675 case ISD::FP_TO_SINT: 4676 case ISD::FP_TO_UINT: 4677 case ISD::TRUNCATE: 4678 case ISD::ANY_EXTEND: 4679 case ISD::ZERO_EXTEND: 4680 case ISD::SIGN_EXTEND: 4681 case ISD::UINT_TO_FP: 4682 case ISD::SINT_TO_FP: 4683 case ISD::ABS: 4684 case ISD::BITREVERSE: 4685 case ISD::BSWAP: 4686 case ISD::CTLZ: 4687 case ISD::CTLZ_ZERO_UNDEF: 4688 case ISD::CTTZ: 4689 case ISD::CTTZ_ZERO_UNDEF: 4690 case ISD::CTPOP: { 4691 SDValue Ops = { Operand }; 4692 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4693 return Fold; 4694 } 4695 } 4696 } 4697 } 4698 4699 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4700 switch (Opcode) { 4701 case ISD::STEP_VECTOR: 4702 assert(VT.isScalableVector() && 4703 "STEP_VECTOR can only be used with scalable types"); 4704 assert(VT.getScalarSizeInBits() >= 8 && 4705 "STEP_VECTOR can only be used with vectors of integers that are at " 4706 "least 8 bits wide"); 4707 assert(Operand.getValueType().bitsGE(VT.getScalarType()) && 4708 "Operand type should be at least as large as the element type"); 4709 assert(isa<ConstantSDNode>(Operand) && 4710 cast<ConstantSDNode>(Operand)->getAPIntValue().isNonNegative() && 4711 "Expected positive integer constant for STEP_VECTOR"); 4712 break; 4713 case ISD::FREEZE: 4714 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4715 break; 4716 case ISD::TokenFactor: 4717 case ISD::MERGE_VALUES: 4718 case ISD::CONCAT_VECTORS: 4719 return Operand; // Factor, merge or concat of one node? No need. 4720 case ISD::BUILD_VECTOR: { 4721 // Attempt to simplify BUILD_VECTOR. 4722 SDValue Ops[] = {Operand}; 4723 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4724 return V; 4725 break; 4726 } 4727 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4728 case ISD::FP_EXTEND: 4729 assert(VT.isFloatingPoint() && 4730 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4731 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4732 assert((!VT.isVector() || 4733 VT.getVectorElementCount() == 4734 Operand.getValueType().getVectorElementCount()) && 4735 "Vector element count mismatch!"); 4736 assert(Operand.getValueType().bitsLT(VT) && 4737 "Invalid fpext node, dst < src!"); 4738 if (Operand.isUndef()) 4739 return getUNDEF(VT); 4740 break; 4741 case ISD::FP_TO_SINT: 4742 case ISD::FP_TO_UINT: 4743 if (Operand.isUndef()) 4744 return getUNDEF(VT); 4745 break; 4746 case ISD::SINT_TO_FP: 4747 case ISD::UINT_TO_FP: 4748 // [us]itofp(undef) = 0, because the result value is bounded. 4749 if (Operand.isUndef()) 4750 return getConstantFP(0.0, DL, VT); 4751 break; 4752 case ISD::SIGN_EXTEND: 4753 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4754 "Invalid SIGN_EXTEND!"); 4755 assert(VT.isVector() == Operand.getValueType().isVector() && 4756 "SIGN_EXTEND result type type should be vector iff the operand " 4757 "type is vector!"); 4758 if (Operand.getValueType() == VT) return Operand; // noop extension 4759 assert((!VT.isVector() || 4760 VT.getVectorElementCount() == 4761 Operand.getValueType().getVectorElementCount()) && 4762 "Vector element count mismatch!"); 4763 assert(Operand.getValueType().bitsLT(VT) && 4764 "Invalid sext node, dst < src!"); 4765 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4766 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4767 else if (OpOpcode == ISD::UNDEF) 4768 // sext(undef) = 0, because the top bits will all be the same. 4769 return getConstant(0, DL, VT); 4770 break; 4771 case ISD::ZERO_EXTEND: 4772 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4773 "Invalid ZERO_EXTEND!"); 4774 assert(VT.isVector() == Operand.getValueType().isVector() && 4775 "ZERO_EXTEND result type type should be vector iff the operand " 4776 "type is vector!"); 4777 if (Operand.getValueType() == VT) return Operand; // noop extension 4778 assert((!VT.isVector() || 4779 VT.getVectorElementCount() == 4780 Operand.getValueType().getVectorElementCount()) && 4781 "Vector element count mismatch!"); 4782 assert(Operand.getValueType().bitsLT(VT) && 4783 "Invalid zext node, dst < src!"); 4784 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4785 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4786 else if (OpOpcode == ISD::UNDEF) 4787 // zext(undef) = 0, because the top bits will be zero. 4788 return getConstant(0, DL, VT); 4789 break; 4790 case ISD::ANY_EXTEND: 4791 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4792 "Invalid ANY_EXTEND!"); 4793 assert(VT.isVector() == Operand.getValueType().isVector() && 4794 "ANY_EXTEND result type type should be vector iff the operand " 4795 "type is vector!"); 4796 if (Operand.getValueType() == VT) return Operand; // noop extension 4797 assert((!VT.isVector() || 4798 VT.getVectorElementCount() == 4799 Operand.getValueType().getVectorElementCount()) && 4800 "Vector element count mismatch!"); 4801 assert(Operand.getValueType().bitsLT(VT) && 4802 "Invalid anyext node, dst < src!"); 4803 4804 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4805 OpOpcode == ISD::ANY_EXTEND) 4806 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4807 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4808 else if (OpOpcode == ISD::UNDEF) 4809 return getUNDEF(VT); 4810 4811 // (ext (trunc x)) -> x 4812 if (OpOpcode == ISD::TRUNCATE) { 4813 SDValue OpOp = Operand.getOperand(0); 4814 if (OpOp.getValueType() == VT) { 4815 transferDbgValues(Operand, OpOp); 4816 return OpOp; 4817 } 4818 } 4819 break; 4820 case ISD::TRUNCATE: 4821 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4822 "Invalid TRUNCATE!"); 4823 assert(VT.isVector() == Operand.getValueType().isVector() && 4824 "TRUNCATE result type type should be vector iff the operand " 4825 "type is vector!"); 4826 if (Operand.getValueType() == VT) return Operand; // noop truncate 4827 assert((!VT.isVector() || 4828 VT.getVectorElementCount() == 4829 Operand.getValueType().getVectorElementCount()) && 4830 "Vector element count mismatch!"); 4831 assert(Operand.getValueType().bitsGT(VT) && 4832 "Invalid truncate node, src < dst!"); 4833 if (OpOpcode == ISD::TRUNCATE) 4834 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4835 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4836 OpOpcode == ISD::ANY_EXTEND) { 4837 // If the source is smaller than the dest, we still need an extend. 4838 if (Operand.getOperand(0).getValueType().getScalarType() 4839 .bitsLT(VT.getScalarType())) 4840 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4841 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4842 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4843 return Operand.getOperand(0); 4844 } 4845 if (OpOpcode == ISD::UNDEF) 4846 return getUNDEF(VT); 4847 break; 4848 case ISD::ANY_EXTEND_VECTOR_INREG: 4849 case ISD::ZERO_EXTEND_VECTOR_INREG: 4850 case ISD::SIGN_EXTEND_VECTOR_INREG: 4851 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4852 assert(Operand.getValueType().bitsLE(VT) && 4853 "The input must be the same size or smaller than the result."); 4854 assert(VT.getVectorMinNumElements() < 4855 Operand.getValueType().getVectorMinNumElements() && 4856 "The destination vector type must have fewer lanes than the input."); 4857 break; 4858 case ISD::ABS: 4859 assert(VT.isInteger() && VT == Operand.getValueType() && 4860 "Invalid ABS!"); 4861 if (OpOpcode == ISD::UNDEF) 4862 return getUNDEF(VT); 4863 break; 4864 case ISD::BSWAP: 4865 assert(VT.isInteger() && VT == Operand.getValueType() && 4866 "Invalid BSWAP!"); 4867 assert((VT.getScalarSizeInBits() % 16 == 0) && 4868 "BSWAP types must be a multiple of 16 bits!"); 4869 if (OpOpcode == ISD::UNDEF) 4870 return getUNDEF(VT); 4871 break; 4872 case ISD::BITREVERSE: 4873 assert(VT.isInteger() && VT == Operand.getValueType() && 4874 "Invalid BITREVERSE!"); 4875 if (OpOpcode == ISD::UNDEF) 4876 return getUNDEF(VT); 4877 break; 4878 case ISD::BITCAST: 4879 // Basic sanity checking. 4880 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4881 "Cannot BITCAST between types of different sizes!"); 4882 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4883 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4884 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4885 if (OpOpcode == ISD::UNDEF) 4886 return getUNDEF(VT); 4887 break; 4888 case ISD::SCALAR_TO_VECTOR: 4889 assert(VT.isVector() && !Operand.getValueType().isVector() && 4890 (VT.getVectorElementType() == Operand.getValueType() || 4891 (VT.getVectorElementType().isInteger() && 4892 Operand.getValueType().isInteger() && 4893 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4894 "Illegal SCALAR_TO_VECTOR node!"); 4895 if (OpOpcode == ISD::UNDEF) 4896 return getUNDEF(VT); 4897 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4898 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4899 isa<ConstantSDNode>(Operand.getOperand(1)) && 4900 Operand.getConstantOperandVal(1) == 0 && 4901 Operand.getOperand(0).getValueType() == VT) 4902 return Operand.getOperand(0); 4903 break; 4904 case ISD::FNEG: 4905 // Negation of an unknown bag of bits is still completely undefined. 4906 if (OpOpcode == ISD::UNDEF) 4907 return getUNDEF(VT); 4908 4909 if (OpOpcode == ISD::FNEG) // --X -> X 4910 return Operand.getOperand(0); 4911 break; 4912 case ISD::FABS: 4913 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4914 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4915 break; 4916 case ISD::VSCALE: 4917 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4918 break; 4919 case ISD::CTPOP: 4920 if (Operand.getValueType().getScalarType() == MVT::i1) 4921 return Operand; 4922 break; 4923 case ISD::CTLZ: 4924 case ISD::CTTZ: 4925 if (Operand.getValueType().getScalarType() == MVT::i1) 4926 return getNOT(DL, Operand, Operand.getValueType()); 4927 break; 4928 case ISD::VECREDUCE_SMIN: 4929 case ISD::VECREDUCE_UMAX: 4930 if (Operand.getValueType().getScalarType() == MVT::i1) 4931 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4932 break; 4933 case ISD::VECREDUCE_SMAX: 4934 case ISD::VECREDUCE_UMIN: 4935 if (Operand.getValueType().getScalarType() == MVT::i1) 4936 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4937 break; 4938 } 4939 4940 SDNode *N; 4941 SDVTList VTs = getVTList(VT); 4942 SDValue Ops[] = {Operand}; 4943 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4944 FoldingSetNodeID ID; 4945 AddNodeIDNode(ID, Opcode, VTs, Ops); 4946 void *IP = nullptr; 4947 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4948 E->intersectFlagsWith(Flags); 4949 return SDValue(E, 0); 4950 } 4951 4952 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4953 N->setFlags(Flags); 4954 createOperands(N, Ops); 4955 CSEMap.InsertNode(N, IP); 4956 } else { 4957 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4958 createOperands(N, Ops); 4959 } 4960 4961 InsertNode(N); 4962 SDValue V = SDValue(N, 0); 4963 NewSDValueDbgMsg(V, "Creating new node: ", this); 4964 return V; 4965 } 4966 4967 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4968 const APInt &C2) { 4969 switch (Opcode) { 4970 case ISD::ADD: return C1 + C2; 4971 case ISD::SUB: return C1 - C2; 4972 case ISD::MUL: return C1 * C2; 4973 case ISD::AND: return C1 & C2; 4974 case ISD::OR: return C1 | C2; 4975 case ISD::XOR: return C1 ^ C2; 4976 case ISD::SHL: return C1 << C2; 4977 case ISD::SRL: return C1.lshr(C2); 4978 case ISD::SRA: return C1.ashr(C2); 4979 case ISD::ROTL: return C1.rotl(C2); 4980 case ISD::ROTR: return C1.rotr(C2); 4981 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4982 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4983 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4984 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4985 case ISD::SADDSAT: return C1.sadd_sat(C2); 4986 case ISD::UADDSAT: return C1.uadd_sat(C2); 4987 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4988 case ISD::USUBSAT: return C1.usub_sat(C2); 4989 case ISD::UDIV: 4990 if (!C2.getBoolValue()) 4991 break; 4992 return C1.udiv(C2); 4993 case ISD::UREM: 4994 if (!C2.getBoolValue()) 4995 break; 4996 return C1.urem(C2); 4997 case ISD::SDIV: 4998 if (!C2.getBoolValue()) 4999 break; 5000 return C1.sdiv(C2); 5001 case ISD::SREM: 5002 if (!C2.getBoolValue()) 5003 break; 5004 return C1.srem(C2); 5005 } 5006 return llvm::None; 5007 } 5008 5009 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5010 const GlobalAddressSDNode *GA, 5011 const SDNode *N2) { 5012 if (GA->getOpcode() != ISD::GlobalAddress) 5013 return SDValue(); 5014 if (!TLI->isOffsetFoldingLegal(GA)) 5015 return SDValue(); 5016 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5017 if (!C2) 5018 return SDValue(); 5019 int64_t Offset = C2->getSExtValue(); 5020 switch (Opcode) { 5021 case ISD::ADD: break; 5022 case ISD::SUB: Offset = -uint64_t(Offset); break; 5023 default: return SDValue(); 5024 } 5025 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5026 GA->getOffset() + uint64_t(Offset)); 5027 } 5028 5029 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5030 switch (Opcode) { 5031 case ISD::SDIV: 5032 case ISD::UDIV: 5033 case ISD::SREM: 5034 case ISD::UREM: { 5035 // If a divisor is zero/undef or any element of a divisor vector is 5036 // zero/undef, the whole op is undef. 5037 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5038 SDValue Divisor = Ops[1]; 5039 if (Divisor.isUndef() || isNullConstant(Divisor)) 5040 return true; 5041 5042 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5043 llvm::any_of(Divisor->op_values(), 5044 [](SDValue V) { return V.isUndef() || 5045 isNullConstant(V); }); 5046 // TODO: Handle signed overflow. 5047 } 5048 // TODO: Handle oversized shifts. 5049 default: 5050 return false; 5051 } 5052 } 5053 5054 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5055 EVT VT, ArrayRef<SDValue> Ops) { 5056 // If the opcode is a target-specific ISD node, there's nothing we can 5057 // do here and the operand rules may not line up with the below, so 5058 // bail early. 5059 if (Opcode >= ISD::BUILTIN_OP_END) 5060 return SDValue(); 5061 5062 // For now, the array Ops should only contain two values. 5063 // This enforcement will be removed once this function is merged with 5064 // FoldConstantVectorArithmetic 5065 if (Ops.size() != 2) 5066 return SDValue(); 5067 5068 if (isUndef(Opcode, Ops)) 5069 return getUNDEF(VT); 5070 5071 SDNode *N1 = Ops[0].getNode(); 5072 SDNode *N2 = Ops[1].getNode(); 5073 5074 // Handle the case of two scalars. 5075 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 5076 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 5077 if (C1->isOpaque() || C2->isOpaque()) 5078 return SDValue(); 5079 5080 Optional<APInt> FoldAttempt = 5081 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5082 if (!FoldAttempt) 5083 return SDValue(); 5084 5085 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5086 assert((!Folded || !VT.isVector()) && 5087 "Can't fold vectors ops with scalar operands"); 5088 return Folded; 5089 } 5090 } 5091 5092 // fold (add Sym, c) -> Sym+c 5093 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5094 return FoldSymbolOffset(Opcode, VT, GA, N2); 5095 if (TLI->isCommutativeBinOp(Opcode)) 5096 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5097 return FoldSymbolOffset(Opcode, VT, GA, N1); 5098 5099 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5100 // vector width, however we should be able to do constant folds involving 5101 // splat vector nodes too. 5102 if (VT.isScalableVector()) 5103 return SDValue(); 5104 5105 // For fixed width vectors, extract each constant element and fold them 5106 // individually. Either input may be an undef value. 5107 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5108 if (!BV1 && !N1->isUndef()) 5109 return SDValue(); 5110 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5111 if (!BV2 && !N2->isUndef()) 5112 return SDValue(); 5113 // If both operands are undef, that's handled the same way as scalars. 5114 if (!BV1 && !BV2) 5115 return SDValue(); 5116 5117 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 5118 "Vector binop with different number of elements in operands?"); 5119 5120 EVT SVT = VT.getScalarType(); 5121 EVT LegalSVT = SVT; 5122 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5123 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5124 if (LegalSVT.bitsLT(SVT)) 5125 return SDValue(); 5126 } 5127 SmallVector<SDValue, 4> Outputs; 5128 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5129 for (unsigned I = 0; I != NumOps; ++I) { 5130 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5131 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5132 if (SVT.isInteger()) { 5133 if (V1->getValueType(0).bitsGT(SVT)) 5134 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5135 if (V2->getValueType(0).bitsGT(SVT)) 5136 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5137 } 5138 5139 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5140 return SDValue(); 5141 5142 // Fold one vector element. 5143 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5144 if (LegalSVT != SVT) 5145 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5146 5147 // Scalar folding only succeeded if the result is a constant or UNDEF. 5148 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5149 ScalarResult.getOpcode() != ISD::ConstantFP) 5150 return SDValue(); 5151 Outputs.push_back(ScalarResult); 5152 } 5153 5154 assert(VT.getVectorNumElements() == Outputs.size() && 5155 "Vector size mismatch!"); 5156 5157 // Build a big vector out of the scalar elements we generated. 5158 return getBuildVector(VT, SDLoc(), Outputs); 5159 } 5160 5161 // TODO: Merge with FoldConstantArithmetic 5162 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5163 const SDLoc &DL, EVT VT, 5164 ArrayRef<SDValue> Ops, 5165 const SDNodeFlags Flags) { 5166 // If the opcode is a target-specific ISD node, there's nothing we can 5167 // do here and the operand rules may not line up with the below, so 5168 // bail early. 5169 if (Opcode >= ISD::BUILTIN_OP_END) 5170 return SDValue(); 5171 5172 if (isUndef(Opcode, Ops)) 5173 return getUNDEF(VT); 5174 5175 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5176 if (!VT.isVector()) 5177 return SDValue(); 5178 5179 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5180 // vector width, however we should be able to do constant folds involving 5181 // splat vector nodes too. 5182 if (VT.isScalableVector()) 5183 return SDValue(); 5184 5185 // From this point onwards all vectors are assumed to be fixed width. 5186 unsigned NumElts = VT.getVectorNumElements(); 5187 5188 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5189 return !Op.getValueType().isVector() || 5190 Op.getValueType().getVectorNumElements() == NumElts; 5191 }; 5192 5193 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5194 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5195 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5196 (BV && BV->isConstant()); 5197 }; 5198 5199 // All operands must be vector types with the same number of elements as 5200 // the result type and must be either UNDEF or a build vector of constant 5201 // or UNDEF scalars. 5202 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5203 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5204 return SDValue(); 5205 5206 // If we are comparing vectors, then the result needs to be a i1 boolean 5207 // that is then sign-extended back to the legal result type. 5208 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5209 5210 // Find legal integer scalar type for constant promotion and 5211 // ensure that its scalar size is at least as large as source. 5212 EVT LegalSVT = VT.getScalarType(); 5213 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5214 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5215 if (LegalSVT.bitsLT(VT.getScalarType())) 5216 return SDValue(); 5217 } 5218 5219 // Constant fold each scalar lane separately. 5220 SmallVector<SDValue, 4> ScalarResults; 5221 for (unsigned i = 0; i != NumElts; i++) { 5222 SmallVector<SDValue, 4> ScalarOps; 5223 for (SDValue Op : Ops) { 5224 EVT InSVT = Op.getValueType().getScalarType(); 5225 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5226 if (!InBV) { 5227 // We've checked that this is UNDEF or a constant of some kind. 5228 if (Op.isUndef()) 5229 ScalarOps.push_back(getUNDEF(InSVT)); 5230 else 5231 ScalarOps.push_back(Op); 5232 continue; 5233 } 5234 5235 SDValue ScalarOp = InBV->getOperand(i); 5236 EVT ScalarVT = ScalarOp.getValueType(); 5237 5238 // Build vector (integer) scalar operands may need implicit 5239 // truncation - do this before constant folding. 5240 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5241 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5242 5243 ScalarOps.push_back(ScalarOp); 5244 } 5245 5246 // Constant fold the scalar operands. 5247 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5248 5249 // Legalize the (integer) scalar constant if necessary. 5250 if (LegalSVT != SVT) 5251 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5252 5253 // Scalar folding only succeeded if the result is a constant or UNDEF. 5254 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5255 ScalarResult.getOpcode() != ISD::ConstantFP) 5256 return SDValue(); 5257 ScalarResults.push_back(ScalarResult); 5258 } 5259 5260 SDValue V = getBuildVector(VT, DL, ScalarResults); 5261 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5262 return V; 5263 } 5264 5265 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5266 EVT VT, SDValue N1, SDValue N2) { 5267 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5268 // should. That will require dealing with a potentially non-default 5269 // rounding mode, checking the "opStatus" return value from the APFloat 5270 // math calculations, and possibly other variations. 5271 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5272 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5273 if (N1CFP && N2CFP) { 5274 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5275 switch (Opcode) { 5276 case ISD::FADD: 5277 C1.add(C2, APFloat::rmNearestTiesToEven); 5278 return getConstantFP(C1, DL, VT); 5279 case ISD::FSUB: 5280 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5281 return getConstantFP(C1, DL, VT); 5282 case ISD::FMUL: 5283 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5284 return getConstantFP(C1, DL, VT); 5285 case ISD::FDIV: 5286 C1.divide(C2, APFloat::rmNearestTiesToEven); 5287 return getConstantFP(C1, DL, VT); 5288 case ISD::FREM: 5289 C1.mod(C2); 5290 return getConstantFP(C1, DL, VT); 5291 case ISD::FCOPYSIGN: 5292 C1.copySign(C2); 5293 return getConstantFP(C1, DL, VT); 5294 default: break; 5295 } 5296 } 5297 if (N1CFP && Opcode == ISD::FP_ROUND) { 5298 APFloat C1 = N1CFP->getValueAPF(); // make copy 5299 bool Unused; 5300 // This can return overflow, underflow, or inexact; we don't care. 5301 // FIXME need to be more flexible about rounding mode. 5302 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5303 &Unused); 5304 return getConstantFP(C1, DL, VT); 5305 } 5306 5307 switch (Opcode) { 5308 case ISD::FSUB: 5309 // -0.0 - undef --> undef (consistent with "fneg undef") 5310 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5311 return getUNDEF(VT); 5312 LLVM_FALLTHROUGH; 5313 5314 case ISD::FADD: 5315 case ISD::FMUL: 5316 case ISD::FDIV: 5317 case ISD::FREM: 5318 // If both operands are undef, the result is undef. If 1 operand is undef, 5319 // the result is NaN. This should match the behavior of the IR optimizer. 5320 if (N1.isUndef() && N2.isUndef()) 5321 return getUNDEF(VT); 5322 if (N1.isUndef() || N2.isUndef()) 5323 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5324 } 5325 return SDValue(); 5326 } 5327 5328 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5329 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5330 5331 // There's no need to assert on a byte-aligned pointer. All pointers are at 5332 // least byte aligned. 5333 if (A == Align(1)) 5334 return Val; 5335 5336 FoldingSetNodeID ID; 5337 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5338 ID.AddInteger(A.value()); 5339 5340 void *IP = nullptr; 5341 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5342 return SDValue(E, 0); 5343 5344 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5345 Val.getValueType(), A); 5346 createOperands(N, {Val}); 5347 5348 CSEMap.InsertNode(N, IP); 5349 InsertNode(N); 5350 5351 SDValue V(N, 0); 5352 NewSDValueDbgMsg(V, "Creating new node: ", this); 5353 return V; 5354 } 5355 5356 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5357 SDValue N1, SDValue N2) { 5358 SDNodeFlags Flags; 5359 if (Inserter) 5360 Flags = Inserter->getFlags(); 5361 return getNode(Opcode, DL, VT, N1, N2, Flags); 5362 } 5363 5364 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5365 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5366 assert(N1.getOpcode() != ISD::DELETED_NODE && 5367 N2.getOpcode() != ISD::DELETED_NODE && 5368 "Operand is DELETED_NODE!"); 5369 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5370 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5371 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5372 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5373 5374 // Canonicalize constant to RHS if commutative. 5375 if (TLI->isCommutativeBinOp(Opcode)) { 5376 if (N1C && !N2C) { 5377 std::swap(N1C, N2C); 5378 std::swap(N1, N2); 5379 } else if (N1CFP && !N2CFP) { 5380 std::swap(N1CFP, N2CFP); 5381 std::swap(N1, N2); 5382 } 5383 } 5384 5385 switch (Opcode) { 5386 default: break; 5387 case ISD::TokenFactor: 5388 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5389 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5390 // Fold trivial token factors. 5391 if (N1.getOpcode() == ISD::EntryToken) return N2; 5392 if (N2.getOpcode() == ISD::EntryToken) return N1; 5393 if (N1 == N2) return N1; 5394 break; 5395 case ISD::BUILD_VECTOR: { 5396 // Attempt to simplify BUILD_VECTOR. 5397 SDValue Ops[] = {N1, N2}; 5398 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5399 return V; 5400 break; 5401 } 5402 case ISD::CONCAT_VECTORS: { 5403 SDValue Ops[] = {N1, N2}; 5404 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5405 return V; 5406 break; 5407 } 5408 case ISD::AND: 5409 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5410 assert(N1.getValueType() == N2.getValueType() && 5411 N1.getValueType() == VT && "Binary operator types must match!"); 5412 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5413 // worth handling here. 5414 if (N2C && N2C->isNullValue()) 5415 return N2; 5416 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5417 return N1; 5418 break; 5419 case ISD::OR: 5420 case ISD::XOR: 5421 case ISD::ADD: 5422 case ISD::SUB: 5423 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5424 assert(N1.getValueType() == N2.getValueType() && 5425 N1.getValueType() == VT && "Binary operator types must match!"); 5426 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5427 // it's worth handling here. 5428 if (N2C && N2C->isNullValue()) 5429 return N1; 5430 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5431 VT.getVectorElementType() == MVT::i1) 5432 return getNode(ISD::XOR, DL, VT, N1, N2); 5433 break; 5434 case ISD::MUL: 5435 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5436 assert(N1.getValueType() == N2.getValueType() && 5437 N1.getValueType() == VT && "Binary operator types must match!"); 5438 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5439 return getNode(ISD::AND, DL, VT, N1, N2); 5440 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5441 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5442 const APInt &N2CImm = N2C->getAPIntValue(); 5443 return getVScale(DL, VT, MulImm * N2CImm); 5444 } 5445 break; 5446 case ISD::UDIV: 5447 case ISD::UREM: 5448 case ISD::MULHU: 5449 case ISD::MULHS: 5450 case ISD::SDIV: 5451 case ISD::SREM: 5452 case ISD::SADDSAT: 5453 case ISD::SSUBSAT: 5454 case ISD::UADDSAT: 5455 case ISD::USUBSAT: 5456 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5457 assert(N1.getValueType() == N2.getValueType() && 5458 N1.getValueType() == VT && "Binary operator types must match!"); 5459 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5460 // fold (add_sat x, y) -> (or x, y) for bool types. 5461 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5462 return getNode(ISD::OR, DL, VT, N1, N2); 5463 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5464 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5465 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5466 } 5467 break; 5468 case ISD::SMIN: 5469 case ISD::UMAX: 5470 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5471 assert(N1.getValueType() == N2.getValueType() && 5472 N1.getValueType() == VT && "Binary operator types must match!"); 5473 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5474 return getNode(ISD::OR, DL, VT, N1, N2); 5475 break; 5476 case ISD::SMAX: 5477 case ISD::UMIN: 5478 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5479 assert(N1.getValueType() == N2.getValueType() && 5480 N1.getValueType() == VT && "Binary operator types must match!"); 5481 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5482 return getNode(ISD::AND, DL, VT, N1, N2); 5483 break; 5484 case ISD::FADD: 5485 case ISD::FSUB: 5486 case ISD::FMUL: 5487 case ISD::FDIV: 5488 case ISD::FREM: 5489 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5490 assert(N1.getValueType() == N2.getValueType() && 5491 N1.getValueType() == VT && "Binary operator types must match!"); 5492 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5493 return V; 5494 break; 5495 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5496 assert(N1.getValueType() == VT && 5497 N1.getValueType().isFloatingPoint() && 5498 N2.getValueType().isFloatingPoint() && 5499 "Invalid FCOPYSIGN!"); 5500 break; 5501 case ISD::SHL: 5502 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5503 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5504 const APInt &ShiftImm = N2C->getAPIntValue(); 5505 return getVScale(DL, VT, MulImm << ShiftImm); 5506 } 5507 LLVM_FALLTHROUGH; 5508 case ISD::SRA: 5509 case ISD::SRL: 5510 if (SDValue V = simplifyShift(N1, N2)) 5511 return V; 5512 LLVM_FALLTHROUGH; 5513 case ISD::ROTL: 5514 case ISD::ROTR: 5515 assert(VT == N1.getValueType() && 5516 "Shift operators return type must be the same as their first arg"); 5517 assert(VT.isInteger() && N2.getValueType().isInteger() && 5518 "Shifts only work on integers"); 5519 assert((!VT.isVector() || VT == N2.getValueType()) && 5520 "Vector shift amounts must be in the same as their first arg"); 5521 // Verify that the shift amount VT is big enough to hold valid shift 5522 // amounts. This catches things like trying to shift an i1024 value by an 5523 // i8, which is easy to fall into in generic code that uses 5524 // TLI.getShiftAmount(). 5525 assert(N2.getValueType().getScalarSizeInBits() >= 5526 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5527 "Invalid use of small shift amount with oversized value!"); 5528 5529 // Always fold shifts of i1 values so the code generator doesn't need to 5530 // handle them. Since we know the size of the shift has to be less than the 5531 // size of the value, the shift/rotate count is guaranteed to be zero. 5532 if (VT == MVT::i1) 5533 return N1; 5534 if (N2C && N2C->isNullValue()) 5535 return N1; 5536 break; 5537 case ISD::FP_ROUND: 5538 assert(VT.isFloatingPoint() && 5539 N1.getValueType().isFloatingPoint() && 5540 VT.bitsLE(N1.getValueType()) && 5541 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5542 "Invalid FP_ROUND!"); 5543 if (N1.getValueType() == VT) return N1; // noop conversion. 5544 break; 5545 case ISD::AssertSext: 5546 case ISD::AssertZext: { 5547 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5548 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5549 assert(VT.isInteger() && EVT.isInteger() && 5550 "Cannot *_EXTEND_INREG FP types"); 5551 assert(!EVT.isVector() && 5552 "AssertSExt/AssertZExt type should be the vector element type " 5553 "rather than the vector type!"); 5554 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5555 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5556 break; 5557 } 5558 case ISD::SIGN_EXTEND_INREG: { 5559 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5560 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5561 assert(VT.isInteger() && EVT.isInteger() && 5562 "Cannot *_EXTEND_INREG FP types"); 5563 assert(EVT.isVector() == VT.isVector() && 5564 "SIGN_EXTEND_INREG type should be vector iff the operand " 5565 "type is vector!"); 5566 assert((!EVT.isVector() || 5567 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5568 "Vector element counts must match in SIGN_EXTEND_INREG"); 5569 assert(EVT.bitsLE(VT) && "Not extending!"); 5570 if (EVT == VT) return N1; // Not actually extending 5571 5572 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5573 unsigned FromBits = EVT.getScalarSizeInBits(); 5574 Val <<= Val.getBitWidth() - FromBits; 5575 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5576 return getConstant(Val, DL, ConstantVT); 5577 }; 5578 5579 if (N1C) { 5580 const APInt &Val = N1C->getAPIntValue(); 5581 return SignExtendInReg(Val, VT); 5582 } 5583 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5584 SmallVector<SDValue, 8> Ops; 5585 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5586 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5587 SDValue Op = N1.getOperand(i); 5588 if (Op.isUndef()) { 5589 Ops.push_back(getUNDEF(OpVT)); 5590 continue; 5591 } 5592 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5593 APInt Val = C->getAPIntValue(); 5594 Ops.push_back(SignExtendInReg(Val, OpVT)); 5595 } 5596 return getBuildVector(VT, DL, Ops); 5597 } 5598 break; 5599 } 5600 case ISD::EXTRACT_VECTOR_ELT: 5601 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5602 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5603 element type of the vector."); 5604 5605 // Extract from an undefined value or using an undefined index is undefined. 5606 if (N1.isUndef() || N2.isUndef()) 5607 return getUNDEF(VT); 5608 5609 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5610 // vectors. For scalable vectors we will provide appropriate support for 5611 // dealing with arbitrary indices. 5612 if (N2C && N1.getValueType().isFixedLengthVector() && 5613 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5614 return getUNDEF(VT); 5615 5616 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5617 // expanding copies of large vectors from registers. This only works for 5618 // fixed length vectors, since we need to know the exact number of 5619 // elements. 5620 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5621 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5622 unsigned Factor = 5623 N1.getOperand(0).getValueType().getVectorNumElements(); 5624 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5625 N1.getOperand(N2C->getZExtValue() / Factor), 5626 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5627 } 5628 5629 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5630 // lowering is expanding large vector constants. 5631 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5632 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5633 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5634 N1.getValueType().isFixedLengthVector()) && 5635 "BUILD_VECTOR used for scalable vectors"); 5636 unsigned Index = 5637 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5638 SDValue Elt = N1.getOperand(Index); 5639 5640 if (VT != Elt.getValueType()) 5641 // If the vector element type is not legal, the BUILD_VECTOR operands 5642 // are promoted and implicitly truncated, and the result implicitly 5643 // extended. Make that explicit here. 5644 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5645 5646 return Elt; 5647 } 5648 5649 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5650 // operations are lowered to scalars. 5651 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5652 // If the indices are the same, return the inserted element else 5653 // if the indices are known different, extract the element from 5654 // the original vector. 5655 SDValue N1Op2 = N1.getOperand(2); 5656 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5657 5658 if (N1Op2C && N2C) { 5659 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5660 if (VT == N1.getOperand(1).getValueType()) 5661 return N1.getOperand(1); 5662 else 5663 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5664 } 5665 5666 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5667 } 5668 } 5669 5670 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5671 // when vector types are scalarized and v1iX is legal. 5672 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5673 // Here we are completely ignoring the extract element index (N2), 5674 // which is fine for fixed width vectors, since any index other than 0 5675 // is undefined anyway. However, this cannot be ignored for scalable 5676 // vectors - in theory we could support this, but we don't want to do this 5677 // without a profitability check. 5678 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5679 N1.getValueType().isFixedLengthVector() && 5680 N1.getValueType().getVectorNumElements() == 1) { 5681 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5682 N1.getOperand(1)); 5683 } 5684 break; 5685 case ISD::EXTRACT_ELEMENT: 5686 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5687 assert(!N1.getValueType().isVector() && !VT.isVector() && 5688 (N1.getValueType().isInteger() == VT.isInteger()) && 5689 N1.getValueType() != VT && 5690 "Wrong types for EXTRACT_ELEMENT!"); 5691 5692 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5693 // 64-bit integers into 32-bit parts. Instead of building the extract of 5694 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5695 if (N1.getOpcode() == ISD::BUILD_PAIR) 5696 return N1.getOperand(N2C->getZExtValue()); 5697 5698 // EXTRACT_ELEMENT of a constant int is also very common. 5699 if (N1C) { 5700 unsigned ElementSize = VT.getSizeInBits(); 5701 unsigned Shift = ElementSize * N2C->getZExtValue(); 5702 const APInt &Val = N1C->getAPIntValue(); 5703 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5704 } 5705 break; 5706 case ISD::EXTRACT_SUBVECTOR: 5707 EVT N1VT = N1.getValueType(); 5708 assert(VT.isVector() && N1VT.isVector() && 5709 "Extract subvector VTs must be vectors!"); 5710 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5711 "Extract subvector VTs must have the same element type!"); 5712 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5713 "Cannot extract a scalable vector from a fixed length vector!"); 5714 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5715 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5716 "Extract subvector must be from larger vector to smaller vector!"); 5717 assert(N2C && "Extract subvector index must be a constant"); 5718 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5719 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5720 N1VT.getVectorMinNumElements()) && 5721 "Extract subvector overflow!"); 5722 assert(N2C->getAPIntValue().getBitWidth() == 5723 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5724 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5725 5726 // Trivial extraction. 5727 if (VT == N1VT) 5728 return N1; 5729 5730 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5731 if (N1.isUndef()) 5732 return getUNDEF(VT); 5733 5734 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5735 // the concat have the same type as the extract. 5736 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5737 VT == N1.getOperand(0).getValueType()) { 5738 unsigned Factor = VT.getVectorMinNumElements(); 5739 return N1.getOperand(N2C->getZExtValue() / Factor); 5740 } 5741 5742 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5743 // during shuffle legalization. 5744 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5745 VT == N1.getOperand(1).getValueType()) 5746 return N1.getOperand(1); 5747 break; 5748 } 5749 5750 // Perform trivial constant folding. 5751 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5752 return SV; 5753 5754 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5755 return V; 5756 5757 // Canonicalize an UNDEF to the RHS, even over a constant. 5758 if (N1.isUndef()) { 5759 if (TLI->isCommutativeBinOp(Opcode)) { 5760 std::swap(N1, N2); 5761 } else { 5762 switch (Opcode) { 5763 case ISD::SIGN_EXTEND_INREG: 5764 case ISD::SUB: 5765 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5766 case ISD::UDIV: 5767 case ISD::SDIV: 5768 case ISD::UREM: 5769 case ISD::SREM: 5770 case ISD::SSUBSAT: 5771 case ISD::USUBSAT: 5772 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5773 } 5774 } 5775 } 5776 5777 // Fold a bunch of operators when the RHS is undef. 5778 if (N2.isUndef()) { 5779 switch (Opcode) { 5780 case ISD::XOR: 5781 if (N1.isUndef()) 5782 // Handle undef ^ undef -> 0 special case. This is a common 5783 // idiom (misuse). 5784 return getConstant(0, DL, VT); 5785 LLVM_FALLTHROUGH; 5786 case ISD::ADD: 5787 case ISD::SUB: 5788 case ISD::UDIV: 5789 case ISD::SDIV: 5790 case ISD::UREM: 5791 case ISD::SREM: 5792 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5793 case ISD::MUL: 5794 case ISD::AND: 5795 case ISD::SSUBSAT: 5796 case ISD::USUBSAT: 5797 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5798 case ISD::OR: 5799 case ISD::SADDSAT: 5800 case ISD::UADDSAT: 5801 return getAllOnesConstant(DL, VT); 5802 } 5803 } 5804 5805 // Memoize this node if possible. 5806 SDNode *N; 5807 SDVTList VTs = getVTList(VT); 5808 SDValue Ops[] = {N1, N2}; 5809 if (VT != MVT::Glue) { 5810 FoldingSetNodeID ID; 5811 AddNodeIDNode(ID, Opcode, VTs, Ops); 5812 void *IP = nullptr; 5813 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5814 E->intersectFlagsWith(Flags); 5815 return SDValue(E, 0); 5816 } 5817 5818 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5819 N->setFlags(Flags); 5820 createOperands(N, Ops); 5821 CSEMap.InsertNode(N, IP); 5822 } else { 5823 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5824 createOperands(N, Ops); 5825 } 5826 5827 InsertNode(N); 5828 SDValue V = SDValue(N, 0); 5829 NewSDValueDbgMsg(V, "Creating new node: ", this); 5830 return V; 5831 } 5832 5833 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5834 SDValue N1, SDValue N2, SDValue N3) { 5835 SDNodeFlags Flags; 5836 if (Inserter) 5837 Flags = Inserter->getFlags(); 5838 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5839 } 5840 5841 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5842 SDValue N1, SDValue N2, SDValue N3, 5843 const SDNodeFlags Flags) { 5844 assert(N1.getOpcode() != ISD::DELETED_NODE && 5845 N2.getOpcode() != ISD::DELETED_NODE && 5846 N3.getOpcode() != ISD::DELETED_NODE && 5847 "Operand is DELETED_NODE!"); 5848 // Perform various simplifications. 5849 switch (Opcode) { 5850 case ISD::FMA: { 5851 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5852 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5853 N3.getValueType() == VT && "FMA types must match!"); 5854 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5855 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5856 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5857 if (N1CFP && N2CFP && N3CFP) { 5858 APFloat V1 = N1CFP->getValueAPF(); 5859 const APFloat &V2 = N2CFP->getValueAPF(); 5860 const APFloat &V3 = N3CFP->getValueAPF(); 5861 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5862 return getConstantFP(V1, DL, VT); 5863 } 5864 break; 5865 } 5866 case ISD::BUILD_VECTOR: { 5867 // Attempt to simplify BUILD_VECTOR. 5868 SDValue Ops[] = {N1, N2, N3}; 5869 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5870 return V; 5871 break; 5872 } 5873 case ISD::CONCAT_VECTORS: { 5874 SDValue Ops[] = {N1, N2, N3}; 5875 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5876 return V; 5877 break; 5878 } 5879 case ISD::SETCC: { 5880 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5881 assert(N1.getValueType() == N2.getValueType() && 5882 "SETCC operands must have the same type!"); 5883 assert(VT.isVector() == N1.getValueType().isVector() && 5884 "SETCC type should be vector iff the operand type is vector!"); 5885 assert((!VT.isVector() || VT.getVectorElementCount() == 5886 N1.getValueType().getVectorElementCount()) && 5887 "SETCC vector element counts must match!"); 5888 // Use FoldSetCC to simplify SETCC's. 5889 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5890 return V; 5891 // Vector constant folding. 5892 SDValue Ops[] = {N1, N2, N3}; 5893 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5894 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5895 return V; 5896 } 5897 break; 5898 } 5899 case ISD::SELECT: 5900 case ISD::VSELECT: 5901 if (SDValue V = simplifySelect(N1, N2, N3)) 5902 return V; 5903 break; 5904 case ISD::VECTOR_SHUFFLE: 5905 llvm_unreachable("should use getVectorShuffle constructor!"); 5906 case ISD::INSERT_VECTOR_ELT: { 5907 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5908 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5909 // for scalable vectors where we will generate appropriate code to 5910 // deal with out-of-bounds cases correctly. 5911 if (N3C && N1.getValueType().isFixedLengthVector() && 5912 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5913 return getUNDEF(VT); 5914 5915 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5916 if (N3.isUndef()) 5917 return getUNDEF(VT); 5918 5919 // If the inserted element is an UNDEF, just use the input vector. 5920 if (N2.isUndef()) 5921 return N1; 5922 5923 break; 5924 } 5925 case ISD::INSERT_SUBVECTOR: { 5926 // Inserting undef into undef is still undef. 5927 if (N1.isUndef() && N2.isUndef()) 5928 return getUNDEF(VT); 5929 5930 EVT N2VT = N2.getValueType(); 5931 assert(VT == N1.getValueType() && 5932 "Dest and insert subvector source types must match!"); 5933 assert(VT.isVector() && N2VT.isVector() && 5934 "Insert subvector VTs must be vectors!"); 5935 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5936 "Cannot insert a scalable vector into a fixed length vector!"); 5937 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5938 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5939 "Insert subvector must be from smaller vector to larger vector!"); 5940 assert(isa<ConstantSDNode>(N3) && 5941 "Insert subvector index must be constant"); 5942 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5943 (N2VT.getVectorMinNumElements() + 5944 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5945 VT.getVectorMinNumElements()) && 5946 "Insert subvector overflow!"); 5947 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 5948 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5949 "Constant index for INSERT_SUBVECTOR has an invalid size"); 5950 5951 // Trivial insertion. 5952 if (VT == N2VT) 5953 return N2; 5954 5955 // If this is an insert of an extracted vector into an undef vector, we 5956 // can just use the input to the extract. 5957 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5958 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5959 return N2.getOperand(0); 5960 break; 5961 } 5962 case ISD::BITCAST: 5963 // Fold bit_convert nodes from a type to themselves. 5964 if (N1.getValueType() == VT) 5965 return N1; 5966 break; 5967 } 5968 5969 // Memoize node if it doesn't produce a flag. 5970 SDNode *N; 5971 SDVTList VTs = getVTList(VT); 5972 SDValue Ops[] = {N1, N2, N3}; 5973 if (VT != MVT::Glue) { 5974 FoldingSetNodeID ID; 5975 AddNodeIDNode(ID, Opcode, VTs, Ops); 5976 void *IP = nullptr; 5977 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5978 E->intersectFlagsWith(Flags); 5979 return SDValue(E, 0); 5980 } 5981 5982 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5983 N->setFlags(Flags); 5984 createOperands(N, Ops); 5985 CSEMap.InsertNode(N, IP); 5986 } else { 5987 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5988 createOperands(N, Ops); 5989 } 5990 5991 InsertNode(N); 5992 SDValue V = SDValue(N, 0); 5993 NewSDValueDbgMsg(V, "Creating new node: ", this); 5994 return V; 5995 } 5996 5997 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5998 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5999 SDValue Ops[] = { N1, N2, N3, N4 }; 6000 return getNode(Opcode, DL, VT, Ops); 6001 } 6002 6003 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6004 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6005 SDValue N5) { 6006 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6007 return getNode(Opcode, DL, VT, Ops); 6008 } 6009 6010 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6011 /// the incoming stack arguments to be loaded from the stack. 6012 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6013 SmallVector<SDValue, 8> ArgChains; 6014 6015 // Include the original chain at the beginning of the list. When this is 6016 // used by target LowerCall hooks, this helps legalize find the 6017 // CALLSEQ_BEGIN node. 6018 ArgChains.push_back(Chain); 6019 6020 // Add a chain value for each stack argument. 6021 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 6022 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 6023 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 6024 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6025 if (FI->getIndex() < 0) 6026 ArgChains.push_back(SDValue(L, 1)); 6027 6028 // Build a tokenfactor for all the chains. 6029 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6030 } 6031 6032 /// getMemsetValue - Vectorized representation of the memset value 6033 /// operand. 6034 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6035 const SDLoc &dl) { 6036 assert(!Value.isUndef()); 6037 6038 unsigned NumBits = VT.getScalarSizeInBits(); 6039 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6040 assert(C->getAPIntValue().getBitWidth() == 8); 6041 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6042 if (VT.isInteger()) { 6043 bool IsOpaque = VT.getSizeInBits() > 64 || 6044 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6045 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6046 } 6047 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6048 VT); 6049 } 6050 6051 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6052 EVT IntVT = VT.getScalarType(); 6053 if (!IntVT.isInteger()) 6054 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6055 6056 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6057 if (NumBits > 8) { 6058 // Use a multiplication with 0x010101... to extend the input to the 6059 // required length. 6060 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6061 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6062 DAG.getConstant(Magic, dl, IntVT)); 6063 } 6064 6065 if (VT != Value.getValueType() && !VT.isInteger()) 6066 Value = DAG.getBitcast(VT.getScalarType(), Value); 6067 if (VT != Value.getValueType()) 6068 Value = DAG.getSplatBuildVector(VT, dl, Value); 6069 6070 return Value; 6071 } 6072 6073 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6074 /// used when a memcpy is turned into a memset when the source is a constant 6075 /// string ptr. 6076 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6077 const TargetLowering &TLI, 6078 const ConstantDataArraySlice &Slice) { 6079 // Handle vector with all elements zero. 6080 if (Slice.Array == nullptr) { 6081 if (VT.isInteger()) 6082 return DAG.getConstant(0, dl, VT); 6083 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6084 return DAG.getConstantFP(0.0, dl, VT); 6085 else if (VT.isVector()) { 6086 unsigned NumElts = VT.getVectorNumElements(); 6087 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6088 return DAG.getNode(ISD::BITCAST, dl, VT, 6089 DAG.getConstant(0, dl, 6090 EVT::getVectorVT(*DAG.getContext(), 6091 EltVT, NumElts))); 6092 } else 6093 llvm_unreachable("Expected type!"); 6094 } 6095 6096 assert(!VT.isVector() && "Can't handle vector type here!"); 6097 unsigned NumVTBits = VT.getSizeInBits(); 6098 unsigned NumVTBytes = NumVTBits / 8; 6099 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6100 6101 APInt Val(NumVTBits, 0); 6102 if (DAG.getDataLayout().isLittleEndian()) { 6103 for (unsigned i = 0; i != NumBytes; ++i) 6104 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6105 } else { 6106 for (unsigned i = 0; i != NumBytes; ++i) 6107 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6108 } 6109 6110 // If the "cost" of materializing the integer immediate is less than the cost 6111 // of a load, then it is cost effective to turn the load into the immediate. 6112 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6113 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6114 return DAG.getConstant(Val, dl, VT); 6115 return SDValue(nullptr, 0); 6116 } 6117 6118 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6119 const SDLoc &DL, 6120 const SDNodeFlags Flags) { 6121 EVT VT = Base.getValueType(); 6122 SDValue Index; 6123 6124 if (Offset.isScalable()) 6125 Index = getVScale(DL, Base.getValueType(), 6126 APInt(Base.getValueSizeInBits().getFixedSize(), 6127 Offset.getKnownMinSize())); 6128 else 6129 Index = getConstant(Offset.getFixedSize(), DL, VT); 6130 6131 return getMemBasePlusOffset(Base, Index, DL, Flags); 6132 } 6133 6134 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6135 const SDLoc &DL, 6136 const SDNodeFlags Flags) { 6137 assert(Offset.getValueType().isInteger()); 6138 EVT BasePtrVT = Ptr.getValueType(); 6139 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6140 } 6141 6142 /// Returns true if memcpy source is constant data. 6143 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6144 uint64_t SrcDelta = 0; 6145 GlobalAddressSDNode *G = nullptr; 6146 if (Src.getOpcode() == ISD::GlobalAddress) 6147 G = cast<GlobalAddressSDNode>(Src); 6148 else if (Src.getOpcode() == ISD::ADD && 6149 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6150 Src.getOperand(1).getOpcode() == ISD::Constant) { 6151 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6152 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6153 } 6154 if (!G) 6155 return false; 6156 6157 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6158 SrcDelta + G->getOffset()); 6159 } 6160 6161 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6162 SelectionDAG &DAG) { 6163 // On Darwin, -Os means optimize for size without hurting performance, so 6164 // only really optimize for size when -Oz (MinSize) is used. 6165 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6166 return MF.getFunction().hasMinSize(); 6167 return DAG.shouldOptForSize(); 6168 } 6169 6170 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6171 SmallVector<SDValue, 32> &OutChains, unsigned From, 6172 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6173 SmallVector<SDValue, 16> &OutStoreChains) { 6174 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6175 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6176 SmallVector<SDValue, 16> GluedLoadChains; 6177 for (unsigned i = From; i < To; ++i) { 6178 OutChains.push_back(OutLoadChains[i]); 6179 GluedLoadChains.push_back(OutLoadChains[i]); 6180 } 6181 6182 // Chain for all loads. 6183 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6184 GluedLoadChains); 6185 6186 for (unsigned i = From; i < To; ++i) { 6187 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6188 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6189 ST->getBasePtr(), ST->getMemoryVT(), 6190 ST->getMemOperand()); 6191 OutChains.push_back(NewStore); 6192 } 6193 } 6194 6195 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6196 SDValue Chain, SDValue Dst, SDValue Src, 6197 uint64_t Size, Align Alignment, 6198 bool isVol, bool AlwaysInline, 6199 MachinePointerInfo DstPtrInfo, 6200 MachinePointerInfo SrcPtrInfo) { 6201 // Turn a memcpy of undef to nop. 6202 // FIXME: We need to honor volatile even is Src is undef. 6203 if (Src.isUndef()) 6204 return Chain; 6205 6206 // Expand memcpy to a series of load and store ops if the size operand falls 6207 // below a certain threshold. 6208 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6209 // rather than maybe a humongous number of loads and stores. 6210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6211 const DataLayout &DL = DAG.getDataLayout(); 6212 LLVMContext &C = *DAG.getContext(); 6213 std::vector<EVT> MemOps; 6214 bool DstAlignCanChange = false; 6215 MachineFunction &MF = DAG.getMachineFunction(); 6216 MachineFrameInfo &MFI = MF.getFrameInfo(); 6217 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6218 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6219 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6220 DstAlignCanChange = true; 6221 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6222 if (!SrcAlign || Alignment > *SrcAlign) 6223 SrcAlign = Alignment; 6224 assert(SrcAlign && "SrcAlign must be set"); 6225 ConstantDataArraySlice Slice; 6226 // If marked as volatile, perform a copy even when marked as constant. 6227 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6228 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6229 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6230 const MemOp Op = isZeroConstant 6231 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6232 /*IsZeroMemset*/ true, isVol) 6233 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6234 *SrcAlign, isVol, CopyFromConstant); 6235 if (!TLI.findOptimalMemOpLowering( 6236 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6237 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6238 return SDValue(); 6239 6240 if (DstAlignCanChange) { 6241 Type *Ty = MemOps[0].getTypeForEVT(C); 6242 Align NewAlign = DL.getABITypeAlign(Ty); 6243 6244 // Don't promote to an alignment that would require dynamic stack 6245 // realignment. 6246 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6247 if (!TRI->hasStackRealignment(MF)) 6248 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6249 NewAlign = NewAlign / 2; 6250 6251 if (NewAlign > Alignment) { 6252 // Give the stack frame object a larger alignment if needed. 6253 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6254 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6255 Alignment = NewAlign; 6256 } 6257 } 6258 6259 MachineMemOperand::Flags MMOFlags = 6260 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6261 SmallVector<SDValue, 16> OutLoadChains; 6262 SmallVector<SDValue, 16> OutStoreChains; 6263 SmallVector<SDValue, 32> OutChains; 6264 unsigned NumMemOps = MemOps.size(); 6265 uint64_t SrcOff = 0, DstOff = 0; 6266 for (unsigned i = 0; i != NumMemOps; ++i) { 6267 EVT VT = MemOps[i]; 6268 unsigned VTSize = VT.getSizeInBits() / 8; 6269 SDValue Value, Store; 6270 6271 if (VTSize > Size) { 6272 // Issuing an unaligned load / store pair that overlaps with the previous 6273 // pair. Adjust the offset accordingly. 6274 assert(i == NumMemOps-1 && i != 0); 6275 SrcOff -= VTSize - Size; 6276 DstOff -= VTSize - Size; 6277 } 6278 6279 if (CopyFromConstant && 6280 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6281 // It's unlikely a store of a vector immediate can be done in a single 6282 // instruction. It would require a load from a constantpool first. 6283 // We only handle zero vectors here. 6284 // FIXME: Handle other cases where store of vector immediate is done in 6285 // a single instruction. 6286 ConstantDataArraySlice SubSlice; 6287 if (SrcOff < Slice.Length) { 6288 SubSlice = Slice; 6289 SubSlice.move(SrcOff); 6290 } else { 6291 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6292 SubSlice.Array = nullptr; 6293 SubSlice.Offset = 0; 6294 SubSlice.Length = VTSize; 6295 } 6296 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6297 if (Value.getNode()) { 6298 Store = DAG.getStore( 6299 Chain, dl, Value, 6300 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6301 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6302 OutChains.push_back(Store); 6303 } 6304 } 6305 6306 if (!Store.getNode()) { 6307 // The type might not be legal for the target. This should only happen 6308 // if the type is smaller than a legal type, as on PPC, so the right 6309 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6310 // to Load/Store if NVT==VT. 6311 // FIXME does the case above also need this? 6312 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6313 assert(NVT.bitsGE(VT)); 6314 6315 bool isDereferenceable = 6316 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6317 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6318 if (isDereferenceable) 6319 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6320 6321 Value = DAG.getExtLoad( 6322 ISD::EXTLOAD, dl, NVT, Chain, 6323 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6324 SrcPtrInfo.getWithOffset(SrcOff), VT, 6325 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6326 OutLoadChains.push_back(Value.getValue(1)); 6327 6328 Store = DAG.getTruncStore( 6329 Chain, dl, Value, 6330 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6331 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6332 OutStoreChains.push_back(Store); 6333 } 6334 SrcOff += VTSize; 6335 DstOff += VTSize; 6336 Size -= VTSize; 6337 } 6338 6339 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6340 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6341 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6342 6343 if (NumLdStInMemcpy) { 6344 // It may be that memcpy might be converted to memset if it's memcpy 6345 // of constants. In such a case, we won't have loads and stores, but 6346 // just stores. In the absence of loads, there is nothing to gang up. 6347 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6348 // If target does not care, just leave as it. 6349 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6350 OutChains.push_back(OutLoadChains[i]); 6351 OutChains.push_back(OutStoreChains[i]); 6352 } 6353 } else { 6354 // Ld/St less than/equal limit set by target. 6355 if (NumLdStInMemcpy <= GluedLdStLimit) { 6356 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6357 NumLdStInMemcpy, OutLoadChains, 6358 OutStoreChains); 6359 } else { 6360 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6361 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6362 unsigned GlueIter = 0; 6363 6364 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6365 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6366 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6367 6368 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6369 OutLoadChains, OutStoreChains); 6370 GlueIter += GluedLdStLimit; 6371 } 6372 6373 // Residual ld/st. 6374 if (RemainingLdStInMemcpy) { 6375 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6376 RemainingLdStInMemcpy, OutLoadChains, 6377 OutStoreChains); 6378 } 6379 } 6380 } 6381 } 6382 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6383 } 6384 6385 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6386 SDValue Chain, SDValue Dst, SDValue Src, 6387 uint64_t Size, Align Alignment, 6388 bool isVol, bool AlwaysInline, 6389 MachinePointerInfo DstPtrInfo, 6390 MachinePointerInfo SrcPtrInfo) { 6391 // Turn a memmove of undef to nop. 6392 // FIXME: We need to honor volatile even is Src is undef. 6393 if (Src.isUndef()) 6394 return Chain; 6395 6396 // Expand memmove to a series of load and store ops if the size operand falls 6397 // below a certain threshold. 6398 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6399 const DataLayout &DL = DAG.getDataLayout(); 6400 LLVMContext &C = *DAG.getContext(); 6401 std::vector<EVT> MemOps; 6402 bool DstAlignCanChange = false; 6403 MachineFunction &MF = DAG.getMachineFunction(); 6404 MachineFrameInfo &MFI = MF.getFrameInfo(); 6405 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6406 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6407 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6408 DstAlignCanChange = true; 6409 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6410 if (!SrcAlign || Alignment > *SrcAlign) 6411 SrcAlign = Alignment; 6412 assert(SrcAlign && "SrcAlign must be set"); 6413 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6414 if (!TLI.findOptimalMemOpLowering( 6415 MemOps, Limit, 6416 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6417 /*IsVolatile*/ true), 6418 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6419 MF.getFunction().getAttributes())) 6420 return SDValue(); 6421 6422 if (DstAlignCanChange) { 6423 Type *Ty = MemOps[0].getTypeForEVT(C); 6424 Align NewAlign = DL.getABITypeAlign(Ty); 6425 if (NewAlign > Alignment) { 6426 // Give the stack frame object a larger alignment if needed. 6427 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6428 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6429 Alignment = NewAlign; 6430 } 6431 } 6432 6433 MachineMemOperand::Flags MMOFlags = 6434 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6435 uint64_t SrcOff = 0, DstOff = 0; 6436 SmallVector<SDValue, 8> LoadValues; 6437 SmallVector<SDValue, 8> LoadChains; 6438 SmallVector<SDValue, 8> OutChains; 6439 unsigned NumMemOps = MemOps.size(); 6440 for (unsigned i = 0; i < NumMemOps; i++) { 6441 EVT VT = MemOps[i]; 6442 unsigned VTSize = VT.getSizeInBits() / 8; 6443 SDValue Value; 6444 6445 bool isDereferenceable = 6446 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6447 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6448 if (isDereferenceable) 6449 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6450 6451 Value = 6452 DAG.getLoad(VT, dl, Chain, 6453 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6454 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6455 LoadValues.push_back(Value); 6456 LoadChains.push_back(Value.getValue(1)); 6457 SrcOff += VTSize; 6458 } 6459 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6460 OutChains.clear(); 6461 for (unsigned i = 0; i < NumMemOps; i++) { 6462 EVT VT = MemOps[i]; 6463 unsigned VTSize = VT.getSizeInBits() / 8; 6464 SDValue Store; 6465 6466 Store = 6467 DAG.getStore(Chain, dl, LoadValues[i], 6468 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6469 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6470 OutChains.push_back(Store); 6471 DstOff += VTSize; 6472 } 6473 6474 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6475 } 6476 6477 /// Lower the call to 'memset' intrinsic function into a series of store 6478 /// operations. 6479 /// 6480 /// \param DAG Selection DAG where lowered code is placed. 6481 /// \param dl Link to corresponding IR location. 6482 /// \param Chain Control flow dependency. 6483 /// \param Dst Pointer to destination memory location. 6484 /// \param Src Value of byte to write into the memory. 6485 /// \param Size Number of bytes to write. 6486 /// \param Alignment Alignment of the destination in bytes. 6487 /// \param isVol True if destination is volatile. 6488 /// \param DstPtrInfo IR information on the memory pointer. 6489 /// \returns New head in the control flow, if lowering was successful, empty 6490 /// SDValue otherwise. 6491 /// 6492 /// The function tries to replace 'llvm.memset' intrinsic with several store 6493 /// operations and value calculation code. This is usually profitable for small 6494 /// memory size. 6495 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6496 SDValue Chain, SDValue Dst, SDValue Src, 6497 uint64_t Size, Align Alignment, bool isVol, 6498 MachinePointerInfo DstPtrInfo) { 6499 // Turn a memset of undef to nop. 6500 // FIXME: We need to honor volatile even is Src is undef. 6501 if (Src.isUndef()) 6502 return Chain; 6503 6504 // Expand memset to a series of load/store ops if the size operand 6505 // falls below a certain threshold. 6506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6507 std::vector<EVT> MemOps; 6508 bool DstAlignCanChange = false; 6509 MachineFunction &MF = DAG.getMachineFunction(); 6510 MachineFrameInfo &MFI = MF.getFrameInfo(); 6511 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6512 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6513 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6514 DstAlignCanChange = true; 6515 bool IsZeroVal = 6516 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6517 if (!TLI.findOptimalMemOpLowering( 6518 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6519 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6520 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6521 return SDValue(); 6522 6523 if (DstAlignCanChange) { 6524 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6525 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6526 if (NewAlign > Alignment) { 6527 // Give the stack frame object a larger alignment if needed. 6528 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6529 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6530 Alignment = NewAlign; 6531 } 6532 } 6533 6534 SmallVector<SDValue, 8> OutChains; 6535 uint64_t DstOff = 0; 6536 unsigned NumMemOps = MemOps.size(); 6537 6538 // Find the largest store and generate the bit pattern for it. 6539 EVT LargestVT = MemOps[0]; 6540 for (unsigned i = 1; i < NumMemOps; i++) 6541 if (MemOps[i].bitsGT(LargestVT)) 6542 LargestVT = MemOps[i]; 6543 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6544 6545 for (unsigned i = 0; i < NumMemOps; i++) { 6546 EVT VT = MemOps[i]; 6547 unsigned VTSize = VT.getSizeInBits() / 8; 6548 if (VTSize > Size) { 6549 // Issuing an unaligned load / store pair that overlaps with the previous 6550 // pair. Adjust the offset accordingly. 6551 assert(i == NumMemOps-1 && i != 0); 6552 DstOff -= VTSize - Size; 6553 } 6554 6555 // If this store is smaller than the largest store see whether we can get 6556 // the smaller value for free with a truncate. 6557 SDValue Value = MemSetValue; 6558 if (VT.bitsLT(LargestVT)) { 6559 if (!LargestVT.isVector() && !VT.isVector() && 6560 TLI.isTruncateFree(LargestVT, VT)) 6561 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6562 else 6563 Value = getMemsetValue(Src, VT, DAG, dl); 6564 } 6565 assert(Value.getValueType() == VT && "Value with wrong type."); 6566 SDValue Store = DAG.getStore( 6567 Chain, dl, Value, 6568 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6569 DstPtrInfo.getWithOffset(DstOff), Alignment, 6570 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6571 OutChains.push_back(Store); 6572 DstOff += VT.getSizeInBits() / 8; 6573 Size -= VTSize; 6574 } 6575 6576 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6577 } 6578 6579 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6580 unsigned AS) { 6581 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6582 // pointer operands can be losslessly bitcasted to pointers of address space 0 6583 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6584 report_fatal_error("cannot lower memory intrinsic in address space " + 6585 Twine(AS)); 6586 } 6587 } 6588 6589 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6590 SDValue Src, SDValue Size, Align Alignment, 6591 bool isVol, bool AlwaysInline, bool isTailCall, 6592 MachinePointerInfo DstPtrInfo, 6593 MachinePointerInfo SrcPtrInfo) { 6594 // Check to see if we should lower the memcpy to loads and stores first. 6595 // For cases within the target-specified limits, this is the best choice. 6596 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6597 if (ConstantSize) { 6598 // Memcpy with size zero? Just return the original chain. 6599 if (ConstantSize->isNullValue()) 6600 return Chain; 6601 6602 SDValue Result = getMemcpyLoadsAndStores( 6603 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6604 isVol, false, DstPtrInfo, SrcPtrInfo); 6605 if (Result.getNode()) 6606 return Result; 6607 } 6608 6609 // Then check to see if we should lower the memcpy with target-specific 6610 // code. If the target chooses to do this, this is the next best. 6611 if (TSI) { 6612 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6613 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6614 DstPtrInfo, SrcPtrInfo); 6615 if (Result.getNode()) 6616 return Result; 6617 } 6618 6619 // If we really need inline code and the target declined to provide it, 6620 // use a (potentially long) sequence of loads and stores. 6621 if (AlwaysInline) { 6622 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6623 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6624 ConstantSize->getZExtValue(), Alignment, 6625 isVol, true, DstPtrInfo, SrcPtrInfo); 6626 } 6627 6628 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6629 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6630 6631 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6632 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6633 // respect volatile, so they may do things like read or write memory 6634 // beyond the given memory regions. But fixing this isn't easy, and most 6635 // people don't care. 6636 6637 // Emit a library call. 6638 TargetLowering::ArgListTy Args; 6639 TargetLowering::ArgListEntry Entry; 6640 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6641 Entry.Node = Dst; Args.push_back(Entry); 6642 Entry.Node = Src; Args.push_back(Entry); 6643 6644 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6645 Entry.Node = Size; Args.push_back(Entry); 6646 // FIXME: pass in SDLoc 6647 TargetLowering::CallLoweringInfo CLI(*this); 6648 CLI.setDebugLoc(dl) 6649 .setChain(Chain) 6650 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6651 Dst.getValueType().getTypeForEVT(*getContext()), 6652 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6653 TLI->getPointerTy(getDataLayout())), 6654 std::move(Args)) 6655 .setDiscardResult() 6656 .setTailCall(isTailCall); 6657 6658 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6659 return CallResult.second; 6660 } 6661 6662 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6663 SDValue Dst, unsigned DstAlign, 6664 SDValue Src, unsigned SrcAlign, 6665 SDValue Size, Type *SizeTy, 6666 unsigned ElemSz, bool isTailCall, 6667 MachinePointerInfo DstPtrInfo, 6668 MachinePointerInfo SrcPtrInfo) { 6669 // Emit a library call. 6670 TargetLowering::ArgListTy Args; 6671 TargetLowering::ArgListEntry Entry; 6672 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6673 Entry.Node = Dst; 6674 Args.push_back(Entry); 6675 6676 Entry.Node = Src; 6677 Args.push_back(Entry); 6678 6679 Entry.Ty = SizeTy; 6680 Entry.Node = Size; 6681 Args.push_back(Entry); 6682 6683 RTLIB::Libcall LibraryCall = 6684 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6685 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6686 report_fatal_error("Unsupported element size"); 6687 6688 TargetLowering::CallLoweringInfo CLI(*this); 6689 CLI.setDebugLoc(dl) 6690 .setChain(Chain) 6691 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6692 Type::getVoidTy(*getContext()), 6693 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6694 TLI->getPointerTy(getDataLayout())), 6695 std::move(Args)) 6696 .setDiscardResult() 6697 .setTailCall(isTailCall); 6698 6699 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6700 return CallResult.second; 6701 } 6702 6703 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6704 SDValue Src, SDValue Size, Align Alignment, 6705 bool isVol, bool isTailCall, 6706 MachinePointerInfo DstPtrInfo, 6707 MachinePointerInfo SrcPtrInfo) { 6708 // Check to see if we should lower the memmove to loads and stores first. 6709 // For cases within the target-specified limits, this is the best choice. 6710 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6711 if (ConstantSize) { 6712 // Memmove with size zero? Just return the original chain. 6713 if (ConstantSize->isNullValue()) 6714 return Chain; 6715 6716 SDValue Result = getMemmoveLoadsAndStores( 6717 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6718 isVol, false, DstPtrInfo, SrcPtrInfo); 6719 if (Result.getNode()) 6720 return Result; 6721 } 6722 6723 // Then check to see if we should lower the memmove with target-specific 6724 // code. If the target chooses to do this, this is the next best. 6725 if (TSI) { 6726 SDValue Result = 6727 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6728 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6729 if (Result.getNode()) 6730 return Result; 6731 } 6732 6733 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6734 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6735 6736 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6737 // not be safe. See memcpy above for more details. 6738 6739 // Emit a library call. 6740 TargetLowering::ArgListTy Args; 6741 TargetLowering::ArgListEntry Entry; 6742 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6743 Entry.Node = Dst; Args.push_back(Entry); 6744 Entry.Node = Src; Args.push_back(Entry); 6745 6746 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6747 Entry.Node = Size; Args.push_back(Entry); 6748 // FIXME: pass in SDLoc 6749 TargetLowering::CallLoweringInfo CLI(*this); 6750 CLI.setDebugLoc(dl) 6751 .setChain(Chain) 6752 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6753 Dst.getValueType().getTypeForEVT(*getContext()), 6754 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6755 TLI->getPointerTy(getDataLayout())), 6756 std::move(Args)) 6757 .setDiscardResult() 6758 .setTailCall(isTailCall); 6759 6760 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6761 return CallResult.second; 6762 } 6763 6764 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6765 SDValue Dst, unsigned DstAlign, 6766 SDValue Src, unsigned SrcAlign, 6767 SDValue Size, Type *SizeTy, 6768 unsigned ElemSz, bool isTailCall, 6769 MachinePointerInfo DstPtrInfo, 6770 MachinePointerInfo SrcPtrInfo) { 6771 // Emit a library call. 6772 TargetLowering::ArgListTy Args; 6773 TargetLowering::ArgListEntry Entry; 6774 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6775 Entry.Node = Dst; 6776 Args.push_back(Entry); 6777 6778 Entry.Node = Src; 6779 Args.push_back(Entry); 6780 6781 Entry.Ty = SizeTy; 6782 Entry.Node = Size; 6783 Args.push_back(Entry); 6784 6785 RTLIB::Libcall LibraryCall = 6786 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6787 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6788 report_fatal_error("Unsupported element size"); 6789 6790 TargetLowering::CallLoweringInfo CLI(*this); 6791 CLI.setDebugLoc(dl) 6792 .setChain(Chain) 6793 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6794 Type::getVoidTy(*getContext()), 6795 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6796 TLI->getPointerTy(getDataLayout())), 6797 std::move(Args)) 6798 .setDiscardResult() 6799 .setTailCall(isTailCall); 6800 6801 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6802 return CallResult.second; 6803 } 6804 6805 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6806 SDValue Src, SDValue Size, Align Alignment, 6807 bool isVol, bool isTailCall, 6808 MachinePointerInfo DstPtrInfo) { 6809 // Check to see if we should lower the memset to stores first. 6810 // For cases within the target-specified limits, this is the best choice. 6811 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6812 if (ConstantSize) { 6813 // Memset with size zero? Just return the original chain. 6814 if (ConstantSize->isNullValue()) 6815 return Chain; 6816 6817 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6818 ConstantSize->getZExtValue(), Alignment, 6819 isVol, DstPtrInfo); 6820 6821 if (Result.getNode()) 6822 return Result; 6823 } 6824 6825 // Then check to see if we should lower the memset with target-specific 6826 // code. If the target chooses to do this, this is the next best. 6827 if (TSI) { 6828 SDValue Result = TSI->EmitTargetCodeForMemset( 6829 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6830 if (Result.getNode()) 6831 return Result; 6832 } 6833 6834 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6835 6836 // Emit a library call. 6837 TargetLowering::ArgListTy Args; 6838 TargetLowering::ArgListEntry Entry; 6839 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6840 Args.push_back(Entry); 6841 Entry.Node = Src; 6842 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6843 Args.push_back(Entry); 6844 Entry.Node = Size; 6845 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6846 Args.push_back(Entry); 6847 6848 // FIXME: pass in SDLoc 6849 TargetLowering::CallLoweringInfo CLI(*this); 6850 CLI.setDebugLoc(dl) 6851 .setChain(Chain) 6852 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6853 Dst.getValueType().getTypeForEVT(*getContext()), 6854 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6855 TLI->getPointerTy(getDataLayout())), 6856 std::move(Args)) 6857 .setDiscardResult() 6858 .setTailCall(isTailCall); 6859 6860 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6861 return CallResult.second; 6862 } 6863 6864 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6865 SDValue Dst, unsigned DstAlign, 6866 SDValue Value, SDValue Size, Type *SizeTy, 6867 unsigned ElemSz, bool isTailCall, 6868 MachinePointerInfo DstPtrInfo) { 6869 // Emit a library call. 6870 TargetLowering::ArgListTy Args; 6871 TargetLowering::ArgListEntry Entry; 6872 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6873 Entry.Node = Dst; 6874 Args.push_back(Entry); 6875 6876 Entry.Ty = Type::getInt8Ty(*getContext()); 6877 Entry.Node = Value; 6878 Args.push_back(Entry); 6879 6880 Entry.Ty = SizeTy; 6881 Entry.Node = Size; 6882 Args.push_back(Entry); 6883 6884 RTLIB::Libcall LibraryCall = 6885 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6886 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6887 report_fatal_error("Unsupported element size"); 6888 6889 TargetLowering::CallLoweringInfo CLI(*this); 6890 CLI.setDebugLoc(dl) 6891 .setChain(Chain) 6892 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6893 Type::getVoidTy(*getContext()), 6894 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6895 TLI->getPointerTy(getDataLayout())), 6896 std::move(Args)) 6897 .setDiscardResult() 6898 .setTailCall(isTailCall); 6899 6900 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6901 return CallResult.second; 6902 } 6903 6904 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6905 SDVTList VTList, ArrayRef<SDValue> Ops, 6906 MachineMemOperand *MMO) { 6907 FoldingSetNodeID ID; 6908 ID.AddInteger(MemVT.getRawBits()); 6909 AddNodeIDNode(ID, Opcode, VTList, Ops); 6910 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6911 void* IP = nullptr; 6912 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6913 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6914 return SDValue(E, 0); 6915 } 6916 6917 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6918 VTList, MemVT, MMO); 6919 createOperands(N, Ops); 6920 6921 CSEMap.InsertNode(N, IP); 6922 InsertNode(N); 6923 return SDValue(N, 0); 6924 } 6925 6926 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6927 EVT MemVT, SDVTList VTs, SDValue Chain, 6928 SDValue Ptr, SDValue Cmp, SDValue Swp, 6929 MachineMemOperand *MMO) { 6930 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6931 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6932 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6933 6934 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6935 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6936 } 6937 6938 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6939 SDValue Chain, SDValue Ptr, SDValue Val, 6940 MachineMemOperand *MMO) { 6941 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6942 Opcode == ISD::ATOMIC_LOAD_SUB || 6943 Opcode == ISD::ATOMIC_LOAD_AND || 6944 Opcode == ISD::ATOMIC_LOAD_CLR || 6945 Opcode == ISD::ATOMIC_LOAD_OR || 6946 Opcode == ISD::ATOMIC_LOAD_XOR || 6947 Opcode == ISD::ATOMIC_LOAD_NAND || 6948 Opcode == ISD::ATOMIC_LOAD_MIN || 6949 Opcode == ISD::ATOMIC_LOAD_MAX || 6950 Opcode == ISD::ATOMIC_LOAD_UMIN || 6951 Opcode == ISD::ATOMIC_LOAD_UMAX || 6952 Opcode == ISD::ATOMIC_LOAD_FADD || 6953 Opcode == ISD::ATOMIC_LOAD_FSUB || 6954 Opcode == ISD::ATOMIC_SWAP || 6955 Opcode == ISD::ATOMIC_STORE) && 6956 "Invalid Atomic Op"); 6957 6958 EVT VT = Val.getValueType(); 6959 6960 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6961 getVTList(VT, MVT::Other); 6962 SDValue Ops[] = {Chain, Ptr, Val}; 6963 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6964 } 6965 6966 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6967 EVT VT, SDValue Chain, SDValue Ptr, 6968 MachineMemOperand *MMO) { 6969 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6970 6971 SDVTList VTs = getVTList(VT, MVT::Other); 6972 SDValue Ops[] = {Chain, Ptr}; 6973 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6974 } 6975 6976 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6977 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6978 if (Ops.size() == 1) 6979 return Ops[0]; 6980 6981 SmallVector<EVT, 4> VTs; 6982 VTs.reserve(Ops.size()); 6983 for (const SDValue &Op : Ops) 6984 VTs.push_back(Op.getValueType()); 6985 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6986 } 6987 6988 SDValue SelectionDAG::getMemIntrinsicNode( 6989 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6990 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6991 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6992 if (!Size && MemVT.isScalableVector()) 6993 Size = MemoryLocation::UnknownSize; 6994 else if (!Size) 6995 Size = MemVT.getStoreSize(); 6996 6997 MachineFunction &MF = getMachineFunction(); 6998 MachineMemOperand *MMO = 6999 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7000 7001 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7002 } 7003 7004 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7005 SDVTList VTList, 7006 ArrayRef<SDValue> Ops, EVT MemVT, 7007 MachineMemOperand *MMO) { 7008 assert((Opcode == ISD::INTRINSIC_VOID || 7009 Opcode == ISD::INTRINSIC_W_CHAIN || 7010 Opcode == ISD::PREFETCH || 7011 ((int)Opcode <= std::numeric_limits<int>::max() && 7012 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7013 "Opcode is not a memory-accessing opcode!"); 7014 7015 // Memoize the node unless it returns a flag. 7016 MemIntrinsicSDNode *N; 7017 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7018 FoldingSetNodeID ID; 7019 AddNodeIDNode(ID, Opcode, VTList, Ops); 7020 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7021 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7022 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7023 void *IP = nullptr; 7024 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7025 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7026 return SDValue(E, 0); 7027 } 7028 7029 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7030 VTList, MemVT, MMO); 7031 createOperands(N, Ops); 7032 7033 CSEMap.InsertNode(N, IP); 7034 } else { 7035 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7036 VTList, MemVT, MMO); 7037 createOperands(N, Ops); 7038 } 7039 InsertNode(N); 7040 SDValue V(N, 0); 7041 NewSDValueDbgMsg(V, "Creating new node: ", this); 7042 return V; 7043 } 7044 7045 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7046 SDValue Chain, int FrameIndex, 7047 int64_t Size, int64_t Offset) { 7048 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7049 const auto VTs = getVTList(MVT::Other); 7050 SDValue Ops[2] = { 7051 Chain, 7052 getFrameIndex(FrameIndex, 7053 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7054 true)}; 7055 7056 FoldingSetNodeID ID; 7057 AddNodeIDNode(ID, Opcode, VTs, Ops); 7058 ID.AddInteger(FrameIndex); 7059 ID.AddInteger(Size); 7060 ID.AddInteger(Offset); 7061 void *IP = nullptr; 7062 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7063 return SDValue(E, 0); 7064 7065 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7066 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7067 createOperands(N, Ops); 7068 CSEMap.InsertNode(N, IP); 7069 InsertNode(N); 7070 SDValue V(N, 0); 7071 NewSDValueDbgMsg(V, "Creating new node: ", this); 7072 return V; 7073 } 7074 7075 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7076 uint64_t Guid, uint64_t Index, 7077 uint32_t Attr) { 7078 const unsigned Opcode = ISD::PSEUDO_PROBE; 7079 const auto VTs = getVTList(MVT::Other); 7080 SDValue Ops[] = {Chain}; 7081 FoldingSetNodeID ID; 7082 AddNodeIDNode(ID, Opcode, VTs, Ops); 7083 ID.AddInteger(Guid); 7084 ID.AddInteger(Index); 7085 void *IP = nullptr; 7086 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7087 return SDValue(E, 0); 7088 7089 auto *N = newSDNode<PseudoProbeSDNode>( 7090 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7091 createOperands(N, Ops); 7092 CSEMap.InsertNode(N, IP); 7093 InsertNode(N); 7094 SDValue V(N, 0); 7095 NewSDValueDbgMsg(V, "Creating new node: ", this); 7096 return V; 7097 } 7098 7099 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7100 /// MachinePointerInfo record from it. This is particularly useful because the 7101 /// code generator has many cases where it doesn't bother passing in a 7102 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7103 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7104 SelectionDAG &DAG, SDValue Ptr, 7105 int64_t Offset = 0) { 7106 // If this is FI+Offset, we can model it. 7107 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7108 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7109 FI->getIndex(), Offset); 7110 7111 // If this is (FI+Offset1)+Offset2, we can model it. 7112 if (Ptr.getOpcode() != ISD::ADD || 7113 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7114 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7115 return Info; 7116 7117 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7118 return MachinePointerInfo::getFixedStack( 7119 DAG.getMachineFunction(), FI, 7120 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7121 } 7122 7123 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7124 /// MachinePointerInfo record from it. This is particularly useful because the 7125 /// code generator has many cases where it doesn't bother passing in a 7126 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7127 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7128 SelectionDAG &DAG, SDValue Ptr, 7129 SDValue OffsetOp) { 7130 // If the 'Offset' value isn't a constant, we can't handle this. 7131 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7132 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7133 if (OffsetOp.isUndef()) 7134 return InferPointerInfo(Info, DAG, Ptr); 7135 return Info; 7136 } 7137 7138 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7139 EVT VT, const SDLoc &dl, SDValue Chain, 7140 SDValue Ptr, SDValue Offset, 7141 MachinePointerInfo PtrInfo, EVT MemVT, 7142 Align Alignment, 7143 MachineMemOperand::Flags MMOFlags, 7144 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7145 assert(Chain.getValueType() == MVT::Other && 7146 "Invalid chain type"); 7147 7148 MMOFlags |= MachineMemOperand::MOLoad; 7149 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7150 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7151 // clients. 7152 if (PtrInfo.V.isNull()) 7153 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7154 7155 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7156 MachineFunction &MF = getMachineFunction(); 7157 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7158 Alignment, AAInfo, Ranges); 7159 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7160 } 7161 7162 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7163 EVT VT, const SDLoc &dl, SDValue Chain, 7164 SDValue Ptr, SDValue Offset, EVT MemVT, 7165 MachineMemOperand *MMO) { 7166 if (VT == MemVT) { 7167 ExtType = ISD::NON_EXTLOAD; 7168 } else if (ExtType == ISD::NON_EXTLOAD) { 7169 assert(VT == MemVT && "Non-extending load from different memory type!"); 7170 } else { 7171 // Extending load. 7172 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7173 "Should only be an extending load, not truncating!"); 7174 assert(VT.isInteger() == MemVT.isInteger() && 7175 "Cannot convert from FP to Int or Int -> FP!"); 7176 assert(VT.isVector() == MemVT.isVector() && 7177 "Cannot use an ext load to convert to or from a vector!"); 7178 assert((!VT.isVector() || 7179 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7180 "Cannot use an ext load to change the number of vector elements!"); 7181 } 7182 7183 bool Indexed = AM != ISD::UNINDEXED; 7184 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7185 7186 SDVTList VTs = Indexed ? 7187 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7188 SDValue Ops[] = { Chain, Ptr, Offset }; 7189 FoldingSetNodeID ID; 7190 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7191 ID.AddInteger(MemVT.getRawBits()); 7192 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7193 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7194 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7195 void *IP = nullptr; 7196 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7197 cast<LoadSDNode>(E)->refineAlignment(MMO); 7198 return SDValue(E, 0); 7199 } 7200 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7201 ExtType, MemVT, MMO); 7202 createOperands(N, Ops); 7203 7204 CSEMap.InsertNode(N, IP); 7205 InsertNode(N); 7206 SDValue V(N, 0); 7207 NewSDValueDbgMsg(V, "Creating new node: ", this); 7208 return V; 7209 } 7210 7211 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7212 SDValue Ptr, MachinePointerInfo PtrInfo, 7213 MaybeAlign Alignment, 7214 MachineMemOperand::Flags MMOFlags, 7215 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7216 SDValue Undef = getUNDEF(Ptr.getValueType()); 7217 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7218 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7219 } 7220 7221 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7222 SDValue Ptr, MachineMemOperand *MMO) { 7223 SDValue Undef = getUNDEF(Ptr.getValueType()); 7224 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7225 VT, MMO); 7226 } 7227 7228 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7229 EVT VT, SDValue Chain, SDValue Ptr, 7230 MachinePointerInfo PtrInfo, EVT MemVT, 7231 MaybeAlign Alignment, 7232 MachineMemOperand::Flags MMOFlags, 7233 const AAMDNodes &AAInfo) { 7234 SDValue Undef = getUNDEF(Ptr.getValueType()); 7235 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7236 MemVT, Alignment, MMOFlags, AAInfo); 7237 } 7238 7239 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7240 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7241 MachineMemOperand *MMO) { 7242 SDValue Undef = getUNDEF(Ptr.getValueType()); 7243 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7244 MemVT, MMO); 7245 } 7246 7247 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7248 SDValue Base, SDValue Offset, 7249 ISD::MemIndexedMode AM) { 7250 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7251 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7252 // Don't propagate the invariant or dereferenceable flags. 7253 auto MMOFlags = 7254 LD->getMemOperand()->getFlags() & 7255 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7256 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7257 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7258 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7259 } 7260 7261 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7262 SDValue Ptr, MachinePointerInfo PtrInfo, 7263 Align Alignment, 7264 MachineMemOperand::Flags MMOFlags, 7265 const AAMDNodes &AAInfo) { 7266 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7267 7268 MMOFlags |= MachineMemOperand::MOStore; 7269 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7270 7271 if (PtrInfo.V.isNull()) 7272 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7273 7274 MachineFunction &MF = getMachineFunction(); 7275 uint64_t Size = 7276 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7277 MachineMemOperand *MMO = 7278 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7279 return getStore(Chain, dl, Val, Ptr, MMO); 7280 } 7281 7282 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7283 SDValue Ptr, MachineMemOperand *MMO) { 7284 assert(Chain.getValueType() == MVT::Other && 7285 "Invalid chain type"); 7286 EVT VT = Val.getValueType(); 7287 SDVTList VTs = getVTList(MVT::Other); 7288 SDValue Undef = getUNDEF(Ptr.getValueType()); 7289 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7290 FoldingSetNodeID ID; 7291 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7292 ID.AddInteger(VT.getRawBits()); 7293 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7294 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7295 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7296 void *IP = nullptr; 7297 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7298 cast<StoreSDNode>(E)->refineAlignment(MMO); 7299 return SDValue(E, 0); 7300 } 7301 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7302 ISD::UNINDEXED, false, VT, MMO); 7303 createOperands(N, Ops); 7304 7305 CSEMap.InsertNode(N, IP); 7306 InsertNode(N); 7307 SDValue V(N, 0); 7308 NewSDValueDbgMsg(V, "Creating new node: ", this); 7309 return V; 7310 } 7311 7312 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7313 SDValue Ptr, MachinePointerInfo PtrInfo, 7314 EVT SVT, Align Alignment, 7315 MachineMemOperand::Flags MMOFlags, 7316 const AAMDNodes &AAInfo) { 7317 assert(Chain.getValueType() == MVT::Other && 7318 "Invalid chain type"); 7319 7320 MMOFlags |= MachineMemOperand::MOStore; 7321 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7322 7323 if (PtrInfo.V.isNull()) 7324 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7325 7326 MachineFunction &MF = getMachineFunction(); 7327 MachineMemOperand *MMO = MF.getMachineMemOperand( 7328 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7329 Alignment, AAInfo); 7330 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7331 } 7332 7333 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7334 SDValue Ptr, EVT SVT, 7335 MachineMemOperand *MMO) { 7336 EVT VT = Val.getValueType(); 7337 7338 assert(Chain.getValueType() == MVT::Other && 7339 "Invalid chain type"); 7340 if (VT == SVT) 7341 return getStore(Chain, dl, Val, Ptr, MMO); 7342 7343 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7344 "Should only be a truncating store, not extending!"); 7345 assert(VT.isInteger() == SVT.isInteger() && 7346 "Can't do FP-INT conversion!"); 7347 assert(VT.isVector() == SVT.isVector() && 7348 "Cannot use trunc store to convert to or from a vector!"); 7349 assert((!VT.isVector() || 7350 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7351 "Cannot use trunc store to change the number of vector elements!"); 7352 7353 SDVTList VTs = getVTList(MVT::Other); 7354 SDValue Undef = getUNDEF(Ptr.getValueType()); 7355 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7356 FoldingSetNodeID ID; 7357 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7358 ID.AddInteger(SVT.getRawBits()); 7359 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7360 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7361 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7362 void *IP = nullptr; 7363 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7364 cast<StoreSDNode>(E)->refineAlignment(MMO); 7365 return SDValue(E, 0); 7366 } 7367 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7368 ISD::UNINDEXED, true, SVT, MMO); 7369 createOperands(N, Ops); 7370 7371 CSEMap.InsertNode(N, IP); 7372 InsertNode(N); 7373 SDValue V(N, 0); 7374 NewSDValueDbgMsg(V, "Creating new node: ", this); 7375 return V; 7376 } 7377 7378 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7379 SDValue Base, SDValue Offset, 7380 ISD::MemIndexedMode AM) { 7381 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7382 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7383 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7384 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7385 FoldingSetNodeID ID; 7386 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7387 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7388 ID.AddInteger(ST->getRawSubclassData()); 7389 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7390 void *IP = nullptr; 7391 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7392 return SDValue(E, 0); 7393 7394 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7395 ST->isTruncatingStore(), ST->getMemoryVT(), 7396 ST->getMemOperand()); 7397 createOperands(N, Ops); 7398 7399 CSEMap.InsertNode(N, IP); 7400 InsertNode(N); 7401 SDValue V(N, 0); 7402 NewSDValueDbgMsg(V, "Creating new node: ", this); 7403 return V; 7404 } 7405 7406 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7407 SDValue Base, SDValue Offset, SDValue Mask, 7408 SDValue PassThru, EVT MemVT, 7409 MachineMemOperand *MMO, 7410 ISD::MemIndexedMode AM, 7411 ISD::LoadExtType ExtTy, bool isExpanding) { 7412 bool Indexed = AM != ISD::UNINDEXED; 7413 assert((Indexed || Offset.isUndef()) && 7414 "Unindexed masked load with an offset!"); 7415 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7416 : getVTList(VT, MVT::Other); 7417 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7418 FoldingSetNodeID ID; 7419 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7420 ID.AddInteger(MemVT.getRawBits()); 7421 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7422 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7423 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7424 void *IP = nullptr; 7425 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7426 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7427 return SDValue(E, 0); 7428 } 7429 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7430 AM, ExtTy, isExpanding, MemVT, MMO); 7431 createOperands(N, Ops); 7432 7433 CSEMap.InsertNode(N, IP); 7434 InsertNode(N); 7435 SDValue V(N, 0); 7436 NewSDValueDbgMsg(V, "Creating new node: ", this); 7437 return V; 7438 } 7439 7440 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7441 SDValue Base, SDValue Offset, 7442 ISD::MemIndexedMode AM) { 7443 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7444 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7445 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7446 Offset, LD->getMask(), LD->getPassThru(), 7447 LD->getMemoryVT(), LD->getMemOperand(), AM, 7448 LD->getExtensionType(), LD->isExpandingLoad()); 7449 } 7450 7451 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7452 SDValue Val, SDValue Base, SDValue Offset, 7453 SDValue Mask, EVT MemVT, 7454 MachineMemOperand *MMO, 7455 ISD::MemIndexedMode AM, bool IsTruncating, 7456 bool IsCompressing) { 7457 assert(Chain.getValueType() == MVT::Other && 7458 "Invalid chain type"); 7459 bool Indexed = AM != ISD::UNINDEXED; 7460 assert((Indexed || Offset.isUndef()) && 7461 "Unindexed masked store with an offset!"); 7462 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7463 : getVTList(MVT::Other); 7464 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7465 FoldingSetNodeID ID; 7466 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7467 ID.AddInteger(MemVT.getRawBits()); 7468 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7469 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7470 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7471 void *IP = nullptr; 7472 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7473 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7474 return SDValue(E, 0); 7475 } 7476 auto *N = 7477 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7478 IsTruncating, IsCompressing, MemVT, MMO); 7479 createOperands(N, Ops); 7480 7481 CSEMap.InsertNode(N, IP); 7482 InsertNode(N); 7483 SDValue V(N, 0); 7484 NewSDValueDbgMsg(V, "Creating new node: ", this); 7485 return V; 7486 } 7487 7488 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7489 SDValue Base, SDValue Offset, 7490 ISD::MemIndexedMode AM) { 7491 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7492 assert(ST->getOffset().isUndef() && 7493 "Masked store is already a indexed store!"); 7494 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7495 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7496 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7497 } 7498 7499 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7500 ArrayRef<SDValue> Ops, 7501 MachineMemOperand *MMO, 7502 ISD::MemIndexType IndexType, 7503 ISD::LoadExtType ExtTy) { 7504 assert(Ops.size() == 6 && "Incompatible number of operands"); 7505 7506 FoldingSetNodeID ID; 7507 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7508 ID.AddInteger(VT.getRawBits()); 7509 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7510 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7511 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7512 void *IP = nullptr; 7513 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7514 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7515 return SDValue(E, 0); 7516 } 7517 7518 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7519 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7520 VTs, VT, MMO, IndexType, ExtTy); 7521 createOperands(N, Ops); 7522 7523 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7524 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7525 assert(N->getMask().getValueType().getVectorElementCount() == 7526 N->getValueType(0).getVectorElementCount() && 7527 "Vector width mismatch between mask and data"); 7528 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7529 N->getValueType(0).getVectorElementCount().isScalable() && 7530 "Scalable flags of index and data do not match"); 7531 assert(ElementCount::isKnownGE( 7532 N->getIndex().getValueType().getVectorElementCount(), 7533 N->getValueType(0).getVectorElementCount()) && 7534 "Vector width mismatch between index and data"); 7535 assert(isa<ConstantSDNode>(N->getScale()) && 7536 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7537 "Scale should be a constant power of 2"); 7538 7539 CSEMap.InsertNode(N, IP); 7540 InsertNode(N); 7541 SDValue V(N, 0); 7542 NewSDValueDbgMsg(V, "Creating new node: ", this); 7543 return V; 7544 } 7545 7546 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7547 ArrayRef<SDValue> Ops, 7548 MachineMemOperand *MMO, 7549 ISD::MemIndexType IndexType, 7550 bool IsTrunc) { 7551 assert(Ops.size() == 6 && "Incompatible number of operands"); 7552 7553 FoldingSetNodeID ID; 7554 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7555 ID.AddInteger(VT.getRawBits()); 7556 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7557 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7558 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7559 void *IP = nullptr; 7560 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7561 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7562 return SDValue(E, 0); 7563 } 7564 7565 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7566 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7567 VTs, VT, MMO, IndexType, IsTrunc); 7568 createOperands(N, Ops); 7569 7570 assert(N->getMask().getValueType().getVectorElementCount() == 7571 N->getValue().getValueType().getVectorElementCount() && 7572 "Vector width mismatch between mask and data"); 7573 assert( 7574 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7575 N->getValue().getValueType().getVectorElementCount().isScalable() && 7576 "Scalable flags of index and data do not match"); 7577 assert(ElementCount::isKnownGE( 7578 N->getIndex().getValueType().getVectorElementCount(), 7579 N->getValue().getValueType().getVectorElementCount()) && 7580 "Vector width mismatch between index and data"); 7581 assert(isa<ConstantSDNode>(N->getScale()) && 7582 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7583 "Scale should be a constant power of 2"); 7584 7585 CSEMap.InsertNode(N, IP); 7586 InsertNode(N); 7587 SDValue V(N, 0); 7588 NewSDValueDbgMsg(V, "Creating new node: ", this); 7589 return V; 7590 } 7591 7592 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7593 // select undef, T, F --> T (if T is a constant), otherwise F 7594 // select, ?, undef, F --> F 7595 // select, ?, T, undef --> T 7596 if (Cond.isUndef()) 7597 return isConstantValueOfAnyType(T) ? T : F; 7598 if (T.isUndef()) 7599 return F; 7600 if (F.isUndef()) 7601 return T; 7602 7603 // select true, T, F --> T 7604 // select false, T, F --> F 7605 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7606 return CondC->isNullValue() ? F : T; 7607 7608 // TODO: This should simplify VSELECT with constant condition using something 7609 // like this (but check boolean contents to be complete?): 7610 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7611 // return T; 7612 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7613 // return F; 7614 7615 // select ?, T, T --> T 7616 if (T == F) 7617 return T; 7618 7619 return SDValue(); 7620 } 7621 7622 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7623 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7624 if (X.isUndef()) 7625 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7626 // shift X, undef --> undef (because it may shift by the bitwidth) 7627 if (Y.isUndef()) 7628 return getUNDEF(X.getValueType()); 7629 7630 // shift 0, Y --> 0 7631 // shift X, 0 --> X 7632 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7633 return X; 7634 7635 // shift X, C >= bitwidth(X) --> undef 7636 // All vector elements must be too big (or undef) to avoid partial undefs. 7637 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7638 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7639 }; 7640 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7641 return getUNDEF(X.getValueType()); 7642 7643 return SDValue(); 7644 } 7645 7646 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7647 SDNodeFlags Flags) { 7648 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7649 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7650 // operation is poison. That result can be relaxed to undef. 7651 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7652 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7653 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7654 (YC && YC->getValueAPF().isNaN()); 7655 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7656 (YC && YC->getValueAPF().isInfinity()); 7657 7658 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7659 return getUNDEF(X.getValueType()); 7660 7661 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7662 return getUNDEF(X.getValueType()); 7663 7664 if (!YC) 7665 return SDValue(); 7666 7667 // X + -0.0 --> X 7668 if (Opcode == ISD::FADD) 7669 if (YC->getValueAPF().isNegZero()) 7670 return X; 7671 7672 // X - +0.0 --> X 7673 if (Opcode == ISD::FSUB) 7674 if (YC->getValueAPF().isPosZero()) 7675 return X; 7676 7677 // X * 1.0 --> X 7678 // X / 1.0 --> X 7679 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7680 if (YC->getValueAPF().isExactlyValue(1.0)) 7681 return X; 7682 7683 // X * 0.0 --> 0.0 7684 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7685 if (YC->getValueAPF().isZero()) 7686 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7687 7688 return SDValue(); 7689 } 7690 7691 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7692 SDValue Ptr, SDValue SV, unsigned Align) { 7693 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7694 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7695 } 7696 7697 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7698 ArrayRef<SDUse> Ops) { 7699 switch (Ops.size()) { 7700 case 0: return getNode(Opcode, DL, VT); 7701 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7702 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7703 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7704 default: break; 7705 } 7706 7707 // Copy from an SDUse array into an SDValue array for use with 7708 // the regular getNode logic. 7709 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7710 return getNode(Opcode, DL, VT, NewOps); 7711 } 7712 7713 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7714 ArrayRef<SDValue> Ops) { 7715 SDNodeFlags Flags; 7716 if (Inserter) 7717 Flags = Inserter->getFlags(); 7718 return getNode(Opcode, DL, VT, Ops, Flags); 7719 } 7720 7721 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7722 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7723 unsigned NumOps = Ops.size(); 7724 switch (NumOps) { 7725 case 0: return getNode(Opcode, DL, VT); 7726 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7727 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7728 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7729 default: break; 7730 } 7731 7732 #ifndef NDEBUG 7733 for (auto &Op : Ops) 7734 assert(Op.getOpcode() != ISD::DELETED_NODE && 7735 "Operand is DELETED_NODE!"); 7736 #endif 7737 7738 switch (Opcode) { 7739 default: break; 7740 case ISD::BUILD_VECTOR: 7741 // Attempt to simplify BUILD_VECTOR. 7742 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7743 return V; 7744 break; 7745 case ISD::CONCAT_VECTORS: 7746 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7747 return V; 7748 break; 7749 case ISD::SELECT_CC: 7750 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7751 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7752 "LHS and RHS of condition must have same type!"); 7753 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7754 "True and False arms of SelectCC must have same type!"); 7755 assert(Ops[2].getValueType() == VT && 7756 "select_cc node must be of same type as true and false value!"); 7757 break; 7758 case ISD::BR_CC: 7759 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7760 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7761 "LHS/RHS of comparison should match types!"); 7762 break; 7763 } 7764 7765 // Memoize nodes. 7766 SDNode *N; 7767 SDVTList VTs = getVTList(VT); 7768 7769 if (VT != MVT::Glue) { 7770 FoldingSetNodeID ID; 7771 AddNodeIDNode(ID, Opcode, VTs, Ops); 7772 void *IP = nullptr; 7773 7774 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7775 return SDValue(E, 0); 7776 7777 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7778 createOperands(N, Ops); 7779 7780 CSEMap.InsertNode(N, IP); 7781 } else { 7782 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7783 createOperands(N, Ops); 7784 } 7785 7786 N->setFlags(Flags); 7787 InsertNode(N); 7788 SDValue V(N, 0); 7789 NewSDValueDbgMsg(V, "Creating new node: ", this); 7790 return V; 7791 } 7792 7793 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7794 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7795 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7796 } 7797 7798 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7799 ArrayRef<SDValue> Ops) { 7800 SDNodeFlags Flags; 7801 if (Inserter) 7802 Flags = Inserter->getFlags(); 7803 return getNode(Opcode, DL, VTList, Ops, Flags); 7804 } 7805 7806 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7807 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7808 if (VTList.NumVTs == 1) 7809 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7810 7811 #ifndef NDEBUG 7812 for (auto &Op : Ops) 7813 assert(Op.getOpcode() != ISD::DELETED_NODE && 7814 "Operand is DELETED_NODE!"); 7815 #endif 7816 7817 switch (Opcode) { 7818 case ISD::STRICT_FP_EXTEND: 7819 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7820 "Invalid STRICT_FP_EXTEND!"); 7821 assert(VTList.VTs[0].isFloatingPoint() && 7822 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7823 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7824 "STRICT_FP_EXTEND result type should be vector iff the operand " 7825 "type is vector!"); 7826 assert((!VTList.VTs[0].isVector() || 7827 VTList.VTs[0].getVectorNumElements() == 7828 Ops[1].getValueType().getVectorNumElements()) && 7829 "Vector element count mismatch!"); 7830 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7831 "Invalid fpext node, dst <= src!"); 7832 break; 7833 case ISD::STRICT_FP_ROUND: 7834 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7835 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7836 "STRICT_FP_ROUND result type should be vector iff the operand " 7837 "type is vector!"); 7838 assert((!VTList.VTs[0].isVector() || 7839 VTList.VTs[0].getVectorNumElements() == 7840 Ops[1].getValueType().getVectorNumElements()) && 7841 "Vector element count mismatch!"); 7842 assert(VTList.VTs[0].isFloatingPoint() && 7843 Ops[1].getValueType().isFloatingPoint() && 7844 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7845 isa<ConstantSDNode>(Ops[2]) && 7846 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7847 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7848 "Invalid STRICT_FP_ROUND!"); 7849 break; 7850 #if 0 7851 // FIXME: figure out how to safely handle things like 7852 // int foo(int x) { return 1 << (x & 255); } 7853 // int bar() { return foo(256); } 7854 case ISD::SRA_PARTS: 7855 case ISD::SRL_PARTS: 7856 case ISD::SHL_PARTS: 7857 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7858 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7859 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7860 else if (N3.getOpcode() == ISD::AND) 7861 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7862 // If the and is only masking out bits that cannot effect the shift, 7863 // eliminate the and. 7864 unsigned NumBits = VT.getScalarSizeInBits()*2; 7865 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7866 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7867 } 7868 break; 7869 #endif 7870 } 7871 7872 // Memoize the node unless it returns a flag. 7873 SDNode *N; 7874 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7875 FoldingSetNodeID ID; 7876 AddNodeIDNode(ID, Opcode, VTList, Ops); 7877 void *IP = nullptr; 7878 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7879 return SDValue(E, 0); 7880 7881 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7882 createOperands(N, Ops); 7883 CSEMap.InsertNode(N, IP); 7884 } else { 7885 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7886 createOperands(N, Ops); 7887 } 7888 7889 N->setFlags(Flags); 7890 InsertNode(N); 7891 SDValue V(N, 0); 7892 NewSDValueDbgMsg(V, "Creating new node: ", this); 7893 return V; 7894 } 7895 7896 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7897 SDVTList VTList) { 7898 return getNode(Opcode, DL, VTList, None); 7899 } 7900 7901 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7902 SDValue N1) { 7903 SDValue Ops[] = { N1 }; 7904 return getNode(Opcode, DL, VTList, Ops); 7905 } 7906 7907 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7908 SDValue N1, SDValue N2) { 7909 SDValue Ops[] = { N1, N2 }; 7910 return getNode(Opcode, DL, VTList, Ops); 7911 } 7912 7913 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7914 SDValue N1, SDValue N2, SDValue N3) { 7915 SDValue Ops[] = { N1, N2, N3 }; 7916 return getNode(Opcode, DL, VTList, Ops); 7917 } 7918 7919 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7920 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7921 SDValue Ops[] = { N1, N2, N3, N4 }; 7922 return getNode(Opcode, DL, VTList, Ops); 7923 } 7924 7925 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7926 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7927 SDValue N5) { 7928 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7929 return getNode(Opcode, DL, VTList, Ops); 7930 } 7931 7932 SDVTList SelectionDAG::getVTList(EVT VT) { 7933 return makeVTList(SDNode::getValueTypeList(VT), 1); 7934 } 7935 7936 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7937 FoldingSetNodeID ID; 7938 ID.AddInteger(2U); 7939 ID.AddInteger(VT1.getRawBits()); 7940 ID.AddInteger(VT2.getRawBits()); 7941 7942 void *IP = nullptr; 7943 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7944 if (!Result) { 7945 EVT *Array = Allocator.Allocate<EVT>(2); 7946 Array[0] = VT1; 7947 Array[1] = VT2; 7948 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7949 VTListMap.InsertNode(Result, IP); 7950 } 7951 return Result->getSDVTList(); 7952 } 7953 7954 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7955 FoldingSetNodeID ID; 7956 ID.AddInteger(3U); 7957 ID.AddInteger(VT1.getRawBits()); 7958 ID.AddInteger(VT2.getRawBits()); 7959 ID.AddInteger(VT3.getRawBits()); 7960 7961 void *IP = nullptr; 7962 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7963 if (!Result) { 7964 EVT *Array = Allocator.Allocate<EVT>(3); 7965 Array[0] = VT1; 7966 Array[1] = VT2; 7967 Array[2] = VT3; 7968 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7969 VTListMap.InsertNode(Result, IP); 7970 } 7971 return Result->getSDVTList(); 7972 } 7973 7974 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7975 FoldingSetNodeID ID; 7976 ID.AddInteger(4U); 7977 ID.AddInteger(VT1.getRawBits()); 7978 ID.AddInteger(VT2.getRawBits()); 7979 ID.AddInteger(VT3.getRawBits()); 7980 ID.AddInteger(VT4.getRawBits()); 7981 7982 void *IP = nullptr; 7983 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7984 if (!Result) { 7985 EVT *Array = Allocator.Allocate<EVT>(4); 7986 Array[0] = VT1; 7987 Array[1] = VT2; 7988 Array[2] = VT3; 7989 Array[3] = VT4; 7990 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7991 VTListMap.InsertNode(Result, IP); 7992 } 7993 return Result->getSDVTList(); 7994 } 7995 7996 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7997 unsigned NumVTs = VTs.size(); 7998 FoldingSetNodeID ID; 7999 ID.AddInteger(NumVTs); 8000 for (unsigned index = 0; index < NumVTs; index++) { 8001 ID.AddInteger(VTs[index].getRawBits()); 8002 } 8003 8004 void *IP = nullptr; 8005 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8006 if (!Result) { 8007 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8008 llvm::copy(VTs, Array); 8009 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8010 VTListMap.InsertNode(Result, IP); 8011 } 8012 return Result->getSDVTList(); 8013 } 8014 8015 8016 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8017 /// specified operands. If the resultant node already exists in the DAG, 8018 /// this does not modify the specified node, instead it returns the node that 8019 /// already exists. If the resultant node does not exist in the DAG, the 8020 /// input node is returned. As a degenerate case, if you specify the same 8021 /// input operands as the node already has, the input node is returned. 8022 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8023 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8024 8025 // Check to see if there is no change. 8026 if (Op == N->getOperand(0)) return N; 8027 8028 // See if the modified node already exists. 8029 void *InsertPos = nullptr; 8030 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8031 return Existing; 8032 8033 // Nope it doesn't. Remove the node from its current place in the maps. 8034 if (InsertPos) 8035 if (!RemoveNodeFromCSEMaps(N)) 8036 InsertPos = nullptr; 8037 8038 // Now we update the operands. 8039 N->OperandList[0].set(Op); 8040 8041 updateDivergence(N); 8042 // If this gets put into a CSE map, add it. 8043 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8044 return N; 8045 } 8046 8047 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8048 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8049 8050 // Check to see if there is no change. 8051 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8052 return N; // No operands changed, just return the input node. 8053 8054 // See if the modified node already exists. 8055 void *InsertPos = nullptr; 8056 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8057 return Existing; 8058 8059 // Nope it doesn't. Remove the node from its current place in the maps. 8060 if (InsertPos) 8061 if (!RemoveNodeFromCSEMaps(N)) 8062 InsertPos = nullptr; 8063 8064 // Now we update the operands. 8065 if (N->OperandList[0] != Op1) 8066 N->OperandList[0].set(Op1); 8067 if (N->OperandList[1] != Op2) 8068 N->OperandList[1].set(Op2); 8069 8070 updateDivergence(N); 8071 // If this gets put into a CSE map, add it. 8072 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8073 return N; 8074 } 8075 8076 SDNode *SelectionDAG:: 8077 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8078 SDValue Ops[] = { Op1, Op2, Op3 }; 8079 return UpdateNodeOperands(N, Ops); 8080 } 8081 8082 SDNode *SelectionDAG:: 8083 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8084 SDValue Op3, SDValue Op4) { 8085 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8086 return UpdateNodeOperands(N, Ops); 8087 } 8088 8089 SDNode *SelectionDAG:: 8090 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8091 SDValue Op3, SDValue Op4, SDValue Op5) { 8092 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8093 return UpdateNodeOperands(N, Ops); 8094 } 8095 8096 SDNode *SelectionDAG:: 8097 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8098 unsigned NumOps = Ops.size(); 8099 assert(N->getNumOperands() == NumOps && 8100 "Update with wrong number of operands"); 8101 8102 // If no operands changed just return the input node. 8103 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8104 return N; 8105 8106 // See if the modified node already exists. 8107 void *InsertPos = nullptr; 8108 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8109 return Existing; 8110 8111 // Nope it doesn't. Remove the node from its current place in the maps. 8112 if (InsertPos) 8113 if (!RemoveNodeFromCSEMaps(N)) 8114 InsertPos = nullptr; 8115 8116 // Now we update the operands. 8117 for (unsigned i = 0; i != NumOps; ++i) 8118 if (N->OperandList[i] != Ops[i]) 8119 N->OperandList[i].set(Ops[i]); 8120 8121 updateDivergence(N); 8122 // If this gets put into a CSE map, add it. 8123 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8124 return N; 8125 } 8126 8127 /// DropOperands - Release the operands and set this node to have 8128 /// zero operands. 8129 void SDNode::DropOperands() { 8130 // Unlike the code in MorphNodeTo that does this, we don't need to 8131 // watch for dead nodes here. 8132 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8133 SDUse &Use = *I++; 8134 Use.set(SDValue()); 8135 } 8136 } 8137 8138 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8139 ArrayRef<MachineMemOperand *> NewMemRefs) { 8140 if (NewMemRefs.empty()) { 8141 N->clearMemRefs(); 8142 return; 8143 } 8144 8145 // Check if we can avoid allocating by storing a single reference directly. 8146 if (NewMemRefs.size() == 1) { 8147 N->MemRefs = NewMemRefs[0]; 8148 N->NumMemRefs = 1; 8149 return; 8150 } 8151 8152 MachineMemOperand **MemRefsBuffer = 8153 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8154 llvm::copy(NewMemRefs, MemRefsBuffer); 8155 N->MemRefs = MemRefsBuffer; 8156 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8157 } 8158 8159 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8160 /// machine opcode. 8161 /// 8162 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8163 EVT VT) { 8164 SDVTList VTs = getVTList(VT); 8165 return SelectNodeTo(N, MachineOpc, VTs, None); 8166 } 8167 8168 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8169 EVT VT, SDValue Op1) { 8170 SDVTList VTs = getVTList(VT); 8171 SDValue Ops[] = { Op1 }; 8172 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8173 } 8174 8175 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8176 EVT VT, SDValue Op1, 8177 SDValue Op2) { 8178 SDVTList VTs = getVTList(VT); 8179 SDValue Ops[] = { Op1, Op2 }; 8180 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8181 } 8182 8183 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8184 EVT VT, SDValue Op1, 8185 SDValue Op2, SDValue Op3) { 8186 SDVTList VTs = getVTList(VT); 8187 SDValue Ops[] = { Op1, Op2, Op3 }; 8188 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8189 } 8190 8191 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8192 EVT VT, ArrayRef<SDValue> Ops) { 8193 SDVTList VTs = getVTList(VT); 8194 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8195 } 8196 8197 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8198 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8199 SDVTList VTs = getVTList(VT1, VT2); 8200 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8201 } 8202 8203 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8204 EVT VT1, EVT VT2) { 8205 SDVTList VTs = getVTList(VT1, VT2); 8206 return SelectNodeTo(N, MachineOpc, VTs, None); 8207 } 8208 8209 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8210 EVT VT1, EVT VT2, EVT VT3, 8211 ArrayRef<SDValue> Ops) { 8212 SDVTList VTs = getVTList(VT1, VT2, VT3); 8213 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8214 } 8215 8216 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8217 EVT VT1, EVT VT2, 8218 SDValue Op1, SDValue Op2) { 8219 SDVTList VTs = getVTList(VT1, VT2); 8220 SDValue Ops[] = { Op1, Op2 }; 8221 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8222 } 8223 8224 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8225 SDVTList VTs,ArrayRef<SDValue> Ops) { 8226 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8227 // Reset the NodeID to -1. 8228 New->setNodeId(-1); 8229 if (New != N) { 8230 ReplaceAllUsesWith(N, New); 8231 RemoveDeadNode(N); 8232 } 8233 return New; 8234 } 8235 8236 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8237 /// the line number information on the merged node since it is not possible to 8238 /// preserve the information that operation is associated with multiple lines. 8239 /// This will make the debugger working better at -O0, were there is a higher 8240 /// probability having other instructions associated with that line. 8241 /// 8242 /// For IROrder, we keep the smaller of the two 8243 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8244 DebugLoc NLoc = N->getDebugLoc(); 8245 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8246 N->setDebugLoc(DebugLoc()); 8247 } 8248 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8249 N->setIROrder(Order); 8250 return N; 8251 } 8252 8253 /// MorphNodeTo - This *mutates* the specified node to have the specified 8254 /// return type, opcode, and operands. 8255 /// 8256 /// Note that MorphNodeTo returns the resultant node. If there is already a 8257 /// node of the specified opcode and operands, it returns that node instead of 8258 /// the current one. Note that the SDLoc need not be the same. 8259 /// 8260 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8261 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8262 /// node, and because it doesn't require CSE recalculation for any of 8263 /// the node's users. 8264 /// 8265 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8266 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8267 /// the legalizer which maintain worklists that would need to be updated when 8268 /// deleting things. 8269 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8270 SDVTList VTs, ArrayRef<SDValue> Ops) { 8271 // If an identical node already exists, use it. 8272 void *IP = nullptr; 8273 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8274 FoldingSetNodeID ID; 8275 AddNodeIDNode(ID, Opc, VTs, Ops); 8276 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8277 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8278 } 8279 8280 if (!RemoveNodeFromCSEMaps(N)) 8281 IP = nullptr; 8282 8283 // Start the morphing. 8284 N->NodeType = Opc; 8285 N->ValueList = VTs.VTs; 8286 N->NumValues = VTs.NumVTs; 8287 8288 // Clear the operands list, updating used nodes to remove this from their 8289 // use list. Keep track of any operands that become dead as a result. 8290 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8291 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8292 SDUse &Use = *I++; 8293 SDNode *Used = Use.getNode(); 8294 Use.set(SDValue()); 8295 if (Used->use_empty()) 8296 DeadNodeSet.insert(Used); 8297 } 8298 8299 // For MachineNode, initialize the memory references information. 8300 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8301 MN->clearMemRefs(); 8302 8303 // Swap for an appropriately sized array from the recycler. 8304 removeOperands(N); 8305 createOperands(N, Ops); 8306 8307 // Delete any nodes that are still dead after adding the uses for the 8308 // new operands. 8309 if (!DeadNodeSet.empty()) { 8310 SmallVector<SDNode *, 16> DeadNodes; 8311 for (SDNode *N : DeadNodeSet) 8312 if (N->use_empty()) 8313 DeadNodes.push_back(N); 8314 RemoveDeadNodes(DeadNodes); 8315 } 8316 8317 if (IP) 8318 CSEMap.InsertNode(N, IP); // Memoize the new node. 8319 return N; 8320 } 8321 8322 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8323 unsigned OrigOpc = Node->getOpcode(); 8324 unsigned NewOpc; 8325 switch (OrigOpc) { 8326 default: 8327 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8328 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8329 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8330 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8331 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8332 #include "llvm/IR/ConstrainedOps.def" 8333 } 8334 8335 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8336 8337 // We're taking this node out of the chain, so we need to re-link things. 8338 SDValue InputChain = Node->getOperand(0); 8339 SDValue OutputChain = SDValue(Node, 1); 8340 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8341 8342 SmallVector<SDValue, 3> Ops; 8343 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8344 Ops.push_back(Node->getOperand(i)); 8345 8346 SDVTList VTs = getVTList(Node->getValueType(0)); 8347 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8348 8349 // MorphNodeTo can operate in two ways: if an existing node with the 8350 // specified operands exists, it can just return it. Otherwise, it 8351 // updates the node in place to have the requested operands. 8352 if (Res == Node) { 8353 // If we updated the node in place, reset the node ID. To the isel, 8354 // this should be just like a newly allocated machine node. 8355 Res->setNodeId(-1); 8356 } else { 8357 ReplaceAllUsesWith(Node, Res); 8358 RemoveDeadNode(Node); 8359 } 8360 8361 return Res; 8362 } 8363 8364 /// getMachineNode - These are used for target selectors to create a new node 8365 /// with specified return type(s), MachineInstr opcode, and operands. 8366 /// 8367 /// Note that getMachineNode returns the resultant node. If there is already a 8368 /// node of the specified opcode and operands, it returns that node instead of 8369 /// the current one. 8370 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8371 EVT VT) { 8372 SDVTList VTs = getVTList(VT); 8373 return getMachineNode(Opcode, dl, VTs, None); 8374 } 8375 8376 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8377 EVT VT, SDValue Op1) { 8378 SDVTList VTs = getVTList(VT); 8379 SDValue Ops[] = { Op1 }; 8380 return getMachineNode(Opcode, dl, VTs, Ops); 8381 } 8382 8383 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8384 EVT VT, SDValue Op1, SDValue Op2) { 8385 SDVTList VTs = getVTList(VT); 8386 SDValue Ops[] = { Op1, Op2 }; 8387 return getMachineNode(Opcode, dl, VTs, Ops); 8388 } 8389 8390 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8391 EVT VT, SDValue Op1, SDValue Op2, 8392 SDValue Op3) { 8393 SDVTList VTs = getVTList(VT); 8394 SDValue Ops[] = { Op1, Op2, Op3 }; 8395 return getMachineNode(Opcode, dl, VTs, Ops); 8396 } 8397 8398 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8399 EVT VT, ArrayRef<SDValue> Ops) { 8400 SDVTList VTs = getVTList(VT); 8401 return getMachineNode(Opcode, dl, VTs, Ops); 8402 } 8403 8404 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8405 EVT VT1, EVT VT2, SDValue Op1, 8406 SDValue Op2) { 8407 SDVTList VTs = getVTList(VT1, VT2); 8408 SDValue Ops[] = { Op1, Op2 }; 8409 return getMachineNode(Opcode, dl, VTs, Ops); 8410 } 8411 8412 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8413 EVT VT1, EVT VT2, SDValue Op1, 8414 SDValue Op2, SDValue Op3) { 8415 SDVTList VTs = getVTList(VT1, VT2); 8416 SDValue Ops[] = { Op1, Op2, Op3 }; 8417 return getMachineNode(Opcode, dl, VTs, Ops); 8418 } 8419 8420 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8421 EVT VT1, EVT VT2, 8422 ArrayRef<SDValue> Ops) { 8423 SDVTList VTs = getVTList(VT1, VT2); 8424 return getMachineNode(Opcode, dl, VTs, Ops); 8425 } 8426 8427 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8428 EVT VT1, EVT VT2, EVT VT3, 8429 SDValue Op1, SDValue Op2) { 8430 SDVTList VTs = getVTList(VT1, VT2, VT3); 8431 SDValue Ops[] = { Op1, Op2 }; 8432 return getMachineNode(Opcode, dl, VTs, Ops); 8433 } 8434 8435 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8436 EVT VT1, EVT VT2, EVT VT3, 8437 SDValue Op1, SDValue Op2, 8438 SDValue Op3) { 8439 SDVTList VTs = getVTList(VT1, VT2, VT3); 8440 SDValue Ops[] = { Op1, Op2, Op3 }; 8441 return getMachineNode(Opcode, dl, VTs, Ops); 8442 } 8443 8444 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8445 EVT VT1, EVT VT2, EVT VT3, 8446 ArrayRef<SDValue> Ops) { 8447 SDVTList VTs = getVTList(VT1, VT2, VT3); 8448 return getMachineNode(Opcode, dl, VTs, Ops); 8449 } 8450 8451 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8452 ArrayRef<EVT> ResultTys, 8453 ArrayRef<SDValue> Ops) { 8454 SDVTList VTs = getVTList(ResultTys); 8455 return getMachineNode(Opcode, dl, VTs, Ops); 8456 } 8457 8458 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8459 SDVTList VTs, 8460 ArrayRef<SDValue> Ops) { 8461 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8462 MachineSDNode *N; 8463 void *IP = nullptr; 8464 8465 if (DoCSE) { 8466 FoldingSetNodeID ID; 8467 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8468 IP = nullptr; 8469 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8470 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8471 } 8472 } 8473 8474 // Allocate a new MachineSDNode. 8475 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8476 createOperands(N, Ops); 8477 8478 if (DoCSE) 8479 CSEMap.InsertNode(N, IP); 8480 8481 InsertNode(N); 8482 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8483 return N; 8484 } 8485 8486 /// getTargetExtractSubreg - A convenience function for creating 8487 /// TargetOpcode::EXTRACT_SUBREG nodes. 8488 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8489 SDValue Operand) { 8490 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8491 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8492 VT, Operand, SRIdxVal); 8493 return SDValue(Subreg, 0); 8494 } 8495 8496 /// getTargetInsertSubreg - A convenience function for creating 8497 /// TargetOpcode::INSERT_SUBREG nodes. 8498 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8499 SDValue Operand, SDValue Subreg) { 8500 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8501 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8502 VT, Operand, Subreg, SRIdxVal); 8503 return SDValue(Result, 0); 8504 } 8505 8506 /// getNodeIfExists - Get the specified node if it's already available, or 8507 /// else return NULL. 8508 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8509 ArrayRef<SDValue> Ops) { 8510 SDNodeFlags Flags; 8511 if (Inserter) 8512 Flags = Inserter->getFlags(); 8513 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8514 } 8515 8516 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8517 ArrayRef<SDValue> Ops, 8518 const SDNodeFlags Flags) { 8519 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8520 FoldingSetNodeID ID; 8521 AddNodeIDNode(ID, Opcode, VTList, Ops); 8522 void *IP = nullptr; 8523 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8524 E->intersectFlagsWith(Flags); 8525 return E; 8526 } 8527 } 8528 return nullptr; 8529 } 8530 8531 /// doesNodeExist - Check if a node exists without modifying its flags. 8532 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8533 ArrayRef<SDValue> Ops) { 8534 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8535 FoldingSetNodeID ID; 8536 AddNodeIDNode(ID, Opcode, VTList, Ops); 8537 void *IP = nullptr; 8538 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8539 return true; 8540 } 8541 return false; 8542 } 8543 8544 /// getDbgValue - Creates a SDDbgValue node. 8545 /// 8546 /// SDNode 8547 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8548 SDNode *N, unsigned R, bool IsIndirect, 8549 const DebugLoc &DL, unsigned O) { 8550 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8551 "Expected inlined-at fields to agree"); 8552 return new (DbgInfo->getAlloc()) 8553 SDDbgValue(Var, Expr, SDDbgOperand::fromNode(N, R), N, IsIndirect, DL, O, 8554 /*IsVariadic=*/false); 8555 } 8556 8557 /// Constant 8558 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8559 DIExpression *Expr, 8560 const Value *C, 8561 const DebugLoc &DL, unsigned O) { 8562 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8563 "Expected inlined-at fields to agree"); 8564 return new (DbgInfo->getAlloc()) SDDbgValue( 8565 Var, Expr, SDDbgOperand::fromConst(C), {}, /*IsIndirect=*/false, DL, O, 8566 /*IsVariadic=*/false); 8567 } 8568 8569 /// FrameIndex 8570 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8571 DIExpression *Expr, unsigned FI, 8572 bool IsIndirect, 8573 const DebugLoc &DL, 8574 unsigned O) { 8575 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8576 "Expected inlined-at fields to agree"); 8577 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 8578 } 8579 8580 /// FrameIndex with dependencies 8581 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8582 DIExpression *Expr, unsigned FI, 8583 ArrayRef<SDNode *> Dependencies, 8584 bool IsIndirect, 8585 const DebugLoc &DL, 8586 unsigned O) { 8587 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8588 "Expected inlined-at fields to agree"); 8589 return new (DbgInfo->getAlloc()) 8590 SDDbgValue(Var, Expr, SDDbgOperand::fromFrameIdx(FI), Dependencies, 8591 IsIndirect, DL, O, 8592 /*IsVariadic=*/false); 8593 } 8594 8595 /// VReg 8596 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 8597 unsigned VReg, bool IsIndirect, 8598 const DebugLoc &DL, unsigned O) { 8599 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8600 "Expected inlined-at fields to agree"); 8601 return new (DbgInfo->getAlloc()) 8602 SDDbgValue(Var, Expr, SDDbgOperand::fromVReg(VReg), {}, IsIndirect, DL, O, 8603 /*IsVariadic=*/false); 8604 } 8605 8606 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 8607 ArrayRef<SDDbgOperand> Locs, 8608 ArrayRef<SDNode *> Dependencies, 8609 bool IsIndirect, const DebugLoc &DL, 8610 unsigned O, bool IsVariadic) { 8611 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8612 "Expected inlined-at fields to agree"); 8613 return new (DbgInfo->getAlloc()) 8614 SDDbgValue(Var, Expr, Locs, Dependencies, IsIndirect, DL, O, IsVariadic); 8615 } 8616 8617 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8618 unsigned OffsetInBits, unsigned SizeInBits, 8619 bool InvalidateDbg) { 8620 SDNode *FromNode = From.getNode(); 8621 SDNode *ToNode = To.getNode(); 8622 assert(FromNode && ToNode && "Can't modify dbg values"); 8623 8624 // PR35338 8625 // TODO: assert(From != To && "Redundant dbg value transfer"); 8626 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8627 if (From == To || FromNode == ToNode) 8628 return; 8629 8630 if (!FromNode->getHasDebugValue()) 8631 return; 8632 8633 SDDbgOperand FromLocOp = 8634 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 8635 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 8636 8637 SmallVector<SDDbgValue *, 2> ClonedDVs; 8638 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8639 if (Dbg->isInvalidated()) 8640 continue; 8641 8642 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8643 8644 // Create a new location ops vector that is equal to the old vector, but 8645 // with each instance of FromLocOp replaced with ToLocOp. 8646 bool Changed = false; 8647 auto NewLocOps = Dbg->copyLocationOps(); 8648 std::replace_if( 8649 NewLocOps.begin(), NewLocOps.end(), 8650 [&Changed, FromLocOp](const SDDbgOperand &Op) { 8651 bool Match = Op == FromLocOp; 8652 Changed |= Match; 8653 return Match; 8654 }, 8655 ToLocOp); 8656 // Ignore this SDDbgValue if we didn't find a matching location. 8657 if (!Changed) 8658 continue; 8659 8660 DIVariable *Var = Dbg->getVariable(); 8661 auto *Expr = Dbg->getExpression(); 8662 // If a fragment is requested, update the expression. 8663 if (SizeInBits) { 8664 // When splitting a larger (e.g., sign-extended) value whose 8665 // lower bits are described with an SDDbgValue, do not attempt 8666 // to transfer the SDDbgValue to the upper bits. 8667 if (auto FI = Expr->getFragmentInfo()) 8668 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8669 continue; 8670 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8671 SizeInBits); 8672 if (!Fragment) 8673 continue; 8674 Expr = *Fragment; 8675 } 8676 8677 auto NewDependencies = Dbg->copySDNodes(); 8678 std::replace(NewDependencies.begin(), NewDependencies.end(), FromNode, 8679 ToNode); 8680 // Clone the SDDbgValue and move it to To. 8681 SDDbgValue *Clone = getDbgValueList( 8682 Var, Expr, NewLocOps, NewDependencies, Dbg->isIndirect(), 8683 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 8684 Dbg->isVariadic()); 8685 ClonedDVs.push_back(Clone); 8686 8687 if (InvalidateDbg) { 8688 // Invalidate value and indicate the SDDbgValue should not be emitted. 8689 Dbg->setIsInvalidated(); 8690 Dbg->setIsEmitted(); 8691 } 8692 } 8693 8694 for (SDDbgValue *Dbg : ClonedDVs) { 8695 assert(is_contained(Dbg->getSDNodes(), ToNode) && 8696 "Transferred DbgValues should depend on the new SDNode"); 8697 AddDbgValue(Dbg, false); 8698 } 8699 } 8700 8701 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8702 if (!N.getHasDebugValue()) 8703 return; 8704 8705 SmallVector<SDDbgValue *, 2> ClonedDVs; 8706 for (auto DV : GetDbgValues(&N)) { 8707 if (DV->isInvalidated()) 8708 continue; 8709 switch (N.getOpcode()) { 8710 default: 8711 break; 8712 case ISD::ADD: 8713 SDValue N0 = N.getOperand(0); 8714 SDValue N1 = N.getOperand(1); 8715 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8716 isConstantIntBuildVectorOrConstantInt(N1)) { 8717 uint64_t Offset = N.getConstantOperandVal(1); 8718 8719 // Rewrite an ADD constant node into a DIExpression. Since we are 8720 // performing arithmetic to compute the variable's *value* in the 8721 // DIExpression, we need to mark the expression with a 8722 // DW_OP_stack_value. 8723 auto *DIExpr = DV->getExpression(); 8724 auto NewLocOps = DV->copyLocationOps(); 8725 bool Changed = false; 8726 for (size_t i = 0; i < NewLocOps.size(); ++i) { 8727 // We're not given a ResNo to compare against because the whole 8728 // node is going away. We know that any ISD::ADD only has one 8729 // result, so we can assume any node match is using the result. 8730 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 8731 NewLocOps[i].getSDNode() != &N) 8732 continue; 8733 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 8734 SmallVector<uint64_t, 3> ExprOps; 8735 DIExpression::appendOffset(ExprOps, Offset); 8736 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 8737 Changed = true; 8738 } 8739 (void)Changed; 8740 assert(Changed && "Salvage target doesn't use N"); 8741 8742 auto NewDependencies = DV->copySDNodes(); 8743 std::replace(NewDependencies.begin(), NewDependencies.end(), &N, 8744 N0.getNode()); 8745 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 8746 NewLocOps, NewDependencies, 8747 DV->isIndirect(), DV->getDebugLoc(), 8748 DV->getOrder(), DV->isVariadic()); 8749 ClonedDVs.push_back(Clone); 8750 DV->setIsInvalidated(); 8751 DV->setIsEmitted(); 8752 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8753 N0.getNode()->dumprFull(this); 8754 dbgs() << " into " << *DIExpr << '\n'); 8755 } 8756 } 8757 } 8758 8759 for (SDDbgValue *Dbg : ClonedDVs) { 8760 assert(!Dbg->getSDNodes().empty() && 8761 "Salvaged DbgValue should depend on a new SDNode"); 8762 AddDbgValue(Dbg, false); 8763 } 8764 } 8765 8766 /// Creates a SDDbgLabel node. 8767 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8768 const DebugLoc &DL, unsigned O) { 8769 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8770 "Expected inlined-at fields to agree"); 8771 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8772 } 8773 8774 namespace { 8775 8776 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8777 /// pointed to by a use iterator is deleted, increment the use iterator 8778 /// so that it doesn't dangle. 8779 /// 8780 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8781 SDNode::use_iterator &UI; 8782 SDNode::use_iterator &UE; 8783 8784 void NodeDeleted(SDNode *N, SDNode *E) override { 8785 // Increment the iterator as needed. 8786 while (UI != UE && N == *UI) 8787 ++UI; 8788 } 8789 8790 public: 8791 RAUWUpdateListener(SelectionDAG &d, 8792 SDNode::use_iterator &ui, 8793 SDNode::use_iterator &ue) 8794 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8795 }; 8796 8797 } // end anonymous namespace 8798 8799 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8800 /// This can cause recursive merging of nodes in the DAG. 8801 /// 8802 /// This version assumes From has a single result value. 8803 /// 8804 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8805 SDNode *From = FromN.getNode(); 8806 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8807 "Cannot replace with this method!"); 8808 assert(From != To.getNode() && "Cannot replace uses of with self"); 8809 8810 // Preserve Debug Values 8811 transferDbgValues(FromN, To); 8812 8813 // Iterate over all the existing uses of From. New uses will be added 8814 // to the beginning of the use list, which we avoid visiting. 8815 // This specifically avoids visiting uses of From that arise while the 8816 // replacement is happening, because any such uses would be the result 8817 // of CSE: If an existing node looks like From after one of its operands 8818 // is replaced by To, we don't want to replace of all its users with To 8819 // too. See PR3018 for more info. 8820 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8821 RAUWUpdateListener Listener(*this, UI, UE); 8822 while (UI != UE) { 8823 SDNode *User = *UI; 8824 8825 // This node is about to morph, remove its old self from the CSE maps. 8826 RemoveNodeFromCSEMaps(User); 8827 8828 // A user can appear in a use list multiple times, and when this 8829 // happens the uses are usually next to each other in the list. 8830 // To help reduce the number of CSE recomputations, process all 8831 // the uses of this user that we can find this way. 8832 do { 8833 SDUse &Use = UI.getUse(); 8834 ++UI; 8835 Use.set(To); 8836 if (To->isDivergent() != From->isDivergent()) 8837 updateDivergence(User); 8838 } while (UI != UE && *UI == User); 8839 // Now that we have modified User, add it back to the CSE maps. If it 8840 // already exists there, recursively merge the results together. 8841 AddModifiedNodeToCSEMaps(User); 8842 } 8843 8844 // If we just RAUW'd the root, take note. 8845 if (FromN == getRoot()) 8846 setRoot(To); 8847 } 8848 8849 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8850 /// This can cause recursive merging of nodes in the DAG. 8851 /// 8852 /// This version assumes that for each value of From, there is a 8853 /// corresponding value in To in the same position with the same type. 8854 /// 8855 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8856 #ifndef NDEBUG 8857 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8858 assert((!From->hasAnyUseOfValue(i) || 8859 From->getValueType(i) == To->getValueType(i)) && 8860 "Cannot use this version of ReplaceAllUsesWith!"); 8861 #endif 8862 8863 // Handle the trivial case. 8864 if (From == To) 8865 return; 8866 8867 // Preserve Debug Info. Only do this if there's a use. 8868 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8869 if (From->hasAnyUseOfValue(i)) { 8870 assert((i < To->getNumValues()) && "Invalid To location"); 8871 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8872 } 8873 8874 // Iterate over just the existing users of From. See the comments in 8875 // the ReplaceAllUsesWith above. 8876 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8877 RAUWUpdateListener Listener(*this, UI, UE); 8878 while (UI != UE) { 8879 SDNode *User = *UI; 8880 8881 // This node is about to morph, remove its old self from the CSE maps. 8882 RemoveNodeFromCSEMaps(User); 8883 8884 // A user can appear in a use list multiple times, and when this 8885 // happens the uses are usually next to each other in the list. 8886 // To help reduce the number of CSE recomputations, process all 8887 // the uses of this user that we can find this way. 8888 do { 8889 SDUse &Use = UI.getUse(); 8890 ++UI; 8891 Use.setNode(To); 8892 if (To->isDivergent() != From->isDivergent()) 8893 updateDivergence(User); 8894 } while (UI != UE && *UI == User); 8895 8896 // Now that we have modified User, add it back to the CSE maps. If it 8897 // already exists there, recursively merge the results together. 8898 AddModifiedNodeToCSEMaps(User); 8899 } 8900 8901 // If we just RAUW'd the root, take note. 8902 if (From == getRoot().getNode()) 8903 setRoot(SDValue(To, getRoot().getResNo())); 8904 } 8905 8906 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8907 /// This can cause recursive merging of nodes in the DAG. 8908 /// 8909 /// This version can replace From with any result values. To must match the 8910 /// number and types of values returned by From. 8911 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8912 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8913 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8914 8915 // Preserve Debug Info. 8916 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8917 transferDbgValues(SDValue(From, i), To[i]); 8918 8919 // Iterate over just the existing users of From. See the comments in 8920 // the ReplaceAllUsesWith above. 8921 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8922 RAUWUpdateListener Listener(*this, UI, UE); 8923 while (UI != UE) { 8924 SDNode *User = *UI; 8925 8926 // This node is about to morph, remove its old self from the CSE maps. 8927 RemoveNodeFromCSEMaps(User); 8928 8929 // A user can appear in a use list multiple times, and when this happens the 8930 // uses are usually next to each other in the list. To help reduce the 8931 // number of CSE and divergence recomputations, process all the uses of this 8932 // user that we can find this way. 8933 bool To_IsDivergent = false; 8934 do { 8935 SDUse &Use = UI.getUse(); 8936 const SDValue &ToOp = To[Use.getResNo()]; 8937 ++UI; 8938 Use.set(ToOp); 8939 To_IsDivergent |= ToOp->isDivergent(); 8940 } while (UI != UE && *UI == User); 8941 8942 if (To_IsDivergent != From->isDivergent()) 8943 updateDivergence(User); 8944 8945 // Now that we have modified User, add it back to the CSE maps. If it 8946 // already exists there, recursively merge the results together. 8947 AddModifiedNodeToCSEMaps(User); 8948 } 8949 8950 // If we just RAUW'd the root, take note. 8951 if (From == getRoot().getNode()) 8952 setRoot(SDValue(To[getRoot().getResNo()])); 8953 } 8954 8955 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8956 /// uses of other values produced by From.getNode() alone. The Deleted 8957 /// vector is handled the same way as for ReplaceAllUsesWith. 8958 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8959 // Handle the really simple, really trivial case efficiently. 8960 if (From == To) return; 8961 8962 // Handle the simple, trivial, case efficiently. 8963 if (From.getNode()->getNumValues() == 1) { 8964 ReplaceAllUsesWith(From, To); 8965 return; 8966 } 8967 8968 // Preserve Debug Info. 8969 transferDbgValues(From, To); 8970 8971 // Iterate over just the existing users of From. See the comments in 8972 // the ReplaceAllUsesWith above. 8973 SDNode::use_iterator UI = From.getNode()->use_begin(), 8974 UE = From.getNode()->use_end(); 8975 RAUWUpdateListener Listener(*this, UI, UE); 8976 while (UI != UE) { 8977 SDNode *User = *UI; 8978 bool UserRemovedFromCSEMaps = false; 8979 8980 // A user can appear in a use list multiple times, and when this 8981 // happens the uses are usually next to each other in the list. 8982 // To help reduce the number of CSE recomputations, process all 8983 // the uses of this user that we can find this way. 8984 do { 8985 SDUse &Use = UI.getUse(); 8986 8987 // Skip uses of different values from the same node. 8988 if (Use.getResNo() != From.getResNo()) { 8989 ++UI; 8990 continue; 8991 } 8992 8993 // If this node hasn't been modified yet, it's still in the CSE maps, 8994 // so remove its old self from the CSE maps. 8995 if (!UserRemovedFromCSEMaps) { 8996 RemoveNodeFromCSEMaps(User); 8997 UserRemovedFromCSEMaps = true; 8998 } 8999 9000 ++UI; 9001 Use.set(To); 9002 if (To->isDivergent() != From->isDivergent()) 9003 updateDivergence(User); 9004 } while (UI != UE && *UI == User); 9005 // We are iterating over all uses of the From node, so if a use 9006 // doesn't use the specific value, no changes are made. 9007 if (!UserRemovedFromCSEMaps) 9008 continue; 9009 9010 // Now that we have modified User, add it back to the CSE maps. If it 9011 // already exists there, recursively merge the results together. 9012 AddModifiedNodeToCSEMaps(User); 9013 } 9014 9015 // If we just RAUW'd the root, take note. 9016 if (From == getRoot()) 9017 setRoot(To); 9018 } 9019 9020 namespace { 9021 9022 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9023 /// to record information about a use. 9024 struct UseMemo { 9025 SDNode *User; 9026 unsigned Index; 9027 SDUse *Use; 9028 }; 9029 9030 /// operator< - Sort Memos by User. 9031 bool operator<(const UseMemo &L, const UseMemo &R) { 9032 return (intptr_t)L.User < (intptr_t)R.User; 9033 } 9034 9035 } // end anonymous namespace 9036 9037 bool SelectionDAG::calculateDivergence(SDNode *N) { 9038 if (TLI->isSDNodeAlwaysUniform(N)) { 9039 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9040 "Conflicting divergence information!"); 9041 return false; 9042 } 9043 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9044 return true; 9045 for (auto &Op : N->ops()) { 9046 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9047 return true; 9048 } 9049 return false; 9050 } 9051 9052 void SelectionDAG::updateDivergence(SDNode *N) { 9053 SmallVector<SDNode *, 16> Worklist(1, N); 9054 do { 9055 N = Worklist.pop_back_val(); 9056 bool IsDivergent = calculateDivergence(N); 9057 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9058 N->SDNodeBits.IsDivergent = IsDivergent; 9059 llvm::append_range(Worklist, N->uses()); 9060 } 9061 } while (!Worklist.empty()); 9062 } 9063 9064 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9065 DenseMap<SDNode *, unsigned> Degree; 9066 Order.reserve(AllNodes.size()); 9067 for (auto &N : allnodes()) { 9068 unsigned NOps = N.getNumOperands(); 9069 Degree[&N] = NOps; 9070 if (0 == NOps) 9071 Order.push_back(&N); 9072 } 9073 for (size_t I = 0; I != Order.size(); ++I) { 9074 SDNode *N = Order[I]; 9075 for (auto U : N->uses()) { 9076 unsigned &UnsortedOps = Degree[U]; 9077 if (0 == --UnsortedOps) 9078 Order.push_back(U); 9079 } 9080 } 9081 } 9082 9083 #ifndef NDEBUG 9084 void SelectionDAG::VerifyDAGDiverence() { 9085 std::vector<SDNode *> TopoOrder; 9086 CreateTopologicalOrder(TopoOrder); 9087 for (auto *N : TopoOrder) { 9088 assert(calculateDivergence(N) == N->isDivergent() && 9089 "Divergence bit inconsistency detected"); 9090 } 9091 } 9092 #endif 9093 9094 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9095 /// uses of other values produced by From.getNode() alone. The same value 9096 /// may appear in both the From and To list. The Deleted vector is 9097 /// handled the same way as for ReplaceAllUsesWith. 9098 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9099 const SDValue *To, 9100 unsigned Num){ 9101 // Handle the simple, trivial case efficiently. 9102 if (Num == 1) 9103 return ReplaceAllUsesOfValueWith(*From, *To); 9104 9105 transferDbgValues(*From, *To); 9106 9107 // Read up all the uses and make records of them. This helps 9108 // processing new uses that are introduced during the 9109 // replacement process. 9110 SmallVector<UseMemo, 4> Uses; 9111 for (unsigned i = 0; i != Num; ++i) { 9112 unsigned FromResNo = From[i].getResNo(); 9113 SDNode *FromNode = From[i].getNode(); 9114 for (SDNode::use_iterator UI = FromNode->use_begin(), 9115 E = FromNode->use_end(); UI != E; ++UI) { 9116 SDUse &Use = UI.getUse(); 9117 if (Use.getResNo() == FromResNo) { 9118 UseMemo Memo = { *UI, i, &Use }; 9119 Uses.push_back(Memo); 9120 } 9121 } 9122 } 9123 9124 // Sort the uses, so that all the uses from a given User are together. 9125 llvm::sort(Uses); 9126 9127 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9128 UseIndex != UseIndexEnd; ) { 9129 // We know that this user uses some value of From. If it is the right 9130 // value, update it. 9131 SDNode *User = Uses[UseIndex].User; 9132 9133 // This node is about to morph, remove its old self from the CSE maps. 9134 RemoveNodeFromCSEMaps(User); 9135 9136 // The Uses array is sorted, so all the uses for a given User 9137 // are next to each other in the list. 9138 // To help reduce the number of CSE recomputations, process all 9139 // the uses of this user that we can find this way. 9140 do { 9141 unsigned i = Uses[UseIndex].Index; 9142 SDUse &Use = *Uses[UseIndex].Use; 9143 ++UseIndex; 9144 9145 Use.set(To[i]); 9146 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9147 9148 // Now that we have modified User, add it back to the CSE maps. If it 9149 // already exists there, recursively merge the results together. 9150 AddModifiedNodeToCSEMaps(User); 9151 } 9152 } 9153 9154 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9155 /// based on their topological order. It returns the maximum id and a vector 9156 /// of the SDNodes* in assigned order by reference. 9157 unsigned SelectionDAG::AssignTopologicalOrder() { 9158 unsigned DAGSize = 0; 9159 9160 // SortedPos tracks the progress of the algorithm. Nodes before it are 9161 // sorted, nodes after it are unsorted. When the algorithm completes 9162 // it is at the end of the list. 9163 allnodes_iterator SortedPos = allnodes_begin(); 9164 9165 // Visit all the nodes. Move nodes with no operands to the front of 9166 // the list immediately. Annotate nodes that do have operands with their 9167 // operand count. Before we do this, the Node Id fields of the nodes 9168 // may contain arbitrary values. After, the Node Id fields for nodes 9169 // before SortedPos will contain the topological sort index, and the 9170 // Node Id fields for nodes At SortedPos and after will contain the 9171 // count of outstanding operands. 9172 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9173 SDNode *N = &*I++; 9174 checkForCycles(N, this); 9175 unsigned Degree = N->getNumOperands(); 9176 if (Degree == 0) { 9177 // A node with no uses, add it to the result array immediately. 9178 N->setNodeId(DAGSize++); 9179 allnodes_iterator Q(N); 9180 if (Q != SortedPos) 9181 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9182 assert(SortedPos != AllNodes.end() && "Overran node list"); 9183 ++SortedPos; 9184 } else { 9185 // Temporarily use the Node Id as scratch space for the degree count. 9186 N->setNodeId(Degree); 9187 } 9188 } 9189 9190 // Visit all the nodes. As we iterate, move nodes into sorted order, 9191 // such that by the time the end is reached all nodes will be sorted. 9192 for (SDNode &Node : allnodes()) { 9193 SDNode *N = &Node; 9194 checkForCycles(N, this); 9195 // N is in sorted position, so all its uses have one less operand 9196 // that needs to be sorted. 9197 for (SDNode *P : N->uses()) { 9198 unsigned Degree = P->getNodeId(); 9199 assert(Degree != 0 && "Invalid node degree"); 9200 --Degree; 9201 if (Degree == 0) { 9202 // All of P's operands are sorted, so P may sorted now. 9203 P->setNodeId(DAGSize++); 9204 if (P->getIterator() != SortedPos) 9205 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9206 assert(SortedPos != AllNodes.end() && "Overran node list"); 9207 ++SortedPos; 9208 } else { 9209 // Update P's outstanding operand count. 9210 P->setNodeId(Degree); 9211 } 9212 } 9213 if (Node.getIterator() == SortedPos) { 9214 #ifndef NDEBUG 9215 allnodes_iterator I(N); 9216 SDNode *S = &*++I; 9217 dbgs() << "Overran sorted position:\n"; 9218 S->dumprFull(this); dbgs() << "\n"; 9219 dbgs() << "Checking if this is due to cycles\n"; 9220 checkForCycles(this, true); 9221 #endif 9222 llvm_unreachable(nullptr); 9223 } 9224 } 9225 9226 assert(SortedPos == AllNodes.end() && 9227 "Topological sort incomplete!"); 9228 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9229 "First node in topological sort is not the entry token!"); 9230 assert(AllNodes.front().getNodeId() == 0 && 9231 "First node in topological sort has non-zero id!"); 9232 assert(AllNodes.front().getNumOperands() == 0 && 9233 "First node in topological sort has operands!"); 9234 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9235 "Last node in topologic sort has unexpected id!"); 9236 assert(AllNodes.back().use_empty() && 9237 "Last node in topologic sort has users!"); 9238 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9239 return DAGSize; 9240 } 9241 9242 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9243 /// value is produced by SD. 9244 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9245 for (SDNode *SD : DB->getSDNodes()) { 9246 if (!SD) 9247 continue; 9248 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9249 SD->setHasDebugValue(true); 9250 } 9251 DbgInfo->add(DB, isParameter); 9252 } 9253 9254 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9255 9256 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9257 SDValue NewMemOpChain) { 9258 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9259 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9260 // The new memory operation must have the same position as the old load in 9261 // terms of memory dependency. Create a TokenFactor for the old load and new 9262 // memory operation and update uses of the old load's output chain to use that 9263 // TokenFactor. 9264 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9265 return NewMemOpChain; 9266 9267 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9268 OldChain, NewMemOpChain); 9269 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9270 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9271 return TokenFactor; 9272 } 9273 9274 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9275 SDValue NewMemOp) { 9276 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9277 SDValue OldChain = SDValue(OldLoad, 1); 9278 SDValue NewMemOpChain = NewMemOp.getValue(1); 9279 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9280 } 9281 9282 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9283 Function **OutFunction) { 9284 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9285 9286 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9287 auto *Module = MF->getFunction().getParent(); 9288 auto *Function = Module->getFunction(Symbol); 9289 9290 if (OutFunction != nullptr) 9291 *OutFunction = Function; 9292 9293 if (Function != nullptr) { 9294 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9295 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9296 } 9297 9298 std::string ErrorStr; 9299 raw_string_ostream ErrorFormatter(ErrorStr); 9300 9301 ErrorFormatter << "Undefined external symbol "; 9302 ErrorFormatter << '"' << Symbol << '"'; 9303 ErrorFormatter.flush(); 9304 9305 report_fatal_error(ErrorStr); 9306 } 9307 9308 //===----------------------------------------------------------------------===// 9309 // SDNode Class 9310 //===----------------------------------------------------------------------===// 9311 9312 bool llvm::isNullConstant(SDValue V) { 9313 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9314 return Const != nullptr && Const->isNullValue(); 9315 } 9316 9317 bool llvm::isNullFPConstant(SDValue V) { 9318 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9319 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9320 } 9321 9322 bool llvm::isAllOnesConstant(SDValue V) { 9323 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9324 return Const != nullptr && Const->isAllOnesValue(); 9325 } 9326 9327 bool llvm::isOneConstant(SDValue V) { 9328 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9329 return Const != nullptr && Const->isOne(); 9330 } 9331 9332 SDValue llvm::peekThroughBitcasts(SDValue V) { 9333 while (V.getOpcode() == ISD::BITCAST) 9334 V = V.getOperand(0); 9335 return V; 9336 } 9337 9338 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9339 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9340 V = V.getOperand(0); 9341 return V; 9342 } 9343 9344 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9345 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9346 V = V.getOperand(0); 9347 return V; 9348 } 9349 9350 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9351 if (V.getOpcode() != ISD::XOR) 9352 return false; 9353 V = peekThroughBitcasts(V.getOperand(1)); 9354 unsigned NumBits = V.getScalarValueSizeInBits(); 9355 ConstantSDNode *C = 9356 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9357 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9358 } 9359 9360 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9361 bool AllowTruncation) { 9362 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9363 return CN; 9364 9365 // SplatVectors can truncate their operands. Ignore that case here unless 9366 // AllowTruncation is set. 9367 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9368 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9369 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9370 EVT CVT = CN->getValueType(0); 9371 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9372 if (AllowTruncation || CVT == VecEltVT) 9373 return CN; 9374 } 9375 } 9376 9377 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9378 BitVector UndefElements; 9379 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9380 9381 // BuildVectors can truncate their operands. Ignore that case here unless 9382 // AllowTruncation is set. 9383 if (CN && (UndefElements.none() || AllowUndefs)) { 9384 EVT CVT = CN->getValueType(0); 9385 EVT NSVT = N.getValueType().getScalarType(); 9386 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9387 if (AllowTruncation || (CVT == NSVT)) 9388 return CN; 9389 } 9390 } 9391 9392 return nullptr; 9393 } 9394 9395 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9396 bool AllowUndefs, 9397 bool AllowTruncation) { 9398 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9399 return CN; 9400 9401 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9402 BitVector UndefElements; 9403 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9404 9405 // BuildVectors can truncate their operands. Ignore that case here unless 9406 // AllowTruncation is set. 9407 if (CN && (UndefElements.none() || AllowUndefs)) { 9408 EVT CVT = CN->getValueType(0); 9409 EVT NSVT = N.getValueType().getScalarType(); 9410 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9411 if (AllowTruncation || (CVT == NSVT)) 9412 return CN; 9413 } 9414 } 9415 9416 return nullptr; 9417 } 9418 9419 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9420 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9421 return CN; 9422 9423 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9424 BitVector UndefElements; 9425 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9426 if (CN && (UndefElements.none() || AllowUndefs)) 9427 return CN; 9428 } 9429 9430 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9431 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9432 return CN; 9433 9434 return nullptr; 9435 } 9436 9437 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9438 const APInt &DemandedElts, 9439 bool AllowUndefs) { 9440 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9441 return CN; 9442 9443 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9444 BitVector UndefElements; 9445 ConstantFPSDNode *CN = 9446 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9447 if (CN && (UndefElements.none() || AllowUndefs)) 9448 return CN; 9449 } 9450 9451 return nullptr; 9452 } 9453 9454 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9455 // TODO: may want to use peekThroughBitcast() here. 9456 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9457 return C && C->isNullValue(); 9458 } 9459 9460 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 9461 // TODO: may want to use peekThroughBitcast() here. 9462 unsigned BitWidth = N.getScalarValueSizeInBits(); 9463 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9464 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9465 } 9466 9467 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 9468 N = peekThroughBitcasts(N); 9469 unsigned BitWidth = N.getScalarValueSizeInBits(); 9470 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9471 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9472 } 9473 9474 HandleSDNode::~HandleSDNode() { 9475 DropOperands(); 9476 } 9477 9478 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9479 const DebugLoc &DL, 9480 const GlobalValue *GA, EVT VT, 9481 int64_t o, unsigned TF) 9482 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9483 TheGlobal = GA; 9484 } 9485 9486 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9487 EVT VT, unsigned SrcAS, 9488 unsigned DestAS) 9489 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9490 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9491 9492 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9493 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9494 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9495 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9496 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9497 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9498 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9499 9500 // We check here that the size of the memory operand fits within the size of 9501 // the MMO. This is because the MMO might indicate only a possible address 9502 // range instead of specifying the affected memory addresses precisely. 9503 // TODO: Make MachineMemOperands aware of scalable vectors. 9504 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9505 "Size mismatch!"); 9506 } 9507 9508 /// Profile - Gather unique data for the node. 9509 /// 9510 void SDNode::Profile(FoldingSetNodeID &ID) const { 9511 AddNodeIDNode(ID, this); 9512 } 9513 9514 namespace { 9515 9516 struct EVTArray { 9517 std::vector<EVT> VTs; 9518 9519 EVTArray() { 9520 VTs.reserve(MVT::LAST_VALUETYPE); 9521 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9522 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9523 } 9524 }; 9525 9526 } // end anonymous namespace 9527 9528 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9529 static ManagedStatic<EVTArray> SimpleVTArray; 9530 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9531 9532 /// getValueTypeList - Return a pointer to the specified value type. 9533 /// 9534 const EVT *SDNode::getValueTypeList(EVT VT) { 9535 if (VT.isExtended()) { 9536 sys::SmartScopedLock<true> Lock(*VTMutex); 9537 return &(*EVTs->insert(VT).first); 9538 } else { 9539 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9540 "Value type out of range!"); 9541 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9542 } 9543 } 9544 9545 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9546 /// indicated value. This method ignores uses of other values defined by this 9547 /// operation. 9548 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9549 assert(Value < getNumValues() && "Bad value!"); 9550 9551 // TODO: Only iterate over uses of a given value of the node 9552 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9553 if (UI.getUse().getResNo() == Value) { 9554 if (NUses == 0) 9555 return false; 9556 --NUses; 9557 } 9558 } 9559 9560 // Found exactly the right number of uses? 9561 return NUses == 0; 9562 } 9563 9564 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9565 /// value. This method ignores uses of other values defined by this operation. 9566 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9567 assert(Value < getNumValues() && "Bad value!"); 9568 9569 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9570 if (UI.getUse().getResNo() == Value) 9571 return true; 9572 9573 return false; 9574 } 9575 9576 /// isOnlyUserOf - Return true if this node is the only use of N. 9577 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9578 bool Seen = false; 9579 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9580 SDNode *User = *I; 9581 if (User == this) 9582 Seen = true; 9583 else 9584 return false; 9585 } 9586 9587 return Seen; 9588 } 9589 9590 /// Return true if the only users of N are contained in Nodes. 9591 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9592 bool Seen = false; 9593 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9594 SDNode *User = *I; 9595 if (llvm::is_contained(Nodes, User)) 9596 Seen = true; 9597 else 9598 return false; 9599 } 9600 9601 return Seen; 9602 } 9603 9604 /// isOperand - Return true if this node is an operand of N. 9605 bool SDValue::isOperandOf(const SDNode *N) const { 9606 return is_contained(N->op_values(), *this); 9607 } 9608 9609 bool SDNode::isOperandOf(const SDNode *N) const { 9610 return any_of(N->op_values(), 9611 [this](SDValue Op) { return this == Op.getNode(); }); 9612 } 9613 9614 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9615 /// be a chain) reaches the specified operand without crossing any 9616 /// side-effecting instructions on any chain path. In practice, this looks 9617 /// through token factors and non-volatile loads. In order to remain efficient, 9618 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9619 /// 9620 /// Note that we only need to examine chains when we're searching for 9621 /// side-effects; SelectionDAG requires that all side-effects are represented 9622 /// by chains, even if another operand would force a specific ordering. This 9623 /// constraint is necessary to allow transformations like splitting loads. 9624 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9625 unsigned Depth) const { 9626 if (*this == Dest) return true; 9627 9628 // Don't search too deeply, we just want to be able to see through 9629 // TokenFactor's etc. 9630 if (Depth == 0) return false; 9631 9632 // If this is a token factor, all inputs to the TF happen in parallel. 9633 if (getOpcode() == ISD::TokenFactor) { 9634 // First, try a shallow search. 9635 if (is_contained((*this)->ops(), Dest)) { 9636 // We found the chain we want as an operand of this TokenFactor. 9637 // Essentially, we reach the chain without side-effects if we could 9638 // serialize the TokenFactor into a simple chain of operations with 9639 // Dest as the last operation. This is automatically true if the 9640 // chain has one use: there are no other ordering constraints. 9641 // If the chain has more than one use, we give up: some other 9642 // use of Dest might force a side-effect between Dest and the current 9643 // node. 9644 if (Dest.hasOneUse()) 9645 return true; 9646 } 9647 // Next, try a deep search: check whether every operand of the TokenFactor 9648 // reaches Dest. 9649 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9650 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9651 }); 9652 } 9653 9654 // Loads don't have side effects, look through them. 9655 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9656 if (Ld->isUnordered()) 9657 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9658 } 9659 return false; 9660 } 9661 9662 bool SDNode::hasPredecessor(const SDNode *N) const { 9663 SmallPtrSet<const SDNode *, 32> Visited; 9664 SmallVector<const SDNode *, 16> Worklist; 9665 Worklist.push_back(this); 9666 return hasPredecessorHelper(N, Visited, Worklist); 9667 } 9668 9669 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9670 this->Flags.intersectWith(Flags); 9671 } 9672 9673 SDValue 9674 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9675 ArrayRef<ISD::NodeType> CandidateBinOps, 9676 bool AllowPartials) { 9677 // The pattern must end in an extract from index 0. 9678 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9679 !isNullConstant(Extract->getOperand(1))) 9680 return SDValue(); 9681 9682 // Match against one of the candidate binary ops. 9683 SDValue Op = Extract->getOperand(0); 9684 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9685 return Op.getOpcode() == unsigned(BinOp); 9686 })) 9687 return SDValue(); 9688 9689 // Floating-point reductions may require relaxed constraints on the final step 9690 // of the reduction because they may reorder intermediate operations. 9691 unsigned CandidateBinOp = Op.getOpcode(); 9692 if (Op.getValueType().isFloatingPoint()) { 9693 SDNodeFlags Flags = Op->getFlags(); 9694 switch (CandidateBinOp) { 9695 case ISD::FADD: 9696 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9697 return SDValue(); 9698 break; 9699 default: 9700 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9701 } 9702 } 9703 9704 // Matching failed - attempt to see if we did enough stages that a partial 9705 // reduction from a subvector is possible. 9706 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9707 if (!AllowPartials || !Op) 9708 return SDValue(); 9709 EVT OpVT = Op.getValueType(); 9710 EVT OpSVT = OpVT.getScalarType(); 9711 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9712 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9713 return SDValue(); 9714 BinOp = (ISD::NodeType)CandidateBinOp; 9715 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9716 getVectorIdxConstant(0, SDLoc(Op))); 9717 }; 9718 9719 // At each stage, we're looking for something that looks like: 9720 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9721 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9722 // i32 undef, i32 undef, i32 undef, i32 undef> 9723 // %a = binop <8 x i32> %op, %s 9724 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9725 // we expect something like: 9726 // <4,5,6,7,u,u,u,u> 9727 // <2,3,u,u,u,u,u,u> 9728 // <1,u,u,u,u,u,u,u> 9729 // While a partial reduction match would be: 9730 // <2,3,u,u,u,u,u,u> 9731 // <1,u,u,u,u,u,u,u> 9732 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9733 SDValue PrevOp; 9734 for (unsigned i = 0; i < Stages; ++i) { 9735 unsigned MaskEnd = (1 << i); 9736 9737 if (Op.getOpcode() != CandidateBinOp) 9738 return PartialReduction(PrevOp, MaskEnd); 9739 9740 SDValue Op0 = Op.getOperand(0); 9741 SDValue Op1 = Op.getOperand(1); 9742 9743 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9744 if (Shuffle) { 9745 Op = Op1; 9746 } else { 9747 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9748 Op = Op0; 9749 } 9750 9751 // The first operand of the shuffle should be the same as the other operand 9752 // of the binop. 9753 if (!Shuffle || Shuffle->getOperand(0) != Op) 9754 return PartialReduction(PrevOp, MaskEnd); 9755 9756 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9757 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9758 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9759 return PartialReduction(PrevOp, MaskEnd); 9760 9761 PrevOp = Op; 9762 } 9763 9764 // Handle subvector reductions, which tend to appear after the shuffle 9765 // reduction stages. 9766 while (Op.getOpcode() == CandidateBinOp) { 9767 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9768 SDValue Op0 = Op.getOperand(0); 9769 SDValue Op1 = Op.getOperand(1); 9770 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9771 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9772 Op0.getOperand(0) != Op1.getOperand(0)) 9773 break; 9774 SDValue Src = Op0.getOperand(0); 9775 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9776 if (NumSrcElts != (2 * NumElts)) 9777 break; 9778 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9779 Op1.getConstantOperandAPInt(1) == NumElts) && 9780 !(Op1.getConstantOperandAPInt(1) == 0 && 9781 Op0.getConstantOperandAPInt(1) == NumElts)) 9782 break; 9783 Op = Src; 9784 } 9785 9786 BinOp = (ISD::NodeType)CandidateBinOp; 9787 return Op; 9788 } 9789 9790 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9791 assert(N->getNumValues() == 1 && 9792 "Can't unroll a vector with multiple results!"); 9793 9794 EVT VT = N->getValueType(0); 9795 unsigned NE = VT.getVectorNumElements(); 9796 EVT EltVT = VT.getVectorElementType(); 9797 SDLoc dl(N); 9798 9799 SmallVector<SDValue, 8> Scalars; 9800 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9801 9802 // If ResNE is 0, fully unroll the vector op. 9803 if (ResNE == 0) 9804 ResNE = NE; 9805 else if (NE > ResNE) 9806 NE = ResNE; 9807 9808 unsigned i; 9809 for (i= 0; i != NE; ++i) { 9810 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9811 SDValue Operand = N->getOperand(j); 9812 EVT OperandVT = Operand.getValueType(); 9813 if (OperandVT.isVector()) { 9814 // A vector operand; extract a single element. 9815 EVT OperandEltVT = OperandVT.getVectorElementType(); 9816 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9817 Operand, getVectorIdxConstant(i, dl)); 9818 } else { 9819 // A scalar operand; just use it as is. 9820 Operands[j] = Operand; 9821 } 9822 } 9823 9824 switch (N->getOpcode()) { 9825 default: { 9826 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9827 N->getFlags())); 9828 break; 9829 } 9830 case ISD::VSELECT: 9831 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9832 break; 9833 case ISD::SHL: 9834 case ISD::SRA: 9835 case ISD::SRL: 9836 case ISD::ROTL: 9837 case ISD::ROTR: 9838 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9839 getShiftAmountOperand(Operands[0].getValueType(), 9840 Operands[1]))); 9841 break; 9842 case ISD::SIGN_EXTEND_INREG: { 9843 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9844 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9845 Operands[0], 9846 getValueType(ExtVT))); 9847 } 9848 } 9849 } 9850 9851 for (; i < ResNE; ++i) 9852 Scalars.push_back(getUNDEF(EltVT)); 9853 9854 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9855 return getBuildVector(VecVT, dl, Scalars); 9856 } 9857 9858 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9859 SDNode *N, unsigned ResNE) { 9860 unsigned Opcode = N->getOpcode(); 9861 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9862 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9863 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9864 "Expected an overflow opcode"); 9865 9866 EVT ResVT = N->getValueType(0); 9867 EVT OvVT = N->getValueType(1); 9868 EVT ResEltVT = ResVT.getVectorElementType(); 9869 EVT OvEltVT = OvVT.getVectorElementType(); 9870 SDLoc dl(N); 9871 9872 // If ResNE is 0, fully unroll the vector op. 9873 unsigned NE = ResVT.getVectorNumElements(); 9874 if (ResNE == 0) 9875 ResNE = NE; 9876 else if (NE > ResNE) 9877 NE = ResNE; 9878 9879 SmallVector<SDValue, 8> LHSScalars; 9880 SmallVector<SDValue, 8> RHSScalars; 9881 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9882 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9883 9884 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9885 SDVTList VTs = getVTList(ResEltVT, SVT); 9886 SmallVector<SDValue, 8> ResScalars; 9887 SmallVector<SDValue, 8> OvScalars; 9888 for (unsigned i = 0; i < NE; ++i) { 9889 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9890 SDValue Ov = 9891 getSelect(dl, OvEltVT, Res.getValue(1), 9892 getBoolConstant(true, dl, OvEltVT, ResVT), 9893 getConstant(0, dl, OvEltVT)); 9894 9895 ResScalars.push_back(Res); 9896 OvScalars.push_back(Ov); 9897 } 9898 9899 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9900 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9901 9902 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9903 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9904 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9905 getBuildVector(NewOvVT, dl, OvScalars)); 9906 } 9907 9908 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9909 LoadSDNode *Base, 9910 unsigned Bytes, 9911 int Dist) const { 9912 if (LD->isVolatile() || Base->isVolatile()) 9913 return false; 9914 // TODO: probably too restrictive for atomics, revisit 9915 if (!LD->isSimple()) 9916 return false; 9917 if (LD->isIndexed() || Base->isIndexed()) 9918 return false; 9919 if (LD->getChain() != Base->getChain()) 9920 return false; 9921 EVT VT = LD->getValueType(0); 9922 if (VT.getSizeInBits() / 8 != Bytes) 9923 return false; 9924 9925 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9926 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9927 9928 int64_t Offset = 0; 9929 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9930 return (Dist * Bytes == Offset); 9931 return false; 9932 } 9933 9934 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9935 /// if it cannot be inferred. 9936 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9937 // If this is a GlobalAddress + cst, return the alignment. 9938 const GlobalValue *GV = nullptr; 9939 int64_t GVOffset = 0; 9940 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9941 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9942 KnownBits Known(PtrWidth); 9943 llvm::computeKnownBits(GV, Known, getDataLayout()); 9944 unsigned AlignBits = Known.countMinTrailingZeros(); 9945 if (AlignBits) 9946 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9947 } 9948 9949 // If this is a direct reference to a stack slot, use information about the 9950 // stack slot's alignment. 9951 int FrameIdx = INT_MIN; 9952 int64_t FrameOffset = 0; 9953 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9954 FrameIdx = FI->getIndex(); 9955 } else if (isBaseWithConstantOffset(Ptr) && 9956 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9957 // Handle FI+Cst 9958 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9959 FrameOffset = Ptr.getConstantOperandVal(1); 9960 } 9961 9962 if (FrameIdx != INT_MIN) { 9963 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9964 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9965 } 9966 9967 return None; 9968 } 9969 9970 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9971 /// which is split (or expanded) into two not necessarily identical pieces. 9972 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9973 // Currently all types are split in half. 9974 EVT LoVT, HiVT; 9975 if (!VT.isVector()) 9976 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9977 else 9978 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9979 9980 return std::make_pair(LoVT, HiVT); 9981 } 9982 9983 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9984 /// type, dependent on an enveloping VT that has been split into two identical 9985 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9986 std::pair<EVT, EVT> 9987 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9988 bool *HiIsEmpty) const { 9989 EVT EltTp = VT.getVectorElementType(); 9990 // Examples: 9991 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9992 // custom VL=9 with enveloping VL=8/8 yields 8/1 9993 // custom VL=10 with enveloping VL=8/8 yields 8/2 9994 // etc. 9995 ElementCount VTNumElts = VT.getVectorElementCount(); 9996 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9997 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9998 "Mixing fixed width and scalable vectors when enveloping a type"); 9999 EVT LoVT, HiVT; 10000 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10001 LoVT = EnvVT; 10002 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10003 *HiIsEmpty = false; 10004 } else { 10005 // Flag that hi type has zero storage size, but return split envelop type 10006 // (this would be easier if vector types with zero elements were allowed). 10007 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10008 HiVT = EnvVT; 10009 *HiIsEmpty = true; 10010 } 10011 return std::make_pair(LoVT, HiVT); 10012 } 10013 10014 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10015 /// low/high part. 10016 std::pair<SDValue, SDValue> 10017 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10018 const EVT &HiVT) { 10019 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10020 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10021 "Splitting vector with an invalid mixture of fixed and scalable " 10022 "vector types"); 10023 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10024 N.getValueType().getVectorMinNumElements() && 10025 "More vector elements requested than available!"); 10026 SDValue Lo, Hi; 10027 Lo = 10028 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10029 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10030 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10031 // IDX with the runtime scaling factor of the result vector type. For 10032 // fixed-width result vectors, that runtime scaling factor is 1. 10033 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10034 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10035 return std::make_pair(Lo, Hi); 10036 } 10037 10038 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10039 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10040 EVT VT = N.getValueType(); 10041 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10042 NextPowerOf2(VT.getVectorNumElements())); 10043 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10044 getVectorIdxConstant(0, DL)); 10045 } 10046 10047 void SelectionDAG::ExtractVectorElements(SDValue Op, 10048 SmallVectorImpl<SDValue> &Args, 10049 unsigned Start, unsigned Count, 10050 EVT EltVT) { 10051 EVT VT = Op.getValueType(); 10052 if (Count == 0) 10053 Count = VT.getVectorNumElements(); 10054 if (EltVT == EVT()) 10055 EltVT = VT.getVectorElementType(); 10056 SDLoc SL(Op); 10057 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10058 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10059 getVectorIdxConstant(i, SL))); 10060 } 10061 } 10062 10063 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10064 unsigned GlobalAddressSDNode::getAddressSpace() const { 10065 return getGlobal()->getType()->getAddressSpace(); 10066 } 10067 10068 Type *ConstantPoolSDNode::getType() const { 10069 if (isMachineConstantPoolEntry()) 10070 return Val.MachineCPVal->getType(); 10071 return Val.ConstVal->getType(); 10072 } 10073 10074 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10075 unsigned &SplatBitSize, 10076 bool &HasAnyUndefs, 10077 unsigned MinSplatBits, 10078 bool IsBigEndian) const { 10079 EVT VT = getValueType(0); 10080 assert(VT.isVector() && "Expected a vector type"); 10081 unsigned VecWidth = VT.getSizeInBits(); 10082 if (MinSplatBits > VecWidth) 10083 return false; 10084 10085 // FIXME: The widths are based on this node's type, but build vectors can 10086 // truncate their operands. 10087 SplatValue = APInt(VecWidth, 0); 10088 SplatUndef = APInt(VecWidth, 0); 10089 10090 // Get the bits. Bits with undefined values (when the corresponding element 10091 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10092 // in SplatValue. If any of the values are not constant, give up and return 10093 // false. 10094 unsigned int NumOps = getNumOperands(); 10095 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10096 unsigned EltWidth = VT.getScalarSizeInBits(); 10097 10098 for (unsigned j = 0; j < NumOps; ++j) { 10099 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10100 SDValue OpVal = getOperand(i); 10101 unsigned BitPos = j * EltWidth; 10102 10103 if (OpVal.isUndef()) 10104 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10105 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10106 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10107 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10108 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10109 else 10110 return false; 10111 } 10112 10113 // The build_vector is all constants or undefs. Find the smallest element 10114 // size that splats the vector. 10115 HasAnyUndefs = (SplatUndef != 0); 10116 10117 // FIXME: This does not work for vectors with elements less than 8 bits. 10118 while (VecWidth > 8) { 10119 unsigned HalfSize = VecWidth / 2; 10120 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 10121 APInt LowValue = SplatValue.trunc(HalfSize); 10122 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 10123 APInt LowUndef = SplatUndef.trunc(HalfSize); 10124 10125 // If the two halves do not match (ignoring undef bits), stop here. 10126 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10127 MinSplatBits > HalfSize) 10128 break; 10129 10130 SplatValue = HighValue | LowValue; 10131 SplatUndef = HighUndef & LowUndef; 10132 10133 VecWidth = HalfSize; 10134 } 10135 10136 SplatBitSize = VecWidth; 10137 return true; 10138 } 10139 10140 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10141 BitVector *UndefElements) const { 10142 unsigned NumOps = getNumOperands(); 10143 if (UndefElements) { 10144 UndefElements->clear(); 10145 UndefElements->resize(NumOps); 10146 } 10147 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10148 if (!DemandedElts) 10149 return SDValue(); 10150 SDValue Splatted; 10151 for (unsigned i = 0; i != NumOps; ++i) { 10152 if (!DemandedElts[i]) 10153 continue; 10154 SDValue Op = getOperand(i); 10155 if (Op.isUndef()) { 10156 if (UndefElements) 10157 (*UndefElements)[i] = true; 10158 } else if (!Splatted) { 10159 Splatted = Op; 10160 } else if (Splatted != Op) { 10161 return SDValue(); 10162 } 10163 } 10164 10165 if (!Splatted) { 10166 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10167 assert(getOperand(FirstDemandedIdx).isUndef() && 10168 "Can only have a splat without a constant for all undefs."); 10169 return getOperand(FirstDemandedIdx); 10170 } 10171 10172 return Splatted; 10173 } 10174 10175 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10176 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10177 return getSplatValue(DemandedElts, UndefElements); 10178 } 10179 10180 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10181 SmallVectorImpl<SDValue> &Sequence, 10182 BitVector *UndefElements) const { 10183 unsigned NumOps = getNumOperands(); 10184 Sequence.clear(); 10185 if (UndefElements) { 10186 UndefElements->clear(); 10187 UndefElements->resize(NumOps); 10188 } 10189 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10190 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10191 return false; 10192 10193 // Set the undefs even if we don't find a sequence (like getSplatValue). 10194 if (UndefElements) 10195 for (unsigned I = 0; I != NumOps; ++I) 10196 if (DemandedElts[I] && getOperand(I).isUndef()) 10197 (*UndefElements)[I] = true; 10198 10199 // Iteratively widen the sequence length looking for repetitions. 10200 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10201 Sequence.append(SeqLen, SDValue()); 10202 for (unsigned I = 0; I != NumOps; ++I) { 10203 if (!DemandedElts[I]) 10204 continue; 10205 SDValue &SeqOp = Sequence[I % SeqLen]; 10206 SDValue Op = getOperand(I); 10207 if (Op.isUndef()) { 10208 if (!SeqOp) 10209 SeqOp = Op; 10210 continue; 10211 } 10212 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10213 Sequence.clear(); 10214 break; 10215 } 10216 SeqOp = Op; 10217 } 10218 if (!Sequence.empty()) 10219 return true; 10220 } 10221 10222 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10223 return false; 10224 } 10225 10226 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10227 BitVector *UndefElements) const { 10228 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10229 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10230 } 10231 10232 ConstantSDNode * 10233 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10234 BitVector *UndefElements) const { 10235 return dyn_cast_or_null<ConstantSDNode>( 10236 getSplatValue(DemandedElts, UndefElements)); 10237 } 10238 10239 ConstantSDNode * 10240 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10241 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10242 } 10243 10244 ConstantFPSDNode * 10245 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10246 BitVector *UndefElements) const { 10247 return dyn_cast_or_null<ConstantFPSDNode>( 10248 getSplatValue(DemandedElts, UndefElements)); 10249 } 10250 10251 ConstantFPSDNode * 10252 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10253 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10254 } 10255 10256 int32_t 10257 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10258 uint32_t BitWidth) const { 10259 if (ConstantFPSDNode *CN = 10260 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10261 bool IsExact; 10262 APSInt IntVal(BitWidth); 10263 const APFloat &APF = CN->getValueAPF(); 10264 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10265 APFloat::opOK || 10266 !IsExact) 10267 return -1; 10268 10269 return IntVal.exactLogBase2(); 10270 } 10271 return -1; 10272 } 10273 10274 bool BuildVectorSDNode::isConstant() const { 10275 for (const SDValue &Op : op_values()) { 10276 unsigned Opc = Op.getOpcode(); 10277 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10278 return false; 10279 } 10280 return true; 10281 } 10282 10283 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10284 // Find the first non-undef value in the shuffle mask. 10285 unsigned i, e; 10286 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10287 /* search */; 10288 10289 // If all elements are undefined, this shuffle can be considered a splat 10290 // (although it should eventually get simplified away completely). 10291 if (i == e) 10292 return true; 10293 10294 // Make sure all remaining elements are either undef or the same as the first 10295 // non-undef value. 10296 for (int Idx = Mask[i]; i != e; ++i) 10297 if (Mask[i] >= 0 && Mask[i] != Idx) 10298 return false; 10299 return true; 10300 } 10301 10302 // Returns the SDNode if it is a constant integer BuildVector 10303 // or constant integer. 10304 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10305 if (isa<ConstantSDNode>(N)) 10306 return N.getNode(); 10307 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10308 return N.getNode(); 10309 // Treat a GlobalAddress supporting constant offset folding as a 10310 // constant integer. 10311 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10312 if (GA->getOpcode() == ISD::GlobalAddress && 10313 TLI->isOffsetFoldingLegal(GA)) 10314 return GA; 10315 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10316 isa<ConstantSDNode>(N.getOperand(0))) 10317 return N.getNode(); 10318 return nullptr; 10319 } 10320 10321 // Returns the SDNode if it is a constant float BuildVector 10322 // or constant float. 10323 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10324 if (isa<ConstantFPSDNode>(N)) 10325 return N.getNode(); 10326 10327 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10328 return N.getNode(); 10329 10330 return nullptr; 10331 } 10332 10333 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10334 assert(!Node->OperandList && "Node already has operands"); 10335 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10336 "too many operands to fit into SDNode"); 10337 SDUse *Ops = OperandRecycler.allocate( 10338 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10339 10340 bool IsDivergent = false; 10341 for (unsigned I = 0; I != Vals.size(); ++I) { 10342 Ops[I].setUser(Node); 10343 Ops[I].setInitial(Vals[I]); 10344 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10345 IsDivergent |= Ops[I].getNode()->isDivergent(); 10346 } 10347 Node->NumOperands = Vals.size(); 10348 Node->OperandList = Ops; 10349 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10350 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10351 Node->SDNodeBits.IsDivergent = IsDivergent; 10352 } 10353 checkForCycles(Node); 10354 } 10355 10356 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10357 SmallVectorImpl<SDValue> &Vals) { 10358 size_t Limit = SDNode::getMaxNumOperands(); 10359 while (Vals.size() > Limit) { 10360 unsigned SliceIdx = Vals.size() - Limit; 10361 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10362 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10363 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10364 Vals.emplace_back(NewTF); 10365 } 10366 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10367 } 10368 10369 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10370 EVT VT, SDNodeFlags Flags) { 10371 switch (Opcode) { 10372 default: 10373 return SDValue(); 10374 case ISD::ADD: 10375 case ISD::OR: 10376 case ISD::XOR: 10377 case ISD::UMAX: 10378 return getConstant(0, DL, VT); 10379 case ISD::MUL: 10380 return getConstant(1, DL, VT); 10381 case ISD::AND: 10382 case ISD::UMIN: 10383 return getAllOnesConstant(DL, VT); 10384 case ISD::SMAX: 10385 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10386 case ISD::SMIN: 10387 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10388 case ISD::FADD: 10389 return getConstantFP(-0.0, DL, VT); 10390 case ISD::FMUL: 10391 return getConstantFP(1.0, DL, VT); 10392 case ISD::FMINNUM: 10393 case ISD::FMAXNUM: { 10394 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10395 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10396 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10397 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10398 APFloat::getLargest(Semantics); 10399 if (Opcode == ISD::FMAXNUM) 10400 NeutralAF.changeSign(); 10401 10402 return getConstantFP(NeutralAF, DL, VT); 10403 } 10404 } 10405 } 10406 10407 #ifndef NDEBUG 10408 static void checkForCyclesHelper(const SDNode *N, 10409 SmallPtrSetImpl<const SDNode*> &Visited, 10410 SmallPtrSetImpl<const SDNode*> &Checked, 10411 const llvm::SelectionDAG *DAG) { 10412 // If this node has already been checked, don't check it again. 10413 if (Checked.count(N)) 10414 return; 10415 10416 // If a node has already been visited on this depth-first walk, reject it as 10417 // a cycle. 10418 if (!Visited.insert(N).second) { 10419 errs() << "Detected cycle in SelectionDAG\n"; 10420 dbgs() << "Offending node:\n"; 10421 N->dumprFull(DAG); dbgs() << "\n"; 10422 abort(); 10423 } 10424 10425 for (const SDValue &Op : N->op_values()) 10426 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10427 10428 Checked.insert(N); 10429 Visited.erase(N); 10430 } 10431 #endif 10432 10433 void llvm::checkForCycles(const llvm::SDNode *N, 10434 const llvm::SelectionDAG *DAG, 10435 bool force) { 10436 #ifndef NDEBUG 10437 bool check = force; 10438 #ifdef EXPENSIVE_CHECKS 10439 check = true; 10440 #endif // EXPENSIVE_CHECKS 10441 if (check) { 10442 assert(N && "Checking nonexistent SDNode"); 10443 SmallPtrSet<const SDNode*, 32> visited; 10444 SmallPtrSet<const SDNode*, 32> checked; 10445 checkForCyclesHelper(N, visited, checked, DAG); 10446 } 10447 #endif // !NDEBUG 10448 } 10449 10450 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10451 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10452 } 10453