1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (LHS.getOpcode() != RHS.getOpcode() ||
346       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
347        LHS.getOpcode() != ISD::SPLAT_VECTOR))
348     return false;
349 
350   EVT SVT = LHS.getValueType().getScalarType();
351   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
352     SDValue LHSOp = LHS.getOperand(i);
353     SDValue RHSOp = RHS.getOperand(i);
354     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
355     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
356     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
357     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
358     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
359       return false;
360     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
361                                LHSOp.getValueType() != RHSOp.getValueType()))
362       return false;
363     if (!Match(LHSCst, RHSCst))
364       return false;
365   }
366   return true;
367 }
368 
369 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
370   switch (VecReduceOpcode) {
371   default:
372     llvm_unreachable("Expected VECREDUCE opcode");
373   case ISD::VECREDUCE_FADD:
374   case ISD::VECREDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378     return ISD::FMUL;
379   case ISD::VECREDUCE_ADD:
380     return ISD::ADD;
381   case ISD::VECREDUCE_MUL:
382     return ISD::MUL;
383   case ISD::VECREDUCE_AND:
384     return ISD::AND;
385   case ISD::VECREDUCE_OR:
386     return ISD::OR;
387   case ISD::VECREDUCE_XOR:
388     return ISD::XOR;
389   case ISD::VECREDUCE_SMAX:
390     return ISD::SMAX;
391   case ISD::VECREDUCE_SMIN:
392     return ISD::SMIN;
393   case ISD::VECREDUCE_UMAX:
394     return ISD::UMAX;
395   case ISD::VECREDUCE_UMIN:
396     return ISD::UMIN;
397   case ISD::VECREDUCE_FMAX:
398     return ISD::FMAXNUM;
399   case ISD::VECREDUCE_FMIN:
400     return ISD::FMINNUM;
401   }
402 }
403 
404 bool ISD::isVPOpcode(unsigned Opcode) {
405   switch (Opcode) {
406   default:
407     return false;
408 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
409   case ISD::SDOPC:                                                             \
410     return true;
411 #include "llvm/IR/VPIntrinsics.def"
412   }
413 }
414 
415 /// The operand position of the vector mask.
416 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
417   switch (Opcode) {
418   default:
419     return None;
420 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
421   case ISD::SDOPC:                                                             \
422     return MASKPOS;
423 #include "llvm/IR/VPIntrinsics.def"
424   }
425 }
426 
427 /// The operand position of the explicit vector length parameter.
428 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     return None;
432 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
433   case ISD::SDOPC:                                                             \
434     return EVLPOS;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437 }
438 
439 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
440   switch (ExtType) {
441   case ISD::EXTLOAD:
442     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
443   case ISD::SEXTLOAD:
444     return ISD::SIGN_EXTEND;
445   case ISD::ZEXTLOAD:
446     return ISD::ZERO_EXTEND;
447   default:
448     break;
449   }
450 
451   llvm_unreachable("Invalid LoadExtType");
452 }
453 
454 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
455   // To perform this operation, we just need to swap the L and G bits of the
456   // operation.
457   unsigned OldL = (Operation >> 2) & 1;
458   unsigned OldG = (Operation >> 1) & 1;
459   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
460                        (OldL << 1) |       // New G bit
461                        (OldG << 2));       // New L bit.
462 }
463 
464 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
465   unsigned Operation = Op;
466   if (isIntegerLike)
467     Operation ^= 7;   // Flip L, G, E bits, but not U.
468   else
469     Operation ^= 15;  // Flip all of the condition bits.
470 
471   if (Operation > ISD::SETTRUE2)
472     Operation &= ~8;  // Don't let N and U bits get set.
473 
474   return ISD::CondCode(Operation);
475 }
476 
477 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
478   return getSetCCInverseImpl(Op, Type.isInteger());
479 }
480 
481 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
482                                                bool isIntegerLike) {
483   return getSetCCInverseImpl(Op, isIntegerLike);
484 }
485 
486 /// For an integer comparison, return 1 if the comparison is a signed operation
487 /// and 2 if the result is an unsigned comparison. Return zero if the operation
488 /// does not depend on the sign of the input (setne and seteq).
489 static int isSignedOp(ISD::CondCode Opcode) {
490   switch (Opcode) {
491   default: llvm_unreachable("Illegal integer setcc operation!");
492   case ISD::SETEQ:
493   case ISD::SETNE: return 0;
494   case ISD::SETLT:
495   case ISD::SETLE:
496   case ISD::SETGT:
497   case ISD::SETGE: return 1;
498   case ISD::SETULT:
499   case ISD::SETULE:
500   case ISD::SETUGT:
501   case ISD::SETUGE: return 2;
502   }
503 }
504 
505 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
506                                        EVT Type) {
507   bool IsInteger = Type.isInteger();
508   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
509     // Cannot fold a signed integer setcc with an unsigned integer setcc.
510     return ISD::SETCC_INVALID;
511 
512   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
513 
514   // If the N and U bits get set, then the resultant comparison DOES suddenly
515   // care about orderedness, and it is true when ordered.
516   if (Op > ISD::SETTRUE2)
517     Op &= ~16;     // Clear the U bit if the N bit is set.
518 
519   // Canonicalize illegal integer setcc's.
520   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
521     Op = ISD::SETNE;
522 
523   return ISD::CondCode(Op);
524 }
525 
526 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
527                                         EVT Type) {
528   bool IsInteger = Type.isInteger();
529   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
530     // Cannot fold a signed setcc with an unsigned setcc.
531     return ISD::SETCC_INVALID;
532 
533   // Combine all of the condition bits.
534   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
535 
536   // Canonicalize illegal integer setcc's.
537   if (IsInteger) {
538     switch (Result) {
539     default: break;
540     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
541     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
542     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
543     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
544     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
545     }
546   }
547 
548   return Result;
549 }
550 
551 //===----------------------------------------------------------------------===//
552 //                           SDNode Profile Support
553 //===----------------------------------------------------------------------===//
554 
555 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
556 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
557   ID.AddInteger(OpC);
558 }
559 
560 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
561 /// solely with their pointer.
562 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
563   ID.AddPointer(VTList.VTs);
564 }
565 
566 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
567 static void AddNodeIDOperands(FoldingSetNodeID &ID,
568                               ArrayRef<SDValue> Ops) {
569   for (auto& Op : Ops) {
570     ID.AddPointer(Op.getNode());
571     ID.AddInteger(Op.getResNo());
572   }
573 }
574 
575 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
576 static void AddNodeIDOperands(FoldingSetNodeID &ID,
577                               ArrayRef<SDUse> Ops) {
578   for (auto& Op : Ops) {
579     ID.AddPointer(Op.getNode());
580     ID.AddInteger(Op.getResNo());
581   }
582 }
583 
584 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
585                           SDVTList VTList, ArrayRef<SDValue> OpList) {
586   AddNodeIDOpcode(ID, OpC);
587   AddNodeIDValueTypes(ID, VTList);
588   AddNodeIDOperands(ID, OpList);
589 }
590 
591 /// If this is an SDNode with special info, add this info to the NodeID data.
592 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
593   switch (N->getOpcode()) {
594   case ISD::TargetExternalSymbol:
595   case ISD::ExternalSymbol:
596   case ISD::MCSymbol:
597     llvm_unreachable("Should only be used on nodes with operands");
598   default: break;  // Normal nodes don't need extra info.
599   case ISD::TargetConstant:
600   case ISD::Constant: {
601     const ConstantSDNode *C = cast<ConstantSDNode>(N);
602     ID.AddPointer(C->getConstantIntValue());
603     ID.AddBoolean(C->isOpaque());
604     break;
605   }
606   case ISD::TargetConstantFP:
607   case ISD::ConstantFP:
608     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
609     break;
610   case ISD::TargetGlobalAddress:
611   case ISD::GlobalAddress:
612   case ISD::TargetGlobalTLSAddress:
613   case ISD::GlobalTLSAddress: {
614     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
615     ID.AddPointer(GA->getGlobal());
616     ID.AddInteger(GA->getOffset());
617     ID.AddInteger(GA->getTargetFlags());
618     break;
619   }
620   case ISD::BasicBlock:
621     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
622     break;
623   case ISD::Register:
624     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
625     break;
626   case ISD::RegisterMask:
627     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
628     break;
629   case ISD::SRCVALUE:
630     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
631     break;
632   case ISD::FrameIndex:
633   case ISD::TargetFrameIndex:
634     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
635     break;
636   case ISD::LIFETIME_START:
637   case ISD::LIFETIME_END:
638     if (cast<LifetimeSDNode>(N)->hasOffset()) {
639       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
640       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
641     }
642     break;
643   case ISD::PSEUDO_PROBE:
644     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
645     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
646     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
647     break;
648   case ISD::JumpTable:
649   case ISD::TargetJumpTable:
650     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
651     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
652     break;
653   case ISD::ConstantPool:
654   case ISD::TargetConstantPool: {
655     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
656     ID.AddInteger(CP->getAlign().value());
657     ID.AddInteger(CP->getOffset());
658     if (CP->isMachineConstantPoolEntry())
659       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
660     else
661       ID.AddPointer(CP->getConstVal());
662     ID.AddInteger(CP->getTargetFlags());
663     break;
664   }
665   case ISD::TargetIndex: {
666     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
667     ID.AddInteger(TI->getIndex());
668     ID.AddInteger(TI->getOffset());
669     ID.AddInteger(TI->getTargetFlags());
670     break;
671   }
672   case ISD::LOAD: {
673     const LoadSDNode *LD = cast<LoadSDNode>(N);
674     ID.AddInteger(LD->getMemoryVT().getRawBits());
675     ID.AddInteger(LD->getRawSubclassData());
676     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
677     break;
678   }
679   case ISD::STORE: {
680     const StoreSDNode *ST = cast<StoreSDNode>(N);
681     ID.AddInteger(ST->getMemoryVT().getRawBits());
682     ID.AddInteger(ST->getRawSubclassData());
683     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
684     break;
685   }
686   case ISD::VP_LOAD: {
687     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
688     ID.AddInteger(ELD->getMemoryVT().getRawBits());
689     ID.AddInteger(ELD->getRawSubclassData());
690     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
691     break;
692   }
693   case ISD::VP_STORE: {
694     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
695     ID.AddInteger(EST->getMemoryVT().getRawBits());
696     ID.AddInteger(EST->getRawSubclassData());
697     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
698     break;
699   }
700   case ISD::VP_GATHER: {
701     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
702     ID.AddInteger(EG->getMemoryVT().getRawBits());
703     ID.AddInteger(EG->getRawSubclassData());
704     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
705     break;
706   }
707   case ISD::VP_SCATTER: {
708     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
709     ID.AddInteger(ES->getMemoryVT().getRawBits());
710     ID.AddInteger(ES->getRawSubclassData());
711     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
712     break;
713   }
714   case ISD::MLOAD: {
715     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
716     ID.AddInteger(MLD->getMemoryVT().getRawBits());
717     ID.AddInteger(MLD->getRawSubclassData());
718     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
719     break;
720   }
721   case ISD::MSTORE: {
722     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
723     ID.AddInteger(MST->getMemoryVT().getRawBits());
724     ID.AddInteger(MST->getRawSubclassData());
725     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
726     break;
727   }
728   case ISD::MGATHER: {
729     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
730     ID.AddInteger(MG->getMemoryVT().getRawBits());
731     ID.AddInteger(MG->getRawSubclassData());
732     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
733     break;
734   }
735   case ISD::MSCATTER: {
736     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
737     ID.AddInteger(MS->getMemoryVT().getRawBits());
738     ID.AddInteger(MS->getRawSubclassData());
739     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
740     break;
741   }
742   case ISD::ATOMIC_CMP_SWAP:
743   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
744   case ISD::ATOMIC_SWAP:
745   case ISD::ATOMIC_LOAD_ADD:
746   case ISD::ATOMIC_LOAD_SUB:
747   case ISD::ATOMIC_LOAD_AND:
748   case ISD::ATOMIC_LOAD_CLR:
749   case ISD::ATOMIC_LOAD_OR:
750   case ISD::ATOMIC_LOAD_XOR:
751   case ISD::ATOMIC_LOAD_NAND:
752   case ISD::ATOMIC_LOAD_MIN:
753   case ISD::ATOMIC_LOAD_MAX:
754   case ISD::ATOMIC_LOAD_UMIN:
755   case ISD::ATOMIC_LOAD_UMAX:
756   case ISD::ATOMIC_LOAD:
757   case ISD::ATOMIC_STORE: {
758     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
759     ID.AddInteger(AT->getMemoryVT().getRawBits());
760     ID.AddInteger(AT->getRawSubclassData());
761     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
762     break;
763   }
764   case ISD::PREFETCH: {
765     const MemSDNode *PF = cast<MemSDNode>(N);
766     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
767     break;
768   }
769   case ISD::VECTOR_SHUFFLE: {
770     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
771     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
772          i != e; ++i)
773       ID.AddInteger(SVN->getMaskElt(i));
774     break;
775   }
776   case ISD::TargetBlockAddress:
777   case ISD::BlockAddress: {
778     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
779     ID.AddPointer(BA->getBlockAddress());
780     ID.AddInteger(BA->getOffset());
781     ID.AddInteger(BA->getTargetFlags());
782     break;
783   }
784   } // end switch (N->getOpcode())
785 
786   // Target specific memory nodes could also have address spaces to check.
787   if (N->isTargetMemoryOpcode())
788     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
789 }
790 
791 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
792 /// data.
793 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
794   AddNodeIDOpcode(ID, N->getOpcode());
795   // Add the return value info.
796   AddNodeIDValueTypes(ID, N->getVTList());
797   // Add the operand info.
798   AddNodeIDOperands(ID, N->ops());
799 
800   // Handle SDNode leafs with special info.
801   AddNodeIDCustom(ID, N);
802 }
803 
804 //===----------------------------------------------------------------------===//
805 //                              SelectionDAG Class
806 //===----------------------------------------------------------------------===//
807 
808 /// doNotCSE - Return true if CSE should not be performed for this node.
809 static bool doNotCSE(SDNode *N) {
810   if (N->getValueType(0) == MVT::Glue)
811     return true; // Never CSE anything that produces a flag.
812 
813   switch (N->getOpcode()) {
814   default: break;
815   case ISD::HANDLENODE:
816   case ISD::EH_LABEL:
817     return true;   // Never CSE these nodes.
818   }
819 
820   // Check that remaining values produced are not flags.
821   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
822     if (N->getValueType(i) == MVT::Glue)
823       return true; // Never CSE anything that produces a flag.
824 
825   return false;
826 }
827 
828 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
829 /// SelectionDAG.
830 void SelectionDAG::RemoveDeadNodes() {
831   // Create a dummy node (which is not added to allnodes), that adds a reference
832   // to the root node, preventing it from being deleted.
833   HandleSDNode Dummy(getRoot());
834 
835   SmallVector<SDNode*, 128> DeadNodes;
836 
837   // Add all obviously-dead nodes to the DeadNodes worklist.
838   for (SDNode &Node : allnodes())
839     if (Node.use_empty())
840       DeadNodes.push_back(&Node);
841 
842   RemoveDeadNodes(DeadNodes);
843 
844   // If the root changed (e.g. it was a dead load, update the root).
845   setRoot(Dummy.getValue());
846 }
847 
848 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
849 /// given list, and any nodes that become unreachable as a result.
850 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
851 
852   // Process the worklist, deleting the nodes and adding their uses to the
853   // worklist.
854   while (!DeadNodes.empty()) {
855     SDNode *N = DeadNodes.pop_back_val();
856     // Skip to next node if we've already managed to delete the node. This could
857     // happen if replacing a node causes a node previously added to the node to
858     // be deleted.
859     if (N->getOpcode() == ISD::DELETED_NODE)
860       continue;
861 
862     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
863       DUL->NodeDeleted(N, nullptr);
864 
865     // Take the node out of the appropriate CSE map.
866     RemoveNodeFromCSEMaps(N);
867 
868     // Next, brutally remove the operand list.  This is safe to do, as there are
869     // no cycles in the graph.
870     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
871       SDUse &Use = *I++;
872       SDNode *Operand = Use.getNode();
873       Use.set(SDValue());
874 
875       // Now that we removed this operand, see if there are no uses of it left.
876       if (Operand->use_empty())
877         DeadNodes.push_back(Operand);
878     }
879 
880     DeallocateNode(N);
881   }
882 }
883 
884 void SelectionDAG::RemoveDeadNode(SDNode *N){
885   SmallVector<SDNode*, 16> DeadNodes(1, N);
886 
887   // Create a dummy node that adds a reference to the root node, preventing
888   // it from being deleted.  (This matters if the root is an operand of the
889   // dead node.)
890   HandleSDNode Dummy(getRoot());
891 
892   RemoveDeadNodes(DeadNodes);
893 }
894 
895 void SelectionDAG::DeleteNode(SDNode *N) {
896   // First take this out of the appropriate CSE map.
897   RemoveNodeFromCSEMaps(N);
898 
899   // Finally, remove uses due to operands of this node, remove from the
900   // AllNodes list, and delete the node.
901   DeleteNodeNotInCSEMaps(N);
902 }
903 
904 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
905   assert(N->getIterator() != AllNodes.begin() &&
906          "Cannot delete the entry node!");
907   assert(N->use_empty() && "Cannot delete a node that is not dead!");
908 
909   // Drop all of the operands and decrement used node's use counts.
910   N->DropOperands();
911 
912   DeallocateNode(N);
913 }
914 
915 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
916   assert(!(V->isVariadic() && isParameter));
917   if (isParameter)
918     ByvalParmDbgValues.push_back(V);
919   else
920     DbgValues.push_back(V);
921   for (const SDNode *Node : V->getSDNodes())
922     if (Node)
923       DbgValMap[Node].push_back(V);
924 }
925 
926 void SDDbgInfo::erase(const SDNode *Node) {
927   DbgValMapType::iterator I = DbgValMap.find(Node);
928   if (I == DbgValMap.end())
929     return;
930   for (auto &Val: I->second)
931     Val->setIsInvalidated();
932   DbgValMap.erase(I);
933 }
934 
935 void SelectionDAG::DeallocateNode(SDNode *N) {
936   // If we have operands, deallocate them.
937   removeOperands(N);
938 
939   NodeAllocator.Deallocate(AllNodes.remove(N));
940 
941   // Set the opcode to DELETED_NODE to help catch bugs when node
942   // memory is reallocated.
943   // FIXME: There are places in SDag that have grown a dependency on the opcode
944   // value in the released node.
945   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
946   N->NodeType = ISD::DELETED_NODE;
947 
948   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
949   // them and forget about that node.
950   DbgInfo->erase(N);
951 }
952 
953 #ifndef NDEBUG
954 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
955 static void VerifySDNode(SDNode *N) {
956   switch (N->getOpcode()) {
957   default:
958     break;
959   case ISD::BUILD_PAIR: {
960     EVT VT = N->getValueType(0);
961     assert(N->getNumValues() == 1 && "Too many results!");
962     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
963            "Wrong return type!");
964     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
965     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
966            "Mismatched operand types!");
967     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
968            "Wrong operand type!");
969     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
970            "Wrong return type size");
971     break;
972   }
973   case ISD::BUILD_VECTOR: {
974     assert(N->getNumValues() == 1 && "Too many results!");
975     assert(N->getValueType(0).isVector() && "Wrong return type!");
976     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
977            "Wrong number of operands!");
978     EVT EltVT = N->getValueType(0).getVectorElementType();
979     for (const SDUse &Op : N->ops()) {
980       assert((Op.getValueType() == EltVT ||
981               (EltVT.isInteger() && Op.getValueType().isInteger() &&
982                EltVT.bitsLE(Op.getValueType()))) &&
983              "Wrong operand type!");
984       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
985              "Operands must all have the same type");
986     }
987     break;
988   }
989   }
990 }
991 #endif // NDEBUG
992 
993 /// Insert a newly allocated node into the DAG.
994 ///
995 /// Handles insertion into the all nodes list and CSE map, as well as
996 /// verification and other common operations when a new node is allocated.
997 void SelectionDAG::InsertNode(SDNode *N) {
998   AllNodes.push_back(N);
999 #ifndef NDEBUG
1000   N->PersistentId = NextPersistentId++;
1001   VerifySDNode(N);
1002 #endif
1003   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1004     DUL->NodeInserted(N);
1005 }
1006 
1007 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1008 /// correspond to it.  This is useful when we're about to delete or repurpose
1009 /// the node.  We don't want future request for structurally identical nodes
1010 /// to return N anymore.
1011 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1012   bool Erased = false;
1013   switch (N->getOpcode()) {
1014   case ISD::HANDLENODE: return false;  // noop.
1015   case ISD::CONDCODE:
1016     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1017            "Cond code doesn't exist!");
1018     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1019     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1020     break;
1021   case ISD::ExternalSymbol:
1022     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1023     break;
1024   case ISD::TargetExternalSymbol: {
1025     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1026     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1027         ESN->getSymbol(), ESN->getTargetFlags()));
1028     break;
1029   }
1030   case ISD::MCSymbol: {
1031     auto *MCSN = cast<MCSymbolSDNode>(N);
1032     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1033     break;
1034   }
1035   case ISD::VALUETYPE: {
1036     EVT VT = cast<VTSDNode>(N)->getVT();
1037     if (VT.isExtended()) {
1038       Erased = ExtendedValueTypeNodes.erase(VT);
1039     } else {
1040       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1041       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1042     }
1043     break;
1044   }
1045   default:
1046     // Remove it from the CSE Map.
1047     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1048     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1049     Erased = CSEMap.RemoveNode(N);
1050     break;
1051   }
1052 #ifndef NDEBUG
1053   // Verify that the node was actually in one of the CSE maps, unless it has a
1054   // flag result (which cannot be CSE'd) or is one of the special cases that are
1055   // not subject to CSE.
1056   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1057       !N->isMachineOpcode() && !doNotCSE(N)) {
1058     N->dump(this);
1059     dbgs() << "\n";
1060     llvm_unreachable("Node is not in map!");
1061   }
1062 #endif
1063   return Erased;
1064 }
1065 
1066 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1067 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1068 /// node already exists, in which case transfer all its users to the existing
1069 /// node. This transfer can potentially trigger recursive merging.
1070 void
1071 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1072   // For node types that aren't CSE'd, just act as if no identical node
1073   // already exists.
1074   if (!doNotCSE(N)) {
1075     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1076     if (Existing != N) {
1077       // If there was already an existing matching node, use ReplaceAllUsesWith
1078       // to replace the dead one with the existing one.  This can cause
1079       // recursive merging of other unrelated nodes down the line.
1080       ReplaceAllUsesWith(N, Existing);
1081 
1082       // N is now dead. Inform the listeners and delete it.
1083       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1084         DUL->NodeDeleted(N, Existing);
1085       DeleteNodeNotInCSEMaps(N);
1086       return;
1087     }
1088   }
1089 
1090   // If the node doesn't already exist, we updated it.  Inform listeners.
1091   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1092     DUL->NodeUpdated(N);
1093 }
1094 
1095 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1096 /// were replaced with those specified.  If this node is never memoized,
1097 /// return null, otherwise return a pointer to the slot it would take.  If a
1098 /// node already exists with these operands, the slot will be non-null.
1099 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1100                                            void *&InsertPos) {
1101   if (doNotCSE(N))
1102     return nullptr;
1103 
1104   SDValue Ops[] = { Op };
1105   FoldingSetNodeID ID;
1106   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1107   AddNodeIDCustom(ID, N);
1108   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1109   if (Node)
1110     Node->intersectFlagsWith(N->getFlags());
1111   return Node;
1112 }
1113 
1114 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1115 /// were replaced with those specified.  If this node is never memoized,
1116 /// return null, otherwise return a pointer to the slot it would take.  If a
1117 /// node already exists with these operands, the slot will be non-null.
1118 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1119                                            SDValue Op1, SDValue Op2,
1120                                            void *&InsertPos) {
1121   if (doNotCSE(N))
1122     return nullptr;
1123 
1124   SDValue Ops[] = { Op1, Op2 };
1125   FoldingSetNodeID ID;
1126   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1127   AddNodeIDCustom(ID, N);
1128   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1129   if (Node)
1130     Node->intersectFlagsWith(N->getFlags());
1131   return Node;
1132 }
1133 
1134 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1135 /// were replaced with those specified.  If this node is never memoized,
1136 /// return null, otherwise return a pointer to the slot it would take.  If a
1137 /// node already exists with these operands, the slot will be non-null.
1138 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1139                                            void *&InsertPos) {
1140   if (doNotCSE(N))
1141     return nullptr;
1142 
1143   FoldingSetNodeID ID;
1144   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1145   AddNodeIDCustom(ID, N);
1146   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1147   if (Node)
1148     Node->intersectFlagsWith(N->getFlags());
1149   return Node;
1150 }
1151 
1152 Align SelectionDAG::getEVTAlign(EVT VT) const {
1153   Type *Ty = VT == MVT::iPTR ?
1154                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1155                    VT.getTypeForEVT(*getContext());
1156 
1157   return getDataLayout().getABITypeAlign(Ty);
1158 }
1159 
1160 // EntryNode could meaningfully have debug info if we can find it...
1161 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1162     : TM(tm), OptLevel(OL),
1163       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1164       Root(getEntryNode()) {
1165   InsertNode(&EntryNode);
1166   DbgInfo = new SDDbgInfo();
1167 }
1168 
1169 void SelectionDAG::init(MachineFunction &NewMF,
1170                         OptimizationRemarkEmitter &NewORE,
1171                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1172                         LegacyDivergenceAnalysis * Divergence,
1173                         ProfileSummaryInfo *PSIin,
1174                         BlockFrequencyInfo *BFIin) {
1175   MF = &NewMF;
1176   SDAGISelPass = PassPtr;
1177   ORE = &NewORE;
1178   TLI = getSubtarget().getTargetLowering();
1179   TSI = getSubtarget().getSelectionDAGInfo();
1180   LibInfo = LibraryInfo;
1181   Context = &MF->getFunction().getContext();
1182   DA = Divergence;
1183   PSI = PSIin;
1184   BFI = BFIin;
1185 }
1186 
1187 SelectionDAG::~SelectionDAG() {
1188   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1189   allnodes_clear();
1190   OperandRecycler.clear(OperandAllocator);
1191   delete DbgInfo;
1192 }
1193 
1194 bool SelectionDAG::shouldOptForSize() const {
1195   return MF->getFunction().hasOptSize() ||
1196       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1197 }
1198 
1199 void SelectionDAG::allnodes_clear() {
1200   assert(&*AllNodes.begin() == &EntryNode);
1201   AllNodes.remove(AllNodes.begin());
1202   while (!AllNodes.empty())
1203     DeallocateNode(&AllNodes.front());
1204 #ifndef NDEBUG
1205   NextPersistentId = 0;
1206 #endif
1207 }
1208 
1209 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1210                                           void *&InsertPos) {
1211   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1212   if (N) {
1213     switch (N->getOpcode()) {
1214     default: break;
1215     case ISD::Constant:
1216     case ISD::ConstantFP:
1217       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1218                        "debug location.  Use another overload.");
1219     }
1220   }
1221   return N;
1222 }
1223 
1224 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1225                                           const SDLoc &DL, void *&InsertPos) {
1226   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1227   if (N) {
1228     switch (N->getOpcode()) {
1229     case ISD::Constant:
1230     case ISD::ConstantFP:
1231       // Erase debug location from the node if the node is used at several
1232       // different places. Do not propagate one location to all uses as it
1233       // will cause a worse single stepping debugging experience.
1234       if (N->getDebugLoc() != DL.getDebugLoc())
1235         N->setDebugLoc(DebugLoc());
1236       break;
1237     default:
1238       // When the node's point of use is located earlier in the instruction
1239       // sequence than its prior point of use, update its debug info to the
1240       // earlier location.
1241       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1242         N->setDebugLoc(DL.getDebugLoc());
1243       break;
1244     }
1245   }
1246   return N;
1247 }
1248 
1249 void SelectionDAG::clear() {
1250   allnodes_clear();
1251   OperandRecycler.clear(OperandAllocator);
1252   OperandAllocator.Reset();
1253   CSEMap.clear();
1254 
1255   ExtendedValueTypeNodes.clear();
1256   ExternalSymbols.clear();
1257   TargetExternalSymbols.clear();
1258   MCSymbols.clear();
1259   SDCallSiteDbgInfo.clear();
1260   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1261             static_cast<CondCodeSDNode*>(nullptr));
1262   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1263             static_cast<SDNode*>(nullptr));
1264 
1265   EntryNode.UseList = nullptr;
1266   InsertNode(&EntryNode);
1267   Root = getEntryNode();
1268   DbgInfo->clear();
1269 }
1270 
1271 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1272   return VT.bitsGT(Op.getValueType())
1273              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1274              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1275 }
1276 
1277 std::pair<SDValue, SDValue>
1278 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1279                                        const SDLoc &DL, EVT VT) {
1280   assert(!VT.bitsEq(Op.getValueType()) &&
1281          "Strict no-op FP extend/round not allowed.");
1282   SDValue Res =
1283       VT.bitsGT(Op.getValueType())
1284           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1285           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1286                     {Chain, Op, getIntPtrConstant(0, DL)});
1287 
1288   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1289 }
1290 
1291 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1292   return VT.bitsGT(Op.getValueType()) ?
1293     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1294     getNode(ISD::TRUNCATE, DL, VT, Op);
1295 }
1296 
1297 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1298   return VT.bitsGT(Op.getValueType()) ?
1299     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1300     getNode(ISD::TRUNCATE, DL, VT, Op);
1301 }
1302 
1303 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1304   return VT.bitsGT(Op.getValueType()) ?
1305     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1306     getNode(ISD::TRUNCATE, DL, VT, Op);
1307 }
1308 
1309 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1310                                         EVT OpVT) {
1311   if (VT.bitsLE(Op.getValueType()))
1312     return getNode(ISD::TRUNCATE, SL, VT, Op);
1313 
1314   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1315   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1316 }
1317 
1318 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1319   EVT OpVT = Op.getValueType();
1320   assert(VT.isInteger() && OpVT.isInteger() &&
1321          "Cannot getZeroExtendInReg FP types");
1322   assert(VT.isVector() == OpVT.isVector() &&
1323          "getZeroExtendInReg type should be vector iff the operand "
1324          "type is vector!");
1325   assert((!VT.isVector() ||
1326           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1327          "Vector element counts must match in getZeroExtendInReg");
1328   assert(VT.bitsLE(OpVT) && "Not extending!");
1329   if (OpVT == VT)
1330     return Op;
1331   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1332                                    VT.getScalarSizeInBits());
1333   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1334 }
1335 
1336 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1337   // Only unsigned pointer semantics are supported right now. In the future this
1338   // might delegate to TLI to check pointer signedness.
1339   return getZExtOrTrunc(Op, DL, VT);
1340 }
1341 
1342 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1343   // Only unsigned pointer semantics are supported right now. In the future this
1344   // might delegate to TLI to check pointer signedness.
1345   return getZeroExtendInReg(Op, DL, VT);
1346 }
1347 
1348 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1349 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1350   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1351 }
1352 
1353 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1354   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1355   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1356 }
1357 
1358 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1359                                       EVT OpVT) {
1360   if (!V)
1361     return getConstant(0, DL, VT);
1362 
1363   switch (TLI->getBooleanContents(OpVT)) {
1364   case TargetLowering::ZeroOrOneBooleanContent:
1365   case TargetLowering::UndefinedBooleanContent:
1366     return getConstant(1, DL, VT);
1367   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1368     return getAllOnesConstant(DL, VT);
1369   }
1370   llvm_unreachable("Unexpected boolean content enum!");
1371 }
1372 
1373 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1374                                   bool isT, bool isO) {
1375   EVT EltVT = VT.getScalarType();
1376   assert((EltVT.getSizeInBits() >= 64 ||
1377           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1378          "getConstant with a uint64_t value that doesn't fit in the type!");
1379   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1380 }
1381 
1382 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1383                                   bool isT, bool isO) {
1384   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1385 }
1386 
1387 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1388                                   EVT VT, bool isT, bool isO) {
1389   assert(VT.isInteger() && "Cannot create FP integer constant!");
1390 
1391   EVT EltVT = VT.getScalarType();
1392   const ConstantInt *Elt = &Val;
1393 
1394   // In some cases the vector type is legal but the element type is illegal and
1395   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1396   // inserted value (the type does not need to match the vector element type).
1397   // Any extra bits introduced will be truncated away.
1398   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1399                            TargetLowering::TypePromoteInteger) {
1400     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1401     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1402     Elt = ConstantInt::get(*getContext(), NewVal);
1403   }
1404   // In other cases the element type is illegal and needs to be expanded, for
1405   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1406   // the value into n parts and use a vector type with n-times the elements.
1407   // Then bitcast to the type requested.
1408   // Legalizing constants too early makes the DAGCombiner's job harder so we
1409   // only legalize if the DAG tells us we must produce legal types.
1410   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1411            TLI->getTypeAction(*getContext(), EltVT) ==
1412                TargetLowering::TypeExpandInteger) {
1413     const APInt &NewVal = Elt->getValue();
1414     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1415     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1416 
1417     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1418     if (VT.isScalableVector()) {
1419       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1420              "Can only handle an even split!");
1421       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1422 
1423       SmallVector<SDValue, 2> ScalarParts;
1424       for (unsigned i = 0; i != Parts; ++i)
1425         ScalarParts.push_back(getConstant(
1426             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1427             ViaEltVT, isT, isO));
1428 
1429       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1430     }
1431 
1432     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1433     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1434 
1435     // Check the temporary vector is the correct size. If this fails then
1436     // getTypeToTransformTo() probably returned a type whose size (in bits)
1437     // isn't a power-of-2 factor of the requested type size.
1438     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1439 
1440     SmallVector<SDValue, 2> EltParts;
1441     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1442       EltParts.push_back(getConstant(
1443           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1444           ViaEltVT, isT, isO));
1445 
1446     // EltParts is currently in little endian order. If we actually want
1447     // big-endian order then reverse it now.
1448     if (getDataLayout().isBigEndian())
1449       std::reverse(EltParts.begin(), EltParts.end());
1450 
1451     // The elements must be reversed when the element order is different
1452     // to the endianness of the elements (because the BITCAST is itself a
1453     // vector shuffle in this situation). However, we do not need any code to
1454     // perform this reversal because getConstant() is producing a vector
1455     // splat.
1456     // This situation occurs in MIPS MSA.
1457 
1458     SmallVector<SDValue, 8> Ops;
1459     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1460       llvm::append_range(Ops, EltParts);
1461 
1462     SDValue V =
1463         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1464     return V;
1465   }
1466 
1467   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1468          "APInt size does not match type size!");
1469   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1470   FoldingSetNodeID ID;
1471   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1472   ID.AddPointer(Elt);
1473   ID.AddBoolean(isO);
1474   void *IP = nullptr;
1475   SDNode *N = nullptr;
1476   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1477     if (!VT.isVector())
1478       return SDValue(N, 0);
1479 
1480   if (!N) {
1481     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1482     CSEMap.InsertNode(N, IP);
1483     InsertNode(N);
1484     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1485   }
1486 
1487   SDValue Result(N, 0);
1488   if (VT.isScalableVector())
1489     Result = getSplatVector(VT, DL, Result);
1490   else if (VT.isVector())
1491     Result = getSplatBuildVector(VT, DL, Result);
1492 
1493   return Result;
1494 }
1495 
1496 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1497                                         bool isTarget) {
1498   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1499 }
1500 
1501 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1502                                              const SDLoc &DL, bool LegalTypes) {
1503   assert(VT.isInteger() && "Shift amount is not an integer type!");
1504   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1505   return getConstant(Val, DL, ShiftVT);
1506 }
1507 
1508 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1509                                            bool isTarget) {
1510   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1511 }
1512 
1513 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1514                                     bool isTarget) {
1515   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1516 }
1517 
1518 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1519                                     EVT VT, bool isTarget) {
1520   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1521 
1522   EVT EltVT = VT.getScalarType();
1523 
1524   // Do the map lookup using the actual bit pattern for the floating point
1525   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1526   // we don't have issues with SNANs.
1527   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1528   FoldingSetNodeID ID;
1529   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1530   ID.AddPointer(&V);
1531   void *IP = nullptr;
1532   SDNode *N = nullptr;
1533   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1534     if (!VT.isVector())
1535       return SDValue(N, 0);
1536 
1537   if (!N) {
1538     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1539     CSEMap.InsertNode(N, IP);
1540     InsertNode(N);
1541   }
1542 
1543   SDValue Result(N, 0);
1544   if (VT.isScalableVector())
1545     Result = getSplatVector(VT, DL, Result);
1546   else if (VT.isVector())
1547     Result = getSplatBuildVector(VT, DL, Result);
1548   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1549   return Result;
1550 }
1551 
1552 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1553                                     bool isTarget) {
1554   EVT EltVT = VT.getScalarType();
1555   if (EltVT == MVT::f32)
1556     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1557   if (EltVT == MVT::f64)
1558     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1559   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1560       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1561     bool Ignored;
1562     APFloat APF = APFloat(Val);
1563     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1564                 &Ignored);
1565     return getConstantFP(APF, DL, VT, isTarget);
1566   }
1567   llvm_unreachable("Unsupported type in getConstantFP");
1568 }
1569 
1570 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1571                                        EVT VT, int64_t Offset, bool isTargetGA,
1572                                        unsigned TargetFlags) {
1573   assert((TargetFlags == 0 || isTargetGA) &&
1574          "Cannot set target flags on target-independent globals");
1575 
1576   // Truncate (with sign-extension) the offset value to the pointer size.
1577   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1578   if (BitWidth < 64)
1579     Offset = SignExtend64(Offset, BitWidth);
1580 
1581   unsigned Opc;
1582   if (GV->isThreadLocal())
1583     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1584   else
1585     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1586 
1587   FoldingSetNodeID ID;
1588   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1589   ID.AddPointer(GV);
1590   ID.AddInteger(Offset);
1591   ID.AddInteger(TargetFlags);
1592   void *IP = nullptr;
1593   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1594     return SDValue(E, 0);
1595 
1596   auto *N = newSDNode<GlobalAddressSDNode>(
1597       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1598   CSEMap.InsertNode(N, IP);
1599     InsertNode(N);
1600   return SDValue(N, 0);
1601 }
1602 
1603 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1604   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1605   FoldingSetNodeID ID;
1606   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1607   ID.AddInteger(FI);
1608   void *IP = nullptr;
1609   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1610     return SDValue(E, 0);
1611 
1612   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1613   CSEMap.InsertNode(N, IP);
1614   InsertNode(N);
1615   return SDValue(N, 0);
1616 }
1617 
1618 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1619                                    unsigned TargetFlags) {
1620   assert((TargetFlags == 0 || isTarget) &&
1621          "Cannot set target flags on target-independent jump tables");
1622   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1623   FoldingSetNodeID ID;
1624   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1625   ID.AddInteger(JTI);
1626   ID.AddInteger(TargetFlags);
1627   void *IP = nullptr;
1628   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1629     return SDValue(E, 0);
1630 
1631   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1632   CSEMap.InsertNode(N, IP);
1633   InsertNode(N);
1634   return SDValue(N, 0);
1635 }
1636 
1637 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1638                                       MaybeAlign Alignment, int Offset,
1639                                       bool isTarget, unsigned TargetFlags) {
1640   assert((TargetFlags == 0 || isTarget) &&
1641          "Cannot set target flags on target-independent globals");
1642   if (!Alignment)
1643     Alignment = shouldOptForSize()
1644                     ? getDataLayout().getABITypeAlign(C->getType())
1645                     : getDataLayout().getPrefTypeAlign(C->getType());
1646   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1647   FoldingSetNodeID ID;
1648   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1649   ID.AddInteger(Alignment->value());
1650   ID.AddInteger(Offset);
1651   ID.AddPointer(C);
1652   ID.AddInteger(TargetFlags);
1653   void *IP = nullptr;
1654   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1655     return SDValue(E, 0);
1656 
1657   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1658                                           TargetFlags);
1659   CSEMap.InsertNode(N, IP);
1660   InsertNode(N);
1661   SDValue V = SDValue(N, 0);
1662   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1663   return V;
1664 }
1665 
1666 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1667                                       MaybeAlign Alignment, int Offset,
1668                                       bool isTarget, unsigned TargetFlags) {
1669   assert((TargetFlags == 0 || isTarget) &&
1670          "Cannot set target flags on target-independent globals");
1671   if (!Alignment)
1672     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1673   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1674   FoldingSetNodeID ID;
1675   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1676   ID.AddInteger(Alignment->value());
1677   ID.AddInteger(Offset);
1678   C->addSelectionDAGCSEId(ID);
1679   ID.AddInteger(TargetFlags);
1680   void *IP = nullptr;
1681   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1682     return SDValue(E, 0);
1683 
1684   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1685                                           TargetFlags);
1686   CSEMap.InsertNode(N, IP);
1687   InsertNode(N);
1688   return SDValue(N, 0);
1689 }
1690 
1691 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1692                                      unsigned TargetFlags) {
1693   FoldingSetNodeID ID;
1694   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1695   ID.AddInteger(Index);
1696   ID.AddInteger(Offset);
1697   ID.AddInteger(TargetFlags);
1698   void *IP = nullptr;
1699   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1700     return SDValue(E, 0);
1701 
1702   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1703   CSEMap.InsertNode(N, IP);
1704   InsertNode(N);
1705   return SDValue(N, 0);
1706 }
1707 
1708 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1709   FoldingSetNodeID ID;
1710   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1711   ID.AddPointer(MBB);
1712   void *IP = nullptr;
1713   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1714     return SDValue(E, 0);
1715 
1716   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1717   CSEMap.InsertNode(N, IP);
1718   InsertNode(N);
1719   return SDValue(N, 0);
1720 }
1721 
1722 SDValue SelectionDAG::getValueType(EVT VT) {
1723   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1724       ValueTypeNodes.size())
1725     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1726 
1727   SDNode *&N = VT.isExtended() ?
1728     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1729 
1730   if (N) return SDValue(N, 0);
1731   N = newSDNode<VTSDNode>(VT);
1732   InsertNode(N);
1733   return SDValue(N, 0);
1734 }
1735 
1736 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1737   SDNode *&N = ExternalSymbols[Sym];
1738   if (N) return SDValue(N, 0);
1739   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1740   InsertNode(N);
1741   return SDValue(N, 0);
1742 }
1743 
1744 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1745   SDNode *&N = MCSymbols[Sym];
1746   if (N)
1747     return SDValue(N, 0);
1748   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1749   InsertNode(N);
1750   return SDValue(N, 0);
1751 }
1752 
1753 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1754                                               unsigned TargetFlags) {
1755   SDNode *&N =
1756       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1757   if (N) return SDValue(N, 0);
1758   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1759   InsertNode(N);
1760   return SDValue(N, 0);
1761 }
1762 
1763 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1764   if ((unsigned)Cond >= CondCodeNodes.size())
1765     CondCodeNodes.resize(Cond+1);
1766 
1767   if (!CondCodeNodes[Cond]) {
1768     auto *N = newSDNode<CondCodeSDNode>(Cond);
1769     CondCodeNodes[Cond] = N;
1770     InsertNode(N);
1771   }
1772 
1773   return SDValue(CondCodeNodes[Cond], 0);
1774 }
1775 
1776 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1777   APInt One(ResVT.getScalarSizeInBits(), 1);
1778   return getStepVector(DL, ResVT, One);
1779 }
1780 
1781 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1782   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1783   if (ResVT.isScalableVector())
1784     return getNode(
1785         ISD::STEP_VECTOR, DL, ResVT,
1786         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1787 
1788   SmallVector<SDValue, 16> OpsStepConstants;
1789   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1790     OpsStepConstants.push_back(
1791         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1792   return getBuildVector(ResVT, DL, OpsStepConstants);
1793 }
1794 
1795 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1796 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1797 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1798   std::swap(N1, N2);
1799   ShuffleVectorSDNode::commuteMask(M);
1800 }
1801 
1802 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1803                                        SDValue N2, ArrayRef<int> Mask) {
1804   assert(VT.getVectorNumElements() == Mask.size() &&
1805          "Must have the same number of vector elements as mask elements!");
1806   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1807          "Invalid VECTOR_SHUFFLE");
1808 
1809   // Canonicalize shuffle undef, undef -> undef
1810   if (N1.isUndef() && N2.isUndef())
1811     return getUNDEF(VT);
1812 
1813   // Validate that all indices in Mask are within the range of the elements
1814   // input to the shuffle.
1815   int NElts = Mask.size();
1816   assert(llvm::all_of(Mask,
1817                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1818          "Index out of range");
1819 
1820   // Copy the mask so we can do any needed cleanup.
1821   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1822 
1823   // Canonicalize shuffle v, v -> v, undef
1824   if (N1 == N2) {
1825     N2 = getUNDEF(VT);
1826     for (int i = 0; i != NElts; ++i)
1827       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1828   }
1829 
1830   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1831   if (N1.isUndef())
1832     commuteShuffle(N1, N2, MaskVec);
1833 
1834   if (TLI->hasVectorBlend()) {
1835     // If shuffling a splat, try to blend the splat instead. We do this here so
1836     // that even when this arises during lowering we don't have to re-handle it.
1837     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1838       BitVector UndefElements;
1839       SDValue Splat = BV->getSplatValue(&UndefElements);
1840       if (!Splat)
1841         return;
1842 
1843       for (int i = 0; i < NElts; ++i) {
1844         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1845           continue;
1846 
1847         // If this input comes from undef, mark it as such.
1848         if (UndefElements[MaskVec[i] - Offset]) {
1849           MaskVec[i] = -1;
1850           continue;
1851         }
1852 
1853         // If we can blend a non-undef lane, use that instead.
1854         if (!UndefElements[i])
1855           MaskVec[i] = i + Offset;
1856       }
1857     };
1858     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1859       BlendSplat(N1BV, 0);
1860     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1861       BlendSplat(N2BV, NElts);
1862   }
1863 
1864   // Canonicalize all index into lhs, -> shuffle lhs, undef
1865   // Canonicalize all index into rhs, -> shuffle rhs, undef
1866   bool AllLHS = true, AllRHS = true;
1867   bool N2Undef = N2.isUndef();
1868   for (int i = 0; i != NElts; ++i) {
1869     if (MaskVec[i] >= NElts) {
1870       if (N2Undef)
1871         MaskVec[i] = -1;
1872       else
1873         AllLHS = false;
1874     } else if (MaskVec[i] >= 0) {
1875       AllRHS = false;
1876     }
1877   }
1878   if (AllLHS && AllRHS)
1879     return getUNDEF(VT);
1880   if (AllLHS && !N2Undef)
1881     N2 = getUNDEF(VT);
1882   if (AllRHS) {
1883     N1 = getUNDEF(VT);
1884     commuteShuffle(N1, N2, MaskVec);
1885   }
1886   // Reset our undef status after accounting for the mask.
1887   N2Undef = N2.isUndef();
1888   // Re-check whether both sides ended up undef.
1889   if (N1.isUndef() && N2Undef)
1890     return getUNDEF(VT);
1891 
1892   // If Identity shuffle return that node.
1893   bool Identity = true, AllSame = true;
1894   for (int i = 0; i != NElts; ++i) {
1895     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1896     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1897   }
1898   if (Identity && NElts)
1899     return N1;
1900 
1901   // Shuffling a constant splat doesn't change the result.
1902   if (N2Undef) {
1903     SDValue V = N1;
1904 
1905     // Look through any bitcasts. We check that these don't change the number
1906     // (and size) of elements and just changes their types.
1907     while (V.getOpcode() == ISD::BITCAST)
1908       V = V->getOperand(0);
1909 
1910     // A splat should always show up as a build vector node.
1911     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1912       BitVector UndefElements;
1913       SDValue Splat = BV->getSplatValue(&UndefElements);
1914       // If this is a splat of an undef, shuffling it is also undef.
1915       if (Splat && Splat.isUndef())
1916         return getUNDEF(VT);
1917 
1918       bool SameNumElts =
1919           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1920 
1921       // We only have a splat which can skip shuffles if there is a splatted
1922       // value and no undef lanes rearranged by the shuffle.
1923       if (Splat && UndefElements.none()) {
1924         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1925         // number of elements match or the value splatted is a zero constant.
1926         if (SameNumElts)
1927           return N1;
1928         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1929           if (C->isZero())
1930             return N1;
1931       }
1932 
1933       // If the shuffle itself creates a splat, build the vector directly.
1934       if (AllSame && SameNumElts) {
1935         EVT BuildVT = BV->getValueType(0);
1936         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1937         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1938 
1939         // We may have jumped through bitcasts, so the type of the
1940         // BUILD_VECTOR may not match the type of the shuffle.
1941         if (BuildVT != VT)
1942           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1943         return NewBV;
1944       }
1945     }
1946   }
1947 
1948   FoldingSetNodeID ID;
1949   SDValue Ops[2] = { N1, N2 };
1950   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1951   for (int i = 0; i != NElts; ++i)
1952     ID.AddInteger(MaskVec[i]);
1953 
1954   void* IP = nullptr;
1955   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1956     return SDValue(E, 0);
1957 
1958   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1959   // SDNode doesn't have access to it.  This memory will be "leaked" when
1960   // the node is deallocated, but recovered when the NodeAllocator is released.
1961   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1962   llvm::copy(MaskVec, MaskAlloc);
1963 
1964   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1965                                            dl.getDebugLoc(), MaskAlloc);
1966   createOperands(N, Ops);
1967 
1968   CSEMap.InsertNode(N, IP);
1969   InsertNode(N);
1970   SDValue V = SDValue(N, 0);
1971   NewSDValueDbgMsg(V, "Creating new node: ", this);
1972   return V;
1973 }
1974 
1975 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1976   EVT VT = SV.getValueType(0);
1977   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1978   ShuffleVectorSDNode::commuteMask(MaskVec);
1979 
1980   SDValue Op0 = SV.getOperand(0);
1981   SDValue Op1 = SV.getOperand(1);
1982   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1983 }
1984 
1985 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1986   FoldingSetNodeID ID;
1987   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1988   ID.AddInteger(RegNo);
1989   void *IP = nullptr;
1990   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1991     return SDValue(E, 0);
1992 
1993   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1994   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1995   CSEMap.InsertNode(N, IP);
1996   InsertNode(N);
1997   return SDValue(N, 0);
1998 }
1999 
2000 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2001   FoldingSetNodeID ID;
2002   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2003   ID.AddPointer(RegMask);
2004   void *IP = nullptr;
2005   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2006     return SDValue(E, 0);
2007 
2008   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2009   CSEMap.InsertNode(N, IP);
2010   InsertNode(N);
2011   return SDValue(N, 0);
2012 }
2013 
2014 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2015                                  MCSymbol *Label) {
2016   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2017 }
2018 
2019 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2020                                    SDValue Root, MCSymbol *Label) {
2021   FoldingSetNodeID ID;
2022   SDValue Ops[] = { Root };
2023   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2024   ID.AddPointer(Label);
2025   void *IP = nullptr;
2026   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2027     return SDValue(E, 0);
2028 
2029   auto *N =
2030       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2031   createOperands(N, Ops);
2032 
2033   CSEMap.InsertNode(N, IP);
2034   InsertNode(N);
2035   return SDValue(N, 0);
2036 }
2037 
2038 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2039                                       int64_t Offset, bool isTarget,
2040                                       unsigned TargetFlags) {
2041   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2042 
2043   FoldingSetNodeID ID;
2044   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2045   ID.AddPointer(BA);
2046   ID.AddInteger(Offset);
2047   ID.AddInteger(TargetFlags);
2048   void *IP = nullptr;
2049   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2050     return SDValue(E, 0);
2051 
2052   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2053   CSEMap.InsertNode(N, IP);
2054   InsertNode(N);
2055   return SDValue(N, 0);
2056 }
2057 
2058 SDValue SelectionDAG::getSrcValue(const Value *V) {
2059   FoldingSetNodeID ID;
2060   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2061   ID.AddPointer(V);
2062 
2063   void *IP = nullptr;
2064   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2065     return SDValue(E, 0);
2066 
2067   auto *N = newSDNode<SrcValueSDNode>(V);
2068   CSEMap.InsertNode(N, IP);
2069   InsertNode(N);
2070   return SDValue(N, 0);
2071 }
2072 
2073 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2074   FoldingSetNodeID ID;
2075   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2076   ID.AddPointer(MD);
2077 
2078   void *IP = nullptr;
2079   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2080     return SDValue(E, 0);
2081 
2082   auto *N = newSDNode<MDNodeSDNode>(MD);
2083   CSEMap.InsertNode(N, IP);
2084   InsertNode(N);
2085   return SDValue(N, 0);
2086 }
2087 
2088 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2089   if (VT == V.getValueType())
2090     return V;
2091 
2092   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2093 }
2094 
2095 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2096                                        unsigned SrcAS, unsigned DestAS) {
2097   SDValue Ops[] = {Ptr};
2098   FoldingSetNodeID ID;
2099   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2100   ID.AddInteger(SrcAS);
2101   ID.AddInteger(DestAS);
2102 
2103   void *IP = nullptr;
2104   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2105     return SDValue(E, 0);
2106 
2107   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2108                                            VT, SrcAS, DestAS);
2109   createOperands(N, Ops);
2110 
2111   CSEMap.InsertNode(N, IP);
2112   InsertNode(N);
2113   return SDValue(N, 0);
2114 }
2115 
2116 SDValue SelectionDAG::getFreeze(SDValue V) {
2117   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2118 }
2119 
2120 /// getShiftAmountOperand - Return the specified value casted to
2121 /// the target's desired shift amount type.
2122 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2123   EVT OpTy = Op.getValueType();
2124   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2125   if (OpTy == ShTy || OpTy.isVector()) return Op;
2126 
2127   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2128 }
2129 
2130 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2131   SDLoc dl(Node);
2132   const TargetLowering &TLI = getTargetLoweringInfo();
2133   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2134   EVT VT = Node->getValueType(0);
2135   SDValue Tmp1 = Node->getOperand(0);
2136   SDValue Tmp2 = Node->getOperand(1);
2137   const MaybeAlign MA(Node->getConstantOperandVal(3));
2138 
2139   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2140                                Tmp2, MachinePointerInfo(V));
2141   SDValue VAList = VAListLoad;
2142 
2143   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2144     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2145                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2146 
2147     VAList =
2148         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2149                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2150   }
2151 
2152   // Increment the pointer, VAList, to the next vaarg
2153   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2154                  getConstant(getDataLayout().getTypeAllocSize(
2155                                                VT.getTypeForEVT(*getContext())),
2156                              dl, VAList.getValueType()));
2157   // Store the incremented VAList to the legalized pointer
2158   Tmp1 =
2159       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2160   // Load the actual argument out of the pointer VAList
2161   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2162 }
2163 
2164 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2165   SDLoc dl(Node);
2166   const TargetLowering &TLI = getTargetLoweringInfo();
2167   // This defaults to loading a pointer from the input and storing it to the
2168   // output, returning the chain.
2169   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2170   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2171   SDValue Tmp1 =
2172       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2173               Node->getOperand(2), MachinePointerInfo(VS));
2174   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2175                   MachinePointerInfo(VD));
2176 }
2177 
2178 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2179   const DataLayout &DL = getDataLayout();
2180   Type *Ty = VT.getTypeForEVT(*getContext());
2181   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2182 
2183   if (TLI->isTypeLegal(VT) || !VT.isVector())
2184     return RedAlign;
2185 
2186   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2187   const Align StackAlign = TFI->getStackAlign();
2188 
2189   // See if we can choose a smaller ABI alignment in cases where it's an
2190   // illegal vector type that will get broken down.
2191   if (RedAlign > StackAlign) {
2192     EVT IntermediateVT;
2193     MVT RegisterVT;
2194     unsigned NumIntermediates;
2195     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2196                                 NumIntermediates, RegisterVT);
2197     Ty = IntermediateVT.getTypeForEVT(*getContext());
2198     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2199     if (RedAlign2 < RedAlign)
2200       RedAlign = RedAlign2;
2201   }
2202 
2203   return RedAlign;
2204 }
2205 
2206 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2207   MachineFrameInfo &MFI = MF->getFrameInfo();
2208   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2209   int StackID = 0;
2210   if (Bytes.isScalable())
2211     StackID = TFI->getStackIDForScalableVectors();
2212   // The stack id gives an indication of whether the object is scalable or
2213   // not, so it's safe to pass in the minimum size here.
2214   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2215                                        false, nullptr, StackID);
2216   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2217 }
2218 
2219 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2220   Type *Ty = VT.getTypeForEVT(*getContext());
2221   Align StackAlign =
2222       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2223   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2224 }
2225 
2226 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2227   TypeSize VT1Size = VT1.getStoreSize();
2228   TypeSize VT2Size = VT2.getStoreSize();
2229   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2230          "Don't know how to choose the maximum size when creating a stack "
2231          "temporary");
2232   TypeSize Bytes =
2233       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2234 
2235   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2236   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2237   const DataLayout &DL = getDataLayout();
2238   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2239   return CreateStackTemporary(Bytes, Align);
2240 }
2241 
2242 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2243                                 ISD::CondCode Cond, const SDLoc &dl) {
2244   EVT OpVT = N1.getValueType();
2245 
2246   // These setcc operations always fold.
2247   switch (Cond) {
2248   default: break;
2249   case ISD::SETFALSE:
2250   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2251   case ISD::SETTRUE:
2252   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2253 
2254   case ISD::SETOEQ:
2255   case ISD::SETOGT:
2256   case ISD::SETOGE:
2257   case ISD::SETOLT:
2258   case ISD::SETOLE:
2259   case ISD::SETONE:
2260   case ISD::SETO:
2261   case ISD::SETUO:
2262   case ISD::SETUEQ:
2263   case ISD::SETUNE:
2264     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2265     break;
2266   }
2267 
2268   if (OpVT.isInteger()) {
2269     // For EQ and NE, we can always pick a value for the undef to make the
2270     // predicate pass or fail, so we can return undef.
2271     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2272     // icmp eq/ne X, undef -> undef.
2273     if ((N1.isUndef() || N2.isUndef()) &&
2274         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2275       return getUNDEF(VT);
2276 
2277     // If both operands are undef, we can return undef for int comparison.
2278     // icmp undef, undef -> undef.
2279     if (N1.isUndef() && N2.isUndef())
2280       return getUNDEF(VT);
2281 
2282     // icmp X, X -> true/false
2283     // icmp X, undef -> true/false because undef could be X.
2284     if (N1 == N2)
2285       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2286   }
2287 
2288   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2289     const APInt &C2 = N2C->getAPIntValue();
2290     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2291       const APInt &C1 = N1C->getAPIntValue();
2292 
2293       switch (Cond) {
2294       default: llvm_unreachable("Unknown integer setcc!");
2295       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2296       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2297       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2298       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2299       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2300       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2301       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2302       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2303       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2304       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2305       }
2306     }
2307   }
2308 
2309   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2310   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2311 
2312   if (N1CFP && N2CFP) {
2313     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2314     switch (Cond) {
2315     default: break;
2316     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2317                         return getUNDEF(VT);
2318                       LLVM_FALLTHROUGH;
2319     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2320                                              OpVT);
2321     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2322                         return getUNDEF(VT);
2323                       LLVM_FALLTHROUGH;
2324     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2325                                              R==APFloat::cmpLessThan, dl, VT,
2326                                              OpVT);
2327     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2328                         return getUNDEF(VT);
2329                       LLVM_FALLTHROUGH;
2330     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2331                                              OpVT);
2332     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2333                         return getUNDEF(VT);
2334                       LLVM_FALLTHROUGH;
2335     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2336                                              VT, OpVT);
2337     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2338                         return getUNDEF(VT);
2339                       LLVM_FALLTHROUGH;
2340     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2341                                              R==APFloat::cmpEqual, dl, VT,
2342                                              OpVT);
2343     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2344                         return getUNDEF(VT);
2345                       LLVM_FALLTHROUGH;
2346     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2347                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2348     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2349                                              OpVT);
2350     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2351                                              OpVT);
2352     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2353                                              R==APFloat::cmpEqual, dl, VT,
2354                                              OpVT);
2355     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2356                                              OpVT);
2357     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2358                                              R==APFloat::cmpLessThan, dl, VT,
2359                                              OpVT);
2360     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2361                                              R==APFloat::cmpUnordered, dl, VT,
2362                                              OpVT);
2363     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2364                                              VT, OpVT);
2365     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2366                                              OpVT);
2367     }
2368   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2369     // Ensure that the constant occurs on the RHS.
2370     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2371     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2372       return SDValue();
2373     return getSetCC(dl, VT, N2, N1, SwappedCond);
2374   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2375              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2376     // If an operand is known to be a nan (or undef that could be a nan), we can
2377     // fold it.
2378     // Choosing NaN for the undef will always make unordered comparison succeed
2379     // and ordered comparison fails.
2380     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2381     switch (ISD::getUnorderedFlavor(Cond)) {
2382     default:
2383       llvm_unreachable("Unknown flavor!");
2384     case 0: // Known false.
2385       return getBoolConstant(false, dl, VT, OpVT);
2386     case 1: // Known true.
2387       return getBoolConstant(true, dl, VT, OpVT);
2388     case 2: // Undefined.
2389       return getUNDEF(VT);
2390     }
2391   }
2392 
2393   // Could not fold it.
2394   return SDValue();
2395 }
2396 
2397 /// See if the specified operand can be simplified with the knowledge that only
2398 /// the bits specified by DemandedBits are used.
2399 /// TODO: really we should be making this into the DAG equivalent of
2400 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2401 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2402   EVT VT = V.getValueType();
2403 
2404   if (VT.isScalableVector())
2405     return SDValue();
2406 
2407   APInt DemandedElts = VT.isVector()
2408                            ? APInt::getAllOnes(VT.getVectorNumElements())
2409                            : APInt(1, 1);
2410   return GetDemandedBits(V, DemandedBits, DemandedElts);
2411 }
2412 
2413 /// See if the specified operand can be simplified with the knowledge that only
2414 /// the bits specified by DemandedBits are used in the elements specified by
2415 /// DemandedElts.
2416 /// TODO: really we should be making this into the DAG equivalent of
2417 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2418 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2419                                       const APInt &DemandedElts) {
2420   switch (V.getOpcode()) {
2421   default:
2422     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2423                                                 *this, 0);
2424   case ISD::Constant: {
2425     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2426     APInt NewVal = CVal & DemandedBits;
2427     if (NewVal != CVal)
2428       return getConstant(NewVal, SDLoc(V), V.getValueType());
2429     break;
2430   }
2431   case ISD::SRL:
2432     // Only look at single-use SRLs.
2433     if (!V.getNode()->hasOneUse())
2434       break;
2435     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2436       // See if we can recursively simplify the LHS.
2437       unsigned Amt = RHSC->getZExtValue();
2438 
2439       // Watch out for shift count overflow though.
2440       if (Amt >= DemandedBits.getBitWidth())
2441         break;
2442       APInt SrcDemandedBits = DemandedBits << Amt;
2443       if (SDValue SimplifyLHS =
2444               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2445         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2446                        V.getOperand(1));
2447     }
2448     break;
2449   }
2450   return SDValue();
2451 }
2452 
2453 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2454 /// use this predicate to simplify operations downstream.
2455 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2456   unsigned BitWidth = Op.getScalarValueSizeInBits();
2457   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2458 }
2459 
2460 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2461 /// this predicate to simplify operations downstream.  Mask is known to be zero
2462 /// for bits that V cannot have.
2463 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2464                                      unsigned Depth) const {
2465   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2466 }
2467 
2468 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2469 /// DemandedElts.  We use this predicate to simplify operations downstream.
2470 /// Mask is known to be zero for bits that V cannot have.
2471 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2472                                      const APInt &DemandedElts,
2473                                      unsigned Depth) const {
2474   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2475 }
2476 
2477 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2478 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2479                                         unsigned Depth) const {
2480   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2481 }
2482 
2483 /// isSplatValue - Return true if the vector V has the same value
2484 /// across all DemandedElts. For scalable vectors it does not make
2485 /// sense to specify which elements are demanded or undefined, therefore
2486 /// they are simply ignored.
2487 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2488                                 APInt &UndefElts, unsigned Depth) {
2489   EVT VT = V.getValueType();
2490   assert(VT.isVector() && "Vector type expected");
2491 
2492   if (!VT.isScalableVector() && !DemandedElts)
2493     return false; // No demanded elts, better to assume we don't know anything.
2494 
2495   if (Depth >= MaxRecursionDepth)
2496     return false; // Limit search depth.
2497 
2498   // Deal with some common cases here that work for both fixed and scalable
2499   // vector types.
2500   switch (V.getOpcode()) {
2501   case ISD::SPLAT_VECTOR:
2502     UndefElts = V.getOperand(0).isUndef()
2503                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2504                     : APInt(DemandedElts.getBitWidth(), 0);
2505     return true;
2506   case ISD::ADD:
2507   case ISD::SUB:
2508   case ISD::AND:
2509   case ISD::XOR:
2510   case ISD::OR: {
2511     APInt UndefLHS, UndefRHS;
2512     SDValue LHS = V.getOperand(0);
2513     SDValue RHS = V.getOperand(1);
2514     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2515         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2516       UndefElts = UndefLHS | UndefRHS;
2517       return true;
2518     }
2519     return false;
2520   }
2521   case ISD::ABS:
2522   case ISD::TRUNCATE:
2523   case ISD::SIGN_EXTEND:
2524   case ISD::ZERO_EXTEND:
2525     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2526   }
2527 
2528   // We don't support other cases than those above for scalable vectors at
2529   // the moment.
2530   if (VT.isScalableVector())
2531     return false;
2532 
2533   unsigned NumElts = VT.getVectorNumElements();
2534   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2535   UndefElts = APInt::getZero(NumElts);
2536 
2537   switch (V.getOpcode()) {
2538   case ISD::BUILD_VECTOR: {
2539     SDValue Scl;
2540     for (unsigned i = 0; i != NumElts; ++i) {
2541       SDValue Op = V.getOperand(i);
2542       if (Op.isUndef()) {
2543         UndefElts.setBit(i);
2544         continue;
2545       }
2546       if (!DemandedElts[i])
2547         continue;
2548       if (Scl && Scl != Op)
2549         return false;
2550       Scl = Op;
2551     }
2552     return true;
2553   }
2554   case ISD::VECTOR_SHUFFLE: {
2555     // Check if this is a shuffle node doing a splat.
2556     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2557     int SplatIndex = -1;
2558     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2559     for (int i = 0; i != (int)NumElts; ++i) {
2560       int M = Mask[i];
2561       if (M < 0) {
2562         UndefElts.setBit(i);
2563         continue;
2564       }
2565       if (!DemandedElts[i])
2566         continue;
2567       if (0 <= SplatIndex && SplatIndex != M)
2568         return false;
2569       SplatIndex = M;
2570     }
2571     return true;
2572   }
2573   case ISD::EXTRACT_SUBVECTOR: {
2574     // Offset the demanded elts by the subvector index.
2575     SDValue Src = V.getOperand(0);
2576     // We don't support scalable vectors at the moment.
2577     if (Src.getValueType().isScalableVector())
2578       return false;
2579     uint64_t Idx = V.getConstantOperandVal(1);
2580     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2581     APInt UndefSrcElts;
2582     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2583     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2584       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2585       return true;
2586     }
2587     break;
2588   }
2589   }
2590 
2591   return false;
2592 }
2593 
2594 /// Helper wrapper to main isSplatValue function.
2595 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2596   EVT VT = V.getValueType();
2597   assert(VT.isVector() && "Vector type expected");
2598 
2599   APInt UndefElts;
2600   APInt DemandedElts;
2601 
2602   // For now we don't support this with scalable vectors.
2603   if (!VT.isScalableVector())
2604     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2605   return isSplatValue(V, DemandedElts, UndefElts) &&
2606          (AllowUndefs || !UndefElts);
2607 }
2608 
2609 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2610   V = peekThroughExtractSubvectors(V);
2611 
2612   EVT VT = V.getValueType();
2613   unsigned Opcode = V.getOpcode();
2614   switch (Opcode) {
2615   default: {
2616     APInt UndefElts;
2617     APInt DemandedElts;
2618 
2619     if (!VT.isScalableVector())
2620       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2621 
2622     if (isSplatValue(V, DemandedElts, UndefElts)) {
2623       if (VT.isScalableVector()) {
2624         // DemandedElts and UndefElts are ignored for scalable vectors, since
2625         // the only supported cases are SPLAT_VECTOR nodes.
2626         SplatIdx = 0;
2627       } else {
2628         // Handle case where all demanded elements are UNDEF.
2629         if (DemandedElts.isSubsetOf(UndefElts)) {
2630           SplatIdx = 0;
2631           return getUNDEF(VT);
2632         }
2633         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2634       }
2635       return V;
2636     }
2637     break;
2638   }
2639   case ISD::SPLAT_VECTOR:
2640     SplatIdx = 0;
2641     return V;
2642   case ISD::VECTOR_SHUFFLE: {
2643     if (VT.isScalableVector())
2644       return SDValue();
2645 
2646     // Check if this is a shuffle node doing a splat.
2647     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2648     // getTargetVShiftNode currently struggles without the splat source.
2649     auto *SVN = cast<ShuffleVectorSDNode>(V);
2650     if (!SVN->isSplat())
2651       break;
2652     int Idx = SVN->getSplatIndex();
2653     int NumElts = V.getValueType().getVectorNumElements();
2654     SplatIdx = Idx % NumElts;
2655     return V.getOperand(Idx / NumElts);
2656   }
2657   }
2658 
2659   return SDValue();
2660 }
2661 
2662 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2663   int SplatIdx;
2664   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2665     EVT SVT = SrcVector.getValueType().getScalarType();
2666     EVT LegalSVT = SVT;
2667     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2668       if (!SVT.isInteger())
2669         return SDValue();
2670       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2671       if (LegalSVT.bitsLT(SVT))
2672         return SDValue();
2673     }
2674     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2675                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2676   }
2677   return SDValue();
2678 }
2679 
2680 const APInt *
2681 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2682                                           const APInt &DemandedElts) const {
2683   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2684           V.getOpcode() == ISD::SRA) &&
2685          "Unknown shift node");
2686   unsigned BitWidth = V.getScalarValueSizeInBits();
2687   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2688     // Shifting more than the bitwidth is not valid.
2689     const APInt &ShAmt = SA->getAPIntValue();
2690     if (ShAmt.ult(BitWidth))
2691       return &ShAmt;
2692   }
2693   return nullptr;
2694 }
2695 
2696 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2697     SDValue V, const APInt &DemandedElts) const {
2698   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2699           V.getOpcode() == ISD::SRA) &&
2700          "Unknown shift node");
2701   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2702     return ValidAmt;
2703   unsigned BitWidth = V.getScalarValueSizeInBits();
2704   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2705   if (!BV)
2706     return nullptr;
2707   const APInt *MinShAmt = nullptr;
2708   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2709     if (!DemandedElts[i])
2710       continue;
2711     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2712     if (!SA)
2713       return nullptr;
2714     // Shifting more than the bitwidth is not valid.
2715     const APInt &ShAmt = SA->getAPIntValue();
2716     if (ShAmt.uge(BitWidth))
2717       return nullptr;
2718     if (MinShAmt && MinShAmt->ule(ShAmt))
2719       continue;
2720     MinShAmt = &ShAmt;
2721   }
2722   return MinShAmt;
2723 }
2724 
2725 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2726     SDValue V, const APInt &DemandedElts) const {
2727   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2728           V.getOpcode() == ISD::SRA) &&
2729          "Unknown shift node");
2730   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2731     return ValidAmt;
2732   unsigned BitWidth = V.getScalarValueSizeInBits();
2733   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2734   if (!BV)
2735     return nullptr;
2736   const APInt *MaxShAmt = nullptr;
2737   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2738     if (!DemandedElts[i])
2739       continue;
2740     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2741     if (!SA)
2742       return nullptr;
2743     // Shifting more than the bitwidth is not valid.
2744     const APInt &ShAmt = SA->getAPIntValue();
2745     if (ShAmt.uge(BitWidth))
2746       return nullptr;
2747     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2748       continue;
2749     MaxShAmt = &ShAmt;
2750   }
2751   return MaxShAmt;
2752 }
2753 
2754 /// Determine which bits of Op are known to be either zero or one and return
2755 /// them in Known. For vectors, the known bits are those that are shared by
2756 /// every vector element.
2757 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2758   EVT VT = Op.getValueType();
2759 
2760   // TOOD: Until we have a plan for how to represent demanded elements for
2761   // scalable vectors, we can just bail out for now.
2762   if (Op.getValueType().isScalableVector()) {
2763     unsigned BitWidth = Op.getScalarValueSizeInBits();
2764     return KnownBits(BitWidth);
2765   }
2766 
2767   APInt DemandedElts = VT.isVector()
2768                            ? APInt::getAllOnes(VT.getVectorNumElements())
2769                            : APInt(1, 1);
2770   return computeKnownBits(Op, DemandedElts, Depth);
2771 }
2772 
2773 /// Determine which bits of Op are known to be either zero or one and return
2774 /// them in Known. The DemandedElts argument allows us to only collect the known
2775 /// bits that are shared by the requested vector elements.
2776 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2777                                          unsigned Depth) const {
2778   unsigned BitWidth = Op.getScalarValueSizeInBits();
2779 
2780   KnownBits Known(BitWidth);   // Don't know anything.
2781 
2782   // TOOD: Until we have a plan for how to represent demanded elements for
2783   // scalable vectors, we can just bail out for now.
2784   if (Op.getValueType().isScalableVector())
2785     return Known;
2786 
2787   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2788     // We know all of the bits for a constant!
2789     return KnownBits::makeConstant(C->getAPIntValue());
2790   }
2791   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2792     // We know all of the bits for a constant fp!
2793     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2794   }
2795 
2796   if (Depth >= MaxRecursionDepth)
2797     return Known;  // Limit search depth.
2798 
2799   KnownBits Known2;
2800   unsigned NumElts = DemandedElts.getBitWidth();
2801   assert((!Op.getValueType().isVector() ||
2802           NumElts == Op.getValueType().getVectorNumElements()) &&
2803          "Unexpected vector size");
2804 
2805   if (!DemandedElts)
2806     return Known;  // No demanded elts, better to assume we don't know anything.
2807 
2808   unsigned Opcode = Op.getOpcode();
2809   switch (Opcode) {
2810   case ISD::BUILD_VECTOR:
2811     // Collect the known bits that are shared by every demanded vector element.
2812     Known.Zero.setAllBits(); Known.One.setAllBits();
2813     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2814       if (!DemandedElts[i])
2815         continue;
2816 
2817       SDValue SrcOp = Op.getOperand(i);
2818       Known2 = computeKnownBits(SrcOp, Depth + 1);
2819 
2820       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2821       if (SrcOp.getValueSizeInBits() != BitWidth) {
2822         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2823                "Expected BUILD_VECTOR implicit truncation");
2824         Known2 = Known2.trunc(BitWidth);
2825       }
2826 
2827       // Known bits are the values that are shared by every demanded element.
2828       Known = KnownBits::commonBits(Known, Known2);
2829 
2830       // If we don't know any bits, early out.
2831       if (Known.isUnknown())
2832         break;
2833     }
2834     break;
2835   case ISD::VECTOR_SHUFFLE: {
2836     // Collect the known bits that are shared by every vector element referenced
2837     // by the shuffle.
2838     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2839     Known.Zero.setAllBits(); Known.One.setAllBits();
2840     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2841     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2842     for (unsigned i = 0; i != NumElts; ++i) {
2843       if (!DemandedElts[i])
2844         continue;
2845 
2846       int M = SVN->getMaskElt(i);
2847       if (M < 0) {
2848         // For UNDEF elements, we don't know anything about the common state of
2849         // the shuffle result.
2850         Known.resetAll();
2851         DemandedLHS.clearAllBits();
2852         DemandedRHS.clearAllBits();
2853         break;
2854       }
2855 
2856       if ((unsigned)M < NumElts)
2857         DemandedLHS.setBit((unsigned)M % NumElts);
2858       else
2859         DemandedRHS.setBit((unsigned)M % NumElts);
2860     }
2861     // Known bits are the values that are shared by every demanded element.
2862     if (!!DemandedLHS) {
2863       SDValue LHS = Op.getOperand(0);
2864       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2865       Known = KnownBits::commonBits(Known, Known2);
2866     }
2867     // If we don't know any bits, early out.
2868     if (Known.isUnknown())
2869       break;
2870     if (!!DemandedRHS) {
2871       SDValue RHS = Op.getOperand(1);
2872       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2873       Known = KnownBits::commonBits(Known, Known2);
2874     }
2875     break;
2876   }
2877   case ISD::CONCAT_VECTORS: {
2878     // Split DemandedElts and test each of the demanded subvectors.
2879     Known.Zero.setAllBits(); Known.One.setAllBits();
2880     EVT SubVectorVT = Op.getOperand(0).getValueType();
2881     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2882     unsigned NumSubVectors = Op.getNumOperands();
2883     for (unsigned i = 0; i != NumSubVectors; ++i) {
2884       APInt DemandedSub =
2885           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2886       if (!!DemandedSub) {
2887         SDValue Sub = Op.getOperand(i);
2888         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2889         Known = KnownBits::commonBits(Known, Known2);
2890       }
2891       // If we don't know any bits, early out.
2892       if (Known.isUnknown())
2893         break;
2894     }
2895     break;
2896   }
2897   case ISD::INSERT_SUBVECTOR: {
2898     // Demand any elements from the subvector and the remainder from the src its
2899     // inserted into.
2900     SDValue Src = Op.getOperand(0);
2901     SDValue Sub = Op.getOperand(1);
2902     uint64_t Idx = Op.getConstantOperandVal(2);
2903     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2904     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2905     APInt DemandedSrcElts = DemandedElts;
2906     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2907 
2908     Known.One.setAllBits();
2909     Known.Zero.setAllBits();
2910     if (!!DemandedSubElts) {
2911       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2912       if (Known.isUnknown())
2913         break; // early-out.
2914     }
2915     if (!!DemandedSrcElts) {
2916       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2917       Known = KnownBits::commonBits(Known, Known2);
2918     }
2919     break;
2920   }
2921   case ISD::EXTRACT_SUBVECTOR: {
2922     // Offset the demanded elts by the subvector index.
2923     SDValue Src = Op.getOperand(0);
2924     // Bail until we can represent demanded elements for scalable vectors.
2925     if (Src.getValueType().isScalableVector())
2926       break;
2927     uint64_t Idx = Op.getConstantOperandVal(1);
2928     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2929     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2930     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2931     break;
2932   }
2933   case ISD::SCALAR_TO_VECTOR: {
2934     // We know about scalar_to_vector as much as we know about it source,
2935     // which becomes the first element of otherwise unknown vector.
2936     if (DemandedElts != 1)
2937       break;
2938 
2939     SDValue N0 = Op.getOperand(0);
2940     Known = computeKnownBits(N0, Depth + 1);
2941     if (N0.getValueSizeInBits() != BitWidth)
2942       Known = Known.trunc(BitWidth);
2943 
2944     break;
2945   }
2946   case ISD::BITCAST: {
2947     SDValue N0 = Op.getOperand(0);
2948     EVT SubVT = N0.getValueType();
2949     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2950 
2951     // Ignore bitcasts from unsupported types.
2952     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2953       break;
2954 
2955     // Fast handling of 'identity' bitcasts.
2956     if (BitWidth == SubBitWidth) {
2957       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2958       break;
2959     }
2960 
2961     bool IsLE = getDataLayout().isLittleEndian();
2962 
2963     // Bitcast 'small element' vector to 'large element' scalar/vector.
2964     if ((BitWidth % SubBitWidth) == 0) {
2965       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2966 
2967       // Collect known bits for the (larger) output by collecting the known
2968       // bits from each set of sub elements and shift these into place.
2969       // We need to separately call computeKnownBits for each set of
2970       // sub elements as the knownbits for each is likely to be different.
2971       unsigned SubScale = BitWidth / SubBitWidth;
2972       APInt SubDemandedElts(NumElts * SubScale, 0);
2973       for (unsigned i = 0; i != NumElts; ++i)
2974         if (DemandedElts[i])
2975           SubDemandedElts.setBit(i * SubScale);
2976 
2977       for (unsigned i = 0; i != SubScale; ++i) {
2978         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2979                          Depth + 1);
2980         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2981         Known.insertBits(Known2, SubBitWidth * Shifts);
2982       }
2983     }
2984 
2985     // Bitcast 'large element' scalar/vector to 'small element' vector.
2986     if ((SubBitWidth % BitWidth) == 0) {
2987       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2988 
2989       // Collect known bits for the (smaller) output by collecting the known
2990       // bits from the overlapping larger input elements and extracting the
2991       // sub sections we actually care about.
2992       unsigned SubScale = SubBitWidth / BitWidth;
2993       APInt SubDemandedElts =
2994           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
2995       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2996 
2997       Known.Zero.setAllBits(); Known.One.setAllBits();
2998       for (unsigned i = 0; i != NumElts; ++i)
2999         if (DemandedElts[i]) {
3000           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3001           unsigned Offset = (Shifts % SubScale) * BitWidth;
3002           Known = KnownBits::commonBits(Known,
3003                                         Known2.extractBits(BitWidth, Offset));
3004           // If we don't know any bits, early out.
3005           if (Known.isUnknown())
3006             break;
3007         }
3008     }
3009     break;
3010   }
3011   case ISD::AND:
3012     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3013     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3014 
3015     Known &= Known2;
3016     break;
3017   case ISD::OR:
3018     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3019     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3020 
3021     Known |= Known2;
3022     break;
3023   case ISD::XOR:
3024     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3025     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3026 
3027     Known ^= Known2;
3028     break;
3029   case ISD::MUL: {
3030     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3031     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3032     Known = KnownBits::mul(Known, Known2);
3033     break;
3034   }
3035   case ISD::MULHU: {
3036     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3037     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3038     Known = KnownBits::mulhu(Known, Known2);
3039     break;
3040   }
3041   case ISD::MULHS: {
3042     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3043     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3044     Known = KnownBits::mulhs(Known, Known2);
3045     break;
3046   }
3047   case ISD::UMUL_LOHI: {
3048     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3049     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3050     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3051     if (Op.getResNo() == 0)
3052       Known = KnownBits::mul(Known, Known2);
3053     else
3054       Known = KnownBits::mulhu(Known, Known2);
3055     break;
3056   }
3057   case ISD::SMUL_LOHI: {
3058     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3059     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3060     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3061     if (Op.getResNo() == 0)
3062       Known = KnownBits::mul(Known, Known2);
3063     else
3064       Known = KnownBits::mulhs(Known, Known2);
3065     break;
3066   }
3067   case ISD::UDIV: {
3068     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3069     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3070     Known = KnownBits::udiv(Known, Known2);
3071     break;
3072   }
3073   case ISD::SELECT:
3074   case ISD::VSELECT:
3075     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3076     // If we don't know any bits, early out.
3077     if (Known.isUnknown())
3078       break;
3079     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3080 
3081     // Only known if known in both the LHS and RHS.
3082     Known = KnownBits::commonBits(Known, Known2);
3083     break;
3084   case ISD::SELECT_CC:
3085     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3086     // If we don't know any bits, early out.
3087     if (Known.isUnknown())
3088       break;
3089     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3090 
3091     // Only known if known in both the LHS and RHS.
3092     Known = KnownBits::commonBits(Known, Known2);
3093     break;
3094   case ISD::SMULO:
3095   case ISD::UMULO:
3096     if (Op.getResNo() != 1)
3097       break;
3098     // The boolean result conforms to getBooleanContents.
3099     // If we know the result of a setcc has the top bits zero, use this info.
3100     // We know that we have an integer-based boolean since these operations
3101     // are only available for integer.
3102     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3103             TargetLowering::ZeroOrOneBooleanContent &&
3104         BitWidth > 1)
3105       Known.Zero.setBitsFrom(1);
3106     break;
3107   case ISD::SETCC:
3108   case ISD::STRICT_FSETCC:
3109   case ISD::STRICT_FSETCCS: {
3110     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3111     // If we know the result of a setcc has the top bits zero, use this info.
3112     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3113             TargetLowering::ZeroOrOneBooleanContent &&
3114         BitWidth > 1)
3115       Known.Zero.setBitsFrom(1);
3116     break;
3117   }
3118   case ISD::SHL:
3119     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3120     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3121     Known = KnownBits::shl(Known, Known2);
3122 
3123     // Minimum shift low bits are known zero.
3124     if (const APInt *ShMinAmt =
3125             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3126       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3127     break;
3128   case ISD::SRL:
3129     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3130     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3131     Known = KnownBits::lshr(Known, Known2);
3132 
3133     // Minimum shift high bits are known zero.
3134     if (const APInt *ShMinAmt =
3135             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3136       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3137     break;
3138   case ISD::SRA:
3139     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3140     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3141     Known = KnownBits::ashr(Known, Known2);
3142     // TODO: Add minimum shift high known sign bits.
3143     break;
3144   case ISD::FSHL:
3145   case ISD::FSHR:
3146     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3147       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3148 
3149       // For fshl, 0-shift returns the 1st arg.
3150       // For fshr, 0-shift returns the 2nd arg.
3151       if (Amt == 0) {
3152         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3153                                  DemandedElts, Depth + 1);
3154         break;
3155       }
3156 
3157       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3158       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3159       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3160       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3161       if (Opcode == ISD::FSHL) {
3162         Known.One <<= Amt;
3163         Known.Zero <<= Amt;
3164         Known2.One.lshrInPlace(BitWidth - Amt);
3165         Known2.Zero.lshrInPlace(BitWidth - Amt);
3166       } else {
3167         Known.One <<= BitWidth - Amt;
3168         Known.Zero <<= BitWidth - Amt;
3169         Known2.One.lshrInPlace(Amt);
3170         Known2.Zero.lshrInPlace(Amt);
3171       }
3172       Known.One |= Known2.One;
3173       Known.Zero |= Known2.Zero;
3174     }
3175     break;
3176   case ISD::SIGN_EXTEND_INREG: {
3177     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3178     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3179     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3180     break;
3181   }
3182   case ISD::CTTZ:
3183   case ISD::CTTZ_ZERO_UNDEF: {
3184     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3185     // If we have a known 1, its position is our upper bound.
3186     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3187     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3188     Known.Zero.setBitsFrom(LowBits);
3189     break;
3190   }
3191   case ISD::CTLZ:
3192   case ISD::CTLZ_ZERO_UNDEF: {
3193     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3194     // If we have a known 1, its position is our upper bound.
3195     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3196     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3197     Known.Zero.setBitsFrom(LowBits);
3198     break;
3199   }
3200   case ISD::CTPOP: {
3201     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3202     // If we know some of the bits are zero, they can't be one.
3203     unsigned PossibleOnes = Known2.countMaxPopulation();
3204     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3205     break;
3206   }
3207   case ISD::PARITY: {
3208     // Parity returns 0 everywhere but the LSB.
3209     Known.Zero.setBitsFrom(1);
3210     break;
3211   }
3212   case ISD::LOAD: {
3213     LoadSDNode *LD = cast<LoadSDNode>(Op);
3214     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3215     if (ISD::isNON_EXTLoad(LD) && Cst) {
3216       // Determine any common known bits from the loaded constant pool value.
3217       Type *CstTy = Cst->getType();
3218       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3219         // If its a vector splat, then we can (quickly) reuse the scalar path.
3220         // NOTE: We assume all elements match and none are UNDEF.
3221         if (CstTy->isVectorTy()) {
3222           if (const Constant *Splat = Cst->getSplatValue()) {
3223             Cst = Splat;
3224             CstTy = Cst->getType();
3225           }
3226         }
3227         // TODO - do we need to handle different bitwidths?
3228         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3229           // Iterate across all vector elements finding common known bits.
3230           Known.One.setAllBits();
3231           Known.Zero.setAllBits();
3232           for (unsigned i = 0; i != NumElts; ++i) {
3233             if (!DemandedElts[i])
3234               continue;
3235             if (Constant *Elt = Cst->getAggregateElement(i)) {
3236               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3237                 const APInt &Value = CInt->getValue();
3238                 Known.One &= Value;
3239                 Known.Zero &= ~Value;
3240                 continue;
3241               }
3242               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3243                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3244                 Known.One &= Value;
3245                 Known.Zero &= ~Value;
3246                 continue;
3247               }
3248             }
3249             Known.One.clearAllBits();
3250             Known.Zero.clearAllBits();
3251             break;
3252           }
3253         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3254           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3255             Known = KnownBits::makeConstant(CInt->getValue());
3256           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3257             Known =
3258                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3259           }
3260         }
3261       }
3262     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3263       // If this is a ZEXTLoad and we are looking at the loaded value.
3264       EVT VT = LD->getMemoryVT();
3265       unsigned MemBits = VT.getScalarSizeInBits();
3266       Known.Zero.setBitsFrom(MemBits);
3267     } else if (const MDNode *Ranges = LD->getRanges()) {
3268       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3269         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3270     }
3271     break;
3272   }
3273   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3274     EVT InVT = Op.getOperand(0).getValueType();
3275     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3276     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3277     Known = Known.zext(BitWidth);
3278     break;
3279   }
3280   case ISD::ZERO_EXTEND: {
3281     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3282     Known = Known.zext(BitWidth);
3283     break;
3284   }
3285   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3286     EVT InVT = Op.getOperand(0).getValueType();
3287     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3288     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3289     // If the sign bit is known to be zero or one, then sext will extend
3290     // it to the top bits, else it will just zext.
3291     Known = Known.sext(BitWidth);
3292     break;
3293   }
3294   case ISD::SIGN_EXTEND: {
3295     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3296     // If the sign bit is known to be zero or one, then sext will extend
3297     // it to the top bits, else it will just zext.
3298     Known = Known.sext(BitWidth);
3299     break;
3300   }
3301   case ISD::ANY_EXTEND_VECTOR_INREG: {
3302     EVT InVT = Op.getOperand(0).getValueType();
3303     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3304     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3305     Known = Known.anyext(BitWidth);
3306     break;
3307   }
3308   case ISD::ANY_EXTEND: {
3309     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3310     Known = Known.anyext(BitWidth);
3311     break;
3312   }
3313   case ISD::TRUNCATE: {
3314     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3315     Known = Known.trunc(BitWidth);
3316     break;
3317   }
3318   case ISD::AssertZext: {
3319     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3320     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3321     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3322     Known.Zero |= (~InMask);
3323     Known.One  &= (~Known.Zero);
3324     break;
3325   }
3326   case ISD::AssertAlign: {
3327     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3328     assert(LogOfAlign != 0);
3329     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3330     // well as clearing one bits.
3331     Known.Zero.setLowBits(LogOfAlign);
3332     Known.One.clearLowBits(LogOfAlign);
3333     break;
3334   }
3335   case ISD::FGETSIGN:
3336     // All bits are zero except the low bit.
3337     Known.Zero.setBitsFrom(1);
3338     break;
3339   case ISD::USUBO:
3340   case ISD::SSUBO:
3341     if (Op.getResNo() == 1) {
3342       // If we know the result of a setcc has the top bits zero, use this info.
3343       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3344               TargetLowering::ZeroOrOneBooleanContent &&
3345           BitWidth > 1)
3346         Known.Zero.setBitsFrom(1);
3347       break;
3348     }
3349     LLVM_FALLTHROUGH;
3350   case ISD::SUB:
3351   case ISD::SUBC: {
3352     assert(Op.getResNo() == 0 &&
3353            "We only compute knownbits for the difference here.");
3354 
3355     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3356     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3357     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3358                                         Known, Known2);
3359     break;
3360   }
3361   case ISD::UADDO:
3362   case ISD::SADDO:
3363   case ISD::ADDCARRY:
3364     if (Op.getResNo() == 1) {
3365       // If we know the result of a setcc has the top bits zero, use this info.
3366       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3367               TargetLowering::ZeroOrOneBooleanContent &&
3368           BitWidth > 1)
3369         Known.Zero.setBitsFrom(1);
3370       break;
3371     }
3372     LLVM_FALLTHROUGH;
3373   case ISD::ADD:
3374   case ISD::ADDC:
3375   case ISD::ADDE: {
3376     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3377 
3378     // With ADDE and ADDCARRY, a carry bit may be added in.
3379     KnownBits Carry(1);
3380     if (Opcode == ISD::ADDE)
3381       // Can't track carry from glue, set carry to unknown.
3382       Carry.resetAll();
3383     else if (Opcode == ISD::ADDCARRY)
3384       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3385       // the trouble (how often will we find a known carry bit). And I haven't
3386       // tested this very much yet, but something like this might work:
3387       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3388       //   Carry = Carry.zextOrTrunc(1, false);
3389       Carry.resetAll();
3390     else
3391       Carry.setAllZero();
3392 
3393     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3394     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3395     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3396     break;
3397   }
3398   case ISD::SREM: {
3399     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3400     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3401     Known = KnownBits::srem(Known, Known2);
3402     break;
3403   }
3404   case ISD::UREM: {
3405     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3406     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3407     Known = KnownBits::urem(Known, Known2);
3408     break;
3409   }
3410   case ISD::EXTRACT_ELEMENT: {
3411     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3412     const unsigned Index = Op.getConstantOperandVal(1);
3413     const unsigned EltBitWidth = Op.getValueSizeInBits();
3414 
3415     // Remove low part of known bits mask
3416     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3417     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3418 
3419     // Remove high part of known bit mask
3420     Known = Known.trunc(EltBitWidth);
3421     break;
3422   }
3423   case ISD::EXTRACT_VECTOR_ELT: {
3424     SDValue InVec = Op.getOperand(0);
3425     SDValue EltNo = Op.getOperand(1);
3426     EVT VecVT = InVec.getValueType();
3427     // computeKnownBits not yet implemented for scalable vectors.
3428     if (VecVT.isScalableVector())
3429       break;
3430     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3431     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3432 
3433     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3434     // anything about the extended bits.
3435     if (BitWidth > EltBitWidth)
3436       Known = Known.trunc(EltBitWidth);
3437 
3438     // If we know the element index, just demand that vector element, else for
3439     // an unknown element index, ignore DemandedElts and demand them all.
3440     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3441     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3442     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3443       DemandedSrcElts =
3444           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3445 
3446     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3447     if (BitWidth > EltBitWidth)
3448       Known = Known.anyext(BitWidth);
3449     break;
3450   }
3451   case ISD::INSERT_VECTOR_ELT: {
3452     // If we know the element index, split the demand between the
3453     // source vector and the inserted element, otherwise assume we need
3454     // the original demanded vector elements and the value.
3455     SDValue InVec = Op.getOperand(0);
3456     SDValue InVal = Op.getOperand(1);
3457     SDValue EltNo = Op.getOperand(2);
3458     bool DemandedVal = true;
3459     APInt DemandedVecElts = DemandedElts;
3460     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3461     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3462       unsigned EltIdx = CEltNo->getZExtValue();
3463       DemandedVal = !!DemandedElts[EltIdx];
3464       DemandedVecElts.clearBit(EltIdx);
3465     }
3466     Known.One.setAllBits();
3467     Known.Zero.setAllBits();
3468     if (DemandedVal) {
3469       Known2 = computeKnownBits(InVal, Depth + 1);
3470       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3471     }
3472     if (!!DemandedVecElts) {
3473       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3474       Known = KnownBits::commonBits(Known, Known2);
3475     }
3476     break;
3477   }
3478   case ISD::BITREVERSE: {
3479     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3480     Known = Known2.reverseBits();
3481     break;
3482   }
3483   case ISD::BSWAP: {
3484     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3485     Known = Known2.byteSwap();
3486     break;
3487   }
3488   case ISD::ABS: {
3489     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3490     Known = Known2.abs();
3491     break;
3492   }
3493   case ISD::USUBSAT: {
3494     // The result of usubsat will never be larger than the LHS.
3495     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3496     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3497     break;
3498   }
3499   case ISD::UMIN: {
3500     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3501     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3502     Known = KnownBits::umin(Known, Known2);
3503     break;
3504   }
3505   case ISD::UMAX: {
3506     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3507     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3508     Known = KnownBits::umax(Known, Known2);
3509     break;
3510   }
3511   case ISD::SMIN:
3512   case ISD::SMAX: {
3513     // If we have a clamp pattern, we know that the number of sign bits will be
3514     // the minimum of the clamp min/max range.
3515     bool IsMax = (Opcode == ISD::SMAX);
3516     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3517     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3518       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3519         CstHigh =
3520             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3521     if (CstLow && CstHigh) {
3522       if (!IsMax)
3523         std::swap(CstLow, CstHigh);
3524 
3525       const APInt &ValueLow = CstLow->getAPIntValue();
3526       const APInt &ValueHigh = CstHigh->getAPIntValue();
3527       if (ValueLow.sle(ValueHigh)) {
3528         unsigned LowSignBits = ValueLow.getNumSignBits();
3529         unsigned HighSignBits = ValueHigh.getNumSignBits();
3530         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3531         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3532           Known.One.setHighBits(MinSignBits);
3533           break;
3534         }
3535         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3536           Known.Zero.setHighBits(MinSignBits);
3537           break;
3538         }
3539       }
3540     }
3541 
3542     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3543     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3544     if (IsMax)
3545       Known = KnownBits::smax(Known, Known2);
3546     else
3547       Known = KnownBits::smin(Known, Known2);
3548     break;
3549   }
3550   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3551     if (Op.getResNo() == 1) {
3552       // The boolean result conforms to getBooleanContents.
3553       // If we know the result of a setcc has the top bits zero, use this info.
3554       // We know that we have an integer-based boolean since these operations
3555       // are only available for integer.
3556       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3557               TargetLowering::ZeroOrOneBooleanContent &&
3558           BitWidth > 1)
3559         Known.Zero.setBitsFrom(1);
3560       break;
3561     }
3562     LLVM_FALLTHROUGH;
3563   case ISD::ATOMIC_CMP_SWAP:
3564   case ISD::ATOMIC_SWAP:
3565   case ISD::ATOMIC_LOAD_ADD:
3566   case ISD::ATOMIC_LOAD_SUB:
3567   case ISD::ATOMIC_LOAD_AND:
3568   case ISD::ATOMIC_LOAD_CLR:
3569   case ISD::ATOMIC_LOAD_OR:
3570   case ISD::ATOMIC_LOAD_XOR:
3571   case ISD::ATOMIC_LOAD_NAND:
3572   case ISD::ATOMIC_LOAD_MIN:
3573   case ISD::ATOMIC_LOAD_MAX:
3574   case ISD::ATOMIC_LOAD_UMIN:
3575   case ISD::ATOMIC_LOAD_UMAX:
3576   case ISD::ATOMIC_LOAD: {
3577     unsigned MemBits =
3578         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3579     // If we are looking at the loaded value.
3580     if (Op.getResNo() == 0) {
3581       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3582         Known.Zero.setBitsFrom(MemBits);
3583     }
3584     break;
3585   }
3586   case ISD::FrameIndex:
3587   case ISD::TargetFrameIndex:
3588     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3589                                        Known, getMachineFunction());
3590     break;
3591 
3592   default:
3593     if (Opcode < ISD::BUILTIN_OP_END)
3594       break;
3595     LLVM_FALLTHROUGH;
3596   case ISD::INTRINSIC_WO_CHAIN:
3597   case ISD::INTRINSIC_W_CHAIN:
3598   case ISD::INTRINSIC_VOID:
3599     // Allow the target to implement this method for its nodes.
3600     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3601     break;
3602   }
3603 
3604   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3605   return Known;
3606 }
3607 
3608 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3609                                                              SDValue N1) const {
3610   // X + 0 never overflow
3611   if (isNullConstant(N1))
3612     return OFK_Never;
3613 
3614   KnownBits N1Known = computeKnownBits(N1);
3615   if (N1Known.Zero.getBoolValue()) {
3616     KnownBits N0Known = computeKnownBits(N0);
3617 
3618     bool overflow;
3619     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3620     if (!overflow)
3621       return OFK_Never;
3622   }
3623 
3624   // mulhi + 1 never overflow
3625   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3626       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3627     return OFK_Never;
3628 
3629   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3630     KnownBits N0Known = computeKnownBits(N0);
3631 
3632     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3633       return OFK_Never;
3634   }
3635 
3636   return OFK_Sometime;
3637 }
3638 
3639 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3640   EVT OpVT = Val.getValueType();
3641   unsigned BitWidth = OpVT.getScalarSizeInBits();
3642 
3643   // Is the constant a known power of 2?
3644   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3645     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3646 
3647   // A left-shift of a constant one will have exactly one bit set because
3648   // shifting the bit off the end is undefined.
3649   if (Val.getOpcode() == ISD::SHL) {
3650     auto *C = isConstOrConstSplat(Val.getOperand(0));
3651     if (C && C->getAPIntValue() == 1)
3652       return true;
3653   }
3654 
3655   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3656   // one bit set.
3657   if (Val.getOpcode() == ISD::SRL) {
3658     auto *C = isConstOrConstSplat(Val.getOperand(0));
3659     if (C && C->getAPIntValue().isSignMask())
3660       return true;
3661   }
3662 
3663   // Are all operands of a build vector constant powers of two?
3664   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3665     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3666           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3667             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3668           return false;
3669         }))
3670       return true;
3671 
3672   // Is the operand of a splat vector a constant power of two?
3673   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3674     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3675       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3676         return true;
3677 
3678   // More could be done here, though the above checks are enough
3679   // to handle some common cases.
3680 
3681   // Fall back to computeKnownBits to catch other known cases.
3682   KnownBits Known = computeKnownBits(Val);
3683   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3684 }
3685 
3686 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3687   EVT VT = Op.getValueType();
3688 
3689   // TODO: Assume we don't know anything for now.
3690   if (VT.isScalableVector())
3691     return 1;
3692 
3693   APInt DemandedElts = VT.isVector()
3694                            ? APInt::getAllOnes(VT.getVectorNumElements())
3695                            : APInt(1, 1);
3696   return ComputeNumSignBits(Op, DemandedElts, Depth);
3697 }
3698 
3699 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3700                                           unsigned Depth) const {
3701   EVT VT = Op.getValueType();
3702   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3703   unsigned VTBits = VT.getScalarSizeInBits();
3704   unsigned NumElts = DemandedElts.getBitWidth();
3705   unsigned Tmp, Tmp2;
3706   unsigned FirstAnswer = 1;
3707 
3708   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3709     const APInt &Val = C->getAPIntValue();
3710     return Val.getNumSignBits();
3711   }
3712 
3713   if (Depth >= MaxRecursionDepth)
3714     return 1;  // Limit search depth.
3715 
3716   if (!DemandedElts || VT.isScalableVector())
3717     return 1;  // No demanded elts, better to assume we don't know anything.
3718 
3719   unsigned Opcode = Op.getOpcode();
3720   switch (Opcode) {
3721   default: break;
3722   case ISD::AssertSext:
3723     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3724     return VTBits-Tmp+1;
3725   case ISD::AssertZext:
3726     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3727     return VTBits-Tmp;
3728 
3729   case ISD::BUILD_VECTOR:
3730     Tmp = VTBits;
3731     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3732       if (!DemandedElts[i])
3733         continue;
3734 
3735       SDValue SrcOp = Op.getOperand(i);
3736       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3737 
3738       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3739       if (SrcOp.getValueSizeInBits() != VTBits) {
3740         assert(SrcOp.getValueSizeInBits() > VTBits &&
3741                "Expected BUILD_VECTOR implicit truncation");
3742         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3743         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3744       }
3745       Tmp = std::min(Tmp, Tmp2);
3746     }
3747     return Tmp;
3748 
3749   case ISD::VECTOR_SHUFFLE: {
3750     // Collect the minimum number of sign bits that are shared by every vector
3751     // element referenced by the shuffle.
3752     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3753     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3754     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3755     for (unsigned i = 0; i != NumElts; ++i) {
3756       int M = SVN->getMaskElt(i);
3757       if (!DemandedElts[i])
3758         continue;
3759       // For UNDEF elements, we don't know anything about the common state of
3760       // the shuffle result.
3761       if (M < 0)
3762         return 1;
3763       if ((unsigned)M < NumElts)
3764         DemandedLHS.setBit((unsigned)M % NumElts);
3765       else
3766         DemandedRHS.setBit((unsigned)M % NumElts);
3767     }
3768     Tmp = std::numeric_limits<unsigned>::max();
3769     if (!!DemandedLHS)
3770       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3771     if (!!DemandedRHS) {
3772       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3773       Tmp = std::min(Tmp, Tmp2);
3774     }
3775     // If we don't know anything, early out and try computeKnownBits fall-back.
3776     if (Tmp == 1)
3777       break;
3778     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3779     return Tmp;
3780   }
3781 
3782   case ISD::BITCAST: {
3783     SDValue N0 = Op.getOperand(0);
3784     EVT SrcVT = N0.getValueType();
3785     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3786 
3787     // Ignore bitcasts from unsupported types..
3788     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3789       break;
3790 
3791     // Fast handling of 'identity' bitcasts.
3792     if (VTBits == SrcBits)
3793       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3794 
3795     bool IsLE = getDataLayout().isLittleEndian();
3796 
3797     // Bitcast 'large element' scalar/vector to 'small element' vector.
3798     if ((SrcBits % VTBits) == 0) {
3799       assert(VT.isVector() && "Expected bitcast to vector");
3800 
3801       unsigned Scale = SrcBits / VTBits;
3802       APInt SrcDemandedElts =
3803           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3804 
3805       // Fast case - sign splat can be simply split across the small elements.
3806       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3807       if (Tmp == SrcBits)
3808         return VTBits;
3809 
3810       // Slow case - determine how far the sign extends into each sub-element.
3811       Tmp2 = VTBits;
3812       for (unsigned i = 0; i != NumElts; ++i)
3813         if (DemandedElts[i]) {
3814           unsigned SubOffset = i % Scale;
3815           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3816           SubOffset = SubOffset * VTBits;
3817           if (Tmp <= SubOffset)
3818             return 1;
3819           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3820         }
3821       return Tmp2;
3822     }
3823     break;
3824   }
3825 
3826   case ISD::SIGN_EXTEND:
3827     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3828     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3829   case ISD::SIGN_EXTEND_INREG:
3830     // Max of the input and what this extends.
3831     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3832     Tmp = VTBits-Tmp+1;
3833     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3834     return std::max(Tmp, Tmp2);
3835   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3836     SDValue Src = Op.getOperand(0);
3837     EVT SrcVT = Src.getValueType();
3838     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3839     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3840     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3841   }
3842   case ISD::SRA:
3843     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3844     // SRA X, C -> adds C sign bits.
3845     if (const APInt *ShAmt =
3846             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3847       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3848     return Tmp;
3849   case ISD::SHL:
3850     if (const APInt *ShAmt =
3851             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3852       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3853       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3854       if (ShAmt->ult(Tmp))
3855         return Tmp - ShAmt->getZExtValue();
3856     }
3857     break;
3858   case ISD::AND:
3859   case ISD::OR:
3860   case ISD::XOR:    // NOT is handled here.
3861     // Logical binary ops preserve the number of sign bits at the worst.
3862     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3863     if (Tmp != 1) {
3864       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3865       FirstAnswer = std::min(Tmp, Tmp2);
3866       // We computed what we know about the sign bits as our first
3867       // answer. Now proceed to the generic code that uses
3868       // computeKnownBits, and pick whichever answer is better.
3869     }
3870     break;
3871 
3872   case ISD::SELECT:
3873   case ISD::VSELECT:
3874     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3875     if (Tmp == 1) return 1;  // Early out.
3876     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3877     return std::min(Tmp, Tmp2);
3878   case ISD::SELECT_CC:
3879     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3880     if (Tmp == 1) return 1;  // Early out.
3881     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3882     return std::min(Tmp, Tmp2);
3883 
3884   case ISD::SMIN:
3885   case ISD::SMAX: {
3886     // If we have a clamp pattern, we know that the number of sign bits will be
3887     // the minimum of the clamp min/max range.
3888     bool IsMax = (Opcode == ISD::SMAX);
3889     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3890     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3891       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3892         CstHigh =
3893             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3894     if (CstLow && CstHigh) {
3895       if (!IsMax)
3896         std::swap(CstLow, CstHigh);
3897       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3898         Tmp = CstLow->getAPIntValue().getNumSignBits();
3899         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3900         return std::min(Tmp, Tmp2);
3901       }
3902     }
3903 
3904     // Fallback - just get the minimum number of sign bits of the operands.
3905     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3906     if (Tmp == 1)
3907       return 1;  // Early out.
3908     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3909     return std::min(Tmp, Tmp2);
3910   }
3911   case ISD::UMIN:
3912   case ISD::UMAX:
3913     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3914     if (Tmp == 1)
3915       return 1;  // Early out.
3916     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3917     return std::min(Tmp, Tmp2);
3918   case ISD::SADDO:
3919   case ISD::UADDO:
3920   case ISD::SSUBO:
3921   case ISD::USUBO:
3922   case ISD::SMULO:
3923   case ISD::UMULO:
3924     if (Op.getResNo() != 1)
3925       break;
3926     // The boolean result conforms to getBooleanContents.  Fall through.
3927     // If setcc returns 0/-1, all bits are sign bits.
3928     // We know that we have an integer-based boolean since these operations
3929     // are only available for integer.
3930     if (TLI->getBooleanContents(VT.isVector(), false) ==
3931         TargetLowering::ZeroOrNegativeOneBooleanContent)
3932       return VTBits;
3933     break;
3934   case ISD::SETCC:
3935   case ISD::STRICT_FSETCC:
3936   case ISD::STRICT_FSETCCS: {
3937     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3938     // If setcc returns 0/-1, all bits are sign bits.
3939     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3940         TargetLowering::ZeroOrNegativeOneBooleanContent)
3941       return VTBits;
3942     break;
3943   }
3944   case ISD::ROTL:
3945   case ISD::ROTR:
3946     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3947 
3948     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3949     if (Tmp == VTBits)
3950       return VTBits;
3951 
3952     if (ConstantSDNode *C =
3953             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3954       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3955 
3956       // Handle rotate right by N like a rotate left by 32-N.
3957       if (Opcode == ISD::ROTR)
3958         RotAmt = (VTBits - RotAmt) % VTBits;
3959 
3960       // If we aren't rotating out all of the known-in sign bits, return the
3961       // number that are left.  This handles rotl(sext(x), 1) for example.
3962       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3963     }
3964     break;
3965   case ISD::ADD:
3966   case ISD::ADDC:
3967     // Add can have at most one carry bit.  Thus we know that the output
3968     // is, at worst, one more bit than the inputs.
3969     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3970     if (Tmp == 1) return 1; // Early out.
3971 
3972     // Special case decrementing a value (ADD X, -1):
3973     if (ConstantSDNode *CRHS =
3974             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3975       if (CRHS->isAllOnes()) {
3976         KnownBits Known =
3977             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3978 
3979         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3980         // sign bits set.
3981         if ((Known.Zero | 1).isAllOnes())
3982           return VTBits;
3983 
3984         // If we are subtracting one from a positive number, there is no carry
3985         // out of the result.
3986         if (Known.isNonNegative())
3987           return Tmp;
3988       }
3989 
3990     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3991     if (Tmp2 == 1) return 1; // Early out.
3992     return std::min(Tmp, Tmp2) - 1;
3993   case ISD::SUB:
3994     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3995     if (Tmp2 == 1) return 1; // Early out.
3996 
3997     // Handle NEG.
3998     if (ConstantSDNode *CLHS =
3999             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4000       if (CLHS->isZero()) {
4001         KnownBits Known =
4002             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4003         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4004         // sign bits set.
4005         if ((Known.Zero | 1).isAllOnes())
4006           return VTBits;
4007 
4008         // If the input is known to be positive (the sign bit is known clear),
4009         // the output of the NEG has the same number of sign bits as the input.
4010         if (Known.isNonNegative())
4011           return Tmp2;
4012 
4013         // Otherwise, we treat this like a SUB.
4014       }
4015 
4016     // Sub can have at most one carry bit.  Thus we know that the output
4017     // is, at worst, one more bit than the inputs.
4018     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4019     if (Tmp == 1) return 1; // Early out.
4020     return std::min(Tmp, Tmp2) - 1;
4021   case ISD::MUL: {
4022     // The output of the Mul can be at most twice the valid bits in the inputs.
4023     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4024     if (SignBitsOp0 == 1)
4025       break;
4026     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4027     if (SignBitsOp1 == 1)
4028       break;
4029     unsigned OutValidBits =
4030         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4031     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4032   }
4033   case ISD::SREM:
4034     // The sign bit is the LHS's sign bit, except when the result of the
4035     // remainder is zero. The magnitude of the result should be less than or
4036     // equal to the magnitude of the LHS. Therefore, the result should have
4037     // at least as many sign bits as the left hand side.
4038     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4039   case ISD::TRUNCATE: {
4040     // Check if the sign bits of source go down as far as the truncated value.
4041     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4042     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4043     if (NumSrcSignBits > (NumSrcBits - VTBits))
4044       return NumSrcSignBits - (NumSrcBits - VTBits);
4045     break;
4046   }
4047   case ISD::EXTRACT_ELEMENT: {
4048     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4049     const int BitWidth = Op.getValueSizeInBits();
4050     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4051 
4052     // Get reverse index (starting from 1), Op1 value indexes elements from
4053     // little end. Sign starts at big end.
4054     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4055 
4056     // If the sign portion ends in our element the subtraction gives correct
4057     // result. Otherwise it gives either negative or > bitwidth result
4058     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4059   }
4060   case ISD::INSERT_VECTOR_ELT: {
4061     // If we know the element index, split the demand between the
4062     // source vector and the inserted element, otherwise assume we need
4063     // the original demanded vector elements and the value.
4064     SDValue InVec = Op.getOperand(0);
4065     SDValue InVal = Op.getOperand(1);
4066     SDValue EltNo = Op.getOperand(2);
4067     bool DemandedVal = true;
4068     APInt DemandedVecElts = DemandedElts;
4069     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4070     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4071       unsigned EltIdx = CEltNo->getZExtValue();
4072       DemandedVal = !!DemandedElts[EltIdx];
4073       DemandedVecElts.clearBit(EltIdx);
4074     }
4075     Tmp = std::numeric_limits<unsigned>::max();
4076     if (DemandedVal) {
4077       // TODO - handle implicit truncation of inserted elements.
4078       if (InVal.getScalarValueSizeInBits() != VTBits)
4079         break;
4080       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4081       Tmp = std::min(Tmp, Tmp2);
4082     }
4083     if (!!DemandedVecElts) {
4084       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4085       Tmp = std::min(Tmp, Tmp2);
4086     }
4087     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4088     return Tmp;
4089   }
4090   case ISD::EXTRACT_VECTOR_ELT: {
4091     SDValue InVec = Op.getOperand(0);
4092     SDValue EltNo = Op.getOperand(1);
4093     EVT VecVT = InVec.getValueType();
4094     // ComputeNumSignBits not yet implemented for scalable vectors.
4095     if (VecVT.isScalableVector())
4096       break;
4097     const unsigned BitWidth = Op.getValueSizeInBits();
4098     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4099     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4100 
4101     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4102     // anything about sign bits. But if the sizes match we can derive knowledge
4103     // about sign bits from the vector operand.
4104     if (BitWidth != EltBitWidth)
4105       break;
4106 
4107     // If we know the element index, just demand that vector element, else for
4108     // an unknown element index, ignore DemandedElts and demand them all.
4109     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4110     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4111     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4112       DemandedSrcElts =
4113           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4114 
4115     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4116   }
4117   case ISD::EXTRACT_SUBVECTOR: {
4118     // Offset the demanded elts by the subvector index.
4119     SDValue Src = Op.getOperand(0);
4120     // Bail until we can represent demanded elements for scalable vectors.
4121     if (Src.getValueType().isScalableVector())
4122       break;
4123     uint64_t Idx = Op.getConstantOperandVal(1);
4124     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4125     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4126     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4127   }
4128   case ISD::CONCAT_VECTORS: {
4129     // Determine the minimum number of sign bits across all demanded
4130     // elts of the input vectors. Early out if the result is already 1.
4131     Tmp = std::numeric_limits<unsigned>::max();
4132     EVT SubVectorVT = Op.getOperand(0).getValueType();
4133     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4134     unsigned NumSubVectors = Op.getNumOperands();
4135     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4136       APInt DemandedSub =
4137           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4138       if (!DemandedSub)
4139         continue;
4140       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4141       Tmp = std::min(Tmp, Tmp2);
4142     }
4143     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4144     return Tmp;
4145   }
4146   case ISD::INSERT_SUBVECTOR: {
4147     // Demand any elements from the subvector and the remainder from the src its
4148     // inserted into.
4149     SDValue Src = Op.getOperand(0);
4150     SDValue Sub = Op.getOperand(1);
4151     uint64_t Idx = Op.getConstantOperandVal(2);
4152     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4153     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4154     APInt DemandedSrcElts = DemandedElts;
4155     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4156 
4157     Tmp = std::numeric_limits<unsigned>::max();
4158     if (!!DemandedSubElts) {
4159       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4160       if (Tmp == 1)
4161         return 1; // early-out
4162     }
4163     if (!!DemandedSrcElts) {
4164       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4165       Tmp = std::min(Tmp, Tmp2);
4166     }
4167     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4168     return Tmp;
4169   }
4170   case ISD::ATOMIC_CMP_SWAP:
4171   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4172   case ISD::ATOMIC_SWAP:
4173   case ISD::ATOMIC_LOAD_ADD:
4174   case ISD::ATOMIC_LOAD_SUB:
4175   case ISD::ATOMIC_LOAD_AND:
4176   case ISD::ATOMIC_LOAD_CLR:
4177   case ISD::ATOMIC_LOAD_OR:
4178   case ISD::ATOMIC_LOAD_XOR:
4179   case ISD::ATOMIC_LOAD_NAND:
4180   case ISD::ATOMIC_LOAD_MIN:
4181   case ISD::ATOMIC_LOAD_MAX:
4182   case ISD::ATOMIC_LOAD_UMIN:
4183   case ISD::ATOMIC_LOAD_UMAX:
4184   case ISD::ATOMIC_LOAD: {
4185     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4186     // If we are looking at the loaded value.
4187     if (Op.getResNo() == 0) {
4188       if (Tmp == VTBits)
4189         return 1; // early-out
4190       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4191         return VTBits - Tmp + 1;
4192       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4193         return VTBits - Tmp;
4194     }
4195     break;
4196   }
4197   }
4198 
4199   // If we are looking at the loaded value of the SDNode.
4200   if (Op.getResNo() == 0) {
4201     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4202     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4203       unsigned ExtType = LD->getExtensionType();
4204       switch (ExtType) {
4205       default: break;
4206       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4207         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4208         return VTBits - Tmp + 1;
4209       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4210         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4211         return VTBits - Tmp;
4212       case ISD::NON_EXTLOAD:
4213         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4214           // We only need to handle vectors - computeKnownBits should handle
4215           // scalar cases.
4216           Type *CstTy = Cst->getType();
4217           if (CstTy->isVectorTy() &&
4218               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4219             Tmp = VTBits;
4220             for (unsigned i = 0; i != NumElts; ++i) {
4221               if (!DemandedElts[i])
4222                 continue;
4223               if (Constant *Elt = Cst->getAggregateElement(i)) {
4224                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4225                   const APInt &Value = CInt->getValue();
4226                   Tmp = std::min(Tmp, Value.getNumSignBits());
4227                   continue;
4228                 }
4229                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4230                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4231                   Tmp = std::min(Tmp, Value.getNumSignBits());
4232                   continue;
4233                 }
4234               }
4235               // Unknown type. Conservatively assume no bits match sign bit.
4236               return 1;
4237             }
4238             return Tmp;
4239           }
4240         }
4241         break;
4242       }
4243     }
4244   }
4245 
4246   // Allow the target to implement this method for its nodes.
4247   if (Opcode >= ISD::BUILTIN_OP_END ||
4248       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4249       Opcode == ISD::INTRINSIC_W_CHAIN ||
4250       Opcode == ISD::INTRINSIC_VOID) {
4251     unsigned NumBits =
4252         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4253     if (NumBits > 1)
4254       FirstAnswer = std::max(FirstAnswer, NumBits);
4255   }
4256 
4257   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4258   // use this information.
4259   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4260 
4261   APInt Mask;
4262   if (Known.isNonNegative()) {        // sign bit is 0
4263     Mask = Known.Zero;
4264   } else if (Known.isNegative()) {  // sign bit is 1;
4265     Mask = Known.One;
4266   } else {
4267     // Nothing known.
4268     return FirstAnswer;
4269   }
4270 
4271   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4272   // the number of identical bits in the top of the input value.
4273   Mask <<= Mask.getBitWidth()-VTBits;
4274   return std::max(FirstAnswer, Mask.countLeadingOnes());
4275 }
4276 
4277 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4278                                                     unsigned Depth) const {
4279   // Early out for FREEZE.
4280   if (Op.getOpcode() == ISD::FREEZE)
4281     return true;
4282 
4283   // TODO: Assume we don't know anything for now.
4284   EVT VT = Op.getValueType();
4285   if (VT.isScalableVector())
4286     return false;
4287 
4288   APInt DemandedElts = VT.isVector()
4289                            ? APInt::getAllOnes(VT.getVectorNumElements())
4290                            : APInt(1, 1);
4291   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4292 }
4293 
4294 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4295                                                     const APInt &DemandedElts,
4296                                                     bool PoisonOnly,
4297                                                     unsigned Depth) const {
4298   unsigned Opcode = Op.getOpcode();
4299 
4300   // Early out for FREEZE.
4301   if (Opcode == ISD::FREEZE)
4302     return true;
4303 
4304   if (Depth >= MaxRecursionDepth)
4305     return false; // Limit search depth.
4306 
4307   if (isIntOrFPConstant(Op))
4308     return true;
4309 
4310   switch (Opcode) {
4311   case ISD::UNDEF:
4312     return PoisonOnly;
4313 
4314   case ISD::BUILD_VECTOR:
4315     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4316     // this shouldn't affect the result.
4317     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4318       if (!DemandedElts[i])
4319         continue;
4320       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4321                                             Depth + 1))
4322         return false;
4323     }
4324     return true;
4325 
4326   // TODO: Search for noundef attributes from library functions.
4327 
4328   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4329 
4330   default:
4331     // Allow the target to implement this method for its nodes.
4332     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4333         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4334       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4335           Op, DemandedElts, *this, PoisonOnly, Depth);
4336     break;
4337   }
4338 
4339   return false;
4340 }
4341 
4342 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4343   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4344       !isa<ConstantSDNode>(Op.getOperand(1)))
4345     return false;
4346 
4347   if (Op.getOpcode() == ISD::OR &&
4348       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4349     return false;
4350 
4351   return true;
4352 }
4353 
4354 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4355   // If we're told that NaNs won't happen, assume they won't.
4356   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4357     return true;
4358 
4359   if (Depth >= MaxRecursionDepth)
4360     return false; // Limit search depth.
4361 
4362   // TODO: Handle vectors.
4363   // If the value is a constant, we can obviously see if it is a NaN or not.
4364   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4365     return !C->getValueAPF().isNaN() ||
4366            (SNaN && !C->getValueAPF().isSignaling());
4367   }
4368 
4369   unsigned Opcode = Op.getOpcode();
4370   switch (Opcode) {
4371   case ISD::FADD:
4372   case ISD::FSUB:
4373   case ISD::FMUL:
4374   case ISD::FDIV:
4375   case ISD::FREM:
4376   case ISD::FSIN:
4377   case ISD::FCOS: {
4378     if (SNaN)
4379       return true;
4380     // TODO: Need isKnownNeverInfinity
4381     return false;
4382   }
4383   case ISD::FCANONICALIZE:
4384   case ISD::FEXP:
4385   case ISD::FEXP2:
4386   case ISD::FTRUNC:
4387   case ISD::FFLOOR:
4388   case ISD::FCEIL:
4389   case ISD::FROUND:
4390   case ISD::FROUNDEVEN:
4391   case ISD::FRINT:
4392   case ISD::FNEARBYINT: {
4393     if (SNaN)
4394       return true;
4395     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4396   }
4397   case ISD::FABS:
4398   case ISD::FNEG:
4399   case ISD::FCOPYSIGN: {
4400     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4401   }
4402   case ISD::SELECT:
4403     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4404            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4405   case ISD::FP_EXTEND:
4406   case ISD::FP_ROUND: {
4407     if (SNaN)
4408       return true;
4409     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4410   }
4411   case ISD::SINT_TO_FP:
4412   case ISD::UINT_TO_FP:
4413     return true;
4414   case ISD::FMA:
4415   case ISD::FMAD: {
4416     if (SNaN)
4417       return true;
4418     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4419            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4420            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4421   }
4422   case ISD::FSQRT: // Need is known positive
4423   case ISD::FLOG:
4424   case ISD::FLOG2:
4425   case ISD::FLOG10:
4426   case ISD::FPOWI:
4427   case ISD::FPOW: {
4428     if (SNaN)
4429       return true;
4430     // TODO: Refine on operand
4431     return false;
4432   }
4433   case ISD::FMINNUM:
4434   case ISD::FMAXNUM: {
4435     // Only one needs to be known not-nan, since it will be returned if the
4436     // other ends up being one.
4437     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4438            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4439   }
4440   case ISD::FMINNUM_IEEE:
4441   case ISD::FMAXNUM_IEEE: {
4442     if (SNaN)
4443       return true;
4444     // This can return a NaN if either operand is an sNaN, or if both operands
4445     // are NaN.
4446     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4447             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4448            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4449             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4450   }
4451   case ISD::FMINIMUM:
4452   case ISD::FMAXIMUM: {
4453     // TODO: Does this quiet or return the origina NaN as-is?
4454     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4455            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4456   }
4457   case ISD::EXTRACT_VECTOR_ELT: {
4458     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4459   }
4460   default:
4461     if (Opcode >= ISD::BUILTIN_OP_END ||
4462         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4463         Opcode == ISD::INTRINSIC_W_CHAIN ||
4464         Opcode == ISD::INTRINSIC_VOID) {
4465       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4466     }
4467 
4468     return false;
4469   }
4470 }
4471 
4472 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4473   assert(Op.getValueType().isFloatingPoint() &&
4474          "Floating point type expected");
4475 
4476   // If the value is a constant, we can obviously see if it is a zero or not.
4477   // TODO: Add BuildVector support.
4478   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4479     return !C->isZero();
4480   return false;
4481 }
4482 
4483 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4484   assert(!Op.getValueType().isFloatingPoint() &&
4485          "Floating point types unsupported - use isKnownNeverZeroFloat");
4486 
4487   // If the value is a constant, we can obviously see if it is a zero or not.
4488   if (ISD::matchUnaryPredicate(Op,
4489                                [](ConstantSDNode *C) { return !C->isZero(); }))
4490     return true;
4491 
4492   // TODO: Recognize more cases here.
4493   switch (Op.getOpcode()) {
4494   default: break;
4495   case ISD::OR:
4496     if (isKnownNeverZero(Op.getOperand(1)) ||
4497         isKnownNeverZero(Op.getOperand(0)))
4498       return true;
4499     break;
4500   }
4501 
4502   return false;
4503 }
4504 
4505 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4506   // Check the obvious case.
4507   if (A == B) return true;
4508 
4509   // For for negative and positive zero.
4510   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4511     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4512       if (CA->isZero() && CB->isZero()) return true;
4513 
4514   // Otherwise they may not be equal.
4515   return false;
4516 }
4517 
4518 // FIXME: unify with llvm::haveNoCommonBitsSet.
4519 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4520 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4521   assert(A.getValueType() == B.getValueType() &&
4522          "Values must have the same type");
4523   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4524                                         computeKnownBits(B));
4525 }
4526 
4527 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4528                                SelectionDAG &DAG) {
4529   if (cast<ConstantSDNode>(Step)->isZero())
4530     return DAG.getConstant(0, DL, VT);
4531 
4532   return SDValue();
4533 }
4534 
4535 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4536                                 ArrayRef<SDValue> Ops,
4537                                 SelectionDAG &DAG) {
4538   int NumOps = Ops.size();
4539   assert(NumOps != 0 && "Can't build an empty vector!");
4540   assert(!VT.isScalableVector() &&
4541          "BUILD_VECTOR cannot be used with scalable types");
4542   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4543          "Incorrect element count in BUILD_VECTOR!");
4544 
4545   // BUILD_VECTOR of UNDEFs is UNDEF.
4546   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4547     return DAG.getUNDEF(VT);
4548 
4549   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4550   SDValue IdentitySrc;
4551   bool IsIdentity = true;
4552   for (int i = 0; i != NumOps; ++i) {
4553     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4554         Ops[i].getOperand(0).getValueType() != VT ||
4555         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4556         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4557         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4558       IsIdentity = false;
4559       break;
4560     }
4561     IdentitySrc = Ops[i].getOperand(0);
4562   }
4563   if (IsIdentity)
4564     return IdentitySrc;
4565 
4566   return SDValue();
4567 }
4568 
4569 /// Try to simplify vector concatenation to an input value, undef, or build
4570 /// vector.
4571 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4572                                   ArrayRef<SDValue> Ops,
4573                                   SelectionDAG &DAG) {
4574   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4575   assert(llvm::all_of(Ops,
4576                       [Ops](SDValue Op) {
4577                         return Ops[0].getValueType() == Op.getValueType();
4578                       }) &&
4579          "Concatenation of vectors with inconsistent value types!");
4580   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4581              VT.getVectorElementCount() &&
4582          "Incorrect element count in vector concatenation!");
4583 
4584   if (Ops.size() == 1)
4585     return Ops[0];
4586 
4587   // Concat of UNDEFs is UNDEF.
4588   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4589     return DAG.getUNDEF(VT);
4590 
4591   // Scan the operands and look for extract operations from a single source
4592   // that correspond to insertion at the same location via this concatenation:
4593   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4594   SDValue IdentitySrc;
4595   bool IsIdentity = true;
4596   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4597     SDValue Op = Ops[i];
4598     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4599     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4600         Op.getOperand(0).getValueType() != VT ||
4601         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4602         Op.getConstantOperandVal(1) != IdentityIndex) {
4603       IsIdentity = false;
4604       break;
4605     }
4606     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4607            "Unexpected identity source vector for concat of extracts");
4608     IdentitySrc = Op.getOperand(0);
4609   }
4610   if (IsIdentity) {
4611     assert(IdentitySrc && "Failed to set source vector of extracts");
4612     return IdentitySrc;
4613   }
4614 
4615   // The code below this point is only designed to work for fixed width
4616   // vectors, so we bail out for now.
4617   if (VT.isScalableVector())
4618     return SDValue();
4619 
4620   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4621   // simplified to one big BUILD_VECTOR.
4622   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4623   EVT SVT = VT.getScalarType();
4624   SmallVector<SDValue, 16> Elts;
4625   for (SDValue Op : Ops) {
4626     EVT OpVT = Op.getValueType();
4627     if (Op.isUndef())
4628       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4629     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4630       Elts.append(Op->op_begin(), Op->op_end());
4631     else
4632       return SDValue();
4633   }
4634 
4635   // BUILD_VECTOR requires all inputs to be of the same type, find the
4636   // maximum type and extend them all.
4637   for (SDValue Op : Elts)
4638     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4639 
4640   if (SVT.bitsGT(VT.getScalarType())) {
4641     for (SDValue &Op : Elts) {
4642       if (Op.isUndef())
4643         Op = DAG.getUNDEF(SVT);
4644       else
4645         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4646                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4647                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4648     }
4649   }
4650 
4651   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4652   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4653   return V;
4654 }
4655 
4656 /// Gets or creates the specified node.
4657 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4658   FoldingSetNodeID ID;
4659   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4660   void *IP = nullptr;
4661   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4662     return SDValue(E, 0);
4663 
4664   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4665                               getVTList(VT));
4666   CSEMap.InsertNode(N, IP);
4667 
4668   InsertNode(N);
4669   SDValue V = SDValue(N, 0);
4670   NewSDValueDbgMsg(V, "Creating new node: ", this);
4671   return V;
4672 }
4673 
4674 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4675                               SDValue Operand) {
4676   SDNodeFlags Flags;
4677   if (Inserter)
4678     Flags = Inserter->getFlags();
4679   return getNode(Opcode, DL, VT, Operand, Flags);
4680 }
4681 
4682 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4683                               SDValue Operand, const SDNodeFlags Flags) {
4684   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4685          "Operand is DELETED_NODE!");
4686   // Constant fold unary operations with an integer constant operand. Even
4687   // opaque constant will be folded, because the folding of unary operations
4688   // doesn't create new constants with different values. Nevertheless, the
4689   // opaque flag is preserved during folding to prevent future folding with
4690   // other constants.
4691   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4692     const APInt &Val = C->getAPIntValue();
4693     switch (Opcode) {
4694     default: break;
4695     case ISD::SIGN_EXTEND:
4696       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4697                          C->isTargetOpcode(), C->isOpaque());
4698     case ISD::TRUNCATE:
4699       if (C->isOpaque())
4700         break;
4701       LLVM_FALLTHROUGH;
4702     case ISD::ZERO_EXTEND:
4703       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4704                          C->isTargetOpcode(), C->isOpaque());
4705     case ISD::ANY_EXTEND:
4706       // Some targets like RISCV prefer to sign extend some types.
4707       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4708         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4709                            C->isTargetOpcode(), C->isOpaque());
4710       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4711                          C->isTargetOpcode(), C->isOpaque());
4712     case ISD::UINT_TO_FP:
4713     case ISD::SINT_TO_FP: {
4714       APFloat apf(EVTToAPFloatSemantics(VT),
4715                   APInt::getZero(VT.getSizeInBits()));
4716       (void)apf.convertFromAPInt(Val,
4717                                  Opcode==ISD::SINT_TO_FP,
4718                                  APFloat::rmNearestTiesToEven);
4719       return getConstantFP(apf, DL, VT);
4720     }
4721     case ISD::BITCAST:
4722       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4723         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4724       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4725         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4726       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4727         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4728       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4729         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4730       break;
4731     case ISD::ABS:
4732       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4733                          C->isOpaque());
4734     case ISD::BITREVERSE:
4735       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4736                          C->isOpaque());
4737     case ISD::BSWAP:
4738       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4739                          C->isOpaque());
4740     case ISD::CTPOP:
4741       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4742                          C->isOpaque());
4743     case ISD::CTLZ:
4744     case ISD::CTLZ_ZERO_UNDEF:
4745       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4746                          C->isOpaque());
4747     case ISD::CTTZ:
4748     case ISD::CTTZ_ZERO_UNDEF:
4749       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4750                          C->isOpaque());
4751     case ISD::FP16_TO_FP: {
4752       bool Ignored;
4753       APFloat FPV(APFloat::IEEEhalf(),
4754                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4755 
4756       // This can return overflow, underflow, or inexact; we don't care.
4757       // FIXME need to be more flexible about rounding mode.
4758       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4759                         APFloat::rmNearestTiesToEven, &Ignored);
4760       return getConstantFP(FPV, DL, VT);
4761     }
4762     case ISD::STEP_VECTOR: {
4763       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4764         return V;
4765       break;
4766     }
4767     }
4768   }
4769 
4770   // Constant fold unary operations with a floating point constant operand.
4771   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4772     APFloat V = C->getValueAPF();    // make copy
4773     switch (Opcode) {
4774     case ISD::FNEG:
4775       V.changeSign();
4776       return getConstantFP(V, DL, VT);
4777     case ISD::FABS:
4778       V.clearSign();
4779       return getConstantFP(V, DL, VT);
4780     case ISD::FCEIL: {
4781       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4782       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4783         return getConstantFP(V, DL, VT);
4784       break;
4785     }
4786     case ISD::FTRUNC: {
4787       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4788       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4789         return getConstantFP(V, DL, VT);
4790       break;
4791     }
4792     case ISD::FFLOOR: {
4793       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4794       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4795         return getConstantFP(V, DL, VT);
4796       break;
4797     }
4798     case ISD::FP_EXTEND: {
4799       bool ignored;
4800       // This can return overflow, underflow, or inexact; we don't care.
4801       // FIXME need to be more flexible about rounding mode.
4802       (void)V.convert(EVTToAPFloatSemantics(VT),
4803                       APFloat::rmNearestTiesToEven, &ignored);
4804       return getConstantFP(V, DL, VT);
4805     }
4806     case ISD::FP_TO_SINT:
4807     case ISD::FP_TO_UINT: {
4808       bool ignored;
4809       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4810       // FIXME need to be more flexible about rounding mode.
4811       APFloat::opStatus s =
4812           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4813       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4814         break;
4815       return getConstant(IntVal, DL, VT);
4816     }
4817     case ISD::BITCAST:
4818       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4819         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4820       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4821         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4822       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4823         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4824       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4825         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4826       break;
4827     case ISD::FP_TO_FP16: {
4828       bool Ignored;
4829       // This can return overflow, underflow, or inexact; we don't care.
4830       // FIXME need to be more flexible about rounding mode.
4831       (void)V.convert(APFloat::IEEEhalf(),
4832                       APFloat::rmNearestTiesToEven, &Ignored);
4833       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4834     }
4835     }
4836   }
4837 
4838   // Constant fold unary operations with a vector integer or float operand.
4839   switch (Opcode) {
4840   default:
4841     // FIXME: Entirely reasonable to perform folding of other unary
4842     // operations here as the need arises.
4843     break;
4844   case ISD::FNEG:
4845   case ISD::FABS:
4846   case ISD::FCEIL:
4847   case ISD::FTRUNC:
4848   case ISD::FFLOOR:
4849   case ISD::FP_EXTEND:
4850   case ISD::FP_TO_SINT:
4851   case ISD::FP_TO_UINT:
4852   case ISD::TRUNCATE:
4853   case ISD::ANY_EXTEND:
4854   case ISD::ZERO_EXTEND:
4855   case ISD::SIGN_EXTEND:
4856   case ISD::UINT_TO_FP:
4857   case ISD::SINT_TO_FP:
4858   case ISD::ABS:
4859   case ISD::BITREVERSE:
4860   case ISD::BSWAP:
4861   case ISD::CTLZ:
4862   case ISD::CTLZ_ZERO_UNDEF:
4863   case ISD::CTTZ:
4864   case ISD::CTTZ_ZERO_UNDEF:
4865   case ISD::CTPOP: {
4866     SDValue Ops = {Operand};
4867     if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4868       return Fold;
4869   }
4870   }
4871 
4872   unsigned OpOpcode = Operand.getNode()->getOpcode();
4873   switch (Opcode) {
4874   case ISD::STEP_VECTOR:
4875     assert(VT.isScalableVector() &&
4876            "STEP_VECTOR can only be used with scalable types");
4877     assert(OpOpcode == ISD::TargetConstant &&
4878            VT.getVectorElementType() == Operand.getValueType() &&
4879            "Unexpected step operand");
4880     break;
4881   case ISD::FREEZE:
4882     assert(VT == Operand.getValueType() && "Unexpected VT!");
4883     break;
4884   case ISD::TokenFactor:
4885   case ISD::MERGE_VALUES:
4886   case ISD::CONCAT_VECTORS:
4887     return Operand;         // Factor, merge or concat of one node?  No need.
4888   case ISD::BUILD_VECTOR: {
4889     // Attempt to simplify BUILD_VECTOR.
4890     SDValue Ops[] = {Operand};
4891     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4892       return V;
4893     break;
4894   }
4895   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4896   case ISD::FP_EXTEND:
4897     assert(VT.isFloatingPoint() &&
4898            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4899     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4900     assert((!VT.isVector() ||
4901             VT.getVectorElementCount() ==
4902             Operand.getValueType().getVectorElementCount()) &&
4903            "Vector element count mismatch!");
4904     assert(Operand.getValueType().bitsLT(VT) &&
4905            "Invalid fpext node, dst < src!");
4906     if (Operand.isUndef())
4907       return getUNDEF(VT);
4908     break;
4909   case ISD::FP_TO_SINT:
4910   case ISD::FP_TO_UINT:
4911     if (Operand.isUndef())
4912       return getUNDEF(VT);
4913     break;
4914   case ISD::SINT_TO_FP:
4915   case ISD::UINT_TO_FP:
4916     // [us]itofp(undef) = 0, because the result value is bounded.
4917     if (Operand.isUndef())
4918       return getConstantFP(0.0, DL, VT);
4919     break;
4920   case ISD::SIGN_EXTEND:
4921     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4922            "Invalid SIGN_EXTEND!");
4923     assert(VT.isVector() == Operand.getValueType().isVector() &&
4924            "SIGN_EXTEND result type type should be vector iff the operand "
4925            "type is vector!");
4926     if (Operand.getValueType() == VT) return Operand;   // noop extension
4927     assert((!VT.isVector() ||
4928             VT.getVectorElementCount() ==
4929                 Operand.getValueType().getVectorElementCount()) &&
4930            "Vector element count mismatch!");
4931     assert(Operand.getValueType().bitsLT(VT) &&
4932            "Invalid sext node, dst < src!");
4933     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4934       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4935     if (OpOpcode == ISD::UNDEF)
4936       // sext(undef) = 0, because the top bits will all be the same.
4937       return getConstant(0, DL, VT);
4938     break;
4939   case ISD::ZERO_EXTEND:
4940     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4941            "Invalid ZERO_EXTEND!");
4942     assert(VT.isVector() == Operand.getValueType().isVector() &&
4943            "ZERO_EXTEND result type type should be vector iff the operand "
4944            "type is vector!");
4945     if (Operand.getValueType() == VT) return Operand;   // noop extension
4946     assert((!VT.isVector() ||
4947             VT.getVectorElementCount() ==
4948                 Operand.getValueType().getVectorElementCount()) &&
4949            "Vector element count mismatch!");
4950     assert(Operand.getValueType().bitsLT(VT) &&
4951            "Invalid zext node, dst < src!");
4952     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4953       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4954     if (OpOpcode == ISD::UNDEF)
4955       // zext(undef) = 0, because the top bits will be zero.
4956       return getConstant(0, DL, VT);
4957     break;
4958   case ISD::ANY_EXTEND:
4959     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4960            "Invalid ANY_EXTEND!");
4961     assert(VT.isVector() == Operand.getValueType().isVector() &&
4962            "ANY_EXTEND result type type should be vector iff the operand "
4963            "type is vector!");
4964     if (Operand.getValueType() == VT) return Operand;   // noop extension
4965     assert((!VT.isVector() ||
4966             VT.getVectorElementCount() ==
4967                 Operand.getValueType().getVectorElementCount()) &&
4968            "Vector element count mismatch!");
4969     assert(Operand.getValueType().bitsLT(VT) &&
4970            "Invalid anyext node, dst < src!");
4971 
4972     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4973         OpOpcode == ISD::ANY_EXTEND)
4974       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4975       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4976     if (OpOpcode == ISD::UNDEF)
4977       return getUNDEF(VT);
4978 
4979     // (ext (trunc x)) -> x
4980     if (OpOpcode == ISD::TRUNCATE) {
4981       SDValue OpOp = Operand.getOperand(0);
4982       if (OpOp.getValueType() == VT) {
4983         transferDbgValues(Operand, OpOp);
4984         return OpOp;
4985       }
4986     }
4987     break;
4988   case ISD::TRUNCATE:
4989     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4990            "Invalid TRUNCATE!");
4991     assert(VT.isVector() == Operand.getValueType().isVector() &&
4992            "TRUNCATE result type type should be vector iff the operand "
4993            "type is vector!");
4994     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4995     assert((!VT.isVector() ||
4996             VT.getVectorElementCount() ==
4997                 Operand.getValueType().getVectorElementCount()) &&
4998            "Vector element count mismatch!");
4999     assert(Operand.getValueType().bitsGT(VT) &&
5000            "Invalid truncate node, src < dst!");
5001     if (OpOpcode == ISD::TRUNCATE)
5002       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5003     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5004         OpOpcode == ISD::ANY_EXTEND) {
5005       // If the source is smaller than the dest, we still need an extend.
5006       if (Operand.getOperand(0).getValueType().getScalarType()
5007             .bitsLT(VT.getScalarType()))
5008         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5009       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5010         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5011       return Operand.getOperand(0);
5012     }
5013     if (OpOpcode == ISD::UNDEF)
5014       return getUNDEF(VT);
5015     break;
5016   case ISD::ANY_EXTEND_VECTOR_INREG:
5017   case ISD::ZERO_EXTEND_VECTOR_INREG:
5018   case ISD::SIGN_EXTEND_VECTOR_INREG:
5019     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5020     assert(Operand.getValueType().bitsLE(VT) &&
5021            "The input must be the same size or smaller than the result.");
5022     assert(VT.getVectorMinNumElements() <
5023                Operand.getValueType().getVectorMinNumElements() &&
5024            "The destination vector type must have fewer lanes than the input.");
5025     break;
5026   case ISD::ABS:
5027     assert(VT.isInteger() && VT == Operand.getValueType() &&
5028            "Invalid ABS!");
5029     if (OpOpcode == ISD::UNDEF)
5030       return getUNDEF(VT);
5031     break;
5032   case ISD::BSWAP:
5033     assert(VT.isInteger() && VT == Operand.getValueType() &&
5034            "Invalid BSWAP!");
5035     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5036            "BSWAP types must be a multiple of 16 bits!");
5037     if (OpOpcode == ISD::UNDEF)
5038       return getUNDEF(VT);
5039     break;
5040   case ISD::BITREVERSE:
5041     assert(VT.isInteger() && VT == Operand.getValueType() &&
5042            "Invalid BITREVERSE!");
5043     if (OpOpcode == ISD::UNDEF)
5044       return getUNDEF(VT);
5045     break;
5046   case ISD::BITCAST:
5047     // Basic sanity checking.
5048     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5049            "Cannot BITCAST between types of different sizes!");
5050     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5051     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5052       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5053     if (OpOpcode == ISD::UNDEF)
5054       return getUNDEF(VT);
5055     break;
5056   case ISD::SCALAR_TO_VECTOR:
5057     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5058            (VT.getVectorElementType() == Operand.getValueType() ||
5059             (VT.getVectorElementType().isInteger() &&
5060              Operand.getValueType().isInteger() &&
5061              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5062            "Illegal SCALAR_TO_VECTOR node!");
5063     if (OpOpcode == ISD::UNDEF)
5064       return getUNDEF(VT);
5065     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5066     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5067         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5068         Operand.getConstantOperandVal(1) == 0 &&
5069         Operand.getOperand(0).getValueType() == VT)
5070       return Operand.getOperand(0);
5071     break;
5072   case ISD::FNEG:
5073     // Negation of an unknown bag of bits is still completely undefined.
5074     if (OpOpcode == ISD::UNDEF)
5075       return getUNDEF(VT);
5076 
5077     if (OpOpcode == ISD::FNEG)  // --X -> X
5078       return Operand.getOperand(0);
5079     break;
5080   case ISD::FABS:
5081     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5082       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5083     break;
5084   case ISD::VSCALE:
5085     assert(VT == Operand.getValueType() && "Unexpected VT!");
5086     break;
5087   case ISD::CTPOP:
5088     if (Operand.getValueType().getScalarType() == MVT::i1)
5089       return Operand;
5090     break;
5091   case ISD::CTLZ:
5092   case ISD::CTTZ:
5093     if (Operand.getValueType().getScalarType() == MVT::i1)
5094       return getNOT(DL, Operand, Operand.getValueType());
5095     break;
5096   case ISD::VECREDUCE_SMIN:
5097   case ISD::VECREDUCE_UMAX:
5098     if (Operand.getValueType().getScalarType() == MVT::i1)
5099       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5100     break;
5101   case ISD::VECREDUCE_SMAX:
5102   case ISD::VECREDUCE_UMIN:
5103     if (Operand.getValueType().getScalarType() == MVT::i1)
5104       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5105     break;
5106   }
5107 
5108   SDNode *N;
5109   SDVTList VTs = getVTList(VT);
5110   SDValue Ops[] = {Operand};
5111   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5112     FoldingSetNodeID ID;
5113     AddNodeIDNode(ID, Opcode, VTs, Ops);
5114     void *IP = nullptr;
5115     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5116       E->intersectFlagsWith(Flags);
5117       return SDValue(E, 0);
5118     }
5119 
5120     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5121     N->setFlags(Flags);
5122     createOperands(N, Ops);
5123     CSEMap.InsertNode(N, IP);
5124   } else {
5125     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5126     createOperands(N, Ops);
5127   }
5128 
5129   InsertNode(N);
5130   SDValue V = SDValue(N, 0);
5131   NewSDValueDbgMsg(V, "Creating new node: ", this);
5132   return V;
5133 }
5134 
5135 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5136                                        const APInt &C2) {
5137   switch (Opcode) {
5138   case ISD::ADD:  return C1 + C2;
5139   case ISD::SUB:  return C1 - C2;
5140   case ISD::MUL:  return C1 * C2;
5141   case ISD::AND:  return C1 & C2;
5142   case ISD::OR:   return C1 | C2;
5143   case ISD::XOR:  return C1 ^ C2;
5144   case ISD::SHL:  return C1 << C2;
5145   case ISD::SRL:  return C1.lshr(C2);
5146   case ISD::SRA:  return C1.ashr(C2);
5147   case ISD::ROTL: return C1.rotl(C2);
5148   case ISD::ROTR: return C1.rotr(C2);
5149   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5150   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5151   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5152   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5153   case ISD::SADDSAT: return C1.sadd_sat(C2);
5154   case ISD::UADDSAT: return C1.uadd_sat(C2);
5155   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5156   case ISD::USUBSAT: return C1.usub_sat(C2);
5157   case ISD::UDIV:
5158     if (!C2.getBoolValue())
5159       break;
5160     return C1.udiv(C2);
5161   case ISD::UREM:
5162     if (!C2.getBoolValue())
5163       break;
5164     return C1.urem(C2);
5165   case ISD::SDIV:
5166     if (!C2.getBoolValue())
5167       break;
5168     return C1.sdiv(C2);
5169   case ISD::SREM:
5170     if (!C2.getBoolValue())
5171       break;
5172     return C1.srem(C2);
5173   case ISD::MULHS: {
5174     unsigned FullWidth = C1.getBitWidth() * 2;
5175     APInt C1Ext = C1.sext(FullWidth);
5176     APInt C2Ext = C2.sext(FullWidth);
5177     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5178   }
5179   case ISD::MULHU: {
5180     unsigned FullWidth = C1.getBitWidth() * 2;
5181     APInt C1Ext = C1.zext(FullWidth);
5182     APInt C2Ext = C2.zext(FullWidth);
5183     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5184   }
5185   }
5186   return llvm::None;
5187 }
5188 
5189 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5190                                        const GlobalAddressSDNode *GA,
5191                                        const SDNode *N2) {
5192   if (GA->getOpcode() != ISD::GlobalAddress)
5193     return SDValue();
5194   if (!TLI->isOffsetFoldingLegal(GA))
5195     return SDValue();
5196   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5197   if (!C2)
5198     return SDValue();
5199   int64_t Offset = C2->getSExtValue();
5200   switch (Opcode) {
5201   case ISD::ADD: break;
5202   case ISD::SUB: Offset = -uint64_t(Offset); break;
5203   default: return SDValue();
5204   }
5205   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5206                           GA->getOffset() + uint64_t(Offset));
5207 }
5208 
5209 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5210   switch (Opcode) {
5211   case ISD::SDIV:
5212   case ISD::UDIV:
5213   case ISD::SREM:
5214   case ISD::UREM: {
5215     // If a divisor is zero/undef or any element of a divisor vector is
5216     // zero/undef, the whole op is undef.
5217     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5218     SDValue Divisor = Ops[1];
5219     if (Divisor.isUndef() || isNullConstant(Divisor))
5220       return true;
5221 
5222     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5223            llvm::any_of(Divisor->op_values(),
5224                         [](SDValue V) { return V.isUndef() ||
5225                                         isNullConstant(V); });
5226     // TODO: Handle signed overflow.
5227   }
5228   // TODO: Handle oversized shifts.
5229   default:
5230     return false;
5231   }
5232 }
5233 
5234 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5235                                              EVT VT, ArrayRef<SDValue> Ops) {
5236   // If the opcode is a target-specific ISD node, there's nothing we can
5237   // do here and the operand rules may not line up with the below, so
5238   // bail early.
5239   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5240   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5241   // foldCONCAT_VECTORS in getNode before this is called.
5242   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5243     return SDValue();
5244 
5245   // For now, the array Ops should only contain two values.
5246   // This enforcement will be removed once this function is merged with
5247   // FoldConstantVectorArithmetic
5248   if (Ops.size() != 2)
5249     return SDValue();
5250 
5251   if (isUndef(Opcode, Ops))
5252     return getUNDEF(VT);
5253 
5254   SDNode *N1 = Ops[0].getNode();
5255   SDNode *N2 = Ops[1].getNode();
5256 
5257   // Handle the case of two scalars.
5258   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5259     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5260       if (C1->isOpaque() || C2->isOpaque())
5261         return SDValue();
5262 
5263       Optional<APInt> FoldAttempt =
5264           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5265       if (!FoldAttempt)
5266         return SDValue();
5267 
5268       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5269       assert((!Folded || !VT.isVector()) &&
5270              "Can't fold vectors ops with scalar operands");
5271       return Folded;
5272     }
5273   }
5274 
5275   // fold (add Sym, c) -> Sym+c
5276   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5277     return FoldSymbolOffset(Opcode, VT, GA, N2);
5278   if (TLI->isCommutativeBinOp(Opcode))
5279     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5280       return FoldSymbolOffset(Opcode, VT, GA, N1);
5281 
5282   // For fixed width vectors, extract each constant element and fold them
5283   // individually. Either input may be an undef value.
5284   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5285                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5286   if (!IsBVOrSV1 && !N1->isUndef())
5287     return SDValue();
5288   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5289                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5290   if (!IsBVOrSV2 && !N2->isUndef())
5291     return SDValue();
5292   // If both operands are undef, that's handled the same way as scalars.
5293   if (!IsBVOrSV1 && !IsBVOrSV2)
5294     return SDValue();
5295 
5296   EVT SVT = VT.getScalarType();
5297   EVT LegalSVT = SVT;
5298   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5299     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5300     if (LegalSVT.bitsLT(SVT))
5301       return SDValue();
5302   }
5303 
5304   SmallVector<SDValue, 4> Outputs;
5305   unsigned NumOps = 0;
5306   if (IsBVOrSV1)
5307     NumOps = std::max(NumOps, N1->getNumOperands());
5308   if (IsBVOrSV2)
5309     NumOps = std::max(NumOps, N2->getNumOperands());
5310   assert(NumOps != 0 && "Expected non-zero operands");
5311   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5312   // one iteration for that.
5313   assert((!VT.isScalableVector() || NumOps == 1) &&
5314          "Scalable vector should only have one scalar");
5315 
5316   for (unsigned I = 0; I != NumOps; ++I) {
5317     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5318     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5319     SDValue V1;
5320     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5321       V1 = N1->getOperand(I);
5322     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5323       V1 = N1->getOperand(0);
5324     else
5325       V1 = getUNDEF(SVT);
5326 
5327     SDValue V2;
5328     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5329       V2 = N2->getOperand(I);
5330     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5331       V2 = N2->getOperand(0);
5332     else
5333       V2 = getUNDEF(SVT);
5334 
5335     if (SVT.isInteger()) {
5336       if (V1.getValueType().bitsGT(SVT))
5337         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5338       if (V2.getValueType().bitsGT(SVT))
5339         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5340     }
5341 
5342     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5343       return SDValue();
5344 
5345     // Fold one vector element.
5346     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5347     if (LegalSVT != SVT)
5348       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5349 
5350     // Scalar folding only succeeded if the result is a constant or UNDEF.
5351     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5352         ScalarResult.getOpcode() != ISD::ConstantFP)
5353       return SDValue();
5354     Outputs.push_back(ScalarResult);
5355   }
5356 
5357   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5358       N2->getOpcode() == ISD::BUILD_VECTOR) {
5359     assert(VT.getVectorNumElements() == Outputs.size() &&
5360            "Vector size mismatch!");
5361 
5362     // Build a big vector out of the scalar elements we generated.
5363     return getBuildVector(VT, SDLoc(), Outputs);
5364   }
5365 
5366   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5367           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5368          "One operand should be a splat vector");
5369 
5370   assert(Outputs.size() == 1 && "Vector size mismatch!");
5371   return getSplatVector(VT, SDLoc(), Outputs[0]);
5372 }
5373 
5374 // TODO: Merge with FoldConstantArithmetic
5375 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5376                                                    const SDLoc &DL, EVT VT,
5377                                                    ArrayRef<SDValue> Ops,
5378                                                    const SDNodeFlags Flags) {
5379   // If the opcode is a target-specific ISD node, there's nothing we can
5380   // do here and the operand rules may not line up with the below, so
5381   // bail early.
5382   if (Opcode >= ISD::BUILTIN_OP_END)
5383     return SDValue();
5384 
5385   if (isUndef(Opcode, Ops))
5386     return getUNDEF(VT);
5387 
5388   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5389   if (!VT.isVector())
5390     return SDValue();
5391 
5392   ElementCount NumElts = VT.getVectorElementCount();
5393 
5394   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5395     return !Op.getValueType().isVector() ||
5396            Op.getValueType().getVectorElementCount() == NumElts;
5397   };
5398 
5399   auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5400     APInt SplatVal;
5401     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5402     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5403            (BV && BV->isConstant()) ||
5404            (Op.getOpcode() == ISD::SPLAT_VECTOR &&
5405             ISD::isConstantSplatVector(Op.getNode(), SplatVal));
5406   };
5407 
5408   // All operands must be vector types with the same number of elements as
5409   // the result type and must be either UNDEF or a build vector of constant
5410   // or UNDEF scalars.
5411   if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) ||
5412       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5413     return SDValue();
5414 
5415   // If we are comparing vectors, then the result needs to be a i1 boolean
5416   // that is then sign-extended back to the legal result type.
5417   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5418 
5419   // Find legal integer scalar type for constant promotion and
5420   // ensure that its scalar size is at least as large as source.
5421   EVT LegalSVT = VT.getScalarType();
5422   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5423     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5424     if (LegalSVT.bitsLT(VT.getScalarType()))
5425       return SDValue();
5426   }
5427 
5428   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5429   // only have one operand to check. For fixed-length vector types we may have
5430   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5431   unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5432 
5433   // Constant fold each scalar lane separately.
5434   SmallVector<SDValue, 4> ScalarResults;
5435   for (unsigned I = 0; I != NumOperands; I++) {
5436     SmallVector<SDValue, 4> ScalarOps;
5437     for (SDValue Op : Ops) {
5438       EVT InSVT = Op.getValueType().getScalarType();
5439       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5440           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5441         // We've checked that this is UNDEF or a constant of some kind.
5442         if (Op.isUndef())
5443           ScalarOps.push_back(getUNDEF(InSVT));
5444         else
5445           ScalarOps.push_back(Op);
5446         continue;
5447       }
5448 
5449       SDValue ScalarOp =
5450           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5451       EVT ScalarVT = ScalarOp.getValueType();
5452 
5453       // Build vector (integer) scalar operands may need implicit
5454       // truncation - do this before constant folding.
5455       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5456         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5457 
5458       ScalarOps.push_back(ScalarOp);
5459     }
5460 
5461     // Constant fold the scalar operands.
5462     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5463 
5464     // Legalize the (integer) scalar constant if necessary.
5465     if (LegalSVT != SVT)
5466       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5467 
5468     // Scalar folding only succeeded if the result is a constant or UNDEF.
5469     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5470         ScalarResult.getOpcode() != ISD::ConstantFP)
5471       return SDValue();
5472     ScalarResults.push_back(ScalarResult);
5473   }
5474 
5475   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5476                                    : getBuildVector(VT, DL, ScalarResults);
5477   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5478   return V;
5479 }
5480 
5481 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5482                                          EVT VT, SDValue N1, SDValue N2) {
5483   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5484   //       should. That will require dealing with a potentially non-default
5485   //       rounding mode, checking the "opStatus" return value from the APFloat
5486   //       math calculations, and possibly other variations.
5487   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5488   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5489   if (N1CFP && N2CFP) {
5490     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5491     switch (Opcode) {
5492     case ISD::FADD:
5493       C1.add(C2, APFloat::rmNearestTiesToEven);
5494       return getConstantFP(C1, DL, VT);
5495     case ISD::FSUB:
5496       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5497       return getConstantFP(C1, DL, VT);
5498     case ISD::FMUL:
5499       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5500       return getConstantFP(C1, DL, VT);
5501     case ISD::FDIV:
5502       C1.divide(C2, APFloat::rmNearestTiesToEven);
5503       return getConstantFP(C1, DL, VT);
5504     case ISD::FREM:
5505       C1.mod(C2);
5506       return getConstantFP(C1, DL, VT);
5507     case ISD::FCOPYSIGN:
5508       C1.copySign(C2);
5509       return getConstantFP(C1, DL, VT);
5510     default: break;
5511     }
5512   }
5513   if (N1CFP && Opcode == ISD::FP_ROUND) {
5514     APFloat C1 = N1CFP->getValueAPF();    // make copy
5515     bool Unused;
5516     // This can return overflow, underflow, or inexact; we don't care.
5517     // FIXME need to be more flexible about rounding mode.
5518     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5519                       &Unused);
5520     return getConstantFP(C1, DL, VT);
5521   }
5522 
5523   switch (Opcode) {
5524   case ISD::FSUB:
5525     // -0.0 - undef --> undef (consistent with "fneg undef")
5526     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5527       return getUNDEF(VT);
5528     LLVM_FALLTHROUGH;
5529 
5530   case ISD::FADD:
5531   case ISD::FMUL:
5532   case ISD::FDIV:
5533   case ISD::FREM:
5534     // If both operands are undef, the result is undef. If 1 operand is undef,
5535     // the result is NaN. This should match the behavior of the IR optimizer.
5536     if (N1.isUndef() && N2.isUndef())
5537       return getUNDEF(VT);
5538     if (N1.isUndef() || N2.isUndef())
5539       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5540   }
5541   return SDValue();
5542 }
5543 
5544 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5545   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5546 
5547   // There's no need to assert on a byte-aligned pointer. All pointers are at
5548   // least byte aligned.
5549   if (A == Align(1))
5550     return Val;
5551 
5552   FoldingSetNodeID ID;
5553   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5554   ID.AddInteger(A.value());
5555 
5556   void *IP = nullptr;
5557   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5558     return SDValue(E, 0);
5559 
5560   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5561                                          Val.getValueType(), A);
5562   createOperands(N, {Val});
5563 
5564   CSEMap.InsertNode(N, IP);
5565   InsertNode(N);
5566 
5567   SDValue V(N, 0);
5568   NewSDValueDbgMsg(V, "Creating new node: ", this);
5569   return V;
5570 }
5571 
5572 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5573                               SDValue N1, SDValue N2) {
5574   SDNodeFlags Flags;
5575   if (Inserter)
5576     Flags = Inserter->getFlags();
5577   return getNode(Opcode, DL, VT, N1, N2, Flags);
5578 }
5579 
5580 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5581                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5582   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5583          N2.getOpcode() != ISD::DELETED_NODE &&
5584          "Operand is DELETED_NODE!");
5585   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5586   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5587   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5588   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5589 
5590   // Canonicalize constant to RHS if commutative.
5591   if (TLI->isCommutativeBinOp(Opcode)) {
5592     if (N1C && !N2C) {
5593       std::swap(N1C, N2C);
5594       std::swap(N1, N2);
5595     } else if (N1CFP && !N2CFP) {
5596       std::swap(N1CFP, N2CFP);
5597       std::swap(N1, N2);
5598     }
5599   }
5600 
5601   switch (Opcode) {
5602   default: break;
5603   case ISD::TokenFactor:
5604     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5605            N2.getValueType() == MVT::Other && "Invalid token factor!");
5606     // Fold trivial token factors.
5607     if (N1.getOpcode() == ISD::EntryToken) return N2;
5608     if (N2.getOpcode() == ISD::EntryToken) return N1;
5609     if (N1 == N2) return N1;
5610     break;
5611   case ISD::BUILD_VECTOR: {
5612     // Attempt to simplify BUILD_VECTOR.
5613     SDValue Ops[] = {N1, N2};
5614     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5615       return V;
5616     break;
5617   }
5618   case ISD::CONCAT_VECTORS: {
5619     SDValue Ops[] = {N1, N2};
5620     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5621       return V;
5622     break;
5623   }
5624   case ISD::AND:
5625     assert(VT.isInteger() && "This operator does not apply to FP types!");
5626     assert(N1.getValueType() == N2.getValueType() &&
5627            N1.getValueType() == VT && "Binary operator types must match!");
5628     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5629     // worth handling here.
5630     if (N2C && N2C->isZero())
5631       return N2;
5632     if (N2C && N2C->isAllOnes()) // X & -1 -> X
5633       return N1;
5634     break;
5635   case ISD::OR:
5636   case ISD::XOR:
5637   case ISD::ADD:
5638   case ISD::SUB:
5639     assert(VT.isInteger() && "This operator does not apply to FP types!");
5640     assert(N1.getValueType() == N2.getValueType() &&
5641            N1.getValueType() == VT && "Binary operator types must match!");
5642     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5643     // it's worth handling here.
5644     if (N2C && N2C->isZero())
5645       return N1;
5646     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5647         VT.getVectorElementType() == MVT::i1)
5648       return getNode(ISD::XOR, DL, VT, N1, N2);
5649     break;
5650   case ISD::MUL:
5651     assert(VT.isInteger() && "This operator does not apply to FP types!");
5652     assert(N1.getValueType() == N2.getValueType() &&
5653            N1.getValueType() == VT && "Binary operator types must match!");
5654     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5655       return getNode(ISD::AND, DL, VT, N1, N2);
5656     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5657       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5658       const APInt &N2CImm = N2C->getAPIntValue();
5659       return getVScale(DL, VT, MulImm * N2CImm);
5660     }
5661     break;
5662   case ISD::UDIV:
5663   case ISD::UREM:
5664   case ISD::MULHU:
5665   case ISD::MULHS:
5666   case ISD::SDIV:
5667   case ISD::SREM:
5668   case ISD::SADDSAT:
5669   case ISD::SSUBSAT:
5670   case ISD::UADDSAT:
5671   case ISD::USUBSAT:
5672     assert(VT.isInteger() && "This operator does not apply to FP types!");
5673     assert(N1.getValueType() == N2.getValueType() &&
5674            N1.getValueType() == VT && "Binary operator types must match!");
5675     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5676       // fold (add_sat x, y) -> (or x, y) for bool types.
5677       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5678         return getNode(ISD::OR, DL, VT, N1, N2);
5679       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5680       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5681         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5682     }
5683     break;
5684   case ISD::SMIN:
5685   case ISD::UMAX:
5686     assert(VT.isInteger() && "This operator does not apply to FP types!");
5687     assert(N1.getValueType() == N2.getValueType() &&
5688            N1.getValueType() == VT && "Binary operator types must match!");
5689     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5690       return getNode(ISD::OR, DL, VT, N1, N2);
5691     break;
5692   case ISD::SMAX:
5693   case ISD::UMIN:
5694     assert(VT.isInteger() && "This operator does not apply to FP types!");
5695     assert(N1.getValueType() == N2.getValueType() &&
5696            N1.getValueType() == VT && "Binary operator types must match!");
5697     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5698       return getNode(ISD::AND, DL, VT, N1, N2);
5699     break;
5700   case ISD::FADD:
5701   case ISD::FSUB:
5702   case ISD::FMUL:
5703   case ISD::FDIV:
5704   case ISD::FREM:
5705     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5706     assert(N1.getValueType() == N2.getValueType() &&
5707            N1.getValueType() == VT && "Binary operator types must match!");
5708     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5709       return V;
5710     break;
5711   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5712     assert(N1.getValueType() == VT &&
5713            N1.getValueType().isFloatingPoint() &&
5714            N2.getValueType().isFloatingPoint() &&
5715            "Invalid FCOPYSIGN!");
5716     break;
5717   case ISD::SHL:
5718     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5719       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5720       const APInt &ShiftImm = N2C->getAPIntValue();
5721       return getVScale(DL, VT, MulImm << ShiftImm);
5722     }
5723     LLVM_FALLTHROUGH;
5724   case ISD::SRA:
5725   case ISD::SRL:
5726     if (SDValue V = simplifyShift(N1, N2))
5727       return V;
5728     LLVM_FALLTHROUGH;
5729   case ISD::ROTL:
5730   case ISD::ROTR:
5731     assert(VT == N1.getValueType() &&
5732            "Shift operators return type must be the same as their first arg");
5733     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5734            "Shifts only work on integers");
5735     assert((!VT.isVector() || VT == N2.getValueType()) &&
5736            "Vector shift amounts must be in the same as their first arg");
5737     // Verify that the shift amount VT is big enough to hold valid shift
5738     // amounts.  This catches things like trying to shift an i1024 value by an
5739     // i8, which is easy to fall into in generic code that uses
5740     // TLI.getShiftAmount().
5741     assert(N2.getValueType().getScalarSizeInBits() >=
5742                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5743            "Invalid use of small shift amount with oversized value!");
5744 
5745     // Always fold shifts of i1 values so the code generator doesn't need to
5746     // handle them.  Since we know the size of the shift has to be less than the
5747     // size of the value, the shift/rotate count is guaranteed to be zero.
5748     if (VT == MVT::i1)
5749       return N1;
5750     if (N2C && N2C->isZero())
5751       return N1;
5752     break;
5753   case ISD::FP_ROUND:
5754     assert(VT.isFloatingPoint() &&
5755            N1.getValueType().isFloatingPoint() &&
5756            VT.bitsLE(N1.getValueType()) &&
5757            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5758            "Invalid FP_ROUND!");
5759     if (N1.getValueType() == VT) return N1;  // noop conversion.
5760     break;
5761   case ISD::AssertSext:
5762   case ISD::AssertZext: {
5763     EVT EVT = cast<VTSDNode>(N2)->getVT();
5764     assert(VT == N1.getValueType() && "Not an inreg extend!");
5765     assert(VT.isInteger() && EVT.isInteger() &&
5766            "Cannot *_EXTEND_INREG FP types");
5767     assert(!EVT.isVector() &&
5768            "AssertSExt/AssertZExt type should be the vector element type "
5769            "rather than the vector type!");
5770     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5771     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5772     break;
5773   }
5774   case ISD::SIGN_EXTEND_INREG: {
5775     EVT EVT = cast<VTSDNode>(N2)->getVT();
5776     assert(VT == N1.getValueType() && "Not an inreg extend!");
5777     assert(VT.isInteger() && EVT.isInteger() &&
5778            "Cannot *_EXTEND_INREG FP types");
5779     assert(EVT.isVector() == VT.isVector() &&
5780            "SIGN_EXTEND_INREG type should be vector iff the operand "
5781            "type is vector!");
5782     assert((!EVT.isVector() ||
5783             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5784            "Vector element counts must match in SIGN_EXTEND_INREG");
5785     assert(EVT.bitsLE(VT) && "Not extending!");
5786     if (EVT == VT) return N1;  // Not actually extending
5787 
5788     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5789       unsigned FromBits = EVT.getScalarSizeInBits();
5790       Val <<= Val.getBitWidth() - FromBits;
5791       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5792       return getConstant(Val, DL, ConstantVT);
5793     };
5794 
5795     if (N1C) {
5796       const APInt &Val = N1C->getAPIntValue();
5797       return SignExtendInReg(Val, VT);
5798     }
5799 
5800     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5801       SmallVector<SDValue, 8> Ops;
5802       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5803       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5804         SDValue Op = N1.getOperand(i);
5805         if (Op.isUndef()) {
5806           Ops.push_back(getUNDEF(OpVT));
5807           continue;
5808         }
5809         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5810         APInt Val = C->getAPIntValue();
5811         Ops.push_back(SignExtendInReg(Val, OpVT));
5812       }
5813       return getBuildVector(VT, DL, Ops);
5814     }
5815     break;
5816   }
5817   case ISD::FP_TO_SINT_SAT:
5818   case ISD::FP_TO_UINT_SAT: {
5819     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5820            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5821     assert(N1.getValueType().isVector() == VT.isVector() &&
5822            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5823            "vector!");
5824     assert((!VT.isVector() || VT.getVectorNumElements() ==
5825                                   N1.getValueType().getVectorNumElements()) &&
5826            "Vector element counts must match in FP_TO_*INT_SAT");
5827     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5828            "Type to saturate to must be a scalar.");
5829     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5830            "Not extending!");
5831     break;
5832   }
5833   case ISD::EXTRACT_VECTOR_ELT:
5834     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5835            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5836              element type of the vector.");
5837 
5838     // Extract from an undefined value or using an undefined index is undefined.
5839     if (N1.isUndef() || N2.isUndef())
5840       return getUNDEF(VT);
5841 
5842     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5843     // vectors. For scalable vectors we will provide appropriate support for
5844     // dealing with arbitrary indices.
5845     if (N2C && N1.getValueType().isFixedLengthVector() &&
5846         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5847       return getUNDEF(VT);
5848 
5849     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5850     // expanding copies of large vectors from registers. This only works for
5851     // fixed length vectors, since we need to know the exact number of
5852     // elements.
5853     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5854         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5855       unsigned Factor =
5856         N1.getOperand(0).getValueType().getVectorNumElements();
5857       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5858                      N1.getOperand(N2C->getZExtValue() / Factor),
5859                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5860     }
5861 
5862     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5863     // lowering is expanding large vector constants.
5864     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5865                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5866       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5867               N1.getValueType().isFixedLengthVector()) &&
5868              "BUILD_VECTOR used for scalable vectors");
5869       unsigned Index =
5870           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5871       SDValue Elt = N1.getOperand(Index);
5872 
5873       if (VT != Elt.getValueType())
5874         // If the vector element type is not legal, the BUILD_VECTOR operands
5875         // are promoted and implicitly truncated, and the result implicitly
5876         // extended. Make that explicit here.
5877         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5878 
5879       return Elt;
5880     }
5881 
5882     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5883     // operations are lowered to scalars.
5884     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5885       // If the indices are the same, return the inserted element else
5886       // if the indices are known different, extract the element from
5887       // the original vector.
5888       SDValue N1Op2 = N1.getOperand(2);
5889       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5890 
5891       if (N1Op2C && N2C) {
5892         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5893           if (VT == N1.getOperand(1).getValueType())
5894             return N1.getOperand(1);
5895           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5896         }
5897         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5898       }
5899     }
5900 
5901     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5902     // when vector types are scalarized and v1iX is legal.
5903     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5904     // Here we are completely ignoring the extract element index (N2),
5905     // which is fine for fixed width vectors, since any index other than 0
5906     // is undefined anyway. However, this cannot be ignored for scalable
5907     // vectors - in theory we could support this, but we don't want to do this
5908     // without a profitability check.
5909     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5910         N1.getValueType().isFixedLengthVector() &&
5911         N1.getValueType().getVectorNumElements() == 1) {
5912       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5913                      N1.getOperand(1));
5914     }
5915     break;
5916   case ISD::EXTRACT_ELEMENT:
5917     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5918     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5919            (N1.getValueType().isInteger() == VT.isInteger()) &&
5920            N1.getValueType() != VT &&
5921            "Wrong types for EXTRACT_ELEMENT!");
5922 
5923     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5924     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5925     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5926     if (N1.getOpcode() == ISD::BUILD_PAIR)
5927       return N1.getOperand(N2C->getZExtValue());
5928 
5929     // EXTRACT_ELEMENT of a constant int is also very common.
5930     if (N1C) {
5931       unsigned ElementSize = VT.getSizeInBits();
5932       unsigned Shift = ElementSize * N2C->getZExtValue();
5933       const APInt &Val = N1C->getAPIntValue();
5934       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5935     }
5936     break;
5937   case ISD::EXTRACT_SUBVECTOR: {
5938     EVT N1VT = N1.getValueType();
5939     assert(VT.isVector() && N1VT.isVector() &&
5940            "Extract subvector VTs must be vectors!");
5941     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5942            "Extract subvector VTs must have the same element type!");
5943     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5944            "Cannot extract a scalable vector from a fixed length vector!");
5945     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5946             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5947            "Extract subvector must be from larger vector to smaller vector!");
5948     assert(N2C && "Extract subvector index must be a constant");
5949     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5950             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5951                 N1VT.getVectorMinNumElements()) &&
5952            "Extract subvector overflow!");
5953     assert(N2C->getAPIntValue().getBitWidth() ==
5954                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5955            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5956 
5957     // Trivial extraction.
5958     if (VT == N1VT)
5959       return N1;
5960 
5961     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5962     if (N1.isUndef())
5963       return getUNDEF(VT);
5964 
5965     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5966     // the concat have the same type as the extract.
5967     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5968         VT == N1.getOperand(0).getValueType()) {
5969       unsigned Factor = VT.getVectorMinNumElements();
5970       return N1.getOperand(N2C->getZExtValue() / Factor);
5971     }
5972 
5973     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5974     // during shuffle legalization.
5975     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5976         VT == N1.getOperand(1).getValueType())
5977       return N1.getOperand(1);
5978     break;
5979   }
5980   }
5981 
5982   // Perform trivial constant folding.
5983   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5984     return SV;
5985 
5986   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5987     return V;
5988 
5989   // Canonicalize an UNDEF to the RHS, even over a constant.
5990   if (N1.isUndef()) {
5991     if (TLI->isCommutativeBinOp(Opcode)) {
5992       std::swap(N1, N2);
5993     } else {
5994       switch (Opcode) {
5995       case ISD::SIGN_EXTEND_INREG:
5996       case ISD::SUB:
5997         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5998       case ISD::UDIV:
5999       case ISD::SDIV:
6000       case ISD::UREM:
6001       case ISD::SREM:
6002       case ISD::SSUBSAT:
6003       case ISD::USUBSAT:
6004         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6005       }
6006     }
6007   }
6008 
6009   // Fold a bunch of operators when the RHS is undef.
6010   if (N2.isUndef()) {
6011     switch (Opcode) {
6012     case ISD::XOR:
6013       if (N1.isUndef())
6014         // Handle undef ^ undef -> 0 special case. This is a common
6015         // idiom (misuse).
6016         return getConstant(0, DL, VT);
6017       LLVM_FALLTHROUGH;
6018     case ISD::ADD:
6019     case ISD::SUB:
6020     case ISD::UDIV:
6021     case ISD::SDIV:
6022     case ISD::UREM:
6023     case ISD::SREM:
6024       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6025     case ISD::MUL:
6026     case ISD::AND:
6027     case ISD::SSUBSAT:
6028     case ISD::USUBSAT:
6029       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6030     case ISD::OR:
6031     case ISD::SADDSAT:
6032     case ISD::UADDSAT:
6033       return getAllOnesConstant(DL, VT);
6034     }
6035   }
6036 
6037   // Memoize this node if possible.
6038   SDNode *N;
6039   SDVTList VTs = getVTList(VT);
6040   SDValue Ops[] = {N1, N2};
6041   if (VT != MVT::Glue) {
6042     FoldingSetNodeID ID;
6043     AddNodeIDNode(ID, Opcode, VTs, Ops);
6044     void *IP = nullptr;
6045     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6046       E->intersectFlagsWith(Flags);
6047       return SDValue(E, 0);
6048     }
6049 
6050     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6051     N->setFlags(Flags);
6052     createOperands(N, Ops);
6053     CSEMap.InsertNode(N, IP);
6054   } else {
6055     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6056     createOperands(N, Ops);
6057   }
6058 
6059   InsertNode(N);
6060   SDValue V = SDValue(N, 0);
6061   NewSDValueDbgMsg(V, "Creating new node: ", this);
6062   return V;
6063 }
6064 
6065 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6066                               SDValue N1, SDValue N2, SDValue N3) {
6067   SDNodeFlags Flags;
6068   if (Inserter)
6069     Flags = Inserter->getFlags();
6070   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6071 }
6072 
6073 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6074                               SDValue N1, SDValue N2, SDValue N3,
6075                               const SDNodeFlags Flags) {
6076   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6077          N2.getOpcode() != ISD::DELETED_NODE &&
6078          N3.getOpcode() != ISD::DELETED_NODE &&
6079          "Operand is DELETED_NODE!");
6080   // Perform various simplifications.
6081   switch (Opcode) {
6082   case ISD::FMA: {
6083     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6084     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6085            N3.getValueType() == VT && "FMA types must match!");
6086     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6087     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6088     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6089     if (N1CFP && N2CFP && N3CFP) {
6090       APFloat  V1 = N1CFP->getValueAPF();
6091       const APFloat &V2 = N2CFP->getValueAPF();
6092       const APFloat &V3 = N3CFP->getValueAPF();
6093       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6094       return getConstantFP(V1, DL, VT);
6095     }
6096     break;
6097   }
6098   case ISD::BUILD_VECTOR: {
6099     // Attempt to simplify BUILD_VECTOR.
6100     SDValue Ops[] = {N1, N2, N3};
6101     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6102       return V;
6103     break;
6104   }
6105   case ISD::CONCAT_VECTORS: {
6106     SDValue Ops[] = {N1, N2, N3};
6107     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6108       return V;
6109     break;
6110   }
6111   case ISD::SETCC: {
6112     assert(VT.isInteger() && "SETCC result type must be an integer!");
6113     assert(N1.getValueType() == N2.getValueType() &&
6114            "SETCC operands must have the same type!");
6115     assert(VT.isVector() == N1.getValueType().isVector() &&
6116            "SETCC type should be vector iff the operand type is vector!");
6117     assert((!VT.isVector() || VT.getVectorElementCount() ==
6118                                   N1.getValueType().getVectorElementCount()) &&
6119            "SETCC vector element counts must match!");
6120     // Use FoldSetCC to simplify SETCC's.
6121     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6122       return V;
6123     // Vector constant folding.
6124     SDValue Ops[] = {N1, N2, N3};
6125     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
6126       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6127       return V;
6128     }
6129     break;
6130   }
6131   case ISD::SELECT:
6132   case ISD::VSELECT:
6133     if (SDValue V = simplifySelect(N1, N2, N3))
6134       return V;
6135     break;
6136   case ISD::VECTOR_SHUFFLE:
6137     llvm_unreachable("should use getVectorShuffle constructor!");
6138   case ISD::INSERT_VECTOR_ELT: {
6139     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6140     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6141     // for scalable vectors where we will generate appropriate code to
6142     // deal with out-of-bounds cases correctly.
6143     if (N3C && N1.getValueType().isFixedLengthVector() &&
6144         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6145       return getUNDEF(VT);
6146 
6147     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6148     if (N3.isUndef())
6149       return getUNDEF(VT);
6150 
6151     // If the inserted element is an UNDEF, just use the input vector.
6152     if (N2.isUndef())
6153       return N1;
6154 
6155     break;
6156   }
6157   case ISD::INSERT_SUBVECTOR: {
6158     // Inserting undef into undef is still undef.
6159     if (N1.isUndef() && N2.isUndef())
6160       return getUNDEF(VT);
6161 
6162     EVT N2VT = N2.getValueType();
6163     assert(VT == N1.getValueType() &&
6164            "Dest and insert subvector source types must match!");
6165     assert(VT.isVector() && N2VT.isVector() &&
6166            "Insert subvector VTs must be vectors!");
6167     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6168            "Cannot insert a scalable vector into a fixed length vector!");
6169     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6170             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6171            "Insert subvector must be from smaller vector to larger vector!");
6172     assert(isa<ConstantSDNode>(N3) &&
6173            "Insert subvector index must be constant");
6174     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6175             (N2VT.getVectorMinNumElements() +
6176              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6177                 VT.getVectorMinNumElements()) &&
6178            "Insert subvector overflow!");
6179     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6180                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6181            "Constant index for INSERT_SUBVECTOR has an invalid size");
6182 
6183     // Trivial insertion.
6184     if (VT == N2VT)
6185       return N2;
6186 
6187     // If this is an insert of an extracted vector into an undef vector, we
6188     // can just use the input to the extract.
6189     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6190         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6191       return N2.getOperand(0);
6192     break;
6193   }
6194   case ISD::BITCAST:
6195     // Fold bit_convert nodes from a type to themselves.
6196     if (N1.getValueType() == VT)
6197       return N1;
6198     break;
6199   }
6200 
6201   // Memoize node if it doesn't produce a flag.
6202   SDNode *N;
6203   SDVTList VTs = getVTList(VT);
6204   SDValue Ops[] = {N1, N2, N3};
6205   if (VT != MVT::Glue) {
6206     FoldingSetNodeID ID;
6207     AddNodeIDNode(ID, Opcode, VTs, Ops);
6208     void *IP = nullptr;
6209     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6210       E->intersectFlagsWith(Flags);
6211       return SDValue(E, 0);
6212     }
6213 
6214     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6215     N->setFlags(Flags);
6216     createOperands(N, Ops);
6217     CSEMap.InsertNode(N, IP);
6218   } else {
6219     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6220     createOperands(N, Ops);
6221   }
6222 
6223   InsertNode(N);
6224   SDValue V = SDValue(N, 0);
6225   NewSDValueDbgMsg(V, "Creating new node: ", this);
6226   return V;
6227 }
6228 
6229 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6230                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6231   SDValue Ops[] = { N1, N2, N3, N4 };
6232   return getNode(Opcode, DL, VT, Ops);
6233 }
6234 
6235 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6236                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6237                               SDValue N5) {
6238   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6239   return getNode(Opcode, DL, VT, Ops);
6240 }
6241 
6242 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6243 /// the incoming stack arguments to be loaded from the stack.
6244 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6245   SmallVector<SDValue, 8> ArgChains;
6246 
6247   // Include the original chain at the beginning of the list. When this is
6248   // used by target LowerCall hooks, this helps legalize find the
6249   // CALLSEQ_BEGIN node.
6250   ArgChains.push_back(Chain);
6251 
6252   // Add a chain value for each stack argument.
6253   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6254        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6255     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6256       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6257         if (FI->getIndex() < 0)
6258           ArgChains.push_back(SDValue(L, 1));
6259 
6260   // Build a tokenfactor for all the chains.
6261   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6262 }
6263 
6264 /// getMemsetValue - Vectorized representation of the memset value
6265 /// operand.
6266 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6267                               const SDLoc &dl) {
6268   assert(!Value.isUndef());
6269 
6270   unsigned NumBits = VT.getScalarSizeInBits();
6271   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6272     assert(C->getAPIntValue().getBitWidth() == 8);
6273     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6274     if (VT.isInteger()) {
6275       bool IsOpaque = VT.getSizeInBits() > 64 ||
6276           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6277       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6278     }
6279     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6280                              VT);
6281   }
6282 
6283   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6284   EVT IntVT = VT.getScalarType();
6285   if (!IntVT.isInteger())
6286     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6287 
6288   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6289   if (NumBits > 8) {
6290     // Use a multiplication with 0x010101... to extend the input to the
6291     // required length.
6292     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6293     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6294                         DAG.getConstant(Magic, dl, IntVT));
6295   }
6296 
6297   if (VT != Value.getValueType() && !VT.isInteger())
6298     Value = DAG.getBitcast(VT.getScalarType(), Value);
6299   if (VT != Value.getValueType())
6300     Value = DAG.getSplatBuildVector(VT, dl, Value);
6301 
6302   return Value;
6303 }
6304 
6305 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6306 /// used when a memcpy is turned into a memset when the source is a constant
6307 /// string ptr.
6308 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6309                                   const TargetLowering &TLI,
6310                                   const ConstantDataArraySlice &Slice) {
6311   // Handle vector with all elements zero.
6312   if (Slice.Array == nullptr) {
6313     if (VT.isInteger())
6314       return DAG.getConstant(0, dl, VT);
6315     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6316       return DAG.getConstantFP(0.0, dl, VT);
6317     if (VT.isVector()) {
6318       unsigned NumElts = VT.getVectorNumElements();
6319       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6320       return DAG.getNode(ISD::BITCAST, dl, VT,
6321                          DAG.getConstant(0, dl,
6322                                          EVT::getVectorVT(*DAG.getContext(),
6323                                                           EltVT, NumElts)));
6324     }
6325     llvm_unreachable("Expected type!");
6326   }
6327 
6328   assert(!VT.isVector() && "Can't handle vector type here!");
6329   unsigned NumVTBits = VT.getSizeInBits();
6330   unsigned NumVTBytes = NumVTBits / 8;
6331   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6332 
6333   APInt Val(NumVTBits, 0);
6334   if (DAG.getDataLayout().isLittleEndian()) {
6335     for (unsigned i = 0; i != NumBytes; ++i)
6336       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6337   } else {
6338     for (unsigned i = 0; i != NumBytes; ++i)
6339       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6340   }
6341 
6342   // If the "cost" of materializing the integer immediate is less than the cost
6343   // of a load, then it is cost effective to turn the load into the immediate.
6344   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6345   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6346     return DAG.getConstant(Val, dl, VT);
6347   return SDValue(nullptr, 0);
6348 }
6349 
6350 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6351                                            const SDLoc &DL,
6352                                            const SDNodeFlags Flags) {
6353   EVT VT = Base.getValueType();
6354   SDValue Index;
6355 
6356   if (Offset.isScalable())
6357     Index = getVScale(DL, Base.getValueType(),
6358                       APInt(Base.getValueSizeInBits().getFixedSize(),
6359                             Offset.getKnownMinSize()));
6360   else
6361     Index = getConstant(Offset.getFixedSize(), DL, VT);
6362 
6363   return getMemBasePlusOffset(Base, Index, DL, Flags);
6364 }
6365 
6366 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6367                                            const SDLoc &DL,
6368                                            const SDNodeFlags Flags) {
6369   assert(Offset.getValueType().isInteger());
6370   EVT BasePtrVT = Ptr.getValueType();
6371   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6372 }
6373 
6374 /// Returns true if memcpy source is constant data.
6375 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6376   uint64_t SrcDelta = 0;
6377   GlobalAddressSDNode *G = nullptr;
6378   if (Src.getOpcode() == ISD::GlobalAddress)
6379     G = cast<GlobalAddressSDNode>(Src);
6380   else if (Src.getOpcode() == ISD::ADD &&
6381            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6382            Src.getOperand(1).getOpcode() == ISD::Constant) {
6383     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6384     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6385   }
6386   if (!G)
6387     return false;
6388 
6389   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6390                                   SrcDelta + G->getOffset());
6391 }
6392 
6393 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6394                                       SelectionDAG &DAG) {
6395   // On Darwin, -Os means optimize for size without hurting performance, so
6396   // only really optimize for size when -Oz (MinSize) is used.
6397   if (MF.getTarget().getTargetTriple().isOSDarwin())
6398     return MF.getFunction().hasMinSize();
6399   return DAG.shouldOptForSize();
6400 }
6401 
6402 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6403                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6404                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6405                           SmallVector<SDValue, 16> &OutStoreChains) {
6406   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6407   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6408   SmallVector<SDValue, 16> GluedLoadChains;
6409   for (unsigned i = From; i < To; ++i) {
6410     OutChains.push_back(OutLoadChains[i]);
6411     GluedLoadChains.push_back(OutLoadChains[i]);
6412   }
6413 
6414   // Chain for all loads.
6415   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6416                                   GluedLoadChains);
6417 
6418   for (unsigned i = From; i < To; ++i) {
6419     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6420     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6421                                   ST->getBasePtr(), ST->getMemoryVT(),
6422                                   ST->getMemOperand());
6423     OutChains.push_back(NewStore);
6424   }
6425 }
6426 
6427 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6428                                        SDValue Chain, SDValue Dst, SDValue Src,
6429                                        uint64_t Size, Align Alignment,
6430                                        bool isVol, bool AlwaysInline,
6431                                        MachinePointerInfo DstPtrInfo,
6432                                        MachinePointerInfo SrcPtrInfo,
6433                                        const AAMDNodes &AAInfo) {
6434   // Turn a memcpy of undef to nop.
6435   // FIXME: We need to honor volatile even is Src is undef.
6436   if (Src.isUndef())
6437     return Chain;
6438 
6439   // Expand memcpy to a series of load and store ops if the size operand falls
6440   // below a certain threshold.
6441   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6442   // rather than maybe a humongous number of loads and stores.
6443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6444   const DataLayout &DL = DAG.getDataLayout();
6445   LLVMContext &C = *DAG.getContext();
6446   std::vector<EVT> MemOps;
6447   bool DstAlignCanChange = false;
6448   MachineFunction &MF = DAG.getMachineFunction();
6449   MachineFrameInfo &MFI = MF.getFrameInfo();
6450   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6451   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6452   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6453     DstAlignCanChange = true;
6454   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6455   if (!SrcAlign || Alignment > *SrcAlign)
6456     SrcAlign = Alignment;
6457   assert(SrcAlign && "SrcAlign must be set");
6458   ConstantDataArraySlice Slice;
6459   // If marked as volatile, perform a copy even when marked as constant.
6460   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6461   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6462   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6463   const MemOp Op = isZeroConstant
6464                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6465                                     /*IsZeroMemset*/ true, isVol)
6466                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6467                                      *SrcAlign, isVol, CopyFromConstant);
6468   if (!TLI.findOptimalMemOpLowering(
6469           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6470           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6471     return SDValue();
6472 
6473   if (DstAlignCanChange) {
6474     Type *Ty = MemOps[0].getTypeForEVT(C);
6475     Align NewAlign = DL.getABITypeAlign(Ty);
6476 
6477     // Don't promote to an alignment that would require dynamic stack
6478     // realignment.
6479     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6480     if (!TRI->hasStackRealignment(MF))
6481       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6482         NewAlign = NewAlign / 2;
6483 
6484     if (NewAlign > Alignment) {
6485       // Give the stack frame object a larger alignment if needed.
6486       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6487         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6488       Alignment = NewAlign;
6489     }
6490   }
6491 
6492   // Prepare AAInfo for loads/stores after lowering this memcpy.
6493   AAMDNodes NewAAInfo = AAInfo;
6494   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6495 
6496   MachineMemOperand::Flags MMOFlags =
6497       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6498   SmallVector<SDValue, 16> OutLoadChains;
6499   SmallVector<SDValue, 16> OutStoreChains;
6500   SmallVector<SDValue, 32> OutChains;
6501   unsigned NumMemOps = MemOps.size();
6502   uint64_t SrcOff = 0, DstOff = 0;
6503   for (unsigned i = 0; i != NumMemOps; ++i) {
6504     EVT VT = MemOps[i];
6505     unsigned VTSize = VT.getSizeInBits() / 8;
6506     SDValue Value, Store;
6507 
6508     if (VTSize > Size) {
6509       // Issuing an unaligned load / store pair  that overlaps with the previous
6510       // pair. Adjust the offset accordingly.
6511       assert(i == NumMemOps-1 && i != 0);
6512       SrcOff -= VTSize - Size;
6513       DstOff -= VTSize - Size;
6514     }
6515 
6516     if (CopyFromConstant &&
6517         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6518       // It's unlikely a store of a vector immediate can be done in a single
6519       // instruction. It would require a load from a constantpool first.
6520       // We only handle zero vectors here.
6521       // FIXME: Handle other cases where store of vector immediate is done in
6522       // a single instruction.
6523       ConstantDataArraySlice SubSlice;
6524       if (SrcOff < Slice.Length) {
6525         SubSlice = Slice;
6526         SubSlice.move(SrcOff);
6527       } else {
6528         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6529         SubSlice.Array = nullptr;
6530         SubSlice.Offset = 0;
6531         SubSlice.Length = VTSize;
6532       }
6533       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6534       if (Value.getNode()) {
6535         Store = DAG.getStore(
6536             Chain, dl, Value,
6537             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6538             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6539         OutChains.push_back(Store);
6540       }
6541     }
6542 
6543     if (!Store.getNode()) {
6544       // The type might not be legal for the target.  This should only happen
6545       // if the type is smaller than a legal type, as on PPC, so the right
6546       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6547       // to Load/Store if NVT==VT.
6548       // FIXME does the case above also need this?
6549       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6550       assert(NVT.bitsGE(VT));
6551 
6552       bool isDereferenceable =
6553         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6554       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6555       if (isDereferenceable)
6556         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6557 
6558       Value = DAG.getExtLoad(
6559           ISD::EXTLOAD, dl, NVT, Chain,
6560           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6561           SrcPtrInfo.getWithOffset(SrcOff), VT,
6562           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6563       OutLoadChains.push_back(Value.getValue(1));
6564 
6565       Store = DAG.getTruncStore(
6566           Chain, dl, Value,
6567           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6568           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6569       OutStoreChains.push_back(Store);
6570     }
6571     SrcOff += VTSize;
6572     DstOff += VTSize;
6573     Size -= VTSize;
6574   }
6575 
6576   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6577                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6578   unsigned NumLdStInMemcpy = OutStoreChains.size();
6579 
6580   if (NumLdStInMemcpy) {
6581     // It may be that memcpy might be converted to memset if it's memcpy
6582     // of constants. In such a case, we won't have loads and stores, but
6583     // just stores. In the absence of loads, there is nothing to gang up.
6584     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6585       // If target does not care, just leave as it.
6586       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6587         OutChains.push_back(OutLoadChains[i]);
6588         OutChains.push_back(OutStoreChains[i]);
6589       }
6590     } else {
6591       // Ld/St less than/equal limit set by target.
6592       if (NumLdStInMemcpy <= GluedLdStLimit) {
6593           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6594                                         NumLdStInMemcpy, OutLoadChains,
6595                                         OutStoreChains);
6596       } else {
6597         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6598         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6599         unsigned GlueIter = 0;
6600 
6601         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6602           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6603           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6604 
6605           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6606                                        OutLoadChains, OutStoreChains);
6607           GlueIter += GluedLdStLimit;
6608         }
6609 
6610         // Residual ld/st.
6611         if (RemainingLdStInMemcpy) {
6612           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6613                                         RemainingLdStInMemcpy, OutLoadChains,
6614                                         OutStoreChains);
6615         }
6616       }
6617     }
6618   }
6619   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6620 }
6621 
6622 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6623                                         SDValue Chain, SDValue Dst, SDValue Src,
6624                                         uint64_t Size, Align Alignment,
6625                                         bool isVol, bool AlwaysInline,
6626                                         MachinePointerInfo DstPtrInfo,
6627                                         MachinePointerInfo SrcPtrInfo,
6628                                         const AAMDNodes &AAInfo) {
6629   // Turn a memmove of undef to nop.
6630   // FIXME: We need to honor volatile even is Src is undef.
6631   if (Src.isUndef())
6632     return Chain;
6633 
6634   // Expand memmove to a series of load and store ops if the size operand falls
6635   // below a certain threshold.
6636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6637   const DataLayout &DL = DAG.getDataLayout();
6638   LLVMContext &C = *DAG.getContext();
6639   std::vector<EVT> MemOps;
6640   bool DstAlignCanChange = false;
6641   MachineFunction &MF = DAG.getMachineFunction();
6642   MachineFrameInfo &MFI = MF.getFrameInfo();
6643   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6644   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6645   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6646     DstAlignCanChange = true;
6647   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6648   if (!SrcAlign || Alignment > *SrcAlign)
6649     SrcAlign = Alignment;
6650   assert(SrcAlign && "SrcAlign must be set");
6651   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6652   if (!TLI.findOptimalMemOpLowering(
6653           MemOps, Limit,
6654           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6655                       /*IsVolatile*/ true),
6656           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6657           MF.getFunction().getAttributes()))
6658     return SDValue();
6659 
6660   if (DstAlignCanChange) {
6661     Type *Ty = MemOps[0].getTypeForEVT(C);
6662     Align NewAlign = DL.getABITypeAlign(Ty);
6663     if (NewAlign > Alignment) {
6664       // Give the stack frame object a larger alignment if needed.
6665       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6666         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6667       Alignment = NewAlign;
6668     }
6669   }
6670 
6671   // Prepare AAInfo for loads/stores after lowering this memmove.
6672   AAMDNodes NewAAInfo = AAInfo;
6673   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6674 
6675   MachineMemOperand::Flags MMOFlags =
6676       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6677   uint64_t SrcOff = 0, DstOff = 0;
6678   SmallVector<SDValue, 8> LoadValues;
6679   SmallVector<SDValue, 8> LoadChains;
6680   SmallVector<SDValue, 8> OutChains;
6681   unsigned NumMemOps = MemOps.size();
6682   for (unsigned i = 0; i < NumMemOps; i++) {
6683     EVT VT = MemOps[i];
6684     unsigned VTSize = VT.getSizeInBits() / 8;
6685     SDValue Value;
6686 
6687     bool isDereferenceable =
6688       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6689     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6690     if (isDereferenceable)
6691       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6692 
6693     Value = DAG.getLoad(
6694         VT, dl, Chain,
6695         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6696         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6697     LoadValues.push_back(Value);
6698     LoadChains.push_back(Value.getValue(1));
6699     SrcOff += VTSize;
6700   }
6701   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6702   OutChains.clear();
6703   for (unsigned i = 0; i < NumMemOps; i++) {
6704     EVT VT = MemOps[i];
6705     unsigned VTSize = VT.getSizeInBits() / 8;
6706     SDValue Store;
6707 
6708     Store = DAG.getStore(
6709         Chain, dl, LoadValues[i],
6710         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6711         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6712     OutChains.push_back(Store);
6713     DstOff += VTSize;
6714   }
6715 
6716   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6717 }
6718 
6719 /// Lower the call to 'memset' intrinsic function into a series of store
6720 /// operations.
6721 ///
6722 /// \param DAG Selection DAG where lowered code is placed.
6723 /// \param dl Link to corresponding IR location.
6724 /// \param Chain Control flow dependency.
6725 /// \param Dst Pointer to destination memory location.
6726 /// \param Src Value of byte to write into the memory.
6727 /// \param Size Number of bytes to write.
6728 /// \param Alignment Alignment of the destination in bytes.
6729 /// \param isVol True if destination is volatile.
6730 /// \param DstPtrInfo IR information on the memory pointer.
6731 /// \returns New head in the control flow, if lowering was successful, empty
6732 /// SDValue otherwise.
6733 ///
6734 /// The function tries to replace 'llvm.memset' intrinsic with several store
6735 /// operations and value calculation code. This is usually profitable for small
6736 /// memory size.
6737 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6738                                SDValue Chain, SDValue Dst, SDValue Src,
6739                                uint64_t Size, Align Alignment, bool isVol,
6740                                MachinePointerInfo DstPtrInfo,
6741                                const AAMDNodes &AAInfo) {
6742   // Turn a memset of undef to nop.
6743   // FIXME: We need to honor volatile even is Src is undef.
6744   if (Src.isUndef())
6745     return Chain;
6746 
6747   // Expand memset to a series of load/store ops if the size operand
6748   // falls below a certain threshold.
6749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6750   std::vector<EVT> MemOps;
6751   bool DstAlignCanChange = false;
6752   MachineFunction &MF = DAG.getMachineFunction();
6753   MachineFrameInfo &MFI = MF.getFrameInfo();
6754   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6755   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6756   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6757     DstAlignCanChange = true;
6758   bool IsZeroVal =
6759       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6760   if (!TLI.findOptimalMemOpLowering(
6761           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6762           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6763           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6764     return SDValue();
6765 
6766   if (DstAlignCanChange) {
6767     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6768     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6769     if (NewAlign > Alignment) {
6770       // Give the stack frame object a larger alignment if needed.
6771       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6772         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6773       Alignment = NewAlign;
6774     }
6775   }
6776 
6777   SmallVector<SDValue, 8> OutChains;
6778   uint64_t DstOff = 0;
6779   unsigned NumMemOps = MemOps.size();
6780 
6781   // Find the largest store and generate the bit pattern for it.
6782   EVT LargestVT = MemOps[0];
6783   for (unsigned i = 1; i < NumMemOps; i++)
6784     if (MemOps[i].bitsGT(LargestVT))
6785       LargestVT = MemOps[i];
6786   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6787 
6788   // Prepare AAInfo for loads/stores after lowering this memset.
6789   AAMDNodes NewAAInfo = AAInfo;
6790   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6791 
6792   for (unsigned i = 0; i < NumMemOps; i++) {
6793     EVT VT = MemOps[i];
6794     unsigned VTSize = VT.getSizeInBits() / 8;
6795     if (VTSize > Size) {
6796       // Issuing an unaligned load / store pair  that overlaps with the previous
6797       // pair. Adjust the offset accordingly.
6798       assert(i == NumMemOps-1 && i != 0);
6799       DstOff -= VTSize - Size;
6800     }
6801 
6802     // If this store is smaller than the largest store see whether we can get
6803     // the smaller value for free with a truncate.
6804     SDValue Value = MemSetValue;
6805     if (VT.bitsLT(LargestVT)) {
6806       if (!LargestVT.isVector() && !VT.isVector() &&
6807           TLI.isTruncateFree(LargestVT, VT))
6808         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6809       else
6810         Value = getMemsetValue(Src, VT, DAG, dl);
6811     }
6812     assert(Value.getValueType() == VT && "Value with wrong type.");
6813     SDValue Store = DAG.getStore(
6814         Chain, dl, Value,
6815         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6816         DstPtrInfo.getWithOffset(DstOff), Alignment,
6817         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6818         NewAAInfo);
6819     OutChains.push_back(Store);
6820     DstOff += VT.getSizeInBits() / 8;
6821     Size -= VTSize;
6822   }
6823 
6824   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6825 }
6826 
6827 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6828                                             unsigned AS) {
6829   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6830   // pointer operands can be losslessly bitcasted to pointers of address space 0
6831   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6832     report_fatal_error("cannot lower memory intrinsic in address space " +
6833                        Twine(AS));
6834   }
6835 }
6836 
6837 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6838                                 SDValue Src, SDValue Size, Align Alignment,
6839                                 bool isVol, bool AlwaysInline, bool isTailCall,
6840                                 MachinePointerInfo DstPtrInfo,
6841                                 MachinePointerInfo SrcPtrInfo,
6842                                 const AAMDNodes &AAInfo) {
6843   // Check to see if we should lower the memcpy to loads and stores first.
6844   // For cases within the target-specified limits, this is the best choice.
6845   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6846   if (ConstantSize) {
6847     // Memcpy with size zero? Just return the original chain.
6848     if (ConstantSize->isZero())
6849       return Chain;
6850 
6851     SDValue Result = getMemcpyLoadsAndStores(
6852         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6853         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6854     if (Result.getNode())
6855       return Result;
6856   }
6857 
6858   // Then check to see if we should lower the memcpy with target-specific
6859   // code. If the target chooses to do this, this is the next best.
6860   if (TSI) {
6861     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6862         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6863         DstPtrInfo, SrcPtrInfo);
6864     if (Result.getNode())
6865       return Result;
6866   }
6867 
6868   // If we really need inline code and the target declined to provide it,
6869   // use a (potentially long) sequence of loads and stores.
6870   if (AlwaysInline) {
6871     assert(ConstantSize && "AlwaysInline requires a constant size!");
6872     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6873                                    ConstantSize->getZExtValue(), Alignment,
6874                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6875   }
6876 
6877   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6878   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6879 
6880   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6881   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6882   // respect volatile, so they may do things like read or write memory
6883   // beyond the given memory regions. But fixing this isn't easy, and most
6884   // people don't care.
6885 
6886   // Emit a library call.
6887   TargetLowering::ArgListTy Args;
6888   TargetLowering::ArgListEntry Entry;
6889   Entry.Ty = Type::getInt8PtrTy(*getContext());
6890   Entry.Node = Dst; Args.push_back(Entry);
6891   Entry.Node = Src; Args.push_back(Entry);
6892 
6893   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6894   Entry.Node = Size; Args.push_back(Entry);
6895   // FIXME: pass in SDLoc
6896   TargetLowering::CallLoweringInfo CLI(*this);
6897   CLI.setDebugLoc(dl)
6898       .setChain(Chain)
6899       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6900                     Dst.getValueType().getTypeForEVT(*getContext()),
6901                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6902                                       TLI->getPointerTy(getDataLayout())),
6903                     std::move(Args))
6904       .setDiscardResult()
6905       .setTailCall(isTailCall);
6906 
6907   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6908   return CallResult.second;
6909 }
6910 
6911 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6912                                       SDValue Dst, unsigned DstAlign,
6913                                       SDValue Src, unsigned SrcAlign,
6914                                       SDValue Size, Type *SizeTy,
6915                                       unsigned ElemSz, bool isTailCall,
6916                                       MachinePointerInfo DstPtrInfo,
6917                                       MachinePointerInfo SrcPtrInfo) {
6918   // Emit a library call.
6919   TargetLowering::ArgListTy Args;
6920   TargetLowering::ArgListEntry Entry;
6921   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6922   Entry.Node = Dst;
6923   Args.push_back(Entry);
6924 
6925   Entry.Node = Src;
6926   Args.push_back(Entry);
6927 
6928   Entry.Ty = SizeTy;
6929   Entry.Node = Size;
6930   Args.push_back(Entry);
6931 
6932   RTLIB::Libcall LibraryCall =
6933       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6934   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6935     report_fatal_error("Unsupported element size");
6936 
6937   TargetLowering::CallLoweringInfo CLI(*this);
6938   CLI.setDebugLoc(dl)
6939       .setChain(Chain)
6940       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6941                     Type::getVoidTy(*getContext()),
6942                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6943                                       TLI->getPointerTy(getDataLayout())),
6944                     std::move(Args))
6945       .setDiscardResult()
6946       .setTailCall(isTailCall);
6947 
6948   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6949   return CallResult.second;
6950 }
6951 
6952 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6953                                  SDValue Src, SDValue Size, Align Alignment,
6954                                  bool isVol, bool isTailCall,
6955                                  MachinePointerInfo DstPtrInfo,
6956                                  MachinePointerInfo SrcPtrInfo,
6957                                  const AAMDNodes &AAInfo) {
6958   // Check to see if we should lower the memmove to loads and stores first.
6959   // For cases within the target-specified limits, this is the best choice.
6960   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6961   if (ConstantSize) {
6962     // Memmove with size zero? Just return the original chain.
6963     if (ConstantSize->isZero())
6964       return Chain;
6965 
6966     SDValue Result = getMemmoveLoadsAndStores(
6967         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6968         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6969     if (Result.getNode())
6970       return Result;
6971   }
6972 
6973   // Then check to see if we should lower the memmove with target-specific
6974   // code. If the target chooses to do this, this is the next best.
6975   if (TSI) {
6976     SDValue Result =
6977         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6978                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6979     if (Result.getNode())
6980       return Result;
6981   }
6982 
6983   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6984   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6985 
6986   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6987   // not be safe.  See memcpy above for more details.
6988 
6989   // Emit a library call.
6990   TargetLowering::ArgListTy Args;
6991   TargetLowering::ArgListEntry Entry;
6992   Entry.Ty = Type::getInt8PtrTy(*getContext());
6993   Entry.Node = Dst; Args.push_back(Entry);
6994   Entry.Node = Src; Args.push_back(Entry);
6995 
6996   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6997   Entry.Node = Size; Args.push_back(Entry);
6998   // FIXME:  pass in SDLoc
6999   TargetLowering::CallLoweringInfo CLI(*this);
7000   CLI.setDebugLoc(dl)
7001       .setChain(Chain)
7002       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7003                     Dst.getValueType().getTypeForEVT(*getContext()),
7004                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7005                                       TLI->getPointerTy(getDataLayout())),
7006                     std::move(Args))
7007       .setDiscardResult()
7008       .setTailCall(isTailCall);
7009 
7010   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7011   return CallResult.second;
7012 }
7013 
7014 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7015                                        SDValue Dst, unsigned DstAlign,
7016                                        SDValue Src, unsigned SrcAlign,
7017                                        SDValue Size, Type *SizeTy,
7018                                        unsigned ElemSz, bool isTailCall,
7019                                        MachinePointerInfo DstPtrInfo,
7020                                        MachinePointerInfo SrcPtrInfo) {
7021   // Emit a library call.
7022   TargetLowering::ArgListTy Args;
7023   TargetLowering::ArgListEntry Entry;
7024   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7025   Entry.Node = Dst;
7026   Args.push_back(Entry);
7027 
7028   Entry.Node = Src;
7029   Args.push_back(Entry);
7030 
7031   Entry.Ty = SizeTy;
7032   Entry.Node = Size;
7033   Args.push_back(Entry);
7034 
7035   RTLIB::Libcall LibraryCall =
7036       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7037   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7038     report_fatal_error("Unsupported element size");
7039 
7040   TargetLowering::CallLoweringInfo CLI(*this);
7041   CLI.setDebugLoc(dl)
7042       .setChain(Chain)
7043       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7044                     Type::getVoidTy(*getContext()),
7045                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7046                                       TLI->getPointerTy(getDataLayout())),
7047                     std::move(Args))
7048       .setDiscardResult()
7049       .setTailCall(isTailCall);
7050 
7051   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7052   return CallResult.second;
7053 }
7054 
7055 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7056                                 SDValue Src, SDValue Size, Align Alignment,
7057                                 bool isVol, bool isTailCall,
7058                                 MachinePointerInfo DstPtrInfo,
7059                                 const AAMDNodes &AAInfo) {
7060   // Check to see if we should lower the memset to stores first.
7061   // For cases within the target-specified limits, this is the best choice.
7062   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7063   if (ConstantSize) {
7064     // Memset with size zero? Just return the original chain.
7065     if (ConstantSize->isZero())
7066       return Chain;
7067 
7068     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7069                                      ConstantSize->getZExtValue(), Alignment,
7070                                      isVol, DstPtrInfo, AAInfo);
7071 
7072     if (Result.getNode())
7073       return Result;
7074   }
7075 
7076   // Then check to see if we should lower the memset with target-specific
7077   // code. If the target chooses to do this, this is the next best.
7078   if (TSI) {
7079     SDValue Result = TSI->EmitTargetCodeForMemset(
7080         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7081     if (Result.getNode())
7082       return Result;
7083   }
7084 
7085   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7086 
7087   // Emit a library call.
7088   TargetLowering::ArgListTy Args;
7089   TargetLowering::ArgListEntry Entry;
7090   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7091   Args.push_back(Entry);
7092   Entry.Node = Src;
7093   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7094   Args.push_back(Entry);
7095   Entry.Node = Size;
7096   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7097   Args.push_back(Entry);
7098 
7099   // FIXME: pass in SDLoc
7100   TargetLowering::CallLoweringInfo CLI(*this);
7101   CLI.setDebugLoc(dl)
7102       .setChain(Chain)
7103       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7104                     Dst.getValueType().getTypeForEVT(*getContext()),
7105                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7106                                       TLI->getPointerTy(getDataLayout())),
7107                     std::move(Args))
7108       .setDiscardResult()
7109       .setTailCall(isTailCall);
7110 
7111   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7112   return CallResult.second;
7113 }
7114 
7115 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7116                                       SDValue Dst, unsigned DstAlign,
7117                                       SDValue Value, SDValue Size, Type *SizeTy,
7118                                       unsigned ElemSz, bool isTailCall,
7119                                       MachinePointerInfo DstPtrInfo) {
7120   // Emit a library call.
7121   TargetLowering::ArgListTy Args;
7122   TargetLowering::ArgListEntry Entry;
7123   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7124   Entry.Node = Dst;
7125   Args.push_back(Entry);
7126 
7127   Entry.Ty = Type::getInt8Ty(*getContext());
7128   Entry.Node = Value;
7129   Args.push_back(Entry);
7130 
7131   Entry.Ty = SizeTy;
7132   Entry.Node = Size;
7133   Args.push_back(Entry);
7134 
7135   RTLIB::Libcall LibraryCall =
7136       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7137   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7138     report_fatal_error("Unsupported element size");
7139 
7140   TargetLowering::CallLoweringInfo CLI(*this);
7141   CLI.setDebugLoc(dl)
7142       .setChain(Chain)
7143       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7144                     Type::getVoidTy(*getContext()),
7145                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7146                                       TLI->getPointerTy(getDataLayout())),
7147                     std::move(Args))
7148       .setDiscardResult()
7149       .setTailCall(isTailCall);
7150 
7151   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7152   return CallResult.second;
7153 }
7154 
7155 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7156                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7157                                 MachineMemOperand *MMO) {
7158   FoldingSetNodeID ID;
7159   ID.AddInteger(MemVT.getRawBits());
7160   AddNodeIDNode(ID, Opcode, VTList, Ops);
7161   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7162   void* IP = nullptr;
7163   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7164     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7165     return SDValue(E, 0);
7166   }
7167 
7168   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7169                                     VTList, MemVT, MMO);
7170   createOperands(N, Ops);
7171 
7172   CSEMap.InsertNode(N, IP);
7173   InsertNode(N);
7174   return SDValue(N, 0);
7175 }
7176 
7177 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7178                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7179                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7180                                        MachineMemOperand *MMO) {
7181   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7182          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7183   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7184 
7185   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7186   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7187 }
7188 
7189 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7190                                 SDValue Chain, SDValue Ptr, SDValue Val,
7191                                 MachineMemOperand *MMO) {
7192   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7193           Opcode == ISD::ATOMIC_LOAD_SUB ||
7194           Opcode == ISD::ATOMIC_LOAD_AND ||
7195           Opcode == ISD::ATOMIC_LOAD_CLR ||
7196           Opcode == ISD::ATOMIC_LOAD_OR ||
7197           Opcode == ISD::ATOMIC_LOAD_XOR ||
7198           Opcode == ISD::ATOMIC_LOAD_NAND ||
7199           Opcode == ISD::ATOMIC_LOAD_MIN ||
7200           Opcode == ISD::ATOMIC_LOAD_MAX ||
7201           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7202           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7203           Opcode == ISD::ATOMIC_LOAD_FADD ||
7204           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7205           Opcode == ISD::ATOMIC_SWAP ||
7206           Opcode == ISD::ATOMIC_STORE) &&
7207          "Invalid Atomic Op");
7208 
7209   EVT VT = Val.getValueType();
7210 
7211   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7212                                                getVTList(VT, MVT::Other);
7213   SDValue Ops[] = {Chain, Ptr, Val};
7214   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7215 }
7216 
7217 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7218                                 EVT VT, SDValue Chain, SDValue Ptr,
7219                                 MachineMemOperand *MMO) {
7220   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7221 
7222   SDVTList VTs = getVTList(VT, MVT::Other);
7223   SDValue Ops[] = {Chain, Ptr};
7224   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7225 }
7226 
7227 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7228 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7229   if (Ops.size() == 1)
7230     return Ops[0];
7231 
7232   SmallVector<EVT, 4> VTs;
7233   VTs.reserve(Ops.size());
7234   for (const SDValue &Op : Ops)
7235     VTs.push_back(Op.getValueType());
7236   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7237 }
7238 
7239 SDValue SelectionDAG::getMemIntrinsicNode(
7240     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7241     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7242     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7243   if (!Size && MemVT.isScalableVector())
7244     Size = MemoryLocation::UnknownSize;
7245   else if (!Size)
7246     Size = MemVT.getStoreSize();
7247 
7248   MachineFunction &MF = getMachineFunction();
7249   MachineMemOperand *MMO =
7250       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7251 
7252   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7253 }
7254 
7255 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7256                                           SDVTList VTList,
7257                                           ArrayRef<SDValue> Ops, EVT MemVT,
7258                                           MachineMemOperand *MMO) {
7259   assert((Opcode == ISD::INTRINSIC_VOID ||
7260           Opcode == ISD::INTRINSIC_W_CHAIN ||
7261           Opcode == ISD::PREFETCH ||
7262           ((int)Opcode <= std::numeric_limits<int>::max() &&
7263            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7264          "Opcode is not a memory-accessing opcode!");
7265 
7266   // Memoize the node unless it returns a flag.
7267   MemIntrinsicSDNode *N;
7268   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7269     FoldingSetNodeID ID;
7270     AddNodeIDNode(ID, Opcode, VTList, Ops);
7271     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7272         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7273     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7274     void *IP = nullptr;
7275     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7276       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7277       return SDValue(E, 0);
7278     }
7279 
7280     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7281                                       VTList, MemVT, MMO);
7282     createOperands(N, Ops);
7283 
7284   CSEMap.InsertNode(N, IP);
7285   } else {
7286     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7287                                       VTList, MemVT, MMO);
7288     createOperands(N, Ops);
7289   }
7290   InsertNode(N);
7291   SDValue V(N, 0);
7292   NewSDValueDbgMsg(V, "Creating new node: ", this);
7293   return V;
7294 }
7295 
7296 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7297                                       SDValue Chain, int FrameIndex,
7298                                       int64_t Size, int64_t Offset) {
7299   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7300   const auto VTs = getVTList(MVT::Other);
7301   SDValue Ops[2] = {
7302       Chain,
7303       getFrameIndex(FrameIndex,
7304                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7305                     true)};
7306 
7307   FoldingSetNodeID ID;
7308   AddNodeIDNode(ID, Opcode, VTs, Ops);
7309   ID.AddInteger(FrameIndex);
7310   ID.AddInteger(Size);
7311   ID.AddInteger(Offset);
7312   void *IP = nullptr;
7313   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7314     return SDValue(E, 0);
7315 
7316   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7317       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7318   createOperands(N, Ops);
7319   CSEMap.InsertNode(N, IP);
7320   InsertNode(N);
7321   SDValue V(N, 0);
7322   NewSDValueDbgMsg(V, "Creating new node: ", this);
7323   return V;
7324 }
7325 
7326 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7327                                          uint64_t Guid, uint64_t Index,
7328                                          uint32_t Attr) {
7329   const unsigned Opcode = ISD::PSEUDO_PROBE;
7330   const auto VTs = getVTList(MVT::Other);
7331   SDValue Ops[] = {Chain};
7332   FoldingSetNodeID ID;
7333   AddNodeIDNode(ID, Opcode, VTs, Ops);
7334   ID.AddInteger(Guid);
7335   ID.AddInteger(Index);
7336   void *IP = nullptr;
7337   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7338     return SDValue(E, 0);
7339 
7340   auto *N = newSDNode<PseudoProbeSDNode>(
7341       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7342   createOperands(N, Ops);
7343   CSEMap.InsertNode(N, IP);
7344   InsertNode(N);
7345   SDValue V(N, 0);
7346   NewSDValueDbgMsg(V, "Creating new node: ", this);
7347   return V;
7348 }
7349 
7350 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7351 /// MachinePointerInfo record from it.  This is particularly useful because the
7352 /// code generator has many cases where it doesn't bother passing in a
7353 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7354 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7355                                            SelectionDAG &DAG, SDValue Ptr,
7356                                            int64_t Offset = 0) {
7357   // If this is FI+Offset, we can model it.
7358   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7359     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7360                                              FI->getIndex(), Offset);
7361 
7362   // If this is (FI+Offset1)+Offset2, we can model it.
7363   if (Ptr.getOpcode() != ISD::ADD ||
7364       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7365       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7366     return Info;
7367 
7368   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7369   return MachinePointerInfo::getFixedStack(
7370       DAG.getMachineFunction(), FI,
7371       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7372 }
7373 
7374 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7375 /// MachinePointerInfo record from it.  This is particularly useful because the
7376 /// code generator has many cases where it doesn't bother passing in a
7377 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7378 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7379                                            SelectionDAG &DAG, SDValue Ptr,
7380                                            SDValue OffsetOp) {
7381   // If the 'Offset' value isn't a constant, we can't handle this.
7382   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7383     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7384   if (OffsetOp.isUndef())
7385     return InferPointerInfo(Info, DAG, Ptr);
7386   return Info;
7387 }
7388 
7389 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7390                               EVT VT, const SDLoc &dl, SDValue Chain,
7391                               SDValue Ptr, SDValue Offset,
7392                               MachinePointerInfo PtrInfo, EVT MemVT,
7393                               Align Alignment,
7394                               MachineMemOperand::Flags MMOFlags,
7395                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7396   assert(Chain.getValueType() == MVT::Other &&
7397         "Invalid chain type");
7398 
7399   MMOFlags |= MachineMemOperand::MOLoad;
7400   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7401   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7402   // clients.
7403   if (PtrInfo.V.isNull())
7404     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7405 
7406   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7407   MachineFunction &MF = getMachineFunction();
7408   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7409                                                    Alignment, AAInfo, Ranges);
7410   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7411 }
7412 
7413 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7414                               EVT VT, const SDLoc &dl, SDValue Chain,
7415                               SDValue Ptr, SDValue Offset, EVT MemVT,
7416                               MachineMemOperand *MMO) {
7417   if (VT == MemVT) {
7418     ExtType = ISD::NON_EXTLOAD;
7419   } else if (ExtType == ISD::NON_EXTLOAD) {
7420     assert(VT == MemVT && "Non-extending load from different memory type!");
7421   } else {
7422     // Extending load.
7423     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7424            "Should only be an extending load, not truncating!");
7425     assert(VT.isInteger() == MemVT.isInteger() &&
7426            "Cannot convert from FP to Int or Int -> FP!");
7427     assert(VT.isVector() == MemVT.isVector() &&
7428            "Cannot use an ext load to convert to or from a vector!");
7429     assert((!VT.isVector() ||
7430             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7431            "Cannot use an ext load to change the number of vector elements!");
7432   }
7433 
7434   bool Indexed = AM != ISD::UNINDEXED;
7435   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7436 
7437   SDVTList VTs = Indexed ?
7438     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7439   SDValue Ops[] = { Chain, Ptr, Offset };
7440   FoldingSetNodeID ID;
7441   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7442   ID.AddInteger(MemVT.getRawBits());
7443   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7444       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7445   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7446   void *IP = nullptr;
7447   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7448     cast<LoadSDNode>(E)->refineAlignment(MMO);
7449     return SDValue(E, 0);
7450   }
7451   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7452                                   ExtType, MemVT, MMO);
7453   createOperands(N, Ops);
7454 
7455   CSEMap.InsertNode(N, IP);
7456   InsertNode(N);
7457   SDValue V(N, 0);
7458   NewSDValueDbgMsg(V, "Creating new node: ", this);
7459   return V;
7460 }
7461 
7462 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7463                               SDValue Ptr, MachinePointerInfo PtrInfo,
7464                               MaybeAlign Alignment,
7465                               MachineMemOperand::Flags MMOFlags,
7466                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7467   SDValue Undef = getUNDEF(Ptr.getValueType());
7468   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7469                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7470 }
7471 
7472 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7473                               SDValue Ptr, MachineMemOperand *MMO) {
7474   SDValue Undef = getUNDEF(Ptr.getValueType());
7475   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7476                  VT, MMO);
7477 }
7478 
7479 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7480                                  EVT VT, SDValue Chain, SDValue Ptr,
7481                                  MachinePointerInfo PtrInfo, EVT MemVT,
7482                                  MaybeAlign Alignment,
7483                                  MachineMemOperand::Flags MMOFlags,
7484                                  const AAMDNodes &AAInfo) {
7485   SDValue Undef = getUNDEF(Ptr.getValueType());
7486   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7487                  MemVT, Alignment, MMOFlags, AAInfo);
7488 }
7489 
7490 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7491                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7492                                  MachineMemOperand *MMO) {
7493   SDValue Undef = getUNDEF(Ptr.getValueType());
7494   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7495                  MemVT, MMO);
7496 }
7497 
7498 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7499                                      SDValue Base, SDValue Offset,
7500                                      ISD::MemIndexedMode AM) {
7501   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7502   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7503   // Don't propagate the invariant or dereferenceable flags.
7504   auto MMOFlags =
7505       LD->getMemOperand()->getFlags() &
7506       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7507   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7508                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7509                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7510 }
7511 
7512 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7513                                SDValue Ptr, MachinePointerInfo PtrInfo,
7514                                Align Alignment,
7515                                MachineMemOperand::Flags MMOFlags,
7516                                const AAMDNodes &AAInfo) {
7517   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7518 
7519   MMOFlags |= MachineMemOperand::MOStore;
7520   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7521 
7522   if (PtrInfo.V.isNull())
7523     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7524 
7525   MachineFunction &MF = getMachineFunction();
7526   uint64_t Size =
7527       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7528   MachineMemOperand *MMO =
7529       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7530   return getStore(Chain, dl, Val, Ptr, MMO);
7531 }
7532 
7533 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7534                                SDValue Ptr, MachineMemOperand *MMO) {
7535   assert(Chain.getValueType() == MVT::Other &&
7536         "Invalid chain type");
7537   EVT VT = Val.getValueType();
7538   SDVTList VTs = getVTList(MVT::Other);
7539   SDValue Undef = getUNDEF(Ptr.getValueType());
7540   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7541   FoldingSetNodeID ID;
7542   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7543   ID.AddInteger(VT.getRawBits());
7544   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7545       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7546   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7547   void *IP = nullptr;
7548   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7549     cast<StoreSDNode>(E)->refineAlignment(MMO);
7550     return SDValue(E, 0);
7551   }
7552   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7553                                    ISD::UNINDEXED, false, VT, MMO);
7554   createOperands(N, Ops);
7555 
7556   CSEMap.InsertNode(N, IP);
7557   InsertNode(N);
7558   SDValue V(N, 0);
7559   NewSDValueDbgMsg(V, "Creating new node: ", this);
7560   return V;
7561 }
7562 
7563 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7564                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7565                                     EVT SVT, Align Alignment,
7566                                     MachineMemOperand::Flags MMOFlags,
7567                                     const AAMDNodes &AAInfo) {
7568   assert(Chain.getValueType() == MVT::Other &&
7569         "Invalid chain type");
7570 
7571   MMOFlags |= MachineMemOperand::MOStore;
7572   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7573 
7574   if (PtrInfo.V.isNull())
7575     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7576 
7577   MachineFunction &MF = getMachineFunction();
7578   MachineMemOperand *MMO = MF.getMachineMemOperand(
7579       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7580       Alignment, AAInfo);
7581   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7582 }
7583 
7584 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7585                                     SDValue Ptr, EVT SVT,
7586                                     MachineMemOperand *MMO) {
7587   EVT VT = Val.getValueType();
7588 
7589   assert(Chain.getValueType() == MVT::Other &&
7590         "Invalid chain type");
7591   if (VT == SVT)
7592     return getStore(Chain, dl, Val, Ptr, MMO);
7593 
7594   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7595          "Should only be a truncating store, not extending!");
7596   assert(VT.isInteger() == SVT.isInteger() &&
7597          "Can't do FP-INT conversion!");
7598   assert(VT.isVector() == SVT.isVector() &&
7599          "Cannot use trunc store to convert to or from a vector!");
7600   assert((!VT.isVector() ||
7601           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7602          "Cannot use trunc store to change the number of vector elements!");
7603 
7604   SDVTList VTs = getVTList(MVT::Other);
7605   SDValue Undef = getUNDEF(Ptr.getValueType());
7606   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7607   FoldingSetNodeID ID;
7608   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7609   ID.AddInteger(SVT.getRawBits());
7610   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7611       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7612   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7613   void *IP = nullptr;
7614   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7615     cast<StoreSDNode>(E)->refineAlignment(MMO);
7616     return SDValue(E, 0);
7617   }
7618   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7619                                    ISD::UNINDEXED, true, SVT, MMO);
7620   createOperands(N, Ops);
7621 
7622   CSEMap.InsertNode(N, IP);
7623   InsertNode(N);
7624   SDValue V(N, 0);
7625   NewSDValueDbgMsg(V, "Creating new node: ", this);
7626   return V;
7627 }
7628 
7629 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7630                                       SDValue Base, SDValue Offset,
7631                                       ISD::MemIndexedMode AM) {
7632   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7633   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7634   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7635   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7636   FoldingSetNodeID ID;
7637   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7638   ID.AddInteger(ST->getMemoryVT().getRawBits());
7639   ID.AddInteger(ST->getRawSubclassData());
7640   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7641   void *IP = nullptr;
7642   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7643     return SDValue(E, 0);
7644 
7645   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7646                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7647                                    ST->getMemOperand());
7648   createOperands(N, Ops);
7649 
7650   CSEMap.InsertNode(N, IP);
7651   InsertNode(N);
7652   SDValue V(N, 0);
7653   NewSDValueDbgMsg(V, "Creating new node: ", this);
7654   return V;
7655 }
7656 
7657 SDValue SelectionDAG::getLoadVP(
7658     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7659     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7660     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7661     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7662     const MDNode *Ranges, bool IsExpanding) {
7663   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7664 
7665   MMOFlags |= MachineMemOperand::MOLoad;
7666   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7667   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7668   // clients.
7669   if (PtrInfo.V.isNull())
7670     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7671 
7672   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7673   MachineFunction &MF = getMachineFunction();
7674   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7675                                                    Alignment, AAInfo, Ranges);
7676   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7677                    MMO, IsExpanding);
7678 }
7679 
7680 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7681                                 ISD::LoadExtType ExtType, EVT VT,
7682                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7683                                 SDValue Offset, SDValue Mask, SDValue EVL,
7684                                 EVT MemVT, MachineMemOperand *MMO,
7685                                 bool IsExpanding) {
7686   if (VT == MemVT) {
7687     ExtType = ISD::NON_EXTLOAD;
7688   } else if (ExtType == ISD::NON_EXTLOAD) {
7689     assert(VT == MemVT && "Non-extending load from different memory type!");
7690   } else {
7691     // Extending load.
7692     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7693            "Should only be an extending load, not truncating!");
7694     assert(VT.isInteger() == MemVT.isInteger() &&
7695            "Cannot convert from FP to Int or Int -> FP!");
7696     assert(VT.isVector() == MemVT.isVector() &&
7697            "Cannot use an ext load to convert to or from a vector!");
7698     assert((!VT.isVector() ||
7699             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7700            "Cannot use an ext load to change the number of vector elements!");
7701   }
7702 
7703   bool Indexed = AM != ISD::UNINDEXED;
7704   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7705 
7706   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7707                          : getVTList(VT, MVT::Other);
7708   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7709   FoldingSetNodeID ID;
7710   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7711   ID.AddInteger(VT.getRawBits());
7712   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7713       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7714   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7715   void *IP = nullptr;
7716   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7717     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7718     return SDValue(E, 0);
7719   }
7720   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7721                                     ExtType, IsExpanding, MemVT, MMO);
7722   createOperands(N, Ops);
7723 
7724   CSEMap.InsertNode(N, IP);
7725   InsertNode(N);
7726   SDValue V(N, 0);
7727   NewSDValueDbgMsg(V, "Creating new node: ", this);
7728   return V;
7729 }
7730 
7731 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7732                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7733                                 MachinePointerInfo PtrInfo,
7734                                 MaybeAlign Alignment,
7735                                 MachineMemOperand::Flags MMOFlags,
7736                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7737                                 bool IsExpanding) {
7738   SDValue Undef = getUNDEF(Ptr.getValueType());
7739   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7740                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7741                    IsExpanding);
7742 }
7743 
7744 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7745                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7746                                 MachineMemOperand *MMO, bool IsExpanding) {
7747   SDValue Undef = getUNDEF(Ptr.getValueType());
7748   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7749                    Mask, EVL, VT, MMO, IsExpanding);
7750 }
7751 
7752 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7753                                    EVT VT, SDValue Chain, SDValue Ptr,
7754                                    SDValue Mask, SDValue EVL,
7755                                    MachinePointerInfo PtrInfo, EVT MemVT,
7756                                    MaybeAlign Alignment,
7757                                    MachineMemOperand::Flags MMOFlags,
7758                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7759   SDValue Undef = getUNDEF(Ptr.getValueType());
7760   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7761                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7762                    IsExpanding);
7763 }
7764 
7765 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7766                                    EVT VT, SDValue Chain, SDValue Ptr,
7767                                    SDValue Mask, SDValue EVL, EVT MemVT,
7768                                    MachineMemOperand *MMO, bool IsExpanding) {
7769   SDValue Undef = getUNDEF(Ptr.getValueType());
7770   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7771                    EVL, MemVT, MMO, IsExpanding);
7772 }
7773 
7774 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7775                                        SDValue Base, SDValue Offset,
7776                                        ISD::MemIndexedMode AM) {
7777   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7778   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7779   // Don't propagate the invariant or dereferenceable flags.
7780   auto MMOFlags =
7781       LD->getMemOperand()->getFlags() &
7782       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7783   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7784                    LD->getChain(), Base, Offset, LD->getMask(),
7785                    LD->getVectorLength(), LD->getPointerInfo(),
7786                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7787                    nullptr, LD->isExpandingLoad());
7788 }
7789 
7790 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7791                                  SDValue Ptr, SDValue Mask, SDValue EVL,
7792                                  MachinePointerInfo PtrInfo, Align Alignment,
7793                                  MachineMemOperand::Flags MMOFlags,
7794                                  const AAMDNodes &AAInfo, bool IsCompressing) {
7795   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7796 
7797   MMOFlags |= MachineMemOperand::MOStore;
7798   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7799 
7800   if (PtrInfo.V.isNull())
7801     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7802 
7803   MachineFunction &MF = getMachineFunction();
7804   uint64_t Size =
7805       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7806   MachineMemOperand *MMO =
7807       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7808   return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing);
7809 }
7810 
7811 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7812                                  SDValue Ptr, SDValue Mask, SDValue EVL,
7813                                  MachineMemOperand *MMO, bool IsCompressing) {
7814   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7815   EVT VT = Val.getValueType();
7816   SDVTList VTs = getVTList(MVT::Other);
7817   SDValue Undef = getUNDEF(Ptr.getValueType());
7818   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7819   FoldingSetNodeID ID;
7820   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7821   ID.AddInteger(VT.getRawBits());
7822   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7823       dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO));
7824   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7825   void *IP = nullptr;
7826   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7827     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7828     return SDValue(E, 0);
7829   }
7830   auto *N =
7831       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7832                                ISD::UNINDEXED, false, IsCompressing, VT, MMO);
7833   createOperands(N, Ops);
7834 
7835   CSEMap.InsertNode(N, IP);
7836   InsertNode(N);
7837   SDValue V(N, 0);
7838   NewSDValueDbgMsg(V, "Creating new node: ", this);
7839   return V;
7840 }
7841 
7842 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7843                                       SDValue Val, SDValue Ptr, SDValue Mask,
7844                                       SDValue EVL, MachinePointerInfo PtrInfo,
7845                                       EVT SVT, Align Alignment,
7846                                       MachineMemOperand::Flags MMOFlags,
7847                                       const AAMDNodes &AAInfo,
7848                                       bool IsCompressing) {
7849   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7850 
7851   MMOFlags |= MachineMemOperand::MOStore;
7852   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7853 
7854   if (PtrInfo.V.isNull())
7855     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7856 
7857   MachineFunction &MF = getMachineFunction();
7858   MachineMemOperand *MMO = MF.getMachineMemOperand(
7859       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7860       Alignment, AAInfo);
7861   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7862                          IsCompressing);
7863 }
7864 
7865 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7866                                       SDValue Val, SDValue Ptr, SDValue Mask,
7867                                       SDValue EVL, EVT SVT,
7868                                       MachineMemOperand *MMO,
7869                                       bool IsCompressing) {
7870   EVT VT = Val.getValueType();
7871 
7872   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7873   if (VT == SVT)
7874     return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing);
7875 
7876   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7877          "Should only be a truncating store, not extending!");
7878   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7879   assert(VT.isVector() == SVT.isVector() &&
7880          "Cannot use trunc store to convert to or from a vector!");
7881   assert((!VT.isVector() ||
7882           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7883          "Cannot use trunc store to change the number of vector elements!");
7884 
7885   SDVTList VTs = getVTList(MVT::Other);
7886   SDValue Undef = getUNDEF(Ptr.getValueType());
7887   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7888   FoldingSetNodeID ID;
7889   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7890   ID.AddInteger(SVT.getRawBits());
7891   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7892       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7893   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7894   void *IP = nullptr;
7895   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7896     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7897     return SDValue(E, 0);
7898   }
7899   auto *N =
7900       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7901                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7902   createOperands(N, Ops);
7903 
7904   CSEMap.InsertNode(N, IP);
7905   InsertNode(N);
7906   SDValue V(N, 0);
7907   NewSDValueDbgMsg(V, "Creating new node: ", this);
7908   return V;
7909 }
7910 
7911 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7912                                         SDValue Base, SDValue Offset,
7913                                         ISD::MemIndexedMode AM) {
7914   auto *ST = cast<VPStoreSDNode>(OrigStore);
7915   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7916   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7917   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7918                    Offset,         ST->getMask(),  ST->getVectorLength()};
7919   FoldingSetNodeID ID;
7920   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7921   ID.AddInteger(ST->getMemoryVT().getRawBits());
7922   ID.AddInteger(ST->getRawSubclassData());
7923   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7924   void *IP = nullptr;
7925   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7926     return SDValue(E, 0);
7927 
7928   auto *N = newSDNode<VPStoreSDNode>(
7929       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7930       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7931   createOperands(N, Ops);
7932 
7933   CSEMap.InsertNode(N, IP);
7934   InsertNode(N);
7935   SDValue V(N, 0);
7936   NewSDValueDbgMsg(V, "Creating new node: ", this);
7937   return V;
7938 }
7939 
7940 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7941                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7942                                   ISD::MemIndexType IndexType) {
7943   assert(Ops.size() == 6 && "Incompatible number of operands");
7944 
7945   FoldingSetNodeID ID;
7946   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7947   ID.AddInteger(VT.getRawBits());
7948   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7949       dl.getIROrder(), VTs, VT, MMO, IndexType));
7950   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7951   void *IP = nullptr;
7952   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7953     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7954     return SDValue(E, 0);
7955   }
7956 
7957   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7958                                       VT, MMO, IndexType);
7959   createOperands(N, Ops);
7960 
7961   assert(N->getMask().getValueType().getVectorElementCount() ==
7962              N->getValueType(0).getVectorElementCount() &&
7963          "Vector width mismatch between mask and data");
7964   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7965              N->getValueType(0).getVectorElementCount().isScalable() &&
7966          "Scalable flags of index and data do not match");
7967   assert(ElementCount::isKnownGE(
7968              N->getIndex().getValueType().getVectorElementCount(),
7969              N->getValueType(0).getVectorElementCount()) &&
7970          "Vector width mismatch between index and data");
7971   assert(isa<ConstantSDNode>(N->getScale()) &&
7972          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7973          "Scale should be a constant power of 2");
7974 
7975   CSEMap.InsertNode(N, IP);
7976   InsertNode(N);
7977   SDValue V(N, 0);
7978   NewSDValueDbgMsg(V, "Creating new node: ", this);
7979   return V;
7980 }
7981 
7982 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7983                                    ArrayRef<SDValue> Ops,
7984                                    MachineMemOperand *MMO,
7985                                    ISD::MemIndexType IndexType) {
7986   assert(Ops.size() == 7 && "Incompatible number of operands");
7987 
7988   FoldingSetNodeID ID;
7989   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
7990   ID.AddInteger(VT.getRawBits());
7991   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
7992       dl.getIROrder(), VTs, VT, MMO, IndexType));
7993   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7994   void *IP = nullptr;
7995   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7996     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
7997     return SDValue(E, 0);
7998   }
7999   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8000                                        VT, MMO, IndexType);
8001   createOperands(N, Ops);
8002 
8003   assert(N->getMask().getValueType().getVectorElementCount() ==
8004              N->getValue().getValueType().getVectorElementCount() &&
8005          "Vector width mismatch between mask and data");
8006   assert(
8007       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8008           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8009       "Scalable flags of index and data do not match");
8010   assert(ElementCount::isKnownGE(
8011              N->getIndex().getValueType().getVectorElementCount(),
8012              N->getValue().getValueType().getVectorElementCount()) &&
8013          "Vector width mismatch between index and data");
8014   assert(isa<ConstantSDNode>(N->getScale()) &&
8015          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8016          "Scale should be a constant power of 2");
8017 
8018   CSEMap.InsertNode(N, IP);
8019   InsertNode(N);
8020   SDValue V(N, 0);
8021   NewSDValueDbgMsg(V, "Creating new node: ", this);
8022   return V;
8023 }
8024 
8025 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8026                                     SDValue Base, SDValue Offset, SDValue Mask,
8027                                     SDValue PassThru, EVT MemVT,
8028                                     MachineMemOperand *MMO,
8029                                     ISD::MemIndexedMode AM,
8030                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8031   bool Indexed = AM != ISD::UNINDEXED;
8032   assert((Indexed || Offset.isUndef()) &&
8033          "Unindexed masked load with an offset!");
8034   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8035                          : getVTList(VT, MVT::Other);
8036   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8037   FoldingSetNodeID ID;
8038   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8039   ID.AddInteger(MemVT.getRawBits());
8040   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8041       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8042   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8043   void *IP = nullptr;
8044   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8045     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8046     return SDValue(E, 0);
8047   }
8048   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8049                                         AM, ExtTy, isExpanding, MemVT, MMO);
8050   createOperands(N, Ops);
8051 
8052   CSEMap.InsertNode(N, IP);
8053   InsertNode(N);
8054   SDValue V(N, 0);
8055   NewSDValueDbgMsg(V, "Creating new node: ", this);
8056   return V;
8057 }
8058 
8059 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8060                                            SDValue Base, SDValue Offset,
8061                                            ISD::MemIndexedMode AM) {
8062   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8063   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8064   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8065                        Offset, LD->getMask(), LD->getPassThru(),
8066                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8067                        LD->getExtensionType(), LD->isExpandingLoad());
8068 }
8069 
8070 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8071                                      SDValue Val, SDValue Base, SDValue Offset,
8072                                      SDValue Mask, EVT MemVT,
8073                                      MachineMemOperand *MMO,
8074                                      ISD::MemIndexedMode AM, bool IsTruncating,
8075                                      bool IsCompressing) {
8076   assert(Chain.getValueType() == MVT::Other &&
8077         "Invalid chain type");
8078   bool Indexed = AM != ISD::UNINDEXED;
8079   assert((Indexed || Offset.isUndef()) &&
8080          "Unindexed masked store with an offset!");
8081   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8082                          : getVTList(MVT::Other);
8083   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8084   FoldingSetNodeID ID;
8085   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8086   ID.AddInteger(MemVT.getRawBits());
8087   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8088       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8089   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8090   void *IP = nullptr;
8091   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8092     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8093     return SDValue(E, 0);
8094   }
8095   auto *N =
8096       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8097                                    IsTruncating, IsCompressing, MemVT, MMO);
8098   createOperands(N, Ops);
8099 
8100   CSEMap.InsertNode(N, IP);
8101   InsertNode(N);
8102   SDValue V(N, 0);
8103   NewSDValueDbgMsg(V, "Creating new node: ", this);
8104   return V;
8105 }
8106 
8107 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8108                                             SDValue Base, SDValue Offset,
8109                                             ISD::MemIndexedMode AM) {
8110   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8111   assert(ST->getOffset().isUndef() &&
8112          "Masked store is already a indexed store!");
8113   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8114                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8115                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8116 }
8117 
8118 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8119                                       ArrayRef<SDValue> Ops,
8120                                       MachineMemOperand *MMO,
8121                                       ISD::MemIndexType IndexType,
8122                                       ISD::LoadExtType ExtTy) {
8123   assert(Ops.size() == 6 && "Incompatible number of operands");
8124 
8125   FoldingSetNodeID ID;
8126   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8127   ID.AddInteger(MemVT.getRawBits());
8128   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8129       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8130   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8131   void *IP = nullptr;
8132   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8133     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8134     return SDValue(E, 0);
8135   }
8136 
8137   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8138   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8139                                           VTs, MemVT, MMO, IndexType, ExtTy);
8140   createOperands(N, Ops);
8141 
8142   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8143          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8144   assert(N->getMask().getValueType().getVectorElementCount() ==
8145              N->getValueType(0).getVectorElementCount() &&
8146          "Vector width mismatch between mask and data");
8147   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8148              N->getValueType(0).getVectorElementCount().isScalable() &&
8149          "Scalable flags of index and data do not match");
8150   assert(ElementCount::isKnownGE(
8151              N->getIndex().getValueType().getVectorElementCount(),
8152              N->getValueType(0).getVectorElementCount()) &&
8153          "Vector width mismatch between index and data");
8154   assert(isa<ConstantSDNode>(N->getScale()) &&
8155          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8156          "Scale should be a constant power of 2");
8157 
8158   CSEMap.InsertNode(N, IP);
8159   InsertNode(N);
8160   SDValue V(N, 0);
8161   NewSDValueDbgMsg(V, "Creating new node: ", this);
8162   return V;
8163 }
8164 
8165 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8166                                        ArrayRef<SDValue> Ops,
8167                                        MachineMemOperand *MMO,
8168                                        ISD::MemIndexType IndexType,
8169                                        bool IsTrunc) {
8170   assert(Ops.size() == 6 && "Incompatible number of operands");
8171 
8172   FoldingSetNodeID ID;
8173   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8174   ID.AddInteger(MemVT.getRawBits());
8175   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8176       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8177   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8178   void *IP = nullptr;
8179   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8180     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8181     return SDValue(E, 0);
8182   }
8183 
8184   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8185   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8186                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8187   createOperands(N, Ops);
8188 
8189   assert(N->getMask().getValueType().getVectorElementCount() ==
8190              N->getValue().getValueType().getVectorElementCount() &&
8191          "Vector width mismatch between mask and data");
8192   assert(
8193       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8194           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8195       "Scalable flags of index and data do not match");
8196   assert(ElementCount::isKnownGE(
8197              N->getIndex().getValueType().getVectorElementCount(),
8198              N->getValue().getValueType().getVectorElementCount()) &&
8199          "Vector width mismatch between index and data");
8200   assert(isa<ConstantSDNode>(N->getScale()) &&
8201          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8202          "Scale should be a constant power of 2");
8203 
8204   CSEMap.InsertNode(N, IP);
8205   InsertNode(N);
8206   SDValue V(N, 0);
8207   NewSDValueDbgMsg(V, "Creating new node: ", this);
8208   return V;
8209 }
8210 
8211 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8212   // select undef, T, F --> T (if T is a constant), otherwise F
8213   // select, ?, undef, F --> F
8214   // select, ?, T, undef --> T
8215   if (Cond.isUndef())
8216     return isConstantValueOfAnyType(T) ? T : F;
8217   if (T.isUndef())
8218     return F;
8219   if (F.isUndef())
8220     return T;
8221 
8222   // select true, T, F --> T
8223   // select false, T, F --> F
8224   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8225     return CondC->isZero() ? F : T;
8226 
8227   // TODO: This should simplify VSELECT with constant condition using something
8228   // like this (but check boolean contents to be complete?):
8229   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8230   //    return T;
8231   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8232   //    return F;
8233 
8234   // select ?, T, T --> T
8235   if (T == F)
8236     return T;
8237 
8238   return SDValue();
8239 }
8240 
8241 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8242   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8243   if (X.isUndef())
8244     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8245   // shift X, undef --> undef (because it may shift by the bitwidth)
8246   if (Y.isUndef())
8247     return getUNDEF(X.getValueType());
8248 
8249   // shift 0, Y --> 0
8250   // shift X, 0 --> X
8251   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8252     return X;
8253 
8254   // shift X, C >= bitwidth(X) --> undef
8255   // All vector elements must be too big (or undef) to avoid partial undefs.
8256   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8257     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8258   };
8259   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8260     return getUNDEF(X.getValueType());
8261 
8262   return SDValue();
8263 }
8264 
8265 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8266                                       SDNodeFlags Flags) {
8267   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8268   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8269   // operation is poison. That result can be relaxed to undef.
8270   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8271   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8272   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8273                 (YC && YC->getValueAPF().isNaN());
8274   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8275                 (YC && YC->getValueAPF().isInfinity());
8276 
8277   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8278     return getUNDEF(X.getValueType());
8279 
8280   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8281     return getUNDEF(X.getValueType());
8282 
8283   if (!YC)
8284     return SDValue();
8285 
8286   // X + -0.0 --> X
8287   if (Opcode == ISD::FADD)
8288     if (YC->getValueAPF().isNegZero())
8289       return X;
8290 
8291   // X - +0.0 --> X
8292   if (Opcode == ISD::FSUB)
8293     if (YC->getValueAPF().isPosZero())
8294       return X;
8295 
8296   // X * 1.0 --> X
8297   // X / 1.0 --> X
8298   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8299     if (YC->getValueAPF().isExactlyValue(1.0))
8300       return X;
8301 
8302   // X * 0.0 --> 0.0
8303   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8304     if (YC->getValueAPF().isZero())
8305       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8306 
8307   return SDValue();
8308 }
8309 
8310 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8311                                SDValue Ptr, SDValue SV, unsigned Align) {
8312   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8313   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8314 }
8315 
8316 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8317                               ArrayRef<SDUse> Ops) {
8318   switch (Ops.size()) {
8319   case 0: return getNode(Opcode, DL, VT);
8320   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8321   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8322   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8323   default: break;
8324   }
8325 
8326   // Copy from an SDUse array into an SDValue array for use with
8327   // the regular getNode logic.
8328   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8329   return getNode(Opcode, DL, VT, NewOps);
8330 }
8331 
8332 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8333                               ArrayRef<SDValue> Ops) {
8334   SDNodeFlags Flags;
8335   if (Inserter)
8336     Flags = Inserter->getFlags();
8337   return getNode(Opcode, DL, VT, Ops, Flags);
8338 }
8339 
8340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8341                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8342   unsigned NumOps = Ops.size();
8343   switch (NumOps) {
8344   case 0: return getNode(Opcode, DL, VT);
8345   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8346   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8347   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8348   default: break;
8349   }
8350 
8351 #ifndef NDEBUG
8352   for (auto &Op : Ops)
8353     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8354            "Operand is DELETED_NODE!");
8355 #endif
8356 
8357   switch (Opcode) {
8358   default: break;
8359   case ISD::BUILD_VECTOR:
8360     // Attempt to simplify BUILD_VECTOR.
8361     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8362       return V;
8363     break;
8364   case ISD::CONCAT_VECTORS:
8365     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8366       return V;
8367     break;
8368   case ISD::SELECT_CC:
8369     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8370     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8371            "LHS and RHS of condition must have same type!");
8372     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8373            "True and False arms of SelectCC must have same type!");
8374     assert(Ops[2].getValueType() == VT &&
8375            "select_cc node must be of same type as true and false value!");
8376     break;
8377   case ISD::BR_CC:
8378     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8379     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8380            "LHS/RHS of comparison should match types!");
8381     break;
8382   }
8383 
8384   // Memoize nodes.
8385   SDNode *N;
8386   SDVTList VTs = getVTList(VT);
8387 
8388   if (VT != MVT::Glue) {
8389     FoldingSetNodeID ID;
8390     AddNodeIDNode(ID, Opcode, VTs, Ops);
8391     void *IP = nullptr;
8392 
8393     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8394       return SDValue(E, 0);
8395 
8396     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8397     createOperands(N, Ops);
8398 
8399     CSEMap.InsertNode(N, IP);
8400   } else {
8401     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8402     createOperands(N, Ops);
8403   }
8404 
8405   N->setFlags(Flags);
8406   InsertNode(N);
8407   SDValue V(N, 0);
8408   NewSDValueDbgMsg(V, "Creating new node: ", this);
8409   return V;
8410 }
8411 
8412 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8413                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8414   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8415 }
8416 
8417 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8418                               ArrayRef<SDValue> Ops) {
8419   SDNodeFlags Flags;
8420   if (Inserter)
8421     Flags = Inserter->getFlags();
8422   return getNode(Opcode, DL, VTList, Ops, Flags);
8423 }
8424 
8425 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8426                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8427   if (VTList.NumVTs == 1)
8428     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8429 
8430 #ifndef NDEBUG
8431   for (auto &Op : Ops)
8432     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8433            "Operand is DELETED_NODE!");
8434 #endif
8435 
8436   switch (Opcode) {
8437   case ISD::STRICT_FP_EXTEND:
8438     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8439            "Invalid STRICT_FP_EXTEND!");
8440     assert(VTList.VTs[0].isFloatingPoint() &&
8441            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8442     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8443            "STRICT_FP_EXTEND result type should be vector iff the operand "
8444            "type is vector!");
8445     assert((!VTList.VTs[0].isVector() ||
8446             VTList.VTs[0].getVectorNumElements() ==
8447             Ops[1].getValueType().getVectorNumElements()) &&
8448            "Vector element count mismatch!");
8449     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8450            "Invalid fpext node, dst <= src!");
8451     break;
8452   case ISD::STRICT_FP_ROUND:
8453     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8454     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8455            "STRICT_FP_ROUND result type should be vector iff the operand "
8456            "type is vector!");
8457     assert((!VTList.VTs[0].isVector() ||
8458             VTList.VTs[0].getVectorNumElements() ==
8459             Ops[1].getValueType().getVectorNumElements()) &&
8460            "Vector element count mismatch!");
8461     assert(VTList.VTs[0].isFloatingPoint() &&
8462            Ops[1].getValueType().isFloatingPoint() &&
8463            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8464            isa<ConstantSDNode>(Ops[2]) &&
8465            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8466             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8467            "Invalid STRICT_FP_ROUND!");
8468     break;
8469 #if 0
8470   // FIXME: figure out how to safely handle things like
8471   // int foo(int x) { return 1 << (x & 255); }
8472   // int bar() { return foo(256); }
8473   case ISD::SRA_PARTS:
8474   case ISD::SRL_PARTS:
8475   case ISD::SHL_PARTS:
8476     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8477         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8478       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8479     else if (N3.getOpcode() == ISD::AND)
8480       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8481         // If the and is only masking out bits that cannot effect the shift,
8482         // eliminate the and.
8483         unsigned NumBits = VT.getScalarSizeInBits()*2;
8484         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8485           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8486       }
8487     break;
8488 #endif
8489   }
8490 
8491   // Memoize the node unless it returns a flag.
8492   SDNode *N;
8493   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8494     FoldingSetNodeID ID;
8495     AddNodeIDNode(ID, Opcode, VTList, Ops);
8496     void *IP = nullptr;
8497     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8498       return SDValue(E, 0);
8499 
8500     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8501     createOperands(N, Ops);
8502     CSEMap.InsertNode(N, IP);
8503   } else {
8504     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8505     createOperands(N, Ops);
8506   }
8507 
8508   N->setFlags(Flags);
8509   InsertNode(N);
8510   SDValue V(N, 0);
8511   NewSDValueDbgMsg(V, "Creating new node: ", this);
8512   return V;
8513 }
8514 
8515 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8516                               SDVTList VTList) {
8517   return getNode(Opcode, DL, VTList, None);
8518 }
8519 
8520 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8521                               SDValue N1) {
8522   SDValue Ops[] = { N1 };
8523   return getNode(Opcode, DL, VTList, Ops);
8524 }
8525 
8526 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8527                               SDValue N1, SDValue N2) {
8528   SDValue Ops[] = { N1, N2 };
8529   return getNode(Opcode, DL, VTList, Ops);
8530 }
8531 
8532 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8533                               SDValue N1, SDValue N2, SDValue N3) {
8534   SDValue Ops[] = { N1, N2, N3 };
8535   return getNode(Opcode, DL, VTList, Ops);
8536 }
8537 
8538 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8539                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8540   SDValue Ops[] = { N1, N2, N3, N4 };
8541   return getNode(Opcode, DL, VTList, Ops);
8542 }
8543 
8544 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8545                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8546                               SDValue N5) {
8547   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8548   return getNode(Opcode, DL, VTList, Ops);
8549 }
8550 
8551 SDVTList SelectionDAG::getVTList(EVT VT) {
8552   return makeVTList(SDNode::getValueTypeList(VT), 1);
8553 }
8554 
8555 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8556   FoldingSetNodeID ID;
8557   ID.AddInteger(2U);
8558   ID.AddInteger(VT1.getRawBits());
8559   ID.AddInteger(VT2.getRawBits());
8560 
8561   void *IP = nullptr;
8562   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8563   if (!Result) {
8564     EVT *Array = Allocator.Allocate<EVT>(2);
8565     Array[0] = VT1;
8566     Array[1] = VT2;
8567     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8568     VTListMap.InsertNode(Result, IP);
8569   }
8570   return Result->getSDVTList();
8571 }
8572 
8573 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8574   FoldingSetNodeID ID;
8575   ID.AddInteger(3U);
8576   ID.AddInteger(VT1.getRawBits());
8577   ID.AddInteger(VT2.getRawBits());
8578   ID.AddInteger(VT3.getRawBits());
8579 
8580   void *IP = nullptr;
8581   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8582   if (!Result) {
8583     EVT *Array = Allocator.Allocate<EVT>(3);
8584     Array[0] = VT1;
8585     Array[1] = VT2;
8586     Array[2] = VT3;
8587     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8588     VTListMap.InsertNode(Result, IP);
8589   }
8590   return Result->getSDVTList();
8591 }
8592 
8593 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8594   FoldingSetNodeID ID;
8595   ID.AddInteger(4U);
8596   ID.AddInteger(VT1.getRawBits());
8597   ID.AddInteger(VT2.getRawBits());
8598   ID.AddInteger(VT3.getRawBits());
8599   ID.AddInteger(VT4.getRawBits());
8600 
8601   void *IP = nullptr;
8602   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8603   if (!Result) {
8604     EVT *Array = Allocator.Allocate<EVT>(4);
8605     Array[0] = VT1;
8606     Array[1] = VT2;
8607     Array[2] = VT3;
8608     Array[3] = VT4;
8609     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8610     VTListMap.InsertNode(Result, IP);
8611   }
8612   return Result->getSDVTList();
8613 }
8614 
8615 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8616   unsigned NumVTs = VTs.size();
8617   FoldingSetNodeID ID;
8618   ID.AddInteger(NumVTs);
8619   for (unsigned index = 0; index < NumVTs; index++) {
8620     ID.AddInteger(VTs[index].getRawBits());
8621   }
8622 
8623   void *IP = nullptr;
8624   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8625   if (!Result) {
8626     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8627     llvm::copy(VTs, Array);
8628     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8629     VTListMap.InsertNode(Result, IP);
8630   }
8631   return Result->getSDVTList();
8632 }
8633 
8634 
8635 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8636 /// specified operands.  If the resultant node already exists in the DAG,
8637 /// this does not modify the specified node, instead it returns the node that
8638 /// already exists.  If the resultant node does not exist in the DAG, the
8639 /// input node is returned.  As a degenerate case, if you specify the same
8640 /// input operands as the node already has, the input node is returned.
8641 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8642   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8643 
8644   // Check to see if there is no change.
8645   if (Op == N->getOperand(0)) return N;
8646 
8647   // See if the modified node already exists.
8648   void *InsertPos = nullptr;
8649   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8650     return Existing;
8651 
8652   // Nope it doesn't.  Remove the node from its current place in the maps.
8653   if (InsertPos)
8654     if (!RemoveNodeFromCSEMaps(N))
8655       InsertPos = nullptr;
8656 
8657   // Now we update the operands.
8658   N->OperandList[0].set(Op);
8659 
8660   updateDivergence(N);
8661   // If this gets put into a CSE map, add it.
8662   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8663   return N;
8664 }
8665 
8666 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8667   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8668 
8669   // Check to see if there is no change.
8670   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8671     return N;   // No operands changed, just return the input node.
8672 
8673   // See if the modified node already exists.
8674   void *InsertPos = nullptr;
8675   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8676     return Existing;
8677 
8678   // Nope it doesn't.  Remove the node from its current place in the maps.
8679   if (InsertPos)
8680     if (!RemoveNodeFromCSEMaps(N))
8681       InsertPos = nullptr;
8682 
8683   // Now we update the operands.
8684   if (N->OperandList[0] != Op1)
8685     N->OperandList[0].set(Op1);
8686   if (N->OperandList[1] != Op2)
8687     N->OperandList[1].set(Op2);
8688 
8689   updateDivergence(N);
8690   // If this gets put into a CSE map, add it.
8691   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8692   return N;
8693 }
8694 
8695 SDNode *SelectionDAG::
8696 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8697   SDValue Ops[] = { Op1, Op2, Op3 };
8698   return UpdateNodeOperands(N, Ops);
8699 }
8700 
8701 SDNode *SelectionDAG::
8702 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8703                    SDValue Op3, SDValue Op4) {
8704   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8705   return UpdateNodeOperands(N, Ops);
8706 }
8707 
8708 SDNode *SelectionDAG::
8709 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8710                    SDValue Op3, SDValue Op4, SDValue Op5) {
8711   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8712   return UpdateNodeOperands(N, Ops);
8713 }
8714 
8715 SDNode *SelectionDAG::
8716 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8717   unsigned NumOps = Ops.size();
8718   assert(N->getNumOperands() == NumOps &&
8719          "Update with wrong number of operands");
8720 
8721   // If no operands changed just return the input node.
8722   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8723     return N;
8724 
8725   // See if the modified node already exists.
8726   void *InsertPos = nullptr;
8727   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8728     return Existing;
8729 
8730   // Nope it doesn't.  Remove the node from its current place in the maps.
8731   if (InsertPos)
8732     if (!RemoveNodeFromCSEMaps(N))
8733       InsertPos = nullptr;
8734 
8735   // Now we update the operands.
8736   for (unsigned i = 0; i != NumOps; ++i)
8737     if (N->OperandList[i] != Ops[i])
8738       N->OperandList[i].set(Ops[i]);
8739 
8740   updateDivergence(N);
8741   // If this gets put into a CSE map, add it.
8742   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8743   return N;
8744 }
8745 
8746 /// DropOperands - Release the operands and set this node to have
8747 /// zero operands.
8748 void SDNode::DropOperands() {
8749   // Unlike the code in MorphNodeTo that does this, we don't need to
8750   // watch for dead nodes here.
8751   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8752     SDUse &Use = *I++;
8753     Use.set(SDValue());
8754   }
8755 }
8756 
8757 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8758                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8759   if (NewMemRefs.empty()) {
8760     N->clearMemRefs();
8761     return;
8762   }
8763 
8764   // Check if we can avoid allocating by storing a single reference directly.
8765   if (NewMemRefs.size() == 1) {
8766     N->MemRefs = NewMemRefs[0];
8767     N->NumMemRefs = 1;
8768     return;
8769   }
8770 
8771   MachineMemOperand **MemRefsBuffer =
8772       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8773   llvm::copy(NewMemRefs, MemRefsBuffer);
8774   N->MemRefs = MemRefsBuffer;
8775   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8776 }
8777 
8778 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8779 /// machine opcode.
8780 ///
8781 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8782                                    EVT VT) {
8783   SDVTList VTs = getVTList(VT);
8784   return SelectNodeTo(N, MachineOpc, VTs, None);
8785 }
8786 
8787 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8788                                    EVT VT, SDValue Op1) {
8789   SDVTList VTs = getVTList(VT);
8790   SDValue Ops[] = { Op1 };
8791   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8792 }
8793 
8794 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8795                                    EVT VT, SDValue Op1,
8796                                    SDValue Op2) {
8797   SDVTList VTs = getVTList(VT);
8798   SDValue Ops[] = { Op1, Op2 };
8799   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8800 }
8801 
8802 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8803                                    EVT VT, SDValue Op1,
8804                                    SDValue Op2, SDValue Op3) {
8805   SDVTList VTs = getVTList(VT);
8806   SDValue Ops[] = { Op1, Op2, Op3 };
8807   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8808 }
8809 
8810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8811                                    EVT VT, ArrayRef<SDValue> Ops) {
8812   SDVTList VTs = getVTList(VT);
8813   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8814 }
8815 
8816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8817                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8818   SDVTList VTs = getVTList(VT1, VT2);
8819   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8820 }
8821 
8822 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8823                                    EVT VT1, EVT VT2) {
8824   SDVTList VTs = getVTList(VT1, VT2);
8825   return SelectNodeTo(N, MachineOpc, VTs, None);
8826 }
8827 
8828 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8829                                    EVT VT1, EVT VT2, EVT VT3,
8830                                    ArrayRef<SDValue> Ops) {
8831   SDVTList VTs = getVTList(VT1, VT2, VT3);
8832   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8833 }
8834 
8835 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8836                                    EVT VT1, EVT VT2,
8837                                    SDValue Op1, SDValue Op2) {
8838   SDVTList VTs = getVTList(VT1, VT2);
8839   SDValue Ops[] = { Op1, Op2 };
8840   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8841 }
8842 
8843 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8844                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8845   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8846   // Reset the NodeID to -1.
8847   New->setNodeId(-1);
8848   if (New != N) {
8849     ReplaceAllUsesWith(N, New);
8850     RemoveDeadNode(N);
8851   }
8852   return New;
8853 }
8854 
8855 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8856 /// the line number information on the merged node since it is not possible to
8857 /// preserve the information that operation is associated with multiple lines.
8858 /// This will make the debugger working better at -O0, were there is a higher
8859 /// probability having other instructions associated with that line.
8860 ///
8861 /// For IROrder, we keep the smaller of the two
8862 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8863   DebugLoc NLoc = N->getDebugLoc();
8864   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8865     N->setDebugLoc(DebugLoc());
8866   }
8867   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8868   N->setIROrder(Order);
8869   return N;
8870 }
8871 
8872 /// MorphNodeTo - This *mutates* the specified node to have the specified
8873 /// return type, opcode, and operands.
8874 ///
8875 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8876 /// node of the specified opcode and operands, it returns that node instead of
8877 /// the current one.  Note that the SDLoc need not be the same.
8878 ///
8879 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8880 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8881 /// node, and because it doesn't require CSE recalculation for any of
8882 /// the node's users.
8883 ///
8884 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8885 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8886 /// the legalizer which maintain worklists that would need to be updated when
8887 /// deleting things.
8888 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8889                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8890   // If an identical node already exists, use it.
8891   void *IP = nullptr;
8892   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8893     FoldingSetNodeID ID;
8894     AddNodeIDNode(ID, Opc, VTs, Ops);
8895     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8896       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8897   }
8898 
8899   if (!RemoveNodeFromCSEMaps(N))
8900     IP = nullptr;
8901 
8902   // Start the morphing.
8903   N->NodeType = Opc;
8904   N->ValueList = VTs.VTs;
8905   N->NumValues = VTs.NumVTs;
8906 
8907   // Clear the operands list, updating used nodes to remove this from their
8908   // use list.  Keep track of any operands that become dead as a result.
8909   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8910   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8911     SDUse &Use = *I++;
8912     SDNode *Used = Use.getNode();
8913     Use.set(SDValue());
8914     if (Used->use_empty())
8915       DeadNodeSet.insert(Used);
8916   }
8917 
8918   // For MachineNode, initialize the memory references information.
8919   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8920     MN->clearMemRefs();
8921 
8922   // Swap for an appropriately sized array from the recycler.
8923   removeOperands(N);
8924   createOperands(N, Ops);
8925 
8926   // Delete any nodes that are still dead after adding the uses for the
8927   // new operands.
8928   if (!DeadNodeSet.empty()) {
8929     SmallVector<SDNode *, 16> DeadNodes;
8930     for (SDNode *N : DeadNodeSet)
8931       if (N->use_empty())
8932         DeadNodes.push_back(N);
8933     RemoveDeadNodes(DeadNodes);
8934   }
8935 
8936   if (IP)
8937     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8938   return N;
8939 }
8940 
8941 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8942   unsigned OrigOpc = Node->getOpcode();
8943   unsigned NewOpc;
8944   switch (OrigOpc) {
8945   default:
8946     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8947 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8948   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8949 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8950   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8951 #include "llvm/IR/ConstrainedOps.def"
8952   }
8953 
8954   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8955 
8956   // We're taking this node out of the chain, so we need to re-link things.
8957   SDValue InputChain = Node->getOperand(0);
8958   SDValue OutputChain = SDValue(Node, 1);
8959   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8960 
8961   SmallVector<SDValue, 3> Ops;
8962   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8963     Ops.push_back(Node->getOperand(i));
8964 
8965   SDVTList VTs = getVTList(Node->getValueType(0));
8966   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8967 
8968   // MorphNodeTo can operate in two ways: if an existing node with the
8969   // specified operands exists, it can just return it.  Otherwise, it
8970   // updates the node in place to have the requested operands.
8971   if (Res == Node) {
8972     // If we updated the node in place, reset the node ID.  To the isel,
8973     // this should be just like a newly allocated machine node.
8974     Res->setNodeId(-1);
8975   } else {
8976     ReplaceAllUsesWith(Node, Res);
8977     RemoveDeadNode(Node);
8978   }
8979 
8980   return Res;
8981 }
8982 
8983 /// getMachineNode - These are used for target selectors to create a new node
8984 /// with specified return type(s), MachineInstr opcode, and operands.
8985 ///
8986 /// Note that getMachineNode returns the resultant node.  If there is already a
8987 /// node of the specified opcode and operands, it returns that node instead of
8988 /// the current one.
8989 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8990                                             EVT VT) {
8991   SDVTList VTs = getVTList(VT);
8992   return getMachineNode(Opcode, dl, VTs, None);
8993 }
8994 
8995 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8996                                             EVT VT, SDValue Op1) {
8997   SDVTList VTs = getVTList(VT);
8998   SDValue Ops[] = { Op1 };
8999   return getMachineNode(Opcode, dl, VTs, Ops);
9000 }
9001 
9002 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9003                                             EVT VT, SDValue Op1, SDValue Op2) {
9004   SDVTList VTs = getVTList(VT);
9005   SDValue Ops[] = { Op1, Op2 };
9006   return getMachineNode(Opcode, dl, VTs, Ops);
9007 }
9008 
9009 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9010                                             EVT VT, SDValue Op1, SDValue Op2,
9011                                             SDValue Op3) {
9012   SDVTList VTs = getVTList(VT);
9013   SDValue Ops[] = { Op1, Op2, Op3 };
9014   return getMachineNode(Opcode, dl, VTs, Ops);
9015 }
9016 
9017 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9018                                             EVT VT, ArrayRef<SDValue> Ops) {
9019   SDVTList VTs = getVTList(VT);
9020   return getMachineNode(Opcode, dl, VTs, Ops);
9021 }
9022 
9023 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9024                                             EVT VT1, EVT VT2, SDValue Op1,
9025                                             SDValue Op2) {
9026   SDVTList VTs = getVTList(VT1, VT2);
9027   SDValue Ops[] = { Op1, Op2 };
9028   return getMachineNode(Opcode, dl, VTs, Ops);
9029 }
9030 
9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9032                                             EVT VT1, EVT VT2, SDValue Op1,
9033                                             SDValue Op2, SDValue Op3) {
9034   SDVTList VTs = getVTList(VT1, VT2);
9035   SDValue Ops[] = { Op1, Op2, Op3 };
9036   return getMachineNode(Opcode, dl, VTs, Ops);
9037 }
9038 
9039 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9040                                             EVT VT1, EVT VT2,
9041                                             ArrayRef<SDValue> Ops) {
9042   SDVTList VTs = getVTList(VT1, VT2);
9043   return getMachineNode(Opcode, dl, VTs, Ops);
9044 }
9045 
9046 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9047                                             EVT VT1, EVT VT2, EVT VT3,
9048                                             SDValue Op1, SDValue Op2) {
9049   SDVTList VTs = getVTList(VT1, VT2, VT3);
9050   SDValue Ops[] = { Op1, Op2 };
9051   return getMachineNode(Opcode, dl, VTs, Ops);
9052 }
9053 
9054 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9055                                             EVT VT1, EVT VT2, EVT VT3,
9056                                             SDValue Op1, SDValue Op2,
9057                                             SDValue Op3) {
9058   SDVTList VTs = getVTList(VT1, VT2, VT3);
9059   SDValue Ops[] = { Op1, Op2, Op3 };
9060   return getMachineNode(Opcode, dl, VTs, Ops);
9061 }
9062 
9063 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9064                                             EVT VT1, EVT VT2, EVT VT3,
9065                                             ArrayRef<SDValue> Ops) {
9066   SDVTList VTs = getVTList(VT1, VT2, VT3);
9067   return getMachineNode(Opcode, dl, VTs, Ops);
9068 }
9069 
9070 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9071                                             ArrayRef<EVT> ResultTys,
9072                                             ArrayRef<SDValue> Ops) {
9073   SDVTList VTs = getVTList(ResultTys);
9074   return getMachineNode(Opcode, dl, VTs, Ops);
9075 }
9076 
9077 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9078                                             SDVTList VTs,
9079                                             ArrayRef<SDValue> Ops) {
9080   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9081   MachineSDNode *N;
9082   void *IP = nullptr;
9083 
9084   if (DoCSE) {
9085     FoldingSetNodeID ID;
9086     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9087     IP = nullptr;
9088     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9089       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9090     }
9091   }
9092 
9093   // Allocate a new MachineSDNode.
9094   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9095   createOperands(N, Ops);
9096 
9097   if (DoCSE)
9098     CSEMap.InsertNode(N, IP);
9099 
9100   InsertNode(N);
9101   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9102   return N;
9103 }
9104 
9105 /// getTargetExtractSubreg - A convenience function for creating
9106 /// TargetOpcode::EXTRACT_SUBREG nodes.
9107 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9108                                              SDValue Operand) {
9109   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9110   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9111                                   VT, Operand, SRIdxVal);
9112   return SDValue(Subreg, 0);
9113 }
9114 
9115 /// getTargetInsertSubreg - A convenience function for creating
9116 /// TargetOpcode::INSERT_SUBREG nodes.
9117 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9118                                             SDValue Operand, SDValue Subreg) {
9119   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9120   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9121                                   VT, Operand, Subreg, SRIdxVal);
9122   return SDValue(Result, 0);
9123 }
9124 
9125 /// getNodeIfExists - Get the specified node if it's already available, or
9126 /// else return NULL.
9127 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9128                                       ArrayRef<SDValue> Ops) {
9129   SDNodeFlags Flags;
9130   if (Inserter)
9131     Flags = Inserter->getFlags();
9132   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9133 }
9134 
9135 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9136                                       ArrayRef<SDValue> Ops,
9137                                       const SDNodeFlags Flags) {
9138   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9139     FoldingSetNodeID ID;
9140     AddNodeIDNode(ID, Opcode, VTList, Ops);
9141     void *IP = nullptr;
9142     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9143       E->intersectFlagsWith(Flags);
9144       return E;
9145     }
9146   }
9147   return nullptr;
9148 }
9149 
9150 /// doesNodeExist - Check if a node exists without modifying its flags.
9151 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9152                                  ArrayRef<SDValue> Ops) {
9153   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9154     FoldingSetNodeID ID;
9155     AddNodeIDNode(ID, Opcode, VTList, Ops);
9156     void *IP = nullptr;
9157     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9158       return true;
9159   }
9160   return false;
9161 }
9162 
9163 /// getDbgValue - Creates a SDDbgValue node.
9164 ///
9165 /// SDNode
9166 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9167                                       SDNode *N, unsigned R, bool IsIndirect,
9168                                       const DebugLoc &DL, unsigned O) {
9169   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9170          "Expected inlined-at fields to agree");
9171   return new (DbgInfo->getAlloc())
9172       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9173                  {}, IsIndirect, DL, O,
9174                  /*IsVariadic=*/false);
9175 }
9176 
9177 /// Constant
9178 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9179                                               DIExpression *Expr,
9180                                               const Value *C,
9181                                               const DebugLoc &DL, unsigned O) {
9182   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9183          "Expected inlined-at fields to agree");
9184   return new (DbgInfo->getAlloc())
9185       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9186                  /*IsIndirect=*/false, DL, O,
9187                  /*IsVariadic=*/false);
9188 }
9189 
9190 /// FrameIndex
9191 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9192                                                 DIExpression *Expr, unsigned FI,
9193                                                 bool IsIndirect,
9194                                                 const DebugLoc &DL,
9195                                                 unsigned O) {
9196   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9197          "Expected inlined-at fields to agree");
9198   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9199 }
9200 
9201 /// FrameIndex with dependencies
9202 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9203                                                 DIExpression *Expr, unsigned FI,
9204                                                 ArrayRef<SDNode *> Dependencies,
9205                                                 bool IsIndirect,
9206                                                 const DebugLoc &DL,
9207                                                 unsigned O) {
9208   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9209          "Expected inlined-at fields to agree");
9210   return new (DbgInfo->getAlloc())
9211       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9212                  Dependencies, IsIndirect, DL, O,
9213                  /*IsVariadic=*/false);
9214 }
9215 
9216 /// VReg
9217 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9218                                           unsigned VReg, bool IsIndirect,
9219                                           const DebugLoc &DL, unsigned O) {
9220   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9221          "Expected inlined-at fields to agree");
9222   return new (DbgInfo->getAlloc())
9223       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9224                  {}, IsIndirect, DL, O,
9225                  /*IsVariadic=*/false);
9226 }
9227 
9228 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9229                                           ArrayRef<SDDbgOperand> Locs,
9230                                           ArrayRef<SDNode *> Dependencies,
9231                                           bool IsIndirect, const DebugLoc &DL,
9232                                           unsigned O, bool IsVariadic) {
9233   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9234          "Expected inlined-at fields to agree");
9235   return new (DbgInfo->getAlloc())
9236       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9237                  DL, O, IsVariadic);
9238 }
9239 
9240 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9241                                      unsigned OffsetInBits, unsigned SizeInBits,
9242                                      bool InvalidateDbg) {
9243   SDNode *FromNode = From.getNode();
9244   SDNode *ToNode = To.getNode();
9245   assert(FromNode && ToNode && "Can't modify dbg values");
9246 
9247   // PR35338
9248   // TODO: assert(From != To && "Redundant dbg value transfer");
9249   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9250   if (From == To || FromNode == ToNode)
9251     return;
9252 
9253   if (!FromNode->getHasDebugValue())
9254     return;
9255 
9256   SDDbgOperand FromLocOp =
9257       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9258   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9259 
9260   SmallVector<SDDbgValue *, 2> ClonedDVs;
9261   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9262     if (Dbg->isInvalidated())
9263       continue;
9264 
9265     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9266 
9267     // Create a new location ops vector that is equal to the old vector, but
9268     // with each instance of FromLocOp replaced with ToLocOp.
9269     bool Changed = false;
9270     auto NewLocOps = Dbg->copyLocationOps();
9271     std::replace_if(
9272         NewLocOps.begin(), NewLocOps.end(),
9273         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9274           bool Match = Op == FromLocOp;
9275           Changed |= Match;
9276           return Match;
9277         },
9278         ToLocOp);
9279     // Ignore this SDDbgValue if we didn't find a matching location.
9280     if (!Changed)
9281       continue;
9282 
9283     DIVariable *Var = Dbg->getVariable();
9284     auto *Expr = Dbg->getExpression();
9285     // If a fragment is requested, update the expression.
9286     if (SizeInBits) {
9287       // When splitting a larger (e.g., sign-extended) value whose
9288       // lower bits are described with an SDDbgValue, do not attempt
9289       // to transfer the SDDbgValue to the upper bits.
9290       if (auto FI = Expr->getFragmentInfo())
9291         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9292           continue;
9293       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9294                                                              SizeInBits);
9295       if (!Fragment)
9296         continue;
9297       Expr = *Fragment;
9298     }
9299 
9300     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9301     // Clone the SDDbgValue and move it to To.
9302     SDDbgValue *Clone = getDbgValueList(
9303         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9304         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9305         Dbg->isVariadic());
9306     ClonedDVs.push_back(Clone);
9307 
9308     if (InvalidateDbg) {
9309       // Invalidate value and indicate the SDDbgValue should not be emitted.
9310       Dbg->setIsInvalidated();
9311       Dbg->setIsEmitted();
9312     }
9313   }
9314 
9315   for (SDDbgValue *Dbg : ClonedDVs) {
9316     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9317            "Transferred DbgValues should depend on the new SDNode");
9318     AddDbgValue(Dbg, false);
9319   }
9320 }
9321 
9322 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9323   if (!N.getHasDebugValue())
9324     return;
9325 
9326   SmallVector<SDDbgValue *, 2> ClonedDVs;
9327   for (auto DV : GetDbgValues(&N)) {
9328     if (DV->isInvalidated())
9329       continue;
9330     switch (N.getOpcode()) {
9331     default:
9332       break;
9333     case ISD::ADD:
9334       SDValue N0 = N.getOperand(0);
9335       SDValue N1 = N.getOperand(1);
9336       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9337           isConstantIntBuildVectorOrConstantInt(N1)) {
9338         uint64_t Offset = N.getConstantOperandVal(1);
9339 
9340         // Rewrite an ADD constant node into a DIExpression. Since we are
9341         // performing arithmetic to compute the variable's *value* in the
9342         // DIExpression, we need to mark the expression with a
9343         // DW_OP_stack_value.
9344         auto *DIExpr = DV->getExpression();
9345         auto NewLocOps = DV->copyLocationOps();
9346         bool Changed = false;
9347         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9348           // We're not given a ResNo to compare against because the whole
9349           // node is going away. We know that any ISD::ADD only has one
9350           // result, so we can assume any node match is using the result.
9351           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9352               NewLocOps[i].getSDNode() != &N)
9353             continue;
9354           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9355           SmallVector<uint64_t, 3> ExprOps;
9356           DIExpression::appendOffset(ExprOps, Offset);
9357           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9358           Changed = true;
9359         }
9360         (void)Changed;
9361         assert(Changed && "Salvage target doesn't use N");
9362 
9363         auto AdditionalDependencies = DV->getAdditionalDependencies();
9364         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9365                                             NewLocOps, AdditionalDependencies,
9366                                             DV->isIndirect(), DV->getDebugLoc(),
9367                                             DV->getOrder(), DV->isVariadic());
9368         ClonedDVs.push_back(Clone);
9369         DV->setIsInvalidated();
9370         DV->setIsEmitted();
9371         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9372                    N0.getNode()->dumprFull(this);
9373                    dbgs() << " into " << *DIExpr << '\n');
9374       }
9375     }
9376   }
9377 
9378   for (SDDbgValue *Dbg : ClonedDVs) {
9379     assert(!Dbg->getSDNodes().empty() &&
9380            "Salvaged DbgValue should depend on a new SDNode");
9381     AddDbgValue(Dbg, false);
9382   }
9383 }
9384 
9385 /// Creates a SDDbgLabel node.
9386 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9387                                       const DebugLoc &DL, unsigned O) {
9388   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9389          "Expected inlined-at fields to agree");
9390   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9391 }
9392 
9393 namespace {
9394 
9395 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9396 /// pointed to by a use iterator is deleted, increment the use iterator
9397 /// so that it doesn't dangle.
9398 ///
9399 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9400   SDNode::use_iterator &UI;
9401   SDNode::use_iterator &UE;
9402 
9403   void NodeDeleted(SDNode *N, SDNode *E) override {
9404     // Increment the iterator as needed.
9405     while (UI != UE && N == *UI)
9406       ++UI;
9407   }
9408 
9409 public:
9410   RAUWUpdateListener(SelectionDAG &d,
9411                      SDNode::use_iterator &ui,
9412                      SDNode::use_iterator &ue)
9413     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9414 };
9415 
9416 } // end anonymous namespace
9417 
9418 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9419 /// This can cause recursive merging of nodes in the DAG.
9420 ///
9421 /// This version assumes From has a single result value.
9422 ///
9423 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9424   SDNode *From = FromN.getNode();
9425   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9426          "Cannot replace with this method!");
9427   assert(From != To.getNode() && "Cannot replace uses of with self");
9428 
9429   // Preserve Debug Values
9430   transferDbgValues(FromN, To);
9431 
9432   // Iterate over all the existing uses of From. New uses will be added
9433   // to the beginning of the use list, which we avoid visiting.
9434   // This specifically avoids visiting uses of From that arise while the
9435   // replacement is happening, because any such uses would be the result
9436   // of CSE: If an existing node looks like From after one of its operands
9437   // is replaced by To, we don't want to replace of all its users with To
9438   // too. See PR3018 for more info.
9439   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9440   RAUWUpdateListener Listener(*this, UI, UE);
9441   while (UI != UE) {
9442     SDNode *User = *UI;
9443 
9444     // This node is about to morph, remove its old self from the CSE maps.
9445     RemoveNodeFromCSEMaps(User);
9446 
9447     // A user can appear in a use list multiple times, and when this
9448     // happens the uses are usually next to each other in the list.
9449     // To help reduce the number of CSE recomputations, process all
9450     // the uses of this user that we can find this way.
9451     do {
9452       SDUse &Use = UI.getUse();
9453       ++UI;
9454       Use.set(To);
9455       if (To->isDivergent() != From->isDivergent())
9456         updateDivergence(User);
9457     } while (UI != UE && *UI == User);
9458     // Now that we have modified User, add it back to the CSE maps.  If it
9459     // already exists there, recursively merge the results together.
9460     AddModifiedNodeToCSEMaps(User);
9461   }
9462 
9463   // If we just RAUW'd the root, take note.
9464   if (FromN == getRoot())
9465     setRoot(To);
9466 }
9467 
9468 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9469 /// This can cause recursive merging of nodes in the DAG.
9470 ///
9471 /// This version assumes that for each value of From, there is a
9472 /// corresponding value in To in the same position with the same type.
9473 ///
9474 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9475 #ifndef NDEBUG
9476   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9477     assert((!From->hasAnyUseOfValue(i) ||
9478             From->getValueType(i) == To->getValueType(i)) &&
9479            "Cannot use this version of ReplaceAllUsesWith!");
9480 #endif
9481 
9482   // Handle the trivial case.
9483   if (From == To)
9484     return;
9485 
9486   // Preserve Debug Info. Only do this if there's a use.
9487   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9488     if (From->hasAnyUseOfValue(i)) {
9489       assert((i < To->getNumValues()) && "Invalid To location");
9490       transferDbgValues(SDValue(From, i), SDValue(To, i));
9491     }
9492 
9493   // Iterate over just the existing users of From. See the comments in
9494   // the ReplaceAllUsesWith above.
9495   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9496   RAUWUpdateListener Listener(*this, UI, UE);
9497   while (UI != UE) {
9498     SDNode *User = *UI;
9499 
9500     // This node is about to morph, remove its old self from the CSE maps.
9501     RemoveNodeFromCSEMaps(User);
9502 
9503     // A user can appear in a use list multiple times, and when this
9504     // happens the uses are usually next to each other in the list.
9505     // To help reduce the number of CSE recomputations, process all
9506     // the uses of this user that we can find this way.
9507     do {
9508       SDUse &Use = UI.getUse();
9509       ++UI;
9510       Use.setNode(To);
9511       if (To->isDivergent() != From->isDivergent())
9512         updateDivergence(User);
9513     } while (UI != UE && *UI == User);
9514 
9515     // Now that we have modified User, add it back to the CSE maps.  If it
9516     // already exists there, recursively merge the results together.
9517     AddModifiedNodeToCSEMaps(User);
9518   }
9519 
9520   // If we just RAUW'd the root, take note.
9521   if (From == getRoot().getNode())
9522     setRoot(SDValue(To, getRoot().getResNo()));
9523 }
9524 
9525 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9526 /// This can cause recursive merging of nodes in the DAG.
9527 ///
9528 /// This version can replace From with any result values.  To must match the
9529 /// number and types of values returned by From.
9530 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9531   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9532     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9533 
9534   // Preserve Debug Info.
9535   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9536     transferDbgValues(SDValue(From, i), To[i]);
9537 
9538   // Iterate over just the existing users of From. See the comments in
9539   // the ReplaceAllUsesWith above.
9540   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9541   RAUWUpdateListener Listener(*this, UI, UE);
9542   while (UI != UE) {
9543     SDNode *User = *UI;
9544 
9545     // This node is about to morph, remove its old self from the CSE maps.
9546     RemoveNodeFromCSEMaps(User);
9547 
9548     // A user can appear in a use list multiple times, and when this happens the
9549     // uses are usually next to each other in the list.  To help reduce the
9550     // number of CSE and divergence recomputations, process all the uses of this
9551     // user that we can find this way.
9552     bool To_IsDivergent = false;
9553     do {
9554       SDUse &Use = UI.getUse();
9555       const SDValue &ToOp = To[Use.getResNo()];
9556       ++UI;
9557       Use.set(ToOp);
9558       To_IsDivergent |= ToOp->isDivergent();
9559     } while (UI != UE && *UI == User);
9560 
9561     if (To_IsDivergent != From->isDivergent())
9562       updateDivergence(User);
9563 
9564     // Now that we have modified User, add it back to the CSE maps.  If it
9565     // already exists there, recursively merge the results together.
9566     AddModifiedNodeToCSEMaps(User);
9567   }
9568 
9569   // If we just RAUW'd the root, take note.
9570   if (From == getRoot().getNode())
9571     setRoot(SDValue(To[getRoot().getResNo()]));
9572 }
9573 
9574 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9575 /// uses of other values produced by From.getNode() alone.  The Deleted
9576 /// vector is handled the same way as for ReplaceAllUsesWith.
9577 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9578   // Handle the really simple, really trivial case efficiently.
9579   if (From == To) return;
9580 
9581   // Handle the simple, trivial, case efficiently.
9582   if (From.getNode()->getNumValues() == 1) {
9583     ReplaceAllUsesWith(From, To);
9584     return;
9585   }
9586 
9587   // Preserve Debug Info.
9588   transferDbgValues(From, To);
9589 
9590   // Iterate over just the existing users of From. See the comments in
9591   // the ReplaceAllUsesWith above.
9592   SDNode::use_iterator UI = From.getNode()->use_begin(),
9593                        UE = From.getNode()->use_end();
9594   RAUWUpdateListener Listener(*this, UI, UE);
9595   while (UI != UE) {
9596     SDNode *User = *UI;
9597     bool UserRemovedFromCSEMaps = false;
9598 
9599     // A user can appear in a use list multiple times, and when this
9600     // happens the uses are usually next to each other in the list.
9601     // To help reduce the number of CSE recomputations, process all
9602     // the uses of this user that we can find this way.
9603     do {
9604       SDUse &Use = UI.getUse();
9605 
9606       // Skip uses of different values from the same node.
9607       if (Use.getResNo() != From.getResNo()) {
9608         ++UI;
9609         continue;
9610       }
9611 
9612       // If this node hasn't been modified yet, it's still in the CSE maps,
9613       // so remove its old self from the CSE maps.
9614       if (!UserRemovedFromCSEMaps) {
9615         RemoveNodeFromCSEMaps(User);
9616         UserRemovedFromCSEMaps = true;
9617       }
9618 
9619       ++UI;
9620       Use.set(To);
9621       if (To->isDivergent() != From->isDivergent())
9622         updateDivergence(User);
9623     } while (UI != UE && *UI == User);
9624     // We are iterating over all uses of the From node, so if a use
9625     // doesn't use the specific value, no changes are made.
9626     if (!UserRemovedFromCSEMaps)
9627       continue;
9628 
9629     // Now that we have modified User, add it back to the CSE maps.  If it
9630     // already exists there, recursively merge the results together.
9631     AddModifiedNodeToCSEMaps(User);
9632   }
9633 
9634   // If we just RAUW'd the root, take note.
9635   if (From == getRoot())
9636     setRoot(To);
9637 }
9638 
9639 namespace {
9640 
9641   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9642   /// to record information about a use.
9643   struct UseMemo {
9644     SDNode *User;
9645     unsigned Index;
9646     SDUse *Use;
9647   };
9648 
9649   /// operator< - Sort Memos by User.
9650   bool operator<(const UseMemo &L, const UseMemo &R) {
9651     return (intptr_t)L.User < (intptr_t)R.User;
9652   }
9653 
9654 } // end anonymous namespace
9655 
9656 bool SelectionDAG::calculateDivergence(SDNode *N) {
9657   if (TLI->isSDNodeAlwaysUniform(N)) {
9658     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9659            "Conflicting divergence information!");
9660     return false;
9661   }
9662   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9663     return true;
9664   for (auto &Op : N->ops()) {
9665     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9666       return true;
9667   }
9668   return false;
9669 }
9670 
9671 void SelectionDAG::updateDivergence(SDNode *N) {
9672   SmallVector<SDNode *, 16> Worklist(1, N);
9673   do {
9674     N = Worklist.pop_back_val();
9675     bool IsDivergent = calculateDivergence(N);
9676     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9677       N->SDNodeBits.IsDivergent = IsDivergent;
9678       llvm::append_range(Worklist, N->uses());
9679     }
9680   } while (!Worklist.empty());
9681 }
9682 
9683 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9684   DenseMap<SDNode *, unsigned> Degree;
9685   Order.reserve(AllNodes.size());
9686   for (auto &N : allnodes()) {
9687     unsigned NOps = N.getNumOperands();
9688     Degree[&N] = NOps;
9689     if (0 == NOps)
9690       Order.push_back(&N);
9691   }
9692   for (size_t I = 0; I != Order.size(); ++I) {
9693     SDNode *N = Order[I];
9694     for (auto U : N->uses()) {
9695       unsigned &UnsortedOps = Degree[U];
9696       if (0 == --UnsortedOps)
9697         Order.push_back(U);
9698     }
9699   }
9700 }
9701 
9702 #ifndef NDEBUG
9703 void SelectionDAG::VerifyDAGDivergence() {
9704   std::vector<SDNode *> TopoOrder;
9705   CreateTopologicalOrder(TopoOrder);
9706   for (auto *N : TopoOrder) {
9707     assert(calculateDivergence(N) == N->isDivergent() &&
9708            "Divergence bit inconsistency detected");
9709   }
9710 }
9711 #endif
9712 
9713 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9714 /// uses of other values produced by From.getNode() alone.  The same value
9715 /// may appear in both the From and To list.  The Deleted vector is
9716 /// handled the same way as for ReplaceAllUsesWith.
9717 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9718                                               const SDValue *To,
9719                                               unsigned Num){
9720   // Handle the simple, trivial case efficiently.
9721   if (Num == 1)
9722     return ReplaceAllUsesOfValueWith(*From, *To);
9723 
9724   transferDbgValues(*From, *To);
9725 
9726   // Read up all the uses and make records of them. This helps
9727   // processing new uses that are introduced during the
9728   // replacement process.
9729   SmallVector<UseMemo, 4> Uses;
9730   for (unsigned i = 0; i != Num; ++i) {
9731     unsigned FromResNo = From[i].getResNo();
9732     SDNode *FromNode = From[i].getNode();
9733     for (SDNode::use_iterator UI = FromNode->use_begin(),
9734          E = FromNode->use_end(); UI != E; ++UI) {
9735       SDUse &Use = UI.getUse();
9736       if (Use.getResNo() == FromResNo) {
9737         UseMemo Memo = { *UI, i, &Use };
9738         Uses.push_back(Memo);
9739       }
9740     }
9741   }
9742 
9743   // Sort the uses, so that all the uses from a given User are together.
9744   llvm::sort(Uses);
9745 
9746   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9747        UseIndex != UseIndexEnd; ) {
9748     // We know that this user uses some value of From.  If it is the right
9749     // value, update it.
9750     SDNode *User = Uses[UseIndex].User;
9751 
9752     // This node is about to morph, remove its old self from the CSE maps.
9753     RemoveNodeFromCSEMaps(User);
9754 
9755     // The Uses array is sorted, so all the uses for a given User
9756     // are next to each other in the list.
9757     // To help reduce the number of CSE recomputations, process all
9758     // the uses of this user that we can find this way.
9759     do {
9760       unsigned i = Uses[UseIndex].Index;
9761       SDUse &Use = *Uses[UseIndex].Use;
9762       ++UseIndex;
9763 
9764       Use.set(To[i]);
9765     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9766 
9767     // Now that we have modified User, add it back to the CSE maps.  If it
9768     // already exists there, recursively merge the results together.
9769     AddModifiedNodeToCSEMaps(User);
9770   }
9771 }
9772 
9773 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9774 /// based on their topological order. It returns the maximum id and a vector
9775 /// of the SDNodes* in assigned order by reference.
9776 unsigned SelectionDAG::AssignTopologicalOrder() {
9777   unsigned DAGSize = 0;
9778 
9779   // SortedPos tracks the progress of the algorithm. Nodes before it are
9780   // sorted, nodes after it are unsorted. When the algorithm completes
9781   // it is at the end of the list.
9782   allnodes_iterator SortedPos = allnodes_begin();
9783 
9784   // Visit all the nodes. Move nodes with no operands to the front of
9785   // the list immediately. Annotate nodes that do have operands with their
9786   // operand count. Before we do this, the Node Id fields of the nodes
9787   // may contain arbitrary values. After, the Node Id fields for nodes
9788   // before SortedPos will contain the topological sort index, and the
9789   // Node Id fields for nodes At SortedPos and after will contain the
9790   // count of outstanding operands.
9791   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9792     SDNode *N = &*I++;
9793     checkForCycles(N, this);
9794     unsigned Degree = N->getNumOperands();
9795     if (Degree == 0) {
9796       // A node with no uses, add it to the result array immediately.
9797       N->setNodeId(DAGSize++);
9798       allnodes_iterator Q(N);
9799       if (Q != SortedPos)
9800         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9801       assert(SortedPos != AllNodes.end() && "Overran node list");
9802       ++SortedPos;
9803     } else {
9804       // Temporarily use the Node Id as scratch space for the degree count.
9805       N->setNodeId(Degree);
9806     }
9807   }
9808 
9809   // Visit all the nodes. As we iterate, move nodes into sorted order,
9810   // such that by the time the end is reached all nodes will be sorted.
9811   for (SDNode &Node : allnodes()) {
9812     SDNode *N = &Node;
9813     checkForCycles(N, this);
9814     // N is in sorted position, so all its uses have one less operand
9815     // that needs to be sorted.
9816     for (SDNode *P : N->uses()) {
9817       unsigned Degree = P->getNodeId();
9818       assert(Degree != 0 && "Invalid node degree");
9819       --Degree;
9820       if (Degree == 0) {
9821         // All of P's operands are sorted, so P may sorted now.
9822         P->setNodeId(DAGSize++);
9823         if (P->getIterator() != SortedPos)
9824           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9825         assert(SortedPos != AllNodes.end() && "Overran node list");
9826         ++SortedPos;
9827       } else {
9828         // Update P's outstanding operand count.
9829         P->setNodeId(Degree);
9830       }
9831     }
9832     if (Node.getIterator() == SortedPos) {
9833 #ifndef NDEBUG
9834       allnodes_iterator I(N);
9835       SDNode *S = &*++I;
9836       dbgs() << "Overran sorted position:\n";
9837       S->dumprFull(this); dbgs() << "\n";
9838       dbgs() << "Checking if this is due to cycles\n";
9839       checkForCycles(this, true);
9840 #endif
9841       llvm_unreachable(nullptr);
9842     }
9843   }
9844 
9845   assert(SortedPos == AllNodes.end() &&
9846          "Topological sort incomplete!");
9847   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9848          "First node in topological sort is not the entry token!");
9849   assert(AllNodes.front().getNodeId() == 0 &&
9850          "First node in topological sort has non-zero id!");
9851   assert(AllNodes.front().getNumOperands() == 0 &&
9852          "First node in topological sort has operands!");
9853   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9854          "Last node in topologic sort has unexpected id!");
9855   assert(AllNodes.back().use_empty() &&
9856          "Last node in topologic sort has users!");
9857   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9858   return DAGSize;
9859 }
9860 
9861 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9862 /// value is produced by SD.
9863 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9864   for (SDNode *SD : DB->getSDNodes()) {
9865     if (!SD)
9866       continue;
9867     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9868     SD->setHasDebugValue(true);
9869   }
9870   DbgInfo->add(DB, isParameter);
9871 }
9872 
9873 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9874 
9875 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9876                                                    SDValue NewMemOpChain) {
9877   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9878   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9879   // The new memory operation must have the same position as the old load in
9880   // terms of memory dependency. Create a TokenFactor for the old load and new
9881   // memory operation and update uses of the old load's output chain to use that
9882   // TokenFactor.
9883   if (OldChain == NewMemOpChain || OldChain.use_empty())
9884     return NewMemOpChain;
9885 
9886   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9887                                 OldChain, NewMemOpChain);
9888   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9889   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9890   return TokenFactor;
9891 }
9892 
9893 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9894                                                    SDValue NewMemOp) {
9895   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9896   SDValue OldChain = SDValue(OldLoad, 1);
9897   SDValue NewMemOpChain = NewMemOp.getValue(1);
9898   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9899 }
9900 
9901 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9902                                                      Function **OutFunction) {
9903   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9904 
9905   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9906   auto *Module = MF->getFunction().getParent();
9907   auto *Function = Module->getFunction(Symbol);
9908 
9909   if (OutFunction != nullptr)
9910       *OutFunction = Function;
9911 
9912   if (Function != nullptr) {
9913     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9914     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9915   }
9916 
9917   std::string ErrorStr;
9918   raw_string_ostream ErrorFormatter(ErrorStr);
9919 
9920   ErrorFormatter << "Undefined external symbol ";
9921   ErrorFormatter << '"' << Symbol << '"';
9922   ErrorFormatter.flush();
9923 
9924   report_fatal_error(ErrorStr);
9925 }
9926 
9927 //===----------------------------------------------------------------------===//
9928 //                              SDNode Class
9929 //===----------------------------------------------------------------------===//
9930 
9931 bool llvm::isNullConstant(SDValue V) {
9932   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9933   return Const != nullptr && Const->isZero();
9934 }
9935 
9936 bool llvm::isNullFPConstant(SDValue V) {
9937   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9938   return Const != nullptr && Const->isZero() && !Const->isNegative();
9939 }
9940 
9941 bool llvm::isAllOnesConstant(SDValue V) {
9942   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9943   return Const != nullptr && Const->isAllOnes();
9944 }
9945 
9946 bool llvm::isOneConstant(SDValue V) {
9947   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9948   return Const != nullptr && Const->isOne();
9949 }
9950 
9951 SDValue llvm::peekThroughBitcasts(SDValue V) {
9952   while (V.getOpcode() == ISD::BITCAST)
9953     V = V.getOperand(0);
9954   return V;
9955 }
9956 
9957 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9958   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9959     V = V.getOperand(0);
9960   return V;
9961 }
9962 
9963 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9964   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9965     V = V.getOperand(0);
9966   return V;
9967 }
9968 
9969 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9970   if (V.getOpcode() != ISD::XOR)
9971     return false;
9972   V = peekThroughBitcasts(V.getOperand(1));
9973   unsigned NumBits = V.getScalarValueSizeInBits();
9974   ConstantSDNode *C =
9975       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9976   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9977 }
9978 
9979 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9980                                           bool AllowTruncation) {
9981   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9982     return CN;
9983 
9984   // SplatVectors can truncate their operands. Ignore that case here unless
9985   // AllowTruncation is set.
9986   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9987     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9988     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9989       EVT CVT = CN->getValueType(0);
9990       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9991       if (AllowTruncation || CVT == VecEltVT)
9992         return CN;
9993     }
9994   }
9995 
9996   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9997     BitVector UndefElements;
9998     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9999 
10000     // BuildVectors can truncate their operands. Ignore that case here unless
10001     // AllowTruncation is set.
10002     if (CN && (UndefElements.none() || AllowUndefs)) {
10003       EVT CVT = CN->getValueType(0);
10004       EVT NSVT = N.getValueType().getScalarType();
10005       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10006       if (AllowTruncation || (CVT == NSVT))
10007         return CN;
10008     }
10009   }
10010 
10011   return nullptr;
10012 }
10013 
10014 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10015                                           bool AllowUndefs,
10016                                           bool AllowTruncation) {
10017   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10018     return CN;
10019 
10020   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10021     BitVector UndefElements;
10022     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10023 
10024     // BuildVectors can truncate their operands. Ignore that case here unless
10025     // AllowTruncation is set.
10026     if (CN && (UndefElements.none() || AllowUndefs)) {
10027       EVT CVT = CN->getValueType(0);
10028       EVT NSVT = N.getValueType().getScalarType();
10029       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10030       if (AllowTruncation || (CVT == NSVT))
10031         return CN;
10032     }
10033   }
10034 
10035   return nullptr;
10036 }
10037 
10038 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10039   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10040     return CN;
10041 
10042   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10043     BitVector UndefElements;
10044     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10045     if (CN && (UndefElements.none() || AllowUndefs))
10046       return CN;
10047   }
10048 
10049   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10050     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10051       return CN;
10052 
10053   return nullptr;
10054 }
10055 
10056 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10057                                               const APInt &DemandedElts,
10058                                               bool AllowUndefs) {
10059   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10060     return CN;
10061 
10062   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10063     BitVector UndefElements;
10064     ConstantFPSDNode *CN =
10065         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10066     if (CN && (UndefElements.none() || AllowUndefs))
10067       return CN;
10068   }
10069 
10070   return nullptr;
10071 }
10072 
10073 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10074   // TODO: may want to use peekThroughBitcast() here.
10075   ConstantSDNode *C =
10076       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10077   return C && C->isZero();
10078 }
10079 
10080 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10081   // TODO: may want to use peekThroughBitcast() here.
10082   unsigned BitWidth = N.getScalarValueSizeInBits();
10083   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10084   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10085 }
10086 
10087 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10088   N = peekThroughBitcasts(N);
10089   unsigned BitWidth = N.getScalarValueSizeInBits();
10090   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10091   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10092 }
10093 
10094 HandleSDNode::~HandleSDNode() {
10095   DropOperands();
10096 }
10097 
10098 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10099                                          const DebugLoc &DL,
10100                                          const GlobalValue *GA, EVT VT,
10101                                          int64_t o, unsigned TF)
10102     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10103   TheGlobal = GA;
10104 }
10105 
10106 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10107                                          EVT VT, unsigned SrcAS,
10108                                          unsigned DestAS)
10109     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10110       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10111 
10112 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10113                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10114     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10115   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10116   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10117   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10118   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10119 
10120   // We check here that the size of the memory operand fits within the size of
10121   // the MMO. This is because the MMO might indicate only a possible address
10122   // range instead of specifying the affected memory addresses precisely.
10123   // TODO: Make MachineMemOperands aware of scalable vectors.
10124   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10125          "Size mismatch!");
10126 }
10127 
10128 /// Profile - Gather unique data for the node.
10129 ///
10130 void SDNode::Profile(FoldingSetNodeID &ID) const {
10131   AddNodeIDNode(ID, this);
10132 }
10133 
10134 namespace {
10135 
10136   struct EVTArray {
10137     std::vector<EVT> VTs;
10138 
10139     EVTArray() {
10140       VTs.reserve(MVT::VALUETYPE_SIZE);
10141       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10142         VTs.push_back(MVT((MVT::SimpleValueType)i));
10143     }
10144   };
10145 
10146 } // end anonymous namespace
10147 
10148 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10149 static ManagedStatic<EVTArray> SimpleVTArray;
10150 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10151 
10152 /// getValueTypeList - Return a pointer to the specified value type.
10153 ///
10154 const EVT *SDNode::getValueTypeList(EVT VT) {
10155   if (VT.isExtended()) {
10156     sys::SmartScopedLock<true> Lock(*VTMutex);
10157     return &(*EVTs->insert(VT).first);
10158   }
10159   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10160   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10161 }
10162 
10163 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10164 /// indicated value.  This method ignores uses of other values defined by this
10165 /// operation.
10166 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10167   assert(Value < getNumValues() && "Bad value!");
10168 
10169   // TODO: Only iterate over uses of a given value of the node
10170   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10171     if (UI.getUse().getResNo() == Value) {
10172       if (NUses == 0)
10173         return false;
10174       --NUses;
10175     }
10176   }
10177 
10178   // Found exactly the right number of uses?
10179   return NUses == 0;
10180 }
10181 
10182 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10183 /// value. This method ignores uses of other values defined by this operation.
10184 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10185   assert(Value < getNumValues() && "Bad value!");
10186 
10187   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10188     if (UI.getUse().getResNo() == Value)
10189       return true;
10190 
10191   return false;
10192 }
10193 
10194 /// isOnlyUserOf - Return true if this node is the only use of N.
10195 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10196   bool Seen = false;
10197   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
10198     SDNode *User = *I;
10199     if (User == this)
10200       Seen = true;
10201     else
10202       return false;
10203   }
10204 
10205   return Seen;
10206 }
10207 
10208 /// Return true if the only users of N are contained in Nodes.
10209 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10210   bool Seen = false;
10211   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
10212     SDNode *User = *I;
10213     if (llvm::is_contained(Nodes, User))
10214       Seen = true;
10215     else
10216       return false;
10217   }
10218 
10219   return Seen;
10220 }
10221 
10222 /// isOperand - Return true if this node is an operand of N.
10223 bool SDValue::isOperandOf(const SDNode *N) const {
10224   return is_contained(N->op_values(), *this);
10225 }
10226 
10227 bool SDNode::isOperandOf(const SDNode *N) const {
10228   return any_of(N->op_values(),
10229                 [this](SDValue Op) { return this == Op.getNode(); });
10230 }
10231 
10232 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10233 /// be a chain) reaches the specified operand without crossing any
10234 /// side-effecting instructions on any chain path.  In practice, this looks
10235 /// through token factors and non-volatile loads.  In order to remain efficient,
10236 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10237 ///
10238 /// Note that we only need to examine chains when we're searching for
10239 /// side-effects; SelectionDAG requires that all side-effects are represented
10240 /// by chains, even if another operand would force a specific ordering. This
10241 /// constraint is necessary to allow transformations like splitting loads.
10242 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10243                                              unsigned Depth) const {
10244   if (*this == Dest) return true;
10245 
10246   // Don't search too deeply, we just want to be able to see through
10247   // TokenFactor's etc.
10248   if (Depth == 0) return false;
10249 
10250   // If this is a token factor, all inputs to the TF happen in parallel.
10251   if (getOpcode() == ISD::TokenFactor) {
10252     // First, try a shallow search.
10253     if (is_contained((*this)->ops(), Dest)) {
10254       // We found the chain we want as an operand of this TokenFactor.
10255       // Essentially, we reach the chain without side-effects if we could
10256       // serialize the TokenFactor into a simple chain of operations with
10257       // Dest as the last operation. This is automatically true if the
10258       // chain has one use: there are no other ordering constraints.
10259       // If the chain has more than one use, we give up: some other
10260       // use of Dest might force a side-effect between Dest and the current
10261       // node.
10262       if (Dest.hasOneUse())
10263         return true;
10264     }
10265     // Next, try a deep search: check whether every operand of the TokenFactor
10266     // reaches Dest.
10267     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10268       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10269     });
10270   }
10271 
10272   // Loads don't have side effects, look through them.
10273   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10274     if (Ld->isUnordered())
10275       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10276   }
10277   return false;
10278 }
10279 
10280 bool SDNode::hasPredecessor(const SDNode *N) const {
10281   SmallPtrSet<const SDNode *, 32> Visited;
10282   SmallVector<const SDNode *, 16> Worklist;
10283   Worklist.push_back(this);
10284   return hasPredecessorHelper(N, Visited, Worklist);
10285 }
10286 
10287 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10288   this->Flags.intersectWith(Flags);
10289 }
10290 
10291 SDValue
10292 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10293                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10294                                   bool AllowPartials) {
10295   // The pattern must end in an extract from index 0.
10296   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10297       !isNullConstant(Extract->getOperand(1)))
10298     return SDValue();
10299 
10300   // Match against one of the candidate binary ops.
10301   SDValue Op = Extract->getOperand(0);
10302   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10303         return Op.getOpcode() == unsigned(BinOp);
10304       }))
10305     return SDValue();
10306 
10307   // Floating-point reductions may require relaxed constraints on the final step
10308   // of the reduction because they may reorder intermediate operations.
10309   unsigned CandidateBinOp = Op.getOpcode();
10310   if (Op.getValueType().isFloatingPoint()) {
10311     SDNodeFlags Flags = Op->getFlags();
10312     switch (CandidateBinOp) {
10313     case ISD::FADD:
10314       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10315         return SDValue();
10316       break;
10317     default:
10318       llvm_unreachable("Unhandled FP opcode for binop reduction");
10319     }
10320   }
10321 
10322   // Matching failed - attempt to see if we did enough stages that a partial
10323   // reduction from a subvector is possible.
10324   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10325     if (!AllowPartials || !Op)
10326       return SDValue();
10327     EVT OpVT = Op.getValueType();
10328     EVT OpSVT = OpVT.getScalarType();
10329     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10330     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10331       return SDValue();
10332     BinOp = (ISD::NodeType)CandidateBinOp;
10333     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10334                    getVectorIdxConstant(0, SDLoc(Op)));
10335   };
10336 
10337   // At each stage, we're looking for something that looks like:
10338   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10339   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10340   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10341   // %a = binop <8 x i32> %op, %s
10342   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10343   // we expect something like:
10344   // <4,5,6,7,u,u,u,u>
10345   // <2,3,u,u,u,u,u,u>
10346   // <1,u,u,u,u,u,u,u>
10347   // While a partial reduction match would be:
10348   // <2,3,u,u,u,u,u,u>
10349   // <1,u,u,u,u,u,u,u>
10350   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10351   SDValue PrevOp;
10352   for (unsigned i = 0; i < Stages; ++i) {
10353     unsigned MaskEnd = (1 << i);
10354 
10355     if (Op.getOpcode() != CandidateBinOp)
10356       return PartialReduction(PrevOp, MaskEnd);
10357 
10358     SDValue Op0 = Op.getOperand(0);
10359     SDValue Op1 = Op.getOperand(1);
10360 
10361     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10362     if (Shuffle) {
10363       Op = Op1;
10364     } else {
10365       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10366       Op = Op0;
10367     }
10368 
10369     // The first operand of the shuffle should be the same as the other operand
10370     // of the binop.
10371     if (!Shuffle || Shuffle->getOperand(0) != Op)
10372       return PartialReduction(PrevOp, MaskEnd);
10373 
10374     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10375     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10376       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10377         return PartialReduction(PrevOp, MaskEnd);
10378 
10379     PrevOp = Op;
10380   }
10381 
10382   // Handle subvector reductions, which tend to appear after the shuffle
10383   // reduction stages.
10384   while (Op.getOpcode() == CandidateBinOp) {
10385     unsigned NumElts = Op.getValueType().getVectorNumElements();
10386     SDValue Op0 = Op.getOperand(0);
10387     SDValue Op1 = Op.getOperand(1);
10388     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10389         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10390         Op0.getOperand(0) != Op1.getOperand(0))
10391       break;
10392     SDValue Src = Op0.getOperand(0);
10393     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10394     if (NumSrcElts != (2 * NumElts))
10395       break;
10396     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10397           Op1.getConstantOperandAPInt(1) == NumElts) &&
10398         !(Op1.getConstantOperandAPInt(1) == 0 &&
10399           Op0.getConstantOperandAPInt(1) == NumElts))
10400       break;
10401     Op = Src;
10402   }
10403 
10404   BinOp = (ISD::NodeType)CandidateBinOp;
10405   return Op;
10406 }
10407 
10408 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10409   assert(N->getNumValues() == 1 &&
10410          "Can't unroll a vector with multiple results!");
10411 
10412   EVT VT = N->getValueType(0);
10413   unsigned NE = VT.getVectorNumElements();
10414   EVT EltVT = VT.getVectorElementType();
10415   SDLoc dl(N);
10416 
10417   SmallVector<SDValue, 8> Scalars;
10418   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10419 
10420   // If ResNE is 0, fully unroll the vector op.
10421   if (ResNE == 0)
10422     ResNE = NE;
10423   else if (NE > ResNE)
10424     NE = ResNE;
10425 
10426   unsigned i;
10427   for (i= 0; i != NE; ++i) {
10428     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10429       SDValue Operand = N->getOperand(j);
10430       EVT OperandVT = Operand.getValueType();
10431       if (OperandVT.isVector()) {
10432         // A vector operand; extract a single element.
10433         EVT OperandEltVT = OperandVT.getVectorElementType();
10434         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10435                               Operand, getVectorIdxConstant(i, dl));
10436       } else {
10437         // A scalar operand; just use it as is.
10438         Operands[j] = Operand;
10439       }
10440     }
10441 
10442     switch (N->getOpcode()) {
10443     default: {
10444       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10445                                 N->getFlags()));
10446       break;
10447     }
10448     case ISD::VSELECT:
10449       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10450       break;
10451     case ISD::SHL:
10452     case ISD::SRA:
10453     case ISD::SRL:
10454     case ISD::ROTL:
10455     case ISD::ROTR:
10456       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10457                                getShiftAmountOperand(Operands[0].getValueType(),
10458                                                      Operands[1])));
10459       break;
10460     case ISD::SIGN_EXTEND_INREG: {
10461       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10462       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10463                                 Operands[0],
10464                                 getValueType(ExtVT)));
10465     }
10466     }
10467   }
10468 
10469   for (; i < ResNE; ++i)
10470     Scalars.push_back(getUNDEF(EltVT));
10471 
10472   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10473   return getBuildVector(VecVT, dl, Scalars);
10474 }
10475 
10476 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10477     SDNode *N, unsigned ResNE) {
10478   unsigned Opcode = N->getOpcode();
10479   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10480           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10481           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10482          "Expected an overflow opcode");
10483 
10484   EVT ResVT = N->getValueType(0);
10485   EVT OvVT = N->getValueType(1);
10486   EVT ResEltVT = ResVT.getVectorElementType();
10487   EVT OvEltVT = OvVT.getVectorElementType();
10488   SDLoc dl(N);
10489 
10490   // If ResNE is 0, fully unroll the vector op.
10491   unsigned NE = ResVT.getVectorNumElements();
10492   if (ResNE == 0)
10493     ResNE = NE;
10494   else if (NE > ResNE)
10495     NE = ResNE;
10496 
10497   SmallVector<SDValue, 8> LHSScalars;
10498   SmallVector<SDValue, 8> RHSScalars;
10499   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10500   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10501 
10502   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10503   SDVTList VTs = getVTList(ResEltVT, SVT);
10504   SmallVector<SDValue, 8> ResScalars;
10505   SmallVector<SDValue, 8> OvScalars;
10506   for (unsigned i = 0; i < NE; ++i) {
10507     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10508     SDValue Ov =
10509         getSelect(dl, OvEltVT, Res.getValue(1),
10510                   getBoolConstant(true, dl, OvEltVT, ResVT),
10511                   getConstant(0, dl, OvEltVT));
10512 
10513     ResScalars.push_back(Res);
10514     OvScalars.push_back(Ov);
10515   }
10516 
10517   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10518   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10519 
10520   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10521   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10522   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10523                         getBuildVector(NewOvVT, dl, OvScalars));
10524 }
10525 
10526 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10527                                                   LoadSDNode *Base,
10528                                                   unsigned Bytes,
10529                                                   int Dist) const {
10530   if (LD->isVolatile() || Base->isVolatile())
10531     return false;
10532   // TODO: probably too restrictive for atomics, revisit
10533   if (!LD->isSimple())
10534     return false;
10535   if (LD->isIndexed() || Base->isIndexed())
10536     return false;
10537   if (LD->getChain() != Base->getChain())
10538     return false;
10539   EVT VT = LD->getValueType(0);
10540   if (VT.getSizeInBits() / 8 != Bytes)
10541     return false;
10542 
10543   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10544   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10545 
10546   int64_t Offset = 0;
10547   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10548     return (Dist * Bytes == Offset);
10549   return false;
10550 }
10551 
10552 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10553 /// if it cannot be inferred.
10554 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10555   // If this is a GlobalAddress + cst, return the alignment.
10556   const GlobalValue *GV = nullptr;
10557   int64_t GVOffset = 0;
10558   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10559     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10560     KnownBits Known(PtrWidth);
10561     llvm::computeKnownBits(GV, Known, getDataLayout());
10562     unsigned AlignBits = Known.countMinTrailingZeros();
10563     if (AlignBits)
10564       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10565   }
10566 
10567   // If this is a direct reference to a stack slot, use information about the
10568   // stack slot's alignment.
10569   int FrameIdx = INT_MIN;
10570   int64_t FrameOffset = 0;
10571   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10572     FrameIdx = FI->getIndex();
10573   } else if (isBaseWithConstantOffset(Ptr) &&
10574              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10575     // Handle FI+Cst
10576     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10577     FrameOffset = Ptr.getConstantOperandVal(1);
10578   }
10579 
10580   if (FrameIdx != INT_MIN) {
10581     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10582     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10583   }
10584 
10585   return None;
10586 }
10587 
10588 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10589 /// which is split (or expanded) into two not necessarily identical pieces.
10590 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10591   // Currently all types are split in half.
10592   EVT LoVT, HiVT;
10593   if (!VT.isVector())
10594     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10595   else
10596     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10597 
10598   return std::make_pair(LoVT, HiVT);
10599 }
10600 
10601 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10602 /// type, dependent on an enveloping VT that has been split into two identical
10603 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10604 std::pair<EVT, EVT>
10605 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10606                                        bool *HiIsEmpty) const {
10607   EVT EltTp = VT.getVectorElementType();
10608   // Examples:
10609   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10610   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10611   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10612   //   etc.
10613   ElementCount VTNumElts = VT.getVectorElementCount();
10614   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10615   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10616          "Mixing fixed width and scalable vectors when enveloping a type");
10617   EVT LoVT, HiVT;
10618   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10619     LoVT = EnvVT;
10620     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10621     *HiIsEmpty = false;
10622   } else {
10623     // Flag that hi type has zero storage size, but return split envelop type
10624     // (this would be easier if vector types with zero elements were allowed).
10625     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10626     HiVT = EnvVT;
10627     *HiIsEmpty = true;
10628   }
10629   return std::make_pair(LoVT, HiVT);
10630 }
10631 
10632 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10633 /// low/high part.
10634 std::pair<SDValue, SDValue>
10635 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10636                           const EVT &HiVT) {
10637   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10638          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10639          "Splitting vector with an invalid mixture of fixed and scalable "
10640          "vector types");
10641   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10642              N.getValueType().getVectorMinNumElements() &&
10643          "More vector elements requested than available!");
10644   SDValue Lo, Hi;
10645   Lo =
10646       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10647   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10648   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10649   // IDX with the runtime scaling factor of the result vector type. For
10650   // fixed-width result vectors, that runtime scaling factor is 1.
10651   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10652                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10653   return std::make_pair(Lo, Hi);
10654 }
10655 
10656 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10657 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10658   EVT VT = N.getValueType();
10659   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10660                                 NextPowerOf2(VT.getVectorNumElements()));
10661   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10662                  getVectorIdxConstant(0, DL));
10663 }
10664 
10665 void SelectionDAG::ExtractVectorElements(SDValue Op,
10666                                          SmallVectorImpl<SDValue> &Args,
10667                                          unsigned Start, unsigned Count,
10668                                          EVT EltVT) {
10669   EVT VT = Op.getValueType();
10670   if (Count == 0)
10671     Count = VT.getVectorNumElements();
10672   if (EltVT == EVT())
10673     EltVT = VT.getVectorElementType();
10674   SDLoc SL(Op);
10675   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10676     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10677                            getVectorIdxConstant(i, SL)));
10678   }
10679 }
10680 
10681 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10682 unsigned GlobalAddressSDNode::getAddressSpace() const {
10683   return getGlobal()->getType()->getAddressSpace();
10684 }
10685 
10686 Type *ConstantPoolSDNode::getType() const {
10687   if (isMachineConstantPoolEntry())
10688     return Val.MachineCPVal->getType();
10689   return Val.ConstVal->getType();
10690 }
10691 
10692 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10693                                         unsigned &SplatBitSize,
10694                                         bool &HasAnyUndefs,
10695                                         unsigned MinSplatBits,
10696                                         bool IsBigEndian) const {
10697   EVT VT = getValueType(0);
10698   assert(VT.isVector() && "Expected a vector type");
10699   unsigned VecWidth = VT.getSizeInBits();
10700   if (MinSplatBits > VecWidth)
10701     return false;
10702 
10703   // FIXME: The widths are based on this node's type, but build vectors can
10704   // truncate their operands.
10705   SplatValue = APInt(VecWidth, 0);
10706   SplatUndef = APInt(VecWidth, 0);
10707 
10708   // Get the bits. Bits with undefined values (when the corresponding element
10709   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10710   // in SplatValue. If any of the values are not constant, give up and return
10711   // false.
10712   unsigned int NumOps = getNumOperands();
10713   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10714   unsigned EltWidth = VT.getScalarSizeInBits();
10715 
10716   for (unsigned j = 0; j < NumOps; ++j) {
10717     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10718     SDValue OpVal = getOperand(i);
10719     unsigned BitPos = j * EltWidth;
10720 
10721     if (OpVal.isUndef())
10722       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10723     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10724       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10725     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10726       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10727     else
10728       return false;
10729   }
10730 
10731   // The build_vector is all constants or undefs. Find the smallest element
10732   // size that splats the vector.
10733   HasAnyUndefs = (SplatUndef != 0);
10734 
10735   // FIXME: This does not work for vectors with elements less than 8 bits.
10736   while (VecWidth > 8) {
10737     unsigned HalfSize = VecWidth / 2;
10738     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10739     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10740     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10741     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10742 
10743     // If the two halves do not match (ignoring undef bits), stop here.
10744     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10745         MinSplatBits > HalfSize)
10746       break;
10747 
10748     SplatValue = HighValue | LowValue;
10749     SplatUndef = HighUndef & LowUndef;
10750 
10751     VecWidth = HalfSize;
10752   }
10753 
10754   SplatBitSize = VecWidth;
10755   return true;
10756 }
10757 
10758 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10759                                          BitVector *UndefElements) const {
10760   unsigned NumOps = getNumOperands();
10761   if (UndefElements) {
10762     UndefElements->clear();
10763     UndefElements->resize(NumOps);
10764   }
10765   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10766   if (!DemandedElts)
10767     return SDValue();
10768   SDValue Splatted;
10769   for (unsigned i = 0; i != NumOps; ++i) {
10770     if (!DemandedElts[i])
10771       continue;
10772     SDValue Op = getOperand(i);
10773     if (Op.isUndef()) {
10774       if (UndefElements)
10775         (*UndefElements)[i] = true;
10776     } else if (!Splatted) {
10777       Splatted = Op;
10778     } else if (Splatted != Op) {
10779       return SDValue();
10780     }
10781   }
10782 
10783   if (!Splatted) {
10784     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10785     assert(getOperand(FirstDemandedIdx).isUndef() &&
10786            "Can only have a splat without a constant for all undefs.");
10787     return getOperand(FirstDemandedIdx);
10788   }
10789 
10790   return Splatted;
10791 }
10792 
10793 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10794   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10795   return getSplatValue(DemandedElts, UndefElements);
10796 }
10797 
10798 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10799                                             SmallVectorImpl<SDValue> &Sequence,
10800                                             BitVector *UndefElements) const {
10801   unsigned NumOps = getNumOperands();
10802   Sequence.clear();
10803   if (UndefElements) {
10804     UndefElements->clear();
10805     UndefElements->resize(NumOps);
10806   }
10807   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10808   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10809     return false;
10810 
10811   // Set the undefs even if we don't find a sequence (like getSplatValue).
10812   if (UndefElements)
10813     for (unsigned I = 0; I != NumOps; ++I)
10814       if (DemandedElts[I] && getOperand(I).isUndef())
10815         (*UndefElements)[I] = true;
10816 
10817   // Iteratively widen the sequence length looking for repetitions.
10818   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10819     Sequence.append(SeqLen, SDValue());
10820     for (unsigned I = 0; I != NumOps; ++I) {
10821       if (!DemandedElts[I])
10822         continue;
10823       SDValue &SeqOp = Sequence[I % SeqLen];
10824       SDValue Op = getOperand(I);
10825       if (Op.isUndef()) {
10826         if (!SeqOp)
10827           SeqOp = Op;
10828         continue;
10829       }
10830       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10831         Sequence.clear();
10832         break;
10833       }
10834       SeqOp = Op;
10835     }
10836     if (!Sequence.empty())
10837       return true;
10838   }
10839 
10840   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10841   return false;
10842 }
10843 
10844 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10845                                             BitVector *UndefElements) const {
10846   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10847   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10848 }
10849 
10850 ConstantSDNode *
10851 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10852                                         BitVector *UndefElements) const {
10853   return dyn_cast_or_null<ConstantSDNode>(
10854       getSplatValue(DemandedElts, UndefElements));
10855 }
10856 
10857 ConstantSDNode *
10858 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10859   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10860 }
10861 
10862 ConstantFPSDNode *
10863 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10864                                           BitVector *UndefElements) const {
10865   return dyn_cast_or_null<ConstantFPSDNode>(
10866       getSplatValue(DemandedElts, UndefElements));
10867 }
10868 
10869 ConstantFPSDNode *
10870 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10871   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10872 }
10873 
10874 int32_t
10875 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10876                                                    uint32_t BitWidth) const {
10877   if (ConstantFPSDNode *CN =
10878           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10879     bool IsExact;
10880     APSInt IntVal(BitWidth);
10881     const APFloat &APF = CN->getValueAPF();
10882     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10883             APFloat::opOK ||
10884         !IsExact)
10885       return -1;
10886 
10887     return IntVal.exactLogBase2();
10888   }
10889   return -1;
10890 }
10891 
10892 bool BuildVectorSDNode::isConstant() const {
10893   for (const SDValue &Op : op_values()) {
10894     unsigned Opc = Op.getOpcode();
10895     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10896       return false;
10897   }
10898   return true;
10899 }
10900 
10901 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10902   // Find the first non-undef value in the shuffle mask.
10903   unsigned i, e;
10904   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10905     /* search */;
10906 
10907   // If all elements are undefined, this shuffle can be considered a splat
10908   // (although it should eventually get simplified away completely).
10909   if (i == e)
10910     return true;
10911 
10912   // Make sure all remaining elements are either undef or the same as the first
10913   // non-undef value.
10914   for (int Idx = Mask[i]; i != e; ++i)
10915     if (Mask[i] >= 0 && Mask[i] != Idx)
10916       return false;
10917   return true;
10918 }
10919 
10920 // Returns the SDNode if it is a constant integer BuildVector
10921 // or constant integer.
10922 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10923   if (isa<ConstantSDNode>(N))
10924     return N.getNode();
10925   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10926     return N.getNode();
10927   // Treat a GlobalAddress supporting constant offset folding as a
10928   // constant integer.
10929   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10930     if (GA->getOpcode() == ISD::GlobalAddress &&
10931         TLI->isOffsetFoldingLegal(GA))
10932       return GA;
10933   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10934       isa<ConstantSDNode>(N.getOperand(0)))
10935     return N.getNode();
10936   return nullptr;
10937 }
10938 
10939 // Returns the SDNode if it is a constant float BuildVector
10940 // or constant float.
10941 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10942   if (isa<ConstantFPSDNode>(N))
10943     return N.getNode();
10944 
10945   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10946     return N.getNode();
10947 
10948   return nullptr;
10949 }
10950 
10951 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10952   assert(!Node->OperandList && "Node already has operands");
10953   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10954          "too many operands to fit into SDNode");
10955   SDUse *Ops = OperandRecycler.allocate(
10956       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10957 
10958   bool IsDivergent = false;
10959   for (unsigned I = 0; I != Vals.size(); ++I) {
10960     Ops[I].setUser(Node);
10961     Ops[I].setInitial(Vals[I]);
10962     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10963       IsDivergent |= Ops[I].getNode()->isDivergent();
10964   }
10965   Node->NumOperands = Vals.size();
10966   Node->OperandList = Ops;
10967   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10968     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10969     Node->SDNodeBits.IsDivergent = IsDivergent;
10970   }
10971   checkForCycles(Node);
10972 }
10973 
10974 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10975                                      SmallVectorImpl<SDValue> &Vals) {
10976   size_t Limit = SDNode::getMaxNumOperands();
10977   while (Vals.size() > Limit) {
10978     unsigned SliceIdx = Vals.size() - Limit;
10979     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10980     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10981     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10982     Vals.emplace_back(NewTF);
10983   }
10984   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10985 }
10986 
10987 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10988                                         EVT VT, SDNodeFlags Flags) {
10989   switch (Opcode) {
10990   default:
10991     return SDValue();
10992   case ISD::ADD:
10993   case ISD::OR:
10994   case ISD::XOR:
10995   case ISD::UMAX:
10996     return getConstant(0, DL, VT);
10997   case ISD::MUL:
10998     return getConstant(1, DL, VT);
10999   case ISD::AND:
11000   case ISD::UMIN:
11001     return getAllOnesConstant(DL, VT);
11002   case ISD::SMAX:
11003     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11004   case ISD::SMIN:
11005     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11006   case ISD::FADD:
11007     return getConstantFP(-0.0, DL, VT);
11008   case ISD::FMUL:
11009     return getConstantFP(1.0, DL, VT);
11010   case ISD::FMINNUM:
11011   case ISD::FMAXNUM: {
11012     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11013     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11014     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11015                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11016                         APFloat::getLargest(Semantics);
11017     if (Opcode == ISD::FMAXNUM)
11018       NeutralAF.changeSign();
11019 
11020     return getConstantFP(NeutralAF, DL, VT);
11021   }
11022   }
11023 }
11024 
11025 #ifndef NDEBUG
11026 static void checkForCyclesHelper(const SDNode *N,
11027                                  SmallPtrSetImpl<const SDNode*> &Visited,
11028                                  SmallPtrSetImpl<const SDNode*> &Checked,
11029                                  const llvm::SelectionDAG *DAG) {
11030   // If this node has already been checked, don't check it again.
11031   if (Checked.count(N))
11032     return;
11033 
11034   // If a node has already been visited on this depth-first walk, reject it as
11035   // a cycle.
11036   if (!Visited.insert(N).second) {
11037     errs() << "Detected cycle in SelectionDAG\n";
11038     dbgs() << "Offending node:\n";
11039     N->dumprFull(DAG); dbgs() << "\n";
11040     abort();
11041   }
11042 
11043   for (const SDValue &Op : N->op_values())
11044     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11045 
11046   Checked.insert(N);
11047   Visited.erase(N);
11048 }
11049 #endif
11050 
11051 void llvm::checkForCycles(const llvm::SDNode *N,
11052                           const llvm::SelectionDAG *DAG,
11053                           bool force) {
11054 #ifndef NDEBUG
11055   bool check = force;
11056 #ifdef EXPENSIVE_CHECKS
11057   check = true;
11058 #endif  // EXPENSIVE_CHECKS
11059   if (check) {
11060     assert(N && "Checking nonexistent SDNode");
11061     SmallPtrSet<const SDNode*, 32> visited;
11062     SmallPtrSet<const SDNode*, 32> checked;
11063     checkForCyclesHelper(N, visited, checked, DAG);
11064   }
11065 #endif  // !NDEBUG
11066 }
11067 
11068 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11069   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11070 }
11071