1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   auto *BV = dyn_cast<BuildVectorSDNode>(N);
143   if (!BV)
144     return false;
145 
146   APInt SplatUndef;
147   unsigned SplatBitSize;
148   bool HasUndefs;
149   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
150   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
151                              EltSize) &&
152          EltSize == SplatBitSize;
153 }
154 
155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
156 // specializations of the more general isConstantSplatVector()?
157 
158 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
159   // Look through a bit convert.
160   while (N->getOpcode() == ISD::BITCAST)
161     N = N->getOperand(0).getNode();
162 
163   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
164 
165   unsigned i = 0, e = N->getNumOperands();
166 
167   // Skip over all of the undef values.
168   while (i != e && N->getOperand(i).isUndef())
169     ++i;
170 
171   // Do not accept an all-undef vector.
172   if (i == e) return false;
173 
174   // Do not accept build_vectors that aren't all constants or which have non-~0
175   // elements. We have to be a bit careful here, as the type of the constant
176   // may not be the same as the type of the vector elements due to type
177   // legalization (the elements are promoted to a legal type for the target and
178   // a vector of a type may be legal when the base element type is not).
179   // We only want to check enough bits to cover the vector elements, because
180   // we care if the resultant vector is all ones, not whether the individual
181   // constants are.
182   SDValue NotZero = N->getOperand(i);
183   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
184   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
185     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
186       return false;
187   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
188     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
189       return false;
190   } else
191     return false;
192 
193   // Okay, we have at least one ~0 value, check to see if the rest match or are
194   // undefs. Even with the above element type twiddling, this should be OK, as
195   // the same type legalization should have applied to all the elements.
196   for (++i; i != e; ++i)
197     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
198       return false;
199   return true;
200 }
201 
202 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
203   // Look through a bit convert.
204   while (N->getOpcode() == ISD::BITCAST)
205     N = N->getOperand(0).getNode();
206 
207   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
208 
209   bool IsAllUndef = true;
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     IsAllUndef = false;
214     // Do not accept build_vectors that aren't all constants or which have non-0
215     // elements. We have to be a bit careful here, as the type of the constant
216     // may not be the same as the type of the vector elements due to type
217     // legalization (the elements are promoted to a legal type for the target
218     // and a vector of a type may be legal when the base element type is not).
219     // We only want to check enough bits to cover the vector elements, because
220     // we care if the resultant vector is all zeros, not whether the individual
221     // constants are.
222     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
223     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
224       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
225         return false;
226     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
227       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
228         return false;
229     } else
230       return false;
231   }
232 
233   // Do not accept an all-undef vector.
234   if (IsAllUndef)
235     return false;
236   return true;
237 }
238 
239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
240   if (N->getOpcode() != ISD::BUILD_VECTOR)
241     return false;
242 
243   for (const SDValue &Op : N->op_values()) {
244     if (Op.isUndef())
245       continue;
246     if (!isa<ConstantSDNode>(Op))
247       return false;
248   }
249   return true;
250 }
251 
252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
253   if (N->getOpcode() != ISD::BUILD_VECTOR)
254     return false;
255 
256   for (const SDValue &Op : N->op_values()) {
257     if (Op.isUndef())
258       continue;
259     if (!isa<ConstantFPSDNode>(Op))
260       return false;
261   }
262   return true;
263 }
264 
265 bool ISD::allOperandsUndef(const SDNode *N) {
266   // Return false if the node has no operands.
267   // This is "logically inconsistent" with the definition of "all" but
268   // is probably the desired behavior.
269   if (N->getNumOperands() == 0)
270     return false;
271   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
272 }
273 
274 bool ISD::matchUnaryPredicate(SDValue Op,
275                               std::function<bool(ConstantSDNode *)> Match,
276                               bool AllowUndefs) {
277   // FIXME: Add support for scalar UNDEF cases?
278   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
279     return Match(Cst);
280 
281   // FIXME: Add support for vector UNDEF cases?
282   if (ISD::BUILD_VECTOR != Op.getOpcode())
283     return false;
284 
285   EVT SVT = Op.getValueType().getScalarType();
286   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
287     if (AllowUndefs && Op.getOperand(i).isUndef()) {
288       if (!Match(nullptr))
289         return false;
290       continue;
291     }
292 
293     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
294     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
295       return false;
296   }
297   return true;
298 }
299 
300 bool ISD::matchBinaryPredicate(
301     SDValue LHS, SDValue RHS,
302     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
303     bool AllowUndefs, bool AllowTypeMismatch) {
304   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
305     return false;
306 
307   // TODO: Add support for scalar UNDEF cases?
308   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
309     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
310       return Match(LHSCst, RHSCst);
311 
312   // TODO: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
314       ISD::BUILD_VECTOR != RHS.getOpcode())
315     return false;
316 
317   EVT SVT = LHS.getValueType().getScalarType();
318   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
319     SDValue LHSOp = LHS.getOperand(i);
320     SDValue RHSOp = RHS.getOperand(i);
321     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
322     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
323     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
324     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
325     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
326       return false;
327     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
328                                LHSOp.getValueType() != RHSOp.getValueType()))
329       return false;
330     if (!Match(LHSCst, RHSCst))
331       return false;
332   }
333   return true;
334 }
335 
336 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
337   switch (ExtType) {
338   case ISD::EXTLOAD:
339     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
340   case ISD::SEXTLOAD:
341     return ISD::SIGN_EXTEND;
342   case ISD::ZEXTLOAD:
343     return ISD::ZERO_EXTEND;
344   default:
345     break;
346   }
347 
348   llvm_unreachable("Invalid LoadExtType");
349 }
350 
351 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
352   // To perform this operation, we just need to swap the L and G bits of the
353   // operation.
354   unsigned OldL = (Operation >> 2) & 1;
355   unsigned OldG = (Operation >> 1) & 1;
356   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
357                        (OldL << 1) |       // New G bit
358                        (OldG << 2));       // New L bit.
359 }
360 
361 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
362   unsigned Operation = Op;
363   if (isIntegerLike)
364     Operation ^= 7;   // Flip L, G, E bits, but not U.
365   else
366     Operation ^= 15;  // Flip all of the condition bits.
367 
368   if (Operation > ISD::SETTRUE2)
369     Operation &= ~8;  // Don't let N and U bits get set.
370 
371   return ISD::CondCode(Operation);
372 }
373 
374 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
375   return getSetCCInverseImpl(Op, Type.isInteger());
376 }
377 
378 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
379                                                bool isIntegerLike) {
380   return getSetCCInverseImpl(Op, isIntegerLike);
381 }
382 
383 /// For an integer comparison, return 1 if the comparison is a signed operation
384 /// and 2 if the result is an unsigned comparison. Return zero if the operation
385 /// does not depend on the sign of the input (setne and seteq).
386 static int isSignedOp(ISD::CondCode Opcode) {
387   switch (Opcode) {
388   default: llvm_unreachable("Illegal integer setcc operation!");
389   case ISD::SETEQ:
390   case ISD::SETNE: return 0;
391   case ISD::SETLT:
392   case ISD::SETLE:
393   case ISD::SETGT:
394   case ISD::SETGE: return 1;
395   case ISD::SETULT:
396   case ISD::SETULE:
397   case ISD::SETUGT:
398   case ISD::SETUGE: return 2;
399   }
400 }
401 
402 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
403                                        EVT Type) {
404   bool IsInteger = Type.isInteger();
405   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
406     // Cannot fold a signed integer setcc with an unsigned integer setcc.
407     return ISD::SETCC_INVALID;
408 
409   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
410 
411   // If the N and U bits get set, then the resultant comparison DOES suddenly
412   // care about orderedness, and it is true when ordered.
413   if (Op > ISD::SETTRUE2)
414     Op &= ~16;     // Clear the U bit if the N bit is set.
415 
416   // Canonicalize illegal integer setcc's.
417   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
418     Op = ISD::SETNE;
419 
420   return ISD::CondCode(Op);
421 }
422 
423 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
424                                         EVT Type) {
425   bool IsInteger = Type.isInteger();
426   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
427     // Cannot fold a signed setcc with an unsigned setcc.
428     return ISD::SETCC_INVALID;
429 
430   // Combine all of the condition bits.
431   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
432 
433   // Canonicalize illegal integer setcc's.
434   if (IsInteger) {
435     switch (Result) {
436     default: break;
437     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
438     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
439     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
440     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
441     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
442     }
443   }
444 
445   return Result;
446 }
447 
448 //===----------------------------------------------------------------------===//
449 //                           SDNode Profile Support
450 //===----------------------------------------------------------------------===//
451 
452 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
453 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
454   ID.AddInteger(OpC);
455 }
456 
457 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
458 /// solely with their pointer.
459 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
460   ID.AddPointer(VTList.VTs);
461 }
462 
463 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
464 static void AddNodeIDOperands(FoldingSetNodeID &ID,
465                               ArrayRef<SDValue> Ops) {
466   for (auto& Op : Ops) {
467     ID.AddPointer(Op.getNode());
468     ID.AddInteger(Op.getResNo());
469   }
470 }
471 
472 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
473 static void AddNodeIDOperands(FoldingSetNodeID &ID,
474                               ArrayRef<SDUse> Ops) {
475   for (auto& Op : Ops) {
476     ID.AddPointer(Op.getNode());
477     ID.AddInteger(Op.getResNo());
478   }
479 }
480 
481 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
482                           SDVTList VTList, ArrayRef<SDValue> OpList) {
483   AddNodeIDOpcode(ID, OpC);
484   AddNodeIDValueTypes(ID, VTList);
485   AddNodeIDOperands(ID, OpList);
486 }
487 
488 /// If this is an SDNode with special info, add this info to the NodeID data.
489 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
490   switch (N->getOpcode()) {
491   case ISD::TargetExternalSymbol:
492   case ISD::ExternalSymbol:
493   case ISD::MCSymbol:
494     llvm_unreachable("Should only be used on nodes with operands");
495   default: break;  // Normal nodes don't need extra info.
496   case ISD::TargetConstant:
497   case ISD::Constant: {
498     const ConstantSDNode *C = cast<ConstantSDNode>(N);
499     ID.AddPointer(C->getConstantIntValue());
500     ID.AddBoolean(C->isOpaque());
501     break;
502   }
503   case ISD::TargetConstantFP:
504   case ISD::ConstantFP:
505     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
506     break;
507   case ISD::TargetGlobalAddress:
508   case ISD::GlobalAddress:
509   case ISD::TargetGlobalTLSAddress:
510   case ISD::GlobalTLSAddress: {
511     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
512     ID.AddPointer(GA->getGlobal());
513     ID.AddInteger(GA->getOffset());
514     ID.AddInteger(GA->getTargetFlags());
515     break;
516   }
517   case ISD::BasicBlock:
518     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
519     break;
520   case ISD::Register:
521     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
522     break;
523   case ISD::RegisterMask:
524     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
525     break;
526   case ISD::SRCVALUE:
527     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
528     break;
529   case ISD::FrameIndex:
530   case ISD::TargetFrameIndex:
531     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
532     break;
533   case ISD::LIFETIME_START:
534   case ISD::LIFETIME_END:
535     if (cast<LifetimeSDNode>(N)->hasOffset()) {
536       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
537       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
538     }
539     break;
540   case ISD::JumpTable:
541   case ISD::TargetJumpTable:
542     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
543     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
544     break;
545   case ISD::ConstantPool:
546   case ISD::TargetConstantPool: {
547     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
548     ID.AddInteger(CP->getAlign().value());
549     ID.AddInteger(CP->getOffset());
550     if (CP->isMachineConstantPoolEntry())
551       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
552     else
553       ID.AddPointer(CP->getConstVal());
554     ID.AddInteger(CP->getTargetFlags());
555     break;
556   }
557   case ISD::TargetIndex: {
558     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
559     ID.AddInteger(TI->getIndex());
560     ID.AddInteger(TI->getOffset());
561     ID.AddInteger(TI->getTargetFlags());
562     break;
563   }
564   case ISD::LOAD: {
565     const LoadSDNode *LD = cast<LoadSDNode>(N);
566     ID.AddInteger(LD->getMemoryVT().getRawBits());
567     ID.AddInteger(LD->getRawSubclassData());
568     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
569     break;
570   }
571   case ISD::STORE: {
572     const StoreSDNode *ST = cast<StoreSDNode>(N);
573     ID.AddInteger(ST->getMemoryVT().getRawBits());
574     ID.AddInteger(ST->getRawSubclassData());
575     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
576     break;
577   }
578   case ISD::MLOAD: {
579     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
580     ID.AddInteger(MLD->getMemoryVT().getRawBits());
581     ID.AddInteger(MLD->getRawSubclassData());
582     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
583     break;
584   }
585   case ISD::MSTORE: {
586     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
587     ID.AddInteger(MST->getMemoryVT().getRawBits());
588     ID.AddInteger(MST->getRawSubclassData());
589     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
590     break;
591   }
592   case ISD::MGATHER: {
593     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
594     ID.AddInteger(MG->getMemoryVT().getRawBits());
595     ID.AddInteger(MG->getRawSubclassData());
596     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
597     break;
598   }
599   case ISD::MSCATTER: {
600     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
601     ID.AddInteger(MS->getMemoryVT().getRawBits());
602     ID.AddInteger(MS->getRawSubclassData());
603     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
604     break;
605   }
606   case ISD::ATOMIC_CMP_SWAP:
607   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
608   case ISD::ATOMIC_SWAP:
609   case ISD::ATOMIC_LOAD_ADD:
610   case ISD::ATOMIC_LOAD_SUB:
611   case ISD::ATOMIC_LOAD_AND:
612   case ISD::ATOMIC_LOAD_CLR:
613   case ISD::ATOMIC_LOAD_OR:
614   case ISD::ATOMIC_LOAD_XOR:
615   case ISD::ATOMIC_LOAD_NAND:
616   case ISD::ATOMIC_LOAD_MIN:
617   case ISD::ATOMIC_LOAD_MAX:
618   case ISD::ATOMIC_LOAD_UMIN:
619   case ISD::ATOMIC_LOAD_UMAX:
620   case ISD::ATOMIC_LOAD:
621   case ISD::ATOMIC_STORE: {
622     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
623     ID.AddInteger(AT->getMemoryVT().getRawBits());
624     ID.AddInteger(AT->getRawSubclassData());
625     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
626     break;
627   }
628   case ISD::PREFETCH: {
629     const MemSDNode *PF = cast<MemSDNode>(N);
630     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
631     break;
632   }
633   case ISD::VECTOR_SHUFFLE: {
634     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
635     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
636          i != e; ++i)
637       ID.AddInteger(SVN->getMaskElt(i));
638     break;
639   }
640   case ISD::TargetBlockAddress:
641   case ISD::BlockAddress: {
642     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
643     ID.AddPointer(BA->getBlockAddress());
644     ID.AddInteger(BA->getOffset());
645     ID.AddInteger(BA->getTargetFlags());
646     break;
647   }
648   } // end switch (N->getOpcode())
649 
650   // Target specific memory nodes could also have address spaces to check.
651   if (N->isTargetMemoryOpcode())
652     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
653 }
654 
655 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
656 /// data.
657 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
658   AddNodeIDOpcode(ID, N->getOpcode());
659   // Add the return value info.
660   AddNodeIDValueTypes(ID, N->getVTList());
661   // Add the operand info.
662   AddNodeIDOperands(ID, N->ops());
663 
664   // Handle SDNode leafs with special info.
665   AddNodeIDCustom(ID, N);
666 }
667 
668 //===----------------------------------------------------------------------===//
669 //                              SelectionDAG Class
670 //===----------------------------------------------------------------------===//
671 
672 /// doNotCSE - Return true if CSE should not be performed for this node.
673 static bool doNotCSE(SDNode *N) {
674   if (N->getValueType(0) == MVT::Glue)
675     return true; // Never CSE anything that produces a flag.
676 
677   switch (N->getOpcode()) {
678   default: break;
679   case ISD::HANDLENODE:
680   case ISD::EH_LABEL:
681     return true;   // Never CSE these nodes.
682   }
683 
684   // Check that remaining values produced are not flags.
685   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
686     if (N->getValueType(i) == MVT::Glue)
687       return true; // Never CSE anything that produces a flag.
688 
689   return false;
690 }
691 
692 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
693 /// SelectionDAG.
694 void SelectionDAG::RemoveDeadNodes() {
695   // Create a dummy node (which is not added to allnodes), that adds a reference
696   // to the root node, preventing it from being deleted.
697   HandleSDNode Dummy(getRoot());
698 
699   SmallVector<SDNode*, 128> DeadNodes;
700 
701   // Add all obviously-dead nodes to the DeadNodes worklist.
702   for (SDNode &Node : allnodes())
703     if (Node.use_empty())
704       DeadNodes.push_back(&Node);
705 
706   RemoveDeadNodes(DeadNodes);
707 
708   // If the root changed (e.g. it was a dead load, update the root).
709   setRoot(Dummy.getValue());
710 }
711 
712 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
713 /// given list, and any nodes that become unreachable as a result.
714 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
715 
716   // Process the worklist, deleting the nodes and adding their uses to the
717   // worklist.
718   while (!DeadNodes.empty()) {
719     SDNode *N = DeadNodes.pop_back_val();
720     // Skip to next node if we've already managed to delete the node. This could
721     // happen if replacing a node causes a node previously added to the node to
722     // be deleted.
723     if (N->getOpcode() == ISD::DELETED_NODE)
724       continue;
725 
726     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
727       DUL->NodeDeleted(N, nullptr);
728 
729     // Take the node out of the appropriate CSE map.
730     RemoveNodeFromCSEMaps(N);
731 
732     // Next, brutally remove the operand list.  This is safe to do, as there are
733     // no cycles in the graph.
734     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
735       SDUse &Use = *I++;
736       SDNode *Operand = Use.getNode();
737       Use.set(SDValue());
738 
739       // Now that we removed this operand, see if there are no uses of it left.
740       if (Operand->use_empty())
741         DeadNodes.push_back(Operand);
742     }
743 
744     DeallocateNode(N);
745   }
746 }
747 
748 void SelectionDAG::RemoveDeadNode(SDNode *N){
749   SmallVector<SDNode*, 16> DeadNodes(1, N);
750 
751   // Create a dummy node that adds a reference to the root node, preventing
752   // it from being deleted.  (This matters if the root is an operand of the
753   // dead node.)
754   HandleSDNode Dummy(getRoot());
755 
756   RemoveDeadNodes(DeadNodes);
757 }
758 
759 void SelectionDAG::DeleteNode(SDNode *N) {
760   // First take this out of the appropriate CSE map.
761   RemoveNodeFromCSEMaps(N);
762 
763   // Finally, remove uses due to operands of this node, remove from the
764   // AllNodes list, and delete the node.
765   DeleteNodeNotInCSEMaps(N);
766 }
767 
768 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
769   assert(N->getIterator() != AllNodes.begin() &&
770          "Cannot delete the entry node!");
771   assert(N->use_empty() && "Cannot delete a node that is not dead!");
772 
773   // Drop all of the operands and decrement used node's use counts.
774   N->DropOperands();
775 
776   DeallocateNode(N);
777 }
778 
779 void SDDbgInfo::erase(const SDNode *Node) {
780   DbgValMapType::iterator I = DbgValMap.find(Node);
781   if (I == DbgValMap.end())
782     return;
783   for (auto &Val: I->second)
784     Val->setIsInvalidated();
785   DbgValMap.erase(I);
786 }
787 
788 void SelectionDAG::DeallocateNode(SDNode *N) {
789   // If we have operands, deallocate them.
790   removeOperands(N);
791 
792   NodeAllocator.Deallocate(AllNodes.remove(N));
793 
794   // Set the opcode to DELETED_NODE to help catch bugs when node
795   // memory is reallocated.
796   // FIXME: There are places in SDag that have grown a dependency on the opcode
797   // value in the released node.
798   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
799   N->NodeType = ISD::DELETED_NODE;
800 
801   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
802   // them and forget about that node.
803   DbgInfo->erase(N);
804 }
805 
806 #ifndef NDEBUG
807 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
808 static void VerifySDNode(SDNode *N) {
809   switch (N->getOpcode()) {
810   default:
811     break;
812   case ISD::BUILD_PAIR: {
813     EVT VT = N->getValueType(0);
814     assert(N->getNumValues() == 1 && "Too many results!");
815     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
816            "Wrong return type!");
817     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
818     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
819            "Mismatched operand types!");
820     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
821            "Wrong operand type!");
822     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
823            "Wrong return type size");
824     break;
825   }
826   case ISD::BUILD_VECTOR: {
827     assert(N->getNumValues() == 1 && "Too many results!");
828     assert(N->getValueType(0).isVector() && "Wrong return type!");
829     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
830            "Wrong number of operands!");
831     EVT EltVT = N->getValueType(0).getVectorElementType();
832     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
833       assert((I->getValueType() == EltVT ||
834              (EltVT.isInteger() && I->getValueType().isInteger() &&
835               EltVT.bitsLE(I->getValueType()))) &&
836             "Wrong operand type!");
837       assert(I->getValueType() == N->getOperand(0).getValueType() &&
838              "Operands must all have the same type");
839     }
840     break;
841   }
842   }
843 }
844 #endif // NDEBUG
845 
846 /// Insert a newly allocated node into the DAG.
847 ///
848 /// Handles insertion into the all nodes list and CSE map, as well as
849 /// verification and other common operations when a new node is allocated.
850 void SelectionDAG::InsertNode(SDNode *N) {
851   AllNodes.push_back(N);
852 #ifndef NDEBUG
853   N->PersistentId = NextPersistentId++;
854   VerifySDNode(N);
855 #endif
856   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
857     DUL->NodeInserted(N);
858 }
859 
860 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
861 /// correspond to it.  This is useful when we're about to delete or repurpose
862 /// the node.  We don't want future request for structurally identical nodes
863 /// to return N anymore.
864 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
865   bool Erased = false;
866   switch (N->getOpcode()) {
867   case ISD::HANDLENODE: return false;  // noop.
868   case ISD::CONDCODE:
869     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
870            "Cond code doesn't exist!");
871     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
872     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
873     break;
874   case ISD::ExternalSymbol:
875     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
876     break;
877   case ISD::TargetExternalSymbol: {
878     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
879     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
880         ESN->getSymbol(), ESN->getTargetFlags()));
881     break;
882   }
883   case ISD::MCSymbol: {
884     auto *MCSN = cast<MCSymbolSDNode>(N);
885     Erased = MCSymbols.erase(MCSN->getMCSymbol());
886     break;
887   }
888   case ISD::VALUETYPE: {
889     EVT VT = cast<VTSDNode>(N)->getVT();
890     if (VT.isExtended()) {
891       Erased = ExtendedValueTypeNodes.erase(VT);
892     } else {
893       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
894       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
895     }
896     break;
897   }
898   default:
899     // Remove it from the CSE Map.
900     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
901     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
902     Erased = CSEMap.RemoveNode(N);
903     break;
904   }
905 #ifndef NDEBUG
906   // Verify that the node was actually in one of the CSE maps, unless it has a
907   // flag result (which cannot be CSE'd) or is one of the special cases that are
908   // not subject to CSE.
909   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
910       !N->isMachineOpcode() && !doNotCSE(N)) {
911     N->dump(this);
912     dbgs() << "\n";
913     llvm_unreachable("Node is not in map!");
914   }
915 #endif
916   return Erased;
917 }
918 
919 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
920 /// maps and modified in place. Add it back to the CSE maps, unless an identical
921 /// node already exists, in which case transfer all its users to the existing
922 /// node. This transfer can potentially trigger recursive merging.
923 void
924 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
925   // For node types that aren't CSE'd, just act as if no identical node
926   // already exists.
927   if (!doNotCSE(N)) {
928     SDNode *Existing = CSEMap.GetOrInsertNode(N);
929     if (Existing != N) {
930       // If there was already an existing matching node, use ReplaceAllUsesWith
931       // to replace the dead one with the existing one.  This can cause
932       // recursive merging of other unrelated nodes down the line.
933       ReplaceAllUsesWith(N, Existing);
934 
935       // N is now dead. Inform the listeners and delete it.
936       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
937         DUL->NodeDeleted(N, Existing);
938       DeleteNodeNotInCSEMaps(N);
939       return;
940     }
941   }
942 
943   // If the node doesn't already exist, we updated it.  Inform listeners.
944   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
945     DUL->NodeUpdated(N);
946 }
947 
948 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
949 /// were replaced with those specified.  If this node is never memoized,
950 /// return null, otherwise return a pointer to the slot it would take.  If a
951 /// node already exists with these operands, the slot will be non-null.
952 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
953                                            void *&InsertPos) {
954   if (doNotCSE(N))
955     return nullptr;
956 
957   SDValue Ops[] = { Op };
958   FoldingSetNodeID ID;
959   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
960   AddNodeIDCustom(ID, N);
961   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
962   if (Node)
963     Node->intersectFlagsWith(N->getFlags());
964   return Node;
965 }
966 
967 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
968 /// were replaced with those specified.  If this node is never memoized,
969 /// return null, otherwise return a pointer to the slot it would take.  If a
970 /// node already exists with these operands, the slot will be non-null.
971 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
972                                            SDValue Op1, SDValue Op2,
973                                            void *&InsertPos) {
974   if (doNotCSE(N))
975     return nullptr;
976 
977   SDValue Ops[] = { Op1, Op2 };
978   FoldingSetNodeID ID;
979   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
980   AddNodeIDCustom(ID, N);
981   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
982   if (Node)
983     Node->intersectFlagsWith(N->getFlags());
984   return Node;
985 }
986 
987 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
988 /// were replaced with those specified.  If this node is never memoized,
989 /// return null, otherwise return a pointer to the slot it would take.  If a
990 /// node already exists with these operands, the slot will be non-null.
991 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
992                                            void *&InsertPos) {
993   if (doNotCSE(N))
994     return nullptr;
995 
996   FoldingSetNodeID ID;
997   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
998   AddNodeIDCustom(ID, N);
999   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1000   if (Node)
1001     Node->intersectFlagsWith(N->getFlags());
1002   return Node;
1003 }
1004 
1005 Align SelectionDAG::getEVTAlign(EVT VT) const {
1006   Type *Ty = VT == MVT::iPTR ?
1007                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1008                    VT.getTypeForEVT(*getContext());
1009 
1010   return getDataLayout().getABITypeAlign(Ty);
1011 }
1012 
1013 // EntryNode could meaningfully have debug info if we can find it...
1014 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1015     : TM(tm), OptLevel(OL),
1016       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1017       Root(getEntryNode()) {
1018   InsertNode(&EntryNode);
1019   DbgInfo = new SDDbgInfo();
1020 }
1021 
1022 void SelectionDAG::init(MachineFunction &NewMF,
1023                         OptimizationRemarkEmitter &NewORE,
1024                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1025                         LegacyDivergenceAnalysis * Divergence,
1026                         ProfileSummaryInfo *PSIin,
1027                         BlockFrequencyInfo *BFIin) {
1028   MF = &NewMF;
1029   SDAGISelPass = PassPtr;
1030   ORE = &NewORE;
1031   TLI = getSubtarget().getTargetLowering();
1032   TSI = getSubtarget().getSelectionDAGInfo();
1033   LibInfo = LibraryInfo;
1034   Context = &MF->getFunction().getContext();
1035   DA = Divergence;
1036   PSI = PSIin;
1037   BFI = BFIin;
1038 }
1039 
1040 SelectionDAG::~SelectionDAG() {
1041   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1042   allnodes_clear();
1043   OperandRecycler.clear(OperandAllocator);
1044   delete DbgInfo;
1045 }
1046 
1047 bool SelectionDAG::shouldOptForSize() const {
1048   return MF->getFunction().hasOptSize() ||
1049       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1050 }
1051 
1052 void SelectionDAG::allnodes_clear() {
1053   assert(&*AllNodes.begin() == &EntryNode);
1054   AllNodes.remove(AllNodes.begin());
1055   while (!AllNodes.empty())
1056     DeallocateNode(&AllNodes.front());
1057 #ifndef NDEBUG
1058   NextPersistentId = 0;
1059 #endif
1060 }
1061 
1062 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1063                                           void *&InsertPos) {
1064   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1065   if (N) {
1066     switch (N->getOpcode()) {
1067     default: break;
1068     case ISD::Constant:
1069     case ISD::ConstantFP:
1070       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1071                        "debug location.  Use another overload.");
1072     }
1073   }
1074   return N;
1075 }
1076 
1077 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1078                                           const SDLoc &DL, void *&InsertPos) {
1079   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1080   if (N) {
1081     switch (N->getOpcode()) {
1082     case ISD::Constant:
1083     case ISD::ConstantFP:
1084       // Erase debug location from the node if the node is used at several
1085       // different places. Do not propagate one location to all uses as it
1086       // will cause a worse single stepping debugging experience.
1087       if (N->getDebugLoc() != DL.getDebugLoc())
1088         N->setDebugLoc(DebugLoc());
1089       break;
1090     default:
1091       // When the node's point of use is located earlier in the instruction
1092       // sequence than its prior point of use, update its debug info to the
1093       // earlier location.
1094       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1095         N->setDebugLoc(DL.getDebugLoc());
1096       break;
1097     }
1098   }
1099   return N;
1100 }
1101 
1102 void SelectionDAG::clear() {
1103   allnodes_clear();
1104   OperandRecycler.clear(OperandAllocator);
1105   OperandAllocator.Reset();
1106   CSEMap.clear();
1107 
1108   ExtendedValueTypeNodes.clear();
1109   ExternalSymbols.clear();
1110   TargetExternalSymbols.clear();
1111   MCSymbols.clear();
1112   SDCallSiteDbgInfo.clear();
1113   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1114             static_cast<CondCodeSDNode*>(nullptr));
1115   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1116             static_cast<SDNode*>(nullptr));
1117 
1118   EntryNode.UseList = nullptr;
1119   InsertNode(&EntryNode);
1120   Root = getEntryNode();
1121   DbgInfo->clear();
1122 }
1123 
1124 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1125   return VT.bitsGT(Op.getValueType())
1126              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1127              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1128 }
1129 
1130 std::pair<SDValue, SDValue>
1131 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1132                                        const SDLoc &DL, EVT VT) {
1133   assert(!VT.bitsEq(Op.getValueType()) &&
1134          "Strict no-op FP extend/round not allowed.");
1135   SDValue Res =
1136       VT.bitsGT(Op.getValueType())
1137           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1138           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1139                     {Chain, Op, getIntPtrConstant(0, DL)});
1140 
1141   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1142 }
1143 
1144 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1145   return VT.bitsGT(Op.getValueType()) ?
1146     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1147     getNode(ISD::TRUNCATE, DL, VT, Op);
1148 }
1149 
1150 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1151   return VT.bitsGT(Op.getValueType()) ?
1152     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1153     getNode(ISD::TRUNCATE, DL, VT, Op);
1154 }
1155 
1156 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1157   return VT.bitsGT(Op.getValueType()) ?
1158     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1159     getNode(ISD::TRUNCATE, DL, VT, Op);
1160 }
1161 
1162 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1163                                         EVT OpVT) {
1164   if (VT.bitsLE(Op.getValueType()))
1165     return getNode(ISD::TRUNCATE, SL, VT, Op);
1166 
1167   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1168   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1169 }
1170 
1171 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1172   EVT OpVT = Op.getValueType();
1173   assert(VT.isInteger() && OpVT.isInteger() &&
1174          "Cannot getZeroExtendInReg FP types");
1175   assert(VT.isVector() == OpVT.isVector() &&
1176          "getZeroExtendInReg type should be vector iff the operand "
1177          "type is vector!");
1178   assert((!VT.isVector() ||
1179           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1180          "Vector element counts must match in getZeroExtendInReg");
1181   assert(VT.bitsLE(OpVT) && "Not extending!");
1182   if (OpVT == VT)
1183     return Op;
1184   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1185                                    VT.getScalarSizeInBits());
1186   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1187 }
1188 
1189 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1190   // Only unsigned pointer semantics are supported right now. In the future this
1191   // might delegate to TLI to check pointer signedness.
1192   return getZExtOrTrunc(Op, DL, VT);
1193 }
1194 
1195 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1196   // Only unsigned pointer semantics are supported right now. In the future this
1197   // might delegate to TLI to check pointer signedness.
1198   return getZeroExtendInReg(Op, DL, VT);
1199 }
1200 
1201 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1202 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1203   EVT EltVT = VT.getScalarType();
1204   SDValue NegOne =
1205     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1206   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1207 }
1208 
1209 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1210   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1211   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1212 }
1213 
1214 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1215                                       EVT OpVT) {
1216   if (!V)
1217     return getConstant(0, DL, VT);
1218 
1219   switch (TLI->getBooleanContents(OpVT)) {
1220   case TargetLowering::ZeroOrOneBooleanContent:
1221   case TargetLowering::UndefinedBooleanContent:
1222     return getConstant(1, DL, VT);
1223   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1224     return getAllOnesConstant(DL, VT);
1225   }
1226   llvm_unreachable("Unexpected boolean content enum!");
1227 }
1228 
1229 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1230                                   bool isT, bool isO) {
1231   EVT EltVT = VT.getScalarType();
1232   assert((EltVT.getSizeInBits() >= 64 ||
1233          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1234          "getConstant with a uint64_t value that doesn't fit in the type!");
1235   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1236 }
1237 
1238 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1239                                   bool isT, bool isO) {
1240   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1241 }
1242 
1243 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1244                                   EVT VT, bool isT, bool isO) {
1245   assert(VT.isInteger() && "Cannot create FP integer constant!");
1246 
1247   EVT EltVT = VT.getScalarType();
1248   const ConstantInt *Elt = &Val;
1249 
1250   // In some cases the vector type is legal but the element type is illegal and
1251   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1252   // inserted value (the type does not need to match the vector element type).
1253   // Any extra bits introduced will be truncated away.
1254   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1255       TargetLowering::TypePromoteInteger) {
1256    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1257    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1258    Elt = ConstantInt::get(*getContext(), NewVal);
1259   }
1260   // In other cases the element type is illegal and needs to be expanded, for
1261   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1262   // the value into n parts and use a vector type with n-times the elements.
1263   // Then bitcast to the type requested.
1264   // Legalizing constants too early makes the DAGCombiner's job harder so we
1265   // only legalize if the DAG tells us we must produce legal types.
1266   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1267            TLI->getTypeAction(*getContext(), EltVT) ==
1268            TargetLowering::TypeExpandInteger) {
1269     const APInt &NewVal = Elt->getValue();
1270     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1271     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1272     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1273     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1274 
1275     // Check the temporary vector is the correct size. If this fails then
1276     // getTypeToTransformTo() probably returned a type whose size (in bits)
1277     // isn't a power-of-2 factor of the requested type size.
1278     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1279 
1280     SmallVector<SDValue, 2> EltParts;
1281     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1282       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1283                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1284                                      ViaEltVT, isT, isO));
1285     }
1286 
1287     // EltParts is currently in little endian order. If we actually want
1288     // big-endian order then reverse it now.
1289     if (getDataLayout().isBigEndian())
1290       std::reverse(EltParts.begin(), EltParts.end());
1291 
1292     // The elements must be reversed when the element order is different
1293     // to the endianness of the elements (because the BITCAST is itself a
1294     // vector shuffle in this situation). However, we do not need any code to
1295     // perform this reversal because getConstant() is producing a vector
1296     // splat.
1297     // This situation occurs in MIPS MSA.
1298 
1299     SmallVector<SDValue, 8> Ops;
1300     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1301       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1302 
1303     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1304     return V;
1305   }
1306 
1307   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1308          "APInt size does not match type size!");
1309   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1310   FoldingSetNodeID ID;
1311   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1312   ID.AddPointer(Elt);
1313   ID.AddBoolean(isO);
1314   void *IP = nullptr;
1315   SDNode *N = nullptr;
1316   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1317     if (!VT.isVector())
1318       return SDValue(N, 0);
1319 
1320   if (!N) {
1321     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1322     CSEMap.InsertNode(N, IP);
1323     InsertNode(N);
1324     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1325   }
1326 
1327   SDValue Result(N, 0);
1328   if (VT.isScalableVector())
1329     Result = getSplatVector(VT, DL, Result);
1330   else if (VT.isVector())
1331     Result = getSplatBuildVector(VT, DL, Result);
1332 
1333   return Result;
1334 }
1335 
1336 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1337                                         bool isTarget) {
1338   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1339 }
1340 
1341 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1342                                              const SDLoc &DL, bool LegalTypes) {
1343   assert(VT.isInteger() && "Shift amount is not an integer type!");
1344   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1345   return getConstant(Val, DL, ShiftVT);
1346 }
1347 
1348 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1349                                            bool isTarget) {
1350   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1351 }
1352 
1353 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1354                                     bool isTarget) {
1355   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1356 }
1357 
1358 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1359                                     EVT VT, bool isTarget) {
1360   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1361 
1362   EVT EltVT = VT.getScalarType();
1363 
1364   // Do the map lookup using the actual bit pattern for the floating point
1365   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1366   // we don't have issues with SNANs.
1367   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1368   FoldingSetNodeID ID;
1369   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1370   ID.AddPointer(&V);
1371   void *IP = nullptr;
1372   SDNode *N = nullptr;
1373   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1374     if (!VT.isVector())
1375       return SDValue(N, 0);
1376 
1377   if (!N) {
1378     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1379     CSEMap.InsertNode(N, IP);
1380     InsertNode(N);
1381   }
1382 
1383   SDValue Result(N, 0);
1384   if (VT.isScalableVector())
1385     Result = getSplatVector(VT, DL, Result);
1386   else if (VT.isVector())
1387     Result = getSplatBuildVector(VT, DL, Result);
1388   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1389   return Result;
1390 }
1391 
1392 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1393                                     bool isTarget) {
1394   EVT EltVT = VT.getScalarType();
1395   if (EltVT == MVT::f32)
1396     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1397   else if (EltVT == MVT::f64)
1398     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1399   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1400            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1401     bool Ignored;
1402     APFloat APF = APFloat(Val);
1403     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1404                 &Ignored);
1405     return getConstantFP(APF, DL, VT, isTarget);
1406   } else
1407     llvm_unreachable("Unsupported type in getConstantFP");
1408 }
1409 
1410 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1411                                        EVT VT, int64_t Offset, bool isTargetGA,
1412                                        unsigned TargetFlags) {
1413   assert((TargetFlags == 0 || isTargetGA) &&
1414          "Cannot set target flags on target-independent globals");
1415 
1416   // Truncate (with sign-extension) the offset value to the pointer size.
1417   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1418   if (BitWidth < 64)
1419     Offset = SignExtend64(Offset, BitWidth);
1420 
1421   unsigned Opc;
1422   if (GV->isThreadLocal())
1423     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1424   else
1425     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1426 
1427   FoldingSetNodeID ID;
1428   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1429   ID.AddPointer(GV);
1430   ID.AddInteger(Offset);
1431   ID.AddInteger(TargetFlags);
1432   void *IP = nullptr;
1433   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1434     return SDValue(E, 0);
1435 
1436   auto *N = newSDNode<GlobalAddressSDNode>(
1437       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1438   CSEMap.InsertNode(N, IP);
1439     InsertNode(N);
1440   return SDValue(N, 0);
1441 }
1442 
1443 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1444   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1445   FoldingSetNodeID ID;
1446   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1447   ID.AddInteger(FI);
1448   void *IP = nullptr;
1449   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1450     return SDValue(E, 0);
1451 
1452   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1453   CSEMap.InsertNode(N, IP);
1454   InsertNode(N);
1455   return SDValue(N, 0);
1456 }
1457 
1458 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1459                                    unsigned TargetFlags) {
1460   assert((TargetFlags == 0 || isTarget) &&
1461          "Cannot set target flags on target-independent jump tables");
1462   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1463   FoldingSetNodeID ID;
1464   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1465   ID.AddInteger(JTI);
1466   ID.AddInteger(TargetFlags);
1467   void *IP = nullptr;
1468   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1469     return SDValue(E, 0);
1470 
1471   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1472   CSEMap.InsertNode(N, IP);
1473   InsertNode(N);
1474   return SDValue(N, 0);
1475 }
1476 
1477 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1478                                       MaybeAlign Alignment, int Offset,
1479                                       bool isTarget, unsigned TargetFlags) {
1480   assert((TargetFlags == 0 || isTarget) &&
1481          "Cannot set target flags on target-independent globals");
1482   if (!Alignment)
1483     Alignment = shouldOptForSize()
1484                     ? getDataLayout().getABITypeAlign(C->getType())
1485                     : getDataLayout().getPrefTypeAlign(C->getType());
1486   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1487   FoldingSetNodeID ID;
1488   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1489   ID.AddInteger(Alignment->value());
1490   ID.AddInteger(Offset);
1491   ID.AddPointer(C);
1492   ID.AddInteger(TargetFlags);
1493   void *IP = nullptr;
1494   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1495     return SDValue(E, 0);
1496 
1497   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1498                                           TargetFlags);
1499   CSEMap.InsertNode(N, IP);
1500   InsertNode(N);
1501   SDValue V = SDValue(N, 0);
1502   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1503   return V;
1504 }
1505 
1506 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1507                                       MaybeAlign Alignment, int Offset,
1508                                       bool isTarget, unsigned TargetFlags) {
1509   assert((TargetFlags == 0 || isTarget) &&
1510          "Cannot set target flags on target-independent globals");
1511   if (!Alignment)
1512     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1513   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1514   FoldingSetNodeID ID;
1515   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1516   ID.AddInteger(Alignment->value());
1517   ID.AddInteger(Offset);
1518   C->addSelectionDAGCSEId(ID);
1519   ID.AddInteger(TargetFlags);
1520   void *IP = nullptr;
1521   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1522     return SDValue(E, 0);
1523 
1524   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1525                                           TargetFlags);
1526   CSEMap.InsertNode(N, IP);
1527   InsertNode(N);
1528   return SDValue(N, 0);
1529 }
1530 
1531 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1532                                      unsigned TargetFlags) {
1533   FoldingSetNodeID ID;
1534   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1535   ID.AddInteger(Index);
1536   ID.AddInteger(Offset);
1537   ID.AddInteger(TargetFlags);
1538   void *IP = nullptr;
1539   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1540     return SDValue(E, 0);
1541 
1542   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1543   CSEMap.InsertNode(N, IP);
1544   InsertNode(N);
1545   return SDValue(N, 0);
1546 }
1547 
1548 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1549   FoldingSetNodeID ID;
1550   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1551   ID.AddPointer(MBB);
1552   void *IP = nullptr;
1553   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1554     return SDValue(E, 0);
1555 
1556   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1557   CSEMap.InsertNode(N, IP);
1558   InsertNode(N);
1559   return SDValue(N, 0);
1560 }
1561 
1562 SDValue SelectionDAG::getValueType(EVT VT) {
1563   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1564       ValueTypeNodes.size())
1565     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1566 
1567   SDNode *&N = VT.isExtended() ?
1568     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1569 
1570   if (N) return SDValue(N, 0);
1571   N = newSDNode<VTSDNode>(VT);
1572   InsertNode(N);
1573   return SDValue(N, 0);
1574 }
1575 
1576 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1577   SDNode *&N = ExternalSymbols[Sym];
1578   if (N) return SDValue(N, 0);
1579   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1580   InsertNode(N);
1581   return SDValue(N, 0);
1582 }
1583 
1584 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1585   SDNode *&N = MCSymbols[Sym];
1586   if (N)
1587     return SDValue(N, 0);
1588   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1594                                               unsigned TargetFlags) {
1595   SDNode *&N =
1596       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1597   if (N) return SDValue(N, 0);
1598   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1599   InsertNode(N);
1600   return SDValue(N, 0);
1601 }
1602 
1603 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1604   if ((unsigned)Cond >= CondCodeNodes.size())
1605     CondCodeNodes.resize(Cond+1);
1606 
1607   if (!CondCodeNodes[Cond]) {
1608     auto *N = newSDNode<CondCodeSDNode>(Cond);
1609     CondCodeNodes[Cond] = N;
1610     InsertNode(N);
1611   }
1612 
1613   return SDValue(CondCodeNodes[Cond], 0);
1614 }
1615 
1616 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1617 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1618 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1619   std::swap(N1, N2);
1620   ShuffleVectorSDNode::commuteMask(M);
1621 }
1622 
1623 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1624                                        SDValue N2, ArrayRef<int> Mask) {
1625   assert(VT.getVectorNumElements() == Mask.size() &&
1626            "Must have the same number of vector elements as mask elements!");
1627   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1628          "Invalid VECTOR_SHUFFLE");
1629 
1630   // Canonicalize shuffle undef, undef -> undef
1631   if (N1.isUndef() && N2.isUndef())
1632     return getUNDEF(VT);
1633 
1634   // Validate that all indices in Mask are within the range of the elements
1635   // input to the shuffle.
1636   int NElts = Mask.size();
1637   assert(llvm::all_of(Mask,
1638                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1639          "Index out of range");
1640 
1641   // Copy the mask so we can do any needed cleanup.
1642   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1643 
1644   // Canonicalize shuffle v, v -> v, undef
1645   if (N1 == N2) {
1646     N2 = getUNDEF(VT);
1647     for (int i = 0; i != NElts; ++i)
1648       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1649   }
1650 
1651   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1652   if (N1.isUndef())
1653     commuteShuffle(N1, N2, MaskVec);
1654 
1655   if (TLI->hasVectorBlend()) {
1656     // If shuffling a splat, try to blend the splat instead. We do this here so
1657     // that even when this arises during lowering we don't have to re-handle it.
1658     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1659       BitVector UndefElements;
1660       SDValue Splat = BV->getSplatValue(&UndefElements);
1661       if (!Splat)
1662         return;
1663 
1664       for (int i = 0; i < NElts; ++i) {
1665         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1666           continue;
1667 
1668         // If this input comes from undef, mark it as such.
1669         if (UndefElements[MaskVec[i] - Offset]) {
1670           MaskVec[i] = -1;
1671           continue;
1672         }
1673 
1674         // If we can blend a non-undef lane, use that instead.
1675         if (!UndefElements[i])
1676           MaskVec[i] = i + Offset;
1677       }
1678     };
1679     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1680       BlendSplat(N1BV, 0);
1681     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1682       BlendSplat(N2BV, NElts);
1683   }
1684 
1685   // Canonicalize all index into lhs, -> shuffle lhs, undef
1686   // Canonicalize all index into rhs, -> shuffle rhs, undef
1687   bool AllLHS = true, AllRHS = true;
1688   bool N2Undef = N2.isUndef();
1689   for (int i = 0; i != NElts; ++i) {
1690     if (MaskVec[i] >= NElts) {
1691       if (N2Undef)
1692         MaskVec[i] = -1;
1693       else
1694         AllLHS = false;
1695     } else if (MaskVec[i] >= 0) {
1696       AllRHS = false;
1697     }
1698   }
1699   if (AllLHS && AllRHS)
1700     return getUNDEF(VT);
1701   if (AllLHS && !N2Undef)
1702     N2 = getUNDEF(VT);
1703   if (AllRHS) {
1704     N1 = getUNDEF(VT);
1705     commuteShuffle(N1, N2, MaskVec);
1706   }
1707   // Reset our undef status after accounting for the mask.
1708   N2Undef = N2.isUndef();
1709   // Re-check whether both sides ended up undef.
1710   if (N1.isUndef() && N2Undef)
1711     return getUNDEF(VT);
1712 
1713   // If Identity shuffle return that node.
1714   bool Identity = true, AllSame = true;
1715   for (int i = 0; i != NElts; ++i) {
1716     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1717     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1718   }
1719   if (Identity && NElts)
1720     return N1;
1721 
1722   // Shuffling a constant splat doesn't change the result.
1723   if (N2Undef) {
1724     SDValue V = N1;
1725 
1726     // Look through any bitcasts. We check that these don't change the number
1727     // (and size) of elements and just changes their types.
1728     while (V.getOpcode() == ISD::BITCAST)
1729       V = V->getOperand(0);
1730 
1731     // A splat should always show up as a build vector node.
1732     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1733       BitVector UndefElements;
1734       SDValue Splat = BV->getSplatValue(&UndefElements);
1735       // If this is a splat of an undef, shuffling it is also undef.
1736       if (Splat && Splat.isUndef())
1737         return getUNDEF(VT);
1738 
1739       bool SameNumElts =
1740           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1741 
1742       // We only have a splat which can skip shuffles if there is a splatted
1743       // value and no undef lanes rearranged by the shuffle.
1744       if (Splat && UndefElements.none()) {
1745         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1746         // number of elements match or the value splatted is a zero constant.
1747         if (SameNumElts)
1748           return N1;
1749         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1750           if (C->isNullValue())
1751             return N1;
1752       }
1753 
1754       // If the shuffle itself creates a splat, build the vector directly.
1755       if (AllSame && SameNumElts) {
1756         EVT BuildVT = BV->getValueType(0);
1757         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1758         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1759 
1760         // We may have jumped through bitcasts, so the type of the
1761         // BUILD_VECTOR may not match the type of the shuffle.
1762         if (BuildVT != VT)
1763           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1764         return NewBV;
1765       }
1766     }
1767   }
1768 
1769   FoldingSetNodeID ID;
1770   SDValue Ops[2] = { N1, N2 };
1771   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1772   for (int i = 0; i != NElts; ++i)
1773     ID.AddInteger(MaskVec[i]);
1774 
1775   void* IP = nullptr;
1776   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1777     return SDValue(E, 0);
1778 
1779   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1780   // SDNode doesn't have access to it.  This memory will be "leaked" when
1781   // the node is deallocated, but recovered when the NodeAllocator is released.
1782   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1783   llvm::copy(MaskVec, MaskAlloc);
1784 
1785   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1786                                            dl.getDebugLoc(), MaskAlloc);
1787   createOperands(N, Ops);
1788 
1789   CSEMap.InsertNode(N, IP);
1790   InsertNode(N);
1791   SDValue V = SDValue(N, 0);
1792   NewSDValueDbgMsg(V, "Creating new node: ", this);
1793   return V;
1794 }
1795 
1796 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1797   EVT VT = SV.getValueType(0);
1798   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1799   ShuffleVectorSDNode::commuteMask(MaskVec);
1800 
1801   SDValue Op0 = SV.getOperand(0);
1802   SDValue Op1 = SV.getOperand(1);
1803   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1804 }
1805 
1806 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1807   FoldingSetNodeID ID;
1808   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1809   ID.AddInteger(RegNo);
1810   void *IP = nullptr;
1811   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1812     return SDValue(E, 0);
1813 
1814   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1815   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1816   CSEMap.InsertNode(N, IP);
1817   InsertNode(N);
1818   return SDValue(N, 0);
1819 }
1820 
1821 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1822   FoldingSetNodeID ID;
1823   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1824   ID.AddPointer(RegMask);
1825   void *IP = nullptr;
1826   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1827     return SDValue(E, 0);
1828 
1829   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1830   CSEMap.InsertNode(N, IP);
1831   InsertNode(N);
1832   return SDValue(N, 0);
1833 }
1834 
1835 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1836                                  MCSymbol *Label) {
1837   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1838 }
1839 
1840 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1841                                    SDValue Root, MCSymbol *Label) {
1842   FoldingSetNodeID ID;
1843   SDValue Ops[] = { Root };
1844   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1845   ID.AddPointer(Label);
1846   void *IP = nullptr;
1847   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1848     return SDValue(E, 0);
1849 
1850   auto *N =
1851       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1852   createOperands(N, Ops);
1853 
1854   CSEMap.InsertNode(N, IP);
1855   InsertNode(N);
1856   return SDValue(N, 0);
1857 }
1858 
1859 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1860                                       int64_t Offset, bool isTarget,
1861                                       unsigned TargetFlags) {
1862   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1863 
1864   FoldingSetNodeID ID;
1865   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1866   ID.AddPointer(BA);
1867   ID.AddInteger(Offset);
1868   ID.AddInteger(TargetFlags);
1869   void *IP = nullptr;
1870   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1871     return SDValue(E, 0);
1872 
1873   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1874   CSEMap.InsertNode(N, IP);
1875   InsertNode(N);
1876   return SDValue(N, 0);
1877 }
1878 
1879 SDValue SelectionDAG::getSrcValue(const Value *V) {
1880   FoldingSetNodeID ID;
1881   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1882   ID.AddPointer(V);
1883 
1884   void *IP = nullptr;
1885   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1886     return SDValue(E, 0);
1887 
1888   auto *N = newSDNode<SrcValueSDNode>(V);
1889   CSEMap.InsertNode(N, IP);
1890   InsertNode(N);
1891   return SDValue(N, 0);
1892 }
1893 
1894 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1895   FoldingSetNodeID ID;
1896   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1897   ID.AddPointer(MD);
1898 
1899   void *IP = nullptr;
1900   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1901     return SDValue(E, 0);
1902 
1903   auto *N = newSDNode<MDNodeSDNode>(MD);
1904   CSEMap.InsertNode(N, IP);
1905   InsertNode(N);
1906   return SDValue(N, 0);
1907 }
1908 
1909 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1910   if (VT == V.getValueType())
1911     return V;
1912 
1913   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1914 }
1915 
1916 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1917                                        unsigned SrcAS, unsigned DestAS) {
1918   SDValue Ops[] = {Ptr};
1919   FoldingSetNodeID ID;
1920   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1921   ID.AddInteger(SrcAS);
1922   ID.AddInteger(DestAS);
1923 
1924   void *IP = nullptr;
1925   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1926     return SDValue(E, 0);
1927 
1928   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1929                                            VT, SrcAS, DestAS);
1930   createOperands(N, Ops);
1931 
1932   CSEMap.InsertNode(N, IP);
1933   InsertNode(N);
1934   return SDValue(N, 0);
1935 }
1936 
1937 SDValue SelectionDAG::getFreeze(SDValue V) {
1938   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1939 }
1940 
1941 /// getShiftAmountOperand - Return the specified value casted to
1942 /// the target's desired shift amount type.
1943 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1944   EVT OpTy = Op.getValueType();
1945   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1946   if (OpTy == ShTy || OpTy.isVector()) return Op;
1947 
1948   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1949 }
1950 
1951 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1952   SDLoc dl(Node);
1953   const TargetLowering &TLI = getTargetLoweringInfo();
1954   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1955   EVT VT = Node->getValueType(0);
1956   SDValue Tmp1 = Node->getOperand(0);
1957   SDValue Tmp2 = Node->getOperand(1);
1958   const MaybeAlign MA(Node->getConstantOperandVal(3));
1959 
1960   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1961                                Tmp2, MachinePointerInfo(V));
1962   SDValue VAList = VAListLoad;
1963 
1964   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1965     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1966                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1967 
1968     VAList =
1969         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1970                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1971   }
1972 
1973   // Increment the pointer, VAList, to the next vaarg
1974   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1975                  getConstant(getDataLayout().getTypeAllocSize(
1976                                                VT.getTypeForEVT(*getContext())),
1977                              dl, VAList.getValueType()));
1978   // Store the incremented VAList to the legalized pointer
1979   Tmp1 =
1980       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1981   // Load the actual argument out of the pointer VAList
1982   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1983 }
1984 
1985 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1986   SDLoc dl(Node);
1987   const TargetLowering &TLI = getTargetLoweringInfo();
1988   // This defaults to loading a pointer from the input and storing it to the
1989   // output, returning the chain.
1990   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1991   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1992   SDValue Tmp1 =
1993       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1994               Node->getOperand(2), MachinePointerInfo(VS));
1995   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1996                   MachinePointerInfo(VD));
1997 }
1998 
1999 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2000   const DataLayout &DL = getDataLayout();
2001   Type *Ty = VT.getTypeForEVT(*getContext());
2002   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2003 
2004   if (TLI->isTypeLegal(VT) || !VT.isVector())
2005     return RedAlign;
2006 
2007   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2008   const Align StackAlign = TFI->getStackAlign();
2009 
2010   // See if we can choose a smaller ABI alignment in cases where it's an
2011   // illegal vector type that will get broken down.
2012   if (RedAlign > StackAlign) {
2013     EVT IntermediateVT;
2014     MVT RegisterVT;
2015     unsigned NumIntermediates;
2016     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2017                                 NumIntermediates, RegisterVT);
2018     Ty = IntermediateVT.getTypeForEVT(*getContext());
2019     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2020     if (RedAlign2 < RedAlign)
2021       RedAlign = RedAlign2;
2022   }
2023 
2024   return RedAlign;
2025 }
2026 
2027 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2028   MachineFrameInfo &MFI = MF->getFrameInfo();
2029   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2030   int StackID = 0;
2031   if (Bytes.isScalable())
2032     StackID = TFI->getStackIDForScalableVectors();
2033   // The stack id gives an indication of whether the object is scalable or
2034   // not, so it's safe to pass in the minimum size here.
2035   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2036                                        false, nullptr, StackID);
2037   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2038 }
2039 
2040 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2041   Type *Ty = VT.getTypeForEVT(*getContext());
2042   Align StackAlign =
2043       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2044   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2045 }
2046 
2047 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2048   TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2049   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2050   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2051   const DataLayout &DL = getDataLayout();
2052   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2053   return CreateStackTemporary(Bytes, Align);
2054 }
2055 
2056 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2057                                 ISD::CondCode Cond, const SDLoc &dl) {
2058   EVT OpVT = N1.getValueType();
2059 
2060   // These setcc operations always fold.
2061   switch (Cond) {
2062   default: break;
2063   case ISD::SETFALSE:
2064   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2065   case ISD::SETTRUE:
2066   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2067 
2068   case ISD::SETOEQ:
2069   case ISD::SETOGT:
2070   case ISD::SETOGE:
2071   case ISD::SETOLT:
2072   case ISD::SETOLE:
2073   case ISD::SETONE:
2074   case ISD::SETO:
2075   case ISD::SETUO:
2076   case ISD::SETUEQ:
2077   case ISD::SETUNE:
2078     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2079     break;
2080   }
2081 
2082   if (OpVT.isInteger()) {
2083     // For EQ and NE, we can always pick a value for the undef to make the
2084     // predicate pass or fail, so we can return undef.
2085     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2086     // icmp eq/ne X, undef -> undef.
2087     if ((N1.isUndef() || N2.isUndef()) &&
2088         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2089       return getUNDEF(VT);
2090 
2091     // If both operands are undef, we can return undef for int comparison.
2092     // icmp undef, undef -> undef.
2093     if (N1.isUndef() && N2.isUndef())
2094       return getUNDEF(VT);
2095 
2096     // icmp X, X -> true/false
2097     // icmp X, undef -> true/false because undef could be X.
2098     if (N1 == N2)
2099       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2100   }
2101 
2102   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2103     const APInt &C2 = N2C->getAPIntValue();
2104     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2105       const APInt &C1 = N1C->getAPIntValue();
2106 
2107       switch (Cond) {
2108       default: llvm_unreachable("Unknown integer setcc!");
2109       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2110       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2111       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2112       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2113       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2114       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2115       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2116       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2117       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2118       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2119       }
2120     }
2121   }
2122 
2123   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2124   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2125 
2126   if (N1CFP && N2CFP) {
2127     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2128     switch (Cond) {
2129     default: break;
2130     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2131                         return getUNDEF(VT);
2132                       LLVM_FALLTHROUGH;
2133     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2134                                              OpVT);
2135     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2136                         return getUNDEF(VT);
2137                       LLVM_FALLTHROUGH;
2138     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2139                                              R==APFloat::cmpLessThan, dl, VT,
2140                                              OpVT);
2141     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2142                         return getUNDEF(VT);
2143                       LLVM_FALLTHROUGH;
2144     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2145                                              OpVT);
2146     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2147                         return getUNDEF(VT);
2148                       LLVM_FALLTHROUGH;
2149     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2150                                              VT, OpVT);
2151     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2152                         return getUNDEF(VT);
2153                       LLVM_FALLTHROUGH;
2154     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2155                                              R==APFloat::cmpEqual, dl, VT,
2156                                              OpVT);
2157     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2158                         return getUNDEF(VT);
2159                       LLVM_FALLTHROUGH;
2160     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2161                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2162     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2163                                              OpVT);
2164     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2165                                              OpVT);
2166     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2167                                              R==APFloat::cmpEqual, dl, VT,
2168                                              OpVT);
2169     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2170                                              OpVT);
2171     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2172                                              R==APFloat::cmpLessThan, dl, VT,
2173                                              OpVT);
2174     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2175                                              R==APFloat::cmpUnordered, dl, VT,
2176                                              OpVT);
2177     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2178                                              VT, OpVT);
2179     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2180                                              OpVT);
2181     }
2182   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2183     // Ensure that the constant occurs on the RHS.
2184     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2185     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2186       return SDValue();
2187     return getSetCC(dl, VT, N2, N1, SwappedCond);
2188   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2189              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2190     // If an operand is known to be a nan (or undef that could be a nan), we can
2191     // fold it.
2192     // Choosing NaN for the undef will always make unordered comparison succeed
2193     // and ordered comparison fails.
2194     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2195     switch (ISD::getUnorderedFlavor(Cond)) {
2196     default:
2197       llvm_unreachable("Unknown flavor!");
2198     case 0: // Known false.
2199       return getBoolConstant(false, dl, VT, OpVT);
2200     case 1: // Known true.
2201       return getBoolConstant(true, dl, VT, OpVT);
2202     case 2: // Undefined.
2203       return getUNDEF(VT);
2204     }
2205   }
2206 
2207   // Could not fold it.
2208   return SDValue();
2209 }
2210 
2211 /// See if the specified operand can be simplified with the knowledge that only
2212 /// the bits specified by DemandedBits are used.
2213 /// TODO: really we should be making this into the DAG equivalent of
2214 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2215 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2216   EVT VT = V.getValueType();
2217 
2218   if (VT.isScalableVector())
2219     return SDValue();
2220 
2221   APInt DemandedElts = VT.isVector()
2222                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2223                            : APInt(1, 1);
2224   return GetDemandedBits(V, DemandedBits, DemandedElts);
2225 }
2226 
2227 /// See if the specified operand can be simplified with the knowledge that only
2228 /// the bits specified by DemandedBits are used in the elements specified by
2229 /// DemandedElts.
2230 /// TODO: really we should be making this into the DAG equivalent of
2231 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2232 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2233                                       const APInt &DemandedElts) {
2234   switch (V.getOpcode()) {
2235   default:
2236     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2237                                                 *this, 0);
2238   case ISD::Constant: {
2239     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2240     APInt NewVal = CVal & DemandedBits;
2241     if (NewVal != CVal)
2242       return getConstant(NewVal, SDLoc(V), V.getValueType());
2243     break;
2244   }
2245   case ISD::SRL:
2246     // Only look at single-use SRLs.
2247     if (!V.getNode()->hasOneUse())
2248       break;
2249     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2250       // See if we can recursively simplify the LHS.
2251       unsigned Amt = RHSC->getZExtValue();
2252 
2253       // Watch out for shift count overflow though.
2254       if (Amt >= DemandedBits.getBitWidth())
2255         break;
2256       APInt SrcDemandedBits = DemandedBits << Amt;
2257       if (SDValue SimplifyLHS =
2258               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2259         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2260                        V.getOperand(1));
2261     }
2262     break;
2263   }
2264   return SDValue();
2265 }
2266 
2267 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2268 /// use this predicate to simplify operations downstream.
2269 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2270   unsigned BitWidth = Op.getScalarValueSizeInBits();
2271   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2272 }
2273 
2274 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2275 /// this predicate to simplify operations downstream.  Mask is known to be zero
2276 /// for bits that V cannot have.
2277 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2278                                      unsigned Depth) const {
2279   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2280 }
2281 
2282 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2283 /// DemandedElts.  We use this predicate to simplify operations downstream.
2284 /// Mask is known to be zero for bits that V cannot have.
2285 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2286                                      const APInt &DemandedElts,
2287                                      unsigned Depth) const {
2288   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2289 }
2290 
2291 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2292 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2293                                         unsigned Depth) const {
2294   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2295 }
2296 
2297 /// isSplatValue - Return true if the vector V has the same value
2298 /// across all DemandedElts. For scalable vectors it does not make
2299 /// sense to specify which elements are demanded or undefined, therefore
2300 /// they are simply ignored.
2301 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2302                                 APInt &UndefElts) {
2303   EVT VT = V.getValueType();
2304   assert(VT.isVector() && "Vector type expected");
2305 
2306   if (!VT.isScalableVector() && !DemandedElts)
2307     return false; // No demanded elts, better to assume we don't know anything.
2308 
2309   // Deal with some common cases here that work for both fixed and scalable
2310   // vector types.
2311   switch (V.getOpcode()) {
2312   case ISD::SPLAT_VECTOR:
2313     return true;
2314   case ISD::ADD:
2315   case ISD::SUB:
2316   case ISD::AND: {
2317     APInt UndefLHS, UndefRHS;
2318     SDValue LHS = V.getOperand(0);
2319     SDValue RHS = V.getOperand(1);
2320     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2321         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2322       UndefElts = UndefLHS | UndefRHS;
2323       return true;
2324     }
2325     break;
2326   }
2327   case ISD::TRUNCATE:
2328   case ISD::SIGN_EXTEND:
2329   case ISD::ZERO_EXTEND:
2330     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts);
2331   }
2332 
2333   // We don't support other cases than those above for scalable vectors at
2334   // the moment.
2335   if (VT.isScalableVector())
2336     return false;
2337 
2338   unsigned NumElts = VT.getVectorNumElements();
2339   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2340   UndefElts = APInt::getNullValue(NumElts);
2341 
2342   switch (V.getOpcode()) {
2343   case ISD::BUILD_VECTOR: {
2344     SDValue Scl;
2345     for (unsigned i = 0; i != NumElts; ++i) {
2346       SDValue Op = V.getOperand(i);
2347       if (Op.isUndef()) {
2348         UndefElts.setBit(i);
2349         continue;
2350       }
2351       if (!DemandedElts[i])
2352         continue;
2353       if (Scl && Scl != Op)
2354         return false;
2355       Scl = Op;
2356     }
2357     return true;
2358   }
2359   case ISD::VECTOR_SHUFFLE: {
2360     // Check if this is a shuffle node doing a splat.
2361     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2362     int SplatIndex = -1;
2363     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2364     for (int i = 0; i != (int)NumElts; ++i) {
2365       int M = Mask[i];
2366       if (M < 0) {
2367         UndefElts.setBit(i);
2368         continue;
2369       }
2370       if (!DemandedElts[i])
2371         continue;
2372       if (0 <= SplatIndex && SplatIndex != M)
2373         return false;
2374       SplatIndex = M;
2375     }
2376     return true;
2377   }
2378   case ISD::EXTRACT_SUBVECTOR: {
2379     // Offset the demanded elts by the subvector index.
2380     SDValue Src = V.getOperand(0);
2381     uint64_t Idx = V.getConstantOperandVal(1);
2382     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2383     APInt UndefSrcElts;
2384     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2385     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2386       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2387       return true;
2388     }
2389     break;
2390   }
2391   }
2392 
2393   return false;
2394 }
2395 
2396 /// Helper wrapper to main isSplatValue function.
2397 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2398   EVT VT = V.getValueType();
2399   assert(VT.isVector() && "Vector type expected");
2400 
2401   APInt UndefElts;
2402   APInt DemandedElts;
2403 
2404   // For now we don't support this with scalable vectors.
2405   if (!VT.isScalableVector())
2406     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2407   return isSplatValue(V, DemandedElts, UndefElts) &&
2408          (AllowUndefs || !UndefElts);
2409 }
2410 
2411 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2412   V = peekThroughExtractSubvectors(V);
2413 
2414   EVT VT = V.getValueType();
2415   unsigned Opcode = V.getOpcode();
2416   switch (Opcode) {
2417   default: {
2418     APInt UndefElts;
2419     APInt DemandedElts;
2420 
2421     if (!VT.isScalableVector())
2422       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2423 
2424     if (isSplatValue(V, DemandedElts, UndefElts)) {
2425       if (VT.isScalableVector()) {
2426         // DemandedElts and UndefElts are ignored for scalable vectors, since
2427         // the only supported cases are SPLAT_VECTOR nodes.
2428         SplatIdx = 0;
2429       } else {
2430         // Handle case where all demanded elements are UNDEF.
2431         if (DemandedElts.isSubsetOf(UndefElts)) {
2432           SplatIdx = 0;
2433           return getUNDEF(VT);
2434         }
2435         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2436       }
2437       return V;
2438     }
2439     break;
2440   }
2441   case ISD::SPLAT_VECTOR:
2442     SplatIdx = 0;
2443     return V;
2444   case ISD::VECTOR_SHUFFLE: {
2445     if (VT.isScalableVector())
2446       return SDValue();
2447 
2448     // Check if this is a shuffle node doing a splat.
2449     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2450     // getTargetVShiftNode currently struggles without the splat source.
2451     auto *SVN = cast<ShuffleVectorSDNode>(V);
2452     if (!SVN->isSplat())
2453       break;
2454     int Idx = SVN->getSplatIndex();
2455     int NumElts = V.getValueType().getVectorNumElements();
2456     SplatIdx = Idx % NumElts;
2457     return V.getOperand(Idx / NumElts);
2458   }
2459   }
2460 
2461   return SDValue();
2462 }
2463 
2464 SDValue SelectionDAG::getSplatValue(SDValue V) {
2465   int SplatIdx;
2466   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2467     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2468                    SrcVector.getValueType().getScalarType(), SrcVector,
2469                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2470   return SDValue();
2471 }
2472 
2473 const APInt *
2474 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2475                                           const APInt &DemandedElts) const {
2476   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2477           V.getOpcode() == ISD::SRA) &&
2478          "Unknown shift node");
2479   unsigned BitWidth = V.getScalarValueSizeInBits();
2480   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2481     // Shifting more than the bitwidth is not valid.
2482     const APInt &ShAmt = SA->getAPIntValue();
2483     if (ShAmt.ult(BitWidth))
2484       return &ShAmt;
2485   }
2486   return nullptr;
2487 }
2488 
2489 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2490     SDValue V, const APInt &DemandedElts) const {
2491   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2492           V.getOpcode() == ISD::SRA) &&
2493          "Unknown shift node");
2494   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2495     return ValidAmt;
2496   unsigned BitWidth = V.getScalarValueSizeInBits();
2497   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2498   if (!BV)
2499     return nullptr;
2500   const APInt *MinShAmt = nullptr;
2501   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2502     if (!DemandedElts[i])
2503       continue;
2504     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2505     if (!SA)
2506       return nullptr;
2507     // Shifting more than the bitwidth is not valid.
2508     const APInt &ShAmt = SA->getAPIntValue();
2509     if (ShAmt.uge(BitWidth))
2510       return nullptr;
2511     if (MinShAmt && MinShAmt->ule(ShAmt))
2512       continue;
2513     MinShAmt = &ShAmt;
2514   }
2515   return MinShAmt;
2516 }
2517 
2518 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2519     SDValue V, const APInt &DemandedElts) const {
2520   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2521           V.getOpcode() == ISD::SRA) &&
2522          "Unknown shift node");
2523   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2524     return ValidAmt;
2525   unsigned BitWidth = V.getScalarValueSizeInBits();
2526   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2527   if (!BV)
2528     return nullptr;
2529   const APInt *MaxShAmt = nullptr;
2530   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2531     if (!DemandedElts[i])
2532       continue;
2533     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2534     if (!SA)
2535       return nullptr;
2536     // Shifting more than the bitwidth is not valid.
2537     const APInt &ShAmt = SA->getAPIntValue();
2538     if (ShAmt.uge(BitWidth))
2539       return nullptr;
2540     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2541       continue;
2542     MaxShAmt = &ShAmt;
2543   }
2544   return MaxShAmt;
2545 }
2546 
2547 /// Determine which bits of Op are known to be either zero or one and return
2548 /// them in Known. For vectors, the known bits are those that are shared by
2549 /// every vector element.
2550 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2551   EVT VT = Op.getValueType();
2552 
2553   // TOOD: Until we have a plan for how to represent demanded elements for
2554   // scalable vectors, we can just bail out for now.
2555   if (Op.getValueType().isScalableVector()) {
2556     unsigned BitWidth = Op.getScalarValueSizeInBits();
2557     return KnownBits(BitWidth);
2558   }
2559 
2560   APInt DemandedElts = VT.isVector()
2561                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2562                            : APInt(1, 1);
2563   return computeKnownBits(Op, DemandedElts, Depth);
2564 }
2565 
2566 /// Determine which bits of Op are known to be either zero or one and return
2567 /// them in Known. The DemandedElts argument allows us to only collect the known
2568 /// bits that are shared by the requested vector elements.
2569 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2570                                          unsigned Depth) const {
2571   unsigned BitWidth = Op.getScalarValueSizeInBits();
2572 
2573   KnownBits Known(BitWidth);   // Don't know anything.
2574 
2575   // TOOD: Until we have a plan for how to represent demanded elements for
2576   // scalable vectors, we can just bail out for now.
2577   if (Op.getValueType().isScalableVector())
2578     return Known;
2579 
2580   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2581     // We know all of the bits for a constant!
2582     Known.One = C->getAPIntValue();
2583     Known.Zero = ~Known.One;
2584     return Known;
2585   }
2586   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2587     // We know all of the bits for a constant fp!
2588     Known.One = C->getValueAPF().bitcastToAPInt();
2589     Known.Zero = ~Known.One;
2590     return Known;
2591   }
2592 
2593   if (Depth >= MaxRecursionDepth)
2594     return Known;  // Limit search depth.
2595 
2596   KnownBits Known2;
2597   unsigned NumElts = DemandedElts.getBitWidth();
2598   assert((!Op.getValueType().isVector() ||
2599           NumElts == Op.getValueType().getVectorNumElements()) &&
2600          "Unexpected vector size");
2601 
2602   if (!DemandedElts)
2603     return Known;  // No demanded elts, better to assume we don't know anything.
2604 
2605   unsigned Opcode = Op.getOpcode();
2606   switch (Opcode) {
2607   case ISD::BUILD_VECTOR:
2608     // Collect the known bits that are shared by every demanded vector element.
2609     Known.Zero.setAllBits(); Known.One.setAllBits();
2610     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2611       if (!DemandedElts[i])
2612         continue;
2613 
2614       SDValue SrcOp = Op.getOperand(i);
2615       Known2 = computeKnownBits(SrcOp, Depth + 1);
2616 
2617       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2618       if (SrcOp.getValueSizeInBits() != BitWidth) {
2619         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2620                "Expected BUILD_VECTOR implicit truncation");
2621         Known2 = Known2.trunc(BitWidth);
2622       }
2623 
2624       // Known bits are the values that are shared by every demanded element.
2625       Known.One &= Known2.One;
2626       Known.Zero &= Known2.Zero;
2627 
2628       // If we don't know any bits, early out.
2629       if (Known.isUnknown())
2630         break;
2631     }
2632     break;
2633   case ISD::VECTOR_SHUFFLE: {
2634     // Collect the known bits that are shared by every vector element referenced
2635     // by the shuffle.
2636     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2637     Known.Zero.setAllBits(); Known.One.setAllBits();
2638     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2639     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2640     for (unsigned i = 0; i != NumElts; ++i) {
2641       if (!DemandedElts[i])
2642         continue;
2643 
2644       int M = SVN->getMaskElt(i);
2645       if (M < 0) {
2646         // For UNDEF elements, we don't know anything about the common state of
2647         // the shuffle result.
2648         Known.resetAll();
2649         DemandedLHS.clearAllBits();
2650         DemandedRHS.clearAllBits();
2651         break;
2652       }
2653 
2654       if ((unsigned)M < NumElts)
2655         DemandedLHS.setBit((unsigned)M % NumElts);
2656       else
2657         DemandedRHS.setBit((unsigned)M % NumElts);
2658     }
2659     // Known bits are the values that are shared by every demanded element.
2660     if (!!DemandedLHS) {
2661       SDValue LHS = Op.getOperand(0);
2662       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2663       Known.One &= Known2.One;
2664       Known.Zero &= Known2.Zero;
2665     }
2666     // If we don't know any bits, early out.
2667     if (Known.isUnknown())
2668       break;
2669     if (!!DemandedRHS) {
2670       SDValue RHS = Op.getOperand(1);
2671       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2672       Known.One &= Known2.One;
2673       Known.Zero &= Known2.Zero;
2674     }
2675     break;
2676   }
2677   case ISD::CONCAT_VECTORS: {
2678     // Split DemandedElts and test each of the demanded subvectors.
2679     Known.Zero.setAllBits(); Known.One.setAllBits();
2680     EVT SubVectorVT = Op.getOperand(0).getValueType();
2681     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2682     unsigned NumSubVectors = Op.getNumOperands();
2683     for (unsigned i = 0; i != NumSubVectors; ++i) {
2684       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2685       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2686       if (!!DemandedSub) {
2687         SDValue Sub = Op.getOperand(i);
2688         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2689         Known.One &= Known2.One;
2690         Known.Zero &= Known2.Zero;
2691       }
2692       // If we don't know any bits, early out.
2693       if (Known.isUnknown())
2694         break;
2695     }
2696     break;
2697   }
2698   case ISD::INSERT_SUBVECTOR: {
2699     // Demand any elements from the subvector and the remainder from the src its
2700     // inserted into.
2701     SDValue Src = Op.getOperand(0);
2702     SDValue Sub = Op.getOperand(1);
2703     uint64_t Idx = Op.getConstantOperandVal(2);
2704     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2705     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2706     APInt DemandedSrcElts = DemandedElts;
2707     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2708 
2709     Known.One.setAllBits();
2710     Known.Zero.setAllBits();
2711     if (!!DemandedSubElts) {
2712       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2713       if (Known.isUnknown())
2714         break; // early-out.
2715     }
2716     if (!!DemandedSrcElts) {
2717       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2718       Known.One &= Known2.One;
2719       Known.Zero &= Known2.Zero;
2720     }
2721     break;
2722   }
2723   case ISD::EXTRACT_SUBVECTOR: {
2724     // Offset the demanded elts by the subvector index.
2725     SDValue Src = Op.getOperand(0);
2726     // Bail until we can represent demanded elements for scalable vectors.
2727     if (Src.getValueType().isScalableVector())
2728       break;
2729     uint64_t Idx = Op.getConstantOperandVal(1);
2730     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2731     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2732     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2733     break;
2734   }
2735   case ISD::SCALAR_TO_VECTOR: {
2736     // We know about scalar_to_vector as much as we know about it source,
2737     // which becomes the first element of otherwise unknown vector.
2738     if (DemandedElts != 1)
2739       break;
2740 
2741     SDValue N0 = Op.getOperand(0);
2742     Known = computeKnownBits(N0, Depth + 1);
2743     if (N0.getValueSizeInBits() != BitWidth)
2744       Known = Known.trunc(BitWidth);
2745 
2746     break;
2747   }
2748   case ISD::BITCAST: {
2749     SDValue N0 = Op.getOperand(0);
2750     EVT SubVT = N0.getValueType();
2751     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2752 
2753     // Ignore bitcasts from unsupported types.
2754     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2755       break;
2756 
2757     // Fast handling of 'identity' bitcasts.
2758     if (BitWidth == SubBitWidth) {
2759       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2760       break;
2761     }
2762 
2763     bool IsLE = getDataLayout().isLittleEndian();
2764 
2765     // Bitcast 'small element' vector to 'large element' scalar/vector.
2766     if ((BitWidth % SubBitWidth) == 0) {
2767       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2768 
2769       // Collect known bits for the (larger) output by collecting the known
2770       // bits from each set of sub elements and shift these into place.
2771       // We need to separately call computeKnownBits for each set of
2772       // sub elements as the knownbits for each is likely to be different.
2773       unsigned SubScale = BitWidth / SubBitWidth;
2774       APInt SubDemandedElts(NumElts * SubScale, 0);
2775       for (unsigned i = 0; i != NumElts; ++i)
2776         if (DemandedElts[i])
2777           SubDemandedElts.setBit(i * SubScale);
2778 
2779       for (unsigned i = 0; i != SubScale; ++i) {
2780         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2781                          Depth + 1);
2782         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2783         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2784         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2785       }
2786     }
2787 
2788     // Bitcast 'large element' scalar/vector to 'small element' vector.
2789     if ((SubBitWidth % BitWidth) == 0) {
2790       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2791 
2792       // Collect known bits for the (smaller) output by collecting the known
2793       // bits from the overlapping larger input elements and extracting the
2794       // sub sections we actually care about.
2795       unsigned SubScale = SubBitWidth / BitWidth;
2796       APInt SubDemandedElts(NumElts / SubScale, 0);
2797       for (unsigned i = 0; i != NumElts; ++i)
2798         if (DemandedElts[i])
2799           SubDemandedElts.setBit(i / SubScale);
2800 
2801       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2802 
2803       Known.Zero.setAllBits(); Known.One.setAllBits();
2804       for (unsigned i = 0; i != NumElts; ++i)
2805         if (DemandedElts[i]) {
2806           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2807           unsigned Offset = (Shifts % SubScale) * BitWidth;
2808           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2809           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2810           // If we don't know any bits, early out.
2811           if (Known.isUnknown())
2812             break;
2813         }
2814     }
2815     break;
2816   }
2817   case ISD::AND:
2818     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2819     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2820 
2821     Known &= Known2;
2822     break;
2823   case ISD::OR:
2824     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2825     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2826 
2827     Known |= Known2;
2828     break;
2829   case ISD::XOR:
2830     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2831     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2832 
2833     Known ^= Known2;
2834     break;
2835   case ISD::MUL: {
2836     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2837     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2838 
2839     // If low bits are zero in either operand, output low known-0 bits.
2840     // Also compute a conservative estimate for high known-0 bits.
2841     // More trickiness is possible, but this is sufficient for the
2842     // interesting case of alignment computation.
2843     unsigned TrailZ = Known.countMinTrailingZeros() +
2844                       Known2.countMinTrailingZeros();
2845     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2846                                Known2.countMinLeadingZeros(),
2847                                BitWidth) - BitWidth;
2848 
2849     Known.resetAll();
2850     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2851     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2852     break;
2853   }
2854   case ISD::UDIV: {
2855     // For the purposes of computing leading zeros we can conservatively
2856     // treat a udiv as a logical right shift by the power of 2 known to
2857     // be less than the denominator.
2858     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2859     unsigned LeadZ = Known2.countMinLeadingZeros();
2860 
2861     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2862     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2863     if (RHSMaxLeadingZeros != BitWidth)
2864       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2865 
2866     Known.Zero.setHighBits(LeadZ);
2867     break;
2868   }
2869   case ISD::SELECT:
2870   case ISD::VSELECT:
2871     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2872     // If we don't know any bits, early out.
2873     if (Known.isUnknown())
2874       break;
2875     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2876 
2877     // Only known if known in both the LHS and RHS.
2878     Known.One &= Known2.One;
2879     Known.Zero &= Known2.Zero;
2880     break;
2881   case ISD::SELECT_CC:
2882     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2883     // If we don't know any bits, early out.
2884     if (Known.isUnknown())
2885       break;
2886     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2887 
2888     // Only known if known in both the LHS and RHS.
2889     Known.One &= Known2.One;
2890     Known.Zero &= Known2.Zero;
2891     break;
2892   case ISD::SMULO:
2893   case ISD::UMULO:
2894   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2895     if (Op.getResNo() != 1)
2896       break;
2897     // The boolean result conforms to getBooleanContents.
2898     // If we know the result of a setcc has the top bits zero, use this info.
2899     // We know that we have an integer-based boolean since these operations
2900     // are only available for integer.
2901     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2902             TargetLowering::ZeroOrOneBooleanContent &&
2903         BitWidth > 1)
2904       Known.Zero.setBitsFrom(1);
2905     break;
2906   case ISD::SETCC:
2907   case ISD::STRICT_FSETCC:
2908   case ISD::STRICT_FSETCCS: {
2909     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2910     // If we know the result of a setcc has the top bits zero, use this info.
2911     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2912             TargetLowering::ZeroOrOneBooleanContent &&
2913         BitWidth > 1)
2914       Known.Zero.setBitsFrom(1);
2915     break;
2916   }
2917   case ISD::SHL:
2918     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2919 
2920     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2921       unsigned Shift = ShAmt->getZExtValue();
2922       Known.Zero <<= Shift;
2923       Known.One <<= Shift;
2924       // Low bits are known zero.
2925       Known.Zero.setLowBits(Shift);
2926       break;
2927     }
2928 
2929     // No matter the shift amount, the trailing zeros will stay zero.
2930     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2931     Known.One.clearAllBits();
2932 
2933     // Minimum shift low bits are known zero.
2934     if (const APInt *ShMinAmt =
2935             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2936       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2937     break;
2938   case ISD::SRL:
2939     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2940 
2941     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2942       unsigned Shift = ShAmt->getZExtValue();
2943       Known.Zero.lshrInPlace(Shift);
2944       Known.One.lshrInPlace(Shift);
2945       // High bits are known zero.
2946       Known.Zero.setHighBits(Shift);
2947       break;
2948     }
2949 
2950     // No matter the shift amount, the leading zeros will stay zero.
2951     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2952     Known.One.clearAllBits();
2953 
2954     // Minimum shift high bits are known zero.
2955     if (const APInt *ShMinAmt =
2956             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2957       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2958     break;
2959   case ISD::SRA:
2960     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2961       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2962       unsigned Shift = ShAmt->getZExtValue();
2963       // Sign extend known zero/one bit (else is unknown).
2964       Known.Zero.ashrInPlace(Shift);
2965       Known.One.ashrInPlace(Shift);
2966     }
2967     break;
2968   case ISD::FSHL:
2969   case ISD::FSHR:
2970     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2971       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2972 
2973       // For fshl, 0-shift returns the 1st arg.
2974       // For fshr, 0-shift returns the 2nd arg.
2975       if (Amt == 0) {
2976         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2977                                  DemandedElts, Depth + 1);
2978         break;
2979       }
2980 
2981       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2982       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2983       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2984       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2985       if (Opcode == ISD::FSHL) {
2986         Known.One <<= Amt;
2987         Known.Zero <<= Amt;
2988         Known2.One.lshrInPlace(BitWidth - Amt);
2989         Known2.Zero.lshrInPlace(BitWidth - Amt);
2990       } else {
2991         Known.One <<= BitWidth - Amt;
2992         Known.Zero <<= BitWidth - Amt;
2993         Known2.One.lshrInPlace(Amt);
2994         Known2.Zero.lshrInPlace(Amt);
2995       }
2996       Known.One |= Known2.One;
2997       Known.Zero |= Known2.Zero;
2998     }
2999     break;
3000   case ISD::SIGN_EXTEND_INREG: {
3001     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3002     unsigned EBits = EVT.getScalarSizeInBits();
3003 
3004     // Sign extension.  Compute the demanded bits in the result that are not
3005     // present in the input.
3006     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
3007 
3008     APInt InSignMask = APInt::getSignMask(EBits);
3009     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3010 
3011     // If the sign extended bits are demanded, we know that the sign
3012     // bit is demanded.
3013     InSignMask = InSignMask.zext(BitWidth);
3014     if (NewBits.getBoolValue())
3015       InputDemandedBits |= InSignMask;
3016 
3017     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3018     Known.One &= InputDemandedBits;
3019     Known.Zero &= InputDemandedBits;
3020 
3021     // If the sign bit of the input is known set or clear, then we know the
3022     // top bits of the result.
3023     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
3024       Known.Zero |= NewBits;
3025       Known.One  &= ~NewBits;
3026     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
3027       Known.One  |= NewBits;
3028       Known.Zero &= ~NewBits;
3029     } else {                              // Input sign bit unknown
3030       Known.Zero &= ~NewBits;
3031       Known.One  &= ~NewBits;
3032     }
3033     break;
3034   }
3035   case ISD::CTTZ:
3036   case ISD::CTTZ_ZERO_UNDEF: {
3037     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3038     // If we have a known 1, its position is our upper bound.
3039     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3040     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3041     Known.Zero.setBitsFrom(LowBits);
3042     break;
3043   }
3044   case ISD::CTLZ:
3045   case ISD::CTLZ_ZERO_UNDEF: {
3046     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3047     // If we have a known 1, its position is our upper bound.
3048     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3049     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3050     Known.Zero.setBitsFrom(LowBits);
3051     break;
3052   }
3053   case ISD::CTPOP: {
3054     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3055     // If we know some of the bits are zero, they can't be one.
3056     unsigned PossibleOnes = Known2.countMaxPopulation();
3057     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3058     break;
3059   }
3060   case ISD::PARITY: {
3061     // Parity returns 0 everywhere but the LSB.
3062     Known.Zero.setBitsFrom(1);
3063     break;
3064   }
3065   case ISD::LOAD: {
3066     LoadSDNode *LD = cast<LoadSDNode>(Op);
3067     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3068     if (ISD::isNON_EXTLoad(LD) && Cst) {
3069       // Determine any common known bits from the loaded constant pool value.
3070       Type *CstTy = Cst->getType();
3071       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3072         // If its a vector splat, then we can (quickly) reuse the scalar path.
3073         // NOTE: We assume all elements match and none are UNDEF.
3074         if (CstTy->isVectorTy()) {
3075           if (const Constant *Splat = Cst->getSplatValue()) {
3076             Cst = Splat;
3077             CstTy = Cst->getType();
3078           }
3079         }
3080         // TODO - do we need to handle different bitwidths?
3081         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3082           // Iterate across all vector elements finding common known bits.
3083           Known.One.setAllBits();
3084           Known.Zero.setAllBits();
3085           for (unsigned i = 0; i != NumElts; ++i) {
3086             if (!DemandedElts[i])
3087               continue;
3088             if (Constant *Elt = Cst->getAggregateElement(i)) {
3089               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3090                 const APInt &Value = CInt->getValue();
3091                 Known.One &= Value;
3092                 Known.Zero &= ~Value;
3093                 continue;
3094               }
3095               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3096                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3097                 Known.One &= Value;
3098                 Known.Zero &= ~Value;
3099                 continue;
3100               }
3101             }
3102             Known.One.clearAllBits();
3103             Known.Zero.clearAllBits();
3104             break;
3105           }
3106         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3107           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3108             const APInt &Value = CInt->getValue();
3109             Known.One = Value;
3110             Known.Zero = ~Value;
3111           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3112             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3113             Known.One = Value;
3114             Known.Zero = ~Value;
3115           }
3116         }
3117       }
3118     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3119       // If this is a ZEXTLoad and we are looking at the loaded value.
3120       EVT VT = LD->getMemoryVT();
3121       unsigned MemBits = VT.getScalarSizeInBits();
3122       Known.Zero.setBitsFrom(MemBits);
3123     } else if (const MDNode *Ranges = LD->getRanges()) {
3124       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3125         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3126     }
3127     break;
3128   }
3129   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3130     EVT InVT = Op.getOperand(0).getValueType();
3131     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3132     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3133     Known = Known.zext(BitWidth);
3134     break;
3135   }
3136   case ISD::ZERO_EXTEND: {
3137     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3138     Known = Known.zext(BitWidth);
3139     break;
3140   }
3141   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3142     EVT InVT = Op.getOperand(0).getValueType();
3143     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3144     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3145     // If the sign bit is known to be zero or one, then sext will extend
3146     // it to the top bits, else it will just zext.
3147     Known = Known.sext(BitWidth);
3148     break;
3149   }
3150   case ISD::SIGN_EXTEND: {
3151     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3152     // If the sign bit is known to be zero or one, then sext will extend
3153     // it to the top bits, else it will just zext.
3154     Known = Known.sext(BitWidth);
3155     break;
3156   }
3157   case ISD::ANY_EXTEND_VECTOR_INREG: {
3158     EVT InVT = Op.getOperand(0).getValueType();
3159     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3160     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3161     Known = Known.anyext(BitWidth);
3162     break;
3163   }
3164   case ISD::ANY_EXTEND: {
3165     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3166     Known = Known.anyext(BitWidth);
3167     break;
3168   }
3169   case ISD::TRUNCATE: {
3170     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3171     Known = Known.trunc(BitWidth);
3172     break;
3173   }
3174   case ISD::AssertZext: {
3175     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3176     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3177     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3178     Known.Zero |= (~InMask);
3179     Known.One  &= (~Known.Zero);
3180     break;
3181   }
3182   case ISD::AssertAlign: {
3183     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3184     assert(LogOfAlign != 0);
3185     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3186     // well as clearing one bits.
3187     Known.Zero.setLowBits(LogOfAlign);
3188     Known.One.clearLowBits(LogOfAlign);
3189     break;
3190   }
3191   case ISD::FGETSIGN:
3192     // All bits are zero except the low bit.
3193     Known.Zero.setBitsFrom(1);
3194     break;
3195   case ISD::USUBO:
3196   case ISD::SSUBO:
3197     if (Op.getResNo() == 1) {
3198       // If we know the result of a setcc has the top bits zero, use this info.
3199       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3200               TargetLowering::ZeroOrOneBooleanContent &&
3201           BitWidth > 1)
3202         Known.Zero.setBitsFrom(1);
3203       break;
3204     }
3205     LLVM_FALLTHROUGH;
3206   case ISD::SUB:
3207   case ISD::SUBC: {
3208     assert(Op.getResNo() == 0 &&
3209            "We only compute knownbits for the difference here.");
3210 
3211     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3212     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3213     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3214                                         Known, Known2);
3215     break;
3216   }
3217   case ISD::UADDO:
3218   case ISD::SADDO:
3219   case ISD::ADDCARRY:
3220     if (Op.getResNo() == 1) {
3221       // If we know the result of a setcc has the top bits zero, use this info.
3222       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3223               TargetLowering::ZeroOrOneBooleanContent &&
3224           BitWidth > 1)
3225         Known.Zero.setBitsFrom(1);
3226       break;
3227     }
3228     LLVM_FALLTHROUGH;
3229   case ISD::ADD:
3230   case ISD::ADDC:
3231   case ISD::ADDE: {
3232     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3233 
3234     // With ADDE and ADDCARRY, a carry bit may be added in.
3235     KnownBits Carry(1);
3236     if (Opcode == ISD::ADDE)
3237       // Can't track carry from glue, set carry to unknown.
3238       Carry.resetAll();
3239     else if (Opcode == ISD::ADDCARRY)
3240       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3241       // the trouble (how often will we find a known carry bit). And I haven't
3242       // tested this very much yet, but something like this might work:
3243       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3244       //   Carry = Carry.zextOrTrunc(1, false);
3245       Carry.resetAll();
3246     else
3247       Carry.setAllZero();
3248 
3249     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3250     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3251     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3252     break;
3253   }
3254   case ISD::SREM:
3255     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3256       const APInt &RA = Rem->getAPIntValue().abs();
3257       if (RA.isPowerOf2()) {
3258         APInt LowBits = RA - 1;
3259         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3260 
3261         // The low bits of the first operand are unchanged by the srem.
3262         Known.Zero = Known2.Zero & LowBits;
3263         Known.One = Known2.One & LowBits;
3264 
3265         // If the first operand is non-negative or has all low bits zero, then
3266         // the upper bits are all zero.
3267         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3268           Known.Zero |= ~LowBits;
3269 
3270         // If the first operand is negative and not all low bits are zero, then
3271         // the upper bits are all one.
3272         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3273           Known.One |= ~LowBits;
3274         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3275       }
3276     }
3277     break;
3278   case ISD::UREM: {
3279     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3280       const APInt &RA = Rem->getAPIntValue();
3281       if (RA.isPowerOf2()) {
3282         APInt LowBits = (RA - 1);
3283         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3284 
3285         // The upper bits are all zero, the lower ones are unchanged.
3286         Known.Zero = Known2.Zero | ~LowBits;
3287         Known.One = Known2.One & LowBits;
3288         break;
3289       }
3290     }
3291 
3292     // Since the result is less than or equal to either operand, any leading
3293     // zero bits in either operand must also exist in the result.
3294     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3295     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3296 
3297     uint32_t Leaders =
3298         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3299     Known.resetAll();
3300     Known.Zero.setHighBits(Leaders);
3301     break;
3302   }
3303   case ISD::EXTRACT_ELEMENT: {
3304     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3305     const unsigned Index = Op.getConstantOperandVal(1);
3306     const unsigned EltBitWidth = Op.getValueSizeInBits();
3307 
3308     // Remove low part of known bits mask
3309     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3310     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3311 
3312     // Remove high part of known bit mask
3313     Known = Known.trunc(EltBitWidth);
3314     break;
3315   }
3316   case ISD::EXTRACT_VECTOR_ELT: {
3317     SDValue InVec = Op.getOperand(0);
3318     SDValue EltNo = Op.getOperand(1);
3319     EVT VecVT = InVec.getValueType();
3320     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3321     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3322 
3323     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3324     // anything about the extended bits.
3325     if (BitWidth > EltBitWidth)
3326       Known = Known.trunc(EltBitWidth);
3327 
3328     // If we know the element index, just demand that vector element, else for
3329     // an unknown element index, ignore DemandedElts and demand them all.
3330     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3331     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3332     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3333       DemandedSrcElts =
3334           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3335 
3336     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3337     if (BitWidth > EltBitWidth)
3338       Known = Known.anyext(BitWidth);
3339     break;
3340   }
3341   case ISD::INSERT_VECTOR_ELT: {
3342     // If we know the element index, split the demand between the
3343     // source vector and the inserted element, otherwise assume we need
3344     // the original demanded vector elements and the value.
3345     SDValue InVec = Op.getOperand(0);
3346     SDValue InVal = Op.getOperand(1);
3347     SDValue EltNo = Op.getOperand(2);
3348     bool DemandedVal = true;
3349     APInt DemandedVecElts = DemandedElts;
3350     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3351     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3352       unsigned EltIdx = CEltNo->getZExtValue();
3353       DemandedVal = !!DemandedElts[EltIdx];
3354       DemandedVecElts.clearBit(EltIdx);
3355     }
3356     Known.One.setAllBits();
3357     Known.Zero.setAllBits();
3358     if (DemandedVal) {
3359       Known2 = computeKnownBits(InVal, Depth + 1);
3360       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3361       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3362     }
3363     if (!!DemandedVecElts) {
3364       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3365       Known.One &= Known2.One;
3366       Known.Zero &= Known2.Zero;
3367     }
3368     break;
3369   }
3370   case ISD::BITREVERSE: {
3371     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3372     Known = Known2.reverseBits();
3373     break;
3374   }
3375   case ISD::BSWAP: {
3376     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3377     Known = Known2.byteSwap();
3378     break;
3379   }
3380   case ISD::ABS: {
3381     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3382     Known = Known2.abs();
3383     break;
3384   }
3385   case ISD::UMIN: {
3386     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3387     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3388     Known = KnownBits::umin(Known, Known2);
3389     break;
3390   }
3391   case ISD::UMAX: {
3392     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3393     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3394     Known = KnownBits::umax(Known, Known2);
3395     break;
3396   }
3397   case ISD::SMIN:
3398   case ISD::SMAX: {
3399     // If we have a clamp pattern, we know that the number of sign bits will be
3400     // the minimum of the clamp min/max range.
3401     bool IsMax = (Opcode == ISD::SMAX);
3402     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3403     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3404       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3405         CstHigh =
3406             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3407     if (CstLow && CstHigh) {
3408       if (!IsMax)
3409         std::swap(CstLow, CstHigh);
3410 
3411       const APInt &ValueLow = CstLow->getAPIntValue();
3412       const APInt &ValueHigh = CstHigh->getAPIntValue();
3413       if (ValueLow.sle(ValueHigh)) {
3414         unsigned LowSignBits = ValueLow.getNumSignBits();
3415         unsigned HighSignBits = ValueHigh.getNumSignBits();
3416         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3417         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3418           Known.One.setHighBits(MinSignBits);
3419           break;
3420         }
3421         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3422           Known.Zero.setHighBits(MinSignBits);
3423           break;
3424         }
3425       }
3426     }
3427 
3428     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3429     if (Known.isUnknown()) break; // Early-out
3430     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3431     if (IsMax)
3432       Known = KnownBits::smax(Known, Known2);
3433     else
3434       Known = KnownBits::smin(Known, Known2);
3435     break;
3436   }
3437   case ISD::FrameIndex:
3438   case ISD::TargetFrameIndex:
3439     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3440                                        Known, getMachineFunction());
3441     break;
3442 
3443   default:
3444     if (Opcode < ISD::BUILTIN_OP_END)
3445       break;
3446     LLVM_FALLTHROUGH;
3447   case ISD::INTRINSIC_WO_CHAIN:
3448   case ISD::INTRINSIC_W_CHAIN:
3449   case ISD::INTRINSIC_VOID:
3450     // Allow the target to implement this method for its nodes.
3451     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3452     break;
3453   }
3454 
3455   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3456   return Known;
3457 }
3458 
3459 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3460                                                              SDValue N1) const {
3461   // X + 0 never overflow
3462   if (isNullConstant(N1))
3463     return OFK_Never;
3464 
3465   KnownBits N1Known = computeKnownBits(N1);
3466   if (N1Known.Zero.getBoolValue()) {
3467     KnownBits N0Known = computeKnownBits(N0);
3468 
3469     bool overflow;
3470     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3471     if (!overflow)
3472       return OFK_Never;
3473   }
3474 
3475   // mulhi + 1 never overflow
3476   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3477       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3478     return OFK_Never;
3479 
3480   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3481     KnownBits N0Known = computeKnownBits(N0);
3482 
3483     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3484       return OFK_Never;
3485   }
3486 
3487   return OFK_Sometime;
3488 }
3489 
3490 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3491   EVT OpVT = Val.getValueType();
3492   unsigned BitWidth = OpVT.getScalarSizeInBits();
3493 
3494   // Is the constant a known power of 2?
3495   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3496     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3497 
3498   // A left-shift of a constant one will have exactly one bit set because
3499   // shifting the bit off the end is undefined.
3500   if (Val.getOpcode() == ISD::SHL) {
3501     auto *C = isConstOrConstSplat(Val.getOperand(0));
3502     if (C && C->getAPIntValue() == 1)
3503       return true;
3504   }
3505 
3506   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3507   // one bit set.
3508   if (Val.getOpcode() == ISD::SRL) {
3509     auto *C = isConstOrConstSplat(Val.getOperand(0));
3510     if (C && C->getAPIntValue().isSignMask())
3511       return true;
3512   }
3513 
3514   // Are all operands of a build vector constant powers of two?
3515   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3516     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3517           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3518             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3519           return false;
3520         }))
3521       return true;
3522 
3523   // More could be done here, though the above checks are enough
3524   // to handle some common cases.
3525 
3526   // Fall back to computeKnownBits to catch other known cases.
3527   KnownBits Known = computeKnownBits(Val);
3528   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3529 }
3530 
3531 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3532   EVT VT = Op.getValueType();
3533 
3534   // TODO: Assume we don't know anything for now.
3535   if (VT.isScalableVector())
3536     return 1;
3537 
3538   APInt DemandedElts = VT.isVector()
3539                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3540                            : APInt(1, 1);
3541   return ComputeNumSignBits(Op, DemandedElts, Depth);
3542 }
3543 
3544 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3545                                           unsigned Depth) const {
3546   EVT VT = Op.getValueType();
3547   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3548   unsigned VTBits = VT.getScalarSizeInBits();
3549   unsigned NumElts = DemandedElts.getBitWidth();
3550   unsigned Tmp, Tmp2;
3551   unsigned FirstAnswer = 1;
3552 
3553   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3554     const APInt &Val = C->getAPIntValue();
3555     return Val.getNumSignBits();
3556   }
3557 
3558   if (Depth >= MaxRecursionDepth)
3559     return 1;  // Limit search depth.
3560 
3561   if (!DemandedElts || VT.isScalableVector())
3562     return 1;  // No demanded elts, better to assume we don't know anything.
3563 
3564   unsigned Opcode = Op.getOpcode();
3565   switch (Opcode) {
3566   default: break;
3567   case ISD::AssertSext:
3568     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3569     return VTBits-Tmp+1;
3570   case ISD::AssertZext:
3571     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3572     return VTBits-Tmp;
3573 
3574   case ISD::BUILD_VECTOR:
3575     Tmp = VTBits;
3576     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3577       if (!DemandedElts[i])
3578         continue;
3579 
3580       SDValue SrcOp = Op.getOperand(i);
3581       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3582 
3583       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3584       if (SrcOp.getValueSizeInBits() != VTBits) {
3585         assert(SrcOp.getValueSizeInBits() > VTBits &&
3586                "Expected BUILD_VECTOR implicit truncation");
3587         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3588         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3589       }
3590       Tmp = std::min(Tmp, Tmp2);
3591     }
3592     return Tmp;
3593 
3594   case ISD::VECTOR_SHUFFLE: {
3595     // Collect the minimum number of sign bits that are shared by every vector
3596     // element referenced by the shuffle.
3597     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3598     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3599     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3600     for (unsigned i = 0; i != NumElts; ++i) {
3601       int M = SVN->getMaskElt(i);
3602       if (!DemandedElts[i])
3603         continue;
3604       // For UNDEF elements, we don't know anything about the common state of
3605       // the shuffle result.
3606       if (M < 0)
3607         return 1;
3608       if ((unsigned)M < NumElts)
3609         DemandedLHS.setBit((unsigned)M % NumElts);
3610       else
3611         DemandedRHS.setBit((unsigned)M % NumElts);
3612     }
3613     Tmp = std::numeric_limits<unsigned>::max();
3614     if (!!DemandedLHS)
3615       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3616     if (!!DemandedRHS) {
3617       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3618       Tmp = std::min(Tmp, Tmp2);
3619     }
3620     // If we don't know anything, early out and try computeKnownBits fall-back.
3621     if (Tmp == 1)
3622       break;
3623     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3624     return Tmp;
3625   }
3626 
3627   case ISD::BITCAST: {
3628     SDValue N0 = Op.getOperand(0);
3629     EVT SrcVT = N0.getValueType();
3630     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3631 
3632     // Ignore bitcasts from unsupported types..
3633     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3634       break;
3635 
3636     // Fast handling of 'identity' bitcasts.
3637     if (VTBits == SrcBits)
3638       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3639 
3640     bool IsLE = getDataLayout().isLittleEndian();
3641 
3642     // Bitcast 'large element' scalar/vector to 'small element' vector.
3643     if ((SrcBits % VTBits) == 0) {
3644       assert(VT.isVector() && "Expected bitcast to vector");
3645 
3646       unsigned Scale = SrcBits / VTBits;
3647       APInt SrcDemandedElts(NumElts / Scale, 0);
3648       for (unsigned i = 0; i != NumElts; ++i)
3649         if (DemandedElts[i])
3650           SrcDemandedElts.setBit(i / Scale);
3651 
3652       // Fast case - sign splat can be simply split across the small elements.
3653       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3654       if (Tmp == SrcBits)
3655         return VTBits;
3656 
3657       // Slow case - determine how far the sign extends into each sub-element.
3658       Tmp2 = VTBits;
3659       for (unsigned i = 0; i != NumElts; ++i)
3660         if (DemandedElts[i]) {
3661           unsigned SubOffset = i % Scale;
3662           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3663           SubOffset = SubOffset * VTBits;
3664           if (Tmp <= SubOffset)
3665             return 1;
3666           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3667         }
3668       return Tmp2;
3669     }
3670     break;
3671   }
3672 
3673   case ISD::SIGN_EXTEND:
3674     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3675     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3676   case ISD::SIGN_EXTEND_INREG:
3677     // Max of the input and what this extends.
3678     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3679     Tmp = VTBits-Tmp+1;
3680     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3681     return std::max(Tmp, Tmp2);
3682   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3683     SDValue Src = Op.getOperand(0);
3684     EVT SrcVT = Src.getValueType();
3685     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3686     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3687     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3688   }
3689   case ISD::SRA:
3690     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3691     // SRA X, C -> adds C sign bits.
3692     if (const APInt *ShAmt =
3693             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3694       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3695     return Tmp;
3696   case ISD::SHL:
3697     if (const APInt *ShAmt =
3698             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3699       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3700       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3701       if (ShAmt->ult(Tmp))
3702         return Tmp - ShAmt->getZExtValue();
3703     }
3704     break;
3705   case ISD::AND:
3706   case ISD::OR:
3707   case ISD::XOR:    // NOT is handled here.
3708     // Logical binary ops preserve the number of sign bits at the worst.
3709     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3710     if (Tmp != 1) {
3711       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3712       FirstAnswer = std::min(Tmp, Tmp2);
3713       // We computed what we know about the sign bits as our first
3714       // answer. Now proceed to the generic code that uses
3715       // computeKnownBits, and pick whichever answer is better.
3716     }
3717     break;
3718 
3719   case ISD::SELECT:
3720   case ISD::VSELECT:
3721     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3722     if (Tmp == 1) return 1;  // Early out.
3723     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3724     return std::min(Tmp, Tmp2);
3725   case ISD::SELECT_CC:
3726     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3727     if (Tmp == 1) return 1;  // Early out.
3728     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3729     return std::min(Tmp, Tmp2);
3730 
3731   case ISD::SMIN:
3732   case ISD::SMAX: {
3733     // If we have a clamp pattern, we know that the number of sign bits will be
3734     // the minimum of the clamp min/max range.
3735     bool IsMax = (Opcode == ISD::SMAX);
3736     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3737     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3738       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3739         CstHigh =
3740             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3741     if (CstLow && CstHigh) {
3742       if (!IsMax)
3743         std::swap(CstLow, CstHigh);
3744       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3745         Tmp = CstLow->getAPIntValue().getNumSignBits();
3746         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3747         return std::min(Tmp, Tmp2);
3748       }
3749     }
3750 
3751     // Fallback - just get the minimum number of sign bits of the operands.
3752     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3753     if (Tmp == 1)
3754       return 1;  // Early out.
3755     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3756     return std::min(Tmp, Tmp2);
3757   }
3758   case ISD::UMIN:
3759   case ISD::UMAX:
3760     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3761     if (Tmp == 1)
3762       return 1;  // Early out.
3763     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3764     return std::min(Tmp, Tmp2);
3765   case ISD::SADDO:
3766   case ISD::UADDO:
3767   case ISD::SSUBO:
3768   case ISD::USUBO:
3769   case ISD::SMULO:
3770   case ISD::UMULO:
3771     if (Op.getResNo() != 1)
3772       break;
3773     // The boolean result conforms to getBooleanContents.  Fall through.
3774     // If setcc returns 0/-1, all bits are sign bits.
3775     // We know that we have an integer-based boolean since these operations
3776     // are only available for integer.
3777     if (TLI->getBooleanContents(VT.isVector(), false) ==
3778         TargetLowering::ZeroOrNegativeOneBooleanContent)
3779       return VTBits;
3780     break;
3781   case ISD::SETCC:
3782   case ISD::STRICT_FSETCC:
3783   case ISD::STRICT_FSETCCS: {
3784     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3785     // If setcc returns 0/-1, all bits are sign bits.
3786     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3787         TargetLowering::ZeroOrNegativeOneBooleanContent)
3788       return VTBits;
3789     break;
3790   }
3791   case ISD::ROTL:
3792   case ISD::ROTR:
3793     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3794 
3795     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3796     if (Tmp == VTBits)
3797       return VTBits;
3798 
3799     if (ConstantSDNode *C =
3800             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3801       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3802 
3803       // Handle rotate right by N like a rotate left by 32-N.
3804       if (Opcode == ISD::ROTR)
3805         RotAmt = (VTBits - RotAmt) % VTBits;
3806 
3807       // If we aren't rotating out all of the known-in sign bits, return the
3808       // number that are left.  This handles rotl(sext(x), 1) for example.
3809       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3810     }
3811     break;
3812   case ISD::ADD:
3813   case ISD::ADDC:
3814     // Add can have at most one carry bit.  Thus we know that the output
3815     // is, at worst, one more bit than the inputs.
3816     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3817     if (Tmp == 1) return 1; // Early out.
3818 
3819     // Special case decrementing a value (ADD X, -1):
3820     if (ConstantSDNode *CRHS =
3821             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3822       if (CRHS->isAllOnesValue()) {
3823         KnownBits Known =
3824             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3825 
3826         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3827         // sign bits set.
3828         if ((Known.Zero | 1).isAllOnesValue())
3829           return VTBits;
3830 
3831         // If we are subtracting one from a positive number, there is no carry
3832         // out of the result.
3833         if (Known.isNonNegative())
3834           return Tmp;
3835       }
3836 
3837     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3838     if (Tmp2 == 1) return 1; // Early out.
3839     return std::min(Tmp, Tmp2) - 1;
3840   case ISD::SUB:
3841     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3842     if (Tmp2 == 1) return 1; // Early out.
3843 
3844     // Handle NEG.
3845     if (ConstantSDNode *CLHS =
3846             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3847       if (CLHS->isNullValue()) {
3848         KnownBits Known =
3849             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3850         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3851         // sign bits set.
3852         if ((Known.Zero | 1).isAllOnesValue())
3853           return VTBits;
3854 
3855         // If the input is known to be positive (the sign bit is known clear),
3856         // the output of the NEG has the same number of sign bits as the input.
3857         if (Known.isNonNegative())
3858           return Tmp2;
3859 
3860         // Otherwise, we treat this like a SUB.
3861       }
3862 
3863     // Sub can have at most one carry bit.  Thus we know that the output
3864     // is, at worst, one more bit than the inputs.
3865     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3866     if (Tmp == 1) return 1; // Early out.
3867     return std::min(Tmp, Tmp2) - 1;
3868   case ISD::MUL: {
3869     // The output of the Mul can be at most twice the valid bits in the inputs.
3870     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3871     if (SignBitsOp0 == 1)
3872       break;
3873     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3874     if (SignBitsOp1 == 1)
3875       break;
3876     unsigned OutValidBits =
3877         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3878     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3879   }
3880   case ISD::TRUNCATE: {
3881     // Check if the sign bits of source go down as far as the truncated value.
3882     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3883     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3884     if (NumSrcSignBits > (NumSrcBits - VTBits))
3885       return NumSrcSignBits - (NumSrcBits - VTBits);
3886     break;
3887   }
3888   case ISD::EXTRACT_ELEMENT: {
3889     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3890     const int BitWidth = Op.getValueSizeInBits();
3891     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3892 
3893     // Get reverse index (starting from 1), Op1 value indexes elements from
3894     // little end. Sign starts at big end.
3895     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3896 
3897     // If the sign portion ends in our element the subtraction gives correct
3898     // result. Otherwise it gives either negative or > bitwidth result
3899     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3900   }
3901   case ISD::INSERT_VECTOR_ELT: {
3902     // If we know the element index, split the demand between the
3903     // source vector and the inserted element, otherwise assume we need
3904     // the original demanded vector elements and the value.
3905     SDValue InVec = Op.getOperand(0);
3906     SDValue InVal = Op.getOperand(1);
3907     SDValue EltNo = Op.getOperand(2);
3908     bool DemandedVal = true;
3909     APInt DemandedVecElts = DemandedElts;
3910     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3911     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3912       unsigned EltIdx = CEltNo->getZExtValue();
3913       DemandedVal = !!DemandedElts[EltIdx];
3914       DemandedVecElts.clearBit(EltIdx);
3915     }
3916     Tmp = std::numeric_limits<unsigned>::max();
3917     if (DemandedVal) {
3918       // TODO - handle implicit truncation of inserted elements.
3919       if (InVal.getScalarValueSizeInBits() != VTBits)
3920         break;
3921       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3922       Tmp = std::min(Tmp, Tmp2);
3923     }
3924     if (!!DemandedVecElts) {
3925       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3926       Tmp = std::min(Tmp, Tmp2);
3927     }
3928     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3929     return Tmp;
3930   }
3931   case ISD::EXTRACT_VECTOR_ELT: {
3932     SDValue InVec = Op.getOperand(0);
3933     SDValue EltNo = Op.getOperand(1);
3934     EVT VecVT = InVec.getValueType();
3935     const unsigned BitWidth = Op.getValueSizeInBits();
3936     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3937     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3938 
3939     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3940     // anything about sign bits. But if the sizes match we can derive knowledge
3941     // about sign bits from the vector operand.
3942     if (BitWidth != EltBitWidth)
3943       break;
3944 
3945     // If we know the element index, just demand that vector element, else for
3946     // an unknown element index, ignore DemandedElts and demand them all.
3947     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3948     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3949     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3950       DemandedSrcElts =
3951           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3952 
3953     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3954   }
3955   case ISD::EXTRACT_SUBVECTOR: {
3956     // Offset the demanded elts by the subvector index.
3957     SDValue Src = Op.getOperand(0);
3958     // Bail until we can represent demanded elements for scalable vectors.
3959     if (Src.getValueType().isScalableVector())
3960       break;
3961     uint64_t Idx = Op.getConstantOperandVal(1);
3962     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3963     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3964     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3965   }
3966   case ISD::CONCAT_VECTORS: {
3967     // Determine the minimum number of sign bits across all demanded
3968     // elts of the input vectors. Early out if the result is already 1.
3969     Tmp = std::numeric_limits<unsigned>::max();
3970     EVT SubVectorVT = Op.getOperand(0).getValueType();
3971     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3972     unsigned NumSubVectors = Op.getNumOperands();
3973     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3974       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3975       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3976       if (!DemandedSub)
3977         continue;
3978       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3979       Tmp = std::min(Tmp, Tmp2);
3980     }
3981     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3982     return Tmp;
3983   }
3984   case ISD::INSERT_SUBVECTOR: {
3985     // Demand any elements from the subvector and the remainder from the src its
3986     // inserted into.
3987     SDValue Src = Op.getOperand(0);
3988     SDValue Sub = Op.getOperand(1);
3989     uint64_t Idx = Op.getConstantOperandVal(2);
3990     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3991     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3992     APInt DemandedSrcElts = DemandedElts;
3993     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3994 
3995     Tmp = std::numeric_limits<unsigned>::max();
3996     if (!!DemandedSubElts) {
3997       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3998       if (Tmp == 1)
3999         return 1; // early-out
4000     }
4001     if (!!DemandedSrcElts) {
4002       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4003       Tmp = std::min(Tmp, Tmp2);
4004     }
4005     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4006     return Tmp;
4007   }
4008   }
4009 
4010   // If we are looking at the loaded value of the SDNode.
4011   if (Op.getResNo() == 0) {
4012     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4013     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4014       unsigned ExtType = LD->getExtensionType();
4015       switch (ExtType) {
4016       default: break;
4017       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4018         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4019         return VTBits - Tmp + 1;
4020       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4021         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4022         return VTBits - Tmp;
4023       case ISD::NON_EXTLOAD:
4024         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4025           // We only need to handle vectors - computeKnownBits should handle
4026           // scalar cases.
4027           Type *CstTy = Cst->getType();
4028           if (CstTy->isVectorTy() &&
4029               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4030             Tmp = VTBits;
4031             for (unsigned i = 0; i != NumElts; ++i) {
4032               if (!DemandedElts[i])
4033                 continue;
4034               if (Constant *Elt = Cst->getAggregateElement(i)) {
4035                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4036                   const APInt &Value = CInt->getValue();
4037                   Tmp = std::min(Tmp, Value.getNumSignBits());
4038                   continue;
4039                 }
4040                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4041                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4042                   Tmp = std::min(Tmp, Value.getNumSignBits());
4043                   continue;
4044                 }
4045               }
4046               // Unknown type. Conservatively assume no bits match sign bit.
4047               return 1;
4048             }
4049             return Tmp;
4050           }
4051         }
4052         break;
4053       }
4054     }
4055   }
4056 
4057   // Allow the target to implement this method for its nodes.
4058   if (Opcode >= ISD::BUILTIN_OP_END ||
4059       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4060       Opcode == ISD::INTRINSIC_W_CHAIN ||
4061       Opcode == ISD::INTRINSIC_VOID) {
4062     unsigned NumBits =
4063         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4064     if (NumBits > 1)
4065       FirstAnswer = std::max(FirstAnswer, NumBits);
4066   }
4067 
4068   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4069   // use this information.
4070   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4071 
4072   APInt Mask;
4073   if (Known.isNonNegative()) {        // sign bit is 0
4074     Mask = Known.Zero;
4075   } else if (Known.isNegative()) {  // sign bit is 1;
4076     Mask = Known.One;
4077   } else {
4078     // Nothing known.
4079     return FirstAnswer;
4080   }
4081 
4082   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4083   // the number of identical bits in the top of the input value.
4084   Mask <<= Mask.getBitWidth()-VTBits;
4085   return std::max(FirstAnswer, Mask.countLeadingOnes());
4086 }
4087 
4088 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4089   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4090       !isa<ConstantSDNode>(Op.getOperand(1)))
4091     return false;
4092 
4093   if (Op.getOpcode() == ISD::OR &&
4094       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4095     return false;
4096 
4097   return true;
4098 }
4099 
4100 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4101   // If we're told that NaNs won't happen, assume they won't.
4102   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4103     return true;
4104 
4105   if (Depth >= MaxRecursionDepth)
4106     return false; // Limit search depth.
4107 
4108   // TODO: Handle vectors.
4109   // If the value is a constant, we can obviously see if it is a NaN or not.
4110   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4111     return !C->getValueAPF().isNaN() ||
4112            (SNaN && !C->getValueAPF().isSignaling());
4113   }
4114 
4115   unsigned Opcode = Op.getOpcode();
4116   switch (Opcode) {
4117   case ISD::FADD:
4118   case ISD::FSUB:
4119   case ISD::FMUL:
4120   case ISD::FDIV:
4121   case ISD::FREM:
4122   case ISD::FSIN:
4123   case ISD::FCOS: {
4124     if (SNaN)
4125       return true;
4126     // TODO: Need isKnownNeverInfinity
4127     return false;
4128   }
4129   case ISD::FCANONICALIZE:
4130   case ISD::FEXP:
4131   case ISD::FEXP2:
4132   case ISD::FTRUNC:
4133   case ISD::FFLOOR:
4134   case ISD::FCEIL:
4135   case ISD::FROUND:
4136   case ISD::FROUNDEVEN:
4137   case ISD::FRINT:
4138   case ISD::FNEARBYINT: {
4139     if (SNaN)
4140       return true;
4141     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4142   }
4143   case ISD::FABS:
4144   case ISD::FNEG:
4145   case ISD::FCOPYSIGN: {
4146     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4147   }
4148   case ISD::SELECT:
4149     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4150            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4151   case ISD::FP_EXTEND:
4152   case ISD::FP_ROUND: {
4153     if (SNaN)
4154       return true;
4155     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4156   }
4157   case ISD::SINT_TO_FP:
4158   case ISD::UINT_TO_FP:
4159     return true;
4160   case ISD::FMA:
4161   case ISD::FMAD: {
4162     if (SNaN)
4163       return true;
4164     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4165            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4166            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4167   }
4168   case ISD::FSQRT: // Need is known positive
4169   case ISD::FLOG:
4170   case ISD::FLOG2:
4171   case ISD::FLOG10:
4172   case ISD::FPOWI:
4173   case ISD::FPOW: {
4174     if (SNaN)
4175       return true;
4176     // TODO: Refine on operand
4177     return false;
4178   }
4179   case ISD::FMINNUM:
4180   case ISD::FMAXNUM: {
4181     // Only one needs to be known not-nan, since it will be returned if the
4182     // other ends up being one.
4183     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4184            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4185   }
4186   case ISD::FMINNUM_IEEE:
4187   case ISD::FMAXNUM_IEEE: {
4188     if (SNaN)
4189       return true;
4190     // This can return a NaN if either operand is an sNaN, or if both operands
4191     // are NaN.
4192     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4193             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4194            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4195             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4196   }
4197   case ISD::FMINIMUM:
4198   case ISD::FMAXIMUM: {
4199     // TODO: Does this quiet or return the origina NaN as-is?
4200     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4201            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4202   }
4203   case ISD::EXTRACT_VECTOR_ELT: {
4204     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4205   }
4206   default:
4207     if (Opcode >= ISD::BUILTIN_OP_END ||
4208         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4209         Opcode == ISD::INTRINSIC_W_CHAIN ||
4210         Opcode == ISD::INTRINSIC_VOID) {
4211       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4212     }
4213 
4214     return false;
4215   }
4216 }
4217 
4218 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4219   assert(Op.getValueType().isFloatingPoint() &&
4220          "Floating point type expected");
4221 
4222   // If the value is a constant, we can obviously see if it is a zero or not.
4223   // TODO: Add BuildVector support.
4224   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4225     return !C->isZero();
4226   return false;
4227 }
4228 
4229 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4230   assert(!Op.getValueType().isFloatingPoint() &&
4231          "Floating point types unsupported - use isKnownNeverZeroFloat");
4232 
4233   // If the value is a constant, we can obviously see if it is a zero or not.
4234   if (ISD::matchUnaryPredicate(
4235           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4236     return true;
4237 
4238   // TODO: Recognize more cases here.
4239   switch (Op.getOpcode()) {
4240   default: break;
4241   case ISD::OR:
4242     if (isKnownNeverZero(Op.getOperand(1)) ||
4243         isKnownNeverZero(Op.getOperand(0)))
4244       return true;
4245     break;
4246   }
4247 
4248   return false;
4249 }
4250 
4251 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4252   // Check the obvious case.
4253   if (A == B) return true;
4254 
4255   // For for negative and positive zero.
4256   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4257     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4258       if (CA->isZero() && CB->isZero()) return true;
4259 
4260   // Otherwise they may not be equal.
4261   return false;
4262 }
4263 
4264 // FIXME: unify with llvm::haveNoCommonBitsSet.
4265 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4266 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4267   assert(A.getValueType() == B.getValueType() &&
4268          "Values must have the same type");
4269   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4270 }
4271 
4272 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4273                                 ArrayRef<SDValue> Ops,
4274                                 SelectionDAG &DAG) {
4275   int NumOps = Ops.size();
4276   assert(NumOps != 0 && "Can't build an empty vector!");
4277   assert(!VT.isScalableVector() &&
4278          "BUILD_VECTOR cannot be used with scalable types");
4279   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4280          "Incorrect element count in BUILD_VECTOR!");
4281 
4282   // BUILD_VECTOR of UNDEFs is UNDEF.
4283   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4284     return DAG.getUNDEF(VT);
4285 
4286   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4287   SDValue IdentitySrc;
4288   bool IsIdentity = true;
4289   for (int i = 0; i != NumOps; ++i) {
4290     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4291         Ops[i].getOperand(0).getValueType() != VT ||
4292         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4293         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4294         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4295       IsIdentity = false;
4296       break;
4297     }
4298     IdentitySrc = Ops[i].getOperand(0);
4299   }
4300   if (IsIdentity)
4301     return IdentitySrc;
4302 
4303   return SDValue();
4304 }
4305 
4306 /// Try to simplify vector concatenation to an input value, undef, or build
4307 /// vector.
4308 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4309                                   ArrayRef<SDValue> Ops,
4310                                   SelectionDAG &DAG) {
4311   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4312   assert(llvm::all_of(Ops,
4313                       [Ops](SDValue Op) {
4314                         return Ops[0].getValueType() == Op.getValueType();
4315                       }) &&
4316          "Concatenation of vectors with inconsistent value types!");
4317   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4318              VT.getVectorElementCount() &&
4319          "Incorrect element count in vector concatenation!");
4320 
4321   if (Ops.size() == 1)
4322     return Ops[0];
4323 
4324   // Concat of UNDEFs is UNDEF.
4325   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4326     return DAG.getUNDEF(VT);
4327 
4328   // Scan the operands and look for extract operations from a single source
4329   // that correspond to insertion at the same location via this concatenation:
4330   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4331   SDValue IdentitySrc;
4332   bool IsIdentity = true;
4333   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4334     SDValue Op = Ops[i];
4335     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4336     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4337         Op.getOperand(0).getValueType() != VT ||
4338         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4339         Op.getConstantOperandVal(1) != IdentityIndex) {
4340       IsIdentity = false;
4341       break;
4342     }
4343     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4344            "Unexpected identity source vector for concat of extracts");
4345     IdentitySrc = Op.getOperand(0);
4346   }
4347   if (IsIdentity) {
4348     assert(IdentitySrc && "Failed to set source vector of extracts");
4349     return IdentitySrc;
4350   }
4351 
4352   // The code below this point is only designed to work for fixed width
4353   // vectors, so we bail out for now.
4354   if (VT.isScalableVector())
4355     return SDValue();
4356 
4357   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4358   // simplified to one big BUILD_VECTOR.
4359   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4360   EVT SVT = VT.getScalarType();
4361   SmallVector<SDValue, 16> Elts;
4362   for (SDValue Op : Ops) {
4363     EVT OpVT = Op.getValueType();
4364     if (Op.isUndef())
4365       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4366     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4367       Elts.append(Op->op_begin(), Op->op_end());
4368     else
4369       return SDValue();
4370   }
4371 
4372   // BUILD_VECTOR requires all inputs to be of the same type, find the
4373   // maximum type and extend them all.
4374   for (SDValue Op : Elts)
4375     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4376 
4377   if (SVT.bitsGT(VT.getScalarType())) {
4378     for (SDValue &Op : Elts) {
4379       if (Op.isUndef())
4380         Op = DAG.getUNDEF(SVT);
4381       else
4382         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4383                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4384                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4385     }
4386   }
4387 
4388   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4389   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4390   return V;
4391 }
4392 
4393 /// Gets or creates the specified node.
4394 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4395   FoldingSetNodeID ID;
4396   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4397   void *IP = nullptr;
4398   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4399     return SDValue(E, 0);
4400 
4401   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4402                               getVTList(VT));
4403   CSEMap.InsertNode(N, IP);
4404 
4405   InsertNode(N);
4406   SDValue V = SDValue(N, 0);
4407   NewSDValueDbgMsg(V, "Creating new node: ", this);
4408   return V;
4409 }
4410 
4411 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4412                               SDValue Operand) {
4413   SDNodeFlags Flags;
4414   if (Inserter)
4415     Flags = Inserter->getFlags();
4416   return getNode(Opcode, DL, VT, Operand, Flags);
4417 }
4418 
4419 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4420                               SDValue Operand, const SDNodeFlags Flags) {
4421   // Constant fold unary operations with an integer constant operand. Even
4422   // opaque constant will be folded, because the folding of unary operations
4423   // doesn't create new constants with different values. Nevertheless, the
4424   // opaque flag is preserved during folding to prevent future folding with
4425   // other constants.
4426   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4427     const APInt &Val = C->getAPIntValue();
4428     switch (Opcode) {
4429     default: break;
4430     case ISD::SIGN_EXTEND:
4431       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4432                          C->isTargetOpcode(), C->isOpaque());
4433     case ISD::TRUNCATE:
4434       if (C->isOpaque())
4435         break;
4436       LLVM_FALLTHROUGH;
4437     case ISD::ANY_EXTEND:
4438     case ISD::ZERO_EXTEND:
4439       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4440                          C->isTargetOpcode(), C->isOpaque());
4441     case ISD::UINT_TO_FP:
4442     case ISD::SINT_TO_FP: {
4443       APFloat apf(EVTToAPFloatSemantics(VT),
4444                   APInt::getNullValue(VT.getSizeInBits()));
4445       (void)apf.convertFromAPInt(Val,
4446                                  Opcode==ISD::SINT_TO_FP,
4447                                  APFloat::rmNearestTiesToEven);
4448       return getConstantFP(apf, DL, VT);
4449     }
4450     case ISD::BITCAST:
4451       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4452         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4453       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4454         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4455       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4456         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4457       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4458         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4459       break;
4460     case ISD::ABS:
4461       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4462                          C->isOpaque());
4463     case ISD::BITREVERSE:
4464       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4465                          C->isOpaque());
4466     case ISD::BSWAP:
4467       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4468                          C->isOpaque());
4469     case ISD::CTPOP:
4470       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4471                          C->isOpaque());
4472     case ISD::CTLZ:
4473     case ISD::CTLZ_ZERO_UNDEF:
4474       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4475                          C->isOpaque());
4476     case ISD::CTTZ:
4477     case ISD::CTTZ_ZERO_UNDEF:
4478       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4479                          C->isOpaque());
4480     case ISD::FP16_TO_FP: {
4481       bool Ignored;
4482       APFloat FPV(APFloat::IEEEhalf(),
4483                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4484 
4485       // This can return overflow, underflow, or inexact; we don't care.
4486       // FIXME need to be more flexible about rounding mode.
4487       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4488                         APFloat::rmNearestTiesToEven, &Ignored);
4489       return getConstantFP(FPV, DL, VT);
4490     }
4491     }
4492   }
4493 
4494   // Constant fold unary operations with a floating point constant operand.
4495   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4496     APFloat V = C->getValueAPF();    // make copy
4497     switch (Opcode) {
4498     case ISD::FNEG:
4499       V.changeSign();
4500       return getConstantFP(V, DL, VT);
4501     case ISD::FABS:
4502       V.clearSign();
4503       return getConstantFP(V, DL, VT);
4504     case ISD::FCEIL: {
4505       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4506       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4507         return getConstantFP(V, DL, VT);
4508       break;
4509     }
4510     case ISD::FTRUNC: {
4511       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4512       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4513         return getConstantFP(V, DL, VT);
4514       break;
4515     }
4516     case ISD::FFLOOR: {
4517       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4518       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4519         return getConstantFP(V, DL, VT);
4520       break;
4521     }
4522     case ISD::FP_EXTEND: {
4523       bool ignored;
4524       // This can return overflow, underflow, or inexact; we don't care.
4525       // FIXME need to be more flexible about rounding mode.
4526       (void)V.convert(EVTToAPFloatSemantics(VT),
4527                       APFloat::rmNearestTiesToEven, &ignored);
4528       return getConstantFP(V, DL, VT);
4529     }
4530     case ISD::FP_TO_SINT:
4531     case ISD::FP_TO_UINT: {
4532       bool ignored;
4533       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4534       // FIXME need to be more flexible about rounding mode.
4535       APFloat::opStatus s =
4536           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4537       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4538         break;
4539       return getConstant(IntVal, DL, VT);
4540     }
4541     case ISD::BITCAST:
4542       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4543         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4544       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4545         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4546       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4547         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4548       break;
4549     case ISD::FP_TO_FP16: {
4550       bool Ignored;
4551       // This can return overflow, underflow, or inexact; we don't care.
4552       // FIXME need to be more flexible about rounding mode.
4553       (void)V.convert(APFloat::IEEEhalf(),
4554                       APFloat::rmNearestTiesToEven, &Ignored);
4555       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4556     }
4557     }
4558   }
4559 
4560   // Constant fold unary operations with a vector integer or float operand.
4561   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4562     if (BV->isConstant()) {
4563       switch (Opcode) {
4564       default:
4565         // FIXME: Entirely reasonable to perform folding of other unary
4566         // operations here as the need arises.
4567         break;
4568       case ISD::FNEG:
4569       case ISD::FABS:
4570       case ISD::FCEIL:
4571       case ISD::FTRUNC:
4572       case ISD::FFLOOR:
4573       case ISD::FP_EXTEND:
4574       case ISD::FP_TO_SINT:
4575       case ISD::FP_TO_UINT:
4576       case ISD::TRUNCATE:
4577       case ISD::ANY_EXTEND:
4578       case ISD::ZERO_EXTEND:
4579       case ISD::SIGN_EXTEND:
4580       case ISD::UINT_TO_FP:
4581       case ISD::SINT_TO_FP:
4582       case ISD::ABS:
4583       case ISD::BITREVERSE:
4584       case ISD::BSWAP:
4585       case ISD::CTLZ:
4586       case ISD::CTLZ_ZERO_UNDEF:
4587       case ISD::CTTZ:
4588       case ISD::CTTZ_ZERO_UNDEF:
4589       case ISD::CTPOP: {
4590         SDValue Ops = { Operand };
4591         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4592           return Fold;
4593       }
4594       }
4595     }
4596   }
4597 
4598   unsigned OpOpcode = Operand.getNode()->getOpcode();
4599   switch (Opcode) {
4600   case ISD::FREEZE:
4601     assert(VT == Operand.getValueType() && "Unexpected VT!");
4602     break;
4603   case ISD::TokenFactor:
4604   case ISD::MERGE_VALUES:
4605   case ISD::CONCAT_VECTORS:
4606     return Operand;         // Factor, merge or concat of one node?  No need.
4607   case ISD::BUILD_VECTOR: {
4608     // Attempt to simplify BUILD_VECTOR.
4609     SDValue Ops[] = {Operand};
4610     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4611       return V;
4612     break;
4613   }
4614   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4615   case ISD::FP_EXTEND:
4616     assert(VT.isFloatingPoint() &&
4617            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4618     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4619     assert((!VT.isVector() ||
4620             VT.getVectorElementCount() ==
4621             Operand.getValueType().getVectorElementCount()) &&
4622            "Vector element count mismatch!");
4623     assert(Operand.getValueType().bitsLT(VT) &&
4624            "Invalid fpext node, dst < src!");
4625     if (Operand.isUndef())
4626       return getUNDEF(VT);
4627     break;
4628   case ISD::FP_TO_SINT:
4629   case ISD::FP_TO_UINT:
4630     if (Operand.isUndef())
4631       return getUNDEF(VT);
4632     break;
4633   case ISD::SINT_TO_FP:
4634   case ISD::UINT_TO_FP:
4635     // [us]itofp(undef) = 0, because the result value is bounded.
4636     if (Operand.isUndef())
4637       return getConstantFP(0.0, DL, VT);
4638     break;
4639   case ISD::SIGN_EXTEND:
4640     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4641            "Invalid SIGN_EXTEND!");
4642     assert(VT.isVector() == Operand.getValueType().isVector() &&
4643            "SIGN_EXTEND result type type should be vector iff the operand "
4644            "type is vector!");
4645     if (Operand.getValueType() == VT) return Operand;   // noop extension
4646     assert((!VT.isVector() ||
4647             VT.getVectorElementCount() ==
4648                 Operand.getValueType().getVectorElementCount()) &&
4649            "Vector element count mismatch!");
4650     assert(Operand.getValueType().bitsLT(VT) &&
4651            "Invalid sext node, dst < src!");
4652     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4653       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4654     else if (OpOpcode == ISD::UNDEF)
4655       // sext(undef) = 0, because the top bits will all be the same.
4656       return getConstant(0, DL, VT);
4657     break;
4658   case ISD::ZERO_EXTEND:
4659     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4660            "Invalid ZERO_EXTEND!");
4661     assert(VT.isVector() == Operand.getValueType().isVector() &&
4662            "ZERO_EXTEND result type type should be vector iff the operand "
4663            "type is vector!");
4664     if (Operand.getValueType() == VT) return Operand;   // noop extension
4665     assert((!VT.isVector() ||
4666             VT.getVectorElementCount() ==
4667                 Operand.getValueType().getVectorElementCount()) &&
4668            "Vector element count mismatch!");
4669     assert(Operand.getValueType().bitsLT(VT) &&
4670            "Invalid zext node, dst < src!");
4671     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4672       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4673     else if (OpOpcode == ISD::UNDEF)
4674       // zext(undef) = 0, because the top bits will be zero.
4675       return getConstant(0, DL, VT);
4676     break;
4677   case ISD::ANY_EXTEND:
4678     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4679            "Invalid ANY_EXTEND!");
4680     assert(VT.isVector() == Operand.getValueType().isVector() &&
4681            "ANY_EXTEND result type type should be vector iff the operand "
4682            "type is vector!");
4683     if (Operand.getValueType() == VT) return Operand;   // noop extension
4684     assert((!VT.isVector() ||
4685             VT.getVectorElementCount() ==
4686                 Operand.getValueType().getVectorElementCount()) &&
4687            "Vector element count mismatch!");
4688     assert(Operand.getValueType().bitsLT(VT) &&
4689            "Invalid anyext node, dst < src!");
4690 
4691     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4692         OpOpcode == ISD::ANY_EXTEND)
4693       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4694       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4695     else if (OpOpcode == ISD::UNDEF)
4696       return getUNDEF(VT);
4697 
4698     // (ext (trunc x)) -> x
4699     if (OpOpcode == ISD::TRUNCATE) {
4700       SDValue OpOp = Operand.getOperand(0);
4701       if (OpOp.getValueType() == VT) {
4702         transferDbgValues(Operand, OpOp);
4703         return OpOp;
4704       }
4705     }
4706     break;
4707   case ISD::TRUNCATE:
4708     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4709            "Invalid TRUNCATE!");
4710     assert(VT.isVector() == Operand.getValueType().isVector() &&
4711            "TRUNCATE result type type should be vector iff the operand "
4712            "type is vector!");
4713     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4714     assert((!VT.isVector() ||
4715             VT.getVectorElementCount() ==
4716                 Operand.getValueType().getVectorElementCount()) &&
4717            "Vector element count mismatch!");
4718     assert(Operand.getValueType().bitsGT(VT) &&
4719            "Invalid truncate node, src < dst!");
4720     if (OpOpcode == ISD::TRUNCATE)
4721       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4722     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4723         OpOpcode == ISD::ANY_EXTEND) {
4724       // If the source is smaller than the dest, we still need an extend.
4725       if (Operand.getOperand(0).getValueType().getScalarType()
4726             .bitsLT(VT.getScalarType()))
4727         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4728       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4729         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4730       return Operand.getOperand(0);
4731     }
4732     if (OpOpcode == ISD::UNDEF)
4733       return getUNDEF(VT);
4734     break;
4735   case ISD::ANY_EXTEND_VECTOR_INREG:
4736   case ISD::ZERO_EXTEND_VECTOR_INREG:
4737   case ISD::SIGN_EXTEND_VECTOR_INREG:
4738     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4739     assert(Operand.getValueType().bitsLE(VT) &&
4740            "The input must be the same size or smaller than the result.");
4741     assert(VT.getVectorNumElements() <
4742              Operand.getValueType().getVectorNumElements() &&
4743            "The destination vector type must have fewer lanes than the input.");
4744     break;
4745   case ISD::ABS:
4746     assert(VT.isInteger() && VT == Operand.getValueType() &&
4747            "Invalid ABS!");
4748     if (OpOpcode == ISD::UNDEF)
4749       return getUNDEF(VT);
4750     break;
4751   case ISD::BSWAP:
4752     assert(VT.isInteger() && VT == Operand.getValueType() &&
4753            "Invalid BSWAP!");
4754     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4755            "BSWAP types must be a multiple of 16 bits!");
4756     if (OpOpcode == ISD::UNDEF)
4757       return getUNDEF(VT);
4758     break;
4759   case ISD::BITREVERSE:
4760     assert(VT.isInteger() && VT == Operand.getValueType() &&
4761            "Invalid BITREVERSE!");
4762     if (OpOpcode == ISD::UNDEF)
4763       return getUNDEF(VT);
4764     break;
4765   case ISD::BITCAST:
4766     // Basic sanity checking.
4767     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4768            "Cannot BITCAST between types of different sizes!");
4769     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4770     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4771       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4772     if (OpOpcode == ISD::UNDEF)
4773       return getUNDEF(VT);
4774     break;
4775   case ISD::SCALAR_TO_VECTOR:
4776     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4777            (VT.getVectorElementType() == Operand.getValueType() ||
4778             (VT.getVectorElementType().isInteger() &&
4779              Operand.getValueType().isInteger() &&
4780              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4781            "Illegal SCALAR_TO_VECTOR node!");
4782     if (OpOpcode == ISD::UNDEF)
4783       return getUNDEF(VT);
4784     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4785     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4786         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4787         Operand.getConstantOperandVal(1) == 0 &&
4788         Operand.getOperand(0).getValueType() == VT)
4789       return Operand.getOperand(0);
4790     break;
4791   case ISD::FNEG:
4792     // Negation of an unknown bag of bits is still completely undefined.
4793     if (OpOpcode == ISD::UNDEF)
4794       return getUNDEF(VT);
4795 
4796     if (OpOpcode == ISD::FNEG)  // --X -> X
4797       return Operand.getOperand(0);
4798     break;
4799   case ISD::FABS:
4800     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4801       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4802     break;
4803   case ISD::VSCALE:
4804     assert(VT == Operand.getValueType() && "Unexpected VT!");
4805     break;
4806   }
4807 
4808   SDNode *N;
4809   SDVTList VTs = getVTList(VT);
4810   SDValue Ops[] = {Operand};
4811   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4812     FoldingSetNodeID ID;
4813     AddNodeIDNode(ID, Opcode, VTs, Ops);
4814     void *IP = nullptr;
4815     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4816       E->intersectFlagsWith(Flags);
4817       return SDValue(E, 0);
4818     }
4819 
4820     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4821     N->setFlags(Flags);
4822     createOperands(N, Ops);
4823     CSEMap.InsertNode(N, IP);
4824   } else {
4825     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4826     createOperands(N, Ops);
4827   }
4828 
4829   InsertNode(N);
4830   SDValue V = SDValue(N, 0);
4831   NewSDValueDbgMsg(V, "Creating new node: ", this);
4832   return V;
4833 }
4834 
4835 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4836                                        const APInt &C2) {
4837   switch (Opcode) {
4838   case ISD::ADD:  return C1 + C2;
4839   case ISD::SUB:  return C1 - C2;
4840   case ISD::MUL:  return C1 * C2;
4841   case ISD::AND:  return C1 & C2;
4842   case ISD::OR:   return C1 | C2;
4843   case ISD::XOR:  return C1 ^ C2;
4844   case ISD::SHL:  return C1 << C2;
4845   case ISD::SRL:  return C1.lshr(C2);
4846   case ISD::SRA:  return C1.ashr(C2);
4847   case ISD::ROTL: return C1.rotl(C2);
4848   case ISD::ROTR: return C1.rotr(C2);
4849   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4850   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4851   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4852   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4853   case ISD::SADDSAT: return C1.sadd_sat(C2);
4854   case ISD::UADDSAT: return C1.uadd_sat(C2);
4855   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4856   case ISD::USUBSAT: return C1.usub_sat(C2);
4857   case ISD::UDIV:
4858     if (!C2.getBoolValue())
4859       break;
4860     return C1.udiv(C2);
4861   case ISD::UREM:
4862     if (!C2.getBoolValue())
4863       break;
4864     return C1.urem(C2);
4865   case ISD::SDIV:
4866     if (!C2.getBoolValue())
4867       break;
4868     return C1.sdiv(C2);
4869   case ISD::SREM:
4870     if (!C2.getBoolValue())
4871       break;
4872     return C1.srem(C2);
4873   }
4874   return llvm::None;
4875 }
4876 
4877 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4878                                        const GlobalAddressSDNode *GA,
4879                                        const SDNode *N2) {
4880   if (GA->getOpcode() != ISD::GlobalAddress)
4881     return SDValue();
4882   if (!TLI->isOffsetFoldingLegal(GA))
4883     return SDValue();
4884   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4885   if (!C2)
4886     return SDValue();
4887   int64_t Offset = C2->getSExtValue();
4888   switch (Opcode) {
4889   case ISD::ADD: break;
4890   case ISD::SUB: Offset = -uint64_t(Offset); break;
4891   default: return SDValue();
4892   }
4893   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4894                           GA->getOffset() + uint64_t(Offset));
4895 }
4896 
4897 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4898   switch (Opcode) {
4899   case ISD::SDIV:
4900   case ISD::UDIV:
4901   case ISD::SREM:
4902   case ISD::UREM: {
4903     // If a divisor is zero/undef or any element of a divisor vector is
4904     // zero/undef, the whole op is undef.
4905     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4906     SDValue Divisor = Ops[1];
4907     if (Divisor.isUndef() || isNullConstant(Divisor))
4908       return true;
4909 
4910     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4911            llvm::any_of(Divisor->op_values(),
4912                         [](SDValue V) { return V.isUndef() ||
4913                                         isNullConstant(V); });
4914     // TODO: Handle signed overflow.
4915   }
4916   // TODO: Handle oversized shifts.
4917   default:
4918     return false;
4919   }
4920 }
4921 
4922 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4923                                              EVT VT, ArrayRef<SDValue> Ops) {
4924   // If the opcode is a target-specific ISD node, there's nothing we can
4925   // do here and the operand rules may not line up with the below, so
4926   // bail early.
4927   if (Opcode >= ISD::BUILTIN_OP_END)
4928     return SDValue();
4929 
4930   // For now, the array Ops should only contain two values.
4931   // This enforcement will be removed once this function is merged with
4932   // FoldConstantVectorArithmetic
4933   if (Ops.size() != 2)
4934     return SDValue();
4935 
4936   if (isUndef(Opcode, Ops))
4937     return getUNDEF(VT);
4938 
4939   SDNode *N1 = Ops[0].getNode();
4940   SDNode *N2 = Ops[1].getNode();
4941 
4942   // Handle the case of two scalars.
4943   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4944     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4945       if (C1->isOpaque() || C2->isOpaque())
4946         return SDValue();
4947 
4948       Optional<APInt> FoldAttempt =
4949           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4950       if (!FoldAttempt)
4951         return SDValue();
4952 
4953       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4954       assert((!Folded || !VT.isVector()) &&
4955              "Can't fold vectors ops with scalar operands");
4956       return Folded;
4957     }
4958   }
4959 
4960   // fold (add Sym, c) -> Sym+c
4961   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4962     return FoldSymbolOffset(Opcode, VT, GA, N2);
4963   if (TLI->isCommutativeBinOp(Opcode))
4964     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4965       return FoldSymbolOffset(Opcode, VT, GA, N1);
4966 
4967   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4968   // vector width, however we should be able to do constant folds involving
4969   // splat vector nodes too.
4970   if (VT.isScalableVector())
4971     return SDValue();
4972 
4973   // For fixed width vectors, extract each constant element and fold them
4974   // individually. Either input may be an undef value.
4975   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4976   if (!BV1 && !N1->isUndef())
4977     return SDValue();
4978   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4979   if (!BV2 && !N2->isUndef())
4980     return SDValue();
4981   // If both operands are undef, that's handled the same way as scalars.
4982   if (!BV1 && !BV2)
4983     return SDValue();
4984 
4985   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4986          "Vector binop with different number of elements in operands?");
4987 
4988   EVT SVT = VT.getScalarType();
4989   EVT LegalSVT = SVT;
4990   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4991     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4992     if (LegalSVT.bitsLT(SVT))
4993       return SDValue();
4994   }
4995   SmallVector<SDValue, 4> Outputs;
4996   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4997   for (unsigned I = 0; I != NumOps; ++I) {
4998     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4999     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5000     if (SVT.isInteger()) {
5001       if (V1->getValueType(0).bitsGT(SVT))
5002         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5003       if (V2->getValueType(0).bitsGT(SVT))
5004         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5005     }
5006 
5007     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5008       return SDValue();
5009 
5010     // Fold one vector element.
5011     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5012     if (LegalSVT != SVT)
5013       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5014 
5015     // Scalar folding only succeeded if the result is a constant or UNDEF.
5016     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5017         ScalarResult.getOpcode() != ISD::ConstantFP)
5018       return SDValue();
5019     Outputs.push_back(ScalarResult);
5020   }
5021 
5022   assert(VT.getVectorNumElements() == Outputs.size() &&
5023          "Vector size mismatch!");
5024 
5025   // We may have a vector type but a scalar result. Create a splat.
5026   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5027 
5028   // Build a big vector out of the scalar elements we generated.
5029   return getBuildVector(VT, SDLoc(), Outputs);
5030 }
5031 
5032 // TODO: Merge with FoldConstantArithmetic
5033 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5034                                                    const SDLoc &DL, EVT VT,
5035                                                    ArrayRef<SDValue> Ops,
5036                                                    const SDNodeFlags Flags) {
5037   // If the opcode is a target-specific ISD node, there's nothing we can
5038   // do here and the operand rules may not line up with the below, so
5039   // bail early.
5040   if (Opcode >= ISD::BUILTIN_OP_END)
5041     return SDValue();
5042 
5043   if (isUndef(Opcode, Ops))
5044     return getUNDEF(VT);
5045 
5046   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5047   if (!VT.isVector())
5048     return SDValue();
5049 
5050   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5051   // vector width, however we should be able to do constant folds involving
5052   // splat vector nodes too.
5053   if (VT.isScalableVector())
5054     return SDValue();
5055 
5056   // From this point onwards all vectors are assumed to be fixed width.
5057   unsigned NumElts = VT.getVectorNumElements();
5058 
5059   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5060     return !Op.getValueType().isVector() ||
5061            Op.getValueType().getVectorNumElements() == NumElts;
5062   };
5063 
5064   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5065     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5066     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5067            (BV && BV->isConstant());
5068   };
5069 
5070   // All operands must be vector types with the same number of elements as
5071   // the result type and must be either UNDEF or a build vector of constant
5072   // or UNDEF scalars.
5073   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5074       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5075     return SDValue();
5076 
5077   // If we are comparing vectors, then the result needs to be a i1 boolean
5078   // that is then sign-extended back to the legal result type.
5079   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5080 
5081   // Find legal integer scalar type for constant promotion and
5082   // ensure that its scalar size is at least as large as source.
5083   EVT LegalSVT = VT.getScalarType();
5084   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5085     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5086     if (LegalSVT.bitsLT(VT.getScalarType()))
5087       return SDValue();
5088   }
5089 
5090   // Constant fold each scalar lane separately.
5091   SmallVector<SDValue, 4> ScalarResults;
5092   for (unsigned i = 0; i != NumElts; i++) {
5093     SmallVector<SDValue, 4> ScalarOps;
5094     for (SDValue Op : Ops) {
5095       EVT InSVT = Op.getValueType().getScalarType();
5096       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5097       if (!InBV) {
5098         // We've checked that this is UNDEF or a constant of some kind.
5099         if (Op.isUndef())
5100           ScalarOps.push_back(getUNDEF(InSVT));
5101         else
5102           ScalarOps.push_back(Op);
5103         continue;
5104       }
5105 
5106       SDValue ScalarOp = InBV->getOperand(i);
5107       EVT ScalarVT = ScalarOp.getValueType();
5108 
5109       // Build vector (integer) scalar operands may need implicit
5110       // truncation - do this before constant folding.
5111       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5112         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5113 
5114       ScalarOps.push_back(ScalarOp);
5115     }
5116 
5117     // Constant fold the scalar operands.
5118     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5119 
5120     // Legalize the (integer) scalar constant if necessary.
5121     if (LegalSVT != SVT)
5122       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5123 
5124     // Scalar folding only succeeded if the result is a constant or UNDEF.
5125     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5126         ScalarResult.getOpcode() != ISD::ConstantFP)
5127       return SDValue();
5128     ScalarResults.push_back(ScalarResult);
5129   }
5130 
5131   SDValue V = getBuildVector(VT, DL, ScalarResults);
5132   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5133   return V;
5134 }
5135 
5136 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5137                                          EVT VT, SDValue N1, SDValue N2) {
5138   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5139   //       should. That will require dealing with a potentially non-default
5140   //       rounding mode, checking the "opStatus" return value from the APFloat
5141   //       math calculations, and possibly other variations.
5142   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5143   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5144   if (N1CFP && N2CFP) {
5145     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5146     switch (Opcode) {
5147     case ISD::FADD:
5148       C1.add(C2, APFloat::rmNearestTiesToEven);
5149       return getConstantFP(C1, DL, VT);
5150     case ISD::FSUB:
5151       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5152       return getConstantFP(C1, DL, VT);
5153     case ISD::FMUL:
5154       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5155       return getConstantFP(C1, DL, VT);
5156     case ISD::FDIV:
5157       C1.divide(C2, APFloat::rmNearestTiesToEven);
5158       return getConstantFP(C1, DL, VT);
5159     case ISD::FREM:
5160       C1.mod(C2);
5161       return getConstantFP(C1, DL, VT);
5162     case ISD::FCOPYSIGN:
5163       C1.copySign(C2);
5164       return getConstantFP(C1, DL, VT);
5165     default: break;
5166     }
5167   }
5168   if (N1CFP && Opcode == ISD::FP_ROUND) {
5169     APFloat C1 = N1CFP->getValueAPF();    // make copy
5170     bool Unused;
5171     // This can return overflow, underflow, or inexact; we don't care.
5172     // FIXME need to be more flexible about rounding mode.
5173     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5174                       &Unused);
5175     return getConstantFP(C1, DL, VT);
5176   }
5177 
5178   switch (Opcode) {
5179   case ISD::FSUB:
5180     // -0.0 - undef --> undef (consistent with "fneg undef")
5181     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5182       return getUNDEF(VT);
5183     LLVM_FALLTHROUGH;
5184 
5185   case ISD::FADD:
5186   case ISD::FMUL:
5187   case ISD::FDIV:
5188   case ISD::FREM:
5189     // If both operands are undef, the result is undef. If 1 operand is undef,
5190     // the result is NaN. This should match the behavior of the IR optimizer.
5191     if (N1.isUndef() && N2.isUndef())
5192       return getUNDEF(VT);
5193     if (N1.isUndef() || N2.isUndef())
5194       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5195   }
5196   return SDValue();
5197 }
5198 
5199 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5200   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5201 
5202   // There's no need to assert on a byte-aligned pointer. All pointers are at
5203   // least byte aligned.
5204   if (A == Align(1))
5205     return Val;
5206 
5207   FoldingSetNodeID ID;
5208   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5209   ID.AddInteger(A.value());
5210 
5211   void *IP = nullptr;
5212   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5213     return SDValue(E, 0);
5214 
5215   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5216                                          Val.getValueType(), A);
5217   createOperands(N, {Val});
5218 
5219   CSEMap.InsertNode(N, IP);
5220   InsertNode(N);
5221 
5222   SDValue V(N, 0);
5223   NewSDValueDbgMsg(V, "Creating new node: ", this);
5224   return V;
5225 }
5226 
5227 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5228                               SDValue N1, SDValue N2) {
5229   SDNodeFlags Flags;
5230   if (Inserter)
5231     Flags = Inserter->getFlags();
5232   return getNode(Opcode, DL, VT, N1, N2, Flags);
5233 }
5234 
5235 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5236                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5237   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5238   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5239   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5240   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5241 
5242   // Canonicalize constant to RHS if commutative.
5243   if (TLI->isCommutativeBinOp(Opcode)) {
5244     if (N1C && !N2C) {
5245       std::swap(N1C, N2C);
5246       std::swap(N1, N2);
5247     } else if (N1CFP && !N2CFP) {
5248       std::swap(N1CFP, N2CFP);
5249       std::swap(N1, N2);
5250     }
5251   }
5252 
5253   switch (Opcode) {
5254   default: break;
5255   case ISD::TokenFactor:
5256     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5257            N2.getValueType() == MVT::Other && "Invalid token factor!");
5258     // Fold trivial token factors.
5259     if (N1.getOpcode() == ISD::EntryToken) return N2;
5260     if (N2.getOpcode() == ISD::EntryToken) return N1;
5261     if (N1 == N2) return N1;
5262     break;
5263   case ISD::BUILD_VECTOR: {
5264     // Attempt to simplify BUILD_VECTOR.
5265     SDValue Ops[] = {N1, N2};
5266     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5267       return V;
5268     break;
5269   }
5270   case ISD::CONCAT_VECTORS: {
5271     SDValue Ops[] = {N1, N2};
5272     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5273       return V;
5274     break;
5275   }
5276   case ISD::AND:
5277     assert(VT.isInteger() && "This operator does not apply to FP types!");
5278     assert(N1.getValueType() == N2.getValueType() &&
5279            N1.getValueType() == VT && "Binary operator types must match!");
5280     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5281     // worth handling here.
5282     if (N2C && N2C->isNullValue())
5283       return N2;
5284     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5285       return N1;
5286     break;
5287   case ISD::OR:
5288   case ISD::XOR:
5289   case ISD::ADD:
5290   case ISD::SUB:
5291     assert(VT.isInteger() && "This operator does not apply to FP types!");
5292     assert(N1.getValueType() == N2.getValueType() &&
5293            N1.getValueType() == VT && "Binary operator types must match!");
5294     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5295     // it's worth handling here.
5296     if (N2C && N2C->isNullValue())
5297       return N1;
5298     break;
5299   case ISD::MUL:
5300     assert(VT.isInteger() && "This operator does not apply to FP types!");
5301     assert(N1.getValueType() == N2.getValueType() &&
5302            N1.getValueType() == VT && "Binary operator types must match!");
5303     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5304       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5305       APInt N2CImm = N2C->getAPIntValue();
5306       return getVScale(DL, VT, MulImm * N2CImm);
5307     }
5308     break;
5309   case ISD::UDIV:
5310   case ISD::UREM:
5311   case ISD::MULHU:
5312   case ISD::MULHS:
5313   case ISD::SDIV:
5314   case ISD::SREM:
5315   case ISD::SMIN:
5316   case ISD::SMAX:
5317   case ISD::UMIN:
5318   case ISD::UMAX:
5319   case ISD::SADDSAT:
5320   case ISD::SSUBSAT:
5321   case ISD::UADDSAT:
5322   case ISD::USUBSAT:
5323     assert(VT.isInteger() && "This operator does not apply to FP types!");
5324     assert(N1.getValueType() == N2.getValueType() &&
5325            N1.getValueType() == VT && "Binary operator types must match!");
5326     break;
5327   case ISD::FADD:
5328   case ISD::FSUB:
5329   case ISD::FMUL:
5330   case ISD::FDIV:
5331   case ISD::FREM:
5332     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5333     assert(N1.getValueType() == N2.getValueType() &&
5334            N1.getValueType() == VT && "Binary operator types must match!");
5335     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5336       return V;
5337     break;
5338   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5339     assert(N1.getValueType() == VT &&
5340            N1.getValueType().isFloatingPoint() &&
5341            N2.getValueType().isFloatingPoint() &&
5342            "Invalid FCOPYSIGN!");
5343     break;
5344   case ISD::SHL:
5345     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5346       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5347       APInt ShiftImm = N2C->getAPIntValue();
5348       return getVScale(DL, VT, MulImm << ShiftImm);
5349     }
5350     LLVM_FALLTHROUGH;
5351   case ISD::SRA:
5352   case ISD::SRL:
5353     if (SDValue V = simplifyShift(N1, N2))
5354       return V;
5355     LLVM_FALLTHROUGH;
5356   case ISD::ROTL:
5357   case ISD::ROTR:
5358     assert(VT == N1.getValueType() &&
5359            "Shift operators return type must be the same as their first arg");
5360     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5361            "Shifts only work on integers");
5362     assert((!VT.isVector() || VT == N2.getValueType()) &&
5363            "Vector shift amounts must be in the same as their first arg");
5364     // Verify that the shift amount VT is big enough to hold valid shift
5365     // amounts.  This catches things like trying to shift an i1024 value by an
5366     // i8, which is easy to fall into in generic code that uses
5367     // TLI.getShiftAmount().
5368     assert(N2.getValueType().getScalarSizeInBits() >=
5369                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5370            "Invalid use of small shift amount with oversized value!");
5371 
5372     // Always fold shifts of i1 values so the code generator doesn't need to
5373     // handle them.  Since we know the size of the shift has to be less than the
5374     // size of the value, the shift/rotate count is guaranteed to be zero.
5375     if (VT == MVT::i1)
5376       return N1;
5377     if (N2C && N2C->isNullValue())
5378       return N1;
5379     break;
5380   case ISD::FP_ROUND:
5381     assert(VT.isFloatingPoint() &&
5382            N1.getValueType().isFloatingPoint() &&
5383            VT.bitsLE(N1.getValueType()) &&
5384            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5385            "Invalid FP_ROUND!");
5386     if (N1.getValueType() == VT) return N1;  // noop conversion.
5387     break;
5388   case ISD::AssertSext:
5389   case ISD::AssertZext: {
5390     EVT EVT = cast<VTSDNode>(N2)->getVT();
5391     assert(VT == N1.getValueType() && "Not an inreg extend!");
5392     assert(VT.isInteger() && EVT.isInteger() &&
5393            "Cannot *_EXTEND_INREG FP types");
5394     assert(!EVT.isVector() &&
5395            "AssertSExt/AssertZExt type should be the vector element type "
5396            "rather than the vector type!");
5397     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5398     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5399     break;
5400   }
5401   case ISD::SIGN_EXTEND_INREG: {
5402     EVT EVT = cast<VTSDNode>(N2)->getVT();
5403     assert(VT == N1.getValueType() && "Not an inreg extend!");
5404     assert(VT.isInteger() && EVT.isInteger() &&
5405            "Cannot *_EXTEND_INREG FP types");
5406     assert(EVT.isVector() == VT.isVector() &&
5407            "SIGN_EXTEND_INREG type should be vector iff the operand "
5408            "type is vector!");
5409     assert((!EVT.isVector() ||
5410             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5411            "Vector element counts must match in SIGN_EXTEND_INREG");
5412     assert(EVT.bitsLE(VT) && "Not extending!");
5413     if (EVT == VT) return N1;  // Not actually extending
5414 
5415     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5416       unsigned FromBits = EVT.getScalarSizeInBits();
5417       Val <<= Val.getBitWidth() - FromBits;
5418       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5419       return getConstant(Val, DL, ConstantVT);
5420     };
5421 
5422     if (N1C) {
5423       const APInt &Val = N1C->getAPIntValue();
5424       return SignExtendInReg(Val, VT);
5425     }
5426     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5427       SmallVector<SDValue, 8> Ops;
5428       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5429       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5430         SDValue Op = N1.getOperand(i);
5431         if (Op.isUndef()) {
5432           Ops.push_back(getUNDEF(OpVT));
5433           continue;
5434         }
5435         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5436         APInt Val = C->getAPIntValue();
5437         Ops.push_back(SignExtendInReg(Val, OpVT));
5438       }
5439       return getBuildVector(VT, DL, Ops);
5440     }
5441     break;
5442   }
5443   case ISD::EXTRACT_VECTOR_ELT:
5444     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5445            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5446              element type of the vector.");
5447 
5448     // Extract from an undefined value or using an undefined index is undefined.
5449     if (N1.isUndef() || N2.isUndef())
5450       return getUNDEF(VT);
5451 
5452     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5453     // vectors. For scalable vectors we will provide appropriate support for
5454     // dealing with arbitrary indices.
5455     if (N2C && N1.getValueType().isFixedLengthVector() &&
5456         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5457       return getUNDEF(VT);
5458 
5459     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5460     // expanding copies of large vectors from registers. This only works for
5461     // fixed length vectors, since we need to know the exact number of
5462     // elements.
5463     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5464         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5465       unsigned Factor =
5466         N1.getOperand(0).getValueType().getVectorNumElements();
5467       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5468                      N1.getOperand(N2C->getZExtValue() / Factor),
5469                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5470     }
5471 
5472     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5473     // lowering is expanding large vector constants.
5474     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5475                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5476       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5477               N1.getValueType().isFixedLengthVector()) &&
5478              "BUILD_VECTOR used for scalable vectors");
5479       unsigned Index =
5480           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5481       SDValue Elt = N1.getOperand(Index);
5482 
5483       if (VT != Elt.getValueType())
5484         // If the vector element type is not legal, the BUILD_VECTOR operands
5485         // are promoted and implicitly truncated, and the result implicitly
5486         // extended. Make that explicit here.
5487         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5488 
5489       return Elt;
5490     }
5491 
5492     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5493     // operations are lowered to scalars.
5494     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5495       // If the indices are the same, return the inserted element else
5496       // if the indices are known different, extract the element from
5497       // the original vector.
5498       SDValue N1Op2 = N1.getOperand(2);
5499       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5500 
5501       if (N1Op2C && N2C) {
5502         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5503           if (VT == N1.getOperand(1).getValueType())
5504             return N1.getOperand(1);
5505           else
5506             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5507         }
5508 
5509         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5510       }
5511     }
5512 
5513     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5514     // when vector types are scalarized and v1iX is legal.
5515     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5516     // Here we are completely ignoring the extract element index (N2),
5517     // which is fine for fixed width vectors, since any index other than 0
5518     // is undefined anyway. However, this cannot be ignored for scalable
5519     // vectors - in theory we could support this, but we don't want to do this
5520     // without a profitability check.
5521     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5522         N1.getValueType().isFixedLengthVector() &&
5523         N1.getValueType().getVectorNumElements() == 1) {
5524       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5525                      N1.getOperand(1));
5526     }
5527     break;
5528   case ISD::EXTRACT_ELEMENT:
5529     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5530     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5531            (N1.getValueType().isInteger() == VT.isInteger()) &&
5532            N1.getValueType() != VT &&
5533            "Wrong types for EXTRACT_ELEMENT!");
5534 
5535     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5536     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5537     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5538     if (N1.getOpcode() == ISD::BUILD_PAIR)
5539       return N1.getOperand(N2C->getZExtValue());
5540 
5541     // EXTRACT_ELEMENT of a constant int is also very common.
5542     if (N1C) {
5543       unsigned ElementSize = VT.getSizeInBits();
5544       unsigned Shift = ElementSize * N2C->getZExtValue();
5545       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5546       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5547     }
5548     break;
5549   case ISD::EXTRACT_SUBVECTOR:
5550     EVT N1VT = N1.getValueType();
5551     assert(VT.isVector() && N1VT.isVector() &&
5552            "Extract subvector VTs must be vectors!");
5553     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5554            "Extract subvector VTs must have the same element type!");
5555     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5556            "Cannot extract a scalable vector from a fixed length vector!");
5557     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5558             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5559            "Extract subvector must be from larger vector to smaller vector!");
5560     assert(N2C && "Extract subvector index must be a constant");
5561     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5562             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5563                 N1VT.getVectorMinNumElements()) &&
5564            "Extract subvector overflow!");
5565     assert(N2C->getAPIntValue().getBitWidth() ==
5566                TLI->getVectorIdxTy(getDataLayout())
5567                    .getSizeInBits()
5568                    .getFixedSize() &&
5569            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5570 
5571     // Trivial extraction.
5572     if (VT == N1VT)
5573       return N1;
5574 
5575     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5576     if (N1.isUndef())
5577       return getUNDEF(VT);
5578 
5579     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5580     // the concat have the same type as the extract.
5581     if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5582         N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) {
5583       unsigned Factor = VT.getVectorMinNumElements();
5584       return N1.getOperand(N2C->getZExtValue() / Factor);
5585     }
5586 
5587     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5588     // during shuffle legalization.
5589     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5590         VT == N1.getOperand(1).getValueType())
5591       return N1.getOperand(1);
5592     break;
5593   }
5594 
5595   // Perform trivial constant folding.
5596   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5597     return SV;
5598 
5599   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5600     return V;
5601 
5602   // Canonicalize an UNDEF to the RHS, even over a constant.
5603   if (N1.isUndef()) {
5604     if (TLI->isCommutativeBinOp(Opcode)) {
5605       std::swap(N1, N2);
5606     } else {
5607       switch (Opcode) {
5608       case ISD::SIGN_EXTEND_INREG:
5609       case ISD::SUB:
5610         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5611       case ISD::UDIV:
5612       case ISD::SDIV:
5613       case ISD::UREM:
5614       case ISD::SREM:
5615       case ISD::SSUBSAT:
5616       case ISD::USUBSAT:
5617         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5618       }
5619     }
5620   }
5621 
5622   // Fold a bunch of operators when the RHS is undef.
5623   if (N2.isUndef()) {
5624     switch (Opcode) {
5625     case ISD::XOR:
5626       if (N1.isUndef())
5627         // Handle undef ^ undef -> 0 special case. This is a common
5628         // idiom (misuse).
5629         return getConstant(0, DL, VT);
5630       LLVM_FALLTHROUGH;
5631     case ISD::ADD:
5632     case ISD::SUB:
5633     case ISD::UDIV:
5634     case ISD::SDIV:
5635     case ISD::UREM:
5636     case ISD::SREM:
5637       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5638     case ISD::MUL:
5639     case ISD::AND:
5640     case ISD::SSUBSAT:
5641     case ISD::USUBSAT:
5642       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5643     case ISD::OR:
5644     case ISD::SADDSAT:
5645     case ISD::UADDSAT:
5646       return getAllOnesConstant(DL, VT);
5647     }
5648   }
5649 
5650   // Memoize this node if possible.
5651   SDNode *N;
5652   SDVTList VTs = getVTList(VT);
5653   SDValue Ops[] = {N1, N2};
5654   if (VT != MVT::Glue) {
5655     FoldingSetNodeID ID;
5656     AddNodeIDNode(ID, Opcode, VTs, Ops);
5657     void *IP = nullptr;
5658     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5659       E->intersectFlagsWith(Flags);
5660       return SDValue(E, 0);
5661     }
5662 
5663     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5664     N->setFlags(Flags);
5665     createOperands(N, Ops);
5666     CSEMap.InsertNode(N, IP);
5667   } else {
5668     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5669     createOperands(N, Ops);
5670   }
5671 
5672   InsertNode(N);
5673   SDValue V = SDValue(N, 0);
5674   NewSDValueDbgMsg(V, "Creating new node: ", this);
5675   return V;
5676 }
5677 
5678 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5679                               SDValue N1, SDValue N2, SDValue N3) {
5680   SDNodeFlags Flags;
5681   if (Inserter)
5682     Flags = Inserter->getFlags();
5683   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5684 }
5685 
5686 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5687                               SDValue N1, SDValue N2, SDValue N3,
5688                               const SDNodeFlags Flags) {
5689   // Perform various simplifications.
5690   switch (Opcode) {
5691   case ISD::FMA: {
5692     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5693     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5694            N3.getValueType() == VT && "FMA types must match!");
5695     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5696     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5697     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5698     if (N1CFP && N2CFP && N3CFP) {
5699       APFloat  V1 = N1CFP->getValueAPF();
5700       const APFloat &V2 = N2CFP->getValueAPF();
5701       const APFloat &V3 = N3CFP->getValueAPF();
5702       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5703       return getConstantFP(V1, DL, VT);
5704     }
5705     break;
5706   }
5707   case ISD::BUILD_VECTOR: {
5708     // Attempt to simplify BUILD_VECTOR.
5709     SDValue Ops[] = {N1, N2, N3};
5710     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5711       return V;
5712     break;
5713   }
5714   case ISD::CONCAT_VECTORS: {
5715     SDValue Ops[] = {N1, N2, N3};
5716     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5717       return V;
5718     break;
5719   }
5720   case ISD::SETCC: {
5721     assert(VT.isInteger() && "SETCC result type must be an integer!");
5722     assert(N1.getValueType() == N2.getValueType() &&
5723            "SETCC operands must have the same type!");
5724     assert(VT.isVector() == N1.getValueType().isVector() &&
5725            "SETCC type should be vector iff the operand type is vector!");
5726     assert((!VT.isVector() || VT.getVectorElementCount() ==
5727                                   N1.getValueType().getVectorElementCount()) &&
5728            "SETCC vector element counts must match!");
5729     // Use FoldSetCC to simplify SETCC's.
5730     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5731       return V;
5732     // Vector constant folding.
5733     SDValue Ops[] = {N1, N2, N3};
5734     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5735       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5736       return V;
5737     }
5738     break;
5739   }
5740   case ISD::SELECT:
5741   case ISD::VSELECT:
5742     if (SDValue V = simplifySelect(N1, N2, N3))
5743       return V;
5744     break;
5745   case ISD::VECTOR_SHUFFLE:
5746     llvm_unreachable("should use getVectorShuffle constructor!");
5747   case ISD::INSERT_VECTOR_ELT: {
5748     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5749     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5750     // for scalable vectors where we will generate appropriate code to
5751     // deal with out-of-bounds cases correctly.
5752     if (N3C && N1.getValueType().isFixedLengthVector() &&
5753         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5754       return getUNDEF(VT);
5755 
5756     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5757     if (N3.isUndef())
5758       return getUNDEF(VT);
5759 
5760     // If the inserted element is an UNDEF, just use the input vector.
5761     if (N2.isUndef())
5762       return N1;
5763 
5764     break;
5765   }
5766   case ISD::INSERT_SUBVECTOR: {
5767     // Inserting undef into undef is still undef.
5768     if (N1.isUndef() && N2.isUndef())
5769       return getUNDEF(VT);
5770 
5771     EVT N2VT = N2.getValueType();
5772     assert(VT == N1.getValueType() &&
5773            "Dest and insert subvector source types must match!");
5774     assert(VT.isVector() && N2VT.isVector() &&
5775            "Insert subvector VTs must be vectors!");
5776     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5777            "Cannot insert a scalable vector into a fixed length vector!");
5778     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5779             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5780            "Insert subvector must be from smaller vector to larger vector!");
5781     assert(isa<ConstantSDNode>(N3) &&
5782            "Insert subvector index must be constant");
5783     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5784             (N2VT.getVectorMinNumElements() +
5785              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5786                 VT.getVectorMinNumElements()) &&
5787            "Insert subvector overflow!");
5788 
5789     // Trivial insertion.
5790     if (VT == N2VT)
5791       return N2;
5792 
5793     // If this is an insert of an extracted vector into an undef vector, we
5794     // can just use the input to the extract.
5795     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5796         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5797       return N2.getOperand(0);
5798     break;
5799   }
5800   case ISD::BITCAST:
5801     // Fold bit_convert nodes from a type to themselves.
5802     if (N1.getValueType() == VT)
5803       return N1;
5804     break;
5805   }
5806 
5807   // Memoize node if it doesn't produce a flag.
5808   SDNode *N;
5809   SDVTList VTs = getVTList(VT);
5810   SDValue Ops[] = {N1, N2, N3};
5811   if (VT != MVT::Glue) {
5812     FoldingSetNodeID ID;
5813     AddNodeIDNode(ID, Opcode, VTs, Ops);
5814     void *IP = nullptr;
5815     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5816       E->intersectFlagsWith(Flags);
5817       return SDValue(E, 0);
5818     }
5819 
5820     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5821     N->setFlags(Flags);
5822     createOperands(N, Ops);
5823     CSEMap.InsertNode(N, IP);
5824   } else {
5825     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5826     createOperands(N, Ops);
5827   }
5828 
5829   InsertNode(N);
5830   SDValue V = SDValue(N, 0);
5831   NewSDValueDbgMsg(V, "Creating new node: ", this);
5832   return V;
5833 }
5834 
5835 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5836                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5837   SDValue Ops[] = { N1, N2, N3, N4 };
5838   return getNode(Opcode, DL, VT, Ops);
5839 }
5840 
5841 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5842                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5843                               SDValue N5) {
5844   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5845   return getNode(Opcode, DL, VT, Ops);
5846 }
5847 
5848 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5849 /// the incoming stack arguments to be loaded from the stack.
5850 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5851   SmallVector<SDValue, 8> ArgChains;
5852 
5853   // Include the original chain at the beginning of the list. When this is
5854   // used by target LowerCall hooks, this helps legalize find the
5855   // CALLSEQ_BEGIN node.
5856   ArgChains.push_back(Chain);
5857 
5858   // Add a chain value for each stack argument.
5859   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5860        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5861     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5862       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5863         if (FI->getIndex() < 0)
5864           ArgChains.push_back(SDValue(L, 1));
5865 
5866   // Build a tokenfactor for all the chains.
5867   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5868 }
5869 
5870 /// getMemsetValue - Vectorized representation of the memset value
5871 /// operand.
5872 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5873                               const SDLoc &dl) {
5874   assert(!Value.isUndef());
5875 
5876   unsigned NumBits = VT.getScalarSizeInBits();
5877   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5878     assert(C->getAPIntValue().getBitWidth() == 8);
5879     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5880     if (VT.isInteger()) {
5881       bool IsOpaque = VT.getSizeInBits() > 64 ||
5882           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5883       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5884     }
5885     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5886                              VT);
5887   }
5888 
5889   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5890   EVT IntVT = VT.getScalarType();
5891   if (!IntVT.isInteger())
5892     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5893 
5894   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5895   if (NumBits > 8) {
5896     // Use a multiplication with 0x010101... to extend the input to the
5897     // required length.
5898     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5899     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5900                         DAG.getConstant(Magic, dl, IntVT));
5901   }
5902 
5903   if (VT != Value.getValueType() && !VT.isInteger())
5904     Value = DAG.getBitcast(VT.getScalarType(), Value);
5905   if (VT != Value.getValueType())
5906     Value = DAG.getSplatBuildVector(VT, dl, Value);
5907 
5908   return Value;
5909 }
5910 
5911 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5912 /// used when a memcpy is turned into a memset when the source is a constant
5913 /// string ptr.
5914 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5915                                   const TargetLowering &TLI,
5916                                   const ConstantDataArraySlice &Slice) {
5917   // Handle vector with all elements zero.
5918   if (Slice.Array == nullptr) {
5919     if (VT.isInteger())
5920       return DAG.getConstant(0, dl, VT);
5921     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5922       return DAG.getConstantFP(0.0, dl, VT);
5923     else if (VT.isVector()) {
5924       unsigned NumElts = VT.getVectorNumElements();
5925       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5926       return DAG.getNode(ISD::BITCAST, dl, VT,
5927                          DAG.getConstant(0, dl,
5928                                          EVT::getVectorVT(*DAG.getContext(),
5929                                                           EltVT, NumElts)));
5930     } else
5931       llvm_unreachable("Expected type!");
5932   }
5933 
5934   assert(!VT.isVector() && "Can't handle vector type here!");
5935   unsigned NumVTBits = VT.getSizeInBits();
5936   unsigned NumVTBytes = NumVTBits / 8;
5937   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5938 
5939   APInt Val(NumVTBits, 0);
5940   if (DAG.getDataLayout().isLittleEndian()) {
5941     for (unsigned i = 0; i != NumBytes; ++i)
5942       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5943   } else {
5944     for (unsigned i = 0; i != NumBytes; ++i)
5945       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5946   }
5947 
5948   // If the "cost" of materializing the integer immediate is less than the cost
5949   // of a load, then it is cost effective to turn the load into the immediate.
5950   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5951   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5952     return DAG.getConstant(Val, dl, VT);
5953   return SDValue(nullptr, 0);
5954 }
5955 
5956 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
5957                                            const SDLoc &DL,
5958                                            const SDNodeFlags Flags) {
5959   EVT VT = Base.getValueType();
5960   SDValue Index;
5961 
5962   if (Offset.isScalable())
5963     Index = getVScale(DL, Base.getValueType(),
5964                       APInt(Base.getValueSizeInBits().getFixedSize(),
5965                             Offset.getKnownMinSize()));
5966   else
5967     Index = getConstant(Offset.getFixedSize(), DL, VT);
5968 
5969   return getMemBasePlusOffset(Base, Index, DL, Flags);
5970 }
5971 
5972 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5973                                            const SDLoc &DL,
5974                                            const SDNodeFlags Flags) {
5975   assert(Offset.getValueType().isInteger());
5976   EVT BasePtrVT = Ptr.getValueType();
5977   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5978 }
5979 
5980 /// Returns true if memcpy source is constant data.
5981 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5982   uint64_t SrcDelta = 0;
5983   GlobalAddressSDNode *G = nullptr;
5984   if (Src.getOpcode() == ISD::GlobalAddress)
5985     G = cast<GlobalAddressSDNode>(Src);
5986   else if (Src.getOpcode() == ISD::ADD &&
5987            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5988            Src.getOperand(1).getOpcode() == ISD::Constant) {
5989     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5990     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5991   }
5992   if (!G)
5993     return false;
5994 
5995   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5996                                   SrcDelta + G->getOffset());
5997 }
5998 
5999 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6000                                       SelectionDAG &DAG) {
6001   // On Darwin, -Os means optimize for size without hurting performance, so
6002   // only really optimize for size when -Oz (MinSize) is used.
6003   if (MF.getTarget().getTargetTriple().isOSDarwin())
6004     return MF.getFunction().hasMinSize();
6005   return DAG.shouldOptForSize();
6006 }
6007 
6008 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6009                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6010                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6011                           SmallVector<SDValue, 16> &OutStoreChains) {
6012   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6013   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6014   SmallVector<SDValue, 16> GluedLoadChains;
6015   for (unsigned i = From; i < To; ++i) {
6016     OutChains.push_back(OutLoadChains[i]);
6017     GluedLoadChains.push_back(OutLoadChains[i]);
6018   }
6019 
6020   // Chain for all loads.
6021   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6022                                   GluedLoadChains);
6023 
6024   for (unsigned i = From; i < To; ++i) {
6025     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6026     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6027                                   ST->getBasePtr(), ST->getMemoryVT(),
6028                                   ST->getMemOperand());
6029     OutChains.push_back(NewStore);
6030   }
6031 }
6032 
6033 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6034                                        SDValue Chain, SDValue Dst, SDValue Src,
6035                                        uint64_t Size, Align Alignment,
6036                                        bool isVol, bool AlwaysInline,
6037                                        MachinePointerInfo DstPtrInfo,
6038                                        MachinePointerInfo SrcPtrInfo) {
6039   // Turn a memcpy of undef to nop.
6040   // FIXME: We need to honor volatile even is Src is undef.
6041   if (Src.isUndef())
6042     return Chain;
6043 
6044   // Expand memcpy to a series of load and store ops if the size operand falls
6045   // below a certain threshold.
6046   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6047   // rather than maybe a humongous number of loads and stores.
6048   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6049   const DataLayout &DL = DAG.getDataLayout();
6050   LLVMContext &C = *DAG.getContext();
6051   std::vector<EVT> MemOps;
6052   bool DstAlignCanChange = false;
6053   MachineFunction &MF = DAG.getMachineFunction();
6054   MachineFrameInfo &MFI = MF.getFrameInfo();
6055   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6056   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6057   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6058     DstAlignCanChange = true;
6059   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6060   if (!SrcAlign || Alignment > *SrcAlign)
6061     SrcAlign = Alignment;
6062   assert(SrcAlign && "SrcAlign must be set");
6063   ConstantDataArraySlice Slice;
6064   // If marked as volatile, perform a copy even when marked as constant.
6065   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6066   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6067   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6068   const MemOp Op = isZeroConstant
6069                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6070                                     /*IsZeroMemset*/ true, isVol)
6071                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6072                                      *SrcAlign, isVol, CopyFromConstant);
6073   if (!TLI.findOptimalMemOpLowering(
6074           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6075           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6076     return SDValue();
6077 
6078   if (DstAlignCanChange) {
6079     Type *Ty = MemOps[0].getTypeForEVT(C);
6080     Align NewAlign = DL.getABITypeAlign(Ty);
6081 
6082     // Don't promote to an alignment that would require dynamic stack
6083     // realignment.
6084     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6085     if (!TRI->needsStackRealignment(MF))
6086       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6087         NewAlign = NewAlign / 2;
6088 
6089     if (NewAlign > Alignment) {
6090       // Give the stack frame object a larger alignment if needed.
6091       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6092         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6093       Alignment = NewAlign;
6094     }
6095   }
6096 
6097   MachineMemOperand::Flags MMOFlags =
6098       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6099   SmallVector<SDValue, 16> OutLoadChains;
6100   SmallVector<SDValue, 16> OutStoreChains;
6101   SmallVector<SDValue, 32> OutChains;
6102   unsigned NumMemOps = MemOps.size();
6103   uint64_t SrcOff = 0, DstOff = 0;
6104   for (unsigned i = 0; i != NumMemOps; ++i) {
6105     EVT VT = MemOps[i];
6106     unsigned VTSize = VT.getSizeInBits() / 8;
6107     SDValue Value, Store;
6108 
6109     if (VTSize > Size) {
6110       // Issuing an unaligned load / store pair  that overlaps with the previous
6111       // pair. Adjust the offset accordingly.
6112       assert(i == NumMemOps-1 && i != 0);
6113       SrcOff -= VTSize - Size;
6114       DstOff -= VTSize - Size;
6115     }
6116 
6117     if (CopyFromConstant &&
6118         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6119       // It's unlikely a store of a vector immediate can be done in a single
6120       // instruction. It would require a load from a constantpool first.
6121       // We only handle zero vectors here.
6122       // FIXME: Handle other cases where store of vector immediate is done in
6123       // a single instruction.
6124       ConstantDataArraySlice SubSlice;
6125       if (SrcOff < Slice.Length) {
6126         SubSlice = Slice;
6127         SubSlice.move(SrcOff);
6128       } else {
6129         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6130         SubSlice.Array = nullptr;
6131         SubSlice.Offset = 0;
6132         SubSlice.Length = VTSize;
6133       }
6134       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6135       if (Value.getNode()) {
6136         Store = DAG.getStore(
6137             Chain, dl, Value,
6138             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6139             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6140         OutChains.push_back(Store);
6141       }
6142     }
6143 
6144     if (!Store.getNode()) {
6145       // The type might not be legal for the target.  This should only happen
6146       // if the type is smaller than a legal type, as on PPC, so the right
6147       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6148       // to Load/Store if NVT==VT.
6149       // FIXME does the case above also need this?
6150       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6151       assert(NVT.bitsGE(VT));
6152 
6153       bool isDereferenceable =
6154         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6155       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6156       if (isDereferenceable)
6157         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6158 
6159       Value = DAG.getExtLoad(
6160           ISD::EXTLOAD, dl, NVT, Chain,
6161           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6162           SrcPtrInfo.getWithOffset(SrcOff), VT,
6163           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6164       OutLoadChains.push_back(Value.getValue(1));
6165 
6166       Store = DAG.getTruncStore(
6167           Chain, dl, Value,
6168           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6169           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6170       OutStoreChains.push_back(Store);
6171     }
6172     SrcOff += VTSize;
6173     DstOff += VTSize;
6174     Size -= VTSize;
6175   }
6176 
6177   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6178                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6179   unsigned NumLdStInMemcpy = OutStoreChains.size();
6180 
6181   if (NumLdStInMemcpy) {
6182     // It may be that memcpy might be converted to memset if it's memcpy
6183     // of constants. In such a case, we won't have loads and stores, but
6184     // just stores. In the absence of loads, there is nothing to gang up.
6185     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6186       // If target does not care, just leave as it.
6187       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6188         OutChains.push_back(OutLoadChains[i]);
6189         OutChains.push_back(OutStoreChains[i]);
6190       }
6191     } else {
6192       // Ld/St less than/equal limit set by target.
6193       if (NumLdStInMemcpy <= GluedLdStLimit) {
6194           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6195                                         NumLdStInMemcpy, OutLoadChains,
6196                                         OutStoreChains);
6197       } else {
6198         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6199         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6200         unsigned GlueIter = 0;
6201 
6202         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6203           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6204           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6205 
6206           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6207                                        OutLoadChains, OutStoreChains);
6208           GlueIter += GluedLdStLimit;
6209         }
6210 
6211         // Residual ld/st.
6212         if (RemainingLdStInMemcpy) {
6213           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6214                                         RemainingLdStInMemcpy, OutLoadChains,
6215                                         OutStoreChains);
6216         }
6217       }
6218     }
6219   }
6220   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6221 }
6222 
6223 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6224                                         SDValue Chain, SDValue Dst, SDValue Src,
6225                                         uint64_t Size, Align Alignment,
6226                                         bool isVol, bool AlwaysInline,
6227                                         MachinePointerInfo DstPtrInfo,
6228                                         MachinePointerInfo SrcPtrInfo) {
6229   // Turn a memmove of undef to nop.
6230   // FIXME: We need to honor volatile even is Src is undef.
6231   if (Src.isUndef())
6232     return Chain;
6233 
6234   // Expand memmove to a series of load and store ops if the size operand falls
6235   // below a certain threshold.
6236   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6237   const DataLayout &DL = DAG.getDataLayout();
6238   LLVMContext &C = *DAG.getContext();
6239   std::vector<EVT> MemOps;
6240   bool DstAlignCanChange = false;
6241   MachineFunction &MF = DAG.getMachineFunction();
6242   MachineFrameInfo &MFI = MF.getFrameInfo();
6243   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6244   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6245   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6246     DstAlignCanChange = true;
6247   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6248   if (!SrcAlign || Alignment > *SrcAlign)
6249     SrcAlign = Alignment;
6250   assert(SrcAlign && "SrcAlign must be set");
6251   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6252   if (!TLI.findOptimalMemOpLowering(
6253           MemOps, Limit,
6254           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6255                       /*IsVolatile*/ true),
6256           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6257           MF.getFunction().getAttributes()))
6258     return SDValue();
6259 
6260   if (DstAlignCanChange) {
6261     Type *Ty = MemOps[0].getTypeForEVT(C);
6262     Align NewAlign = DL.getABITypeAlign(Ty);
6263     if (NewAlign > Alignment) {
6264       // Give the stack frame object a larger alignment if needed.
6265       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6266         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6267       Alignment = NewAlign;
6268     }
6269   }
6270 
6271   MachineMemOperand::Flags MMOFlags =
6272       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6273   uint64_t SrcOff = 0, DstOff = 0;
6274   SmallVector<SDValue, 8> LoadValues;
6275   SmallVector<SDValue, 8> LoadChains;
6276   SmallVector<SDValue, 8> OutChains;
6277   unsigned NumMemOps = MemOps.size();
6278   for (unsigned i = 0; i < NumMemOps; i++) {
6279     EVT VT = MemOps[i];
6280     unsigned VTSize = VT.getSizeInBits() / 8;
6281     SDValue Value;
6282 
6283     bool isDereferenceable =
6284       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6285     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6286     if (isDereferenceable)
6287       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6288 
6289     Value =
6290         DAG.getLoad(VT, dl, Chain,
6291                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6292                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6293     LoadValues.push_back(Value);
6294     LoadChains.push_back(Value.getValue(1));
6295     SrcOff += VTSize;
6296   }
6297   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6298   OutChains.clear();
6299   for (unsigned i = 0; i < NumMemOps; i++) {
6300     EVT VT = MemOps[i];
6301     unsigned VTSize = VT.getSizeInBits() / 8;
6302     SDValue Store;
6303 
6304     Store =
6305         DAG.getStore(Chain, dl, LoadValues[i],
6306                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6307                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6308     OutChains.push_back(Store);
6309     DstOff += VTSize;
6310   }
6311 
6312   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6313 }
6314 
6315 /// Lower the call to 'memset' intrinsic function into a series of store
6316 /// operations.
6317 ///
6318 /// \param DAG Selection DAG where lowered code is placed.
6319 /// \param dl Link to corresponding IR location.
6320 /// \param Chain Control flow dependency.
6321 /// \param Dst Pointer to destination memory location.
6322 /// \param Src Value of byte to write into the memory.
6323 /// \param Size Number of bytes to write.
6324 /// \param Alignment Alignment of the destination in bytes.
6325 /// \param isVol True if destination is volatile.
6326 /// \param DstPtrInfo IR information on the memory pointer.
6327 /// \returns New head in the control flow, if lowering was successful, empty
6328 /// SDValue otherwise.
6329 ///
6330 /// The function tries to replace 'llvm.memset' intrinsic with several store
6331 /// operations and value calculation code. This is usually profitable for small
6332 /// memory size.
6333 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6334                                SDValue Chain, SDValue Dst, SDValue Src,
6335                                uint64_t Size, Align Alignment, bool isVol,
6336                                MachinePointerInfo DstPtrInfo) {
6337   // Turn a memset of undef to nop.
6338   // FIXME: We need to honor volatile even is Src is undef.
6339   if (Src.isUndef())
6340     return Chain;
6341 
6342   // Expand memset to a series of load/store ops if the size operand
6343   // falls below a certain threshold.
6344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6345   std::vector<EVT> MemOps;
6346   bool DstAlignCanChange = false;
6347   MachineFunction &MF = DAG.getMachineFunction();
6348   MachineFrameInfo &MFI = MF.getFrameInfo();
6349   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6350   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6351   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6352     DstAlignCanChange = true;
6353   bool IsZeroVal =
6354     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6355   if (!TLI.findOptimalMemOpLowering(
6356           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6357           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6358           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6359     return SDValue();
6360 
6361   if (DstAlignCanChange) {
6362     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6363     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6364     if (NewAlign > Alignment) {
6365       // Give the stack frame object a larger alignment if needed.
6366       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6367         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6368       Alignment = NewAlign;
6369     }
6370   }
6371 
6372   SmallVector<SDValue, 8> OutChains;
6373   uint64_t DstOff = 0;
6374   unsigned NumMemOps = MemOps.size();
6375 
6376   // Find the largest store and generate the bit pattern for it.
6377   EVT LargestVT = MemOps[0];
6378   for (unsigned i = 1; i < NumMemOps; i++)
6379     if (MemOps[i].bitsGT(LargestVT))
6380       LargestVT = MemOps[i];
6381   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6382 
6383   for (unsigned i = 0; i < NumMemOps; i++) {
6384     EVT VT = MemOps[i];
6385     unsigned VTSize = VT.getSizeInBits() / 8;
6386     if (VTSize > Size) {
6387       // Issuing an unaligned load / store pair  that overlaps with the previous
6388       // pair. Adjust the offset accordingly.
6389       assert(i == NumMemOps-1 && i != 0);
6390       DstOff -= VTSize - Size;
6391     }
6392 
6393     // If this store is smaller than the largest store see whether we can get
6394     // the smaller value for free with a truncate.
6395     SDValue Value = MemSetValue;
6396     if (VT.bitsLT(LargestVT)) {
6397       if (!LargestVT.isVector() && !VT.isVector() &&
6398           TLI.isTruncateFree(LargestVT, VT))
6399         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6400       else
6401         Value = getMemsetValue(Src, VT, DAG, dl);
6402     }
6403     assert(Value.getValueType() == VT && "Value with wrong type.");
6404     SDValue Store = DAG.getStore(
6405         Chain, dl, Value,
6406         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6407         DstPtrInfo.getWithOffset(DstOff), Alignment,
6408         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6409     OutChains.push_back(Store);
6410     DstOff += VT.getSizeInBits() / 8;
6411     Size -= VTSize;
6412   }
6413 
6414   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6415 }
6416 
6417 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6418                                             unsigned AS) {
6419   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6420   // pointer operands can be losslessly bitcasted to pointers of address space 0
6421   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6422     report_fatal_error("cannot lower memory intrinsic in address space " +
6423                        Twine(AS));
6424   }
6425 }
6426 
6427 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6428                                 SDValue Src, SDValue Size, Align Alignment,
6429                                 bool isVol, bool AlwaysInline, bool isTailCall,
6430                                 MachinePointerInfo DstPtrInfo,
6431                                 MachinePointerInfo SrcPtrInfo) {
6432   // Check to see if we should lower the memcpy to loads and stores first.
6433   // For cases within the target-specified limits, this is the best choice.
6434   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6435   if (ConstantSize) {
6436     // Memcpy with size zero? Just return the original chain.
6437     if (ConstantSize->isNullValue())
6438       return Chain;
6439 
6440     SDValue Result = getMemcpyLoadsAndStores(
6441         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6442         isVol, false, DstPtrInfo, SrcPtrInfo);
6443     if (Result.getNode())
6444       return Result;
6445   }
6446 
6447   // Then check to see if we should lower the memcpy with target-specific
6448   // code. If the target chooses to do this, this is the next best.
6449   if (TSI) {
6450     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6451         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6452         DstPtrInfo, SrcPtrInfo);
6453     if (Result.getNode())
6454       return Result;
6455   }
6456 
6457   // If we really need inline code and the target declined to provide it,
6458   // use a (potentially long) sequence of loads and stores.
6459   if (AlwaysInline) {
6460     assert(ConstantSize && "AlwaysInline requires a constant size!");
6461     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6462                                    ConstantSize->getZExtValue(), Alignment,
6463                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6464   }
6465 
6466   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6467   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6468 
6469   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6470   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6471   // respect volatile, so they may do things like read or write memory
6472   // beyond the given memory regions. But fixing this isn't easy, and most
6473   // people don't care.
6474 
6475   // Emit a library call.
6476   TargetLowering::ArgListTy Args;
6477   TargetLowering::ArgListEntry Entry;
6478   Entry.Ty = Type::getInt8PtrTy(*getContext());
6479   Entry.Node = Dst; Args.push_back(Entry);
6480   Entry.Node = Src; Args.push_back(Entry);
6481 
6482   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6483   Entry.Node = Size; Args.push_back(Entry);
6484   // FIXME: pass in SDLoc
6485   TargetLowering::CallLoweringInfo CLI(*this);
6486   CLI.setDebugLoc(dl)
6487       .setChain(Chain)
6488       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6489                     Dst.getValueType().getTypeForEVT(*getContext()),
6490                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6491                                       TLI->getPointerTy(getDataLayout())),
6492                     std::move(Args))
6493       .setDiscardResult()
6494       .setTailCall(isTailCall);
6495 
6496   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6497   return CallResult.second;
6498 }
6499 
6500 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6501                                       SDValue Dst, unsigned DstAlign,
6502                                       SDValue Src, unsigned SrcAlign,
6503                                       SDValue Size, Type *SizeTy,
6504                                       unsigned ElemSz, bool isTailCall,
6505                                       MachinePointerInfo DstPtrInfo,
6506                                       MachinePointerInfo SrcPtrInfo) {
6507   // Emit a library call.
6508   TargetLowering::ArgListTy Args;
6509   TargetLowering::ArgListEntry Entry;
6510   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6511   Entry.Node = Dst;
6512   Args.push_back(Entry);
6513 
6514   Entry.Node = Src;
6515   Args.push_back(Entry);
6516 
6517   Entry.Ty = SizeTy;
6518   Entry.Node = Size;
6519   Args.push_back(Entry);
6520 
6521   RTLIB::Libcall LibraryCall =
6522       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6523   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6524     report_fatal_error("Unsupported element size");
6525 
6526   TargetLowering::CallLoweringInfo CLI(*this);
6527   CLI.setDebugLoc(dl)
6528       .setChain(Chain)
6529       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6530                     Type::getVoidTy(*getContext()),
6531                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6532                                       TLI->getPointerTy(getDataLayout())),
6533                     std::move(Args))
6534       .setDiscardResult()
6535       .setTailCall(isTailCall);
6536 
6537   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6538   return CallResult.second;
6539 }
6540 
6541 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6542                                  SDValue Src, SDValue Size, Align Alignment,
6543                                  bool isVol, bool isTailCall,
6544                                  MachinePointerInfo DstPtrInfo,
6545                                  MachinePointerInfo SrcPtrInfo) {
6546   // Check to see if we should lower the memmove to loads and stores first.
6547   // For cases within the target-specified limits, this is the best choice.
6548   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6549   if (ConstantSize) {
6550     // Memmove with size zero? Just return the original chain.
6551     if (ConstantSize->isNullValue())
6552       return Chain;
6553 
6554     SDValue Result = getMemmoveLoadsAndStores(
6555         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6556         isVol, false, DstPtrInfo, SrcPtrInfo);
6557     if (Result.getNode())
6558       return Result;
6559   }
6560 
6561   // Then check to see if we should lower the memmove with target-specific
6562   // code. If the target chooses to do this, this is the next best.
6563   if (TSI) {
6564     SDValue Result =
6565         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6566                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6567     if (Result.getNode())
6568       return Result;
6569   }
6570 
6571   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6572   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6573 
6574   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6575   // not be safe.  See memcpy above for more details.
6576 
6577   // Emit a library call.
6578   TargetLowering::ArgListTy Args;
6579   TargetLowering::ArgListEntry Entry;
6580   Entry.Ty = Type::getInt8PtrTy(*getContext());
6581   Entry.Node = Dst; Args.push_back(Entry);
6582   Entry.Node = Src; Args.push_back(Entry);
6583 
6584   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6585   Entry.Node = Size; Args.push_back(Entry);
6586   // FIXME:  pass in SDLoc
6587   TargetLowering::CallLoweringInfo CLI(*this);
6588   CLI.setDebugLoc(dl)
6589       .setChain(Chain)
6590       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6591                     Dst.getValueType().getTypeForEVT(*getContext()),
6592                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6593                                       TLI->getPointerTy(getDataLayout())),
6594                     std::move(Args))
6595       .setDiscardResult()
6596       .setTailCall(isTailCall);
6597 
6598   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6599   return CallResult.second;
6600 }
6601 
6602 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6603                                        SDValue Dst, unsigned DstAlign,
6604                                        SDValue Src, unsigned SrcAlign,
6605                                        SDValue Size, Type *SizeTy,
6606                                        unsigned ElemSz, bool isTailCall,
6607                                        MachinePointerInfo DstPtrInfo,
6608                                        MachinePointerInfo SrcPtrInfo) {
6609   // Emit a library call.
6610   TargetLowering::ArgListTy Args;
6611   TargetLowering::ArgListEntry Entry;
6612   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6613   Entry.Node = Dst;
6614   Args.push_back(Entry);
6615 
6616   Entry.Node = Src;
6617   Args.push_back(Entry);
6618 
6619   Entry.Ty = SizeTy;
6620   Entry.Node = Size;
6621   Args.push_back(Entry);
6622 
6623   RTLIB::Libcall LibraryCall =
6624       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6625   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6626     report_fatal_error("Unsupported element size");
6627 
6628   TargetLowering::CallLoweringInfo CLI(*this);
6629   CLI.setDebugLoc(dl)
6630       .setChain(Chain)
6631       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6632                     Type::getVoidTy(*getContext()),
6633                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6634                                       TLI->getPointerTy(getDataLayout())),
6635                     std::move(Args))
6636       .setDiscardResult()
6637       .setTailCall(isTailCall);
6638 
6639   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6640   return CallResult.second;
6641 }
6642 
6643 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6644                                 SDValue Src, SDValue Size, Align Alignment,
6645                                 bool isVol, bool isTailCall,
6646                                 MachinePointerInfo DstPtrInfo) {
6647   // Check to see if we should lower the memset to stores first.
6648   // For cases within the target-specified limits, this is the best choice.
6649   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6650   if (ConstantSize) {
6651     // Memset with size zero? Just return the original chain.
6652     if (ConstantSize->isNullValue())
6653       return Chain;
6654 
6655     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6656                                      ConstantSize->getZExtValue(), Alignment,
6657                                      isVol, DstPtrInfo);
6658 
6659     if (Result.getNode())
6660       return Result;
6661   }
6662 
6663   // Then check to see if we should lower the memset with target-specific
6664   // code. If the target chooses to do this, this is the next best.
6665   if (TSI) {
6666     SDValue Result = TSI->EmitTargetCodeForMemset(
6667         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6668     if (Result.getNode())
6669       return Result;
6670   }
6671 
6672   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6673 
6674   // Emit a library call.
6675   TargetLowering::ArgListTy Args;
6676   TargetLowering::ArgListEntry Entry;
6677   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6678   Args.push_back(Entry);
6679   Entry.Node = Src;
6680   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6681   Args.push_back(Entry);
6682   Entry.Node = Size;
6683   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6684   Args.push_back(Entry);
6685 
6686   // FIXME: pass in SDLoc
6687   TargetLowering::CallLoweringInfo CLI(*this);
6688   CLI.setDebugLoc(dl)
6689       .setChain(Chain)
6690       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6691                     Dst.getValueType().getTypeForEVT(*getContext()),
6692                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6693                                       TLI->getPointerTy(getDataLayout())),
6694                     std::move(Args))
6695       .setDiscardResult()
6696       .setTailCall(isTailCall);
6697 
6698   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6699   return CallResult.second;
6700 }
6701 
6702 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6703                                       SDValue Dst, unsigned DstAlign,
6704                                       SDValue Value, SDValue Size, Type *SizeTy,
6705                                       unsigned ElemSz, bool isTailCall,
6706                                       MachinePointerInfo DstPtrInfo) {
6707   // Emit a library call.
6708   TargetLowering::ArgListTy Args;
6709   TargetLowering::ArgListEntry Entry;
6710   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6711   Entry.Node = Dst;
6712   Args.push_back(Entry);
6713 
6714   Entry.Ty = Type::getInt8Ty(*getContext());
6715   Entry.Node = Value;
6716   Args.push_back(Entry);
6717 
6718   Entry.Ty = SizeTy;
6719   Entry.Node = Size;
6720   Args.push_back(Entry);
6721 
6722   RTLIB::Libcall LibraryCall =
6723       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6724   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6725     report_fatal_error("Unsupported element size");
6726 
6727   TargetLowering::CallLoweringInfo CLI(*this);
6728   CLI.setDebugLoc(dl)
6729       .setChain(Chain)
6730       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6731                     Type::getVoidTy(*getContext()),
6732                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6733                                       TLI->getPointerTy(getDataLayout())),
6734                     std::move(Args))
6735       .setDiscardResult()
6736       .setTailCall(isTailCall);
6737 
6738   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6739   return CallResult.second;
6740 }
6741 
6742 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6743                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6744                                 MachineMemOperand *MMO) {
6745   FoldingSetNodeID ID;
6746   ID.AddInteger(MemVT.getRawBits());
6747   AddNodeIDNode(ID, Opcode, VTList, Ops);
6748   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6749   void* IP = nullptr;
6750   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6751     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6752     return SDValue(E, 0);
6753   }
6754 
6755   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6756                                     VTList, MemVT, MMO);
6757   createOperands(N, Ops);
6758 
6759   CSEMap.InsertNode(N, IP);
6760   InsertNode(N);
6761   return SDValue(N, 0);
6762 }
6763 
6764 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6765                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6766                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6767                                        MachineMemOperand *MMO) {
6768   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6769          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6770   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6771 
6772   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6773   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6774 }
6775 
6776 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6777                                 SDValue Chain, SDValue Ptr, SDValue Val,
6778                                 MachineMemOperand *MMO) {
6779   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6780           Opcode == ISD::ATOMIC_LOAD_SUB ||
6781           Opcode == ISD::ATOMIC_LOAD_AND ||
6782           Opcode == ISD::ATOMIC_LOAD_CLR ||
6783           Opcode == ISD::ATOMIC_LOAD_OR ||
6784           Opcode == ISD::ATOMIC_LOAD_XOR ||
6785           Opcode == ISD::ATOMIC_LOAD_NAND ||
6786           Opcode == ISD::ATOMIC_LOAD_MIN ||
6787           Opcode == ISD::ATOMIC_LOAD_MAX ||
6788           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6789           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6790           Opcode == ISD::ATOMIC_LOAD_FADD ||
6791           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6792           Opcode == ISD::ATOMIC_SWAP ||
6793           Opcode == ISD::ATOMIC_STORE) &&
6794          "Invalid Atomic Op");
6795 
6796   EVT VT = Val.getValueType();
6797 
6798   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6799                                                getVTList(VT, MVT::Other);
6800   SDValue Ops[] = {Chain, Ptr, Val};
6801   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6802 }
6803 
6804 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6805                                 EVT VT, SDValue Chain, SDValue Ptr,
6806                                 MachineMemOperand *MMO) {
6807   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6808 
6809   SDVTList VTs = getVTList(VT, MVT::Other);
6810   SDValue Ops[] = {Chain, Ptr};
6811   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6812 }
6813 
6814 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6815 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6816   if (Ops.size() == 1)
6817     return Ops[0];
6818 
6819   SmallVector<EVT, 4> VTs;
6820   VTs.reserve(Ops.size());
6821   for (unsigned i = 0; i < Ops.size(); ++i)
6822     VTs.push_back(Ops[i].getValueType());
6823   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6824 }
6825 
6826 SDValue SelectionDAG::getMemIntrinsicNode(
6827     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6828     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6829     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6830   if (!Size && MemVT.isScalableVector())
6831     Size = MemoryLocation::UnknownSize;
6832   else if (!Size)
6833     Size = MemVT.getStoreSize();
6834 
6835   MachineFunction &MF = getMachineFunction();
6836   MachineMemOperand *MMO =
6837       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6838 
6839   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6840 }
6841 
6842 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6843                                           SDVTList VTList,
6844                                           ArrayRef<SDValue> Ops, EVT MemVT,
6845                                           MachineMemOperand *MMO) {
6846   assert((Opcode == ISD::INTRINSIC_VOID ||
6847           Opcode == ISD::INTRINSIC_W_CHAIN ||
6848           Opcode == ISD::PREFETCH ||
6849           ((int)Opcode <= std::numeric_limits<int>::max() &&
6850            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6851          "Opcode is not a memory-accessing opcode!");
6852 
6853   // Memoize the node unless it returns a flag.
6854   MemIntrinsicSDNode *N;
6855   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6856     FoldingSetNodeID ID;
6857     AddNodeIDNode(ID, Opcode, VTList, Ops);
6858     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6859         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6860     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6861     void *IP = nullptr;
6862     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6863       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6864       return SDValue(E, 0);
6865     }
6866 
6867     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6868                                       VTList, MemVT, MMO);
6869     createOperands(N, Ops);
6870 
6871   CSEMap.InsertNode(N, IP);
6872   } else {
6873     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6874                                       VTList, MemVT, MMO);
6875     createOperands(N, Ops);
6876   }
6877   InsertNode(N);
6878   SDValue V(N, 0);
6879   NewSDValueDbgMsg(V, "Creating new node: ", this);
6880   return V;
6881 }
6882 
6883 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6884                                       SDValue Chain, int FrameIndex,
6885                                       int64_t Size, int64_t Offset) {
6886   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6887   const auto VTs = getVTList(MVT::Other);
6888   SDValue Ops[2] = {
6889       Chain,
6890       getFrameIndex(FrameIndex,
6891                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6892                     true)};
6893 
6894   FoldingSetNodeID ID;
6895   AddNodeIDNode(ID, Opcode, VTs, Ops);
6896   ID.AddInteger(FrameIndex);
6897   ID.AddInteger(Size);
6898   ID.AddInteger(Offset);
6899   void *IP = nullptr;
6900   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6901     return SDValue(E, 0);
6902 
6903   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6904       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6905   createOperands(N, Ops);
6906   CSEMap.InsertNode(N, IP);
6907   InsertNode(N);
6908   SDValue V(N, 0);
6909   NewSDValueDbgMsg(V, "Creating new node: ", this);
6910   return V;
6911 }
6912 
6913 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6914 /// MachinePointerInfo record from it.  This is particularly useful because the
6915 /// code generator has many cases where it doesn't bother passing in a
6916 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6917 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6918                                            SelectionDAG &DAG, SDValue Ptr,
6919                                            int64_t Offset = 0) {
6920   // If this is FI+Offset, we can model it.
6921   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6922     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6923                                              FI->getIndex(), Offset);
6924 
6925   // If this is (FI+Offset1)+Offset2, we can model it.
6926   if (Ptr.getOpcode() != ISD::ADD ||
6927       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6928       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6929     return Info;
6930 
6931   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6932   return MachinePointerInfo::getFixedStack(
6933       DAG.getMachineFunction(), FI,
6934       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6935 }
6936 
6937 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6938 /// MachinePointerInfo record from it.  This is particularly useful because the
6939 /// code generator has many cases where it doesn't bother passing in a
6940 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6941 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6942                                            SelectionDAG &DAG, SDValue Ptr,
6943                                            SDValue OffsetOp) {
6944   // If the 'Offset' value isn't a constant, we can't handle this.
6945   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6946     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6947   if (OffsetOp.isUndef())
6948     return InferPointerInfo(Info, DAG, Ptr);
6949   return Info;
6950 }
6951 
6952 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6953                               EVT VT, const SDLoc &dl, SDValue Chain,
6954                               SDValue Ptr, SDValue Offset,
6955                               MachinePointerInfo PtrInfo, EVT MemVT,
6956                               Align Alignment,
6957                               MachineMemOperand::Flags MMOFlags,
6958                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6959   assert(Chain.getValueType() == MVT::Other &&
6960         "Invalid chain type");
6961 
6962   MMOFlags |= MachineMemOperand::MOLoad;
6963   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6964   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6965   // clients.
6966   if (PtrInfo.V.isNull())
6967     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6968 
6969   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6970   MachineFunction &MF = getMachineFunction();
6971   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
6972                                                    Alignment, AAInfo, Ranges);
6973   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6974 }
6975 
6976 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6977                               EVT VT, const SDLoc &dl, SDValue Chain,
6978                               SDValue Ptr, SDValue Offset, EVT MemVT,
6979                               MachineMemOperand *MMO) {
6980   if (VT == MemVT) {
6981     ExtType = ISD::NON_EXTLOAD;
6982   } else if (ExtType == ISD::NON_EXTLOAD) {
6983     assert(VT == MemVT && "Non-extending load from different memory type!");
6984   } else {
6985     // Extending load.
6986     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6987            "Should only be an extending load, not truncating!");
6988     assert(VT.isInteger() == MemVT.isInteger() &&
6989            "Cannot convert from FP to Int or Int -> FP!");
6990     assert(VT.isVector() == MemVT.isVector() &&
6991            "Cannot use an ext load to convert to or from a vector!");
6992     assert((!VT.isVector() ||
6993             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
6994            "Cannot use an ext load to change the number of vector elements!");
6995   }
6996 
6997   bool Indexed = AM != ISD::UNINDEXED;
6998   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6999 
7000   SDVTList VTs = Indexed ?
7001     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7002   SDValue Ops[] = { Chain, Ptr, Offset };
7003   FoldingSetNodeID ID;
7004   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7005   ID.AddInteger(MemVT.getRawBits());
7006   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7007       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7008   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7009   void *IP = nullptr;
7010   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7011     cast<LoadSDNode>(E)->refineAlignment(MMO);
7012     return SDValue(E, 0);
7013   }
7014   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7015                                   ExtType, MemVT, MMO);
7016   createOperands(N, Ops);
7017 
7018   CSEMap.InsertNode(N, IP);
7019   InsertNode(N);
7020   SDValue V(N, 0);
7021   NewSDValueDbgMsg(V, "Creating new node: ", this);
7022   return V;
7023 }
7024 
7025 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7026                               SDValue Ptr, MachinePointerInfo PtrInfo,
7027                               MaybeAlign Alignment,
7028                               MachineMemOperand::Flags MMOFlags,
7029                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7030   SDValue Undef = getUNDEF(Ptr.getValueType());
7031   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7032                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7033 }
7034 
7035 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7036                               SDValue Ptr, MachineMemOperand *MMO) {
7037   SDValue Undef = getUNDEF(Ptr.getValueType());
7038   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7039                  VT, MMO);
7040 }
7041 
7042 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7043                                  EVT VT, SDValue Chain, SDValue Ptr,
7044                                  MachinePointerInfo PtrInfo, EVT MemVT,
7045                                  MaybeAlign Alignment,
7046                                  MachineMemOperand::Flags MMOFlags,
7047                                  const AAMDNodes &AAInfo) {
7048   SDValue Undef = getUNDEF(Ptr.getValueType());
7049   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7050                  MemVT, Alignment, MMOFlags, AAInfo);
7051 }
7052 
7053 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7054                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7055                                  MachineMemOperand *MMO) {
7056   SDValue Undef = getUNDEF(Ptr.getValueType());
7057   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7058                  MemVT, MMO);
7059 }
7060 
7061 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7062                                      SDValue Base, SDValue Offset,
7063                                      ISD::MemIndexedMode AM) {
7064   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7065   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7066   // Don't propagate the invariant or dereferenceable flags.
7067   auto MMOFlags =
7068       LD->getMemOperand()->getFlags() &
7069       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7070   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7071                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7072                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7073 }
7074 
7075 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7076                                SDValue Ptr, MachinePointerInfo PtrInfo,
7077                                Align Alignment,
7078                                MachineMemOperand::Flags MMOFlags,
7079                                const AAMDNodes &AAInfo) {
7080   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7081 
7082   MMOFlags |= MachineMemOperand::MOStore;
7083   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7084 
7085   if (PtrInfo.V.isNull())
7086     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7087 
7088   MachineFunction &MF = getMachineFunction();
7089   uint64_t Size =
7090       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7091   MachineMemOperand *MMO =
7092       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7093   return getStore(Chain, dl, Val, Ptr, MMO);
7094 }
7095 
7096 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7097                                SDValue Ptr, MachineMemOperand *MMO) {
7098   assert(Chain.getValueType() == MVT::Other &&
7099         "Invalid chain type");
7100   EVT VT = Val.getValueType();
7101   SDVTList VTs = getVTList(MVT::Other);
7102   SDValue Undef = getUNDEF(Ptr.getValueType());
7103   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7104   FoldingSetNodeID ID;
7105   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7106   ID.AddInteger(VT.getRawBits());
7107   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7108       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7109   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7110   void *IP = nullptr;
7111   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7112     cast<StoreSDNode>(E)->refineAlignment(MMO);
7113     return SDValue(E, 0);
7114   }
7115   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7116                                    ISD::UNINDEXED, false, VT, MMO);
7117   createOperands(N, Ops);
7118 
7119   CSEMap.InsertNode(N, IP);
7120   InsertNode(N);
7121   SDValue V(N, 0);
7122   NewSDValueDbgMsg(V, "Creating new node: ", this);
7123   return V;
7124 }
7125 
7126 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7127                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7128                                     EVT SVT, Align Alignment,
7129                                     MachineMemOperand::Flags MMOFlags,
7130                                     const AAMDNodes &AAInfo) {
7131   assert(Chain.getValueType() == MVT::Other &&
7132         "Invalid chain type");
7133 
7134   MMOFlags |= MachineMemOperand::MOStore;
7135   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7136 
7137   if (PtrInfo.V.isNull())
7138     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7139 
7140   MachineFunction &MF = getMachineFunction();
7141   MachineMemOperand *MMO = MF.getMachineMemOperand(
7142       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7143       Alignment, AAInfo);
7144   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7145 }
7146 
7147 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7148                                     SDValue Ptr, EVT SVT,
7149                                     MachineMemOperand *MMO) {
7150   EVT VT = Val.getValueType();
7151 
7152   assert(Chain.getValueType() == MVT::Other &&
7153         "Invalid chain type");
7154   if (VT == SVT)
7155     return getStore(Chain, dl, Val, Ptr, MMO);
7156 
7157   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7158          "Should only be a truncating store, not extending!");
7159   assert(VT.isInteger() == SVT.isInteger() &&
7160          "Can't do FP-INT conversion!");
7161   assert(VT.isVector() == SVT.isVector() &&
7162          "Cannot use trunc store to convert to or from a vector!");
7163   assert((!VT.isVector() ||
7164           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7165          "Cannot use trunc store to change the number of vector elements!");
7166 
7167   SDVTList VTs = getVTList(MVT::Other);
7168   SDValue Undef = getUNDEF(Ptr.getValueType());
7169   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7170   FoldingSetNodeID ID;
7171   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7172   ID.AddInteger(SVT.getRawBits());
7173   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7174       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7175   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7176   void *IP = nullptr;
7177   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7178     cast<StoreSDNode>(E)->refineAlignment(MMO);
7179     return SDValue(E, 0);
7180   }
7181   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7182                                    ISD::UNINDEXED, true, SVT, MMO);
7183   createOperands(N, Ops);
7184 
7185   CSEMap.InsertNode(N, IP);
7186   InsertNode(N);
7187   SDValue V(N, 0);
7188   NewSDValueDbgMsg(V, "Creating new node: ", this);
7189   return V;
7190 }
7191 
7192 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7193                                       SDValue Base, SDValue Offset,
7194                                       ISD::MemIndexedMode AM) {
7195   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7196   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7197   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7198   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7199   FoldingSetNodeID ID;
7200   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7201   ID.AddInteger(ST->getMemoryVT().getRawBits());
7202   ID.AddInteger(ST->getRawSubclassData());
7203   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7204   void *IP = nullptr;
7205   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7206     return SDValue(E, 0);
7207 
7208   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7209                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7210                                    ST->getMemOperand());
7211   createOperands(N, Ops);
7212 
7213   CSEMap.InsertNode(N, IP);
7214   InsertNode(N);
7215   SDValue V(N, 0);
7216   NewSDValueDbgMsg(V, "Creating new node: ", this);
7217   return V;
7218 }
7219 
7220 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7221                                     SDValue Base, SDValue Offset, SDValue Mask,
7222                                     SDValue PassThru, EVT MemVT,
7223                                     MachineMemOperand *MMO,
7224                                     ISD::MemIndexedMode AM,
7225                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7226   bool Indexed = AM != ISD::UNINDEXED;
7227   assert((Indexed || Offset.isUndef()) &&
7228          "Unindexed masked load with an offset!");
7229   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7230                          : getVTList(VT, MVT::Other);
7231   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7232   FoldingSetNodeID ID;
7233   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7234   ID.AddInteger(MemVT.getRawBits());
7235   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7236       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7237   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7238   void *IP = nullptr;
7239   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7240     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7241     return SDValue(E, 0);
7242   }
7243   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7244                                         AM, ExtTy, isExpanding, MemVT, MMO);
7245   createOperands(N, Ops);
7246 
7247   CSEMap.InsertNode(N, IP);
7248   InsertNode(N);
7249   SDValue V(N, 0);
7250   NewSDValueDbgMsg(V, "Creating new node: ", this);
7251   return V;
7252 }
7253 
7254 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7255                                            SDValue Base, SDValue Offset,
7256                                            ISD::MemIndexedMode AM) {
7257   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7258   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7259   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7260                        Offset, LD->getMask(), LD->getPassThru(),
7261                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7262                        LD->getExtensionType(), LD->isExpandingLoad());
7263 }
7264 
7265 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7266                                      SDValue Val, SDValue Base, SDValue Offset,
7267                                      SDValue Mask, EVT MemVT,
7268                                      MachineMemOperand *MMO,
7269                                      ISD::MemIndexedMode AM, bool IsTruncating,
7270                                      bool IsCompressing) {
7271   assert(Chain.getValueType() == MVT::Other &&
7272         "Invalid chain type");
7273   bool Indexed = AM != ISD::UNINDEXED;
7274   assert((Indexed || Offset.isUndef()) &&
7275          "Unindexed masked store with an offset!");
7276   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7277                          : getVTList(MVT::Other);
7278   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7279   FoldingSetNodeID ID;
7280   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7281   ID.AddInteger(MemVT.getRawBits());
7282   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7283       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7284   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7285   void *IP = nullptr;
7286   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7287     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7288     return SDValue(E, 0);
7289   }
7290   auto *N =
7291       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7292                                    IsTruncating, IsCompressing, MemVT, MMO);
7293   createOperands(N, Ops);
7294 
7295   CSEMap.InsertNode(N, IP);
7296   InsertNode(N);
7297   SDValue V(N, 0);
7298   NewSDValueDbgMsg(V, "Creating new node: ", this);
7299   return V;
7300 }
7301 
7302 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7303                                             SDValue Base, SDValue Offset,
7304                                             ISD::MemIndexedMode AM) {
7305   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7306   assert(ST->getOffset().isUndef() &&
7307          "Masked store is already a indexed store!");
7308   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7309                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7310                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7311 }
7312 
7313 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7314                                       ArrayRef<SDValue> Ops,
7315                                       MachineMemOperand *MMO,
7316                                       ISD::MemIndexType IndexType) {
7317   assert(Ops.size() == 6 && "Incompatible number of operands");
7318 
7319   FoldingSetNodeID ID;
7320   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7321   ID.AddInteger(VT.getRawBits());
7322   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7323       dl.getIROrder(), VTs, VT, MMO, IndexType));
7324   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7325   void *IP = nullptr;
7326   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7327     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7328     return SDValue(E, 0);
7329   }
7330 
7331   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7332                                           VTs, VT, MMO, IndexType);
7333   createOperands(N, Ops);
7334 
7335   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7336          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7337   assert(N->getMask().getValueType().getVectorNumElements() ==
7338              N->getValueType(0).getVectorNumElements() &&
7339          "Vector width mismatch between mask and data");
7340   assert(N->getIndex().getValueType().getVectorNumElements() >=
7341              N->getValueType(0).getVectorNumElements() &&
7342          "Vector width mismatch between index and data");
7343   assert(isa<ConstantSDNode>(N->getScale()) &&
7344          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7345          "Scale should be a constant power of 2");
7346 
7347   CSEMap.InsertNode(N, IP);
7348   InsertNode(N);
7349   SDValue V(N, 0);
7350   NewSDValueDbgMsg(V, "Creating new node: ", this);
7351   return V;
7352 }
7353 
7354 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7355                                        ArrayRef<SDValue> Ops,
7356                                        MachineMemOperand *MMO,
7357                                        ISD::MemIndexType IndexType) {
7358   assert(Ops.size() == 6 && "Incompatible number of operands");
7359 
7360   FoldingSetNodeID ID;
7361   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7362   ID.AddInteger(VT.getRawBits());
7363   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7364       dl.getIROrder(), VTs, VT, MMO, IndexType));
7365   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7366   void *IP = nullptr;
7367   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7368     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7369     return SDValue(E, 0);
7370   }
7371   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7372                                            VTs, VT, MMO, IndexType);
7373   createOperands(N, Ops);
7374 
7375   assert(N->getMask().getValueType().getVectorNumElements() ==
7376              N->getValue().getValueType().getVectorNumElements() &&
7377          "Vector width mismatch between mask and data");
7378   assert(N->getIndex().getValueType().getVectorNumElements() >=
7379              N->getValue().getValueType().getVectorNumElements() &&
7380          "Vector width mismatch between index and data");
7381   assert(isa<ConstantSDNode>(N->getScale()) &&
7382          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7383          "Scale should be a constant power of 2");
7384 
7385   CSEMap.InsertNode(N, IP);
7386   InsertNode(N);
7387   SDValue V(N, 0);
7388   NewSDValueDbgMsg(V, "Creating new node: ", this);
7389   return V;
7390 }
7391 
7392 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7393   // select undef, T, F --> T (if T is a constant), otherwise F
7394   // select, ?, undef, F --> F
7395   // select, ?, T, undef --> T
7396   if (Cond.isUndef())
7397     return isConstantValueOfAnyType(T) ? T : F;
7398   if (T.isUndef())
7399     return F;
7400   if (F.isUndef())
7401     return T;
7402 
7403   // select true, T, F --> T
7404   // select false, T, F --> F
7405   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7406     return CondC->isNullValue() ? F : T;
7407 
7408   // TODO: This should simplify VSELECT with constant condition using something
7409   // like this (but check boolean contents to be complete?):
7410   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7411   //    return T;
7412   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7413   //    return F;
7414 
7415   // select ?, T, T --> T
7416   if (T == F)
7417     return T;
7418 
7419   return SDValue();
7420 }
7421 
7422 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7423   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7424   if (X.isUndef())
7425     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7426   // shift X, undef --> undef (because it may shift by the bitwidth)
7427   if (Y.isUndef())
7428     return getUNDEF(X.getValueType());
7429 
7430   // shift 0, Y --> 0
7431   // shift X, 0 --> X
7432   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7433     return X;
7434 
7435   // shift X, C >= bitwidth(X) --> undef
7436   // All vector elements must be too big (or undef) to avoid partial undefs.
7437   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7438     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7439   };
7440   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7441     return getUNDEF(X.getValueType());
7442 
7443   return SDValue();
7444 }
7445 
7446 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7447                                       SDNodeFlags Flags) {
7448   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7449   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7450   // operation is poison. That result can be relaxed to undef.
7451   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7452   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7453   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7454                 (YC && YC->getValueAPF().isNaN());
7455   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7456                 (YC && YC->getValueAPF().isInfinity());
7457 
7458   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7459     return getUNDEF(X.getValueType());
7460 
7461   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7462     return getUNDEF(X.getValueType());
7463 
7464   if (!YC)
7465     return SDValue();
7466 
7467   // X + -0.0 --> X
7468   if (Opcode == ISD::FADD)
7469     if (YC->getValueAPF().isNegZero())
7470       return X;
7471 
7472   // X - +0.0 --> X
7473   if (Opcode == ISD::FSUB)
7474     if (YC->getValueAPF().isPosZero())
7475       return X;
7476 
7477   // X * 1.0 --> X
7478   // X / 1.0 --> X
7479   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7480     if (YC->getValueAPF().isExactlyValue(1.0))
7481       return X;
7482 
7483   // X * 0.0 --> 0.0
7484   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7485     if (YC->getValueAPF().isZero())
7486       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7487 
7488   return SDValue();
7489 }
7490 
7491 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7492                                SDValue Ptr, SDValue SV, unsigned Align) {
7493   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7494   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7495 }
7496 
7497 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7498                               ArrayRef<SDUse> Ops) {
7499   switch (Ops.size()) {
7500   case 0: return getNode(Opcode, DL, VT);
7501   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7502   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7503   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7504   default: break;
7505   }
7506 
7507   // Copy from an SDUse array into an SDValue array for use with
7508   // the regular getNode logic.
7509   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7510   return getNode(Opcode, DL, VT, NewOps);
7511 }
7512 
7513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7514                               ArrayRef<SDValue> Ops) {
7515   SDNodeFlags Flags;
7516   if (Inserter)
7517     Flags = Inserter->getFlags();
7518   return getNode(Opcode, DL, VT, Ops, Flags);
7519 }
7520 
7521 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7522                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7523   unsigned NumOps = Ops.size();
7524   switch (NumOps) {
7525   case 0: return getNode(Opcode, DL, VT);
7526   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7527   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7528   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7529   default: break;
7530   }
7531 
7532   switch (Opcode) {
7533   default: break;
7534   case ISD::BUILD_VECTOR:
7535     // Attempt to simplify BUILD_VECTOR.
7536     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7537       return V;
7538     break;
7539   case ISD::CONCAT_VECTORS:
7540     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7541       return V;
7542     break;
7543   case ISD::SELECT_CC:
7544     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7545     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7546            "LHS and RHS of condition must have same type!");
7547     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7548            "True and False arms of SelectCC must have same type!");
7549     assert(Ops[2].getValueType() == VT &&
7550            "select_cc node must be of same type as true and false value!");
7551     break;
7552   case ISD::BR_CC:
7553     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7554     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7555            "LHS/RHS of comparison should match types!");
7556     break;
7557   }
7558 
7559   // Memoize nodes.
7560   SDNode *N;
7561   SDVTList VTs = getVTList(VT);
7562 
7563   if (VT != MVT::Glue) {
7564     FoldingSetNodeID ID;
7565     AddNodeIDNode(ID, Opcode, VTs, Ops);
7566     void *IP = nullptr;
7567 
7568     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7569       return SDValue(E, 0);
7570 
7571     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7572     createOperands(N, Ops);
7573 
7574     CSEMap.InsertNode(N, IP);
7575   } else {
7576     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7577     createOperands(N, Ops);
7578   }
7579 
7580   N->setFlags(Flags);
7581   InsertNode(N);
7582   SDValue V(N, 0);
7583   NewSDValueDbgMsg(V, "Creating new node: ", this);
7584   return V;
7585 }
7586 
7587 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7588                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7589   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7590 }
7591 
7592 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7593                               ArrayRef<SDValue> Ops) {
7594   SDNodeFlags Flags;
7595   if (Inserter)
7596     Flags = Inserter->getFlags();
7597   return getNode(Opcode, DL, VTList, Ops, Flags);
7598 }
7599 
7600 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7601                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7602   if (VTList.NumVTs == 1)
7603     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7604 
7605   switch (Opcode) {
7606   case ISD::STRICT_FP_EXTEND:
7607     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7608            "Invalid STRICT_FP_EXTEND!");
7609     assert(VTList.VTs[0].isFloatingPoint() &&
7610            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7611     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7612            "STRICT_FP_EXTEND result type should be vector iff the operand "
7613            "type is vector!");
7614     assert((!VTList.VTs[0].isVector() ||
7615             VTList.VTs[0].getVectorNumElements() ==
7616             Ops[1].getValueType().getVectorNumElements()) &&
7617            "Vector element count mismatch!");
7618     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7619            "Invalid fpext node, dst <= src!");
7620     break;
7621   case ISD::STRICT_FP_ROUND:
7622     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7623     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7624            "STRICT_FP_ROUND result type should be vector iff the operand "
7625            "type is vector!");
7626     assert((!VTList.VTs[0].isVector() ||
7627             VTList.VTs[0].getVectorNumElements() ==
7628             Ops[1].getValueType().getVectorNumElements()) &&
7629            "Vector element count mismatch!");
7630     assert(VTList.VTs[0].isFloatingPoint() &&
7631            Ops[1].getValueType().isFloatingPoint() &&
7632            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7633            isa<ConstantSDNode>(Ops[2]) &&
7634            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7635             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7636            "Invalid STRICT_FP_ROUND!");
7637     break;
7638 #if 0
7639   // FIXME: figure out how to safely handle things like
7640   // int foo(int x) { return 1 << (x & 255); }
7641   // int bar() { return foo(256); }
7642   case ISD::SRA_PARTS:
7643   case ISD::SRL_PARTS:
7644   case ISD::SHL_PARTS:
7645     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7646         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7647       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7648     else if (N3.getOpcode() == ISD::AND)
7649       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7650         // If the and is only masking out bits that cannot effect the shift,
7651         // eliminate the and.
7652         unsigned NumBits = VT.getScalarSizeInBits()*2;
7653         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7654           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7655       }
7656     break;
7657 #endif
7658   }
7659 
7660   // Memoize the node unless it returns a flag.
7661   SDNode *N;
7662   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7663     FoldingSetNodeID ID;
7664     AddNodeIDNode(ID, Opcode, VTList, Ops);
7665     void *IP = nullptr;
7666     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7667       return SDValue(E, 0);
7668 
7669     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7670     createOperands(N, Ops);
7671     CSEMap.InsertNode(N, IP);
7672   } else {
7673     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7674     createOperands(N, Ops);
7675   }
7676 
7677   N->setFlags(Flags);
7678   InsertNode(N);
7679   SDValue V(N, 0);
7680   NewSDValueDbgMsg(V, "Creating new node: ", this);
7681   return V;
7682 }
7683 
7684 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7685                               SDVTList VTList) {
7686   return getNode(Opcode, DL, VTList, None);
7687 }
7688 
7689 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7690                               SDValue N1) {
7691   SDValue Ops[] = { N1 };
7692   return getNode(Opcode, DL, VTList, Ops);
7693 }
7694 
7695 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7696                               SDValue N1, SDValue N2) {
7697   SDValue Ops[] = { N1, N2 };
7698   return getNode(Opcode, DL, VTList, Ops);
7699 }
7700 
7701 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7702                               SDValue N1, SDValue N2, SDValue N3) {
7703   SDValue Ops[] = { N1, N2, N3 };
7704   return getNode(Opcode, DL, VTList, Ops);
7705 }
7706 
7707 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7708                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7709   SDValue Ops[] = { N1, N2, N3, N4 };
7710   return getNode(Opcode, DL, VTList, Ops);
7711 }
7712 
7713 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7714                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7715                               SDValue N5) {
7716   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7717   return getNode(Opcode, DL, VTList, Ops);
7718 }
7719 
7720 SDVTList SelectionDAG::getVTList(EVT VT) {
7721   return makeVTList(SDNode::getValueTypeList(VT), 1);
7722 }
7723 
7724 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7725   FoldingSetNodeID ID;
7726   ID.AddInteger(2U);
7727   ID.AddInteger(VT1.getRawBits());
7728   ID.AddInteger(VT2.getRawBits());
7729 
7730   void *IP = nullptr;
7731   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7732   if (!Result) {
7733     EVT *Array = Allocator.Allocate<EVT>(2);
7734     Array[0] = VT1;
7735     Array[1] = VT2;
7736     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7737     VTListMap.InsertNode(Result, IP);
7738   }
7739   return Result->getSDVTList();
7740 }
7741 
7742 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7743   FoldingSetNodeID ID;
7744   ID.AddInteger(3U);
7745   ID.AddInteger(VT1.getRawBits());
7746   ID.AddInteger(VT2.getRawBits());
7747   ID.AddInteger(VT3.getRawBits());
7748 
7749   void *IP = nullptr;
7750   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7751   if (!Result) {
7752     EVT *Array = Allocator.Allocate<EVT>(3);
7753     Array[0] = VT1;
7754     Array[1] = VT2;
7755     Array[2] = VT3;
7756     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7757     VTListMap.InsertNode(Result, IP);
7758   }
7759   return Result->getSDVTList();
7760 }
7761 
7762 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7763   FoldingSetNodeID ID;
7764   ID.AddInteger(4U);
7765   ID.AddInteger(VT1.getRawBits());
7766   ID.AddInteger(VT2.getRawBits());
7767   ID.AddInteger(VT3.getRawBits());
7768   ID.AddInteger(VT4.getRawBits());
7769 
7770   void *IP = nullptr;
7771   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7772   if (!Result) {
7773     EVT *Array = Allocator.Allocate<EVT>(4);
7774     Array[0] = VT1;
7775     Array[1] = VT2;
7776     Array[2] = VT3;
7777     Array[3] = VT4;
7778     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7779     VTListMap.InsertNode(Result, IP);
7780   }
7781   return Result->getSDVTList();
7782 }
7783 
7784 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7785   unsigned NumVTs = VTs.size();
7786   FoldingSetNodeID ID;
7787   ID.AddInteger(NumVTs);
7788   for (unsigned index = 0; index < NumVTs; index++) {
7789     ID.AddInteger(VTs[index].getRawBits());
7790   }
7791 
7792   void *IP = nullptr;
7793   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7794   if (!Result) {
7795     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7796     llvm::copy(VTs, Array);
7797     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7798     VTListMap.InsertNode(Result, IP);
7799   }
7800   return Result->getSDVTList();
7801 }
7802 
7803 
7804 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7805 /// specified operands.  If the resultant node already exists in the DAG,
7806 /// this does not modify the specified node, instead it returns the node that
7807 /// already exists.  If the resultant node does not exist in the DAG, the
7808 /// input node is returned.  As a degenerate case, if you specify the same
7809 /// input operands as the node already has, the input node is returned.
7810 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7811   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7812 
7813   // Check to see if there is no change.
7814   if (Op == N->getOperand(0)) return N;
7815 
7816   // See if the modified node already exists.
7817   void *InsertPos = nullptr;
7818   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7819     return Existing;
7820 
7821   // Nope it doesn't.  Remove the node from its current place in the maps.
7822   if (InsertPos)
7823     if (!RemoveNodeFromCSEMaps(N))
7824       InsertPos = nullptr;
7825 
7826   // Now we update the operands.
7827   N->OperandList[0].set(Op);
7828 
7829   updateDivergence(N);
7830   // If this gets put into a CSE map, add it.
7831   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7832   return N;
7833 }
7834 
7835 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7836   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7837 
7838   // Check to see if there is no change.
7839   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7840     return N;   // No operands changed, just return the input node.
7841 
7842   // See if the modified node already exists.
7843   void *InsertPos = nullptr;
7844   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7845     return Existing;
7846 
7847   // Nope it doesn't.  Remove the node from its current place in the maps.
7848   if (InsertPos)
7849     if (!RemoveNodeFromCSEMaps(N))
7850       InsertPos = nullptr;
7851 
7852   // Now we update the operands.
7853   if (N->OperandList[0] != Op1)
7854     N->OperandList[0].set(Op1);
7855   if (N->OperandList[1] != Op2)
7856     N->OperandList[1].set(Op2);
7857 
7858   updateDivergence(N);
7859   // If this gets put into a CSE map, add it.
7860   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7861   return N;
7862 }
7863 
7864 SDNode *SelectionDAG::
7865 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7866   SDValue Ops[] = { Op1, Op2, Op3 };
7867   return UpdateNodeOperands(N, Ops);
7868 }
7869 
7870 SDNode *SelectionDAG::
7871 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7872                    SDValue Op3, SDValue Op4) {
7873   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7874   return UpdateNodeOperands(N, Ops);
7875 }
7876 
7877 SDNode *SelectionDAG::
7878 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7879                    SDValue Op3, SDValue Op4, SDValue Op5) {
7880   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7881   return UpdateNodeOperands(N, Ops);
7882 }
7883 
7884 SDNode *SelectionDAG::
7885 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7886   unsigned NumOps = Ops.size();
7887   assert(N->getNumOperands() == NumOps &&
7888          "Update with wrong number of operands");
7889 
7890   // If no operands changed just return the input node.
7891   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7892     return N;
7893 
7894   // See if the modified node already exists.
7895   void *InsertPos = nullptr;
7896   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7897     return Existing;
7898 
7899   // Nope it doesn't.  Remove the node from its current place in the maps.
7900   if (InsertPos)
7901     if (!RemoveNodeFromCSEMaps(N))
7902       InsertPos = nullptr;
7903 
7904   // Now we update the operands.
7905   for (unsigned i = 0; i != NumOps; ++i)
7906     if (N->OperandList[i] != Ops[i])
7907       N->OperandList[i].set(Ops[i]);
7908 
7909   updateDivergence(N);
7910   // If this gets put into a CSE map, add it.
7911   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7912   return N;
7913 }
7914 
7915 /// DropOperands - Release the operands and set this node to have
7916 /// zero operands.
7917 void SDNode::DropOperands() {
7918   // Unlike the code in MorphNodeTo that does this, we don't need to
7919   // watch for dead nodes here.
7920   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7921     SDUse &Use = *I++;
7922     Use.set(SDValue());
7923   }
7924 }
7925 
7926 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7927                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7928   if (NewMemRefs.empty()) {
7929     N->clearMemRefs();
7930     return;
7931   }
7932 
7933   // Check if we can avoid allocating by storing a single reference directly.
7934   if (NewMemRefs.size() == 1) {
7935     N->MemRefs = NewMemRefs[0];
7936     N->NumMemRefs = 1;
7937     return;
7938   }
7939 
7940   MachineMemOperand **MemRefsBuffer =
7941       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7942   llvm::copy(NewMemRefs, MemRefsBuffer);
7943   N->MemRefs = MemRefsBuffer;
7944   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7945 }
7946 
7947 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7948 /// machine opcode.
7949 ///
7950 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7951                                    EVT VT) {
7952   SDVTList VTs = getVTList(VT);
7953   return SelectNodeTo(N, MachineOpc, VTs, None);
7954 }
7955 
7956 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7957                                    EVT VT, SDValue Op1) {
7958   SDVTList VTs = getVTList(VT);
7959   SDValue Ops[] = { Op1 };
7960   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7961 }
7962 
7963 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7964                                    EVT VT, SDValue Op1,
7965                                    SDValue Op2) {
7966   SDVTList VTs = getVTList(VT);
7967   SDValue Ops[] = { Op1, Op2 };
7968   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7969 }
7970 
7971 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7972                                    EVT VT, SDValue Op1,
7973                                    SDValue Op2, SDValue Op3) {
7974   SDVTList VTs = getVTList(VT);
7975   SDValue Ops[] = { Op1, Op2, Op3 };
7976   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7977 }
7978 
7979 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7980                                    EVT VT, ArrayRef<SDValue> Ops) {
7981   SDVTList VTs = getVTList(VT);
7982   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7983 }
7984 
7985 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7986                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7987   SDVTList VTs = getVTList(VT1, VT2);
7988   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7989 }
7990 
7991 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7992                                    EVT VT1, EVT VT2) {
7993   SDVTList VTs = getVTList(VT1, VT2);
7994   return SelectNodeTo(N, MachineOpc, VTs, None);
7995 }
7996 
7997 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7998                                    EVT VT1, EVT VT2, EVT VT3,
7999                                    ArrayRef<SDValue> Ops) {
8000   SDVTList VTs = getVTList(VT1, VT2, VT3);
8001   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8002 }
8003 
8004 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8005                                    EVT VT1, EVT VT2,
8006                                    SDValue Op1, SDValue Op2) {
8007   SDVTList VTs = getVTList(VT1, VT2);
8008   SDValue Ops[] = { Op1, Op2 };
8009   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8010 }
8011 
8012 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8013                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8014   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8015   // Reset the NodeID to -1.
8016   New->setNodeId(-1);
8017   if (New != N) {
8018     ReplaceAllUsesWith(N, New);
8019     RemoveDeadNode(N);
8020   }
8021   return New;
8022 }
8023 
8024 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8025 /// the line number information on the merged node since it is not possible to
8026 /// preserve the information that operation is associated with multiple lines.
8027 /// This will make the debugger working better at -O0, were there is a higher
8028 /// probability having other instructions associated with that line.
8029 ///
8030 /// For IROrder, we keep the smaller of the two
8031 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8032   DebugLoc NLoc = N->getDebugLoc();
8033   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8034     N->setDebugLoc(DebugLoc());
8035   }
8036   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8037   N->setIROrder(Order);
8038   return N;
8039 }
8040 
8041 /// MorphNodeTo - This *mutates* the specified node to have the specified
8042 /// return type, opcode, and operands.
8043 ///
8044 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8045 /// node of the specified opcode and operands, it returns that node instead of
8046 /// the current one.  Note that the SDLoc need not be the same.
8047 ///
8048 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8049 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8050 /// node, and because it doesn't require CSE recalculation for any of
8051 /// the node's users.
8052 ///
8053 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8054 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8055 /// the legalizer which maintain worklists that would need to be updated when
8056 /// deleting things.
8057 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8058                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8059   // If an identical node already exists, use it.
8060   void *IP = nullptr;
8061   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8062     FoldingSetNodeID ID;
8063     AddNodeIDNode(ID, Opc, VTs, Ops);
8064     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8065       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8066   }
8067 
8068   if (!RemoveNodeFromCSEMaps(N))
8069     IP = nullptr;
8070 
8071   // Start the morphing.
8072   N->NodeType = Opc;
8073   N->ValueList = VTs.VTs;
8074   N->NumValues = VTs.NumVTs;
8075 
8076   // Clear the operands list, updating used nodes to remove this from their
8077   // use list.  Keep track of any operands that become dead as a result.
8078   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8079   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8080     SDUse &Use = *I++;
8081     SDNode *Used = Use.getNode();
8082     Use.set(SDValue());
8083     if (Used->use_empty())
8084       DeadNodeSet.insert(Used);
8085   }
8086 
8087   // For MachineNode, initialize the memory references information.
8088   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8089     MN->clearMemRefs();
8090 
8091   // Swap for an appropriately sized array from the recycler.
8092   removeOperands(N);
8093   createOperands(N, Ops);
8094 
8095   // Delete any nodes that are still dead after adding the uses for the
8096   // new operands.
8097   if (!DeadNodeSet.empty()) {
8098     SmallVector<SDNode *, 16> DeadNodes;
8099     for (SDNode *N : DeadNodeSet)
8100       if (N->use_empty())
8101         DeadNodes.push_back(N);
8102     RemoveDeadNodes(DeadNodes);
8103   }
8104 
8105   if (IP)
8106     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8107   return N;
8108 }
8109 
8110 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8111   unsigned OrigOpc = Node->getOpcode();
8112   unsigned NewOpc;
8113   switch (OrigOpc) {
8114   default:
8115     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8116 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8117   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8118 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8119   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8120 #include "llvm/IR/ConstrainedOps.def"
8121   }
8122 
8123   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8124 
8125   // We're taking this node out of the chain, so we need to re-link things.
8126   SDValue InputChain = Node->getOperand(0);
8127   SDValue OutputChain = SDValue(Node, 1);
8128   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8129 
8130   SmallVector<SDValue, 3> Ops;
8131   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8132     Ops.push_back(Node->getOperand(i));
8133 
8134   SDVTList VTs = getVTList(Node->getValueType(0));
8135   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8136 
8137   // MorphNodeTo can operate in two ways: if an existing node with the
8138   // specified operands exists, it can just return it.  Otherwise, it
8139   // updates the node in place to have the requested operands.
8140   if (Res == Node) {
8141     // If we updated the node in place, reset the node ID.  To the isel,
8142     // this should be just like a newly allocated machine node.
8143     Res->setNodeId(-1);
8144   } else {
8145     ReplaceAllUsesWith(Node, Res);
8146     RemoveDeadNode(Node);
8147   }
8148 
8149   return Res;
8150 }
8151 
8152 /// getMachineNode - These are used for target selectors to create a new node
8153 /// with specified return type(s), MachineInstr opcode, and operands.
8154 ///
8155 /// Note that getMachineNode returns the resultant node.  If there is already a
8156 /// node of the specified opcode and operands, it returns that node instead of
8157 /// the current one.
8158 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8159                                             EVT VT) {
8160   SDVTList VTs = getVTList(VT);
8161   return getMachineNode(Opcode, dl, VTs, None);
8162 }
8163 
8164 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8165                                             EVT VT, SDValue Op1) {
8166   SDVTList VTs = getVTList(VT);
8167   SDValue Ops[] = { Op1 };
8168   return getMachineNode(Opcode, dl, VTs, Ops);
8169 }
8170 
8171 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8172                                             EVT VT, SDValue Op1, SDValue Op2) {
8173   SDVTList VTs = getVTList(VT);
8174   SDValue Ops[] = { Op1, Op2 };
8175   return getMachineNode(Opcode, dl, VTs, Ops);
8176 }
8177 
8178 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8179                                             EVT VT, SDValue Op1, SDValue Op2,
8180                                             SDValue Op3) {
8181   SDVTList VTs = getVTList(VT);
8182   SDValue Ops[] = { Op1, Op2, Op3 };
8183   return getMachineNode(Opcode, dl, VTs, Ops);
8184 }
8185 
8186 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8187                                             EVT VT, ArrayRef<SDValue> Ops) {
8188   SDVTList VTs = getVTList(VT);
8189   return getMachineNode(Opcode, dl, VTs, Ops);
8190 }
8191 
8192 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8193                                             EVT VT1, EVT VT2, SDValue Op1,
8194                                             SDValue Op2) {
8195   SDVTList VTs = getVTList(VT1, VT2);
8196   SDValue Ops[] = { Op1, Op2 };
8197   return getMachineNode(Opcode, dl, VTs, Ops);
8198 }
8199 
8200 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8201                                             EVT VT1, EVT VT2, SDValue Op1,
8202                                             SDValue Op2, SDValue Op3) {
8203   SDVTList VTs = getVTList(VT1, VT2);
8204   SDValue Ops[] = { Op1, Op2, Op3 };
8205   return getMachineNode(Opcode, dl, VTs, Ops);
8206 }
8207 
8208 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8209                                             EVT VT1, EVT VT2,
8210                                             ArrayRef<SDValue> Ops) {
8211   SDVTList VTs = getVTList(VT1, VT2);
8212   return getMachineNode(Opcode, dl, VTs, Ops);
8213 }
8214 
8215 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8216                                             EVT VT1, EVT VT2, EVT VT3,
8217                                             SDValue Op1, SDValue Op2) {
8218   SDVTList VTs = getVTList(VT1, VT2, VT3);
8219   SDValue Ops[] = { Op1, Op2 };
8220   return getMachineNode(Opcode, dl, VTs, Ops);
8221 }
8222 
8223 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8224                                             EVT VT1, EVT VT2, EVT VT3,
8225                                             SDValue Op1, SDValue Op2,
8226                                             SDValue Op3) {
8227   SDVTList VTs = getVTList(VT1, VT2, VT3);
8228   SDValue Ops[] = { Op1, Op2, Op3 };
8229   return getMachineNode(Opcode, dl, VTs, Ops);
8230 }
8231 
8232 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8233                                             EVT VT1, EVT VT2, EVT VT3,
8234                                             ArrayRef<SDValue> Ops) {
8235   SDVTList VTs = getVTList(VT1, VT2, VT3);
8236   return getMachineNode(Opcode, dl, VTs, Ops);
8237 }
8238 
8239 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8240                                             ArrayRef<EVT> ResultTys,
8241                                             ArrayRef<SDValue> Ops) {
8242   SDVTList VTs = getVTList(ResultTys);
8243   return getMachineNode(Opcode, dl, VTs, Ops);
8244 }
8245 
8246 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8247                                             SDVTList VTs,
8248                                             ArrayRef<SDValue> Ops) {
8249   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8250   MachineSDNode *N;
8251   void *IP = nullptr;
8252 
8253   if (DoCSE) {
8254     FoldingSetNodeID ID;
8255     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8256     IP = nullptr;
8257     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8258       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8259     }
8260   }
8261 
8262   // Allocate a new MachineSDNode.
8263   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8264   createOperands(N, Ops);
8265 
8266   if (DoCSE)
8267     CSEMap.InsertNode(N, IP);
8268 
8269   InsertNode(N);
8270   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8271   return N;
8272 }
8273 
8274 /// getTargetExtractSubreg - A convenience function for creating
8275 /// TargetOpcode::EXTRACT_SUBREG nodes.
8276 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8277                                              SDValue Operand) {
8278   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8279   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8280                                   VT, Operand, SRIdxVal);
8281   return SDValue(Subreg, 0);
8282 }
8283 
8284 /// getTargetInsertSubreg - A convenience function for creating
8285 /// TargetOpcode::INSERT_SUBREG nodes.
8286 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8287                                             SDValue Operand, SDValue Subreg) {
8288   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8289   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8290                                   VT, Operand, Subreg, SRIdxVal);
8291   return SDValue(Result, 0);
8292 }
8293 
8294 /// getNodeIfExists - Get the specified node if it's already available, or
8295 /// else return NULL.
8296 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8297                                       ArrayRef<SDValue> Ops) {
8298   SDNodeFlags Flags;
8299   if (Inserter)
8300     Flags = Inserter->getFlags();
8301   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8302 }
8303 
8304 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8305                                       ArrayRef<SDValue> Ops,
8306                                       const SDNodeFlags Flags) {
8307   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8308     FoldingSetNodeID ID;
8309     AddNodeIDNode(ID, Opcode, VTList, Ops);
8310     void *IP = nullptr;
8311     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8312       E->intersectFlagsWith(Flags);
8313       return E;
8314     }
8315   }
8316   return nullptr;
8317 }
8318 
8319 /// getDbgValue - Creates a SDDbgValue node.
8320 ///
8321 /// SDNode
8322 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8323                                       SDNode *N, unsigned R, bool IsIndirect,
8324                                       const DebugLoc &DL, unsigned O) {
8325   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8326          "Expected inlined-at fields to agree");
8327   return new (DbgInfo->getAlloc())
8328       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8329 }
8330 
8331 /// Constant
8332 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8333                                               DIExpression *Expr,
8334                                               const Value *C,
8335                                               const DebugLoc &DL, unsigned O) {
8336   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8337          "Expected inlined-at fields to agree");
8338   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8339 }
8340 
8341 /// FrameIndex
8342 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8343                                                 DIExpression *Expr, unsigned FI,
8344                                                 bool IsIndirect,
8345                                                 const DebugLoc &DL,
8346                                                 unsigned O) {
8347   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8348          "Expected inlined-at fields to agree");
8349   return new (DbgInfo->getAlloc())
8350       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8351 }
8352 
8353 /// VReg
8354 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8355                                           DIExpression *Expr,
8356                                           unsigned VReg, bool IsIndirect,
8357                                           const DebugLoc &DL, unsigned O) {
8358   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8359          "Expected inlined-at fields to agree");
8360   return new (DbgInfo->getAlloc())
8361       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8362 }
8363 
8364 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8365                                      unsigned OffsetInBits, unsigned SizeInBits,
8366                                      bool InvalidateDbg) {
8367   SDNode *FromNode = From.getNode();
8368   SDNode *ToNode = To.getNode();
8369   assert(FromNode && ToNode && "Can't modify dbg values");
8370 
8371   // PR35338
8372   // TODO: assert(From != To && "Redundant dbg value transfer");
8373   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8374   if (From == To || FromNode == ToNode)
8375     return;
8376 
8377   if (!FromNode->getHasDebugValue())
8378     return;
8379 
8380   SmallVector<SDDbgValue *, 2> ClonedDVs;
8381   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8382     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8383       continue;
8384 
8385     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8386 
8387     // Just transfer the dbg value attached to From.
8388     if (Dbg->getResNo() != From.getResNo())
8389       continue;
8390 
8391     DIVariable *Var = Dbg->getVariable();
8392     auto *Expr = Dbg->getExpression();
8393     // If a fragment is requested, update the expression.
8394     if (SizeInBits) {
8395       // When splitting a larger (e.g., sign-extended) value whose
8396       // lower bits are described with an SDDbgValue, do not attempt
8397       // to transfer the SDDbgValue to the upper bits.
8398       if (auto FI = Expr->getFragmentInfo())
8399         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8400           continue;
8401       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8402                                                              SizeInBits);
8403       if (!Fragment)
8404         continue;
8405       Expr = *Fragment;
8406     }
8407     // Clone the SDDbgValue and move it to To.
8408     SDDbgValue *Clone = getDbgValue(
8409         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8410         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8411     ClonedDVs.push_back(Clone);
8412 
8413     if (InvalidateDbg) {
8414       // Invalidate value and indicate the SDDbgValue should not be emitted.
8415       Dbg->setIsInvalidated();
8416       Dbg->setIsEmitted();
8417     }
8418   }
8419 
8420   for (SDDbgValue *Dbg : ClonedDVs)
8421     AddDbgValue(Dbg, ToNode, false);
8422 }
8423 
8424 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8425   if (!N.getHasDebugValue())
8426     return;
8427 
8428   SmallVector<SDDbgValue *, 2> ClonedDVs;
8429   for (auto DV : GetDbgValues(&N)) {
8430     if (DV->isInvalidated())
8431       continue;
8432     switch (N.getOpcode()) {
8433     default:
8434       break;
8435     case ISD::ADD:
8436       SDValue N0 = N.getOperand(0);
8437       SDValue N1 = N.getOperand(1);
8438       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8439           isConstantIntBuildVectorOrConstantInt(N1)) {
8440         uint64_t Offset = N.getConstantOperandVal(1);
8441         // Rewrite an ADD constant node into a DIExpression. Since we are
8442         // performing arithmetic to compute the variable's *value* in the
8443         // DIExpression, we need to mark the expression with a
8444         // DW_OP_stack_value.
8445         auto *DIExpr = DV->getExpression();
8446         DIExpr =
8447             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8448         SDDbgValue *Clone =
8449             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8450                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8451         ClonedDVs.push_back(Clone);
8452         DV->setIsInvalidated();
8453         DV->setIsEmitted();
8454         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8455                    N0.getNode()->dumprFull(this);
8456                    dbgs() << " into " << *DIExpr << '\n');
8457       }
8458     }
8459   }
8460 
8461   for (SDDbgValue *Dbg : ClonedDVs)
8462     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8463 }
8464 
8465 /// Creates a SDDbgLabel node.
8466 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8467                                       const DebugLoc &DL, unsigned O) {
8468   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8469          "Expected inlined-at fields to agree");
8470   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8471 }
8472 
8473 namespace {
8474 
8475 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8476 /// pointed to by a use iterator is deleted, increment the use iterator
8477 /// so that it doesn't dangle.
8478 ///
8479 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8480   SDNode::use_iterator &UI;
8481   SDNode::use_iterator &UE;
8482 
8483   void NodeDeleted(SDNode *N, SDNode *E) override {
8484     // Increment the iterator as needed.
8485     while (UI != UE && N == *UI)
8486       ++UI;
8487   }
8488 
8489 public:
8490   RAUWUpdateListener(SelectionDAG &d,
8491                      SDNode::use_iterator &ui,
8492                      SDNode::use_iterator &ue)
8493     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8494 };
8495 
8496 } // end anonymous namespace
8497 
8498 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8499 /// This can cause recursive merging of nodes in the DAG.
8500 ///
8501 /// This version assumes From has a single result value.
8502 ///
8503 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8504   SDNode *From = FromN.getNode();
8505   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8506          "Cannot replace with this method!");
8507   assert(From != To.getNode() && "Cannot replace uses of with self");
8508 
8509   // Preserve Debug Values
8510   transferDbgValues(FromN, To);
8511 
8512   // Iterate over all the existing uses of From. New uses will be added
8513   // to the beginning of the use list, which we avoid visiting.
8514   // This specifically avoids visiting uses of From that arise while the
8515   // replacement is happening, because any such uses would be the result
8516   // of CSE: If an existing node looks like From after one of its operands
8517   // is replaced by To, we don't want to replace of all its users with To
8518   // too. See PR3018 for more info.
8519   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8520   RAUWUpdateListener Listener(*this, UI, UE);
8521   while (UI != UE) {
8522     SDNode *User = *UI;
8523 
8524     // This node is about to morph, remove its old self from the CSE maps.
8525     RemoveNodeFromCSEMaps(User);
8526 
8527     // A user can appear in a use list multiple times, and when this
8528     // happens the uses are usually next to each other in the list.
8529     // To help reduce the number of CSE recomputations, process all
8530     // the uses of this user that we can find this way.
8531     do {
8532       SDUse &Use = UI.getUse();
8533       ++UI;
8534       Use.set(To);
8535       if (To->isDivergent() != From->isDivergent())
8536         updateDivergence(User);
8537     } while (UI != UE && *UI == User);
8538     // Now that we have modified User, add it back to the CSE maps.  If it
8539     // already exists there, recursively merge the results together.
8540     AddModifiedNodeToCSEMaps(User);
8541   }
8542 
8543   // If we just RAUW'd the root, take note.
8544   if (FromN == getRoot())
8545     setRoot(To);
8546 }
8547 
8548 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8549 /// This can cause recursive merging of nodes in the DAG.
8550 ///
8551 /// This version assumes that for each value of From, there is a
8552 /// corresponding value in To in the same position with the same type.
8553 ///
8554 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8555 #ifndef NDEBUG
8556   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8557     assert((!From->hasAnyUseOfValue(i) ||
8558             From->getValueType(i) == To->getValueType(i)) &&
8559            "Cannot use this version of ReplaceAllUsesWith!");
8560 #endif
8561 
8562   // Handle the trivial case.
8563   if (From == To)
8564     return;
8565 
8566   // Preserve Debug Info. Only do this if there's a use.
8567   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8568     if (From->hasAnyUseOfValue(i)) {
8569       assert((i < To->getNumValues()) && "Invalid To location");
8570       transferDbgValues(SDValue(From, i), SDValue(To, i));
8571     }
8572 
8573   // Iterate over just the existing users of From. See the comments in
8574   // the ReplaceAllUsesWith above.
8575   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8576   RAUWUpdateListener Listener(*this, UI, UE);
8577   while (UI != UE) {
8578     SDNode *User = *UI;
8579 
8580     // This node is about to morph, remove its old self from the CSE maps.
8581     RemoveNodeFromCSEMaps(User);
8582 
8583     // A user can appear in a use list multiple times, and when this
8584     // happens the uses are usually next to each other in the list.
8585     // To help reduce the number of CSE recomputations, process all
8586     // the uses of this user that we can find this way.
8587     do {
8588       SDUse &Use = UI.getUse();
8589       ++UI;
8590       Use.setNode(To);
8591       if (To->isDivergent() != From->isDivergent())
8592         updateDivergence(User);
8593     } while (UI != UE && *UI == User);
8594 
8595     // Now that we have modified User, add it back to the CSE maps.  If it
8596     // already exists there, recursively merge the results together.
8597     AddModifiedNodeToCSEMaps(User);
8598   }
8599 
8600   // If we just RAUW'd the root, take note.
8601   if (From == getRoot().getNode())
8602     setRoot(SDValue(To, getRoot().getResNo()));
8603 }
8604 
8605 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8606 /// This can cause recursive merging of nodes in the DAG.
8607 ///
8608 /// This version can replace From with any result values.  To must match the
8609 /// number and types of values returned by From.
8610 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8611   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8612     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8613 
8614   // Preserve Debug Info.
8615   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8616     transferDbgValues(SDValue(From, i), To[i]);
8617 
8618   // Iterate over just the existing users of From. See the comments in
8619   // the ReplaceAllUsesWith above.
8620   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8621   RAUWUpdateListener Listener(*this, UI, UE);
8622   while (UI != UE) {
8623     SDNode *User = *UI;
8624 
8625     // This node is about to morph, remove its old self from the CSE maps.
8626     RemoveNodeFromCSEMaps(User);
8627 
8628     // A user can appear in a use list multiple times, and when this happens the
8629     // uses are usually next to each other in the list.  To help reduce the
8630     // number of CSE and divergence recomputations, process all the uses of this
8631     // user that we can find this way.
8632     bool To_IsDivergent = false;
8633     do {
8634       SDUse &Use = UI.getUse();
8635       const SDValue &ToOp = To[Use.getResNo()];
8636       ++UI;
8637       Use.set(ToOp);
8638       To_IsDivergent |= ToOp->isDivergent();
8639     } while (UI != UE && *UI == User);
8640 
8641     if (To_IsDivergent != From->isDivergent())
8642       updateDivergence(User);
8643 
8644     // Now that we have modified User, add it back to the CSE maps.  If it
8645     // already exists there, recursively merge the results together.
8646     AddModifiedNodeToCSEMaps(User);
8647   }
8648 
8649   // If we just RAUW'd the root, take note.
8650   if (From == getRoot().getNode())
8651     setRoot(SDValue(To[getRoot().getResNo()]));
8652 }
8653 
8654 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8655 /// uses of other values produced by From.getNode() alone.  The Deleted
8656 /// vector is handled the same way as for ReplaceAllUsesWith.
8657 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8658   // Handle the really simple, really trivial case efficiently.
8659   if (From == To) return;
8660 
8661   // Handle the simple, trivial, case efficiently.
8662   if (From.getNode()->getNumValues() == 1) {
8663     ReplaceAllUsesWith(From, To);
8664     return;
8665   }
8666 
8667   // Preserve Debug Info.
8668   transferDbgValues(From, To);
8669 
8670   // Iterate over just the existing users of From. See the comments in
8671   // the ReplaceAllUsesWith above.
8672   SDNode::use_iterator UI = From.getNode()->use_begin(),
8673                        UE = From.getNode()->use_end();
8674   RAUWUpdateListener Listener(*this, UI, UE);
8675   while (UI != UE) {
8676     SDNode *User = *UI;
8677     bool UserRemovedFromCSEMaps = false;
8678 
8679     // A user can appear in a use list multiple times, and when this
8680     // happens the uses are usually next to each other in the list.
8681     // To help reduce the number of CSE recomputations, process all
8682     // the uses of this user that we can find this way.
8683     do {
8684       SDUse &Use = UI.getUse();
8685 
8686       // Skip uses of different values from the same node.
8687       if (Use.getResNo() != From.getResNo()) {
8688         ++UI;
8689         continue;
8690       }
8691 
8692       // If this node hasn't been modified yet, it's still in the CSE maps,
8693       // so remove its old self from the CSE maps.
8694       if (!UserRemovedFromCSEMaps) {
8695         RemoveNodeFromCSEMaps(User);
8696         UserRemovedFromCSEMaps = true;
8697       }
8698 
8699       ++UI;
8700       Use.set(To);
8701       if (To->isDivergent() != From->isDivergent())
8702         updateDivergence(User);
8703     } while (UI != UE && *UI == User);
8704     // We are iterating over all uses of the From node, so if a use
8705     // doesn't use the specific value, no changes are made.
8706     if (!UserRemovedFromCSEMaps)
8707       continue;
8708 
8709     // Now that we have modified User, add it back to the CSE maps.  If it
8710     // already exists there, recursively merge the results together.
8711     AddModifiedNodeToCSEMaps(User);
8712   }
8713 
8714   // If we just RAUW'd the root, take note.
8715   if (From == getRoot())
8716     setRoot(To);
8717 }
8718 
8719 namespace {
8720 
8721   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8722   /// to record information about a use.
8723   struct UseMemo {
8724     SDNode *User;
8725     unsigned Index;
8726     SDUse *Use;
8727   };
8728 
8729   /// operator< - Sort Memos by User.
8730   bool operator<(const UseMemo &L, const UseMemo &R) {
8731     return (intptr_t)L.User < (intptr_t)R.User;
8732   }
8733 
8734 } // end anonymous namespace
8735 
8736 bool SelectionDAG::calculateDivergence(SDNode *N) {
8737   if (TLI->isSDNodeAlwaysUniform(N)) {
8738     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8739            "Conflicting divergence information!");
8740     return false;
8741   }
8742   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8743     return true;
8744   for (auto &Op : N->ops()) {
8745     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8746       return true;
8747   }
8748   return false;
8749 }
8750 
8751 void SelectionDAG::updateDivergence(SDNode *N) {
8752   SmallVector<SDNode *, 16> Worklist(1, N);
8753   do {
8754     N = Worklist.pop_back_val();
8755     bool IsDivergent = calculateDivergence(N);
8756     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8757       N->SDNodeBits.IsDivergent = IsDivergent;
8758       Worklist.insert(Worklist.end(), N->use_begin(), N->use_end());
8759     }
8760   } while (!Worklist.empty());
8761 }
8762 
8763 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8764   DenseMap<SDNode *, unsigned> Degree;
8765   Order.reserve(AllNodes.size());
8766   for (auto &N : allnodes()) {
8767     unsigned NOps = N.getNumOperands();
8768     Degree[&N] = NOps;
8769     if (0 == NOps)
8770       Order.push_back(&N);
8771   }
8772   for (size_t I = 0; I != Order.size(); ++I) {
8773     SDNode *N = Order[I];
8774     for (auto U : N->uses()) {
8775       unsigned &UnsortedOps = Degree[U];
8776       if (0 == --UnsortedOps)
8777         Order.push_back(U);
8778     }
8779   }
8780 }
8781 
8782 #ifndef NDEBUG
8783 void SelectionDAG::VerifyDAGDiverence() {
8784   std::vector<SDNode *> TopoOrder;
8785   CreateTopologicalOrder(TopoOrder);
8786   for (auto *N : TopoOrder) {
8787     assert(calculateDivergence(N) == N->isDivergent() &&
8788            "Divergence bit inconsistency detected");
8789   }
8790 }
8791 #endif
8792 
8793 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8794 /// uses of other values produced by From.getNode() alone.  The same value
8795 /// may appear in both the From and To list.  The Deleted vector is
8796 /// handled the same way as for ReplaceAllUsesWith.
8797 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8798                                               const SDValue *To,
8799                                               unsigned Num){
8800   // Handle the simple, trivial case efficiently.
8801   if (Num == 1)
8802     return ReplaceAllUsesOfValueWith(*From, *To);
8803 
8804   transferDbgValues(*From, *To);
8805 
8806   // Read up all the uses and make records of them. This helps
8807   // processing new uses that are introduced during the
8808   // replacement process.
8809   SmallVector<UseMemo, 4> Uses;
8810   for (unsigned i = 0; i != Num; ++i) {
8811     unsigned FromResNo = From[i].getResNo();
8812     SDNode *FromNode = From[i].getNode();
8813     for (SDNode::use_iterator UI = FromNode->use_begin(),
8814          E = FromNode->use_end(); UI != E; ++UI) {
8815       SDUse &Use = UI.getUse();
8816       if (Use.getResNo() == FromResNo) {
8817         UseMemo Memo = { *UI, i, &Use };
8818         Uses.push_back(Memo);
8819       }
8820     }
8821   }
8822 
8823   // Sort the uses, so that all the uses from a given User are together.
8824   llvm::sort(Uses);
8825 
8826   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8827        UseIndex != UseIndexEnd; ) {
8828     // We know that this user uses some value of From.  If it is the right
8829     // value, update it.
8830     SDNode *User = Uses[UseIndex].User;
8831 
8832     // This node is about to morph, remove its old self from the CSE maps.
8833     RemoveNodeFromCSEMaps(User);
8834 
8835     // The Uses array is sorted, so all the uses for a given User
8836     // are next to each other in the list.
8837     // To help reduce the number of CSE recomputations, process all
8838     // the uses of this user that we can find this way.
8839     do {
8840       unsigned i = Uses[UseIndex].Index;
8841       SDUse &Use = *Uses[UseIndex].Use;
8842       ++UseIndex;
8843 
8844       Use.set(To[i]);
8845     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8846 
8847     // Now that we have modified User, add it back to the CSE maps.  If it
8848     // already exists there, recursively merge the results together.
8849     AddModifiedNodeToCSEMaps(User);
8850   }
8851 }
8852 
8853 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8854 /// based on their topological order. It returns the maximum id and a vector
8855 /// of the SDNodes* in assigned order by reference.
8856 unsigned SelectionDAG::AssignTopologicalOrder() {
8857   unsigned DAGSize = 0;
8858 
8859   // SortedPos tracks the progress of the algorithm. Nodes before it are
8860   // sorted, nodes after it are unsorted. When the algorithm completes
8861   // it is at the end of the list.
8862   allnodes_iterator SortedPos = allnodes_begin();
8863 
8864   // Visit all the nodes. Move nodes with no operands to the front of
8865   // the list immediately. Annotate nodes that do have operands with their
8866   // operand count. Before we do this, the Node Id fields of the nodes
8867   // may contain arbitrary values. After, the Node Id fields for nodes
8868   // before SortedPos will contain the topological sort index, and the
8869   // Node Id fields for nodes At SortedPos and after will contain the
8870   // count of outstanding operands.
8871   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8872     SDNode *N = &*I++;
8873     checkForCycles(N, this);
8874     unsigned Degree = N->getNumOperands();
8875     if (Degree == 0) {
8876       // A node with no uses, add it to the result array immediately.
8877       N->setNodeId(DAGSize++);
8878       allnodes_iterator Q(N);
8879       if (Q != SortedPos)
8880         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8881       assert(SortedPos != AllNodes.end() && "Overran node list");
8882       ++SortedPos;
8883     } else {
8884       // Temporarily use the Node Id as scratch space for the degree count.
8885       N->setNodeId(Degree);
8886     }
8887   }
8888 
8889   // Visit all the nodes. As we iterate, move nodes into sorted order,
8890   // such that by the time the end is reached all nodes will be sorted.
8891   for (SDNode &Node : allnodes()) {
8892     SDNode *N = &Node;
8893     checkForCycles(N, this);
8894     // N is in sorted position, so all its uses have one less operand
8895     // that needs to be sorted.
8896     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8897          UI != UE; ++UI) {
8898       SDNode *P = *UI;
8899       unsigned Degree = P->getNodeId();
8900       assert(Degree != 0 && "Invalid node degree");
8901       --Degree;
8902       if (Degree == 0) {
8903         // All of P's operands are sorted, so P may sorted now.
8904         P->setNodeId(DAGSize++);
8905         if (P->getIterator() != SortedPos)
8906           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8907         assert(SortedPos != AllNodes.end() && "Overran node list");
8908         ++SortedPos;
8909       } else {
8910         // Update P's outstanding operand count.
8911         P->setNodeId(Degree);
8912       }
8913     }
8914     if (Node.getIterator() == SortedPos) {
8915 #ifndef NDEBUG
8916       allnodes_iterator I(N);
8917       SDNode *S = &*++I;
8918       dbgs() << "Overran sorted position:\n";
8919       S->dumprFull(this); dbgs() << "\n";
8920       dbgs() << "Checking if this is due to cycles\n";
8921       checkForCycles(this, true);
8922 #endif
8923       llvm_unreachable(nullptr);
8924     }
8925   }
8926 
8927   assert(SortedPos == AllNodes.end() &&
8928          "Topological sort incomplete!");
8929   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8930          "First node in topological sort is not the entry token!");
8931   assert(AllNodes.front().getNodeId() == 0 &&
8932          "First node in topological sort has non-zero id!");
8933   assert(AllNodes.front().getNumOperands() == 0 &&
8934          "First node in topological sort has operands!");
8935   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8936          "Last node in topologic sort has unexpected id!");
8937   assert(AllNodes.back().use_empty() &&
8938          "Last node in topologic sort has users!");
8939   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8940   return DAGSize;
8941 }
8942 
8943 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8944 /// value is produced by SD.
8945 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8946   if (SD) {
8947     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8948     SD->setHasDebugValue(true);
8949   }
8950   DbgInfo->add(DB, SD, isParameter);
8951 }
8952 
8953 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8954   DbgInfo->add(DB);
8955 }
8956 
8957 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8958                                                    SDValue NewMemOp) {
8959   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8960   // The new memory operation must have the same position as the old load in
8961   // terms of memory dependency. Create a TokenFactor for the old load and new
8962   // memory operation and update uses of the old load's output chain to use that
8963   // TokenFactor.
8964   SDValue OldChain = SDValue(OldLoad, 1);
8965   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8966   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8967     return NewChain;
8968 
8969   SDValue TokenFactor =
8970       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8971   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8972   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8973   return TokenFactor;
8974 }
8975 
8976 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8977                                                      Function **OutFunction) {
8978   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8979 
8980   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8981   auto *Module = MF->getFunction().getParent();
8982   auto *Function = Module->getFunction(Symbol);
8983 
8984   if (OutFunction != nullptr)
8985       *OutFunction = Function;
8986 
8987   if (Function != nullptr) {
8988     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8989     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8990   }
8991 
8992   std::string ErrorStr;
8993   raw_string_ostream ErrorFormatter(ErrorStr);
8994 
8995   ErrorFormatter << "Undefined external symbol ";
8996   ErrorFormatter << '"' << Symbol << '"';
8997   ErrorFormatter.flush();
8998 
8999   report_fatal_error(ErrorStr);
9000 }
9001 
9002 //===----------------------------------------------------------------------===//
9003 //                              SDNode Class
9004 //===----------------------------------------------------------------------===//
9005 
9006 bool llvm::isNullConstant(SDValue V) {
9007   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9008   return Const != nullptr && Const->isNullValue();
9009 }
9010 
9011 bool llvm::isNullFPConstant(SDValue V) {
9012   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9013   return Const != nullptr && Const->isZero() && !Const->isNegative();
9014 }
9015 
9016 bool llvm::isAllOnesConstant(SDValue V) {
9017   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9018   return Const != nullptr && Const->isAllOnesValue();
9019 }
9020 
9021 bool llvm::isOneConstant(SDValue V) {
9022   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9023   return Const != nullptr && Const->isOne();
9024 }
9025 
9026 SDValue llvm::peekThroughBitcasts(SDValue V) {
9027   while (V.getOpcode() == ISD::BITCAST)
9028     V = V.getOperand(0);
9029   return V;
9030 }
9031 
9032 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9033   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9034     V = V.getOperand(0);
9035   return V;
9036 }
9037 
9038 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9039   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9040     V = V.getOperand(0);
9041   return V;
9042 }
9043 
9044 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9045   if (V.getOpcode() != ISD::XOR)
9046     return false;
9047   V = peekThroughBitcasts(V.getOperand(1));
9048   unsigned NumBits = V.getScalarValueSizeInBits();
9049   ConstantSDNode *C =
9050       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9051   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9052 }
9053 
9054 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9055                                           bool AllowTruncation) {
9056   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9057     return CN;
9058 
9059   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9060     BitVector UndefElements;
9061     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9062 
9063     // BuildVectors can truncate their operands. Ignore that case here unless
9064     // AllowTruncation is set.
9065     if (CN && (UndefElements.none() || AllowUndefs)) {
9066       EVT CVT = CN->getValueType(0);
9067       EVT NSVT = N.getValueType().getScalarType();
9068       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9069       if (AllowTruncation || (CVT == NSVT))
9070         return CN;
9071     }
9072   }
9073 
9074   return nullptr;
9075 }
9076 
9077 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9078                                           bool AllowUndefs,
9079                                           bool AllowTruncation) {
9080   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9081     return CN;
9082 
9083   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9084     BitVector UndefElements;
9085     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9086 
9087     // BuildVectors can truncate their operands. Ignore that case here unless
9088     // AllowTruncation is set.
9089     if (CN && (UndefElements.none() || AllowUndefs)) {
9090       EVT CVT = CN->getValueType(0);
9091       EVT NSVT = N.getValueType().getScalarType();
9092       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9093       if (AllowTruncation || (CVT == NSVT))
9094         return CN;
9095     }
9096   }
9097 
9098   return nullptr;
9099 }
9100 
9101 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9102   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9103     return CN;
9104 
9105   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9106     BitVector UndefElements;
9107     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9108     if (CN && (UndefElements.none() || AllowUndefs))
9109       return CN;
9110   }
9111 
9112   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9113     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9114       return CN;
9115 
9116   return nullptr;
9117 }
9118 
9119 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9120                                               const APInt &DemandedElts,
9121                                               bool AllowUndefs) {
9122   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9123     return CN;
9124 
9125   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9126     BitVector UndefElements;
9127     ConstantFPSDNode *CN =
9128         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9129     if (CN && (UndefElements.none() || AllowUndefs))
9130       return CN;
9131   }
9132 
9133   return nullptr;
9134 }
9135 
9136 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9137   // TODO: may want to use peekThroughBitcast() here.
9138   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9139   return C && C->isNullValue();
9140 }
9141 
9142 bool llvm::isOneOrOneSplat(SDValue N) {
9143   // TODO: may want to use peekThroughBitcast() here.
9144   unsigned BitWidth = N.getScalarValueSizeInBits();
9145   ConstantSDNode *C = isConstOrConstSplat(N);
9146   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9147 }
9148 
9149 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9150   N = peekThroughBitcasts(N);
9151   unsigned BitWidth = N.getScalarValueSizeInBits();
9152   ConstantSDNode *C = isConstOrConstSplat(N);
9153   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9154 }
9155 
9156 HandleSDNode::~HandleSDNode() {
9157   DropOperands();
9158 }
9159 
9160 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9161                                          const DebugLoc &DL,
9162                                          const GlobalValue *GA, EVT VT,
9163                                          int64_t o, unsigned TF)
9164     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9165   TheGlobal = GA;
9166 }
9167 
9168 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9169                                          EVT VT, unsigned SrcAS,
9170                                          unsigned DestAS)
9171     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9172       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9173 
9174 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9175                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9176     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9177   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9178   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9179   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9180   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9181 
9182   // We check here that the size of the memory operand fits within the size of
9183   // the MMO. This is because the MMO might indicate only a possible address
9184   // range instead of specifying the affected memory addresses precisely.
9185   // TODO: Make MachineMemOperands aware of scalable vectors.
9186   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9187          "Size mismatch!");
9188 }
9189 
9190 /// Profile - Gather unique data for the node.
9191 ///
9192 void SDNode::Profile(FoldingSetNodeID &ID) const {
9193   AddNodeIDNode(ID, this);
9194 }
9195 
9196 namespace {
9197 
9198   struct EVTArray {
9199     std::vector<EVT> VTs;
9200 
9201     EVTArray() {
9202       VTs.reserve(MVT::LAST_VALUETYPE);
9203       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9204         VTs.push_back(MVT((MVT::SimpleValueType)i));
9205     }
9206   };
9207 
9208 } // end anonymous namespace
9209 
9210 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9211 static ManagedStatic<EVTArray> SimpleVTArray;
9212 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9213 
9214 /// getValueTypeList - Return a pointer to the specified value type.
9215 ///
9216 const EVT *SDNode::getValueTypeList(EVT VT) {
9217   if (VT.isExtended()) {
9218     sys::SmartScopedLock<true> Lock(*VTMutex);
9219     return &(*EVTs->insert(VT).first);
9220   } else {
9221     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9222            "Value type out of range!");
9223     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9224   }
9225 }
9226 
9227 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9228 /// indicated value.  This method ignores uses of other values defined by this
9229 /// operation.
9230 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9231   assert(Value < getNumValues() && "Bad value!");
9232 
9233   // TODO: Only iterate over uses of a given value of the node
9234   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9235     if (UI.getUse().getResNo() == Value) {
9236       if (NUses == 0)
9237         return false;
9238       --NUses;
9239     }
9240   }
9241 
9242   // Found exactly the right number of uses?
9243   return NUses == 0;
9244 }
9245 
9246 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9247 /// value. This method ignores uses of other values defined by this operation.
9248 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9249   assert(Value < getNumValues() && "Bad value!");
9250 
9251   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9252     if (UI.getUse().getResNo() == Value)
9253       return true;
9254 
9255   return false;
9256 }
9257 
9258 /// isOnlyUserOf - Return true if this node is the only use of N.
9259 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9260   bool Seen = false;
9261   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9262     SDNode *User = *I;
9263     if (User == this)
9264       Seen = true;
9265     else
9266       return false;
9267   }
9268 
9269   return Seen;
9270 }
9271 
9272 /// Return true if the only users of N are contained in Nodes.
9273 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9274   bool Seen = false;
9275   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9276     SDNode *User = *I;
9277     if (llvm::any_of(Nodes,
9278                      [&User](const SDNode *Node) { return User == Node; }))
9279       Seen = true;
9280     else
9281       return false;
9282   }
9283 
9284   return Seen;
9285 }
9286 
9287 /// isOperand - Return true if this node is an operand of N.
9288 bool SDValue::isOperandOf(const SDNode *N) const {
9289   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9290 }
9291 
9292 bool SDNode::isOperandOf(const SDNode *N) const {
9293   return any_of(N->op_values(),
9294                 [this](SDValue Op) { return this == Op.getNode(); });
9295 }
9296 
9297 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9298 /// be a chain) reaches the specified operand without crossing any
9299 /// side-effecting instructions on any chain path.  In practice, this looks
9300 /// through token factors and non-volatile loads.  In order to remain efficient,
9301 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9302 ///
9303 /// Note that we only need to examine chains when we're searching for
9304 /// side-effects; SelectionDAG requires that all side-effects are represented
9305 /// by chains, even if another operand would force a specific ordering. This
9306 /// constraint is necessary to allow transformations like splitting loads.
9307 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9308                                              unsigned Depth) const {
9309   if (*this == Dest) return true;
9310 
9311   // Don't search too deeply, we just want to be able to see through
9312   // TokenFactor's etc.
9313   if (Depth == 0) return false;
9314 
9315   // If this is a token factor, all inputs to the TF happen in parallel.
9316   if (getOpcode() == ISD::TokenFactor) {
9317     // First, try a shallow search.
9318     if (is_contained((*this)->ops(), Dest)) {
9319       // We found the chain we want as an operand of this TokenFactor.
9320       // Essentially, we reach the chain without side-effects if we could
9321       // serialize the TokenFactor into a simple chain of operations with
9322       // Dest as the last operation. This is automatically true if the
9323       // chain has one use: there are no other ordering constraints.
9324       // If the chain has more than one use, we give up: some other
9325       // use of Dest might force a side-effect between Dest and the current
9326       // node.
9327       if (Dest.hasOneUse())
9328         return true;
9329     }
9330     // Next, try a deep search: check whether every operand of the TokenFactor
9331     // reaches Dest.
9332     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9333       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9334     });
9335   }
9336 
9337   // Loads don't have side effects, look through them.
9338   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9339     if (Ld->isUnordered())
9340       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9341   }
9342   return false;
9343 }
9344 
9345 bool SDNode::hasPredecessor(const SDNode *N) const {
9346   SmallPtrSet<const SDNode *, 32> Visited;
9347   SmallVector<const SDNode *, 16> Worklist;
9348   Worklist.push_back(this);
9349   return hasPredecessorHelper(N, Visited, Worklist);
9350 }
9351 
9352 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9353   this->Flags.intersectWith(Flags);
9354 }
9355 
9356 SDValue
9357 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9358                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9359                                   bool AllowPartials) {
9360   // The pattern must end in an extract from index 0.
9361   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9362       !isNullConstant(Extract->getOperand(1)))
9363     return SDValue();
9364 
9365   // Match against one of the candidate binary ops.
9366   SDValue Op = Extract->getOperand(0);
9367   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9368         return Op.getOpcode() == unsigned(BinOp);
9369       }))
9370     return SDValue();
9371 
9372   // Floating-point reductions may require relaxed constraints on the final step
9373   // of the reduction because they may reorder intermediate operations.
9374   unsigned CandidateBinOp = Op.getOpcode();
9375   if (Op.getValueType().isFloatingPoint()) {
9376     SDNodeFlags Flags = Op->getFlags();
9377     switch (CandidateBinOp) {
9378     case ISD::FADD:
9379       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9380         return SDValue();
9381       break;
9382     default:
9383       llvm_unreachable("Unhandled FP opcode for binop reduction");
9384     }
9385   }
9386 
9387   // Matching failed - attempt to see if we did enough stages that a partial
9388   // reduction from a subvector is possible.
9389   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9390     if (!AllowPartials || !Op)
9391       return SDValue();
9392     EVT OpVT = Op.getValueType();
9393     EVT OpSVT = OpVT.getScalarType();
9394     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9395     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9396       return SDValue();
9397     BinOp = (ISD::NodeType)CandidateBinOp;
9398     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9399                    getVectorIdxConstant(0, SDLoc(Op)));
9400   };
9401 
9402   // At each stage, we're looking for something that looks like:
9403   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9404   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9405   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9406   // %a = binop <8 x i32> %op, %s
9407   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9408   // we expect something like:
9409   // <4,5,6,7,u,u,u,u>
9410   // <2,3,u,u,u,u,u,u>
9411   // <1,u,u,u,u,u,u,u>
9412   // While a partial reduction match would be:
9413   // <2,3,u,u,u,u,u,u>
9414   // <1,u,u,u,u,u,u,u>
9415   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9416   SDValue PrevOp;
9417   for (unsigned i = 0; i < Stages; ++i) {
9418     unsigned MaskEnd = (1 << i);
9419 
9420     if (Op.getOpcode() != CandidateBinOp)
9421       return PartialReduction(PrevOp, MaskEnd);
9422 
9423     SDValue Op0 = Op.getOperand(0);
9424     SDValue Op1 = Op.getOperand(1);
9425 
9426     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9427     if (Shuffle) {
9428       Op = Op1;
9429     } else {
9430       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9431       Op = Op0;
9432     }
9433 
9434     // The first operand of the shuffle should be the same as the other operand
9435     // of the binop.
9436     if (!Shuffle || Shuffle->getOperand(0) != Op)
9437       return PartialReduction(PrevOp, MaskEnd);
9438 
9439     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9440     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9441       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9442         return PartialReduction(PrevOp, MaskEnd);
9443 
9444     PrevOp = Op;
9445   }
9446 
9447   // Handle subvector reductions, which tend to appear after the shuffle
9448   // reduction stages.
9449   while (Op.getOpcode() == CandidateBinOp) {
9450     unsigned NumElts = Op.getValueType().getVectorNumElements();
9451     SDValue Op0 = Op.getOperand(0);
9452     SDValue Op1 = Op.getOperand(1);
9453     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9454         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9455         Op0.getOperand(0) != Op1.getOperand(0))
9456       break;
9457     SDValue Src = Op0.getOperand(0);
9458     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9459     if (NumSrcElts != (2 * NumElts))
9460       break;
9461     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9462           Op1.getConstantOperandAPInt(1) == NumElts) &&
9463         !(Op1.getConstantOperandAPInt(1) == 0 &&
9464           Op0.getConstantOperandAPInt(1) == NumElts))
9465       break;
9466     Op = Src;
9467   }
9468 
9469   BinOp = (ISD::NodeType)CandidateBinOp;
9470   return Op;
9471 }
9472 
9473 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9474   assert(N->getNumValues() == 1 &&
9475          "Can't unroll a vector with multiple results!");
9476 
9477   EVT VT = N->getValueType(0);
9478   unsigned NE = VT.getVectorNumElements();
9479   EVT EltVT = VT.getVectorElementType();
9480   SDLoc dl(N);
9481 
9482   SmallVector<SDValue, 8> Scalars;
9483   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9484 
9485   // If ResNE is 0, fully unroll the vector op.
9486   if (ResNE == 0)
9487     ResNE = NE;
9488   else if (NE > ResNE)
9489     NE = ResNE;
9490 
9491   unsigned i;
9492   for (i= 0; i != NE; ++i) {
9493     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9494       SDValue Operand = N->getOperand(j);
9495       EVT OperandVT = Operand.getValueType();
9496       if (OperandVT.isVector()) {
9497         // A vector operand; extract a single element.
9498         EVT OperandEltVT = OperandVT.getVectorElementType();
9499         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9500                               Operand, getVectorIdxConstant(i, dl));
9501       } else {
9502         // A scalar operand; just use it as is.
9503         Operands[j] = Operand;
9504       }
9505     }
9506 
9507     switch (N->getOpcode()) {
9508     default: {
9509       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9510                                 N->getFlags()));
9511       break;
9512     }
9513     case ISD::VSELECT:
9514       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9515       break;
9516     case ISD::SHL:
9517     case ISD::SRA:
9518     case ISD::SRL:
9519     case ISD::ROTL:
9520     case ISD::ROTR:
9521       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9522                                getShiftAmountOperand(Operands[0].getValueType(),
9523                                                      Operands[1])));
9524       break;
9525     case ISD::SIGN_EXTEND_INREG: {
9526       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9527       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9528                                 Operands[0],
9529                                 getValueType(ExtVT)));
9530     }
9531     }
9532   }
9533 
9534   for (; i < ResNE; ++i)
9535     Scalars.push_back(getUNDEF(EltVT));
9536 
9537   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9538   return getBuildVector(VecVT, dl, Scalars);
9539 }
9540 
9541 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9542     SDNode *N, unsigned ResNE) {
9543   unsigned Opcode = N->getOpcode();
9544   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9545           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9546           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9547          "Expected an overflow opcode");
9548 
9549   EVT ResVT = N->getValueType(0);
9550   EVT OvVT = N->getValueType(1);
9551   EVT ResEltVT = ResVT.getVectorElementType();
9552   EVT OvEltVT = OvVT.getVectorElementType();
9553   SDLoc dl(N);
9554 
9555   // If ResNE is 0, fully unroll the vector op.
9556   unsigned NE = ResVT.getVectorNumElements();
9557   if (ResNE == 0)
9558     ResNE = NE;
9559   else if (NE > ResNE)
9560     NE = ResNE;
9561 
9562   SmallVector<SDValue, 8> LHSScalars;
9563   SmallVector<SDValue, 8> RHSScalars;
9564   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9565   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9566 
9567   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9568   SDVTList VTs = getVTList(ResEltVT, SVT);
9569   SmallVector<SDValue, 8> ResScalars;
9570   SmallVector<SDValue, 8> OvScalars;
9571   for (unsigned i = 0; i < NE; ++i) {
9572     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9573     SDValue Ov =
9574         getSelect(dl, OvEltVT, Res.getValue(1),
9575                   getBoolConstant(true, dl, OvEltVT, ResVT),
9576                   getConstant(0, dl, OvEltVT));
9577 
9578     ResScalars.push_back(Res);
9579     OvScalars.push_back(Ov);
9580   }
9581 
9582   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9583   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9584 
9585   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9586   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9587   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9588                         getBuildVector(NewOvVT, dl, OvScalars));
9589 }
9590 
9591 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9592                                                   LoadSDNode *Base,
9593                                                   unsigned Bytes,
9594                                                   int Dist) const {
9595   if (LD->isVolatile() || Base->isVolatile())
9596     return false;
9597   // TODO: probably too restrictive for atomics, revisit
9598   if (!LD->isSimple())
9599     return false;
9600   if (LD->isIndexed() || Base->isIndexed())
9601     return false;
9602   if (LD->getChain() != Base->getChain())
9603     return false;
9604   EVT VT = LD->getValueType(0);
9605   if (VT.getSizeInBits() / 8 != Bytes)
9606     return false;
9607 
9608   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9609   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9610 
9611   int64_t Offset = 0;
9612   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9613     return (Dist * Bytes == Offset);
9614   return false;
9615 }
9616 
9617 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9618 /// if it cannot be inferred.
9619 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9620   // If this is a GlobalAddress + cst, return the alignment.
9621   const GlobalValue *GV = nullptr;
9622   int64_t GVOffset = 0;
9623   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9624     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9625     KnownBits Known(PtrWidth);
9626     llvm::computeKnownBits(GV, Known, getDataLayout());
9627     unsigned AlignBits = Known.countMinTrailingZeros();
9628     if (AlignBits)
9629       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9630   }
9631 
9632   // If this is a direct reference to a stack slot, use information about the
9633   // stack slot's alignment.
9634   int FrameIdx = INT_MIN;
9635   int64_t FrameOffset = 0;
9636   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9637     FrameIdx = FI->getIndex();
9638   } else if (isBaseWithConstantOffset(Ptr) &&
9639              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9640     // Handle FI+Cst
9641     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9642     FrameOffset = Ptr.getConstantOperandVal(1);
9643   }
9644 
9645   if (FrameIdx != INT_MIN) {
9646     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9647     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9648   }
9649 
9650   return None;
9651 }
9652 
9653 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9654 /// which is split (or expanded) into two not necessarily identical pieces.
9655 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9656   // Currently all types are split in half.
9657   EVT LoVT, HiVT;
9658   if (!VT.isVector())
9659     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9660   else
9661     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9662 
9663   return std::make_pair(LoVT, HiVT);
9664 }
9665 
9666 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9667 /// type, dependent on an enveloping VT that has been split into two identical
9668 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9669 std::pair<EVT, EVT>
9670 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9671                                        bool *HiIsEmpty) const {
9672   EVT EltTp = VT.getVectorElementType();
9673   // Examples:
9674   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9675   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9676   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9677   //   etc.
9678   ElementCount VTNumElts = VT.getVectorElementCount();
9679   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9680   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9681          "Mixing fixed width and scalable vectors when enveloping a type");
9682   EVT LoVT, HiVT;
9683   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9684     LoVT = EnvVT;
9685     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9686     *HiIsEmpty = false;
9687   } else {
9688     // Flag that hi type has zero storage size, but return split envelop type
9689     // (this would be easier if vector types with zero elements were allowed).
9690     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9691     HiVT = EnvVT;
9692     *HiIsEmpty = true;
9693   }
9694   return std::make_pair(LoVT, HiVT);
9695 }
9696 
9697 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9698 /// low/high part.
9699 std::pair<SDValue, SDValue>
9700 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9701                           const EVT &HiVT) {
9702   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9703          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9704          "Splitting vector with an invalid mixture of fixed and scalable "
9705          "vector types");
9706   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9707              N.getValueType().getVectorMinNumElements() &&
9708          "More vector elements requested than available!");
9709   SDValue Lo, Hi;
9710   Lo =
9711       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9712   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9713   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9714   // IDX with the runtime scaling factor of the result vector type. For
9715   // fixed-width result vectors, that runtime scaling factor is 1.
9716   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9717                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9718   return std::make_pair(Lo, Hi);
9719 }
9720 
9721 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9722 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9723   EVT VT = N.getValueType();
9724   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9725                                 NextPowerOf2(VT.getVectorNumElements()));
9726   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9727                  getVectorIdxConstant(0, DL));
9728 }
9729 
9730 void SelectionDAG::ExtractVectorElements(SDValue Op,
9731                                          SmallVectorImpl<SDValue> &Args,
9732                                          unsigned Start, unsigned Count,
9733                                          EVT EltVT) {
9734   EVT VT = Op.getValueType();
9735   if (Count == 0)
9736     Count = VT.getVectorNumElements();
9737   if (EltVT == EVT())
9738     EltVT = VT.getVectorElementType();
9739   SDLoc SL(Op);
9740   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9741     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9742                            getVectorIdxConstant(i, SL)));
9743   }
9744 }
9745 
9746 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9747 unsigned GlobalAddressSDNode::getAddressSpace() const {
9748   return getGlobal()->getType()->getAddressSpace();
9749 }
9750 
9751 Type *ConstantPoolSDNode::getType() const {
9752   if (isMachineConstantPoolEntry())
9753     return Val.MachineCPVal->getType();
9754   return Val.ConstVal->getType();
9755 }
9756 
9757 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9758                                         unsigned &SplatBitSize,
9759                                         bool &HasAnyUndefs,
9760                                         unsigned MinSplatBits,
9761                                         bool IsBigEndian) const {
9762   EVT VT = getValueType(0);
9763   assert(VT.isVector() && "Expected a vector type");
9764   unsigned VecWidth = VT.getSizeInBits();
9765   if (MinSplatBits > VecWidth)
9766     return false;
9767 
9768   // FIXME: The widths are based on this node's type, but build vectors can
9769   // truncate their operands.
9770   SplatValue = APInt(VecWidth, 0);
9771   SplatUndef = APInt(VecWidth, 0);
9772 
9773   // Get the bits. Bits with undefined values (when the corresponding element
9774   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9775   // in SplatValue. If any of the values are not constant, give up and return
9776   // false.
9777   unsigned int NumOps = getNumOperands();
9778   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9779   unsigned EltWidth = VT.getScalarSizeInBits();
9780 
9781   for (unsigned j = 0; j < NumOps; ++j) {
9782     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9783     SDValue OpVal = getOperand(i);
9784     unsigned BitPos = j * EltWidth;
9785 
9786     if (OpVal.isUndef())
9787       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9788     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9789       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9790     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9791       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9792     else
9793       return false;
9794   }
9795 
9796   // The build_vector is all constants or undefs. Find the smallest element
9797   // size that splats the vector.
9798   HasAnyUndefs = (SplatUndef != 0);
9799 
9800   // FIXME: This does not work for vectors with elements less than 8 bits.
9801   while (VecWidth > 8) {
9802     unsigned HalfSize = VecWidth / 2;
9803     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9804     APInt LowValue = SplatValue.trunc(HalfSize);
9805     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9806     APInt LowUndef = SplatUndef.trunc(HalfSize);
9807 
9808     // If the two halves do not match (ignoring undef bits), stop here.
9809     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9810         MinSplatBits > HalfSize)
9811       break;
9812 
9813     SplatValue = HighValue | LowValue;
9814     SplatUndef = HighUndef & LowUndef;
9815 
9816     VecWidth = HalfSize;
9817   }
9818 
9819   SplatBitSize = VecWidth;
9820   return true;
9821 }
9822 
9823 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9824                                          BitVector *UndefElements) const {
9825   unsigned NumOps = getNumOperands();
9826   if (UndefElements) {
9827     UndefElements->clear();
9828     UndefElements->resize(NumOps);
9829   }
9830   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9831   if (!DemandedElts)
9832     return SDValue();
9833   SDValue Splatted;
9834   for (unsigned i = 0; i != NumOps; ++i) {
9835     if (!DemandedElts[i])
9836       continue;
9837     SDValue Op = getOperand(i);
9838     if (Op.isUndef()) {
9839       if (UndefElements)
9840         (*UndefElements)[i] = true;
9841     } else if (!Splatted) {
9842       Splatted = Op;
9843     } else if (Splatted != Op) {
9844       return SDValue();
9845     }
9846   }
9847 
9848   if (!Splatted) {
9849     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9850     assert(getOperand(FirstDemandedIdx).isUndef() &&
9851            "Can only have a splat without a constant for all undefs.");
9852     return getOperand(FirstDemandedIdx);
9853   }
9854 
9855   return Splatted;
9856 }
9857 
9858 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9859   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9860   return getSplatValue(DemandedElts, UndefElements);
9861 }
9862 
9863 ConstantSDNode *
9864 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9865                                         BitVector *UndefElements) const {
9866   return dyn_cast_or_null<ConstantSDNode>(
9867       getSplatValue(DemandedElts, UndefElements));
9868 }
9869 
9870 ConstantSDNode *
9871 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9872   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9873 }
9874 
9875 ConstantFPSDNode *
9876 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9877                                           BitVector *UndefElements) const {
9878   return dyn_cast_or_null<ConstantFPSDNode>(
9879       getSplatValue(DemandedElts, UndefElements));
9880 }
9881 
9882 ConstantFPSDNode *
9883 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9884   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9885 }
9886 
9887 int32_t
9888 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9889                                                    uint32_t BitWidth) const {
9890   if (ConstantFPSDNode *CN =
9891           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9892     bool IsExact;
9893     APSInt IntVal(BitWidth);
9894     const APFloat &APF = CN->getValueAPF();
9895     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9896             APFloat::opOK ||
9897         !IsExact)
9898       return -1;
9899 
9900     return IntVal.exactLogBase2();
9901   }
9902   return -1;
9903 }
9904 
9905 bool BuildVectorSDNode::isConstant() const {
9906   for (const SDValue &Op : op_values()) {
9907     unsigned Opc = Op.getOpcode();
9908     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9909       return false;
9910   }
9911   return true;
9912 }
9913 
9914 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9915   // Find the first non-undef value in the shuffle mask.
9916   unsigned i, e;
9917   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9918     /* search */;
9919 
9920   // If all elements are undefined, this shuffle can be considered a splat
9921   // (although it should eventually get simplified away completely).
9922   if (i == e)
9923     return true;
9924 
9925   // Make sure all remaining elements are either undef or the same as the first
9926   // non-undef value.
9927   for (int Idx = Mask[i]; i != e; ++i)
9928     if (Mask[i] >= 0 && Mask[i] != Idx)
9929       return false;
9930   return true;
9931 }
9932 
9933 // Returns the SDNode if it is a constant integer BuildVector
9934 // or constant integer.
9935 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9936   if (isa<ConstantSDNode>(N))
9937     return N.getNode();
9938   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9939     return N.getNode();
9940   // Treat a GlobalAddress supporting constant offset folding as a
9941   // constant integer.
9942   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9943     if (GA->getOpcode() == ISD::GlobalAddress &&
9944         TLI->isOffsetFoldingLegal(GA))
9945       return GA;
9946   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
9947       isa<ConstantSDNode>(N.getOperand(0)))
9948     return N.getNode();
9949   return nullptr;
9950 }
9951 
9952 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9953   if (isa<ConstantFPSDNode>(N))
9954     return N.getNode();
9955 
9956   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9957     return N.getNode();
9958 
9959   return nullptr;
9960 }
9961 
9962 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9963   assert(!Node->OperandList && "Node already has operands");
9964   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9965          "too many operands to fit into SDNode");
9966   SDUse *Ops = OperandRecycler.allocate(
9967       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9968 
9969   bool IsDivergent = false;
9970   for (unsigned I = 0; I != Vals.size(); ++I) {
9971     Ops[I].setUser(Node);
9972     Ops[I].setInitial(Vals[I]);
9973     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9974       IsDivergent |= Ops[I].getNode()->isDivergent();
9975   }
9976   Node->NumOperands = Vals.size();
9977   Node->OperandList = Ops;
9978   if (!TLI->isSDNodeAlwaysUniform(Node)) {
9979     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9980     Node->SDNodeBits.IsDivergent = IsDivergent;
9981   }
9982   checkForCycles(Node);
9983 }
9984 
9985 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9986                                      SmallVectorImpl<SDValue> &Vals) {
9987   size_t Limit = SDNode::getMaxNumOperands();
9988   while (Vals.size() > Limit) {
9989     unsigned SliceIdx = Vals.size() - Limit;
9990     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9991     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9992     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9993     Vals.emplace_back(NewTF);
9994   }
9995   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9996 }
9997 
9998 #ifndef NDEBUG
9999 static void checkForCyclesHelper(const SDNode *N,
10000                                  SmallPtrSetImpl<const SDNode*> &Visited,
10001                                  SmallPtrSetImpl<const SDNode*> &Checked,
10002                                  const llvm::SelectionDAG *DAG) {
10003   // If this node has already been checked, don't check it again.
10004   if (Checked.count(N))
10005     return;
10006 
10007   // If a node has already been visited on this depth-first walk, reject it as
10008   // a cycle.
10009   if (!Visited.insert(N).second) {
10010     errs() << "Detected cycle in SelectionDAG\n";
10011     dbgs() << "Offending node:\n";
10012     N->dumprFull(DAG); dbgs() << "\n";
10013     abort();
10014   }
10015 
10016   for (const SDValue &Op : N->op_values())
10017     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10018 
10019   Checked.insert(N);
10020   Visited.erase(N);
10021 }
10022 #endif
10023 
10024 void llvm::checkForCycles(const llvm::SDNode *N,
10025                           const llvm::SelectionDAG *DAG,
10026                           bool force) {
10027 #ifndef NDEBUG
10028   bool check = force;
10029 #ifdef EXPENSIVE_CHECKS
10030   check = true;
10031 #endif  // EXPENSIVE_CHECKS
10032   if (check) {
10033     assert(N && "Checking nonexistent SDNode");
10034     SmallPtrSet<const SDNode*, 32> visited;
10035     SmallPtrSet<const SDNode*, 32> checked;
10036     checkForCyclesHelper(N, visited, checked, DAG);
10037   }
10038 #endif  // !NDEBUG
10039 }
10040 
10041 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10042   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10043 }
10044