1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 return ISD::FADD; 377 case ISD::VECREDUCE_FMUL: 378 case ISD::VECREDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 return ISD::ADD; 382 case ISD::VECREDUCE_MUL: 383 return ISD::MUL; 384 case ISD::VECREDUCE_AND: 385 return ISD::AND; 386 case ISD::VECREDUCE_OR: 387 return ISD::OR; 388 case ISD::VECREDUCE_XOR: 389 return ISD::XOR; 390 case ISD::VECREDUCE_SMAX: 391 return ISD::SMAX; 392 case ISD::VECREDUCE_SMIN: 393 return ISD::SMIN; 394 case ISD::VECREDUCE_UMAX: 395 return ISD::UMAX; 396 case ISD::VECREDUCE_UMIN: 397 return ISD::UMIN; 398 case ISD::VECREDUCE_FMAX: 399 return ISD::FMAXNUM; 400 case ISD::VECREDUCE_FMIN: 401 return ISD::FMINNUM; 402 } 403 } 404 405 bool ISD::isVPOpcode(unsigned Opcode) { 406 switch (Opcode) { 407 default: 408 return false; 409 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 410 case ISD::VPSD: \ 411 return true; 412 #include "llvm/IR/VPIntrinsics.def" 413 } 414 } 415 416 bool ISD::isVPBinaryOp(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 break; 420 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 421 #define VP_PROPERTY_BINARYOP return true; 422 #define END_REGISTER_VP_SDNODE(VPSD) break; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 return false; 426 } 427 428 bool ISD::isVPReduction(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 /// The operand position of the vector mask. 441 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 442 switch (Opcode) { 443 default: 444 return None; 445 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 446 case ISD::VPSD: \ 447 return MASKPOS; 448 #include "llvm/IR/VPIntrinsics.def" 449 } 450 } 451 452 /// The operand position of the explicit vector length parameter. 453 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 458 case ISD::VPSD: \ 459 return EVLPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 465 switch (ExtType) { 466 case ISD::EXTLOAD: 467 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 468 case ISD::SEXTLOAD: 469 return ISD::SIGN_EXTEND; 470 case ISD::ZEXTLOAD: 471 return ISD::ZERO_EXTEND; 472 default: 473 break; 474 } 475 476 llvm_unreachable("Invalid LoadExtType"); 477 } 478 479 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 480 // To perform this operation, we just need to swap the L and G bits of the 481 // operation. 482 unsigned OldL = (Operation >> 2) & 1; 483 unsigned OldG = (Operation >> 1) & 1; 484 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 485 (OldL << 1) | // New G bit 486 (OldG << 2)); // New L bit. 487 } 488 489 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 490 unsigned Operation = Op; 491 if (isIntegerLike) 492 Operation ^= 7; // Flip L, G, E bits, but not U. 493 else 494 Operation ^= 15; // Flip all of the condition bits. 495 496 if (Operation > ISD::SETTRUE2) 497 Operation &= ~8; // Don't let N and U bits get set. 498 499 return ISD::CondCode(Operation); 500 } 501 502 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 503 return getSetCCInverseImpl(Op, Type.isInteger()); 504 } 505 506 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 507 bool isIntegerLike) { 508 return getSetCCInverseImpl(Op, isIntegerLike); 509 } 510 511 /// For an integer comparison, return 1 if the comparison is a signed operation 512 /// and 2 if the result is an unsigned comparison. Return zero if the operation 513 /// does not depend on the sign of the input (setne and seteq). 514 static int isSignedOp(ISD::CondCode Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Illegal integer setcc operation!"); 517 case ISD::SETEQ: 518 case ISD::SETNE: return 0; 519 case ISD::SETLT: 520 case ISD::SETLE: 521 case ISD::SETGT: 522 case ISD::SETGE: return 1; 523 case ISD::SETULT: 524 case ISD::SETULE: 525 case ISD::SETUGT: 526 case ISD::SETUGE: return 2; 527 } 528 } 529 530 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 531 EVT Type) { 532 bool IsInteger = Type.isInteger(); 533 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 534 // Cannot fold a signed integer setcc with an unsigned integer setcc. 535 return ISD::SETCC_INVALID; 536 537 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 538 539 // If the N and U bits get set, then the resultant comparison DOES suddenly 540 // care about orderedness, and it is true when ordered. 541 if (Op > ISD::SETTRUE2) 542 Op &= ~16; // Clear the U bit if the N bit is set. 543 544 // Canonicalize illegal integer setcc's. 545 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 546 Op = ISD::SETNE; 547 548 return ISD::CondCode(Op); 549 } 550 551 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 552 EVT Type) { 553 bool IsInteger = Type.isInteger(); 554 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 555 // Cannot fold a signed setcc with an unsigned setcc. 556 return ISD::SETCC_INVALID; 557 558 // Combine all of the condition bits. 559 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 560 561 // Canonicalize illegal integer setcc's. 562 if (IsInteger) { 563 switch (Result) { 564 default: break; 565 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 566 case ISD::SETOEQ: // SETEQ & SETU[LG]E 567 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 568 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 569 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 570 } 571 } 572 573 return Result; 574 } 575 576 //===----------------------------------------------------------------------===// 577 // SDNode Profile Support 578 //===----------------------------------------------------------------------===// 579 580 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 581 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 582 ID.AddInteger(OpC); 583 } 584 585 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 586 /// solely with their pointer. 587 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 588 ID.AddPointer(VTList.VTs); 589 } 590 591 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 592 static void AddNodeIDOperands(FoldingSetNodeID &ID, 593 ArrayRef<SDValue> Ops) { 594 for (auto& Op : Ops) { 595 ID.AddPointer(Op.getNode()); 596 ID.AddInteger(Op.getResNo()); 597 } 598 } 599 600 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 601 static void AddNodeIDOperands(FoldingSetNodeID &ID, 602 ArrayRef<SDUse> Ops) { 603 for (auto& Op : Ops) { 604 ID.AddPointer(Op.getNode()); 605 ID.AddInteger(Op.getResNo()); 606 } 607 } 608 609 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 610 SDVTList VTList, ArrayRef<SDValue> OpList) { 611 AddNodeIDOpcode(ID, OpC); 612 AddNodeIDValueTypes(ID, VTList); 613 AddNodeIDOperands(ID, OpList); 614 } 615 616 /// If this is an SDNode with special info, add this info to the NodeID data. 617 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 618 switch (N->getOpcode()) { 619 case ISD::TargetExternalSymbol: 620 case ISD::ExternalSymbol: 621 case ISD::MCSymbol: 622 llvm_unreachable("Should only be used on nodes with operands"); 623 default: break; // Normal nodes don't need extra info. 624 case ISD::TargetConstant: 625 case ISD::Constant: { 626 const ConstantSDNode *C = cast<ConstantSDNode>(N); 627 ID.AddPointer(C->getConstantIntValue()); 628 ID.AddBoolean(C->isOpaque()); 629 break; 630 } 631 case ISD::TargetConstantFP: 632 case ISD::ConstantFP: 633 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 634 break; 635 case ISD::TargetGlobalAddress: 636 case ISD::GlobalAddress: 637 case ISD::TargetGlobalTLSAddress: 638 case ISD::GlobalTLSAddress: { 639 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 640 ID.AddPointer(GA->getGlobal()); 641 ID.AddInteger(GA->getOffset()); 642 ID.AddInteger(GA->getTargetFlags()); 643 break; 644 } 645 case ISD::BasicBlock: 646 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 647 break; 648 case ISD::Register: 649 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 650 break; 651 case ISD::RegisterMask: 652 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 653 break; 654 case ISD::SRCVALUE: 655 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 656 break; 657 case ISD::FrameIndex: 658 case ISD::TargetFrameIndex: 659 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 660 break; 661 case ISD::LIFETIME_START: 662 case ISD::LIFETIME_END: 663 if (cast<LifetimeSDNode>(N)->hasOffset()) { 664 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 665 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 666 } 667 break; 668 case ISD::PSEUDO_PROBE: 669 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 670 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 671 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 672 break; 673 case ISD::JumpTable: 674 case ISD::TargetJumpTable: 675 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 676 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 677 break; 678 case ISD::ConstantPool: 679 case ISD::TargetConstantPool: { 680 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 681 ID.AddInteger(CP->getAlign().value()); 682 ID.AddInteger(CP->getOffset()); 683 if (CP->isMachineConstantPoolEntry()) 684 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 685 else 686 ID.AddPointer(CP->getConstVal()); 687 ID.AddInteger(CP->getTargetFlags()); 688 break; 689 } 690 case ISD::TargetIndex: { 691 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 692 ID.AddInteger(TI->getIndex()); 693 ID.AddInteger(TI->getOffset()); 694 ID.AddInteger(TI->getTargetFlags()); 695 break; 696 } 697 case ISD::LOAD: { 698 const LoadSDNode *LD = cast<LoadSDNode>(N); 699 ID.AddInteger(LD->getMemoryVT().getRawBits()); 700 ID.AddInteger(LD->getRawSubclassData()); 701 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 702 break; 703 } 704 case ISD::STORE: { 705 const StoreSDNode *ST = cast<StoreSDNode>(N); 706 ID.AddInteger(ST->getMemoryVT().getRawBits()); 707 ID.AddInteger(ST->getRawSubclassData()); 708 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 709 break; 710 } 711 case ISD::VP_LOAD: { 712 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 713 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 714 ID.AddInteger(ELD->getRawSubclassData()); 715 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 716 break; 717 } 718 case ISD::VP_STORE: { 719 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 720 ID.AddInteger(EST->getMemoryVT().getRawBits()); 721 ID.AddInteger(EST->getRawSubclassData()); 722 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 723 break; 724 } 725 case ISD::VP_GATHER: { 726 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 727 ID.AddInteger(EG->getMemoryVT().getRawBits()); 728 ID.AddInteger(EG->getRawSubclassData()); 729 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 730 break; 731 } 732 case ISD::VP_SCATTER: { 733 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 734 ID.AddInteger(ES->getMemoryVT().getRawBits()); 735 ID.AddInteger(ES->getRawSubclassData()); 736 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 737 break; 738 } 739 case ISD::MLOAD: { 740 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 741 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 742 ID.AddInteger(MLD->getRawSubclassData()); 743 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 744 break; 745 } 746 case ISD::MSTORE: { 747 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 748 ID.AddInteger(MST->getMemoryVT().getRawBits()); 749 ID.AddInteger(MST->getRawSubclassData()); 750 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 751 break; 752 } 753 case ISD::MGATHER: { 754 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 755 ID.AddInteger(MG->getMemoryVT().getRawBits()); 756 ID.AddInteger(MG->getRawSubclassData()); 757 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 758 break; 759 } 760 case ISD::MSCATTER: { 761 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 762 ID.AddInteger(MS->getMemoryVT().getRawBits()); 763 ID.AddInteger(MS->getRawSubclassData()); 764 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 765 break; 766 } 767 case ISD::ATOMIC_CMP_SWAP: 768 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 769 case ISD::ATOMIC_SWAP: 770 case ISD::ATOMIC_LOAD_ADD: 771 case ISD::ATOMIC_LOAD_SUB: 772 case ISD::ATOMIC_LOAD_AND: 773 case ISD::ATOMIC_LOAD_CLR: 774 case ISD::ATOMIC_LOAD_OR: 775 case ISD::ATOMIC_LOAD_XOR: 776 case ISD::ATOMIC_LOAD_NAND: 777 case ISD::ATOMIC_LOAD_MIN: 778 case ISD::ATOMIC_LOAD_MAX: 779 case ISD::ATOMIC_LOAD_UMIN: 780 case ISD::ATOMIC_LOAD_UMAX: 781 case ISD::ATOMIC_LOAD: 782 case ISD::ATOMIC_STORE: { 783 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 784 ID.AddInteger(AT->getMemoryVT().getRawBits()); 785 ID.AddInteger(AT->getRawSubclassData()); 786 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 787 break; 788 } 789 case ISD::PREFETCH: { 790 const MemSDNode *PF = cast<MemSDNode>(N); 791 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 792 break; 793 } 794 case ISD::VECTOR_SHUFFLE: { 795 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 796 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 797 i != e; ++i) 798 ID.AddInteger(SVN->getMaskElt(i)); 799 break; 800 } 801 case ISD::TargetBlockAddress: 802 case ISD::BlockAddress: { 803 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 804 ID.AddPointer(BA->getBlockAddress()); 805 ID.AddInteger(BA->getOffset()); 806 ID.AddInteger(BA->getTargetFlags()); 807 break; 808 } 809 } // end switch (N->getOpcode()) 810 811 // Target specific memory nodes could also have address spaces to check. 812 if (N->isTargetMemoryOpcode()) 813 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 814 } 815 816 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 817 /// data. 818 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 819 AddNodeIDOpcode(ID, N->getOpcode()); 820 // Add the return value info. 821 AddNodeIDValueTypes(ID, N->getVTList()); 822 // Add the operand info. 823 AddNodeIDOperands(ID, N->ops()); 824 825 // Handle SDNode leafs with special info. 826 AddNodeIDCustom(ID, N); 827 } 828 829 //===----------------------------------------------------------------------===// 830 // SelectionDAG Class 831 //===----------------------------------------------------------------------===// 832 833 /// doNotCSE - Return true if CSE should not be performed for this node. 834 static bool doNotCSE(SDNode *N) { 835 if (N->getValueType(0) == MVT::Glue) 836 return true; // Never CSE anything that produces a flag. 837 838 switch (N->getOpcode()) { 839 default: break; 840 case ISD::HANDLENODE: 841 case ISD::EH_LABEL: 842 return true; // Never CSE these nodes. 843 } 844 845 // Check that remaining values produced are not flags. 846 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 847 if (N->getValueType(i) == MVT::Glue) 848 return true; // Never CSE anything that produces a flag. 849 850 return false; 851 } 852 853 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 854 /// SelectionDAG. 855 void SelectionDAG::RemoveDeadNodes() { 856 // Create a dummy node (which is not added to allnodes), that adds a reference 857 // to the root node, preventing it from being deleted. 858 HandleSDNode Dummy(getRoot()); 859 860 SmallVector<SDNode*, 128> DeadNodes; 861 862 // Add all obviously-dead nodes to the DeadNodes worklist. 863 for (SDNode &Node : allnodes()) 864 if (Node.use_empty()) 865 DeadNodes.push_back(&Node); 866 867 RemoveDeadNodes(DeadNodes); 868 869 // If the root changed (e.g. it was a dead load, update the root). 870 setRoot(Dummy.getValue()); 871 } 872 873 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 874 /// given list, and any nodes that become unreachable as a result. 875 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 876 877 // Process the worklist, deleting the nodes and adding their uses to the 878 // worklist. 879 while (!DeadNodes.empty()) { 880 SDNode *N = DeadNodes.pop_back_val(); 881 // Skip to next node if we've already managed to delete the node. This could 882 // happen if replacing a node causes a node previously added to the node to 883 // be deleted. 884 if (N->getOpcode() == ISD::DELETED_NODE) 885 continue; 886 887 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 888 DUL->NodeDeleted(N, nullptr); 889 890 // Take the node out of the appropriate CSE map. 891 RemoveNodeFromCSEMaps(N); 892 893 // Next, brutally remove the operand list. This is safe to do, as there are 894 // no cycles in the graph. 895 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 896 SDUse &Use = *I++; 897 SDNode *Operand = Use.getNode(); 898 Use.set(SDValue()); 899 900 // Now that we removed this operand, see if there are no uses of it left. 901 if (Operand->use_empty()) 902 DeadNodes.push_back(Operand); 903 } 904 905 DeallocateNode(N); 906 } 907 } 908 909 void SelectionDAG::RemoveDeadNode(SDNode *N){ 910 SmallVector<SDNode*, 16> DeadNodes(1, N); 911 912 // Create a dummy node that adds a reference to the root node, preventing 913 // it from being deleted. (This matters if the root is an operand of the 914 // dead node.) 915 HandleSDNode Dummy(getRoot()); 916 917 RemoveDeadNodes(DeadNodes); 918 } 919 920 void SelectionDAG::DeleteNode(SDNode *N) { 921 // First take this out of the appropriate CSE map. 922 RemoveNodeFromCSEMaps(N); 923 924 // Finally, remove uses due to operands of this node, remove from the 925 // AllNodes list, and delete the node. 926 DeleteNodeNotInCSEMaps(N); 927 } 928 929 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 930 assert(N->getIterator() != AllNodes.begin() && 931 "Cannot delete the entry node!"); 932 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 933 934 // Drop all of the operands and decrement used node's use counts. 935 N->DropOperands(); 936 937 DeallocateNode(N); 938 } 939 940 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 941 assert(!(V->isVariadic() && isParameter)); 942 if (isParameter) 943 ByvalParmDbgValues.push_back(V); 944 else 945 DbgValues.push_back(V); 946 for (const SDNode *Node : V->getSDNodes()) 947 if (Node) 948 DbgValMap[Node].push_back(V); 949 } 950 951 void SDDbgInfo::erase(const SDNode *Node) { 952 DbgValMapType::iterator I = DbgValMap.find(Node); 953 if (I == DbgValMap.end()) 954 return; 955 for (auto &Val: I->second) 956 Val->setIsInvalidated(); 957 DbgValMap.erase(I); 958 } 959 960 void SelectionDAG::DeallocateNode(SDNode *N) { 961 // If we have operands, deallocate them. 962 removeOperands(N); 963 964 NodeAllocator.Deallocate(AllNodes.remove(N)); 965 966 // Set the opcode to DELETED_NODE to help catch bugs when node 967 // memory is reallocated. 968 // FIXME: There are places in SDag that have grown a dependency on the opcode 969 // value in the released node. 970 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 971 N->NodeType = ISD::DELETED_NODE; 972 973 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 974 // them and forget about that node. 975 DbgInfo->erase(N); 976 } 977 978 #ifndef NDEBUG 979 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 980 static void VerifySDNode(SDNode *N) { 981 switch (N->getOpcode()) { 982 default: 983 break; 984 case ISD::BUILD_PAIR: { 985 EVT VT = N->getValueType(0); 986 assert(N->getNumValues() == 1 && "Too many results!"); 987 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 988 "Wrong return type!"); 989 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 990 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 991 "Mismatched operand types!"); 992 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 993 "Wrong operand type!"); 994 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 995 "Wrong return type size"); 996 break; 997 } 998 case ISD::BUILD_VECTOR: { 999 assert(N->getNumValues() == 1 && "Too many results!"); 1000 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1001 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1002 "Wrong number of operands!"); 1003 EVT EltVT = N->getValueType(0).getVectorElementType(); 1004 for (const SDUse &Op : N->ops()) { 1005 assert((Op.getValueType() == EltVT || 1006 (EltVT.isInteger() && Op.getValueType().isInteger() && 1007 EltVT.bitsLE(Op.getValueType()))) && 1008 "Wrong operand type!"); 1009 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1010 "Operands must all have the same type"); 1011 } 1012 break; 1013 } 1014 } 1015 } 1016 #endif // NDEBUG 1017 1018 /// Insert a newly allocated node into the DAG. 1019 /// 1020 /// Handles insertion into the all nodes list and CSE map, as well as 1021 /// verification and other common operations when a new node is allocated. 1022 void SelectionDAG::InsertNode(SDNode *N) { 1023 AllNodes.push_back(N); 1024 #ifndef NDEBUG 1025 N->PersistentId = NextPersistentId++; 1026 VerifySDNode(N); 1027 #endif 1028 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1029 DUL->NodeInserted(N); 1030 } 1031 1032 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1033 /// correspond to it. This is useful when we're about to delete or repurpose 1034 /// the node. We don't want future request for structurally identical nodes 1035 /// to return N anymore. 1036 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1037 bool Erased = false; 1038 switch (N->getOpcode()) { 1039 case ISD::HANDLENODE: return false; // noop. 1040 case ISD::CONDCODE: 1041 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1042 "Cond code doesn't exist!"); 1043 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1044 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1045 break; 1046 case ISD::ExternalSymbol: 1047 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1048 break; 1049 case ISD::TargetExternalSymbol: { 1050 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1051 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1052 ESN->getSymbol(), ESN->getTargetFlags())); 1053 break; 1054 } 1055 case ISD::MCSymbol: { 1056 auto *MCSN = cast<MCSymbolSDNode>(N); 1057 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1058 break; 1059 } 1060 case ISD::VALUETYPE: { 1061 EVT VT = cast<VTSDNode>(N)->getVT(); 1062 if (VT.isExtended()) { 1063 Erased = ExtendedValueTypeNodes.erase(VT); 1064 } else { 1065 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1066 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1067 } 1068 break; 1069 } 1070 default: 1071 // Remove it from the CSE Map. 1072 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1073 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1074 Erased = CSEMap.RemoveNode(N); 1075 break; 1076 } 1077 #ifndef NDEBUG 1078 // Verify that the node was actually in one of the CSE maps, unless it has a 1079 // flag result (which cannot be CSE'd) or is one of the special cases that are 1080 // not subject to CSE. 1081 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1082 !N->isMachineOpcode() && !doNotCSE(N)) { 1083 N->dump(this); 1084 dbgs() << "\n"; 1085 llvm_unreachable("Node is not in map!"); 1086 } 1087 #endif 1088 return Erased; 1089 } 1090 1091 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1092 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1093 /// node already exists, in which case transfer all its users to the existing 1094 /// node. This transfer can potentially trigger recursive merging. 1095 void 1096 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1097 // For node types that aren't CSE'd, just act as if no identical node 1098 // already exists. 1099 if (!doNotCSE(N)) { 1100 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1101 if (Existing != N) { 1102 // If there was already an existing matching node, use ReplaceAllUsesWith 1103 // to replace the dead one with the existing one. This can cause 1104 // recursive merging of other unrelated nodes down the line. 1105 ReplaceAllUsesWith(N, Existing); 1106 1107 // N is now dead. Inform the listeners and delete it. 1108 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1109 DUL->NodeDeleted(N, Existing); 1110 DeleteNodeNotInCSEMaps(N); 1111 return; 1112 } 1113 } 1114 1115 // If the node doesn't already exist, we updated it. Inform listeners. 1116 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1117 DUL->NodeUpdated(N); 1118 } 1119 1120 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1121 /// were replaced with those specified. If this node is never memoized, 1122 /// return null, otherwise return a pointer to the slot it would take. If a 1123 /// node already exists with these operands, the slot will be non-null. 1124 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1125 void *&InsertPos) { 1126 if (doNotCSE(N)) 1127 return nullptr; 1128 1129 SDValue Ops[] = { Op }; 1130 FoldingSetNodeID ID; 1131 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1132 AddNodeIDCustom(ID, N); 1133 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1134 if (Node) 1135 Node->intersectFlagsWith(N->getFlags()); 1136 return Node; 1137 } 1138 1139 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1140 /// were replaced with those specified. If this node is never memoized, 1141 /// return null, otherwise return a pointer to the slot it would take. If a 1142 /// node already exists with these operands, the slot will be non-null. 1143 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1144 SDValue Op1, SDValue Op2, 1145 void *&InsertPos) { 1146 if (doNotCSE(N)) 1147 return nullptr; 1148 1149 SDValue Ops[] = { Op1, Op2 }; 1150 FoldingSetNodeID ID; 1151 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1152 AddNodeIDCustom(ID, N); 1153 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1154 if (Node) 1155 Node->intersectFlagsWith(N->getFlags()); 1156 return Node; 1157 } 1158 1159 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1160 /// were replaced with those specified. If this node is never memoized, 1161 /// return null, otherwise return a pointer to the slot it would take. If a 1162 /// node already exists with these operands, the slot will be non-null. 1163 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1164 void *&InsertPos) { 1165 if (doNotCSE(N)) 1166 return nullptr; 1167 1168 FoldingSetNodeID ID; 1169 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1170 AddNodeIDCustom(ID, N); 1171 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1172 if (Node) 1173 Node->intersectFlagsWith(N->getFlags()); 1174 return Node; 1175 } 1176 1177 Align SelectionDAG::getEVTAlign(EVT VT) const { 1178 Type *Ty = VT == MVT::iPTR ? 1179 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1180 VT.getTypeForEVT(*getContext()); 1181 1182 return getDataLayout().getABITypeAlign(Ty); 1183 } 1184 1185 // EntryNode could meaningfully have debug info if we can find it... 1186 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1187 : TM(tm), OptLevel(OL), 1188 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1189 Root(getEntryNode()) { 1190 InsertNode(&EntryNode); 1191 DbgInfo = new SDDbgInfo(); 1192 } 1193 1194 void SelectionDAG::init(MachineFunction &NewMF, 1195 OptimizationRemarkEmitter &NewORE, 1196 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1197 LegacyDivergenceAnalysis * Divergence, 1198 ProfileSummaryInfo *PSIin, 1199 BlockFrequencyInfo *BFIin) { 1200 MF = &NewMF; 1201 SDAGISelPass = PassPtr; 1202 ORE = &NewORE; 1203 TLI = getSubtarget().getTargetLowering(); 1204 TSI = getSubtarget().getSelectionDAGInfo(); 1205 LibInfo = LibraryInfo; 1206 Context = &MF->getFunction().getContext(); 1207 DA = Divergence; 1208 PSI = PSIin; 1209 BFI = BFIin; 1210 } 1211 1212 SelectionDAG::~SelectionDAG() { 1213 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1214 allnodes_clear(); 1215 OperandRecycler.clear(OperandAllocator); 1216 delete DbgInfo; 1217 } 1218 1219 bool SelectionDAG::shouldOptForSize() const { 1220 return MF->getFunction().hasOptSize() || 1221 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1222 } 1223 1224 void SelectionDAG::allnodes_clear() { 1225 assert(&*AllNodes.begin() == &EntryNode); 1226 AllNodes.remove(AllNodes.begin()); 1227 while (!AllNodes.empty()) 1228 DeallocateNode(&AllNodes.front()); 1229 #ifndef NDEBUG 1230 NextPersistentId = 0; 1231 #endif 1232 } 1233 1234 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1235 void *&InsertPos) { 1236 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1237 if (N) { 1238 switch (N->getOpcode()) { 1239 default: break; 1240 case ISD::Constant: 1241 case ISD::ConstantFP: 1242 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1243 "debug location. Use another overload."); 1244 } 1245 } 1246 return N; 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 const SDLoc &DL, void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 case ISD::Constant: 1255 case ISD::ConstantFP: 1256 // Erase debug location from the node if the node is used at several 1257 // different places. Do not propagate one location to all uses as it 1258 // will cause a worse single stepping debugging experience. 1259 if (N->getDebugLoc() != DL.getDebugLoc()) 1260 N->setDebugLoc(DebugLoc()); 1261 break; 1262 default: 1263 // When the node's point of use is located earlier in the instruction 1264 // sequence than its prior point of use, update its debug info to the 1265 // earlier location. 1266 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1267 N->setDebugLoc(DL.getDebugLoc()); 1268 break; 1269 } 1270 } 1271 return N; 1272 } 1273 1274 void SelectionDAG::clear() { 1275 allnodes_clear(); 1276 OperandRecycler.clear(OperandAllocator); 1277 OperandAllocator.Reset(); 1278 CSEMap.clear(); 1279 1280 ExtendedValueTypeNodes.clear(); 1281 ExternalSymbols.clear(); 1282 TargetExternalSymbols.clear(); 1283 MCSymbols.clear(); 1284 SDCallSiteDbgInfo.clear(); 1285 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1286 static_cast<CondCodeSDNode*>(nullptr)); 1287 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1288 static_cast<SDNode*>(nullptr)); 1289 1290 EntryNode.UseList = nullptr; 1291 InsertNode(&EntryNode); 1292 Root = getEntryNode(); 1293 DbgInfo->clear(); 1294 } 1295 1296 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1297 return VT.bitsGT(Op.getValueType()) 1298 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1299 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1300 } 1301 1302 std::pair<SDValue, SDValue> 1303 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1304 const SDLoc &DL, EVT VT) { 1305 assert(!VT.bitsEq(Op.getValueType()) && 1306 "Strict no-op FP extend/round not allowed."); 1307 SDValue Res = 1308 VT.bitsGT(Op.getValueType()) 1309 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1310 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1311 {Chain, Op, getIntPtrConstant(0, DL)}); 1312 1313 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1314 } 1315 1316 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1317 return VT.bitsGT(Op.getValueType()) ? 1318 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1319 getNode(ISD::TRUNCATE, DL, VT, Op); 1320 } 1321 1322 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1323 return VT.bitsGT(Op.getValueType()) ? 1324 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1325 getNode(ISD::TRUNCATE, DL, VT, Op); 1326 } 1327 1328 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1329 return VT.bitsGT(Op.getValueType()) ? 1330 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1331 getNode(ISD::TRUNCATE, DL, VT, Op); 1332 } 1333 1334 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1335 EVT OpVT) { 1336 if (VT.bitsLE(Op.getValueType())) 1337 return getNode(ISD::TRUNCATE, SL, VT, Op); 1338 1339 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1340 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1344 EVT OpVT = Op.getValueType(); 1345 assert(VT.isInteger() && OpVT.isInteger() && 1346 "Cannot getZeroExtendInReg FP types"); 1347 assert(VT.isVector() == OpVT.isVector() && 1348 "getZeroExtendInReg type should be vector iff the operand " 1349 "type is vector!"); 1350 assert((!VT.isVector() || 1351 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1352 "Vector element counts must match in getZeroExtendInReg"); 1353 assert(VT.bitsLE(OpVT) && "Not extending!"); 1354 if (OpVT == VT) 1355 return Op; 1356 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1357 VT.getScalarSizeInBits()); 1358 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1359 } 1360 1361 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 // Only unsigned pointer semantics are supported right now. In the future this 1363 // might delegate to TLI to check pointer signedness. 1364 return getZExtOrTrunc(Op, DL, VT); 1365 } 1366 1367 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1368 // Only unsigned pointer semantics are supported right now. In the future this 1369 // might delegate to TLI to check pointer signedness. 1370 return getZeroExtendInReg(Op, DL, VT); 1371 } 1372 1373 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1374 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1375 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1376 } 1377 1378 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1379 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1380 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1381 } 1382 1383 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1384 EVT OpVT) { 1385 if (!V) 1386 return getConstant(0, DL, VT); 1387 1388 switch (TLI->getBooleanContents(OpVT)) { 1389 case TargetLowering::ZeroOrOneBooleanContent: 1390 case TargetLowering::UndefinedBooleanContent: 1391 return getConstant(1, DL, VT); 1392 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1393 return getAllOnesConstant(DL, VT); 1394 } 1395 llvm_unreachable("Unexpected boolean content enum!"); 1396 } 1397 1398 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1399 bool isT, bool isO) { 1400 EVT EltVT = VT.getScalarType(); 1401 assert((EltVT.getSizeInBits() >= 64 || 1402 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1403 "getConstant with a uint64_t value that doesn't fit in the type!"); 1404 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1405 } 1406 1407 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1408 bool isT, bool isO) { 1409 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1410 } 1411 1412 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1413 EVT VT, bool isT, bool isO) { 1414 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1415 1416 EVT EltVT = VT.getScalarType(); 1417 const ConstantInt *Elt = &Val; 1418 1419 // In some cases the vector type is legal but the element type is illegal and 1420 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1421 // inserted value (the type does not need to match the vector element type). 1422 // Any extra bits introduced will be truncated away. 1423 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1424 TargetLowering::TypePromoteInteger) { 1425 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1426 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1427 Elt = ConstantInt::get(*getContext(), NewVal); 1428 } 1429 // In other cases the element type is illegal and needs to be expanded, for 1430 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1431 // the value into n parts and use a vector type with n-times the elements. 1432 // Then bitcast to the type requested. 1433 // Legalizing constants too early makes the DAGCombiner's job harder so we 1434 // only legalize if the DAG tells us we must produce legal types. 1435 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1436 TLI->getTypeAction(*getContext(), EltVT) == 1437 TargetLowering::TypeExpandInteger) { 1438 const APInt &NewVal = Elt->getValue(); 1439 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1440 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1441 1442 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1443 if (VT.isScalableVector()) { 1444 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1445 "Can only handle an even split!"); 1446 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1447 1448 SmallVector<SDValue, 2> ScalarParts; 1449 for (unsigned i = 0; i != Parts; ++i) 1450 ScalarParts.push_back(getConstant( 1451 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1452 ViaEltVT, isT, isO)); 1453 1454 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1455 } 1456 1457 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1458 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1459 1460 // Check the temporary vector is the correct size. If this fails then 1461 // getTypeToTransformTo() probably returned a type whose size (in bits) 1462 // isn't a power-of-2 factor of the requested type size. 1463 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1464 1465 SmallVector<SDValue, 2> EltParts; 1466 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1467 EltParts.push_back(getConstant( 1468 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1469 ViaEltVT, isT, isO)); 1470 1471 // EltParts is currently in little endian order. If we actually want 1472 // big-endian order then reverse it now. 1473 if (getDataLayout().isBigEndian()) 1474 std::reverse(EltParts.begin(), EltParts.end()); 1475 1476 // The elements must be reversed when the element order is different 1477 // to the endianness of the elements (because the BITCAST is itself a 1478 // vector shuffle in this situation). However, we do not need any code to 1479 // perform this reversal because getConstant() is producing a vector 1480 // splat. 1481 // This situation occurs in MIPS MSA. 1482 1483 SmallVector<SDValue, 8> Ops; 1484 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1485 llvm::append_range(Ops, EltParts); 1486 1487 SDValue V = 1488 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1489 return V; 1490 } 1491 1492 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1493 "APInt size does not match type size!"); 1494 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1495 FoldingSetNodeID ID; 1496 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1497 ID.AddPointer(Elt); 1498 ID.AddBoolean(isO); 1499 void *IP = nullptr; 1500 SDNode *N = nullptr; 1501 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1502 if (!VT.isVector()) 1503 return SDValue(N, 0); 1504 1505 if (!N) { 1506 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1507 CSEMap.InsertNode(N, IP); 1508 InsertNode(N); 1509 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1510 } 1511 1512 SDValue Result(N, 0); 1513 if (VT.isScalableVector()) 1514 Result = getSplatVector(VT, DL, Result); 1515 else if (VT.isVector()) 1516 Result = getSplatBuildVector(VT, DL, Result); 1517 1518 return Result; 1519 } 1520 1521 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1522 bool isTarget) { 1523 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1524 } 1525 1526 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1527 const SDLoc &DL, bool LegalTypes) { 1528 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1529 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1530 return getConstant(Val, DL, ShiftVT); 1531 } 1532 1533 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1534 bool isTarget) { 1535 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1536 } 1537 1538 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1539 bool isTarget) { 1540 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1541 } 1542 1543 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1544 EVT VT, bool isTarget) { 1545 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1546 1547 EVT EltVT = VT.getScalarType(); 1548 1549 // Do the map lookup using the actual bit pattern for the floating point 1550 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1551 // we don't have issues with SNANs. 1552 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1553 FoldingSetNodeID ID; 1554 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1555 ID.AddPointer(&V); 1556 void *IP = nullptr; 1557 SDNode *N = nullptr; 1558 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1559 if (!VT.isVector()) 1560 return SDValue(N, 0); 1561 1562 if (!N) { 1563 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1564 CSEMap.InsertNode(N, IP); 1565 InsertNode(N); 1566 } 1567 1568 SDValue Result(N, 0); 1569 if (VT.isScalableVector()) 1570 Result = getSplatVector(VT, DL, Result); 1571 else if (VT.isVector()) 1572 Result = getSplatBuildVector(VT, DL, Result); 1573 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1574 return Result; 1575 } 1576 1577 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1578 bool isTarget) { 1579 EVT EltVT = VT.getScalarType(); 1580 if (EltVT == MVT::f32) 1581 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1582 if (EltVT == MVT::f64) 1583 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1584 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1585 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1586 bool Ignored; 1587 APFloat APF = APFloat(Val); 1588 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1589 &Ignored); 1590 return getConstantFP(APF, DL, VT, isTarget); 1591 } 1592 llvm_unreachable("Unsupported type in getConstantFP"); 1593 } 1594 1595 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1596 EVT VT, int64_t Offset, bool isTargetGA, 1597 unsigned TargetFlags) { 1598 assert((TargetFlags == 0 || isTargetGA) && 1599 "Cannot set target flags on target-independent globals"); 1600 1601 // Truncate (with sign-extension) the offset value to the pointer size. 1602 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1603 if (BitWidth < 64) 1604 Offset = SignExtend64(Offset, BitWidth); 1605 1606 unsigned Opc; 1607 if (GV->isThreadLocal()) 1608 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1609 else 1610 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1611 1612 FoldingSetNodeID ID; 1613 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1614 ID.AddPointer(GV); 1615 ID.AddInteger(Offset); 1616 ID.AddInteger(TargetFlags); 1617 void *IP = nullptr; 1618 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1619 return SDValue(E, 0); 1620 1621 auto *N = newSDNode<GlobalAddressSDNode>( 1622 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1623 CSEMap.InsertNode(N, IP); 1624 InsertNode(N); 1625 return SDValue(N, 0); 1626 } 1627 1628 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1629 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1630 FoldingSetNodeID ID; 1631 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1632 ID.AddInteger(FI); 1633 void *IP = nullptr; 1634 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1635 return SDValue(E, 0); 1636 1637 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1644 unsigned TargetFlags) { 1645 assert((TargetFlags == 0 || isTarget) && 1646 "Cannot set target flags on target-independent jump tables"); 1647 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1650 ID.AddInteger(JTI); 1651 ID.AddInteger(TargetFlags); 1652 void *IP = nullptr; 1653 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1654 return SDValue(E, 0); 1655 1656 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1657 CSEMap.InsertNode(N, IP); 1658 InsertNode(N); 1659 return SDValue(N, 0); 1660 } 1661 1662 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1663 MaybeAlign Alignment, int Offset, 1664 bool isTarget, unsigned TargetFlags) { 1665 assert((TargetFlags == 0 || isTarget) && 1666 "Cannot set target flags on target-independent globals"); 1667 if (!Alignment) 1668 Alignment = shouldOptForSize() 1669 ? getDataLayout().getABITypeAlign(C->getType()) 1670 : getDataLayout().getPrefTypeAlign(C->getType()); 1671 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1672 FoldingSetNodeID ID; 1673 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1674 ID.AddInteger(Alignment->value()); 1675 ID.AddInteger(Offset); 1676 ID.AddPointer(C); 1677 ID.AddInteger(TargetFlags); 1678 void *IP = nullptr; 1679 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1680 return SDValue(E, 0); 1681 1682 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1683 TargetFlags); 1684 CSEMap.InsertNode(N, IP); 1685 InsertNode(N); 1686 SDValue V = SDValue(N, 0); 1687 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1688 return V; 1689 } 1690 1691 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1692 MaybeAlign Alignment, int Offset, 1693 bool isTarget, unsigned TargetFlags) { 1694 assert((TargetFlags == 0 || isTarget) && 1695 "Cannot set target flags on target-independent globals"); 1696 if (!Alignment) 1697 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1698 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(Alignment->value()); 1702 ID.AddInteger(Offset); 1703 C->addSelectionDAGCSEId(ID); 1704 ID.AddInteger(TargetFlags); 1705 void *IP = nullptr; 1706 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1707 return SDValue(E, 0); 1708 1709 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1710 TargetFlags); 1711 CSEMap.InsertNode(N, IP); 1712 InsertNode(N); 1713 return SDValue(N, 0); 1714 } 1715 1716 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1717 unsigned TargetFlags) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1720 ID.AddInteger(Index); 1721 ID.AddInteger(Offset); 1722 ID.AddInteger(TargetFlags); 1723 void *IP = nullptr; 1724 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1725 return SDValue(E, 0); 1726 1727 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1728 CSEMap.InsertNode(N, IP); 1729 InsertNode(N); 1730 return SDValue(N, 0); 1731 } 1732 1733 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1734 FoldingSetNodeID ID; 1735 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1736 ID.AddPointer(MBB); 1737 void *IP = nullptr; 1738 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1739 return SDValue(E, 0); 1740 1741 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1742 CSEMap.InsertNode(N, IP); 1743 InsertNode(N); 1744 return SDValue(N, 0); 1745 } 1746 1747 SDValue SelectionDAG::getValueType(EVT VT) { 1748 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1749 ValueTypeNodes.size()) 1750 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1751 1752 SDNode *&N = VT.isExtended() ? 1753 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1754 1755 if (N) return SDValue(N, 0); 1756 N = newSDNode<VTSDNode>(VT); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1762 SDNode *&N = ExternalSymbols[Sym]; 1763 if (N) return SDValue(N, 0); 1764 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1765 InsertNode(N); 1766 return SDValue(N, 0); 1767 } 1768 1769 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1770 SDNode *&N = MCSymbols[Sym]; 1771 if (N) 1772 return SDValue(N, 0); 1773 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1774 InsertNode(N); 1775 return SDValue(N, 0); 1776 } 1777 1778 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1779 unsigned TargetFlags) { 1780 SDNode *&N = 1781 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1782 if (N) return SDValue(N, 0); 1783 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1784 InsertNode(N); 1785 return SDValue(N, 0); 1786 } 1787 1788 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1789 if ((unsigned)Cond >= CondCodeNodes.size()) 1790 CondCodeNodes.resize(Cond+1); 1791 1792 if (!CondCodeNodes[Cond]) { 1793 auto *N = newSDNode<CondCodeSDNode>(Cond); 1794 CondCodeNodes[Cond] = N; 1795 InsertNode(N); 1796 } 1797 1798 return SDValue(CondCodeNodes[Cond], 0); 1799 } 1800 1801 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1802 APInt One(ResVT.getScalarSizeInBits(), 1); 1803 return getStepVector(DL, ResVT, One); 1804 } 1805 1806 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1807 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1808 if (ResVT.isScalableVector()) 1809 return getNode( 1810 ISD::STEP_VECTOR, DL, ResVT, 1811 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1812 1813 SmallVector<SDValue, 16> OpsStepConstants; 1814 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1815 OpsStepConstants.push_back( 1816 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1817 return getBuildVector(ResVT, DL, OpsStepConstants); 1818 } 1819 1820 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1821 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1822 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1823 std::swap(N1, N2); 1824 ShuffleVectorSDNode::commuteMask(M); 1825 } 1826 1827 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1828 SDValue N2, ArrayRef<int> Mask) { 1829 assert(VT.getVectorNumElements() == Mask.size() && 1830 "Must have the same number of vector elements as mask elements!"); 1831 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1832 "Invalid VECTOR_SHUFFLE"); 1833 1834 // Canonicalize shuffle undef, undef -> undef 1835 if (N1.isUndef() && N2.isUndef()) 1836 return getUNDEF(VT); 1837 1838 // Validate that all indices in Mask are within the range of the elements 1839 // input to the shuffle. 1840 int NElts = Mask.size(); 1841 assert(llvm::all_of(Mask, 1842 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1843 "Index out of range"); 1844 1845 // Copy the mask so we can do any needed cleanup. 1846 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1847 1848 // Canonicalize shuffle v, v -> v, undef 1849 if (N1 == N2) { 1850 N2 = getUNDEF(VT); 1851 for (int i = 0; i != NElts; ++i) 1852 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1853 } 1854 1855 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1856 if (N1.isUndef()) 1857 commuteShuffle(N1, N2, MaskVec); 1858 1859 if (TLI->hasVectorBlend()) { 1860 // If shuffling a splat, try to blend the splat instead. We do this here so 1861 // that even when this arises during lowering we don't have to re-handle it. 1862 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1863 BitVector UndefElements; 1864 SDValue Splat = BV->getSplatValue(&UndefElements); 1865 if (!Splat) 1866 return; 1867 1868 for (int i = 0; i < NElts; ++i) { 1869 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1870 continue; 1871 1872 // If this input comes from undef, mark it as such. 1873 if (UndefElements[MaskVec[i] - Offset]) { 1874 MaskVec[i] = -1; 1875 continue; 1876 } 1877 1878 // If we can blend a non-undef lane, use that instead. 1879 if (!UndefElements[i]) 1880 MaskVec[i] = i + Offset; 1881 } 1882 }; 1883 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1884 BlendSplat(N1BV, 0); 1885 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1886 BlendSplat(N2BV, NElts); 1887 } 1888 1889 // Canonicalize all index into lhs, -> shuffle lhs, undef 1890 // Canonicalize all index into rhs, -> shuffle rhs, undef 1891 bool AllLHS = true, AllRHS = true; 1892 bool N2Undef = N2.isUndef(); 1893 for (int i = 0; i != NElts; ++i) { 1894 if (MaskVec[i] >= NElts) { 1895 if (N2Undef) 1896 MaskVec[i] = -1; 1897 else 1898 AllLHS = false; 1899 } else if (MaskVec[i] >= 0) { 1900 AllRHS = false; 1901 } 1902 } 1903 if (AllLHS && AllRHS) 1904 return getUNDEF(VT); 1905 if (AllLHS && !N2Undef) 1906 N2 = getUNDEF(VT); 1907 if (AllRHS) { 1908 N1 = getUNDEF(VT); 1909 commuteShuffle(N1, N2, MaskVec); 1910 } 1911 // Reset our undef status after accounting for the mask. 1912 N2Undef = N2.isUndef(); 1913 // Re-check whether both sides ended up undef. 1914 if (N1.isUndef() && N2Undef) 1915 return getUNDEF(VT); 1916 1917 // If Identity shuffle return that node. 1918 bool Identity = true, AllSame = true; 1919 for (int i = 0; i != NElts; ++i) { 1920 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1921 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1922 } 1923 if (Identity && NElts) 1924 return N1; 1925 1926 // Shuffling a constant splat doesn't change the result. 1927 if (N2Undef) { 1928 SDValue V = N1; 1929 1930 // Look through any bitcasts. We check that these don't change the number 1931 // (and size) of elements and just changes their types. 1932 while (V.getOpcode() == ISD::BITCAST) 1933 V = V->getOperand(0); 1934 1935 // A splat should always show up as a build vector node. 1936 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1937 BitVector UndefElements; 1938 SDValue Splat = BV->getSplatValue(&UndefElements); 1939 // If this is a splat of an undef, shuffling it is also undef. 1940 if (Splat && Splat.isUndef()) 1941 return getUNDEF(VT); 1942 1943 bool SameNumElts = 1944 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1945 1946 // We only have a splat which can skip shuffles if there is a splatted 1947 // value and no undef lanes rearranged by the shuffle. 1948 if (Splat && UndefElements.none()) { 1949 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1950 // number of elements match or the value splatted is a zero constant. 1951 if (SameNumElts) 1952 return N1; 1953 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1954 if (C->isZero()) 1955 return N1; 1956 } 1957 1958 // If the shuffle itself creates a splat, build the vector directly. 1959 if (AllSame && SameNumElts) { 1960 EVT BuildVT = BV->getValueType(0); 1961 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1962 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1963 1964 // We may have jumped through bitcasts, so the type of the 1965 // BUILD_VECTOR may not match the type of the shuffle. 1966 if (BuildVT != VT) 1967 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1968 return NewBV; 1969 } 1970 } 1971 } 1972 1973 FoldingSetNodeID ID; 1974 SDValue Ops[2] = { N1, N2 }; 1975 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1976 for (int i = 0; i != NElts; ++i) 1977 ID.AddInteger(MaskVec[i]); 1978 1979 void* IP = nullptr; 1980 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1981 return SDValue(E, 0); 1982 1983 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1984 // SDNode doesn't have access to it. This memory will be "leaked" when 1985 // the node is deallocated, but recovered when the NodeAllocator is released. 1986 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1987 llvm::copy(MaskVec, MaskAlloc); 1988 1989 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1990 dl.getDebugLoc(), MaskAlloc); 1991 createOperands(N, Ops); 1992 1993 CSEMap.InsertNode(N, IP); 1994 InsertNode(N); 1995 SDValue V = SDValue(N, 0); 1996 NewSDValueDbgMsg(V, "Creating new node: ", this); 1997 return V; 1998 } 1999 2000 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2001 EVT VT = SV.getValueType(0); 2002 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2003 ShuffleVectorSDNode::commuteMask(MaskVec); 2004 2005 SDValue Op0 = SV.getOperand(0); 2006 SDValue Op1 = SV.getOperand(1); 2007 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2008 } 2009 2010 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2011 FoldingSetNodeID ID; 2012 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2013 ID.AddInteger(RegNo); 2014 void *IP = nullptr; 2015 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2016 return SDValue(E, 0); 2017 2018 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2019 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2028 ID.AddPointer(RegMask); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2034 CSEMap.InsertNode(N, IP); 2035 InsertNode(N); 2036 return SDValue(N, 0); 2037 } 2038 2039 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2040 MCSymbol *Label) { 2041 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2042 } 2043 2044 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2045 SDValue Root, MCSymbol *Label) { 2046 FoldingSetNodeID ID; 2047 SDValue Ops[] = { Root }; 2048 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2049 ID.AddPointer(Label); 2050 void *IP = nullptr; 2051 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2052 return SDValue(E, 0); 2053 2054 auto *N = 2055 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2056 createOperands(N, Ops); 2057 2058 CSEMap.InsertNode(N, IP); 2059 InsertNode(N); 2060 return SDValue(N, 0); 2061 } 2062 2063 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2064 int64_t Offset, bool isTarget, 2065 unsigned TargetFlags) { 2066 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2067 2068 FoldingSetNodeID ID; 2069 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2070 ID.AddPointer(BA); 2071 ID.AddInteger(Offset); 2072 ID.AddInteger(TargetFlags); 2073 void *IP = nullptr; 2074 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2075 return SDValue(E, 0); 2076 2077 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2078 CSEMap.InsertNode(N, IP); 2079 InsertNode(N); 2080 return SDValue(N, 0); 2081 } 2082 2083 SDValue SelectionDAG::getSrcValue(const Value *V) { 2084 FoldingSetNodeID ID; 2085 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2086 ID.AddPointer(V); 2087 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<SrcValueSDNode>(V); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2101 ID.AddPointer(MD); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<MDNodeSDNode>(MD); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2114 if (VT == V.getValueType()) 2115 return V; 2116 2117 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2118 } 2119 2120 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2121 unsigned SrcAS, unsigned DestAS) { 2122 SDValue Ops[] = {Ptr}; 2123 FoldingSetNodeID ID; 2124 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2125 ID.AddInteger(SrcAS); 2126 ID.AddInteger(DestAS); 2127 2128 void *IP = nullptr; 2129 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2130 return SDValue(E, 0); 2131 2132 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2133 VT, SrcAS, DestAS); 2134 createOperands(N, Ops); 2135 2136 CSEMap.InsertNode(N, IP); 2137 InsertNode(N); 2138 return SDValue(N, 0); 2139 } 2140 2141 SDValue SelectionDAG::getFreeze(SDValue V) { 2142 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2143 } 2144 2145 /// getShiftAmountOperand - Return the specified value casted to 2146 /// the target's desired shift amount type. 2147 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2148 EVT OpTy = Op.getValueType(); 2149 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2150 if (OpTy == ShTy || OpTy.isVector()) return Op; 2151 2152 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2153 } 2154 2155 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2156 SDLoc dl(Node); 2157 const TargetLowering &TLI = getTargetLoweringInfo(); 2158 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2159 EVT VT = Node->getValueType(0); 2160 SDValue Tmp1 = Node->getOperand(0); 2161 SDValue Tmp2 = Node->getOperand(1); 2162 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2163 2164 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2165 Tmp2, MachinePointerInfo(V)); 2166 SDValue VAList = VAListLoad; 2167 2168 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2169 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2170 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2171 2172 VAList = 2173 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2174 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2175 } 2176 2177 // Increment the pointer, VAList, to the next vaarg 2178 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2179 getConstant(getDataLayout().getTypeAllocSize( 2180 VT.getTypeForEVT(*getContext())), 2181 dl, VAList.getValueType())); 2182 // Store the incremented VAList to the legalized pointer 2183 Tmp1 = 2184 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2185 // Load the actual argument out of the pointer VAList 2186 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2187 } 2188 2189 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2190 SDLoc dl(Node); 2191 const TargetLowering &TLI = getTargetLoweringInfo(); 2192 // This defaults to loading a pointer from the input and storing it to the 2193 // output, returning the chain. 2194 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2195 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2196 SDValue Tmp1 = 2197 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2198 Node->getOperand(2), MachinePointerInfo(VS)); 2199 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2200 MachinePointerInfo(VD)); 2201 } 2202 2203 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2204 const DataLayout &DL = getDataLayout(); 2205 Type *Ty = VT.getTypeForEVT(*getContext()); 2206 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2207 2208 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2209 return RedAlign; 2210 2211 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2212 const Align StackAlign = TFI->getStackAlign(); 2213 2214 // See if we can choose a smaller ABI alignment in cases where it's an 2215 // illegal vector type that will get broken down. 2216 if (RedAlign > StackAlign) { 2217 EVT IntermediateVT; 2218 MVT RegisterVT; 2219 unsigned NumIntermediates; 2220 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2221 NumIntermediates, RegisterVT); 2222 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2223 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2224 if (RedAlign2 < RedAlign) 2225 RedAlign = RedAlign2; 2226 } 2227 2228 return RedAlign; 2229 } 2230 2231 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2232 MachineFrameInfo &MFI = MF->getFrameInfo(); 2233 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2234 int StackID = 0; 2235 if (Bytes.isScalable()) 2236 StackID = TFI->getStackIDForScalableVectors(); 2237 // The stack id gives an indication of whether the object is scalable or 2238 // not, so it's safe to pass in the minimum size here. 2239 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2240 false, nullptr, StackID); 2241 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2242 } 2243 2244 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2245 Type *Ty = VT.getTypeForEVT(*getContext()); 2246 Align StackAlign = 2247 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2248 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2249 } 2250 2251 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2252 TypeSize VT1Size = VT1.getStoreSize(); 2253 TypeSize VT2Size = VT2.getStoreSize(); 2254 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2255 "Don't know how to choose the maximum size when creating a stack " 2256 "temporary"); 2257 TypeSize Bytes = 2258 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2259 2260 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2261 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2262 const DataLayout &DL = getDataLayout(); 2263 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2264 return CreateStackTemporary(Bytes, Align); 2265 } 2266 2267 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2268 ISD::CondCode Cond, const SDLoc &dl) { 2269 EVT OpVT = N1.getValueType(); 2270 2271 // These setcc operations always fold. 2272 switch (Cond) { 2273 default: break; 2274 case ISD::SETFALSE: 2275 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2276 case ISD::SETTRUE: 2277 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2278 2279 case ISD::SETOEQ: 2280 case ISD::SETOGT: 2281 case ISD::SETOGE: 2282 case ISD::SETOLT: 2283 case ISD::SETOLE: 2284 case ISD::SETONE: 2285 case ISD::SETO: 2286 case ISD::SETUO: 2287 case ISD::SETUEQ: 2288 case ISD::SETUNE: 2289 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2290 break; 2291 } 2292 2293 if (OpVT.isInteger()) { 2294 // For EQ and NE, we can always pick a value for the undef to make the 2295 // predicate pass or fail, so we can return undef. 2296 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2297 // icmp eq/ne X, undef -> undef. 2298 if ((N1.isUndef() || N2.isUndef()) && 2299 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2300 return getUNDEF(VT); 2301 2302 // If both operands are undef, we can return undef for int comparison. 2303 // icmp undef, undef -> undef. 2304 if (N1.isUndef() && N2.isUndef()) 2305 return getUNDEF(VT); 2306 2307 // icmp X, X -> true/false 2308 // icmp X, undef -> true/false because undef could be X. 2309 if (N1 == N2) 2310 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2311 } 2312 2313 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2314 const APInt &C2 = N2C->getAPIntValue(); 2315 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2316 const APInt &C1 = N1C->getAPIntValue(); 2317 2318 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2319 dl, VT, OpVT); 2320 } 2321 } 2322 2323 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2324 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2325 2326 if (N1CFP && N2CFP) { 2327 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2328 switch (Cond) { 2329 default: break; 2330 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2331 return getUNDEF(VT); 2332 LLVM_FALLTHROUGH; 2333 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2334 OpVT); 2335 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2336 return getUNDEF(VT); 2337 LLVM_FALLTHROUGH; 2338 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2339 R==APFloat::cmpLessThan, dl, VT, 2340 OpVT); 2341 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2342 return getUNDEF(VT); 2343 LLVM_FALLTHROUGH; 2344 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2345 OpVT); 2346 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2347 return getUNDEF(VT); 2348 LLVM_FALLTHROUGH; 2349 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2350 VT, OpVT); 2351 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2352 return getUNDEF(VT); 2353 LLVM_FALLTHROUGH; 2354 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2355 R==APFloat::cmpEqual, dl, VT, 2356 OpVT); 2357 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2358 return getUNDEF(VT); 2359 LLVM_FALLTHROUGH; 2360 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2361 R==APFloat::cmpEqual, dl, VT, OpVT); 2362 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2363 OpVT); 2364 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2365 OpVT); 2366 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2367 R==APFloat::cmpEqual, dl, VT, 2368 OpVT); 2369 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2370 OpVT); 2371 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2372 R==APFloat::cmpLessThan, dl, VT, 2373 OpVT); 2374 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2375 R==APFloat::cmpUnordered, dl, VT, 2376 OpVT); 2377 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2378 VT, OpVT); 2379 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2380 OpVT); 2381 } 2382 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2383 // Ensure that the constant occurs on the RHS. 2384 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2385 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2386 return SDValue(); 2387 return getSetCC(dl, VT, N2, N1, SwappedCond); 2388 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2389 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2390 // If an operand is known to be a nan (or undef that could be a nan), we can 2391 // fold it. 2392 // Choosing NaN for the undef will always make unordered comparison succeed 2393 // and ordered comparison fails. 2394 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2395 switch (ISD::getUnorderedFlavor(Cond)) { 2396 default: 2397 llvm_unreachable("Unknown flavor!"); 2398 case 0: // Known false. 2399 return getBoolConstant(false, dl, VT, OpVT); 2400 case 1: // Known true. 2401 return getBoolConstant(true, dl, VT, OpVT); 2402 case 2: // Undefined. 2403 return getUNDEF(VT); 2404 } 2405 } 2406 2407 // Could not fold it. 2408 return SDValue(); 2409 } 2410 2411 /// See if the specified operand can be simplified with the knowledge that only 2412 /// the bits specified by DemandedBits are used. 2413 /// TODO: really we should be making this into the DAG equivalent of 2414 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2415 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2416 EVT VT = V.getValueType(); 2417 2418 if (VT.isScalableVector()) 2419 return SDValue(); 2420 2421 APInt DemandedElts = VT.isVector() 2422 ? APInt::getAllOnes(VT.getVectorNumElements()) 2423 : APInt(1, 1); 2424 return GetDemandedBits(V, DemandedBits, DemandedElts); 2425 } 2426 2427 /// See if the specified operand can be simplified with the knowledge that only 2428 /// the bits specified by DemandedBits are used in the elements specified by 2429 /// DemandedElts. 2430 /// TODO: really we should be making this into the DAG equivalent of 2431 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2432 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2433 const APInt &DemandedElts) { 2434 switch (V.getOpcode()) { 2435 default: 2436 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2437 *this, 0); 2438 case ISD::Constant: { 2439 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2440 APInt NewVal = CVal & DemandedBits; 2441 if (NewVal != CVal) 2442 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2443 break; 2444 } 2445 case ISD::SRL: 2446 // Only look at single-use SRLs. 2447 if (!V.getNode()->hasOneUse()) 2448 break; 2449 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2450 // See if we can recursively simplify the LHS. 2451 unsigned Amt = RHSC->getZExtValue(); 2452 2453 // Watch out for shift count overflow though. 2454 if (Amt >= DemandedBits.getBitWidth()) 2455 break; 2456 APInt SrcDemandedBits = DemandedBits << Amt; 2457 if (SDValue SimplifyLHS = 2458 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2459 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2460 V.getOperand(1)); 2461 } 2462 break; 2463 } 2464 return SDValue(); 2465 } 2466 2467 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2468 /// use this predicate to simplify operations downstream. 2469 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2470 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2471 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2472 } 2473 2474 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2475 /// this predicate to simplify operations downstream. Mask is known to be zero 2476 /// for bits that V cannot have. 2477 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2478 unsigned Depth) const { 2479 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2480 } 2481 2482 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2483 /// DemandedElts. We use this predicate to simplify operations downstream. 2484 /// Mask is known to be zero for bits that V cannot have. 2485 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2486 const APInt &DemandedElts, 2487 unsigned Depth) const { 2488 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2489 } 2490 2491 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2492 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2495 } 2496 2497 /// isSplatValue - Return true if the vector V has the same value 2498 /// across all DemandedElts. For scalable vectors it does not make 2499 /// sense to specify which elements are demanded or undefined, therefore 2500 /// they are simply ignored. 2501 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2502 APInt &UndefElts, unsigned Depth) const { 2503 unsigned Opcode = V.getOpcode(); 2504 EVT VT = V.getValueType(); 2505 assert(VT.isVector() && "Vector type expected"); 2506 2507 if (!VT.isScalableVector() && !DemandedElts) 2508 return false; // No demanded elts, better to assume we don't know anything. 2509 2510 if (Depth >= MaxRecursionDepth) 2511 return false; // Limit search depth. 2512 2513 // Deal with some common cases here that work for both fixed and scalable 2514 // vector types. 2515 switch (Opcode) { 2516 case ISD::SPLAT_VECTOR: 2517 UndefElts = V.getOperand(0).isUndef() 2518 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2519 : APInt(DemandedElts.getBitWidth(), 0); 2520 return true; 2521 case ISD::ADD: 2522 case ISD::SUB: 2523 case ISD::AND: 2524 case ISD::XOR: 2525 case ISD::OR: { 2526 APInt UndefLHS, UndefRHS; 2527 SDValue LHS = V.getOperand(0); 2528 SDValue RHS = V.getOperand(1); 2529 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2530 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2531 UndefElts = UndefLHS | UndefRHS; 2532 return true; 2533 } 2534 return false; 2535 } 2536 case ISD::ABS: 2537 case ISD::TRUNCATE: 2538 case ISD::SIGN_EXTEND: 2539 case ISD::ZERO_EXTEND: 2540 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2541 default: 2542 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2543 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2544 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2545 break; 2546 } 2547 2548 // We don't support other cases than those above for scalable vectors at 2549 // the moment. 2550 if (VT.isScalableVector()) 2551 return false; 2552 2553 unsigned NumElts = VT.getVectorNumElements(); 2554 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2555 UndefElts = APInt::getZero(NumElts); 2556 2557 switch (Opcode) { 2558 case ISD::BUILD_VECTOR: { 2559 SDValue Scl; 2560 for (unsigned i = 0; i != NumElts; ++i) { 2561 SDValue Op = V.getOperand(i); 2562 if (Op.isUndef()) { 2563 UndefElts.setBit(i); 2564 continue; 2565 } 2566 if (!DemandedElts[i]) 2567 continue; 2568 if (Scl && Scl != Op) 2569 return false; 2570 Scl = Op; 2571 } 2572 return true; 2573 } 2574 case ISD::VECTOR_SHUFFLE: { 2575 // Check if this is a shuffle node doing a splat. 2576 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2577 int SplatIndex = -1; 2578 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2579 for (int i = 0; i != (int)NumElts; ++i) { 2580 int M = Mask[i]; 2581 if (M < 0) { 2582 UndefElts.setBit(i); 2583 continue; 2584 } 2585 if (!DemandedElts[i]) 2586 continue; 2587 if (0 <= SplatIndex && SplatIndex != M) 2588 return false; 2589 SplatIndex = M; 2590 } 2591 return true; 2592 } 2593 case ISD::EXTRACT_SUBVECTOR: { 2594 // Offset the demanded elts by the subvector index. 2595 SDValue Src = V.getOperand(0); 2596 // We don't support scalable vectors at the moment. 2597 if (Src.getValueType().isScalableVector()) 2598 return false; 2599 uint64_t Idx = V.getConstantOperandVal(1); 2600 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2601 APInt UndefSrcElts; 2602 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2603 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2604 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2605 return true; 2606 } 2607 break; 2608 } 2609 case ISD::ANY_EXTEND_VECTOR_INREG: 2610 case ISD::SIGN_EXTEND_VECTOR_INREG: 2611 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2612 // Widen the demanded elts by the src element count. 2613 SDValue Src = V.getOperand(0); 2614 // We don't support scalable vectors at the moment. 2615 if (Src.getValueType().isScalableVector()) 2616 return false; 2617 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2618 APInt UndefSrcElts; 2619 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2620 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2621 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2622 return true; 2623 } 2624 break; 2625 } 2626 } 2627 2628 return false; 2629 } 2630 2631 /// Helper wrapper to main isSplatValue function. 2632 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2633 EVT VT = V.getValueType(); 2634 assert(VT.isVector() && "Vector type expected"); 2635 2636 APInt UndefElts; 2637 APInt DemandedElts; 2638 2639 // For now we don't support this with scalable vectors. 2640 if (!VT.isScalableVector()) 2641 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2642 return isSplatValue(V, DemandedElts, UndefElts) && 2643 (AllowUndefs || !UndefElts); 2644 } 2645 2646 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2647 V = peekThroughExtractSubvectors(V); 2648 2649 EVT VT = V.getValueType(); 2650 unsigned Opcode = V.getOpcode(); 2651 switch (Opcode) { 2652 default: { 2653 APInt UndefElts; 2654 APInt DemandedElts; 2655 2656 if (!VT.isScalableVector()) 2657 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2658 2659 if (isSplatValue(V, DemandedElts, UndefElts)) { 2660 if (VT.isScalableVector()) { 2661 // DemandedElts and UndefElts are ignored for scalable vectors, since 2662 // the only supported cases are SPLAT_VECTOR nodes. 2663 SplatIdx = 0; 2664 } else { 2665 // Handle case where all demanded elements are UNDEF. 2666 if (DemandedElts.isSubsetOf(UndefElts)) { 2667 SplatIdx = 0; 2668 return getUNDEF(VT); 2669 } 2670 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2671 } 2672 return V; 2673 } 2674 break; 2675 } 2676 case ISD::SPLAT_VECTOR: 2677 SplatIdx = 0; 2678 return V; 2679 case ISD::VECTOR_SHUFFLE: { 2680 if (VT.isScalableVector()) 2681 return SDValue(); 2682 2683 // Check if this is a shuffle node doing a splat. 2684 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2685 // getTargetVShiftNode currently struggles without the splat source. 2686 auto *SVN = cast<ShuffleVectorSDNode>(V); 2687 if (!SVN->isSplat()) 2688 break; 2689 int Idx = SVN->getSplatIndex(); 2690 int NumElts = V.getValueType().getVectorNumElements(); 2691 SplatIdx = Idx % NumElts; 2692 return V.getOperand(Idx / NumElts); 2693 } 2694 } 2695 2696 return SDValue(); 2697 } 2698 2699 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2700 int SplatIdx; 2701 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2702 EVT SVT = SrcVector.getValueType().getScalarType(); 2703 EVT LegalSVT = SVT; 2704 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2705 if (!SVT.isInteger()) 2706 return SDValue(); 2707 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2708 if (LegalSVT.bitsLT(SVT)) 2709 return SDValue(); 2710 } 2711 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2712 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2713 } 2714 return SDValue(); 2715 } 2716 2717 const APInt * 2718 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2719 const APInt &DemandedElts) const { 2720 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2721 V.getOpcode() == ISD::SRA) && 2722 "Unknown shift node"); 2723 unsigned BitWidth = V.getScalarValueSizeInBits(); 2724 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2725 // Shifting more than the bitwidth is not valid. 2726 const APInt &ShAmt = SA->getAPIntValue(); 2727 if (ShAmt.ult(BitWidth)) 2728 return &ShAmt; 2729 } 2730 return nullptr; 2731 } 2732 2733 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2734 SDValue V, const APInt &DemandedElts) const { 2735 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2736 V.getOpcode() == ISD::SRA) && 2737 "Unknown shift node"); 2738 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2739 return ValidAmt; 2740 unsigned BitWidth = V.getScalarValueSizeInBits(); 2741 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2742 if (!BV) 2743 return nullptr; 2744 const APInt *MinShAmt = nullptr; 2745 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2746 if (!DemandedElts[i]) 2747 continue; 2748 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2749 if (!SA) 2750 return nullptr; 2751 // Shifting more than the bitwidth is not valid. 2752 const APInt &ShAmt = SA->getAPIntValue(); 2753 if (ShAmt.uge(BitWidth)) 2754 return nullptr; 2755 if (MinShAmt && MinShAmt->ule(ShAmt)) 2756 continue; 2757 MinShAmt = &ShAmt; 2758 } 2759 return MinShAmt; 2760 } 2761 2762 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2763 SDValue V, const APInt &DemandedElts) const { 2764 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2765 V.getOpcode() == ISD::SRA) && 2766 "Unknown shift node"); 2767 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2768 return ValidAmt; 2769 unsigned BitWidth = V.getScalarValueSizeInBits(); 2770 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2771 if (!BV) 2772 return nullptr; 2773 const APInt *MaxShAmt = nullptr; 2774 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2775 if (!DemandedElts[i]) 2776 continue; 2777 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2778 if (!SA) 2779 return nullptr; 2780 // Shifting more than the bitwidth is not valid. 2781 const APInt &ShAmt = SA->getAPIntValue(); 2782 if (ShAmt.uge(BitWidth)) 2783 return nullptr; 2784 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2785 continue; 2786 MaxShAmt = &ShAmt; 2787 } 2788 return MaxShAmt; 2789 } 2790 2791 /// Determine which bits of Op are known to be either zero or one and return 2792 /// them in Known. For vectors, the known bits are those that are shared by 2793 /// every vector element. 2794 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2795 EVT VT = Op.getValueType(); 2796 2797 // TOOD: Until we have a plan for how to represent demanded elements for 2798 // scalable vectors, we can just bail out for now. 2799 if (Op.getValueType().isScalableVector()) { 2800 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2801 return KnownBits(BitWidth); 2802 } 2803 2804 APInt DemandedElts = VT.isVector() 2805 ? APInt::getAllOnes(VT.getVectorNumElements()) 2806 : APInt(1, 1); 2807 return computeKnownBits(Op, DemandedElts, Depth); 2808 } 2809 2810 /// Determine which bits of Op are known to be either zero or one and return 2811 /// them in Known. The DemandedElts argument allows us to only collect the known 2812 /// bits that are shared by the requested vector elements. 2813 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2814 unsigned Depth) const { 2815 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2816 2817 KnownBits Known(BitWidth); // Don't know anything. 2818 2819 // TOOD: Until we have a plan for how to represent demanded elements for 2820 // scalable vectors, we can just bail out for now. 2821 if (Op.getValueType().isScalableVector()) 2822 return Known; 2823 2824 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2825 // We know all of the bits for a constant! 2826 return KnownBits::makeConstant(C->getAPIntValue()); 2827 } 2828 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2829 // We know all of the bits for a constant fp! 2830 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2831 } 2832 2833 if (Depth >= MaxRecursionDepth) 2834 return Known; // Limit search depth. 2835 2836 KnownBits Known2; 2837 unsigned NumElts = DemandedElts.getBitWidth(); 2838 assert((!Op.getValueType().isVector() || 2839 NumElts == Op.getValueType().getVectorNumElements()) && 2840 "Unexpected vector size"); 2841 2842 if (!DemandedElts) 2843 return Known; // No demanded elts, better to assume we don't know anything. 2844 2845 unsigned Opcode = Op.getOpcode(); 2846 switch (Opcode) { 2847 case ISD::BUILD_VECTOR: 2848 // Collect the known bits that are shared by every demanded vector element. 2849 Known.Zero.setAllBits(); Known.One.setAllBits(); 2850 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2851 if (!DemandedElts[i]) 2852 continue; 2853 2854 SDValue SrcOp = Op.getOperand(i); 2855 Known2 = computeKnownBits(SrcOp, Depth + 1); 2856 2857 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2858 if (SrcOp.getValueSizeInBits() != BitWidth) { 2859 assert(SrcOp.getValueSizeInBits() > BitWidth && 2860 "Expected BUILD_VECTOR implicit truncation"); 2861 Known2 = Known2.trunc(BitWidth); 2862 } 2863 2864 // Known bits are the values that are shared by every demanded element. 2865 Known = KnownBits::commonBits(Known, Known2); 2866 2867 // If we don't know any bits, early out. 2868 if (Known.isUnknown()) 2869 break; 2870 } 2871 break; 2872 case ISD::VECTOR_SHUFFLE: { 2873 // Collect the known bits that are shared by every vector element referenced 2874 // by the shuffle. 2875 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2876 Known.Zero.setAllBits(); Known.One.setAllBits(); 2877 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2878 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2879 for (unsigned i = 0; i != NumElts; ++i) { 2880 if (!DemandedElts[i]) 2881 continue; 2882 2883 int M = SVN->getMaskElt(i); 2884 if (M < 0) { 2885 // For UNDEF elements, we don't know anything about the common state of 2886 // the shuffle result. 2887 Known.resetAll(); 2888 DemandedLHS.clearAllBits(); 2889 DemandedRHS.clearAllBits(); 2890 break; 2891 } 2892 2893 if ((unsigned)M < NumElts) 2894 DemandedLHS.setBit((unsigned)M % NumElts); 2895 else 2896 DemandedRHS.setBit((unsigned)M % NumElts); 2897 } 2898 // Known bits are the values that are shared by every demanded element. 2899 if (!!DemandedLHS) { 2900 SDValue LHS = Op.getOperand(0); 2901 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2902 Known = KnownBits::commonBits(Known, Known2); 2903 } 2904 // If we don't know any bits, early out. 2905 if (Known.isUnknown()) 2906 break; 2907 if (!!DemandedRHS) { 2908 SDValue RHS = Op.getOperand(1); 2909 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2910 Known = KnownBits::commonBits(Known, Known2); 2911 } 2912 break; 2913 } 2914 case ISD::CONCAT_VECTORS: { 2915 // Split DemandedElts and test each of the demanded subvectors. 2916 Known.Zero.setAllBits(); Known.One.setAllBits(); 2917 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2918 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2919 unsigned NumSubVectors = Op.getNumOperands(); 2920 for (unsigned i = 0; i != NumSubVectors; ++i) { 2921 APInt DemandedSub = 2922 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2923 if (!!DemandedSub) { 2924 SDValue Sub = Op.getOperand(i); 2925 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2926 Known = KnownBits::commonBits(Known, Known2); 2927 } 2928 // If we don't know any bits, early out. 2929 if (Known.isUnknown()) 2930 break; 2931 } 2932 break; 2933 } 2934 case ISD::INSERT_SUBVECTOR: { 2935 // Demand any elements from the subvector and the remainder from the src its 2936 // inserted into. 2937 SDValue Src = Op.getOperand(0); 2938 SDValue Sub = Op.getOperand(1); 2939 uint64_t Idx = Op.getConstantOperandVal(2); 2940 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2941 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2942 APInt DemandedSrcElts = DemandedElts; 2943 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2944 2945 Known.One.setAllBits(); 2946 Known.Zero.setAllBits(); 2947 if (!!DemandedSubElts) { 2948 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2949 if (Known.isUnknown()) 2950 break; // early-out. 2951 } 2952 if (!!DemandedSrcElts) { 2953 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2954 Known = KnownBits::commonBits(Known, Known2); 2955 } 2956 break; 2957 } 2958 case ISD::EXTRACT_SUBVECTOR: { 2959 // Offset the demanded elts by the subvector index. 2960 SDValue Src = Op.getOperand(0); 2961 // Bail until we can represent demanded elements for scalable vectors. 2962 if (Src.getValueType().isScalableVector()) 2963 break; 2964 uint64_t Idx = Op.getConstantOperandVal(1); 2965 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2966 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2967 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2968 break; 2969 } 2970 case ISD::SCALAR_TO_VECTOR: { 2971 // We know about scalar_to_vector as much as we know about it source, 2972 // which becomes the first element of otherwise unknown vector. 2973 if (DemandedElts != 1) 2974 break; 2975 2976 SDValue N0 = Op.getOperand(0); 2977 Known = computeKnownBits(N0, Depth + 1); 2978 if (N0.getValueSizeInBits() != BitWidth) 2979 Known = Known.trunc(BitWidth); 2980 2981 break; 2982 } 2983 case ISD::BITCAST: { 2984 SDValue N0 = Op.getOperand(0); 2985 EVT SubVT = N0.getValueType(); 2986 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2987 2988 // Ignore bitcasts from unsupported types. 2989 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2990 break; 2991 2992 // Fast handling of 'identity' bitcasts. 2993 if (BitWidth == SubBitWidth) { 2994 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2995 break; 2996 } 2997 2998 bool IsLE = getDataLayout().isLittleEndian(); 2999 3000 // Bitcast 'small element' vector to 'large element' scalar/vector. 3001 if ((BitWidth % SubBitWidth) == 0) { 3002 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3003 3004 // Collect known bits for the (larger) output by collecting the known 3005 // bits from each set of sub elements and shift these into place. 3006 // We need to separately call computeKnownBits for each set of 3007 // sub elements as the knownbits for each is likely to be different. 3008 unsigned SubScale = BitWidth / SubBitWidth; 3009 APInt SubDemandedElts(NumElts * SubScale, 0); 3010 for (unsigned i = 0; i != NumElts; ++i) 3011 if (DemandedElts[i]) 3012 SubDemandedElts.setBit(i * SubScale); 3013 3014 for (unsigned i = 0; i != SubScale; ++i) { 3015 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3016 Depth + 1); 3017 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3018 Known.insertBits(Known2, SubBitWidth * Shifts); 3019 } 3020 } 3021 3022 // Bitcast 'large element' scalar/vector to 'small element' vector. 3023 if ((SubBitWidth % BitWidth) == 0) { 3024 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3025 3026 // Collect known bits for the (smaller) output by collecting the known 3027 // bits from the overlapping larger input elements and extracting the 3028 // sub sections we actually care about. 3029 unsigned SubScale = SubBitWidth / BitWidth; 3030 APInt SubDemandedElts = 3031 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3032 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3033 3034 Known.Zero.setAllBits(); Known.One.setAllBits(); 3035 for (unsigned i = 0; i != NumElts; ++i) 3036 if (DemandedElts[i]) { 3037 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3038 unsigned Offset = (Shifts % SubScale) * BitWidth; 3039 Known = KnownBits::commonBits(Known, 3040 Known2.extractBits(BitWidth, Offset)); 3041 // If we don't know any bits, early out. 3042 if (Known.isUnknown()) 3043 break; 3044 } 3045 } 3046 break; 3047 } 3048 case ISD::AND: 3049 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3050 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3051 3052 Known &= Known2; 3053 break; 3054 case ISD::OR: 3055 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3056 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3057 3058 Known |= Known2; 3059 break; 3060 case ISD::XOR: 3061 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3062 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3063 3064 Known ^= Known2; 3065 break; 3066 case ISD::MUL: { 3067 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3068 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3069 Known = KnownBits::mul(Known, Known2); 3070 break; 3071 } 3072 case ISD::MULHU: { 3073 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3074 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3075 Known = KnownBits::mulhu(Known, Known2); 3076 break; 3077 } 3078 case ISD::MULHS: { 3079 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3080 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3081 Known = KnownBits::mulhs(Known, Known2); 3082 break; 3083 } 3084 case ISD::UMUL_LOHI: { 3085 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3086 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3087 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3088 if (Op.getResNo() == 0) 3089 Known = KnownBits::mul(Known, Known2); 3090 else 3091 Known = KnownBits::mulhu(Known, Known2); 3092 break; 3093 } 3094 case ISD::SMUL_LOHI: { 3095 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3096 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3097 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3098 if (Op.getResNo() == 0) 3099 Known = KnownBits::mul(Known, Known2); 3100 else 3101 Known = KnownBits::mulhs(Known, Known2); 3102 break; 3103 } 3104 case ISD::UDIV: { 3105 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3106 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3107 Known = KnownBits::udiv(Known, Known2); 3108 break; 3109 } 3110 case ISD::SELECT: 3111 case ISD::VSELECT: 3112 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3113 // If we don't know any bits, early out. 3114 if (Known.isUnknown()) 3115 break; 3116 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3117 3118 // Only known if known in both the LHS and RHS. 3119 Known = KnownBits::commonBits(Known, Known2); 3120 break; 3121 case ISD::SELECT_CC: 3122 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3123 // If we don't know any bits, early out. 3124 if (Known.isUnknown()) 3125 break; 3126 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3127 3128 // Only known if known in both the LHS and RHS. 3129 Known = KnownBits::commonBits(Known, Known2); 3130 break; 3131 case ISD::SMULO: 3132 case ISD::UMULO: 3133 if (Op.getResNo() != 1) 3134 break; 3135 // The boolean result conforms to getBooleanContents. 3136 // If we know the result of a setcc has the top bits zero, use this info. 3137 // We know that we have an integer-based boolean since these operations 3138 // are only available for integer. 3139 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3140 TargetLowering::ZeroOrOneBooleanContent && 3141 BitWidth > 1) 3142 Known.Zero.setBitsFrom(1); 3143 break; 3144 case ISD::SETCC: 3145 case ISD::STRICT_FSETCC: 3146 case ISD::STRICT_FSETCCS: { 3147 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3148 // If we know the result of a setcc has the top bits zero, use this info. 3149 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3150 TargetLowering::ZeroOrOneBooleanContent && 3151 BitWidth > 1) 3152 Known.Zero.setBitsFrom(1); 3153 break; 3154 } 3155 case ISD::SHL: 3156 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3158 Known = KnownBits::shl(Known, Known2); 3159 3160 // Minimum shift low bits are known zero. 3161 if (const APInt *ShMinAmt = 3162 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3163 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3164 break; 3165 case ISD::SRL: 3166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3167 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3168 Known = KnownBits::lshr(Known, Known2); 3169 3170 // Minimum shift high bits are known zero. 3171 if (const APInt *ShMinAmt = 3172 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3173 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3174 break; 3175 case ISD::SRA: 3176 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3177 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3178 Known = KnownBits::ashr(Known, Known2); 3179 // TODO: Add minimum shift high known sign bits. 3180 break; 3181 case ISD::FSHL: 3182 case ISD::FSHR: 3183 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3184 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3185 3186 // For fshl, 0-shift returns the 1st arg. 3187 // For fshr, 0-shift returns the 2nd arg. 3188 if (Amt == 0) { 3189 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3190 DemandedElts, Depth + 1); 3191 break; 3192 } 3193 3194 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3195 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3196 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3198 if (Opcode == ISD::FSHL) { 3199 Known.One <<= Amt; 3200 Known.Zero <<= Amt; 3201 Known2.One.lshrInPlace(BitWidth - Amt); 3202 Known2.Zero.lshrInPlace(BitWidth - Amt); 3203 } else { 3204 Known.One <<= BitWidth - Amt; 3205 Known.Zero <<= BitWidth - Amt; 3206 Known2.One.lshrInPlace(Amt); 3207 Known2.Zero.lshrInPlace(Amt); 3208 } 3209 Known.One |= Known2.One; 3210 Known.Zero |= Known2.Zero; 3211 } 3212 break; 3213 case ISD::SIGN_EXTEND_INREG: { 3214 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3215 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3216 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3217 break; 3218 } 3219 case ISD::CTTZ: 3220 case ISD::CTTZ_ZERO_UNDEF: { 3221 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 // If we have a known 1, its position is our upper bound. 3223 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3224 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3225 Known.Zero.setBitsFrom(LowBits); 3226 break; 3227 } 3228 case ISD::CTLZ: 3229 case ISD::CTLZ_ZERO_UNDEF: { 3230 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3231 // If we have a known 1, its position is our upper bound. 3232 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3233 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3234 Known.Zero.setBitsFrom(LowBits); 3235 break; 3236 } 3237 case ISD::CTPOP: { 3238 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3239 // If we know some of the bits are zero, they can't be one. 3240 unsigned PossibleOnes = Known2.countMaxPopulation(); 3241 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3242 break; 3243 } 3244 case ISD::PARITY: { 3245 // Parity returns 0 everywhere but the LSB. 3246 Known.Zero.setBitsFrom(1); 3247 break; 3248 } 3249 case ISD::LOAD: { 3250 LoadSDNode *LD = cast<LoadSDNode>(Op); 3251 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3252 if (ISD::isNON_EXTLoad(LD) && Cst) { 3253 // Determine any common known bits from the loaded constant pool value. 3254 Type *CstTy = Cst->getType(); 3255 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3256 // If its a vector splat, then we can (quickly) reuse the scalar path. 3257 // NOTE: We assume all elements match and none are UNDEF. 3258 if (CstTy->isVectorTy()) { 3259 if (const Constant *Splat = Cst->getSplatValue()) { 3260 Cst = Splat; 3261 CstTy = Cst->getType(); 3262 } 3263 } 3264 // TODO - do we need to handle different bitwidths? 3265 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3266 // Iterate across all vector elements finding common known bits. 3267 Known.One.setAllBits(); 3268 Known.Zero.setAllBits(); 3269 for (unsigned i = 0; i != NumElts; ++i) { 3270 if (!DemandedElts[i]) 3271 continue; 3272 if (Constant *Elt = Cst->getAggregateElement(i)) { 3273 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3274 const APInt &Value = CInt->getValue(); 3275 Known.One &= Value; 3276 Known.Zero &= ~Value; 3277 continue; 3278 } 3279 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3280 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3281 Known.One &= Value; 3282 Known.Zero &= ~Value; 3283 continue; 3284 } 3285 } 3286 Known.One.clearAllBits(); 3287 Known.Zero.clearAllBits(); 3288 break; 3289 } 3290 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3291 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3292 Known = KnownBits::makeConstant(CInt->getValue()); 3293 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3294 Known = 3295 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3296 } 3297 } 3298 } 3299 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3300 // If this is a ZEXTLoad and we are looking at the loaded value. 3301 EVT VT = LD->getMemoryVT(); 3302 unsigned MemBits = VT.getScalarSizeInBits(); 3303 Known.Zero.setBitsFrom(MemBits); 3304 } else if (const MDNode *Ranges = LD->getRanges()) { 3305 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3306 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3307 } 3308 break; 3309 } 3310 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3311 EVT InVT = Op.getOperand(0).getValueType(); 3312 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3313 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3314 Known = Known.zext(BitWidth); 3315 break; 3316 } 3317 case ISD::ZERO_EXTEND: { 3318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3319 Known = Known.zext(BitWidth); 3320 break; 3321 } 3322 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3323 EVT InVT = Op.getOperand(0).getValueType(); 3324 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3325 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3326 // If the sign bit is known to be zero or one, then sext will extend 3327 // it to the top bits, else it will just zext. 3328 Known = Known.sext(BitWidth); 3329 break; 3330 } 3331 case ISD::SIGN_EXTEND: { 3332 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3333 // If the sign bit is known to be zero or one, then sext will extend 3334 // it to the top bits, else it will just zext. 3335 Known = Known.sext(BitWidth); 3336 break; 3337 } 3338 case ISD::ANY_EXTEND_VECTOR_INREG: { 3339 EVT InVT = Op.getOperand(0).getValueType(); 3340 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3341 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3342 Known = Known.anyext(BitWidth); 3343 break; 3344 } 3345 case ISD::ANY_EXTEND: { 3346 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3347 Known = Known.anyext(BitWidth); 3348 break; 3349 } 3350 case ISD::TRUNCATE: { 3351 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3352 Known = Known.trunc(BitWidth); 3353 break; 3354 } 3355 case ISD::AssertZext: { 3356 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3357 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3358 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3359 Known.Zero |= (~InMask); 3360 Known.One &= (~Known.Zero); 3361 break; 3362 } 3363 case ISD::AssertAlign: { 3364 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3365 assert(LogOfAlign != 0); 3366 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3367 // well as clearing one bits. 3368 Known.Zero.setLowBits(LogOfAlign); 3369 Known.One.clearLowBits(LogOfAlign); 3370 break; 3371 } 3372 case ISD::FGETSIGN: 3373 // All bits are zero except the low bit. 3374 Known.Zero.setBitsFrom(1); 3375 break; 3376 case ISD::USUBO: 3377 case ISD::SSUBO: 3378 if (Op.getResNo() == 1) { 3379 // If we know the result of a setcc has the top bits zero, use this info. 3380 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3381 TargetLowering::ZeroOrOneBooleanContent && 3382 BitWidth > 1) 3383 Known.Zero.setBitsFrom(1); 3384 break; 3385 } 3386 LLVM_FALLTHROUGH; 3387 case ISD::SUB: 3388 case ISD::SUBC: { 3389 assert(Op.getResNo() == 0 && 3390 "We only compute knownbits for the difference here."); 3391 3392 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3393 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3394 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3395 Known, Known2); 3396 break; 3397 } 3398 case ISD::UADDO: 3399 case ISD::SADDO: 3400 case ISD::ADDCARRY: 3401 if (Op.getResNo() == 1) { 3402 // If we know the result of a setcc has the top bits zero, use this info. 3403 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3404 TargetLowering::ZeroOrOneBooleanContent && 3405 BitWidth > 1) 3406 Known.Zero.setBitsFrom(1); 3407 break; 3408 } 3409 LLVM_FALLTHROUGH; 3410 case ISD::ADD: 3411 case ISD::ADDC: 3412 case ISD::ADDE: { 3413 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3414 3415 // With ADDE and ADDCARRY, a carry bit may be added in. 3416 KnownBits Carry(1); 3417 if (Opcode == ISD::ADDE) 3418 // Can't track carry from glue, set carry to unknown. 3419 Carry.resetAll(); 3420 else if (Opcode == ISD::ADDCARRY) 3421 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3422 // the trouble (how often will we find a known carry bit). And I haven't 3423 // tested this very much yet, but something like this might work: 3424 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3425 // Carry = Carry.zextOrTrunc(1, false); 3426 Carry.resetAll(); 3427 else 3428 Carry.setAllZero(); 3429 3430 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3431 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3432 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3433 break; 3434 } 3435 case ISD::SREM: { 3436 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3437 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3438 Known = KnownBits::srem(Known, Known2); 3439 break; 3440 } 3441 case ISD::UREM: { 3442 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3443 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3444 Known = KnownBits::urem(Known, Known2); 3445 break; 3446 } 3447 case ISD::EXTRACT_ELEMENT: { 3448 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3449 const unsigned Index = Op.getConstantOperandVal(1); 3450 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3451 3452 // Remove low part of known bits mask 3453 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3454 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3455 3456 // Remove high part of known bit mask 3457 Known = Known.trunc(EltBitWidth); 3458 break; 3459 } 3460 case ISD::EXTRACT_VECTOR_ELT: { 3461 SDValue InVec = Op.getOperand(0); 3462 SDValue EltNo = Op.getOperand(1); 3463 EVT VecVT = InVec.getValueType(); 3464 // computeKnownBits not yet implemented for scalable vectors. 3465 if (VecVT.isScalableVector()) 3466 break; 3467 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3468 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3469 3470 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3471 // anything about the extended bits. 3472 if (BitWidth > EltBitWidth) 3473 Known = Known.trunc(EltBitWidth); 3474 3475 // If we know the element index, just demand that vector element, else for 3476 // an unknown element index, ignore DemandedElts and demand them all. 3477 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3478 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3479 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3480 DemandedSrcElts = 3481 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3482 3483 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3484 if (BitWidth > EltBitWidth) 3485 Known = Known.anyext(BitWidth); 3486 break; 3487 } 3488 case ISD::INSERT_VECTOR_ELT: { 3489 // If we know the element index, split the demand between the 3490 // source vector and the inserted element, otherwise assume we need 3491 // the original demanded vector elements and the value. 3492 SDValue InVec = Op.getOperand(0); 3493 SDValue InVal = Op.getOperand(1); 3494 SDValue EltNo = Op.getOperand(2); 3495 bool DemandedVal = true; 3496 APInt DemandedVecElts = DemandedElts; 3497 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3498 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3499 unsigned EltIdx = CEltNo->getZExtValue(); 3500 DemandedVal = !!DemandedElts[EltIdx]; 3501 DemandedVecElts.clearBit(EltIdx); 3502 } 3503 Known.One.setAllBits(); 3504 Known.Zero.setAllBits(); 3505 if (DemandedVal) { 3506 Known2 = computeKnownBits(InVal, Depth + 1); 3507 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3508 } 3509 if (!!DemandedVecElts) { 3510 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3511 Known = KnownBits::commonBits(Known, Known2); 3512 } 3513 break; 3514 } 3515 case ISD::BITREVERSE: { 3516 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3517 Known = Known2.reverseBits(); 3518 break; 3519 } 3520 case ISD::BSWAP: { 3521 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3522 Known = Known2.byteSwap(); 3523 break; 3524 } 3525 case ISD::ABS: { 3526 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3527 Known = Known2.abs(); 3528 break; 3529 } 3530 case ISD::USUBSAT: { 3531 // The result of usubsat will never be larger than the LHS. 3532 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3533 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3534 break; 3535 } 3536 case ISD::UMIN: { 3537 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3538 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3539 Known = KnownBits::umin(Known, Known2); 3540 break; 3541 } 3542 case ISD::UMAX: { 3543 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3544 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3545 Known = KnownBits::umax(Known, Known2); 3546 break; 3547 } 3548 case ISD::SMIN: 3549 case ISD::SMAX: { 3550 // If we have a clamp pattern, we know that the number of sign bits will be 3551 // the minimum of the clamp min/max range. 3552 bool IsMax = (Opcode == ISD::SMAX); 3553 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3554 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3555 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3556 CstHigh = 3557 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3558 if (CstLow && CstHigh) { 3559 if (!IsMax) 3560 std::swap(CstLow, CstHigh); 3561 3562 const APInt &ValueLow = CstLow->getAPIntValue(); 3563 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3564 if (ValueLow.sle(ValueHigh)) { 3565 unsigned LowSignBits = ValueLow.getNumSignBits(); 3566 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3567 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3568 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3569 Known.One.setHighBits(MinSignBits); 3570 break; 3571 } 3572 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3573 Known.Zero.setHighBits(MinSignBits); 3574 break; 3575 } 3576 } 3577 } 3578 3579 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3580 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3581 if (IsMax) 3582 Known = KnownBits::smax(Known, Known2); 3583 else 3584 Known = KnownBits::smin(Known, Known2); 3585 break; 3586 } 3587 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3588 if (Op.getResNo() == 1) { 3589 // The boolean result conforms to getBooleanContents. 3590 // If we know the result of a setcc has the top bits zero, use this info. 3591 // We know that we have an integer-based boolean since these operations 3592 // are only available for integer. 3593 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3594 TargetLowering::ZeroOrOneBooleanContent && 3595 BitWidth > 1) 3596 Known.Zero.setBitsFrom(1); 3597 break; 3598 } 3599 LLVM_FALLTHROUGH; 3600 case ISD::ATOMIC_CMP_SWAP: 3601 case ISD::ATOMIC_SWAP: 3602 case ISD::ATOMIC_LOAD_ADD: 3603 case ISD::ATOMIC_LOAD_SUB: 3604 case ISD::ATOMIC_LOAD_AND: 3605 case ISD::ATOMIC_LOAD_CLR: 3606 case ISD::ATOMIC_LOAD_OR: 3607 case ISD::ATOMIC_LOAD_XOR: 3608 case ISD::ATOMIC_LOAD_NAND: 3609 case ISD::ATOMIC_LOAD_MIN: 3610 case ISD::ATOMIC_LOAD_MAX: 3611 case ISD::ATOMIC_LOAD_UMIN: 3612 case ISD::ATOMIC_LOAD_UMAX: 3613 case ISD::ATOMIC_LOAD: { 3614 unsigned MemBits = 3615 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3616 // If we are looking at the loaded value. 3617 if (Op.getResNo() == 0) { 3618 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3619 Known.Zero.setBitsFrom(MemBits); 3620 } 3621 break; 3622 } 3623 case ISD::FrameIndex: 3624 case ISD::TargetFrameIndex: 3625 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3626 Known, getMachineFunction()); 3627 break; 3628 3629 default: 3630 if (Opcode < ISD::BUILTIN_OP_END) 3631 break; 3632 LLVM_FALLTHROUGH; 3633 case ISD::INTRINSIC_WO_CHAIN: 3634 case ISD::INTRINSIC_W_CHAIN: 3635 case ISD::INTRINSIC_VOID: 3636 // Allow the target to implement this method for its nodes. 3637 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3638 break; 3639 } 3640 3641 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3642 return Known; 3643 } 3644 3645 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3646 SDValue N1) const { 3647 // X + 0 never overflow 3648 if (isNullConstant(N1)) 3649 return OFK_Never; 3650 3651 KnownBits N1Known = computeKnownBits(N1); 3652 if (N1Known.Zero.getBoolValue()) { 3653 KnownBits N0Known = computeKnownBits(N0); 3654 3655 bool overflow; 3656 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3657 if (!overflow) 3658 return OFK_Never; 3659 } 3660 3661 // mulhi + 1 never overflow 3662 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3663 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3664 return OFK_Never; 3665 3666 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3667 KnownBits N0Known = computeKnownBits(N0); 3668 3669 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3670 return OFK_Never; 3671 } 3672 3673 return OFK_Sometime; 3674 } 3675 3676 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3677 EVT OpVT = Val.getValueType(); 3678 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3679 3680 // Is the constant a known power of 2? 3681 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3682 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3683 3684 // A left-shift of a constant one will have exactly one bit set because 3685 // shifting the bit off the end is undefined. 3686 if (Val.getOpcode() == ISD::SHL) { 3687 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3688 if (C && C->getAPIntValue() == 1) 3689 return true; 3690 } 3691 3692 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3693 // one bit set. 3694 if (Val.getOpcode() == ISD::SRL) { 3695 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3696 if (C && C->getAPIntValue().isSignMask()) 3697 return true; 3698 } 3699 3700 // Are all operands of a build vector constant powers of two? 3701 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3702 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3703 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3704 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3705 return false; 3706 })) 3707 return true; 3708 3709 // Is the operand of a splat vector a constant power of two? 3710 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3711 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3712 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3713 return true; 3714 3715 // More could be done here, though the above checks are enough 3716 // to handle some common cases. 3717 3718 // Fall back to computeKnownBits to catch other known cases. 3719 KnownBits Known = computeKnownBits(Val); 3720 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3721 } 3722 3723 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3724 EVT VT = Op.getValueType(); 3725 3726 // TODO: Assume we don't know anything for now. 3727 if (VT.isScalableVector()) 3728 return 1; 3729 3730 APInt DemandedElts = VT.isVector() 3731 ? APInt::getAllOnes(VT.getVectorNumElements()) 3732 : APInt(1, 1); 3733 return ComputeNumSignBits(Op, DemandedElts, Depth); 3734 } 3735 3736 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3737 unsigned Depth) const { 3738 EVT VT = Op.getValueType(); 3739 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3740 unsigned VTBits = VT.getScalarSizeInBits(); 3741 unsigned NumElts = DemandedElts.getBitWidth(); 3742 unsigned Tmp, Tmp2; 3743 unsigned FirstAnswer = 1; 3744 3745 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3746 const APInt &Val = C->getAPIntValue(); 3747 return Val.getNumSignBits(); 3748 } 3749 3750 if (Depth >= MaxRecursionDepth) 3751 return 1; // Limit search depth. 3752 3753 if (!DemandedElts || VT.isScalableVector()) 3754 return 1; // No demanded elts, better to assume we don't know anything. 3755 3756 unsigned Opcode = Op.getOpcode(); 3757 switch (Opcode) { 3758 default: break; 3759 case ISD::AssertSext: 3760 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3761 return VTBits-Tmp+1; 3762 case ISD::AssertZext: 3763 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3764 return VTBits-Tmp; 3765 3766 case ISD::BUILD_VECTOR: 3767 Tmp = VTBits; 3768 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3769 if (!DemandedElts[i]) 3770 continue; 3771 3772 SDValue SrcOp = Op.getOperand(i); 3773 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3774 3775 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3776 if (SrcOp.getValueSizeInBits() != VTBits) { 3777 assert(SrcOp.getValueSizeInBits() > VTBits && 3778 "Expected BUILD_VECTOR implicit truncation"); 3779 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3780 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3781 } 3782 Tmp = std::min(Tmp, Tmp2); 3783 } 3784 return Tmp; 3785 3786 case ISD::VECTOR_SHUFFLE: { 3787 // Collect the minimum number of sign bits that are shared by every vector 3788 // element referenced by the shuffle. 3789 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3790 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3791 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3792 for (unsigned i = 0; i != NumElts; ++i) { 3793 int M = SVN->getMaskElt(i); 3794 if (!DemandedElts[i]) 3795 continue; 3796 // For UNDEF elements, we don't know anything about the common state of 3797 // the shuffle result. 3798 if (M < 0) 3799 return 1; 3800 if ((unsigned)M < NumElts) 3801 DemandedLHS.setBit((unsigned)M % NumElts); 3802 else 3803 DemandedRHS.setBit((unsigned)M % NumElts); 3804 } 3805 Tmp = std::numeric_limits<unsigned>::max(); 3806 if (!!DemandedLHS) 3807 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3808 if (!!DemandedRHS) { 3809 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3810 Tmp = std::min(Tmp, Tmp2); 3811 } 3812 // If we don't know anything, early out and try computeKnownBits fall-back. 3813 if (Tmp == 1) 3814 break; 3815 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3816 return Tmp; 3817 } 3818 3819 case ISD::BITCAST: { 3820 SDValue N0 = Op.getOperand(0); 3821 EVT SrcVT = N0.getValueType(); 3822 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3823 3824 // Ignore bitcasts from unsupported types.. 3825 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3826 break; 3827 3828 // Fast handling of 'identity' bitcasts. 3829 if (VTBits == SrcBits) 3830 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3831 3832 bool IsLE = getDataLayout().isLittleEndian(); 3833 3834 // Bitcast 'large element' scalar/vector to 'small element' vector. 3835 if ((SrcBits % VTBits) == 0) { 3836 assert(VT.isVector() && "Expected bitcast to vector"); 3837 3838 unsigned Scale = SrcBits / VTBits; 3839 APInt SrcDemandedElts = 3840 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3841 3842 // Fast case - sign splat can be simply split across the small elements. 3843 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3844 if (Tmp == SrcBits) 3845 return VTBits; 3846 3847 // Slow case - determine how far the sign extends into each sub-element. 3848 Tmp2 = VTBits; 3849 for (unsigned i = 0; i != NumElts; ++i) 3850 if (DemandedElts[i]) { 3851 unsigned SubOffset = i % Scale; 3852 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3853 SubOffset = SubOffset * VTBits; 3854 if (Tmp <= SubOffset) 3855 return 1; 3856 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3857 } 3858 return Tmp2; 3859 } 3860 break; 3861 } 3862 3863 case ISD::SIGN_EXTEND: 3864 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3865 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3866 case ISD::SIGN_EXTEND_INREG: 3867 // Max of the input and what this extends. 3868 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3869 Tmp = VTBits-Tmp+1; 3870 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3871 return std::max(Tmp, Tmp2); 3872 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3873 SDValue Src = Op.getOperand(0); 3874 EVT SrcVT = Src.getValueType(); 3875 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3876 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3877 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3878 } 3879 case ISD::SRA: 3880 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3881 // SRA X, C -> adds C sign bits. 3882 if (const APInt *ShAmt = 3883 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3884 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3885 return Tmp; 3886 case ISD::SHL: 3887 if (const APInt *ShAmt = 3888 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3889 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3890 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3891 if (ShAmt->ult(Tmp)) 3892 return Tmp - ShAmt->getZExtValue(); 3893 } 3894 break; 3895 case ISD::AND: 3896 case ISD::OR: 3897 case ISD::XOR: // NOT is handled here. 3898 // Logical binary ops preserve the number of sign bits at the worst. 3899 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3900 if (Tmp != 1) { 3901 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3902 FirstAnswer = std::min(Tmp, Tmp2); 3903 // We computed what we know about the sign bits as our first 3904 // answer. Now proceed to the generic code that uses 3905 // computeKnownBits, and pick whichever answer is better. 3906 } 3907 break; 3908 3909 case ISD::SELECT: 3910 case ISD::VSELECT: 3911 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3912 if (Tmp == 1) return 1; // Early out. 3913 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3914 return std::min(Tmp, Tmp2); 3915 case ISD::SELECT_CC: 3916 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3917 if (Tmp == 1) return 1; // Early out. 3918 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3919 return std::min(Tmp, Tmp2); 3920 3921 case ISD::SMIN: 3922 case ISD::SMAX: { 3923 // If we have a clamp pattern, we know that the number of sign bits will be 3924 // the minimum of the clamp min/max range. 3925 bool IsMax = (Opcode == ISD::SMAX); 3926 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3927 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3928 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3929 CstHigh = 3930 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3931 if (CstLow && CstHigh) { 3932 if (!IsMax) 3933 std::swap(CstLow, CstHigh); 3934 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3935 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3936 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3937 return std::min(Tmp, Tmp2); 3938 } 3939 } 3940 3941 // Fallback - just get the minimum number of sign bits of the operands. 3942 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3943 if (Tmp == 1) 3944 return 1; // Early out. 3945 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3946 return std::min(Tmp, Tmp2); 3947 } 3948 case ISD::UMIN: 3949 case ISD::UMAX: 3950 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3951 if (Tmp == 1) 3952 return 1; // Early out. 3953 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3954 return std::min(Tmp, Tmp2); 3955 case ISD::SADDO: 3956 case ISD::UADDO: 3957 case ISD::SSUBO: 3958 case ISD::USUBO: 3959 case ISD::SMULO: 3960 case ISD::UMULO: 3961 if (Op.getResNo() != 1) 3962 break; 3963 // The boolean result conforms to getBooleanContents. Fall through. 3964 // If setcc returns 0/-1, all bits are sign bits. 3965 // We know that we have an integer-based boolean since these operations 3966 // are only available for integer. 3967 if (TLI->getBooleanContents(VT.isVector(), false) == 3968 TargetLowering::ZeroOrNegativeOneBooleanContent) 3969 return VTBits; 3970 break; 3971 case ISD::SETCC: 3972 case ISD::STRICT_FSETCC: 3973 case ISD::STRICT_FSETCCS: { 3974 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3975 // If setcc returns 0/-1, all bits are sign bits. 3976 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3977 TargetLowering::ZeroOrNegativeOneBooleanContent) 3978 return VTBits; 3979 break; 3980 } 3981 case ISD::ROTL: 3982 case ISD::ROTR: 3983 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3984 3985 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3986 if (Tmp == VTBits) 3987 return VTBits; 3988 3989 if (ConstantSDNode *C = 3990 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3991 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3992 3993 // Handle rotate right by N like a rotate left by 32-N. 3994 if (Opcode == ISD::ROTR) 3995 RotAmt = (VTBits - RotAmt) % VTBits; 3996 3997 // If we aren't rotating out all of the known-in sign bits, return the 3998 // number that are left. This handles rotl(sext(x), 1) for example. 3999 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4000 } 4001 break; 4002 case ISD::ADD: 4003 case ISD::ADDC: 4004 // Add can have at most one carry bit. Thus we know that the output 4005 // is, at worst, one more bit than the inputs. 4006 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4007 if (Tmp == 1) return 1; // Early out. 4008 4009 // Special case decrementing a value (ADD X, -1): 4010 if (ConstantSDNode *CRHS = 4011 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4012 if (CRHS->isAllOnes()) { 4013 KnownBits Known = 4014 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4015 4016 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4017 // sign bits set. 4018 if ((Known.Zero | 1).isAllOnes()) 4019 return VTBits; 4020 4021 // If we are subtracting one from a positive number, there is no carry 4022 // out of the result. 4023 if (Known.isNonNegative()) 4024 return Tmp; 4025 } 4026 4027 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4028 if (Tmp2 == 1) return 1; // Early out. 4029 return std::min(Tmp, Tmp2) - 1; 4030 case ISD::SUB: 4031 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4032 if (Tmp2 == 1) return 1; // Early out. 4033 4034 // Handle NEG. 4035 if (ConstantSDNode *CLHS = 4036 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4037 if (CLHS->isZero()) { 4038 KnownBits Known = 4039 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4040 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4041 // sign bits set. 4042 if ((Known.Zero | 1).isAllOnes()) 4043 return VTBits; 4044 4045 // If the input is known to be positive (the sign bit is known clear), 4046 // the output of the NEG has the same number of sign bits as the input. 4047 if (Known.isNonNegative()) 4048 return Tmp2; 4049 4050 // Otherwise, we treat this like a SUB. 4051 } 4052 4053 // Sub can have at most one carry bit. Thus we know that the output 4054 // is, at worst, one more bit than the inputs. 4055 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4056 if (Tmp == 1) return 1; // Early out. 4057 return std::min(Tmp, Tmp2) - 1; 4058 case ISD::MUL: { 4059 // The output of the Mul can be at most twice the valid bits in the inputs. 4060 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4061 if (SignBitsOp0 == 1) 4062 break; 4063 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4064 if (SignBitsOp1 == 1) 4065 break; 4066 unsigned OutValidBits = 4067 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4068 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4069 } 4070 case ISD::SREM: 4071 // The sign bit is the LHS's sign bit, except when the result of the 4072 // remainder is zero. The magnitude of the result should be less than or 4073 // equal to the magnitude of the LHS. Therefore, the result should have 4074 // at least as many sign bits as the left hand side. 4075 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4076 case ISD::TRUNCATE: { 4077 // Check if the sign bits of source go down as far as the truncated value. 4078 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4079 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4080 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4081 return NumSrcSignBits - (NumSrcBits - VTBits); 4082 break; 4083 } 4084 case ISD::EXTRACT_ELEMENT: { 4085 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4086 const int BitWidth = Op.getValueSizeInBits(); 4087 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4088 4089 // Get reverse index (starting from 1), Op1 value indexes elements from 4090 // little end. Sign starts at big end. 4091 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4092 4093 // If the sign portion ends in our element the subtraction gives correct 4094 // result. Otherwise it gives either negative or > bitwidth result 4095 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4096 } 4097 case ISD::INSERT_VECTOR_ELT: { 4098 // If we know the element index, split the demand between the 4099 // source vector and the inserted element, otherwise assume we need 4100 // the original demanded vector elements and the value. 4101 SDValue InVec = Op.getOperand(0); 4102 SDValue InVal = Op.getOperand(1); 4103 SDValue EltNo = Op.getOperand(2); 4104 bool DemandedVal = true; 4105 APInt DemandedVecElts = DemandedElts; 4106 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4107 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4108 unsigned EltIdx = CEltNo->getZExtValue(); 4109 DemandedVal = !!DemandedElts[EltIdx]; 4110 DemandedVecElts.clearBit(EltIdx); 4111 } 4112 Tmp = std::numeric_limits<unsigned>::max(); 4113 if (DemandedVal) { 4114 // TODO - handle implicit truncation of inserted elements. 4115 if (InVal.getScalarValueSizeInBits() != VTBits) 4116 break; 4117 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4118 Tmp = std::min(Tmp, Tmp2); 4119 } 4120 if (!!DemandedVecElts) { 4121 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4122 Tmp = std::min(Tmp, Tmp2); 4123 } 4124 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4125 return Tmp; 4126 } 4127 case ISD::EXTRACT_VECTOR_ELT: { 4128 SDValue InVec = Op.getOperand(0); 4129 SDValue EltNo = Op.getOperand(1); 4130 EVT VecVT = InVec.getValueType(); 4131 // ComputeNumSignBits not yet implemented for scalable vectors. 4132 if (VecVT.isScalableVector()) 4133 break; 4134 const unsigned BitWidth = Op.getValueSizeInBits(); 4135 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4136 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4137 4138 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4139 // anything about sign bits. But if the sizes match we can derive knowledge 4140 // about sign bits from the vector operand. 4141 if (BitWidth != EltBitWidth) 4142 break; 4143 4144 // If we know the element index, just demand that vector element, else for 4145 // an unknown element index, ignore DemandedElts and demand them all. 4146 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4147 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4148 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4149 DemandedSrcElts = 4150 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4151 4152 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4153 } 4154 case ISD::EXTRACT_SUBVECTOR: { 4155 // Offset the demanded elts by the subvector index. 4156 SDValue Src = Op.getOperand(0); 4157 // Bail until we can represent demanded elements for scalable vectors. 4158 if (Src.getValueType().isScalableVector()) 4159 break; 4160 uint64_t Idx = Op.getConstantOperandVal(1); 4161 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4162 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4163 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4164 } 4165 case ISD::CONCAT_VECTORS: { 4166 // Determine the minimum number of sign bits across all demanded 4167 // elts of the input vectors. Early out if the result is already 1. 4168 Tmp = std::numeric_limits<unsigned>::max(); 4169 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4170 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4171 unsigned NumSubVectors = Op.getNumOperands(); 4172 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4173 APInt DemandedSub = 4174 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4175 if (!DemandedSub) 4176 continue; 4177 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4178 Tmp = std::min(Tmp, Tmp2); 4179 } 4180 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4181 return Tmp; 4182 } 4183 case ISD::INSERT_SUBVECTOR: { 4184 // Demand any elements from the subvector and the remainder from the src its 4185 // inserted into. 4186 SDValue Src = Op.getOperand(0); 4187 SDValue Sub = Op.getOperand(1); 4188 uint64_t Idx = Op.getConstantOperandVal(2); 4189 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4190 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4191 APInt DemandedSrcElts = DemandedElts; 4192 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4193 4194 Tmp = std::numeric_limits<unsigned>::max(); 4195 if (!!DemandedSubElts) { 4196 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4197 if (Tmp == 1) 4198 return 1; // early-out 4199 } 4200 if (!!DemandedSrcElts) { 4201 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4202 Tmp = std::min(Tmp, Tmp2); 4203 } 4204 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4205 return Tmp; 4206 } 4207 case ISD::ATOMIC_CMP_SWAP: 4208 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4209 case ISD::ATOMIC_SWAP: 4210 case ISD::ATOMIC_LOAD_ADD: 4211 case ISD::ATOMIC_LOAD_SUB: 4212 case ISD::ATOMIC_LOAD_AND: 4213 case ISD::ATOMIC_LOAD_CLR: 4214 case ISD::ATOMIC_LOAD_OR: 4215 case ISD::ATOMIC_LOAD_XOR: 4216 case ISD::ATOMIC_LOAD_NAND: 4217 case ISD::ATOMIC_LOAD_MIN: 4218 case ISD::ATOMIC_LOAD_MAX: 4219 case ISD::ATOMIC_LOAD_UMIN: 4220 case ISD::ATOMIC_LOAD_UMAX: 4221 case ISD::ATOMIC_LOAD: { 4222 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4223 // If we are looking at the loaded value. 4224 if (Op.getResNo() == 0) { 4225 if (Tmp == VTBits) 4226 return 1; // early-out 4227 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4228 return VTBits - Tmp + 1; 4229 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4230 return VTBits - Tmp; 4231 } 4232 break; 4233 } 4234 } 4235 4236 // If we are looking at the loaded value of the SDNode. 4237 if (Op.getResNo() == 0) { 4238 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4239 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4240 unsigned ExtType = LD->getExtensionType(); 4241 switch (ExtType) { 4242 default: break; 4243 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4244 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4245 return VTBits - Tmp + 1; 4246 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4247 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4248 return VTBits - Tmp; 4249 case ISD::NON_EXTLOAD: 4250 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4251 // We only need to handle vectors - computeKnownBits should handle 4252 // scalar cases. 4253 Type *CstTy = Cst->getType(); 4254 if (CstTy->isVectorTy() && 4255 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4256 Tmp = VTBits; 4257 for (unsigned i = 0; i != NumElts; ++i) { 4258 if (!DemandedElts[i]) 4259 continue; 4260 if (Constant *Elt = Cst->getAggregateElement(i)) { 4261 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4262 const APInt &Value = CInt->getValue(); 4263 Tmp = std::min(Tmp, Value.getNumSignBits()); 4264 continue; 4265 } 4266 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4267 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4268 Tmp = std::min(Tmp, Value.getNumSignBits()); 4269 continue; 4270 } 4271 } 4272 // Unknown type. Conservatively assume no bits match sign bit. 4273 return 1; 4274 } 4275 return Tmp; 4276 } 4277 } 4278 break; 4279 } 4280 } 4281 } 4282 4283 // Allow the target to implement this method for its nodes. 4284 if (Opcode >= ISD::BUILTIN_OP_END || 4285 Opcode == ISD::INTRINSIC_WO_CHAIN || 4286 Opcode == ISD::INTRINSIC_W_CHAIN || 4287 Opcode == ISD::INTRINSIC_VOID) { 4288 unsigned NumBits = 4289 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4290 if (NumBits > 1) 4291 FirstAnswer = std::max(FirstAnswer, NumBits); 4292 } 4293 4294 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4295 // use this information. 4296 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4297 return std::max(FirstAnswer, Known.countMinSignBits()); 4298 } 4299 4300 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4301 unsigned Depth) const { 4302 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4303 return Op.getScalarValueSizeInBits() - SignBits + 1; 4304 } 4305 4306 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4307 const APInt &DemandedElts, 4308 unsigned Depth) const { 4309 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4310 return Op.getScalarValueSizeInBits() - SignBits + 1; 4311 } 4312 4313 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4314 unsigned Depth) const { 4315 // Early out for FREEZE. 4316 if (Op.getOpcode() == ISD::FREEZE) 4317 return true; 4318 4319 // TODO: Assume we don't know anything for now. 4320 EVT VT = Op.getValueType(); 4321 if (VT.isScalableVector()) 4322 return false; 4323 4324 APInt DemandedElts = VT.isVector() 4325 ? APInt::getAllOnes(VT.getVectorNumElements()) 4326 : APInt(1, 1); 4327 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4328 } 4329 4330 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4331 const APInt &DemandedElts, 4332 bool PoisonOnly, 4333 unsigned Depth) const { 4334 unsigned Opcode = Op.getOpcode(); 4335 4336 // Early out for FREEZE. 4337 if (Opcode == ISD::FREEZE) 4338 return true; 4339 4340 if (Depth >= MaxRecursionDepth) 4341 return false; // Limit search depth. 4342 4343 if (isIntOrFPConstant(Op)) 4344 return true; 4345 4346 switch (Opcode) { 4347 case ISD::UNDEF: 4348 return PoisonOnly; 4349 4350 case ISD::BUILD_VECTOR: 4351 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4352 // this shouldn't affect the result. 4353 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4354 if (!DemandedElts[i]) 4355 continue; 4356 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4357 Depth + 1)) 4358 return false; 4359 } 4360 return true; 4361 4362 // TODO: Search for noundef attributes from library functions. 4363 4364 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4365 4366 default: 4367 // Allow the target to implement this method for its nodes. 4368 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4369 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4370 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4371 Op, DemandedElts, *this, PoisonOnly, Depth); 4372 break; 4373 } 4374 4375 return false; 4376 } 4377 4378 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4379 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4380 !isa<ConstantSDNode>(Op.getOperand(1))) 4381 return false; 4382 4383 if (Op.getOpcode() == ISD::OR && 4384 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4385 return false; 4386 4387 return true; 4388 } 4389 4390 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4391 // If we're told that NaNs won't happen, assume they won't. 4392 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4393 return true; 4394 4395 if (Depth >= MaxRecursionDepth) 4396 return false; // Limit search depth. 4397 4398 // TODO: Handle vectors. 4399 // If the value is a constant, we can obviously see if it is a NaN or not. 4400 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4401 return !C->getValueAPF().isNaN() || 4402 (SNaN && !C->getValueAPF().isSignaling()); 4403 } 4404 4405 unsigned Opcode = Op.getOpcode(); 4406 switch (Opcode) { 4407 case ISD::FADD: 4408 case ISD::FSUB: 4409 case ISD::FMUL: 4410 case ISD::FDIV: 4411 case ISD::FREM: 4412 case ISD::FSIN: 4413 case ISD::FCOS: { 4414 if (SNaN) 4415 return true; 4416 // TODO: Need isKnownNeverInfinity 4417 return false; 4418 } 4419 case ISD::FCANONICALIZE: 4420 case ISD::FEXP: 4421 case ISD::FEXP2: 4422 case ISD::FTRUNC: 4423 case ISD::FFLOOR: 4424 case ISD::FCEIL: 4425 case ISD::FROUND: 4426 case ISD::FROUNDEVEN: 4427 case ISD::FRINT: 4428 case ISD::FNEARBYINT: { 4429 if (SNaN) 4430 return true; 4431 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4432 } 4433 case ISD::FABS: 4434 case ISD::FNEG: 4435 case ISD::FCOPYSIGN: { 4436 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4437 } 4438 case ISD::SELECT: 4439 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4440 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4441 case ISD::FP_EXTEND: 4442 case ISD::FP_ROUND: { 4443 if (SNaN) 4444 return true; 4445 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4446 } 4447 case ISD::SINT_TO_FP: 4448 case ISD::UINT_TO_FP: 4449 return true; 4450 case ISD::FMA: 4451 case ISD::FMAD: { 4452 if (SNaN) 4453 return true; 4454 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4455 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4456 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4457 } 4458 case ISD::FSQRT: // Need is known positive 4459 case ISD::FLOG: 4460 case ISD::FLOG2: 4461 case ISD::FLOG10: 4462 case ISD::FPOWI: 4463 case ISD::FPOW: { 4464 if (SNaN) 4465 return true; 4466 // TODO: Refine on operand 4467 return false; 4468 } 4469 case ISD::FMINNUM: 4470 case ISD::FMAXNUM: { 4471 // Only one needs to be known not-nan, since it will be returned if the 4472 // other ends up being one. 4473 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4474 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4475 } 4476 case ISD::FMINNUM_IEEE: 4477 case ISD::FMAXNUM_IEEE: { 4478 if (SNaN) 4479 return true; 4480 // This can return a NaN if either operand is an sNaN, or if both operands 4481 // are NaN. 4482 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4483 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4484 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4485 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4486 } 4487 case ISD::FMINIMUM: 4488 case ISD::FMAXIMUM: { 4489 // TODO: Does this quiet or return the origina NaN as-is? 4490 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4491 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4492 } 4493 case ISD::EXTRACT_VECTOR_ELT: { 4494 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4495 } 4496 default: 4497 if (Opcode >= ISD::BUILTIN_OP_END || 4498 Opcode == ISD::INTRINSIC_WO_CHAIN || 4499 Opcode == ISD::INTRINSIC_W_CHAIN || 4500 Opcode == ISD::INTRINSIC_VOID) { 4501 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4502 } 4503 4504 return false; 4505 } 4506 } 4507 4508 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4509 assert(Op.getValueType().isFloatingPoint() && 4510 "Floating point type expected"); 4511 4512 // If the value is a constant, we can obviously see if it is a zero or not. 4513 // TODO: Add BuildVector support. 4514 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4515 return !C->isZero(); 4516 return false; 4517 } 4518 4519 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4520 assert(!Op.getValueType().isFloatingPoint() && 4521 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4522 4523 // If the value is a constant, we can obviously see if it is a zero or not. 4524 if (ISD::matchUnaryPredicate(Op, 4525 [](ConstantSDNode *C) { return !C->isZero(); })) 4526 return true; 4527 4528 // TODO: Recognize more cases here. 4529 switch (Op.getOpcode()) { 4530 default: break; 4531 case ISD::OR: 4532 if (isKnownNeverZero(Op.getOperand(1)) || 4533 isKnownNeverZero(Op.getOperand(0))) 4534 return true; 4535 break; 4536 } 4537 4538 return false; 4539 } 4540 4541 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4542 // Check the obvious case. 4543 if (A == B) return true; 4544 4545 // For for negative and positive zero. 4546 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4547 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4548 if (CA->isZero() && CB->isZero()) return true; 4549 4550 // Otherwise they may not be equal. 4551 return false; 4552 } 4553 4554 // FIXME: unify with llvm::haveNoCommonBitsSet. 4555 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4556 assert(A.getValueType() == B.getValueType() && 4557 "Values must have the same type"); 4558 // Match masked merge pattern (X & ~M) op (Y & M) 4559 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4560 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4561 if (isBitwiseNot(NotM, true)) { 4562 SDValue NotOperand = NotM->getOperand(0); 4563 return NotOperand == And->getOperand(0) || 4564 NotOperand == And->getOperand(1); 4565 } 4566 return false; 4567 }; 4568 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4569 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4570 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4571 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4572 return true; 4573 } 4574 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4575 computeKnownBits(B)); 4576 } 4577 4578 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4579 SelectionDAG &DAG) { 4580 if (cast<ConstantSDNode>(Step)->isZero()) 4581 return DAG.getConstant(0, DL, VT); 4582 4583 return SDValue(); 4584 } 4585 4586 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4587 ArrayRef<SDValue> Ops, 4588 SelectionDAG &DAG) { 4589 int NumOps = Ops.size(); 4590 assert(NumOps != 0 && "Can't build an empty vector!"); 4591 assert(!VT.isScalableVector() && 4592 "BUILD_VECTOR cannot be used with scalable types"); 4593 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4594 "Incorrect element count in BUILD_VECTOR!"); 4595 4596 // BUILD_VECTOR of UNDEFs is UNDEF. 4597 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4598 return DAG.getUNDEF(VT); 4599 4600 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4601 SDValue IdentitySrc; 4602 bool IsIdentity = true; 4603 for (int i = 0; i != NumOps; ++i) { 4604 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4605 Ops[i].getOperand(0).getValueType() != VT || 4606 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4607 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4608 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4609 IsIdentity = false; 4610 break; 4611 } 4612 IdentitySrc = Ops[i].getOperand(0); 4613 } 4614 if (IsIdentity) 4615 return IdentitySrc; 4616 4617 return SDValue(); 4618 } 4619 4620 /// Try to simplify vector concatenation to an input value, undef, or build 4621 /// vector. 4622 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4623 ArrayRef<SDValue> Ops, 4624 SelectionDAG &DAG) { 4625 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4626 assert(llvm::all_of(Ops, 4627 [Ops](SDValue Op) { 4628 return Ops[0].getValueType() == Op.getValueType(); 4629 }) && 4630 "Concatenation of vectors with inconsistent value types!"); 4631 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4632 VT.getVectorElementCount() && 4633 "Incorrect element count in vector concatenation!"); 4634 4635 if (Ops.size() == 1) 4636 return Ops[0]; 4637 4638 // Concat of UNDEFs is UNDEF. 4639 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4640 return DAG.getUNDEF(VT); 4641 4642 // Scan the operands and look for extract operations from a single source 4643 // that correspond to insertion at the same location via this concatenation: 4644 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4645 SDValue IdentitySrc; 4646 bool IsIdentity = true; 4647 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4648 SDValue Op = Ops[i]; 4649 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4650 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4651 Op.getOperand(0).getValueType() != VT || 4652 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4653 Op.getConstantOperandVal(1) != IdentityIndex) { 4654 IsIdentity = false; 4655 break; 4656 } 4657 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4658 "Unexpected identity source vector for concat of extracts"); 4659 IdentitySrc = Op.getOperand(0); 4660 } 4661 if (IsIdentity) { 4662 assert(IdentitySrc && "Failed to set source vector of extracts"); 4663 return IdentitySrc; 4664 } 4665 4666 // The code below this point is only designed to work for fixed width 4667 // vectors, so we bail out for now. 4668 if (VT.isScalableVector()) 4669 return SDValue(); 4670 4671 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4672 // simplified to one big BUILD_VECTOR. 4673 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4674 EVT SVT = VT.getScalarType(); 4675 SmallVector<SDValue, 16> Elts; 4676 for (SDValue Op : Ops) { 4677 EVT OpVT = Op.getValueType(); 4678 if (Op.isUndef()) 4679 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4680 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4681 Elts.append(Op->op_begin(), Op->op_end()); 4682 else 4683 return SDValue(); 4684 } 4685 4686 // BUILD_VECTOR requires all inputs to be of the same type, find the 4687 // maximum type and extend them all. 4688 for (SDValue Op : Elts) 4689 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4690 4691 if (SVT.bitsGT(VT.getScalarType())) { 4692 for (SDValue &Op : Elts) { 4693 if (Op.isUndef()) 4694 Op = DAG.getUNDEF(SVT); 4695 else 4696 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4697 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4698 : DAG.getSExtOrTrunc(Op, DL, SVT); 4699 } 4700 } 4701 4702 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4703 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4704 return V; 4705 } 4706 4707 /// Gets or creates the specified node. 4708 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4709 FoldingSetNodeID ID; 4710 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4711 void *IP = nullptr; 4712 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4713 return SDValue(E, 0); 4714 4715 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4716 getVTList(VT)); 4717 CSEMap.InsertNode(N, IP); 4718 4719 InsertNode(N); 4720 SDValue V = SDValue(N, 0); 4721 NewSDValueDbgMsg(V, "Creating new node: ", this); 4722 return V; 4723 } 4724 4725 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4726 SDValue Operand) { 4727 SDNodeFlags Flags; 4728 if (Inserter) 4729 Flags = Inserter->getFlags(); 4730 return getNode(Opcode, DL, VT, Operand, Flags); 4731 } 4732 4733 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4734 SDValue Operand, const SDNodeFlags Flags) { 4735 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4736 "Operand is DELETED_NODE!"); 4737 // Constant fold unary operations with an integer constant operand. Even 4738 // opaque constant will be folded, because the folding of unary operations 4739 // doesn't create new constants with different values. Nevertheless, the 4740 // opaque flag is preserved during folding to prevent future folding with 4741 // other constants. 4742 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4743 const APInt &Val = C->getAPIntValue(); 4744 switch (Opcode) { 4745 default: break; 4746 case ISD::SIGN_EXTEND: 4747 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4748 C->isTargetOpcode(), C->isOpaque()); 4749 case ISD::TRUNCATE: 4750 if (C->isOpaque()) 4751 break; 4752 LLVM_FALLTHROUGH; 4753 case ISD::ZERO_EXTEND: 4754 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4755 C->isTargetOpcode(), C->isOpaque()); 4756 case ISD::ANY_EXTEND: 4757 // Some targets like RISCV prefer to sign extend some types. 4758 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4759 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4760 C->isTargetOpcode(), C->isOpaque()); 4761 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4762 C->isTargetOpcode(), C->isOpaque()); 4763 case ISD::UINT_TO_FP: 4764 case ISD::SINT_TO_FP: { 4765 APFloat apf(EVTToAPFloatSemantics(VT), 4766 APInt::getZero(VT.getSizeInBits())); 4767 (void)apf.convertFromAPInt(Val, 4768 Opcode==ISD::SINT_TO_FP, 4769 APFloat::rmNearestTiesToEven); 4770 return getConstantFP(apf, DL, VT); 4771 } 4772 case ISD::BITCAST: 4773 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4774 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4775 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4776 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4777 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4778 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4779 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4780 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4781 break; 4782 case ISD::ABS: 4783 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4784 C->isOpaque()); 4785 case ISD::BITREVERSE: 4786 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4787 C->isOpaque()); 4788 case ISD::BSWAP: 4789 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4790 C->isOpaque()); 4791 case ISD::CTPOP: 4792 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4793 C->isOpaque()); 4794 case ISD::CTLZ: 4795 case ISD::CTLZ_ZERO_UNDEF: 4796 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4797 C->isOpaque()); 4798 case ISD::CTTZ: 4799 case ISD::CTTZ_ZERO_UNDEF: 4800 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4801 C->isOpaque()); 4802 case ISD::FP16_TO_FP: { 4803 bool Ignored; 4804 APFloat FPV(APFloat::IEEEhalf(), 4805 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4806 4807 // This can return overflow, underflow, or inexact; we don't care. 4808 // FIXME need to be more flexible about rounding mode. 4809 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4810 APFloat::rmNearestTiesToEven, &Ignored); 4811 return getConstantFP(FPV, DL, VT); 4812 } 4813 case ISD::STEP_VECTOR: { 4814 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4815 return V; 4816 break; 4817 } 4818 } 4819 } 4820 4821 // Constant fold unary operations with a floating point constant operand. 4822 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4823 APFloat V = C->getValueAPF(); // make copy 4824 switch (Opcode) { 4825 case ISD::FNEG: 4826 V.changeSign(); 4827 return getConstantFP(V, DL, VT); 4828 case ISD::FABS: 4829 V.clearSign(); 4830 return getConstantFP(V, DL, VT); 4831 case ISD::FCEIL: { 4832 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4833 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4834 return getConstantFP(V, DL, VT); 4835 break; 4836 } 4837 case ISD::FTRUNC: { 4838 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4839 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4840 return getConstantFP(V, DL, VT); 4841 break; 4842 } 4843 case ISD::FFLOOR: { 4844 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4845 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4846 return getConstantFP(V, DL, VT); 4847 break; 4848 } 4849 case ISD::FP_EXTEND: { 4850 bool ignored; 4851 // This can return overflow, underflow, or inexact; we don't care. 4852 // FIXME need to be more flexible about rounding mode. 4853 (void)V.convert(EVTToAPFloatSemantics(VT), 4854 APFloat::rmNearestTiesToEven, &ignored); 4855 return getConstantFP(V, DL, VT); 4856 } 4857 case ISD::FP_TO_SINT: 4858 case ISD::FP_TO_UINT: { 4859 bool ignored; 4860 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4861 // FIXME need to be more flexible about rounding mode. 4862 APFloat::opStatus s = 4863 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4864 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4865 break; 4866 return getConstant(IntVal, DL, VT); 4867 } 4868 case ISD::BITCAST: 4869 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4870 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4871 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4872 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4873 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4874 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4875 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4876 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4877 break; 4878 case ISD::FP_TO_FP16: { 4879 bool Ignored; 4880 // This can return overflow, underflow, or inexact; we don't care. 4881 // FIXME need to be more flexible about rounding mode. 4882 (void)V.convert(APFloat::IEEEhalf(), 4883 APFloat::rmNearestTiesToEven, &Ignored); 4884 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4885 } 4886 } 4887 } 4888 4889 // Constant fold unary operations with a vector integer or float operand. 4890 switch (Opcode) { 4891 default: 4892 // FIXME: Entirely reasonable to perform folding of other unary 4893 // operations here as the need arises. 4894 break; 4895 case ISD::FNEG: 4896 case ISD::FABS: 4897 case ISD::FCEIL: 4898 case ISD::FTRUNC: 4899 case ISD::FFLOOR: 4900 case ISD::FP_EXTEND: 4901 case ISD::FP_TO_SINT: 4902 case ISD::FP_TO_UINT: 4903 case ISD::TRUNCATE: 4904 case ISD::ANY_EXTEND: 4905 case ISD::ZERO_EXTEND: 4906 case ISD::SIGN_EXTEND: 4907 case ISD::UINT_TO_FP: 4908 case ISD::SINT_TO_FP: 4909 case ISD::ABS: 4910 case ISD::BITREVERSE: 4911 case ISD::BSWAP: 4912 case ISD::CTLZ: 4913 case ISD::CTLZ_ZERO_UNDEF: 4914 case ISD::CTTZ: 4915 case ISD::CTTZ_ZERO_UNDEF: 4916 case ISD::CTPOP: { 4917 SDValue Ops = {Operand}; 4918 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4919 return Fold; 4920 } 4921 } 4922 4923 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4924 switch (Opcode) { 4925 case ISD::STEP_VECTOR: 4926 assert(VT.isScalableVector() && 4927 "STEP_VECTOR can only be used with scalable types"); 4928 assert(OpOpcode == ISD::TargetConstant && 4929 VT.getVectorElementType() == Operand.getValueType() && 4930 "Unexpected step operand"); 4931 break; 4932 case ISD::FREEZE: 4933 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4934 break; 4935 case ISD::TokenFactor: 4936 case ISD::MERGE_VALUES: 4937 case ISD::CONCAT_VECTORS: 4938 return Operand; // Factor, merge or concat of one node? No need. 4939 case ISD::BUILD_VECTOR: { 4940 // Attempt to simplify BUILD_VECTOR. 4941 SDValue Ops[] = {Operand}; 4942 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4943 return V; 4944 break; 4945 } 4946 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4947 case ISD::FP_EXTEND: 4948 assert(VT.isFloatingPoint() && 4949 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4950 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4951 assert((!VT.isVector() || 4952 VT.getVectorElementCount() == 4953 Operand.getValueType().getVectorElementCount()) && 4954 "Vector element count mismatch!"); 4955 assert(Operand.getValueType().bitsLT(VT) && 4956 "Invalid fpext node, dst < src!"); 4957 if (Operand.isUndef()) 4958 return getUNDEF(VT); 4959 break; 4960 case ISD::FP_TO_SINT: 4961 case ISD::FP_TO_UINT: 4962 if (Operand.isUndef()) 4963 return getUNDEF(VT); 4964 break; 4965 case ISD::SINT_TO_FP: 4966 case ISD::UINT_TO_FP: 4967 // [us]itofp(undef) = 0, because the result value is bounded. 4968 if (Operand.isUndef()) 4969 return getConstantFP(0.0, DL, VT); 4970 break; 4971 case ISD::SIGN_EXTEND: 4972 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4973 "Invalid SIGN_EXTEND!"); 4974 assert(VT.isVector() == Operand.getValueType().isVector() && 4975 "SIGN_EXTEND result type type should be vector iff the operand " 4976 "type is vector!"); 4977 if (Operand.getValueType() == VT) return Operand; // noop extension 4978 assert((!VT.isVector() || 4979 VT.getVectorElementCount() == 4980 Operand.getValueType().getVectorElementCount()) && 4981 "Vector element count mismatch!"); 4982 assert(Operand.getValueType().bitsLT(VT) && 4983 "Invalid sext node, dst < src!"); 4984 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4985 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4986 if (OpOpcode == ISD::UNDEF) 4987 // sext(undef) = 0, because the top bits will all be the same. 4988 return getConstant(0, DL, VT); 4989 break; 4990 case ISD::ZERO_EXTEND: 4991 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4992 "Invalid ZERO_EXTEND!"); 4993 assert(VT.isVector() == Operand.getValueType().isVector() && 4994 "ZERO_EXTEND result type type should be vector iff the operand " 4995 "type is vector!"); 4996 if (Operand.getValueType() == VT) return Operand; // noop extension 4997 assert((!VT.isVector() || 4998 VT.getVectorElementCount() == 4999 Operand.getValueType().getVectorElementCount()) && 5000 "Vector element count mismatch!"); 5001 assert(Operand.getValueType().bitsLT(VT) && 5002 "Invalid zext node, dst < src!"); 5003 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5004 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5005 if (OpOpcode == ISD::UNDEF) 5006 // zext(undef) = 0, because the top bits will be zero. 5007 return getConstant(0, DL, VT); 5008 break; 5009 case ISD::ANY_EXTEND: 5010 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5011 "Invalid ANY_EXTEND!"); 5012 assert(VT.isVector() == Operand.getValueType().isVector() && 5013 "ANY_EXTEND result type type should be vector iff the operand " 5014 "type is vector!"); 5015 if (Operand.getValueType() == VT) return Operand; // noop extension 5016 assert((!VT.isVector() || 5017 VT.getVectorElementCount() == 5018 Operand.getValueType().getVectorElementCount()) && 5019 "Vector element count mismatch!"); 5020 assert(Operand.getValueType().bitsLT(VT) && 5021 "Invalid anyext node, dst < src!"); 5022 5023 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5024 OpOpcode == ISD::ANY_EXTEND) 5025 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5026 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5027 if (OpOpcode == ISD::UNDEF) 5028 return getUNDEF(VT); 5029 5030 // (ext (trunc x)) -> x 5031 if (OpOpcode == ISD::TRUNCATE) { 5032 SDValue OpOp = Operand.getOperand(0); 5033 if (OpOp.getValueType() == VT) { 5034 transferDbgValues(Operand, OpOp); 5035 return OpOp; 5036 } 5037 } 5038 break; 5039 case ISD::TRUNCATE: 5040 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5041 "Invalid TRUNCATE!"); 5042 assert(VT.isVector() == Operand.getValueType().isVector() && 5043 "TRUNCATE result type type should be vector iff the operand " 5044 "type is vector!"); 5045 if (Operand.getValueType() == VT) return Operand; // noop truncate 5046 assert((!VT.isVector() || 5047 VT.getVectorElementCount() == 5048 Operand.getValueType().getVectorElementCount()) && 5049 "Vector element count mismatch!"); 5050 assert(Operand.getValueType().bitsGT(VT) && 5051 "Invalid truncate node, src < dst!"); 5052 if (OpOpcode == ISD::TRUNCATE) 5053 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5054 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5055 OpOpcode == ISD::ANY_EXTEND) { 5056 // If the source is smaller than the dest, we still need an extend. 5057 if (Operand.getOperand(0).getValueType().getScalarType() 5058 .bitsLT(VT.getScalarType())) 5059 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5060 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5061 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5062 return Operand.getOperand(0); 5063 } 5064 if (OpOpcode == ISD::UNDEF) 5065 return getUNDEF(VT); 5066 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5067 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5068 break; 5069 case ISD::ANY_EXTEND_VECTOR_INREG: 5070 case ISD::ZERO_EXTEND_VECTOR_INREG: 5071 case ISD::SIGN_EXTEND_VECTOR_INREG: 5072 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5073 assert(Operand.getValueType().bitsLE(VT) && 5074 "The input must be the same size or smaller than the result."); 5075 assert(VT.getVectorMinNumElements() < 5076 Operand.getValueType().getVectorMinNumElements() && 5077 "The destination vector type must have fewer lanes than the input."); 5078 break; 5079 case ISD::ABS: 5080 assert(VT.isInteger() && VT == Operand.getValueType() && 5081 "Invalid ABS!"); 5082 if (OpOpcode == ISD::UNDEF) 5083 return getUNDEF(VT); 5084 break; 5085 case ISD::BSWAP: 5086 assert(VT.isInteger() && VT == Operand.getValueType() && 5087 "Invalid BSWAP!"); 5088 assert((VT.getScalarSizeInBits() % 16 == 0) && 5089 "BSWAP types must be a multiple of 16 bits!"); 5090 if (OpOpcode == ISD::UNDEF) 5091 return getUNDEF(VT); 5092 break; 5093 case ISD::BITREVERSE: 5094 assert(VT.isInteger() && VT == Operand.getValueType() && 5095 "Invalid BITREVERSE!"); 5096 if (OpOpcode == ISD::UNDEF) 5097 return getUNDEF(VT); 5098 break; 5099 case ISD::BITCAST: 5100 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5101 "Cannot BITCAST between types of different sizes!"); 5102 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5103 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5104 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5105 if (OpOpcode == ISD::UNDEF) 5106 return getUNDEF(VT); 5107 break; 5108 case ISD::SCALAR_TO_VECTOR: 5109 assert(VT.isVector() && !Operand.getValueType().isVector() && 5110 (VT.getVectorElementType() == Operand.getValueType() || 5111 (VT.getVectorElementType().isInteger() && 5112 Operand.getValueType().isInteger() && 5113 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5114 "Illegal SCALAR_TO_VECTOR node!"); 5115 if (OpOpcode == ISD::UNDEF) 5116 return getUNDEF(VT); 5117 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5118 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5119 isa<ConstantSDNode>(Operand.getOperand(1)) && 5120 Operand.getConstantOperandVal(1) == 0 && 5121 Operand.getOperand(0).getValueType() == VT) 5122 return Operand.getOperand(0); 5123 break; 5124 case ISD::FNEG: 5125 // Negation of an unknown bag of bits is still completely undefined. 5126 if (OpOpcode == ISD::UNDEF) 5127 return getUNDEF(VT); 5128 5129 if (OpOpcode == ISD::FNEG) // --X -> X 5130 return Operand.getOperand(0); 5131 break; 5132 case ISD::FABS: 5133 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5134 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5135 break; 5136 case ISD::VSCALE: 5137 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5138 break; 5139 case ISD::CTPOP: 5140 if (Operand.getValueType().getScalarType() == MVT::i1) 5141 return Operand; 5142 break; 5143 case ISD::CTLZ: 5144 case ISD::CTTZ: 5145 if (Operand.getValueType().getScalarType() == MVT::i1) 5146 return getNOT(DL, Operand, Operand.getValueType()); 5147 break; 5148 case ISD::VECREDUCE_SMIN: 5149 case ISD::VECREDUCE_UMAX: 5150 if (Operand.getValueType().getScalarType() == MVT::i1) 5151 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5152 break; 5153 case ISD::VECREDUCE_SMAX: 5154 case ISD::VECREDUCE_UMIN: 5155 if (Operand.getValueType().getScalarType() == MVT::i1) 5156 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5157 break; 5158 } 5159 5160 SDNode *N; 5161 SDVTList VTs = getVTList(VT); 5162 SDValue Ops[] = {Operand}; 5163 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5164 FoldingSetNodeID ID; 5165 AddNodeIDNode(ID, Opcode, VTs, Ops); 5166 void *IP = nullptr; 5167 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5168 E->intersectFlagsWith(Flags); 5169 return SDValue(E, 0); 5170 } 5171 5172 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5173 N->setFlags(Flags); 5174 createOperands(N, Ops); 5175 CSEMap.InsertNode(N, IP); 5176 } else { 5177 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5178 createOperands(N, Ops); 5179 } 5180 5181 InsertNode(N); 5182 SDValue V = SDValue(N, 0); 5183 NewSDValueDbgMsg(V, "Creating new node: ", this); 5184 return V; 5185 } 5186 5187 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5188 const APInt &C2) { 5189 switch (Opcode) { 5190 case ISD::ADD: return C1 + C2; 5191 case ISD::SUB: return C1 - C2; 5192 case ISD::MUL: return C1 * C2; 5193 case ISD::AND: return C1 & C2; 5194 case ISD::OR: return C1 | C2; 5195 case ISD::XOR: return C1 ^ C2; 5196 case ISD::SHL: return C1 << C2; 5197 case ISD::SRL: return C1.lshr(C2); 5198 case ISD::SRA: return C1.ashr(C2); 5199 case ISD::ROTL: return C1.rotl(C2); 5200 case ISD::ROTR: return C1.rotr(C2); 5201 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5202 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5203 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5204 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5205 case ISD::SADDSAT: return C1.sadd_sat(C2); 5206 case ISD::UADDSAT: return C1.uadd_sat(C2); 5207 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5208 case ISD::USUBSAT: return C1.usub_sat(C2); 5209 case ISD::UDIV: 5210 if (!C2.getBoolValue()) 5211 break; 5212 return C1.udiv(C2); 5213 case ISD::UREM: 5214 if (!C2.getBoolValue()) 5215 break; 5216 return C1.urem(C2); 5217 case ISD::SDIV: 5218 if (!C2.getBoolValue()) 5219 break; 5220 return C1.sdiv(C2); 5221 case ISD::SREM: 5222 if (!C2.getBoolValue()) 5223 break; 5224 return C1.srem(C2); 5225 case ISD::MULHS: { 5226 unsigned FullWidth = C1.getBitWidth() * 2; 5227 APInt C1Ext = C1.sext(FullWidth); 5228 APInt C2Ext = C2.sext(FullWidth); 5229 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5230 } 5231 case ISD::MULHU: { 5232 unsigned FullWidth = C1.getBitWidth() * 2; 5233 APInt C1Ext = C1.zext(FullWidth); 5234 APInt C2Ext = C2.zext(FullWidth); 5235 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5236 } 5237 } 5238 return llvm::None; 5239 } 5240 5241 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5242 const GlobalAddressSDNode *GA, 5243 const SDNode *N2) { 5244 if (GA->getOpcode() != ISD::GlobalAddress) 5245 return SDValue(); 5246 if (!TLI->isOffsetFoldingLegal(GA)) 5247 return SDValue(); 5248 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5249 if (!C2) 5250 return SDValue(); 5251 int64_t Offset = C2->getSExtValue(); 5252 switch (Opcode) { 5253 case ISD::ADD: break; 5254 case ISD::SUB: Offset = -uint64_t(Offset); break; 5255 default: return SDValue(); 5256 } 5257 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5258 GA->getOffset() + uint64_t(Offset)); 5259 } 5260 5261 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5262 switch (Opcode) { 5263 case ISD::SDIV: 5264 case ISD::UDIV: 5265 case ISD::SREM: 5266 case ISD::UREM: { 5267 // If a divisor is zero/undef or any element of a divisor vector is 5268 // zero/undef, the whole op is undef. 5269 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5270 SDValue Divisor = Ops[1]; 5271 if (Divisor.isUndef() || isNullConstant(Divisor)) 5272 return true; 5273 5274 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5275 llvm::any_of(Divisor->op_values(), 5276 [](SDValue V) { return V.isUndef() || 5277 isNullConstant(V); }); 5278 // TODO: Handle signed overflow. 5279 } 5280 // TODO: Handle oversized shifts. 5281 default: 5282 return false; 5283 } 5284 } 5285 5286 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5287 EVT VT, ArrayRef<SDValue> Ops) { 5288 // If the opcode is a target-specific ISD node, there's nothing we can 5289 // do here and the operand rules may not line up with the below, so 5290 // bail early. 5291 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5292 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5293 // foldCONCAT_VECTORS in getNode before this is called. 5294 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5295 return SDValue(); 5296 5297 unsigned NumOps = Ops.size(); 5298 if (NumOps == 0) 5299 return SDValue(); 5300 5301 if (isUndef(Opcode, Ops)) 5302 return getUNDEF(VT); 5303 5304 // Handle binops special cases. 5305 if (NumOps == 2) { 5306 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5307 return CFP; 5308 5309 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5310 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5311 if (C1->isOpaque() || C2->isOpaque()) 5312 return SDValue(); 5313 5314 Optional<APInt> FoldAttempt = 5315 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5316 if (!FoldAttempt) 5317 return SDValue(); 5318 5319 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5320 assert((!Folded || !VT.isVector()) && 5321 "Can't fold vectors ops with scalar operands"); 5322 return Folded; 5323 } 5324 } 5325 5326 // fold (add Sym, c) -> Sym+c 5327 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5328 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5329 if (TLI->isCommutativeBinOp(Opcode)) 5330 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5331 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5332 } 5333 5334 // This is for vector folding only from here on. 5335 if (!VT.isVector()) 5336 return SDValue(); 5337 5338 ElementCount NumElts = VT.getVectorElementCount(); 5339 5340 // See if we can fold through bitcasted integer ops. 5341 // TODO: Can we handle undef elements? 5342 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5343 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5344 Ops[0].getOpcode() == ISD::BITCAST && 5345 Ops[1].getOpcode() == ISD::BITCAST) { 5346 SDValue N1 = peekThroughBitcasts(Ops[0]); 5347 SDValue N2 = peekThroughBitcasts(Ops[1]); 5348 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5349 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5350 EVT BVVT = N1.getValueType(); 5351 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5352 bool IsLE = getDataLayout().isLittleEndian(); 5353 unsigned EltBits = VT.getScalarSizeInBits(); 5354 SmallVector<APInt> RawBits1, RawBits2; 5355 BitVector UndefElts1, UndefElts2; 5356 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5357 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5358 UndefElts1.none() && UndefElts2.none()) { 5359 SmallVector<APInt> RawBits; 5360 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5361 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5362 if (!Fold) 5363 break; 5364 RawBits.push_back(Fold.getValue()); 5365 } 5366 if (RawBits.size() == NumElts.getFixedValue()) { 5367 // We have constant folded, but we need to cast this again back to 5368 // the original (possibly legalized) type. 5369 SmallVector<APInt> DstBits; 5370 BitVector DstUndefs; 5371 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5372 DstBits, RawBits, DstUndefs, 5373 BitVector(RawBits.size(), false)); 5374 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5375 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5376 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5377 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5378 if (DstUndefs[I]) 5379 continue; 5380 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5381 } 5382 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5383 } 5384 } 5385 } 5386 } 5387 5388 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5389 return !Op.getValueType().isVector() || 5390 Op.getValueType().getVectorElementCount() == NumElts; 5391 }; 5392 5393 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5394 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5395 Op.getOpcode() == ISD::BUILD_VECTOR || 5396 Op.getOpcode() == ISD::SPLAT_VECTOR; 5397 }; 5398 5399 // All operands must be vector types with the same number of elements as 5400 // the result type and must be either UNDEF or a build/splat vector 5401 // or UNDEF scalars. 5402 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5403 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5404 return SDValue(); 5405 5406 // If we are comparing vectors, then the result needs to be a i1 boolean 5407 // that is then sign-extended back to the legal result type. 5408 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5409 5410 // Find legal integer scalar type for constant promotion and 5411 // ensure that its scalar size is at least as large as source. 5412 EVT LegalSVT = VT.getScalarType(); 5413 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5414 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5415 if (LegalSVT.bitsLT(VT.getScalarType())) 5416 return SDValue(); 5417 } 5418 5419 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5420 // only have one operand to check. For fixed-length vector types we may have 5421 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5422 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5423 5424 // Constant fold each scalar lane separately. 5425 SmallVector<SDValue, 4> ScalarResults; 5426 for (unsigned I = 0; I != NumVectorElts; I++) { 5427 SmallVector<SDValue, 4> ScalarOps; 5428 for (SDValue Op : Ops) { 5429 EVT InSVT = Op.getValueType().getScalarType(); 5430 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5431 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5432 if (Op.isUndef()) 5433 ScalarOps.push_back(getUNDEF(InSVT)); 5434 else 5435 ScalarOps.push_back(Op); 5436 continue; 5437 } 5438 5439 SDValue ScalarOp = 5440 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5441 EVT ScalarVT = ScalarOp.getValueType(); 5442 5443 // Build vector (integer) scalar operands may need implicit 5444 // truncation - do this before constant folding. 5445 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5446 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5447 5448 ScalarOps.push_back(ScalarOp); 5449 } 5450 5451 // Constant fold the scalar operands. 5452 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5453 5454 // Legalize the (integer) scalar constant if necessary. 5455 if (LegalSVT != SVT) 5456 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5457 5458 // Scalar folding only succeeded if the result is a constant or UNDEF. 5459 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5460 ScalarResult.getOpcode() != ISD::ConstantFP) 5461 return SDValue(); 5462 ScalarResults.push_back(ScalarResult); 5463 } 5464 5465 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5466 : getBuildVector(VT, DL, ScalarResults); 5467 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5468 return V; 5469 } 5470 5471 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5472 EVT VT, SDValue N1, SDValue N2) { 5473 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5474 // should. That will require dealing with a potentially non-default 5475 // rounding mode, checking the "opStatus" return value from the APFloat 5476 // math calculations, and possibly other variations. 5477 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5478 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5479 if (N1CFP && N2CFP) { 5480 APFloat C1 = N1CFP->getValueAPF(); // make copy 5481 const APFloat &C2 = N2CFP->getValueAPF(); 5482 switch (Opcode) { 5483 case ISD::FADD: 5484 C1.add(C2, APFloat::rmNearestTiesToEven); 5485 return getConstantFP(C1, DL, VT); 5486 case ISD::FSUB: 5487 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5488 return getConstantFP(C1, DL, VT); 5489 case ISD::FMUL: 5490 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5491 return getConstantFP(C1, DL, VT); 5492 case ISD::FDIV: 5493 C1.divide(C2, APFloat::rmNearestTiesToEven); 5494 return getConstantFP(C1, DL, VT); 5495 case ISD::FREM: 5496 C1.mod(C2); 5497 return getConstantFP(C1, DL, VT); 5498 case ISD::FCOPYSIGN: 5499 C1.copySign(C2); 5500 return getConstantFP(C1, DL, VT); 5501 case ISD::FMINNUM: 5502 return getConstantFP(minnum(C1, C2), DL, VT); 5503 case ISD::FMAXNUM: 5504 return getConstantFP(maxnum(C1, C2), DL, VT); 5505 case ISD::FMINIMUM: 5506 return getConstantFP(minimum(C1, C2), DL, VT); 5507 case ISD::FMAXIMUM: 5508 return getConstantFP(maximum(C1, C2), DL, VT); 5509 default: break; 5510 } 5511 } 5512 if (N1CFP && Opcode == ISD::FP_ROUND) { 5513 APFloat C1 = N1CFP->getValueAPF(); // make copy 5514 bool Unused; 5515 // This can return overflow, underflow, or inexact; we don't care. 5516 // FIXME need to be more flexible about rounding mode. 5517 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5518 &Unused); 5519 return getConstantFP(C1, DL, VT); 5520 } 5521 5522 switch (Opcode) { 5523 case ISD::FSUB: 5524 // -0.0 - undef --> undef (consistent with "fneg undef") 5525 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5526 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5527 return getUNDEF(VT); 5528 LLVM_FALLTHROUGH; 5529 5530 case ISD::FADD: 5531 case ISD::FMUL: 5532 case ISD::FDIV: 5533 case ISD::FREM: 5534 // If both operands are undef, the result is undef. If 1 operand is undef, 5535 // the result is NaN. This should match the behavior of the IR optimizer. 5536 if (N1.isUndef() && N2.isUndef()) 5537 return getUNDEF(VT); 5538 if (N1.isUndef() || N2.isUndef()) 5539 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5540 } 5541 return SDValue(); 5542 } 5543 5544 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5545 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5546 5547 // There's no need to assert on a byte-aligned pointer. All pointers are at 5548 // least byte aligned. 5549 if (A == Align(1)) 5550 return Val; 5551 5552 FoldingSetNodeID ID; 5553 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5554 ID.AddInteger(A.value()); 5555 5556 void *IP = nullptr; 5557 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5558 return SDValue(E, 0); 5559 5560 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5561 Val.getValueType(), A); 5562 createOperands(N, {Val}); 5563 5564 CSEMap.InsertNode(N, IP); 5565 InsertNode(N); 5566 5567 SDValue V(N, 0); 5568 NewSDValueDbgMsg(V, "Creating new node: ", this); 5569 return V; 5570 } 5571 5572 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5573 SDValue N1, SDValue N2) { 5574 SDNodeFlags Flags; 5575 if (Inserter) 5576 Flags = Inserter->getFlags(); 5577 return getNode(Opcode, DL, VT, N1, N2, Flags); 5578 } 5579 5580 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5581 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5582 assert(N1.getOpcode() != ISD::DELETED_NODE && 5583 N2.getOpcode() != ISD::DELETED_NODE && 5584 "Operand is DELETED_NODE!"); 5585 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5586 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5587 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5588 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5589 5590 // Canonicalize constant to RHS if commutative. 5591 if (TLI->isCommutativeBinOp(Opcode)) { 5592 if (N1C && !N2C) { 5593 std::swap(N1C, N2C); 5594 std::swap(N1, N2); 5595 } else if (N1CFP && !N2CFP) { 5596 std::swap(N1CFP, N2CFP); 5597 std::swap(N1, N2); 5598 } 5599 } 5600 5601 switch (Opcode) { 5602 default: break; 5603 case ISD::TokenFactor: 5604 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5605 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5606 // Fold trivial token factors. 5607 if (N1.getOpcode() == ISD::EntryToken) return N2; 5608 if (N2.getOpcode() == ISD::EntryToken) return N1; 5609 if (N1 == N2) return N1; 5610 break; 5611 case ISD::BUILD_VECTOR: { 5612 // Attempt to simplify BUILD_VECTOR. 5613 SDValue Ops[] = {N1, N2}; 5614 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5615 return V; 5616 break; 5617 } 5618 case ISD::CONCAT_VECTORS: { 5619 SDValue Ops[] = {N1, N2}; 5620 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5621 return V; 5622 break; 5623 } 5624 case ISD::AND: 5625 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5626 assert(N1.getValueType() == N2.getValueType() && 5627 N1.getValueType() == VT && "Binary operator types must match!"); 5628 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5629 // worth handling here. 5630 if (N2C && N2C->isZero()) 5631 return N2; 5632 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5633 return N1; 5634 break; 5635 case ISD::OR: 5636 case ISD::XOR: 5637 case ISD::ADD: 5638 case ISD::SUB: 5639 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5640 assert(N1.getValueType() == N2.getValueType() && 5641 N1.getValueType() == VT && "Binary operator types must match!"); 5642 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5643 // it's worth handling here. 5644 if (N2C && N2C->isZero()) 5645 return N1; 5646 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5647 VT.getVectorElementType() == MVT::i1) 5648 return getNode(ISD::XOR, DL, VT, N1, N2); 5649 break; 5650 case ISD::MUL: 5651 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5652 assert(N1.getValueType() == N2.getValueType() && 5653 N1.getValueType() == VT && "Binary operator types must match!"); 5654 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5655 return getNode(ISD::AND, DL, VT, N1, N2); 5656 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5657 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5658 const APInt &N2CImm = N2C->getAPIntValue(); 5659 return getVScale(DL, VT, MulImm * N2CImm); 5660 } 5661 break; 5662 case ISD::UDIV: 5663 case ISD::UREM: 5664 case ISD::MULHU: 5665 case ISD::MULHS: 5666 case ISD::SDIV: 5667 case ISD::SREM: 5668 case ISD::SADDSAT: 5669 case ISD::SSUBSAT: 5670 case ISD::UADDSAT: 5671 case ISD::USUBSAT: 5672 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5673 assert(N1.getValueType() == N2.getValueType() && 5674 N1.getValueType() == VT && "Binary operator types must match!"); 5675 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5676 // fold (add_sat x, y) -> (or x, y) for bool types. 5677 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5678 return getNode(ISD::OR, DL, VT, N1, N2); 5679 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5680 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5681 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5682 } 5683 break; 5684 case ISD::SMIN: 5685 case ISD::UMAX: 5686 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5687 assert(N1.getValueType() == N2.getValueType() && 5688 N1.getValueType() == VT && "Binary operator types must match!"); 5689 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5690 return getNode(ISD::OR, DL, VT, N1, N2); 5691 break; 5692 case ISD::SMAX: 5693 case ISD::UMIN: 5694 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5695 assert(N1.getValueType() == N2.getValueType() && 5696 N1.getValueType() == VT && "Binary operator types must match!"); 5697 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5698 return getNode(ISD::AND, DL, VT, N1, N2); 5699 break; 5700 case ISD::FADD: 5701 case ISD::FSUB: 5702 case ISD::FMUL: 5703 case ISD::FDIV: 5704 case ISD::FREM: 5705 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5706 assert(N1.getValueType() == N2.getValueType() && 5707 N1.getValueType() == VT && "Binary operator types must match!"); 5708 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5709 return V; 5710 break; 5711 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5712 assert(N1.getValueType() == VT && 5713 N1.getValueType().isFloatingPoint() && 5714 N2.getValueType().isFloatingPoint() && 5715 "Invalid FCOPYSIGN!"); 5716 break; 5717 case ISD::SHL: 5718 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5719 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5720 const APInt &ShiftImm = N2C->getAPIntValue(); 5721 return getVScale(DL, VT, MulImm << ShiftImm); 5722 } 5723 LLVM_FALLTHROUGH; 5724 case ISD::SRA: 5725 case ISD::SRL: 5726 if (SDValue V = simplifyShift(N1, N2)) 5727 return V; 5728 LLVM_FALLTHROUGH; 5729 case ISD::ROTL: 5730 case ISD::ROTR: 5731 assert(VT == N1.getValueType() && 5732 "Shift operators return type must be the same as their first arg"); 5733 assert(VT.isInteger() && N2.getValueType().isInteger() && 5734 "Shifts only work on integers"); 5735 assert((!VT.isVector() || VT == N2.getValueType()) && 5736 "Vector shift amounts must be in the same as their first arg"); 5737 // Verify that the shift amount VT is big enough to hold valid shift 5738 // amounts. This catches things like trying to shift an i1024 value by an 5739 // i8, which is easy to fall into in generic code that uses 5740 // TLI.getShiftAmount(). 5741 assert(N2.getValueType().getScalarSizeInBits() >= 5742 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5743 "Invalid use of small shift amount with oversized value!"); 5744 5745 // Always fold shifts of i1 values so the code generator doesn't need to 5746 // handle them. Since we know the size of the shift has to be less than the 5747 // size of the value, the shift/rotate count is guaranteed to be zero. 5748 if (VT == MVT::i1) 5749 return N1; 5750 if (N2C && N2C->isZero()) 5751 return N1; 5752 break; 5753 case ISD::FP_ROUND: 5754 assert(VT.isFloatingPoint() && 5755 N1.getValueType().isFloatingPoint() && 5756 VT.bitsLE(N1.getValueType()) && 5757 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5758 "Invalid FP_ROUND!"); 5759 if (N1.getValueType() == VT) return N1; // noop conversion. 5760 break; 5761 case ISD::AssertSext: 5762 case ISD::AssertZext: { 5763 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5764 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5765 assert(VT.isInteger() && EVT.isInteger() && 5766 "Cannot *_EXTEND_INREG FP types"); 5767 assert(!EVT.isVector() && 5768 "AssertSExt/AssertZExt type should be the vector element type " 5769 "rather than the vector type!"); 5770 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5771 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5772 break; 5773 } 5774 case ISD::SIGN_EXTEND_INREG: { 5775 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5776 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5777 assert(VT.isInteger() && EVT.isInteger() && 5778 "Cannot *_EXTEND_INREG FP types"); 5779 assert(EVT.isVector() == VT.isVector() && 5780 "SIGN_EXTEND_INREG type should be vector iff the operand " 5781 "type is vector!"); 5782 assert((!EVT.isVector() || 5783 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5784 "Vector element counts must match in SIGN_EXTEND_INREG"); 5785 assert(EVT.bitsLE(VT) && "Not extending!"); 5786 if (EVT == VT) return N1; // Not actually extending 5787 5788 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5789 unsigned FromBits = EVT.getScalarSizeInBits(); 5790 Val <<= Val.getBitWidth() - FromBits; 5791 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5792 return getConstant(Val, DL, ConstantVT); 5793 }; 5794 5795 if (N1C) { 5796 const APInt &Val = N1C->getAPIntValue(); 5797 return SignExtendInReg(Val, VT); 5798 } 5799 5800 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5801 SmallVector<SDValue, 8> Ops; 5802 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5803 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5804 SDValue Op = N1.getOperand(i); 5805 if (Op.isUndef()) { 5806 Ops.push_back(getUNDEF(OpVT)); 5807 continue; 5808 } 5809 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5810 APInt Val = C->getAPIntValue(); 5811 Ops.push_back(SignExtendInReg(Val, OpVT)); 5812 } 5813 return getBuildVector(VT, DL, Ops); 5814 } 5815 break; 5816 } 5817 case ISD::FP_TO_SINT_SAT: 5818 case ISD::FP_TO_UINT_SAT: { 5819 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5820 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5821 assert(N1.getValueType().isVector() == VT.isVector() && 5822 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5823 "vector!"); 5824 assert((!VT.isVector() || VT.getVectorNumElements() == 5825 N1.getValueType().getVectorNumElements()) && 5826 "Vector element counts must match in FP_TO_*INT_SAT"); 5827 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5828 "Type to saturate to must be a scalar."); 5829 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5830 "Not extending!"); 5831 break; 5832 } 5833 case ISD::EXTRACT_VECTOR_ELT: 5834 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5835 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5836 element type of the vector."); 5837 5838 // Extract from an undefined value or using an undefined index is undefined. 5839 if (N1.isUndef() || N2.isUndef()) 5840 return getUNDEF(VT); 5841 5842 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5843 // vectors. For scalable vectors we will provide appropriate support for 5844 // dealing with arbitrary indices. 5845 if (N2C && N1.getValueType().isFixedLengthVector() && 5846 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5847 return getUNDEF(VT); 5848 5849 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5850 // expanding copies of large vectors from registers. This only works for 5851 // fixed length vectors, since we need to know the exact number of 5852 // elements. 5853 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5854 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5855 unsigned Factor = 5856 N1.getOperand(0).getValueType().getVectorNumElements(); 5857 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5858 N1.getOperand(N2C->getZExtValue() / Factor), 5859 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5860 } 5861 5862 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5863 // lowering is expanding large vector constants. 5864 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5865 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5866 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5867 N1.getValueType().isFixedLengthVector()) && 5868 "BUILD_VECTOR used for scalable vectors"); 5869 unsigned Index = 5870 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5871 SDValue Elt = N1.getOperand(Index); 5872 5873 if (VT != Elt.getValueType()) 5874 // If the vector element type is not legal, the BUILD_VECTOR operands 5875 // are promoted and implicitly truncated, and the result implicitly 5876 // extended. Make that explicit here. 5877 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5878 5879 return Elt; 5880 } 5881 5882 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5883 // operations are lowered to scalars. 5884 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5885 // If the indices are the same, return the inserted element else 5886 // if the indices are known different, extract the element from 5887 // the original vector. 5888 SDValue N1Op2 = N1.getOperand(2); 5889 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5890 5891 if (N1Op2C && N2C) { 5892 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5893 if (VT == N1.getOperand(1).getValueType()) 5894 return N1.getOperand(1); 5895 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5896 } 5897 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5898 } 5899 } 5900 5901 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5902 // when vector types are scalarized and v1iX is legal. 5903 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5904 // Here we are completely ignoring the extract element index (N2), 5905 // which is fine for fixed width vectors, since any index other than 0 5906 // is undefined anyway. However, this cannot be ignored for scalable 5907 // vectors - in theory we could support this, but we don't want to do this 5908 // without a profitability check. 5909 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5910 N1.getValueType().isFixedLengthVector() && 5911 N1.getValueType().getVectorNumElements() == 1) { 5912 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5913 N1.getOperand(1)); 5914 } 5915 break; 5916 case ISD::EXTRACT_ELEMENT: 5917 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5918 assert(!N1.getValueType().isVector() && !VT.isVector() && 5919 (N1.getValueType().isInteger() == VT.isInteger()) && 5920 N1.getValueType() != VT && 5921 "Wrong types for EXTRACT_ELEMENT!"); 5922 5923 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5924 // 64-bit integers into 32-bit parts. Instead of building the extract of 5925 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5926 if (N1.getOpcode() == ISD::BUILD_PAIR) 5927 return N1.getOperand(N2C->getZExtValue()); 5928 5929 // EXTRACT_ELEMENT of a constant int is also very common. 5930 if (N1C) { 5931 unsigned ElementSize = VT.getSizeInBits(); 5932 unsigned Shift = ElementSize * N2C->getZExtValue(); 5933 const APInt &Val = N1C->getAPIntValue(); 5934 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5935 } 5936 break; 5937 case ISD::EXTRACT_SUBVECTOR: { 5938 EVT N1VT = N1.getValueType(); 5939 assert(VT.isVector() && N1VT.isVector() && 5940 "Extract subvector VTs must be vectors!"); 5941 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5942 "Extract subvector VTs must have the same element type!"); 5943 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5944 "Cannot extract a scalable vector from a fixed length vector!"); 5945 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5946 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5947 "Extract subvector must be from larger vector to smaller vector!"); 5948 assert(N2C && "Extract subvector index must be a constant"); 5949 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5950 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5951 N1VT.getVectorMinNumElements()) && 5952 "Extract subvector overflow!"); 5953 assert(N2C->getAPIntValue().getBitWidth() == 5954 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5955 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5956 5957 // Trivial extraction. 5958 if (VT == N1VT) 5959 return N1; 5960 5961 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5962 if (N1.isUndef()) 5963 return getUNDEF(VT); 5964 5965 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5966 // the concat have the same type as the extract. 5967 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5968 VT == N1.getOperand(0).getValueType()) { 5969 unsigned Factor = VT.getVectorMinNumElements(); 5970 return N1.getOperand(N2C->getZExtValue() / Factor); 5971 } 5972 5973 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5974 // during shuffle legalization. 5975 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5976 VT == N1.getOperand(1).getValueType()) 5977 return N1.getOperand(1); 5978 break; 5979 } 5980 } 5981 5982 // Perform trivial constant folding. 5983 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5984 return SV; 5985 5986 // Canonicalize an UNDEF to the RHS, even over a constant. 5987 if (N1.isUndef()) { 5988 if (TLI->isCommutativeBinOp(Opcode)) { 5989 std::swap(N1, N2); 5990 } else { 5991 switch (Opcode) { 5992 case ISD::SIGN_EXTEND_INREG: 5993 case ISD::SUB: 5994 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5995 case ISD::UDIV: 5996 case ISD::SDIV: 5997 case ISD::UREM: 5998 case ISD::SREM: 5999 case ISD::SSUBSAT: 6000 case ISD::USUBSAT: 6001 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6002 } 6003 } 6004 } 6005 6006 // Fold a bunch of operators when the RHS is undef. 6007 if (N2.isUndef()) { 6008 switch (Opcode) { 6009 case ISD::XOR: 6010 if (N1.isUndef()) 6011 // Handle undef ^ undef -> 0 special case. This is a common 6012 // idiom (misuse). 6013 return getConstant(0, DL, VT); 6014 LLVM_FALLTHROUGH; 6015 case ISD::ADD: 6016 case ISD::SUB: 6017 case ISD::UDIV: 6018 case ISD::SDIV: 6019 case ISD::UREM: 6020 case ISD::SREM: 6021 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6022 case ISD::MUL: 6023 case ISD::AND: 6024 case ISD::SSUBSAT: 6025 case ISD::USUBSAT: 6026 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6027 case ISD::OR: 6028 case ISD::SADDSAT: 6029 case ISD::UADDSAT: 6030 return getAllOnesConstant(DL, VT); 6031 } 6032 } 6033 6034 // Memoize this node if possible. 6035 SDNode *N; 6036 SDVTList VTs = getVTList(VT); 6037 SDValue Ops[] = {N1, N2}; 6038 if (VT != MVT::Glue) { 6039 FoldingSetNodeID ID; 6040 AddNodeIDNode(ID, Opcode, VTs, Ops); 6041 void *IP = nullptr; 6042 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6043 E->intersectFlagsWith(Flags); 6044 return SDValue(E, 0); 6045 } 6046 6047 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6048 N->setFlags(Flags); 6049 createOperands(N, Ops); 6050 CSEMap.InsertNode(N, IP); 6051 } else { 6052 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6053 createOperands(N, Ops); 6054 } 6055 6056 InsertNode(N); 6057 SDValue V = SDValue(N, 0); 6058 NewSDValueDbgMsg(V, "Creating new node: ", this); 6059 return V; 6060 } 6061 6062 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6063 SDValue N1, SDValue N2, SDValue N3) { 6064 SDNodeFlags Flags; 6065 if (Inserter) 6066 Flags = Inserter->getFlags(); 6067 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6068 } 6069 6070 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6071 SDValue N1, SDValue N2, SDValue N3, 6072 const SDNodeFlags Flags) { 6073 assert(N1.getOpcode() != ISD::DELETED_NODE && 6074 N2.getOpcode() != ISD::DELETED_NODE && 6075 N3.getOpcode() != ISD::DELETED_NODE && 6076 "Operand is DELETED_NODE!"); 6077 // Perform various simplifications. 6078 switch (Opcode) { 6079 case ISD::FMA: { 6080 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6081 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6082 N3.getValueType() == VT && "FMA types must match!"); 6083 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6084 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6085 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6086 if (N1CFP && N2CFP && N3CFP) { 6087 APFloat V1 = N1CFP->getValueAPF(); 6088 const APFloat &V2 = N2CFP->getValueAPF(); 6089 const APFloat &V3 = N3CFP->getValueAPF(); 6090 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6091 return getConstantFP(V1, DL, VT); 6092 } 6093 break; 6094 } 6095 case ISD::BUILD_VECTOR: { 6096 // Attempt to simplify BUILD_VECTOR. 6097 SDValue Ops[] = {N1, N2, N3}; 6098 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6099 return V; 6100 break; 6101 } 6102 case ISD::CONCAT_VECTORS: { 6103 SDValue Ops[] = {N1, N2, N3}; 6104 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6105 return V; 6106 break; 6107 } 6108 case ISD::SETCC: { 6109 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6110 assert(N1.getValueType() == N2.getValueType() && 6111 "SETCC operands must have the same type!"); 6112 assert(VT.isVector() == N1.getValueType().isVector() && 6113 "SETCC type should be vector iff the operand type is vector!"); 6114 assert((!VT.isVector() || VT.getVectorElementCount() == 6115 N1.getValueType().getVectorElementCount()) && 6116 "SETCC vector element counts must match!"); 6117 // Use FoldSetCC to simplify SETCC's. 6118 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6119 return V; 6120 // Vector constant folding. 6121 SDValue Ops[] = {N1, N2, N3}; 6122 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6123 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6124 return V; 6125 } 6126 break; 6127 } 6128 case ISD::SELECT: 6129 case ISD::VSELECT: 6130 if (SDValue V = simplifySelect(N1, N2, N3)) 6131 return V; 6132 break; 6133 case ISD::VECTOR_SHUFFLE: 6134 llvm_unreachable("should use getVectorShuffle constructor!"); 6135 case ISD::VECTOR_SPLICE: { 6136 if (cast<ConstantSDNode>(N3)->isNullValue()) 6137 return N1; 6138 break; 6139 } 6140 case ISD::INSERT_VECTOR_ELT: { 6141 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6142 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6143 // for scalable vectors where we will generate appropriate code to 6144 // deal with out-of-bounds cases correctly. 6145 if (N3C && N1.getValueType().isFixedLengthVector() && 6146 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6147 return getUNDEF(VT); 6148 6149 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6150 if (N3.isUndef()) 6151 return getUNDEF(VT); 6152 6153 // If the inserted element is an UNDEF, just use the input vector. 6154 if (N2.isUndef()) 6155 return N1; 6156 6157 break; 6158 } 6159 case ISD::INSERT_SUBVECTOR: { 6160 // Inserting undef into undef is still undef. 6161 if (N1.isUndef() && N2.isUndef()) 6162 return getUNDEF(VT); 6163 6164 EVT N2VT = N2.getValueType(); 6165 assert(VT == N1.getValueType() && 6166 "Dest and insert subvector source types must match!"); 6167 assert(VT.isVector() && N2VT.isVector() && 6168 "Insert subvector VTs must be vectors!"); 6169 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6170 "Cannot insert a scalable vector into a fixed length vector!"); 6171 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6172 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6173 "Insert subvector must be from smaller vector to larger vector!"); 6174 assert(isa<ConstantSDNode>(N3) && 6175 "Insert subvector index must be constant"); 6176 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6177 (N2VT.getVectorMinNumElements() + 6178 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6179 VT.getVectorMinNumElements()) && 6180 "Insert subvector overflow!"); 6181 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6182 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6183 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6184 6185 // Trivial insertion. 6186 if (VT == N2VT) 6187 return N2; 6188 6189 // If this is an insert of an extracted vector into an undef vector, we 6190 // can just use the input to the extract. 6191 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6192 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6193 return N2.getOperand(0); 6194 break; 6195 } 6196 case ISD::BITCAST: 6197 // Fold bit_convert nodes from a type to themselves. 6198 if (N1.getValueType() == VT) 6199 return N1; 6200 break; 6201 } 6202 6203 // Memoize node if it doesn't produce a flag. 6204 SDNode *N; 6205 SDVTList VTs = getVTList(VT); 6206 SDValue Ops[] = {N1, N2, N3}; 6207 if (VT != MVT::Glue) { 6208 FoldingSetNodeID ID; 6209 AddNodeIDNode(ID, Opcode, VTs, Ops); 6210 void *IP = nullptr; 6211 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6212 E->intersectFlagsWith(Flags); 6213 return SDValue(E, 0); 6214 } 6215 6216 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6217 N->setFlags(Flags); 6218 createOperands(N, Ops); 6219 CSEMap.InsertNode(N, IP); 6220 } else { 6221 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6222 createOperands(N, Ops); 6223 } 6224 6225 InsertNode(N); 6226 SDValue V = SDValue(N, 0); 6227 NewSDValueDbgMsg(V, "Creating new node: ", this); 6228 return V; 6229 } 6230 6231 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6232 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6233 SDValue Ops[] = { N1, N2, N3, N4 }; 6234 return getNode(Opcode, DL, VT, Ops); 6235 } 6236 6237 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6238 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6239 SDValue N5) { 6240 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6241 return getNode(Opcode, DL, VT, Ops); 6242 } 6243 6244 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6245 /// the incoming stack arguments to be loaded from the stack. 6246 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6247 SmallVector<SDValue, 8> ArgChains; 6248 6249 // Include the original chain at the beginning of the list. When this is 6250 // used by target LowerCall hooks, this helps legalize find the 6251 // CALLSEQ_BEGIN node. 6252 ArgChains.push_back(Chain); 6253 6254 // Add a chain value for each stack argument. 6255 for (SDNode *U : getEntryNode().getNode()->uses()) 6256 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6257 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6258 if (FI->getIndex() < 0) 6259 ArgChains.push_back(SDValue(L, 1)); 6260 6261 // Build a tokenfactor for all the chains. 6262 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6263 } 6264 6265 /// getMemsetValue - Vectorized representation of the memset value 6266 /// operand. 6267 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6268 const SDLoc &dl) { 6269 assert(!Value.isUndef()); 6270 6271 unsigned NumBits = VT.getScalarSizeInBits(); 6272 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6273 assert(C->getAPIntValue().getBitWidth() == 8); 6274 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6275 if (VT.isInteger()) { 6276 bool IsOpaque = VT.getSizeInBits() > 64 || 6277 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6278 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6279 } 6280 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6281 VT); 6282 } 6283 6284 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6285 EVT IntVT = VT.getScalarType(); 6286 if (!IntVT.isInteger()) 6287 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6288 6289 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6290 if (NumBits > 8) { 6291 // Use a multiplication with 0x010101... to extend the input to the 6292 // required length. 6293 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6294 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6295 DAG.getConstant(Magic, dl, IntVT)); 6296 } 6297 6298 if (VT != Value.getValueType() && !VT.isInteger()) 6299 Value = DAG.getBitcast(VT.getScalarType(), Value); 6300 if (VT != Value.getValueType()) 6301 Value = DAG.getSplatBuildVector(VT, dl, Value); 6302 6303 return Value; 6304 } 6305 6306 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6307 /// used when a memcpy is turned into a memset when the source is a constant 6308 /// string ptr. 6309 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6310 const TargetLowering &TLI, 6311 const ConstantDataArraySlice &Slice) { 6312 // Handle vector with all elements zero. 6313 if (Slice.Array == nullptr) { 6314 if (VT.isInteger()) 6315 return DAG.getConstant(0, dl, VT); 6316 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6317 return DAG.getConstantFP(0.0, dl, VT); 6318 if (VT.isVector()) { 6319 unsigned NumElts = VT.getVectorNumElements(); 6320 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6321 return DAG.getNode(ISD::BITCAST, dl, VT, 6322 DAG.getConstant(0, dl, 6323 EVT::getVectorVT(*DAG.getContext(), 6324 EltVT, NumElts))); 6325 } 6326 llvm_unreachable("Expected type!"); 6327 } 6328 6329 assert(!VT.isVector() && "Can't handle vector type here!"); 6330 unsigned NumVTBits = VT.getSizeInBits(); 6331 unsigned NumVTBytes = NumVTBits / 8; 6332 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6333 6334 APInt Val(NumVTBits, 0); 6335 if (DAG.getDataLayout().isLittleEndian()) { 6336 for (unsigned i = 0; i != NumBytes; ++i) 6337 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6338 } else { 6339 for (unsigned i = 0; i != NumBytes; ++i) 6340 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6341 } 6342 6343 // If the "cost" of materializing the integer immediate is less than the cost 6344 // of a load, then it is cost effective to turn the load into the immediate. 6345 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6346 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6347 return DAG.getConstant(Val, dl, VT); 6348 return SDValue(); 6349 } 6350 6351 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6352 const SDLoc &DL, 6353 const SDNodeFlags Flags) { 6354 EVT VT = Base.getValueType(); 6355 SDValue Index; 6356 6357 if (Offset.isScalable()) 6358 Index = getVScale(DL, Base.getValueType(), 6359 APInt(Base.getValueSizeInBits().getFixedSize(), 6360 Offset.getKnownMinSize())); 6361 else 6362 Index = getConstant(Offset.getFixedSize(), DL, VT); 6363 6364 return getMemBasePlusOffset(Base, Index, DL, Flags); 6365 } 6366 6367 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6368 const SDLoc &DL, 6369 const SDNodeFlags Flags) { 6370 assert(Offset.getValueType().isInteger()); 6371 EVT BasePtrVT = Ptr.getValueType(); 6372 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6373 } 6374 6375 /// Returns true if memcpy source is constant data. 6376 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6377 uint64_t SrcDelta = 0; 6378 GlobalAddressSDNode *G = nullptr; 6379 if (Src.getOpcode() == ISD::GlobalAddress) 6380 G = cast<GlobalAddressSDNode>(Src); 6381 else if (Src.getOpcode() == ISD::ADD && 6382 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6383 Src.getOperand(1).getOpcode() == ISD::Constant) { 6384 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6385 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6386 } 6387 if (!G) 6388 return false; 6389 6390 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6391 SrcDelta + G->getOffset()); 6392 } 6393 6394 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6395 SelectionDAG &DAG) { 6396 // On Darwin, -Os means optimize for size without hurting performance, so 6397 // only really optimize for size when -Oz (MinSize) is used. 6398 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6399 return MF.getFunction().hasMinSize(); 6400 return DAG.shouldOptForSize(); 6401 } 6402 6403 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6404 SmallVector<SDValue, 32> &OutChains, unsigned From, 6405 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6406 SmallVector<SDValue, 16> &OutStoreChains) { 6407 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6408 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6409 SmallVector<SDValue, 16> GluedLoadChains; 6410 for (unsigned i = From; i < To; ++i) { 6411 OutChains.push_back(OutLoadChains[i]); 6412 GluedLoadChains.push_back(OutLoadChains[i]); 6413 } 6414 6415 // Chain for all loads. 6416 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6417 GluedLoadChains); 6418 6419 for (unsigned i = From; i < To; ++i) { 6420 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6421 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6422 ST->getBasePtr(), ST->getMemoryVT(), 6423 ST->getMemOperand()); 6424 OutChains.push_back(NewStore); 6425 } 6426 } 6427 6428 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6429 SDValue Chain, SDValue Dst, SDValue Src, 6430 uint64_t Size, Align Alignment, 6431 bool isVol, bool AlwaysInline, 6432 MachinePointerInfo DstPtrInfo, 6433 MachinePointerInfo SrcPtrInfo, 6434 const AAMDNodes &AAInfo) { 6435 // Turn a memcpy of undef to nop. 6436 // FIXME: We need to honor volatile even is Src is undef. 6437 if (Src.isUndef()) 6438 return Chain; 6439 6440 // Expand memcpy to a series of load and store ops if the size operand falls 6441 // below a certain threshold. 6442 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6443 // rather than maybe a humongous number of loads and stores. 6444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6445 const DataLayout &DL = DAG.getDataLayout(); 6446 LLVMContext &C = *DAG.getContext(); 6447 std::vector<EVT> MemOps; 6448 bool DstAlignCanChange = false; 6449 MachineFunction &MF = DAG.getMachineFunction(); 6450 MachineFrameInfo &MFI = MF.getFrameInfo(); 6451 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6452 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6453 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6454 DstAlignCanChange = true; 6455 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6456 if (!SrcAlign || Alignment > *SrcAlign) 6457 SrcAlign = Alignment; 6458 assert(SrcAlign && "SrcAlign must be set"); 6459 ConstantDataArraySlice Slice; 6460 // If marked as volatile, perform a copy even when marked as constant. 6461 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6462 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6463 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6464 const MemOp Op = isZeroConstant 6465 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6466 /*IsZeroMemset*/ true, isVol) 6467 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6468 *SrcAlign, isVol, CopyFromConstant); 6469 if (!TLI.findOptimalMemOpLowering( 6470 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6471 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6472 return SDValue(); 6473 6474 if (DstAlignCanChange) { 6475 Type *Ty = MemOps[0].getTypeForEVT(C); 6476 Align NewAlign = DL.getABITypeAlign(Ty); 6477 6478 // Don't promote to an alignment that would require dynamic stack 6479 // realignment. 6480 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6481 if (!TRI->hasStackRealignment(MF)) 6482 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6483 NewAlign = NewAlign / 2; 6484 6485 if (NewAlign > Alignment) { 6486 // Give the stack frame object a larger alignment if needed. 6487 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6488 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6489 Alignment = NewAlign; 6490 } 6491 } 6492 6493 // Prepare AAInfo for loads/stores after lowering this memcpy. 6494 AAMDNodes NewAAInfo = AAInfo; 6495 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6496 6497 MachineMemOperand::Flags MMOFlags = 6498 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6499 SmallVector<SDValue, 16> OutLoadChains; 6500 SmallVector<SDValue, 16> OutStoreChains; 6501 SmallVector<SDValue, 32> OutChains; 6502 unsigned NumMemOps = MemOps.size(); 6503 uint64_t SrcOff = 0, DstOff = 0; 6504 for (unsigned i = 0; i != NumMemOps; ++i) { 6505 EVT VT = MemOps[i]; 6506 unsigned VTSize = VT.getSizeInBits() / 8; 6507 SDValue Value, Store; 6508 6509 if (VTSize > Size) { 6510 // Issuing an unaligned load / store pair that overlaps with the previous 6511 // pair. Adjust the offset accordingly. 6512 assert(i == NumMemOps-1 && i != 0); 6513 SrcOff -= VTSize - Size; 6514 DstOff -= VTSize - Size; 6515 } 6516 6517 if (CopyFromConstant && 6518 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6519 // It's unlikely a store of a vector immediate can be done in a single 6520 // instruction. It would require a load from a constantpool first. 6521 // We only handle zero vectors here. 6522 // FIXME: Handle other cases where store of vector immediate is done in 6523 // a single instruction. 6524 ConstantDataArraySlice SubSlice; 6525 if (SrcOff < Slice.Length) { 6526 SubSlice = Slice; 6527 SubSlice.move(SrcOff); 6528 } else { 6529 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6530 SubSlice.Array = nullptr; 6531 SubSlice.Offset = 0; 6532 SubSlice.Length = VTSize; 6533 } 6534 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6535 if (Value.getNode()) { 6536 Store = DAG.getStore( 6537 Chain, dl, Value, 6538 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6539 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6540 OutChains.push_back(Store); 6541 } 6542 } 6543 6544 if (!Store.getNode()) { 6545 // The type might not be legal for the target. This should only happen 6546 // if the type is smaller than a legal type, as on PPC, so the right 6547 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6548 // to Load/Store if NVT==VT. 6549 // FIXME does the case above also need this? 6550 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6551 assert(NVT.bitsGE(VT)); 6552 6553 bool isDereferenceable = 6554 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6555 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6556 if (isDereferenceable) 6557 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6558 6559 Value = DAG.getExtLoad( 6560 ISD::EXTLOAD, dl, NVT, Chain, 6561 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6562 SrcPtrInfo.getWithOffset(SrcOff), VT, 6563 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6564 OutLoadChains.push_back(Value.getValue(1)); 6565 6566 Store = DAG.getTruncStore( 6567 Chain, dl, Value, 6568 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6569 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6570 OutStoreChains.push_back(Store); 6571 } 6572 SrcOff += VTSize; 6573 DstOff += VTSize; 6574 Size -= VTSize; 6575 } 6576 6577 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6578 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6579 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6580 6581 if (NumLdStInMemcpy) { 6582 // It may be that memcpy might be converted to memset if it's memcpy 6583 // of constants. In such a case, we won't have loads and stores, but 6584 // just stores. In the absence of loads, there is nothing to gang up. 6585 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6586 // If target does not care, just leave as it. 6587 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6588 OutChains.push_back(OutLoadChains[i]); 6589 OutChains.push_back(OutStoreChains[i]); 6590 } 6591 } else { 6592 // Ld/St less than/equal limit set by target. 6593 if (NumLdStInMemcpy <= GluedLdStLimit) { 6594 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6595 NumLdStInMemcpy, OutLoadChains, 6596 OutStoreChains); 6597 } else { 6598 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6599 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6600 unsigned GlueIter = 0; 6601 6602 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6603 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6604 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6605 6606 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6607 OutLoadChains, OutStoreChains); 6608 GlueIter += GluedLdStLimit; 6609 } 6610 6611 // Residual ld/st. 6612 if (RemainingLdStInMemcpy) { 6613 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6614 RemainingLdStInMemcpy, OutLoadChains, 6615 OutStoreChains); 6616 } 6617 } 6618 } 6619 } 6620 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6621 } 6622 6623 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6624 SDValue Chain, SDValue Dst, SDValue Src, 6625 uint64_t Size, Align Alignment, 6626 bool isVol, bool AlwaysInline, 6627 MachinePointerInfo DstPtrInfo, 6628 MachinePointerInfo SrcPtrInfo, 6629 const AAMDNodes &AAInfo) { 6630 // Turn a memmove of undef to nop. 6631 // FIXME: We need to honor volatile even is Src is undef. 6632 if (Src.isUndef()) 6633 return Chain; 6634 6635 // Expand memmove to a series of load and store ops if the size operand falls 6636 // below a certain threshold. 6637 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6638 const DataLayout &DL = DAG.getDataLayout(); 6639 LLVMContext &C = *DAG.getContext(); 6640 std::vector<EVT> MemOps; 6641 bool DstAlignCanChange = false; 6642 MachineFunction &MF = DAG.getMachineFunction(); 6643 MachineFrameInfo &MFI = MF.getFrameInfo(); 6644 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6645 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6646 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6647 DstAlignCanChange = true; 6648 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6649 if (!SrcAlign || Alignment > *SrcAlign) 6650 SrcAlign = Alignment; 6651 assert(SrcAlign && "SrcAlign must be set"); 6652 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6653 if (!TLI.findOptimalMemOpLowering( 6654 MemOps, Limit, 6655 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6656 /*IsVolatile*/ true), 6657 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6658 MF.getFunction().getAttributes())) 6659 return SDValue(); 6660 6661 if (DstAlignCanChange) { 6662 Type *Ty = MemOps[0].getTypeForEVT(C); 6663 Align NewAlign = DL.getABITypeAlign(Ty); 6664 if (NewAlign > Alignment) { 6665 // Give the stack frame object a larger alignment if needed. 6666 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6667 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6668 Alignment = NewAlign; 6669 } 6670 } 6671 6672 // Prepare AAInfo for loads/stores after lowering this memmove. 6673 AAMDNodes NewAAInfo = AAInfo; 6674 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6675 6676 MachineMemOperand::Flags MMOFlags = 6677 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6678 uint64_t SrcOff = 0, DstOff = 0; 6679 SmallVector<SDValue, 8> LoadValues; 6680 SmallVector<SDValue, 8> LoadChains; 6681 SmallVector<SDValue, 8> OutChains; 6682 unsigned NumMemOps = MemOps.size(); 6683 for (unsigned i = 0; i < NumMemOps; i++) { 6684 EVT VT = MemOps[i]; 6685 unsigned VTSize = VT.getSizeInBits() / 8; 6686 SDValue Value; 6687 6688 bool isDereferenceable = 6689 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6690 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6691 if (isDereferenceable) 6692 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6693 6694 Value = DAG.getLoad( 6695 VT, dl, Chain, 6696 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6697 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6698 LoadValues.push_back(Value); 6699 LoadChains.push_back(Value.getValue(1)); 6700 SrcOff += VTSize; 6701 } 6702 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6703 OutChains.clear(); 6704 for (unsigned i = 0; i < NumMemOps; i++) { 6705 EVT VT = MemOps[i]; 6706 unsigned VTSize = VT.getSizeInBits() / 8; 6707 SDValue Store; 6708 6709 Store = DAG.getStore( 6710 Chain, dl, LoadValues[i], 6711 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6712 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6713 OutChains.push_back(Store); 6714 DstOff += VTSize; 6715 } 6716 6717 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6718 } 6719 6720 /// Lower the call to 'memset' intrinsic function into a series of store 6721 /// operations. 6722 /// 6723 /// \param DAG Selection DAG where lowered code is placed. 6724 /// \param dl Link to corresponding IR location. 6725 /// \param Chain Control flow dependency. 6726 /// \param Dst Pointer to destination memory location. 6727 /// \param Src Value of byte to write into the memory. 6728 /// \param Size Number of bytes to write. 6729 /// \param Alignment Alignment of the destination in bytes. 6730 /// \param isVol True if destination is volatile. 6731 /// \param DstPtrInfo IR information on the memory pointer. 6732 /// \returns New head in the control flow, if lowering was successful, empty 6733 /// SDValue otherwise. 6734 /// 6735 /// The function tries to replace 'llvm.memset' intrinsic with several store 6736 /// operations and value calculation code. This is usually profitable for small 6737 /// memory size. 6738 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6739 SDValue Chain, SDValue Dst, SDValue Src, 6740 uint64_t Size, Align Alignment, bool isVol, 6741 MachinePointerInfo DstPtrInfo, 6742 const AAMDNodes &AAInfo) { 6743 // Turn a memset of undef to nop. 6744 // FIXME: We need to honor volatile even is Src is undef. 6745 if (Src.isUndef()) 6746 return Chain; 6747 6748 // Expand memset to a series of load/store ops if the size operand 6749 // falls below a certain threshold. 6750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6751 std::vector<EVT> MemOps; 6752 bool DstAlignCanChange = false; 6753 MachineFunction &MF = DAG.getMachineFunction(); 6754 MachineFrameInfo &MFI = MF.getFrameInfo(); 6755 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6756 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6757 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6758 DstAlignCanChange = true; 6759 bool IsZeroVal = 6760 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6761 if (!TLI.findOptimalMemOpLowering( 6762 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6763 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6764 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6765 return SDValue(); 6766 6767 if (DstAlignCanChange) { 6768 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6769 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6770 if (NewAlign > Alignment) { 6771 // Give the stack frame object a larger alignment if needed. 6772 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6773 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6774 Alignment = NewAlign; 6775 } 6776 } 6777 6778 SmallVector<SDValue, 8> OutChains; 6779 uint64_t DstOff = 0; 6780 unsigned NumMemOps = MemOps.size(); 6781 6782 // Find the largest store and generate the bit pattern for it. 6783 EVT LargestVT = MemOps[0]; 6784 for (unsigned i = 1; i < NumMemOps; i++) 6785 if (MemOps[i].bitsGT(LargestVT)) 6786 LargestVT = MemOps[i]; 6787 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6788 6789 // Prepare AAInfo for loads/stores after lowering this memset. 6790 AAMDNodes NewAAInfo = AAInfo; 6791 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6792 6793 for (unsigned i = 0; i < NumMemOps; i++) { 6794 EVT VT = MemOps[i]; 6795 unsigned VTSize = VT.getSizeInBits() / 8; 6796 if (VTSize > Size) { 6797 // Issuing an unaligned load / store pair that overlaps with the previous 6798 // pair. Adjust the offset accordingly. 6799 assert(i == NumMemOps-1 && i != 0); 6800 DstOff -= VTSize - Size; 6801 } 6802 6803 // If this store is smaller than the largest store see whether we can get 6804 // the smaller value for free with a truncate. 6805 SDValue Value = MemSetValue; 6806 if (VT.bitsLT(LargestVT)) { 6807 if (!LargestVT.isVector() && !VT.isVector() && 6808 TLI.isTruncateFree(LargestVT, VT)) 6809 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6810 else 6811 Value = getMemsetValue(Src, VT, DAG, dl); 6812 } 6813 assert(Value.getValueType() == VT && "Value with wrong type."); 6814 SDValue Store = DAG.getStore( 6815 Chain, dl, Value, 6816 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6817 DstPtrInfo.getWithOffset(DstOff), Alignment, 6818 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6819 NewAAInfo); 6820 OutChains.push_back(Store); 6821 DstOff += VT.getSizeInBits() / 8; 6822 Size -= VTSize; 6823 } 6824 6825 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6826 } 6827 6828 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6829 unsigned AS) { 6830 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6831 // pointer operands can be losslessly bitcasted to pointers of address space 0 6832 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6833 report_fatal_error("cannot lower memory intrinsic in address space " + 6834 Twine(AS)); 6835 } 6836 } 6837 6838 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6839 SDValue Src, SDValue Size, Align Alignment, 6840 bool isVol, bool AlwaysInline, bool isTailCall, 6841 MachinePointerInfo DstPtrInfo, 6842 MachinePointerInfo SrcPtrInfo, 6843 const AAMDNodes &AAInfo) { 6844 // Check to see if we should lower the memcpy to loads and stores first. 6845 // For cases within the target-specified limits, this is the best choice. 6846 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6847 if (ConstantSize) { 6848 // Memcpy with size zero? Just return the original chain. 6849 if (ConstantSize->isZero()) 6850 return Chain; 6851 6852 SDValue Result = getMemcpyLoadsAndStores( 6853 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6854 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6855 if (Result.getNode()) 6856 return Result; 6857 } 6858 6859 // Then check to see if we should lower the memcpy with target-specific 6860 // code. If the target chooses to do this, this is the next best. 6861 if (TSI) { 6862 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6863 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6864 DstPtrInfo, SrcPtrInfo); 6865 if (Result.getNode()) 6866 return Result; 6867 } 6868 6869 // If we really need inline code and the target declined to provide it, 6870 // use a (potentially long) sequence of loads and stores. 6871 if (AlwaysInline) { 6872 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6873 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6874 ConstantSize->getZExtValue(), Alignment, 6875 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6876 } 6877 6878 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6879 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6880 6881 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6882 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6883 // respect volatile, so they may do things like read or write memory 6884 // beyond the given memory regions. But fixing this isn't easy, and most 6885 // people don't care. 6886 6887 // Emit a library call. 6888 TargetLowering::ArgListTy Args; 6889 TargetLowering::ArgListEntry Entry; 6890 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6891 Entry.Node = Dst; Args.push_back(Entry); 6892 Entry.Node = Src; Args.push_back(Entry); 6893 6894 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6895 Entry.Node = Size; Args.push_back(Entry); 6896 // FIXME: pass in SDLoc 6897 TargetLowering::CallLoweringInfo CLI(*this); 6898 CLI.setDebugLoc(dl) 6899 .setChain(Chain) 6900 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6901 Dst.getValueType().getTypeForEVT(*getContext()), 6902 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6903 TLI->getPointerTy(getDataLayout())), 6904 std::move(Args)) 6905 .setDiscardResult() 6906 .setTailCall(isTailCall); 6907 6908 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6909 return CallResult.second; 6910 } 6911 6912 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6913 SDValue Dst, unsigned DstAlign, 6914 SDValue Src, unsigned SrcAlign, 6915 SDValue Size, Type *SizeTy, 6916 unsigned ElemSz, bool isTailCall, 6917 MachinePointerInfo DstPtrInfo, 6918 MachinePointerInfo SrcPtrInfo) { 6919 // Emit a library call. 6920 TargetLowering::ArgListTy Args; 6921 TargetLowering::ArgListEntry Entry; 6922 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6923 Entry.Node = Dst; 6924 Args.push_back(Entry); 6925 6926 Entry.Node = Src; 6927 Args.push_back(Entry); 6928 6929 Entry.Ty = SizeTy; 6930 Entry.Node = Size; 6931 Args.push_back(Entry); 6932 6933 RTLIB::Libcall LibraryCall = 6934 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6935 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6936 report_fatal_error("Unsupported element size"); 6937 6938 TargetLowering::CallLoweringInfo CLI(*this); 6939 CLI.setDebugLoc(dl) 6940 .setChain(Chain) 6941 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6942 Type::getVoidTy(*getContext()), 6943 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6944 TLI->getPointerTy(getDataLayout())), 6945 std::move(Args)) 6946 .setDiscardResult() 6947 .setTailCall(isTailCall); 6948 6949 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6950 return CallResult.second; 6951 } 6952 6953 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6954 SDValue Src, SDValue Size, Align Alignment, 6955 bool isVol, bool isTailCall, 6956 MachinePointerInfo DstPtrInfo, 6957 MachinePointerInfo SrcPtrInfo, 6958 const AAMDNodes &AAInfo) { 6959 // Check to see if we should lower the memmove to loads and stores first. 6960 // For cases within the target-specified limits, this is the best choice. 6961 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6962 if (ConstantSize) { 6963 // Memmove with size zero? Just return the original chain. 6964 if (ConstantSize->isZero()) 6965 return Chain; 6966 6967 SDValue Result = getMemmoveLoadsAndStores( 6968 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6969 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6970 if (Result.getNode()) 6971 return Result; 6972 } 6973 6974 // Then check to see if we should lower the memmove with target-specific 6975 // code. If the target chooses to do this, this is the next best. 6976 if (TSI) { 6977 SDValue Result = 6978 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6979 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6980 if (Result.getNode()) 6981 return Result; 6982 } 6983 6984 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6985 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6986 6987 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6988 // not be safe. See memcpy above for more details. 6989 6990 // Emit a library call. 6991 TargetLowering::ArgListTy Args; 6992 TargetLowering::ArgListEntry Entry; 6993 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6994 Entry.Node = Dst; Args.push_back(Entry); 6995 Entry.Node = Src; Args.push_back(Entry); 6996 6997 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6998 Entry.Node = Size; Args.push_back(Entry); 6999 // FIXME: pass in SDLoc 7000 TargetLowering::CallLoweringInfo CLI(*this); 7001 CLI.setDebugLoc(dl) 7002 .setChain(Chain) 7003 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7004 Dst.getValueType().getTypeForEVT(*getContext()), 7005 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7006 TLI->getPointerTy(getDataLayout())), 7007 std::move(Args)) 7008 .setDiscardResult() 7009 .setTailCall(isTailCall); 7010 7011 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7012 return CallResult.second; 7013 } 7014 7015 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7016 SDValue Dst, unsigned DstAlign, 7017 SDValue Src, unsigned SrcAlign, 7018 SDValue Size, Type *SizeTy, 7019 unsigned ElemSz, bool isTailCall, 7020 MachinePointerInfo DstPtrInfo, 7021 MachinePointerInfo SrcPtrInfo) { 7022 // Emit a library call. 7023 TargetLowering::ArgListTy Args; 7024 TargetLowering::ArgListEntry Entry; 7025 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7026 Entry.Node = Dst; 7027 Args.push_back(Entry); 7028 7029 Entry.Node = Src; 7030 Args.push_back(Entry); 7031 7032 Entry.Ty = SizeTy; 7033 Entry.Node = Size; 7034 Args.push_back(Entry); 7035 7036 RTLIB::Libcall LibraryCall = 7037 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7038 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7039 report_fatal_error("Unsupported element size"); 7040 7041 TargetLowering::CallLoweringInfo CLI(*this); 7042 CLI.setDebugLoc(dl) 7043 .setChain(Chain) 7044 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7045 Type::getVoidTy(*getContext()), 7046 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7047 TLI->getPointerTy(getDataLayout())), 7048 std::move(Args)) 7049 .setDiscardResult() 7050 .setTailCall(isTailCall); 7051 7052 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7053 return CallResult.second; 7054 } 7055 7056 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7057 SDValue Src, SDValue Size, Align Alignment, 7058 bool isVol, bool isTailCall, 7059 MachinePointerInfo DstPtrInfo, 7060 const AAMDNodes &AAInfo) { 7061 // Check to see if we should lower the memset to stores first. 7062 // For cases within the target-specified limits, this is the best choice. 7063 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7064 if (ConstantSize) { 7065 // Memset with size zero? Just return the original chain. 7066 if (ConstantSize->isZero()) 7067 return Chain; 7068 7069 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7070 ConstantSize->getZExtValue(), Alignment, 7071 isVol, DstPtrInfo, AAInfo); 7072 7073 if (Result.getNode()) 7074 return Result; 7075 } 7076 7077 // Then check to see if we should lower the memset with target-specific 7078 // code. If the target chooses to do this, this is the next best. 7079 if (TSI) { 7080 SDValue Result = TSI->EmitTargetCodeForMemset( 7081 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7082 if (Result.getNode()) 7083 return Result; 7084 } 7085 7086 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7087 7088 // Emit a library call. 7089 TargetLowering::ArgListTy Args; 7090 TargetLowering::ArgListEntry Entry; 7091 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7092 Args.push_back(Entry); 7093 Entry.Node = Src; 7094 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7095 Args.push_back(Entry); 7096 Entry.Node = Size; 7097 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7098 Args.push_back(Entry); 7099 7100 // FIXME: pass in SDLoc 7101 TargetLowering::CallLoweringInfo CLI(*this); 7102 CLI.setDebugLoc(dl) 7103 .setChain(Chain) 7104 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7105 Dst.getValueType().getTypeForEVT(*getContext()), 7106 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7107 TLI->getPointerTy(getDataLayout())), 7108 std::move(Args)) 7109 .setDiscardResult() 7110 .setTailCall(isTailCall); 7111 7112 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7113 return CallResult.second; 7114 } 7115 7116 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7117 SDValue Dst, unsigned DstAlign, 7118 SDValue Value, SDValue Size, Type *SizeTy, 7119 unsigned ElemSz, bool isTailCall, 7120 MachinePointerInfo DstPtrInfo) { 7121 // Emit a library call. 7122 TargetLowering::ArgListTy Args; 7123 TargetLowering::ArgListEntry Entry; 7124 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7125 Entry.Node = Dst; 7126 Args.push_back(Entry); 7127 7128 Entry.Ty = Type::getInt8Ty(*getContext()); 7129 Entry.Node = Value; 7130 Args.push_back(Entry); 7131 7132 Entry.Ty = SizeTy; 7133 Entry.Node = Size; 7134 Args.push_back(Entry); 7135 7136 RTLIB::Libcall LibraryCall = 7137 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7138 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7139 report_fatal_error("Unsupported element size"); 7140 7141 TargetLowering::CallLoweringInfo CLI(*this); 7142 CLI.setDebugLoc(dl) 7143 .setChain(Chain) 7144 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7145 Type::getVoidTy(*getContext()), 7146 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7147 TLI->getPointerTy(getDataLayout())), 7148 std::move(Args)) 7149 .setDiscardResult() 7150 .setTailCall(isTailCall); 7151 7152 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7153 return CallResult.second; 7154 } 7155 7156 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7157 SDVTList VTList, ArrayRef<SDValue> Ops, 7158 MachineMemOperand *MMO) { 7159 FoldingSetNodeID ID; 7160 ID.AddInteger(MemVT.getRawBits()); 7161 AddNodeIDNode(ID, Opcode, VTList, Ops); 7162 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7163 void* IP = nullptr; 7164 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7165 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7166 return SDValue(E, 0); 7167 } 7168 7169 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7170 VTList, MemVT, MMO); 7171 createOperands(N, Ops); 7172 7173 CSEMap.InsertNode(N, IP); 7174 InsertNode(N); 7175 return SDValue(N, 0); 7176 } 7177 7178 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7179 EVT MemVT, SDVTList VTs, SDValue Chain, 7180 SDValue Ptr, SDValue Cmp, SDValue Swp, 7181 MachineMemOperand *MMO) { 7182 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7183 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7184 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7185 7186 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7187 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7188 } 7189 7190 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7191 SDValue Chain, SDValue Ptr, SDValue Val, 7192 MachineMemOperand *MMO) { 7193 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7194 Opcode == ISD::ATOMIC_LOAD_SUB || 7195 Opcode == ISD::ATOMIC_LOAD_AND || 7196 Opcode == ISD::ATOMIC_LOAD_CLR || 7197 Opcode == ISD::ATOMIC_LOAD_OR || 7198 Opcode == ISD::ATOMIC_LOAD_XOR || 7199 Opcode == ISD::ATOMIC_LOAD_NAND || 7200 Opcode == ISD::ATOMIC_LOAD_MIN || 7201 Opcode == ISD::ATOMIC_LOAD_MAX || 7202 Opcode == ISD::ATOMIC_LOAD_UMIN || 7203 Opcode == ISD::ATOMIC_LOAD_UMAX || 7204 Opcode == ISD::ATOMIC_LOAD_FADD || 7205 Opcode == ISD::ATOMIC_LOAD_FSUB || 7206 Opcode == ISD::ATOMIC_SWAP || 7207 Opcode == ISD::ATOMIC_STORE) && 7208 "Invalid Atomic Op"); 7209 7210 EVT VT = Val.getValueType(); 7211 7212 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7213 getVTList(VT, MVT::Other); 7214 SDValue Ops[] = {Chain, Ptr, Val}; 7215 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7216 } 7217 7218 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7219 EVT VT, SDValue Chain, SDValue Ptr, 7220 MachineMemOperand *MMO) { 7221 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7222 7223 SDVTList VTs = getVTList(VT, MVT::Other); 7224 SDValue Ops[] = {Chain, Ptr}; 7225 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7226 } 7227 7228 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7229 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7230 if (Ops.size() == 1) 7231 return Ops[0]; 7232 7233 SmallVector<EVT, 4> VTs; 7234 VTs.reserve(Ops.size()); 7235 for (const SDValue &Op : Ops) 7236 VTs.push_back(Op.getValueType()); 7237 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7238 } 7239 7240 SDValue SelectionDAG::getMemIntrinsicNode( 7241 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7242 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7243 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7244 if (!Size && MemVT.isScalableVector()) 7245 Size = MemoryLocation::UnknownSize; 7246 else if (!Size) 7247 Size = MemVT.getStoreSize(); 7248 7249 MachineFunction &MF = getMachineFunction(); 7250 MachineMemOperand *MMO = 7251 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7252 7253 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7254 } 7255 7256 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7257 SDVTList VTList, 7258 ArrayRef<SDValue> Ops, EVT MemVT, 7259 MachineMemOperand *MMO) { 7260 assert((Opcode == ISD::INTRINSIC_VOID || 7261 Opcode == ISD::INTRINSIC_W_CHAIN || 7262 Opcode == ISD::PREFETCH || 7263 ((int)Opcode <= std::numeric_limits<int>::max() && 7264 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7265 "Opcode is not a memory-accessing opcode!"); 7266 7267 // Memoize the node unless it returns a flag. 7268 MemIntrinsicSDNode *N; 7269 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7270 FoldingSetNodeID ID; 7271 AddNodeIDNode(ID, Opcode, VTList, Ops); 7272 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7273 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7274 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7275 void *IP = nullptr; 7276 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7277 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7278 return SDValue(E, 0); 7279 } 7280 7281 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7282 VTList, MemVT, MMO); 7283 createOperands(N, Ops); 7284 7285 CSEMap.InsertNode(N, IP); 7286 } else { 7287 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7288 VTList, MemVT, MMO); 7289 createOperands(N, Ops); 7290 } 7291 InsertNode(N); 7292 SDValue V(N, 0); 7293 NewSDValueDbgMsg(V, "Creating new node: ", this); 7294 return V; 7295 } 7296 7297 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7298 SDValue Chain, int FrameIndex, 7299 int64_t Size, int64_t Offset) { 7300 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7301 const auto VTs = getVTList(MVT::Other); 7302 SDValue Ops[2] = { 7303 Chain, 7304 getFrameIndex(FrameIndex, 7305 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7306 true)}; 7307 7308 FoldingSetNodeID ID; 7309 AddNodeIDNode(ID, Opcode, VTs, Ops); 7310 ID.AddInteger(FrameIndex); 7311 ID.AddInteger(Size); 7312 ID.AddInteger(Offset); 7313 void *IP = nullptr; 7314 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7315 return SDValue(E, 0); 7316 7317 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7318 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7319 createOperands(N, Ops); 7320 CSEMap.InsertNode(N, IP); 7321 InsertNode(N); 7322 SDValue V(N, 0); 7323 NewSDValueDbgMsg(V, "Creating new node: ", this); 7324 return V; 7325 } 7326 7327 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7328 uint64_t Guid, uint64_t Index, 7329 uint32_t Attr) { 7330 const unsigned Opcode = ISD::PSEUDO_PROBE; 7331 const auto VTs = getVTList(MVT::Other); 7332 SDValue Ops[] = {Chain}; 7333 FoldingSetNodeID ID; 7334 AddNodeIDNode(ID, Opcode, VTs, Ops); 7335 ID.AddInteger(Guid); 7336 ID.AddInteger(Index); 7337 void *IP = nullptr; 7338 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7339 return SDValue(E, 0); 7340 7341 auto *N = newSDNode<PseudoProbeSDNode>( 7342 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7343 createOperands(N, Ops); 7344 CSEMap.InsertNode(N, IP); 7345 InsertNode(N); 7346 SDValue V(N, 0); 7347 NewSDValueDbgMsg(V, "Creating new node: ", this); 7348 return V; 7349 } 7350 7351 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7352 /// MachinePointerInfo record from it. This is particularly useful because the 7353 /// code generator has many cases where it doesn't bother passing in a 7354 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7355 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7356 SelectionDAG &DAG, SDValue Ptr, 7357 int64_t Offset = 0) { 7358 // If this is FI+Offset, we can model it. 7359 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7360 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7361 FI->getIndex(), Offset); 7362 7363 // If this is (FI+Offset1)+Offset2, we can model it. 7364 if (Ptr.getOpcode() != ISD::ADD || 7365 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7366 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7367 return Info; 7368 7369 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7370 return MachinePointerInfo::getFixedStack( 7371 DAG.getMachineFunction(), FI, 7372 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7373 } 7374 7375 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7376 /// MachinePointerInfo record from it. This is particularly useful because the 7377 /// code generator has many cases where it doesn't bother passing in a 7378 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7379 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7380 SelectionDAG &DAG, SDValue Ptr, 7381 SDValue OffsetOp) { 7382 // If the 'Offset' value isn't a constant, we can't handle this. 7383 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7384 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7385 if (OffsetOp.isUndef()) 7386 return InferPointerInfo(Info, DAG, Ptr); 7387 return Info; 7388 } 7389 7390 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7391 EVT VT, const SDLoc &dl, SDValue Chain, 7392 SDValue Ptr, SDValue Offset, 7393 MachinePointerInfo PtrInfo, EVT MemVT, 7394 Align Alignment, 7395 MachineMemOperand::Flags MMOFlags, 7396 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7397 assert(Chain.getValueType() == MVT::Other && 7398 "Invalid chain type"); 7399 7400 MMOFlags |= MachineMemOperand::MOLoad; 7401 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7402 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7403 // clients. 7404 if (PtrInfo.V.isNull()) 7405 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7406 7407 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7408 MachineFunction &MF = getMachineFunction(); 7409 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7410 Alignment, AAInfo, Ranges); 7411 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7412 } 7413 7414 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7415 EVT VT, const SDLoc &dl, SDValue Chain, 7416 SDValue Ptr, SDValue Offset, EVT MemVT, 7417 MachineMemOperand *MMO) { 7418 if (VT == MemVT) { 7419 ExtType = ISD::NON_EXTLOAD; 7420 } else if (ExtType == ISD::NON_EXTLOAD) { 7421 assert(VT == MemVT && "Non-extending load from different memory type!"); 7422 } else { 7423 // Extending load. 7424 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7425 "Should only be an extending load, not truncating!"); 7426 assert(VT.isInteger() == MemVT.isInteger() && 7427 "Cannot convert from FP to Int or Int -> FP!"); 7428 assert(VT.isVector() == MemVT.isVector() && 7429 "Cannot use an ext load to convert to or from a vector!"); 7430 assert((!VT.isVector() || 7431 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7432 "Cannot use an ext load to change the number of vector elements!"); 7433 } 7434 7435 bool Indexed = AM != ISD::UNINDEXED; 7436 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7437 7438 SDVTList VTs = Indexed ? 7439 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7440 SDValue Ops[] = { Chain, Ptr, Offset }; 7441 FoldingSetNodeID ID; 7442 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7443 ID.AddInteger(MemVT.getRawBits()); 7444 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7445 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7446 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7447 void *IP = nullptr; 7448 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7449 cast<LoadSDNode>(E)->refineAlignment(MMO); 7450 return SDValue(E, 0); 7451 } 7452 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7453 ExtType, MemVT, MMO); 7454 createOperands(N, Ops); 7455 7456 CSEMap.InsertNode(N, IP); 7457 InsertNode(N); 7458 SDValue V(N, 0); 7459 NewSDValueDbgMsg(V, "Creating new node: ", this); 7460 return V; 7461 } 7462 7463 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7464 SDValue Ptr, MachinePointerInfo PtrInfo, 7465 MaybeAlign Alignment, 7466 MachineMemOperand::Flags MMOFlags, 7467 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7468 SDValue Undef = getUNDEF(Ptr.getValueType()); 7469 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7470 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7471 } 7472 7473 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7474 SDValue Ptr, MachineMemOperand *MMO) { 7475 SDValue Undef = getUNDEF(Ptr.getValueType()); 7476 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7477 VT, MMO); 7478 } 7479 7480 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7481 EVT VT, SDValue Chain, SDValue Ptr, 7482 MachinePointerInfo PtrInfo, EVT MemVT, 7483 MaybeAlign Alignment, 7484 MachineMemOperand::Flags MMOFlags, 7485 const AAMDNodes &AAInfo) { 7486 SDValue Undef = getUNDEF(Ptr.getValueType()); 7487 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7488 MemVT, Alignment, MMOFlags, AAInfo); 7489 } 7490 7491 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7492 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7493 MachineMemOperand *MMO) { 7494 SDValue Undef = getUNDEF(Ptr.getValueType()); 7495 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7496 MemVT, MMO); 7497 } 7498 7499 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7500 SDValue Base, SDValue Offset, 7501 ISD::MemIndexedMode AM) { 7502 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7503 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7504 // Don't propagate the invariant or dereferenceable flags. 7505 auto MMOFlags = 7506 LD->getMemOperand()->getFlags() & 7507 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7508 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7509 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7510 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7511 } 7512 7513 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7514 SDValue Ptr, MachinePointerInfo PtrInfo, 7515 Align Alignment, 7516 MachineMemOperand::Flags MMOFlags, 7517 const AAMDNodes &AAInfo) { 7518 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7519 7520 MMOFlags |= MachineMemOperand::MOStore; 7521 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7522 7523 if (PtrInfo.V.isNull()) 7524 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7525 7526 MachineFunction &MF = getMachineFunction(); 7527 uint64_t Size = 7528 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7529 MachineMemOperand *MMO = 7530 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7531 return getStore(Chain, dl, Val, Ptr, MMO); 7532 } 7533 7534 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7535 SDValue Ptr, MachineMemOperand *MMO) { 7536 assert(Chain.getValueType() == MVT::Other && 7537 "Invalid chain type"); 7538 EVT VT = Val.getValueType(); 7539 SDVTList VTs = getVTList(MVT::Other); 7540 SDValue Undef = getUNDEF(Ptr.getValueType()); 7541 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7542 FoldingSetNodeID ID; 7543 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7544 ID.AddInteger(VT.getRawBits()); 7545 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7546 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7547 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7548 void *IP = nullptr; 7549 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7550 cast<StoreSDNode>(E)->refineAlignment(MMO); 7551 return SDValue(E, 0); 7552 } 7553 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7554 ISD::UNINDEXED, false, VT, MMO); 7555 createOperands(N, Ops); 7556 7557 CSEMap.InsertNode(N, IP); 7558 InsertNode(N); 7559 SDValue V(N, 0); 7560 NewSDValueDbgMsg(V, "Creating new node: ", this); 7561 return V; 7562 } 7563 7564 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7565 SDValue Ptr, MachinePointerInfo PtrInfo, 7566 EVT SVT, Align Alignment, 7567 MachineMemOperand::Flags MMOFlags, 7568 const AAMDNodes &AAInfo) { 7569 assert(Chain.getValueType() == MVT::Other && 7570 "Invalid chain type"); 7571 7572 MMOFlags |= MachineMemOperand::MOStore; 7573 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7574 7575 if (PtrInfo.V.isNull()) 7576 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7577 7578 MachineFunction &MF = getMachineFunction(); 7579 MachineMemOperand *MMO = MF.getMachineMemOperand( 7580 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7581 Alignment, AAInfo); 7582 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7583 } 7584 7585 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7586 SDValue Ptr, EVT SVT, 7587 MachineMemOperand *MMO) { 7588 EVT VT = Val.getValueType(); 7589 7590 assert(Chain.getValueType() == MVT::Other && 7591 "Invalid chain type"); 7592 if (VT == SVT) 7593 return getStore(Chain, dl, Val, Ptr, MMO); 7594 7595 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7596 "Should only be a truncating store, not extending!"); 7597 assert(VT.isInteger() == SVT.isInteger() && 7598 "Can't do FP-INT conversion!"); 7599 assert(VT.isVector() == SVT.isVector() && 7600 "Cannot use trunc store to convert to or from a vector!"); 7601 assert((!VT.isVector() || 7602 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7603 "Cannot use trunc store to change the number of vector elements!"); 7604 7605 SDVTList VTs = getVTList(MVT::Other); 7606 SDValue Undef = getUNDEF(Ptr.getValueType()); 7607 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7608 FoldingSetNodeID ID; 7609 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7610 ID.AddInteger(SVT.getRawBits()); 7611 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7612 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7613 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7614 void *IP = nullptr; 7615 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7616 cast<StoreSDNode>(E)->refineAlignment(MMO); 7617 return SDValue(E, 0); 7618 } 7619 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7620 ISD::UNINDEXED, true, SVT, MMO); 7621 createOperands(N, Ops); 7622 7623 CSEMap.InsertNode(N, IP); 7624 InsertNode(N); 7625 SDValue V(N, 0); 7626 NewSDValueDbgMsg(V, "Creating new node: ", this); 7627 return V; 7628 } 7629 7630 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7631 SDValue Base, SDValue Offset, 7632 ISD::MemIndexedMode AM) { 7633 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7634 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7635 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7636 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7637 FoldingSetNodeID ID; 7638 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7639 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7640 ID.AddInteger(ST->getRawSubclassData()); 7641 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7642 void *IP = nullptr; 7643 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7644 return SDValue(E, 0); 7645 7646 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7647 ST->isTruncatingStore(), ST->getMemoryVT(), 7648 ST->getMemOperand()); 7649 createOperands(N, Ops); 7650 7651 CSEMap.InsertNode(N, IP); 7652 InsertNode(N); 7653 SDValue V(N, 0); 7654 NewSDValueDbgMsg(V, "Creating new node: ", this); 7655 return V; 7656 } 7657 7658 SDValue SelectionDAG::getLoadVP( 7659 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7660 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7661 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7662 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7663 const MDNode *Ranges, bool IsExpanding) { 7664 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7665 7666 MMOFlags |= MachineMemOperand::MOLoad; 7667 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7668 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7669 // clients. 7670 if (PtrInfo.V.isNull()) 7671 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7672 7673 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7674 MachineFunction &MF = getMachineFunction(); 7675 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7676 Alignment, AAInfo, Ranges); 7677 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7678 MMO, IsExpanding); 7679 } 7680 7681 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7682 ISD::LoadExtType ExtType, EVT VT, 7683 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7684 SDValue Offset, SDValue Mask, SDValue EVL, 7685 EVT MemVT, MachineMemOperand *MMO, 7686 bool IsExpanding) { 7687 if (VT == MemVT) { 7688 ExtType = ISD::NON_EXTLOAD; 7689 } else if (ExtType == ISD::NON_EXTLOAD) { 7690 assert(VT == MemVT && "Non-extending load from different memory type!"); 7691 } else { 7692 // Extending load. 7693 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7694 "Should only be an extending load, not truncating!"); 7695 assert(VT.isInteger() == MemVT.isInteger() && 7696 "Cannot convert from FP to Int or Int -> FP!"); 7697 assert(VT.isVector() == MemVT.isVector() && 7698 "Cannot use an ext load to convert to or from a vector!"); 7699 assert((!VT.isVector() || 7700 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7701 "Cannot use an ext load to change the number of vector elements!"); 7702 } 7703 7704 bool Indexed = AM != ISD::UNINDEXED; 7705 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7706 7707 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7708 : getVTList(VT, MVT::Other); 7709 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7710 FoldingSetNodeID ID; 7711 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7712 ID.AddInteger(VT.getRawBits()); 7713 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7714 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7715 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7716 void *IP = nullptr; 7717 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7718 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7719 return SDValue(E, 0); 7720 } 7721 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7722 ExtType, IsExpanding, MemVT, MMO); 7723 createOperands(N, Ops); 7724 7725 CSEMap.InsertNode(N, IP); 7726 InsertNode(N); 7727 SDValue V(N, 0); 7728 NewSDValueDbgMsg(V, "Creating new node: ", this); 7729 return V; 7730 } 7731 7732 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7733 SDValue Ptr, SDValue Mask, SDValue EVL, 7734 MachinePointerInfo PtrInfo, 7735 MaybeAlign Alignment, 7736 MachineMemOperand::Flags MMOFlags, 7737 const AAMDNodes &AAInfo, const MDNode *Ranges, 7738 bool IsExpanding) { 7739 SDValue Undef = getUNDEF(Ptr.getValueType()); 7740 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7741 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7742 IsExpanding); 7743 } 7744 7745 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7746 SDValue Ptr, SDValue Mask, SDValue EVL, 7747 MachineMemOperand *MMO, bool IsExpanding) { 7748 SDValue Undef = getUNDEF(Ptr.getValueType()); 7749 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7750 Mask, EVL, VT, MMO, IsExpanding); 7751 } 7752 7753 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7754 EVT VT, SDValue Chain, SDValue Ptr, 7755 SDValue Mask, SDValue EVL, 7756 MachinePointerInfo PtrInfo, EVT MemVT, 7757 MaybeAlign Alignment, 7758 MachineMemOperand::Flags MMOFlags, 7759 const AAMDNodes &AAInfo, bool IsExpanding) { 7760 SDValue Undef = getUNDEF(Ptr.getValueType()); 7761 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7762 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7763 IsExpanding); 7764 } 7765 7766 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7767 EVT VT, SDValue Chain, SDValue Ptr, 7768 SDValue Mask, SDValue EVL, EVT MemVT, 7769 MachineMemOperand *MMO, bool IsExpanding) { 7770 SDValue Undef = getUNDEF(Ptr.getValueType()); 7771 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7772 EVL, MemVT, MMO, IsExpanding); 7773 } 7774 7775 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7776 SDValue Base, SDValue Offset, 7777 ISD::MemIndexedMode AM) { 7778 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7779 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7780 // Don't propagate the invariant or dereferenceable flags. 7781 auto MMOFlags = 7782 LD->getMemOperand()->getFlags() & 7783 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7784 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7785 LD->getChain(), Base, Offset, LD->getMask(), 7786 LD->getVectorLength(), LD->getPointerInfo(), 7787 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7788 nullptr, LD->isExpandingLoad()); 7789 } 7790 7791 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7792 SDValue Ptr, SDValue Mask, SDValue EVL, 7793 MachinePointerInfo PtrInfo, Align Alignment, 7794 MachineMemOperand::Flags MMOFlags, 7795 const AAMDNodes &AAInfo, bool IsCompressing) { 7796 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7797 7798 MMOFlags |= MachineMemOperand::MOStore; 7799 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7800 7801 if (PtrInfo.V.isNull()) 7802 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7803 7804 MachineFunction &MF = getMachineFunction(); 7805 uint64_t Size = 7806 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7807 MachineMemOperand *MMO = 7808 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7809 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7810 } 7811 7812 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7813 SDValue Ptr, SDValue Mask, SDValue EVL, 7814 MachineMemOperand *MMO, bool IsCompressing) { 7815 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7816 EVT VT = Val.getValueType(); 7817 SDVTList VTs = getVTList(MVT::Other); 7818 SDValue Undef = getUNDEF(Ptr.getValueType()); 7819 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7820 FoldingSetNodeID ID; 7821 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7822 ID.AddInteger(VT.getRawBits()); 7823 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7824 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7825 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7826 void *IP = nullptr; 7827 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7828 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7829 return SDValue(E, 0); 7830 } 7831 auto *N = 7832 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7833 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7834 createOperands(N, Ops); 7835 7836 CSEMap.InsertNode(N, IP); 7837 InsertNode(N); 7838 SDValue V(N, 0); 7839 NewSDValueDbgMsg(V, "Creating new node: ", this); 7840 return V; 7841 } 7842 7843 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7844 SDValue Val, SDValue Ptr, SDValue Mask, 7845 SDValue EVL, MachinePointerInfo PtrInfo, 7846 EVT SVT, Align Alignment, 7847 MachineMemOperand::Flags MMOFlags, 7848 const AAMDNodes &AAInfo, 7849 bool IsCompressing) { 7850 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7851 7852 MMOFlags |= MachineMemOperand::MOStore; 7853 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7854 7855 if (PtrInfo.V.isNull()) 7856 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7857 7858 MachineFunction &MF = getMachineFunction(); 7859 MachineMemOperand *MMO = MF.getMachineMemOperand( 7860 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7861 Alignment, AAInfo); 7862 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7863 IsCompressing); 7864 } 7865 7866 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7867 SDValue Val, SDValue Ptr, SDValue Mask, 7868 SDValue EVL, EVT SVT, 7869 MachineMemOperand *MMO, 7870 bool IsCompressing) { 7871 EVT VT = Val.getValueType(); 7872 7873 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7874 if (VT == SVT) 7875 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7876 7877 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7878 "Should only be a truncating store, not extending!"); 7879 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7880 assert(VT.isVector() == SVT.isVector() && 7881 "Cannot use trunc store to convert to or from a vector!"); 7882 assert((!VT.isVector() || 7883 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7884 "Cannot use trunc store to change the number of vector elements!"); 7885 7886 SDVTList VTs = getVTList(MVT::Other); 7887 SDValue Undef = getUNDEF(Ptr.getValueType()); 7888 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7889 FoldingSetNodeID ID; 7890 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7891 ID.AddInteger(SVT.getRawBits()); 7892 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7893 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7894 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7895 void *IP = nullptr; 7896 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7897 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7898 return SDValue(E, 0); 7899 } 7900 auto *N = 7901 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7902 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7903 createOperands(N, Ops); 7904 7905 CSEMap.InsertNode(N, IP); 7906 InsertNode(N); 7907 SDValue V(N, 0); 7908 NewSDValueDbgMsg(V, "Creating new node: ", this); 7909 return V; 7910 } 7911 7912 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7913 SDValue Base, SDValue Offset, 7914 ISD::MemIndexedMode AM) { 7915 auto *ST = cast<VPStoreSDNode>(OrigStore); 7916 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7917 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7918 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7919 Offset, ST->getMask(), ST->getVectorLength()}; 7920 FoldingSetNodeID ID; 7921 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7922 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7923 ID.AddInteger(ST->getRawSubclassData()); 7924 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7925 void *IP = nullptr; 7926 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7927 return SDValue(E, 0); 7928 7929 auto *N = newSDNode<VPStoreSDNode>( 7930 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7931 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7932 createOperands(N, Ops); 7933 7934 CSEMap.InsertNode(N, IP); 7935 InsertNode(N); 7936 SDValue V(N, 0); 7937 NewSDValueDbgMsg(V, "Creating new node: ", this); 7938 return V; 7939 } 7940 7941 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7942 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7943 ISD::MemIndexType IndexType) { 7944 assert(Ops.size() == 6 && "Incompatible number of operands"); 7945 7946 FoldingSetNodeID ID; 7947 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7948 ID.AddInteger(VT.getRawBits()); 7949 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7950 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7951 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7952 void *IP = nullptr; 7953 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7954 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7955 return SDValue(E, 0); 7956 } 7957 7958 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7959 VT, MMO, IndexType); 7960 createOperands(N, Ops); 7961 7962 assert(N->getMask().getValueType().getVectorElementCount() == 7963 N->getValueType(0).getVectorElementCount() && 7964 "Vector width mismatch between mask and data"); 7965 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7966 N->getValueType(0).getVectorElementCount().isScalable() && 7967 "Scalable flags of index and data do not match"); 7968 assert(ElementCount::isKnownGE( 7969 N->getIndex().getValueType().getVectorElementCount(), 7970 N->getValueType(0).getVectorElementCount()) && 7971 "Vector width mismatch between index and data"); 7972 assert(isa<ConstantSDNode>(N->getScale()) && 7973 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7974 "Scale should be a constant power of 2"); 7975 7976 CSEMap.InsertNode(N, IP); 7977 InsertNode(N); 7978 SDValue V(N, 0); 7979 NewSDValueDbgMsg(V, "Creating new node: ", this); 7980 return V; 7981 } 7982 7983 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7984 ArrayRef<SDValue> Ops, 7985 MachineMemOperand *MMO, 7986 ISD::MemIndexType IndexType) { 7987 assert(Ops.size() == 7 && "Incompatible number of operands"); 7988 7989 FoldingSetNodeID ID; 7990 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7991 ID.AddInteger(VT.getRawBits()); 7992 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 7993 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7994 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7995 void *IP = nullptr; 7996 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7997 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 7998 return SDValue(E, 0); 7999 } 8000 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8001 VT, MMO, IndexType); 8002 createOperands(N, Ops); 8003 8004 assert(N->getMask().getValueType().getVectorElementCount() == 8005 N->getValue().getValueType().getVectorElementCount() && 8006 "Vector width mismatch between mask and data"); 8007 assert( 8008 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8009 N->getValue().getValueType().getVectorElementCount().isScalable() && 8010 "Scalable flags of index and data do not match"); 8011 assert(ElementCount::isKnownGE( 8012 N->getIndex().getValueType().getVectorElementCount(), 8013 N->getValue().getValueType().getVectorElementCount()) && 8014 "Vector width mismatch between index and data"); 8015 assert(isa<ConstantSDNode>(N->getScale()) && 8016 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8017 "Scale should be a constant power of 2"); 8018 8019 CSEMap.InsertNode(N, IP); 8020 InsertNode(N); 8021 SDValue V(N, 0); 8022 NewSDValueDbgMsg(V, "Creating new node: ", this); 8023 return V; 8024 } 8025 8026 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8027 SDValue Base, SDValue Offset, SDValue Mask, 8028 SDValue PassThru, EVT MemVT, 8029 MachineMemOperand *MMO, 8030 ISD::MemIndexedMode AM, 8031 ISD::LoadExtType ExtTy, bool isExpanding) { 8032 bool Indexed = AM != ISD::UNINDEXED; 8033 assert((Indexed || Offset.isUndef()) && 8034 "Unindexed masked load with an offset!"); 8035 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8036 : getVTList(VT, MVT::Other); 8037 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8038 FoldingSetNodeID ID; 8039 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8040 ID.AddInteger(MemVT.getRawBits()); 8041 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8042 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8043 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8044 void *IP = nullptr; 8045 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8046 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8047 return SDValue(E, 0); 8048 } 8049 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8050 AM, ExtTy, isExpanding, MemVT, MMO); 8051 createOperands(N, Ops); 8052 8053 CSEMap.InsertNode(N, IP); 8054 InsertNode(N); 8055 SDValue V(N, 0); 8056 NewSDValueDbgMsg(V, "Creating new node: ", this); 8057 return V; 8058 } 8059 8060 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8061 SDValue Base, SDValue Offset, 8062 ISD::MemIndexedMode AM) { 8063 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8064 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8065 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8066 Offset, LD->getMask(), LD->getPassThru(), 8067 LD->getMemoryVT(), LD->getMemOperand(), AM, 8068 LD->getExtensionType(), LD->isExpandingLoad()); 8069 } 8070 8071 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8072 SDValue Val, SDValue Base, SDValue Offset, 8073 SDValue Mask, EVT MemVT, 8074 MachineMemOperand *MMO, 8075 ISD::MemIndexedMode AM, bool IsTruncating, 8076 bool IsCompressing) { 8077 assert(Chain.getValueType() == MVT::Other && 8078 "Invalid chain type"); 8079 bool Indexed = AM != ISD::UNINDEXED; 8080 assert((Indexed || Offset.isUndef()) && 8081 "Unindexed masked store with an offset!"); 8082 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8083 : getVTList(MVT::Other); 8084 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8085 FoldingSetNodeID ID; 8086 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8087 ID.AddInteger(MemVT.getRawBits()); 8088 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8089 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8090 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8091 void *IP = nullptr; 8092 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8093 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8094 return SDValue(E, 0); 8095 } 8096 auto *N = 8097 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8098 IsTruncating, IsCompressing, MemVT, MMO); 8099 createOperands(N, Ops); 8100 8101 CSEMap.InsertNode(N, IP); 8102 InsertNode(N); 8103 SDValue V(N, 0); 8104 NewSDValueDbgMsg(V, "Creating new node: ", this); 8105 return V; 8106 } 8107 8108 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8109 SDValue Base, SDValue Offset, 8110 ISD::MemIndexedMode AM) { 8111 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8112 assert(ST->getOffset().isUndef() && 8113 "Masked store is already a indexed store!"); 8114 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8115 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8116 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8117 } 8118 8119 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8120 ArrayRef<SDValue> Ops, 8121 MachineMemOperand *MMO, 8122 ISD::MemIndexType IndexType, 8123 ISD::LoadExtType ExtTy) { 8124 assert(Ops.size() == 6 && "Incompatible number of operands"); 8125 8126 FoldingSetNodeID ID; 8127 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8128 ID.AddInteger(MemVT.getRawBits()); 8129 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8130 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8131 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8132 void *IP = nullptr; 8133 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8134 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8135 return SDValue(E, 0); 8136 } 8137 8138 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8139 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8140 VTs, MemVT, MMO, IndexType, ExtTy); 8141 createOperands(N, Ops); 8142 8143 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8144 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8145 assert(N->getMask().getValueType().getVectorElementCount() == 8146 N->getValueType(0).getVectorElementCount() && 8147 "Vector width mismatch between mask and data"); 8148 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8149 N->getValueType(0).getVectorElementCount().isScalable() && 8150 "Scalable flags of index and data do not match"); 8151 assert(ElementCount::isKnownGE( 8152 N->getIndex().getValueType().getVectorElementCount(), 8153 N->getValueType(0).getVectorElementCount()) && 8154 "Vector width mismatch between index and data"); 8155 assert(isa<ConstantSDNode>(N->getScale()) && 8156 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8157 "Scale should be a constant power of 2"); 8158 8159 CSEMap.InsertNode(N, IP); 8160 InsertNode(N); 8161 SDValue V(N, 0); 8162 NewSDValueDbgMsg(V, "Creating new node: ", this); 8163 return V; 8164 } 8165 8166 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8167 ArrayRef<SDValue> Ops, 8168 MachineMemOperand *MMO, 8169 ISD::MemIndexType IndexType, 8170 bool IsTrunc) { 8171 assert(Ops.size() == 6 && "Incompatible number of operands"); 8172 8173 FoldingSetNodeID ID; 8174 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8175 ID.AddInteger(MemVT.getRawBits()); 8176 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8177 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8178 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8179 void *IP = nullptr; 8180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8181 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8182 return SDValue(E, 0); 8183 } 8184 8185 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8186 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8187 VTs, MemVT, MMO, IndexType, IsTrunc); 8188 createOperands(N, Ops); 8189 8190 assert(N->getMask().getValueType().getVectorElementCount() == 8191 N->getValue().getValueType().getVectorElementCount() && 8192 "Vector width mismatch between mask and data"); 8193 assert( 8194 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8195 N->getValue().getValueType().getVectorElementCount().isScalable() && 8196 "Scalable flags of index and data do not match"); 8197 assert(ElementCount::isKnownGE( 8198 N->getIndex().getValueType().getVectorElementCount(), 8199 N->getValue().getValueType().getVectorElementCount()) && 8200 "Vector width mismatch between index and data"); 8201 assert(isa<ConstantSDNode>(N->getScale()) && 8202 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8203 "Scale should be a constant power of 2"); 8204 8205 CSEMap.InsertNode(N, IP); 8206 InsertNode(N); 8207 SDValue V(N, 0); 8208 NewSDValueDbgMsg(V, "Creating new node: ", this); 8209 return V; 8210 } 8211 8212 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8213 // select undef, T, F --> T (if T is a constant), otherwise F 8214 // select, ?, undef, F --> F 8215 // select, ?, T, undef --> T 8216 if (Cond.isUndef()) 8217 return isConstantValueOfAnyType(T) ? T : F; 8218 if (T.isUndef()) 8219 return F; 8220 if (F.isUndef()) 8221 return T; 8222 8223 // select true, T, F --> T 8224 // select false, T, F --> F 8225 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8226 return CondC->isZero() ? F : T; 8227 8228 // TODO: This should simplify VSELECT with constant condition using something 8229 // like this (but check boolean contents to be complete?): 8230 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8231 // return T; 8232 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8233 // return F; 8234 8235 // select ?, T, T --> T 8236 if (T == F) 8237 return T; 8238 8239 return SDValue(); 8240 } 8241 8242 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8243 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8244 if (X.isUndef()) 8245 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8246 // shift X, undef --> undef (because it may shift by the bitwidth) 8247 if (Y.isUndef()) 8248 return getUNDEF(X.getValueType()); 8249 8250 // shift 0, Y --> 0 8251 // shift X, 0 --> X 8252 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8253 return X; 8254 8255 // shift X, C >= bitwidth(X) --> undef 8256 // All vector elements must be too big (or undef) to avoid partial undefs. 8257 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8258 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8259 }; 8260 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8261 return getUNDEF(X.getValueType()); 8262 8263 return SDValue(); 8264 } 8265 8266 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8267 SDNodeFlags Flags) { 8268 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8269 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8270 // operation is poison. That result can be relaxed to undef. 8271 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8272 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8273 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8274 (YC && YC->getValueAPF().isNaN()); 8275 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8276 (YC && YC->getValueAPF().isInfinity()); 8277 8278 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8279 return getUNDEF(X.getValueType()); 8280 8281 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8282 return getUNDEF(X.getValueType()); 8283 8284 if (!YC) 8285 return SDValue(); 8286 8287 // X + -0.0 --> X 8288 if (Opcode == ISD::FADD) 8289 if (YC->getValueAPF().isNegZero()) 8290 return X; 8291 8292 // X - +0.0 --> X 8293 if (Opcode == ISD::FSUB) 8294 if (YC->getValueAPF().isPosZero()) 8295 return X; 8296 8297 // X * 1.0 --> X 8298 // X / 1.0 --> X 8299 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8300 if (YC->getValueAPF().isExactlyValue(1.0)) 8301 return X; 8302 8303 // X * 0.0 --> 0.0 8304 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8305 if (YC->getValueAPF().isZero()) 8306 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8307 8308 return SDValue(); 8309 } 8310 8311 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8312 SDValue Ptr, SDValue SV, unsigned Align) { 8313 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8314 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8315 } 8316 8317 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8318 ArrayRef<SDUse> Ops) { 8319 switch (Ops.size()) { 8320 case 0: return getNode(Opcode, DL, VT); 8321 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8322 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8323 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8324 default: break; 8325 } 8326 8327 // Copy from an SDUse array into an SDValue array for use with 8328 // the regular getNode logic. 8329 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8330 return getNode(Opcode, DL, VT, NewOps); 8331 } 8332 8333 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8334 ArrayRef<SDValue> Ops) { 8335 SDNodeFlags Flags; 8336 if (Inserter) 8337 Flags = Inserter->getFlags(); 8338 return getNode(Opcode, DL, VT, Ops, Flags); 8339 } 8340 8341 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8342 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8343 unsigned NumOps = Ops.size(); 8344 switch (NumOps) { 8345 case 0: return getNode(Opcode, DL, VT); 8346 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8347 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8348 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8349 default: break; 8350 } 8351 8352 #ifndef NDEBUG 8353 for (auto &Op : Ops) 8354 assert(Op.getOpcode() != ISD::DELETED_NODE && 8355 "Operand is DELETED_NODE!"); 8356 #endif 8357 8358 switch (Opcode) { 8359 default: break; 8360 case ISD::BUILD_VECTOR: 8361 // Attempt to simplify BUILD_VECTOR. 8362 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8363 return V; 8364 break; 8365 case ISD::CONCAT_VECTORS: 8366 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8367 return V; 8368 break; 8369 case ISD::SELECT_CC: 8370 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8371 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8372 "LHS and RHS of condition must have same type!"); 8373 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8374 "True and False arms of SelectCC must have same type!"); 8375 assert(Ops[2].getValueType() == VT && 8376 "select_cc node must be of same type as true and false value!"); 8377 break; 8378 case ISD::BR_CC: 8379 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8380 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8381 "LHS/RHS of comparison should match types!"); 8382 break; 8383 } 8384 8385 // Memoize nodes. 8386 SDNode *N; 8387 SDVTList VTs = getVTList(VT); 8388 8389 if (VT != MVT::Glue) { 8390 FoldingSetNodeID ID; 8391 AddNodeIDNode(ID, Opcode, VTs, Ops); 8392 void *IP = nullptr; 8393 8394 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8395 return SDValue(E, 0); 8396 8397 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8398 createOperands(N, Ops); 8399 8400 CSEMap.InsertNode(N, IP); 8401 } else { 8402 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8403 createOperands(N, Ops); 8404 } 8405 8406 N->setFlags(Flags); 8407 InsertNode(N); 8408 SDValue V(N, 0); 8409 NewSDValueDbgMsg(V, "Creating new node: ", this); 8410 return V; 8411 } 8412 8413 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8414 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8415 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8416 } 8417 8418 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8419 ArrayRef<SDValue> Ops) { 8420 SDNodeFlags Flags; 8421 if (Inserter) 8422 Flags = Inserter->getFlags(); 8423 return getNode(Opcode, DL, VTList, Ops, Flags); 8424 } 8425 8426 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8427 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8428 if (VTList.NumVTs == 1) 8429 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8430 8431 #ifndef NDEBUG 8432 for (auto &Op : Ops) 8433 assert(Op.getOpcode() != ISD::DELETED_NODE && 8434 "Operand is DELETED_NODE!"); 8435 #endif 8436 8437 switch (Opcode) { 8438 case ISD::STRICT_FP_EXTEND: 8439 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8440 "Invalid STRICT_FP_EXTEND!"); 8441 assert(VTList.VTs[0].isFloatingPoint() && 8442 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8443 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8444 "STRICT_FP_EXTEND result type should be vector iff the operand " 8445 "type is vector!"); 8446 assert((!VTList.VTs[0].isVector() || 8447 VTList.VTs[0].getVectorNumElements() == 8448 Ops[1].getValueType().getVectorNumElements()) && 8449 "Vector element count mismatch!"); 8450 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8451 "Invalid fpext node, dst <= src!"); 8452 break; 8453 case ISD::STRICT_FP_ROUND: 8454 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8455 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8456 "STRICT_FP_ROUND result type should be vector iff the operand " 8457 "type is vector!"); 8458 assert((!VTList.VTs[0].isVector() || 8459 VTList.VTs[0].getVectorNumElements() == 8460 Ops[1].getValueType().getVectorNumElements()) && 8461 "Vector element count mismatch!"); 8462 assert(VTList.VTs[0].isFloatingPoint() && 8463 Ops[1].getValueType().isFloatingPoint() && 8464 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8465 isa<ConstantSDNode>(Ops[2]) && 8466 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8467 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8468 "Invalid STRICT_FP_ROUND!"); 8469 break; 8470 #if 0 8471 // FIXME: figure out how to safely handle things like 8472 // int foo(int x) { return 1 << (x & 255); } 8473 // int bar() { return foo(256); } 8474 case ISD::SRA_PARTS: 8475 case ISD::SRL_PARTS: 8476 case ISD::SHL_PARTS: 8477 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8478 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8479 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8480 else if (N3.getOpcode() == ISD::AND) 8481 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8482 // If the and is only masking out bits that cannot effect the shift, 8483 // eliminate the and. 8484 unsigned NumBits = VT.getScalarSizeInBits()*2; 8485 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8486 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8487 } 8488 break; 8489 #endif 8490 } 8491 8492 // Memoize the node unless it returns a flag. 8493 SDNode *N; 8494 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8495 FoldingSetNodeID ID; 8496 AddNodeIDNode(ID, Opcode, VTList, Ops); 8497 void *IP = nullptr; 8498 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8499 return SDValue(E, 0); 8500 8501 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8502 createOperands(N, Ops); 8503 CSEMap.InsertNode(N, IP); 8504 } else { 8505 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8506 createOperands(N, Ops); 8507 } 8508 8509 N->setFlags(Flags); 8510 InsertNode(N); 8511 SDValue V(N, 0); 8512 NewSDValueDbgMsg(V, "Creating new node: ", this); 8513 return V; 8514 } 8515 8516 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8517 SDVTList VTList) { 8518 return getNode(Opcode, DL, VTList, None); 8519 } 8520 8521 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8522 SDValue N1) { 8523 SDValue Ops[] = { N1 }; 8524 return getNode(Opcode, DL, VTList, Ops); 8525 } 8526 8527 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8528 SDValue N1, SDValue N2) { 8529 SDValue Ops[] = { N1, N2 }; 8530 return getNode(Opcode, DL, VTList, Ops); 8531 } 8532 8533 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8534 SDValue N1, SDValue N2, SDValue N3) { 8535 SDValue Ops[] = { N1, N2, N3 }; 8536 return getNode(Opcode, DL, VTList, Ops); 8537 } 8538 8539 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8540 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8541 SDValue Ops[] = { N1, N2, N3, N4 }; 8542 return getNode(Opcode, DL, VTList, Ops); 8543 } 8544 8545 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8546 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8547 SDValue N5) { 8548 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8549 return getNode(Opcode, DL, VTList, Ops); 8550 } 8551 8552 SDVTList SelectionDAG::getVTList(EVT VT) { 8553 return makeVTList(SDNode::getValueTypeList(VT), 1); 8554 } 8555 8556 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8557 FoldingSetNodeID ID; 8558 ID.AddInteger(2U); 8559 ID.AddInteger(VT1.getRawBits()); 8560 ID.AddInteger(VT2.getRawBits()); 8561 8562 void *IP = nullptr; 8563 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8564 if (!Result) { 8565 EVT *Array = Allocator.Allocate<EVT>(2); 8566 Array[0] = VT1; 8567 Array[1] = VT2; 8568 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8569 VTListMap.InsertNode(Result, IP); 8570 } 8571 return Result->getSDVTList(); 8572 } 8573 8574 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8575 FoldingSetNodeID ID; 8576 ID.AddInteger(3U); 8577 ID.AddInteger(VT1.getRawBits()); 8578 ID.AddInteger(VT2.getRawBits()); 8579 ID.AddInteger(VT3.getRawBits()); 8580 8581 void *IP = nullptr; 8582 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8583 if (!Result) { 8584 EVT *Array = Allocator.Allocate<EVT>(3); 8585 Array[0] = VT1; 8586 Array[1] = VT2; 8587 Array[2] = VT3; 8588 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8589 VTListMap.InsertNode(Result, IP); 8590 } 8591 return Result->getSDVTList(); 8592 } 8593 8594 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8595 FoldingSetNodeID ID; 8596 ID.AddInteger(4U); 8597 ID.AddInteger(VT1.getRawBits()); 8598 ID.AddInteger(VT2.getRawBits()); 8599 ID.AddInteger(VT3.getRawBits()); 8600 ID.AddInteger(VT4.getRawBits()); 8601 8602 void *IP = nullptr; 8603 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8604 if (!Result) { 8605 EVT *Array = Allocator.Allocate<EVT>(4); 8606 Array[0] = VT1; 8607 Array[1] = VT2; 8608 Array[2] = VT3; 8609 Array[3] = VT4; 8610 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8611 VTListMap.InsertNode(Result, IP); 8612 } 8613 return Result->getSDVTList(); 8614 } 8615 8616 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8617 unsigned NumVTs = VTs.size(); 8618 FoldingSetNodeID ID; 8619 ID.AddInteger(NumVTs); 8620 for (unsigned index = 0; index < NumVTs; index++) { 8621 ID.AddInteger(VTs[index].getRawBits()); 8622 } 8623 8624 void *IP = nullptr; 8625 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8626 if (!Result) { 8627 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8628 llvm::copy(VTs, Array); 8629 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8630 VTListMap.InsertNode(Result, IP); 8631 } 8632 return Result->getSDVTList(); 8633 } 8634 8635 8636 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8637 /// specified operands. If the resultant node already exists in the DAG, 8638 /// this does not modify the specified node, instead it returns the node that 8639 /// already exists. If the resultant node does not exist in the DAG, the 8640 /// input node is returned. As a degenerate case, if you specify the same 8641 /// input operands as the node already has, the input node is returned. 8642 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8643 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8644 8645 // Check to see if there is no change. 8646 if (Op == N->getOperand(0)) return N; 8647 8648 // See if the modified node already exists. 8649 void *InsertPos = nullptr; 8650 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8651 return Existing; 8652 8653 // Nope it doesn't. Remove the node from its current place in the maps. 8654 if (InsertPos) 8655 if (!RemoveNodeFromCSEMaps(N)) 8656 InsertPos = nullptr; 8657 8658 // Now we update the operands. 8659 N->OperandList[0].set(Op); 8660 8661 updateDivergence(N); 8662 // If this gets put into a CSE map, add it. 8663 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8664 return N; 8665 } 8666 8667 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8668 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8669 8670 // Check to see if there is no change. 8671 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8672 return N; // No operands changed, just return the input node. 8673 8674 // See if the modified node already exists. 8675 void *InsertPos = nullptr; 8676 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8677 return Existing; 8678 8679 // Nope it doesn't. Remove the node from its current place in the maps. 8680 if (InsertPos) 8681 if (!RemoveNodeFromCSEMaps(N)) 8682 InsertPos = nullptr; 8683 8684 // Now we update the operands. 8685 if (N->OperandList[0] != Op1) 8686 N->OperandList[0].set(Op1); 8687 if (N->OperandList[1] != Op2) 8688 N->OperandList[1].set(Op2); 8689 8690 updateDivergence(N); 8691 // If this gets put into a CSE map, add it. 8692 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8693 return N; 8694 } 8695 8696 SDNode *SelectionDAG:: 8697 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8698 SDValue Ops[] = { Op1, Op2, Op3 }; 8699 return UpdateNodeOperands(N, Ops); 8700 } 8701 8702 SDNode *SelectionDAG:: 8703 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8704 SDValue Op3, SDValue Op4) { 8705 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8706 return UpdateNodeOperands(N, Ops); 8707 } 8708 8709 SDNode *SelectionDAG:: 8710 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8711 SDValue Op3, SDValue Op4, SDValue Op5) { 8712 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8713 return UpdateNodeOperands(N, Ops); 8714 } 8715 8716 SDNode *SelectionDAG:: 8717 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8718 unsigned NumOps = Ops.size(); 8719 assert(N->getNumOperands() == NumOps && 8720 "Update with wrong number of operands"); 8721 8722 // If no operands changed just return the input node. 8723 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8724 return N; 8725 8726 // See if the modified node already exists. 8727 void *InsertPos = nullptr; 8728 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8729 return Existing; 8730 8731 // Nope it doesn't. Remove the node from its current place in the maps. 8732 if (InsertPos) 8733 if (!RemoveNodeFromCSEMaps(N)) 8734 InsertPos = nullptr; 8735 8736 // Now we update the operands. 8737 for (unsigned i = 0; i != NumOps; ++i) 8738 if (N->OperandList[i] != Ops[i]) 8739 N->OperandList[i].set(Ops[i]); 8740 8741 updateDivergence(N); 8742 // If this gets put into a CSE map, add it. 8743 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8744 return N; 8745 } 8746 8747 /// DropOperands - Release the operands and set this node to have 8748 /// zero operands. 8749 void SDNode::DropOperands() { 8750 // Unlike the code in MorphNodeTo that does this, we don't need to 8751 // watch for dead nodes here. 8752 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8753 SDUse &Use = *I++; 8754 Use.set(SDValue()); 8755 } 8756 } 8757 8758 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8759 ArrayRef<MachineMemOperand *> NewMemRefs) { 8760 if (NewMemRefs.empty()) { 8761 N->clearMemRefs(); 8762 return; 8763 } 8764 8765 // Check if we can avoid allocating by storing a single reference directly. 8766 if (NewMemRefs.size() == 1) { 8767 N->MemRefs = NewMemRefs[0]; 8768 N->NumMemRefs = 1; 8769 return; 8770 } 8771 8772 MachineMemOperand **MemRefsBuffer = 8773 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8774 llvm::copy(NewMemRefs, MemRefsBuffer); 8775 N->MemRefs = MemRefsBuffer; 8776 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8777 } 8778 8779 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8780 /// machine opcode. 8781 /// 8782 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8783 EVT VT) { 8784 SDVTList VTs = getVTList(VT); 8785 return SelectNodeTo(N, MachineOpc, VTs, None); 8786 } 8787 8788 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8789 EVT VT, SDValue Op1) { 8790 SDVTList VTs = getVTList(VT); 8791 SDValue Ops[] = { Op1 }; 8792 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8793 } 8794 8795 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8796 EVT VT, SDValue Op1, 8797 SDValue Op2) { 8798 SDVTList VTs = getVTList(VT); 8799 SDValue Ops[] = { Op1, Op2 }; 8800 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8801 } 8802 8803 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8804 EVT VT, SDValue Op1, 8805 SDValue Op2, SDValue Op3) { 8806 SDVTList VTs = getVTList(VT); 8807 SDValue Ops[] = { Op1, Op2, Op3 }; 8808 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8809 } 8810 8811 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8812 EVT VT, ArrayRef<SDValue> Ops) { 8813 SDVTList VTs = getVTList(VT); 8814 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8815 } 8816 8817 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8818 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8819 SDVTList VTs = getVTList(VT1, VT2); 8820 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8821 } 8822 8823 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8824 EVT VT1, EVT VT2) { 8825 SDVTList VTs = getVTList(VT1, VT2); 8826 return SelectNodeTo(N, MachineOpc, VTs, None); 8827 } 8828 8829 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8830 EVT VT1, EVT VT2, EVT VT3, 8831 ArrayRef<SDValue> Ops) { 8832 SDVTList VTs = getVTList(VT1, VT2, VT3); 8833 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8834 } 8835 8836 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8837 EVT VT1, EVT VT2, 8838 SDValue Op1, SDValue Op2) { 8839 SDVTList VTs = getVTList(VT1, VT2); 8840 SDValue Ops[] = { Op1, Op2 }; 8841 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8842 } 8843 8844 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8845 SDVTList VTs,ArrayRef<SDValue> Ops) { 8846 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8847 // Reset the NodeID to -1. 8848 New->setNodeId(-1); 8849 if (New != N) { 8850 ReplaceAllUsesWith(N, New); 8851 RemoveDeadNode(N); 8852 } 8853 return New; 8854 } 8855 8856 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8857 /// the line number information on the merged node since it is not possible to 8858 /// preserve the information that operation is associated with multiple lines. 8859 /// This will make the debugger working better at -O0, were there is a higher 8860 /// probability having other instructions associated with that line. 8861 /// 8862 /// For IROrder, we keep the smaller of the two 8863 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8864 DebugLoc NLoc = N->getDebugLoc(); 8865 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8866 N->setDebugLoc(DebugLoc()); 8867 } 8868 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8869 N->setIROrder(Order); 8870 return N; 8871 } 8872 8873 /// MorphNodeTo - This *mutates* the specified node to have the specified 8874 /// return type, opcode, and operands. 8875 /// 8876 /// Note that MorphNodeTo returns the resultant node. If there is already a 8877 /// node of the specified opcode and operands, it returns that node instead of 8878 /// the current one. Note that the SDLoc need not be the same. 8879 /// 8880 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8881 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8882 /// node, and because it doesn't require CSE recalculation for any of 8883 /// the node's users. 8884 /// 8885 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8886 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8887 /// the legalizer which maintain worklists that would need to be updated when 8888 /// deleting things. 8889 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8890 SDVTList VTs, ArrayRef<SDValue> Ops) { 8891 // If an identical node already exists, use it. 8892 void *IP = nullptr; 8893 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8894 FoldingSetNodeID ID; 8895 AddNodeIDNode(ID, Opc, VTs, Ops); 8896 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8897 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8898 } 8899 8900 if (!RemoveNodeFromCSEMaps(N)) 8901 IP = nullptr; 8902 8903 // Start the morphing. 8904 N->NodeType = Opc; 8905 N->ValueList = VTs.VTs; 8906 N->NumValues = VTs.NumVTs; 8907 8908 // Clear the operands list, updating used nodes to remove this from their 8909 // use list. Keep track of any operands that become dead as a result. 8910 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8911 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8912 SDUse &Use = *I++; 8913 SDNode *Used = Use.getNode(); 8914 Use.set(SDValue()); 8915 if (Used->use_empty()) 8916 DeadNodeSet.insert(Used); 8917 } 8918 8919 // For MachineNode, initialize the memory references information. 8920 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8921 MN->clearMemRefs(); 8922 8923 // Swap for an appropriately sized array from the recycler. 8924 removeOperands(N); 8925 createOperands(N, Ops); 8926 8927 // Delete any nodes that are still dead after adding the uses for the 8928 // new operands. 8929 if (!DeadNodeSet.empty()) { 8930 SmallVector<SDNode *, 16> DeadNodes; 8931 for (SDNode *N : DeadNodeSet) 8932 if (N->use_empty()) 8933 DeadNodes.push_back(N); 8934 RemoveDeadNodes(DeadNodes); 8935 } 8936 8937 if (IP) 8938 CSEMap.InsertNode(N, IP); // Memoize the new node. 8939 return N; 8940 } 8941 8942 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8943 unsigned OrigOpc = Node->getOpcode(); 8944 unsigned NewOpc; 8945 switch (OrigOpc) { 8946 default: 8947 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8948 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8949 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8950 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8951 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8952 #include "llvm/IR/ConstrainedOps.def" 8953 } 8954 8955 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8956 8957 // We're taking this node out of the chain, so we need to re-link things. 8958 SDValue InputChain = Node->getOperand(0); 8959 SDValue OutputChain = SDValue(Node, 1); 8960 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8961 8962 SmallVector<SDValue, 3> Ops; 8963 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8964 Ops.push_back(Node->getOperand(i)); 8965 8966 SDVTList VTs = getVTList(Node->getValueType(0)); 8967 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8968 8969 // MorphNodeTo can operate in two ways: if an existing node with the 8970 // specified operands exists, it can just return it. Otherwise, it 8971 // updates the node in place to have the requested operands. 8972 if (Res == Node) { 8973 // If we updated the node in place, reset the node ID. To the isel, 8974 // this should be just like a newly allocated machine node. 8975 Res->setNodeId(-1); 8976 } else { 8977 ReplaceAllUsesWith(Node, Res); 8978 RemoveDeadNode(Node); 8979 } 8980 8981 return Res; 8982 } 8983 8984 /// getMachineNode - These are used for target selectors to create a new node 8985 /// with specified return type(s), MachineInstr opcode, and operands. 8986 /// 8987 /// Note that getMachineNode returns the resultant node. If there is already a 8988 /// node of the specified opcode and operands, it returns that node instead of 8989 /// the current one. 8990 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8991 EVT VT) { 8992 SDVTList VTs = getVTList(VT); 8993 return getMachineNode(Opcode, dl, VTs, None); 8994 } 8995 8996 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8997 EVT VT, SDValue Op1) { 8998 SDVTList VTs = getVTList(VT); 8999 SDValue Ops[] = { Op1 }; 9000 return getMachineNode(Opcode, dl, VTs, Ops); 9001 } 9002 9003 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9004 EVT VT, SDValue Op1, SDValue Op2) { 9005 SDVTList VTs = getVTList(VT); 9006 SDValue Ops[] = { Op1, Op2 }; 9007 return getMachineNode(Opcode, dl, VTs, Ops); 9008 } 9009 9010 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9011 EVT VT, SDValue Op1, SDValue Op2, 9012 SDValue Op3) { 9013 SDVTList VTs = getVTList(VT); 9014 SDValue Ops[] = { Op1, Op2, Op3 }; 9015 return getMachineNode(Opcode, dl, VTs, Ops); 9016 } 9017 9018 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9019 EVT VT, ArrayRef<SDValue> Ops) { 9020 SDVTList VTs = getVTList(VT); 9021 return getMachineNode(Opcode, dl, VTs, Ops); 9022 } 9023 9024 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9025 EVT VT1, EVT VT2, SDValue Op1, 9026 SDValue Op2) { 9027 SDVTList VTs = getVTList(VT1, VT2); 9028 SDValue Ops[] = { Op1, Op2 }; 9029 return getMachineNode(Opcode, dl, VTs, Ops); 9030 } 9031 9032 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9033 EVT VT1, EVT VT2, SDValue Op1, 9034 SDValue Op2, SDValue Op3) { 9035 SDVTList VTs = getVTList(VT1, VT2); 9036 SDValue Ops[] = { Op1, Op2, Op3 }; 9037 return getMachineNode(Opcode, dl, VTs, Ops); 9038 } 9039 9040 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9041 EVT VT1, EVT VT2, 9042 ArrayRef<SDValue> Ops) { 9043 SDVTList VTs = getVTList(VT1, VT2); 9044 return getMachineNode(Opcode, dl, VTs, Ops); 9045 } 9046 9047 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9048 EVT VT1, EVT VT2, EVT VT3, 9049 SDValue Op1, SDValue Op2) { 9050 SDVTList VTs = getVTList(VT1, VT2, VT3); 9051 SDValue Ops[] = { Op1, Op2 }; 9052 return getMachineNode(Opcode, dl, VTs, Ops); 9053 } 9054 9055 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9056 EVT VT1, EVT VT2, EVT VT3, 9057 SDValue Op1, SDValue Op2, 9058 SDValue Op3) { 9059 SDVTList VTs = getVTList(VT1, VT2, VT3); 9060 SDValue Ops[] = { Op1, Op2, Op3 }; 9061 return getMachineNode(Opcode, dl, VTs, Ops); 9062 } 9063 9064 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9065 EVT VT1, EVT VT2, EVT VT3, 9066 ArrayRef<SDValue> Ops) { 9067 SDVTList VTs = getVTList(VT1, VT2, VT3); 9068 return getMachineNode(Opcode, dl, VTs, Ops); 9069 } 9070 9071 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9072 ArrayRef<EVT> ResultTys, 9073 ArrayRef<SDValue> Ops) { 9074 SDVTList VTs = getVTList(ResultTys); 9075 return getMachineNode(Opcode, dl, VTs, Ops); 9076 } 9077 9078 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9079 SDVTList VTs, 9080 ArrayRef<SDValue> Ops) { 9081 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9082 MachineSDNode *N; 9083 void *IP = nullptr; 9084 9085 if (DoCSE) { 9086 FoldingSetNodeID ID; 9087 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9088 IP = nullptr; 9089 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9090 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9091 } 9092 } 9093 9094 // Allocate a new MachineSDNode. 9095 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9096 createOperands(N, Ops); 9097 9098 if (DoCSE) 9099 CSEMap.InsertNode(N, IP); 9100 9101 InsertNode(N); 9102 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9103 return N; 9104 } 9105 9106 /// getTargetExtractSubreg - A convenience function for creating 9107 /// TargetOpcode::EXTRACT_SUBREG nodes. 9108 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9109 SDValue Operand) { 9110 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9111 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9112 VT, Operand, SRIdxVal); 9113 return SDValue(Subreg, 0); 9114 } 9115 9116 /// getTargetInsertSubreg - A convenience function for creating 9117 /// TargetOpcode::INSERT_SUBREG nodes. 9118 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9119 SDValue Operand, SDValue Subreg) { 9120 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9121 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9122 VT, Operand, Subreg, SRIdxVal); 9123 return SDValue(Result, 0); 9124 } 9125 9126 /// getNodeIfExists - Get the specified node if it's already available, or 9127 /// else return NULL. 9128 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9129 ArrayRef<SDValue> Ops) { 9130 SDNodeFlags Flags; 9131 if (Inserter) 9132 Flags = Inserter->getFlags(); 9133 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9134 } 9135 9136 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9137 ArrayRef<SDValue> Ops, 9138 const SDNodeFlags Flags) { 9139 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9140 FoldingSetNodeID ID; 9141 AddNodeIDNode(ID, Opcode, VTList, Ops); 9142 void *IP = nullptr; 9143 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9144 E->intersectFlagsWith(Flags); 9145 return E; 9146 } 9147 } 9148 return nullptr; 9149 } 9150 9151 /// doesNodeExist - Check if a node exists without modifying its flags. 9152 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9153 ArrayRef<SDValue> Ops) { 9154 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9155 FoldingSetNodeID ID; 9156 AddNodeIDNode(ID, Opcode, VTList, Ops); 9157 void *IP = nullptr; 9158 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9159 return true; 9160 } 9161 return false; 9162 } 9163 9164 /// getDbgValue - Creates a SDDbgValue node. 9165 /// 9166 /// SDNode 9167 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9168 SDNode *N, unsigned R, bool IsIndirect, 9169 const DebugLoc &DL, unsigned O) { 9170 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9171 "Expected inlined-at fields to agree"); 9172 return new (DbgInfo->getAlloc()) 9173 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9174 {}, IsIndirect, DL, O, 9175 /*IsVariadic=*/false); 9176 } 9177 9178 /// Constant 9179 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9180 DIExpression *Expr, 9181 const Value *C, 9182 const DebugLoc &DL, unsigned O) { 9183 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9184 "Expected inlined-at fields to agree"); 9185 return new (DbgInfo->getAlloc()) 9186 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9187 /*IsIndirect=*/false, DL, O, 9188 /*IsVariadic=*/false); 9189 } 9190 9191 /// FrameIndex 9192 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9193 DIExpression *Expr, unsigned FI, 9194 bool IsIndirect, 9195 const DebugLoc &DL, 9196 unsigned O) { 9197 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9198 "Expected inlined-at fields to agree"); 9199 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9200 } 9201 9202 /// FrameIndex with dependencies 9203 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9204 DIExpression *Expr, unsigned FI, 9205 ArrayRef<SDNode *> Dependencies, 9206 bool IsIndirect, 9207 const DebugLoc &DL, 9208 unsigned O) { 9209 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9210 "Expected inlined-at fields to agree"); 9211 return new (DbgInfo->getAlloc()) 9212 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9213 Dependencies, IsIndirect, DL, O, 9214 /*IsVariadic=*/false); 9215 } 9216 9217 /// VReg 9218 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9219 unsigned VReg, bool IsIndirect, 9220 const DebugLoc &DL, unsigned O) { 9221 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9222 "Expected inlined-at fields to agree"); 9223 return new (DbgInfo->getAlloc()) 9224 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9225 {}, IsIndirect, DL, O, 9226 /*IsVariadic=*/false); 9227 } 9228 9229 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9230 ArrayRef<SDDbgOperand> Locs, 9231 ArrayRef<SDNode *> Dependencies, 9232 bool IsIndirect, const DebugLoc &DL, 9233 unsigned O, bool IsVariadic) { 9234 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9235 "Expected inlined-at fields to agree"); 9236 return new (DbgInfo->getAlloc()) 9237 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9238 DL, O, IsVariadic); 9239 } 9240 9241 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9242 unsigned OffsetInBits, unsigned SizeInBits, 9243 bool InvalidateDbg) { 9244 SDNode *FromNode = From.getNode(); 9245 SDNode *ToNode = To.getNode(); 9246 assert(FromNode && ToNode && "Can't modify dbg values"); 9247 9248 // PR35338 9249 // TODO: assert(From != To && "Redundant dbg value transfer"); 9250 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9251 if (From == To || FromNode == ToNode) 9252 return; 9253 9254 if (!FromNode->getHasDebugValue()) 9255 return; 9256 9257 SDDbgOperand FromLocOp = 9258 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9259 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9260 9261 SmallVector<SDDbgValue *, 2> ClonedDVs; 9262 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9263 if (Dbg->isInvalidated()) 9264 continue; 9265 9266 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9267 9268 // Create a new location ops vector that is equal to the old vector, but 9269 // with each instance of FromLocOp replaced with ToLocOp. 9270 bool Changed = false; 9271 auto NewLocOps = Dbg->copyLocationOps(); 9272 std::replace_if( 9273 NewLocOps.begin(), NewLocOps.end(), 9274 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9275 bool Match = Op == FromLocOp; 9276 Changed |= Match; 9277 return Match; 9278 }, 9279 ToLocOp); 9280 // Ignore this SDDbgValue if we didn't find a matching location. 9281 if (!Changed) 9282 continue; 9283 9284 DIVariable *Var = Dbg->getVariable(); 9285 auto *Expr = Dbg->getExpression(); 9286 // If a fragment is requested, update the expression. 9287 if (SizeInBits) { 9288 // When splitting a larger (e.g., sign-extended) value whose 9289 // lower bits are described with an SDDbgValue, do not attempt 9290 // to transfer the SDDbgValue to the upper bits. 9291 if (auto FI = Expr->getFragmentInfo()) 9292 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9293 continue; 9294 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9295 SizeInBits); 9296 if (!Fragment) 9297 continue; 9298 Expr = *Fragment; 9299 } 9300 9301 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9302 // Clone the SDDbgValue and move it to To. 9303 SDDbgValue *Clone = getDbgValueList( 9304 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9305 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9306 Dbg->isVariadic()); 9307 ClonedDVs.push_back(Clone); 9308 9309 if (InvalidateDbg) { 9310 // Invalidate value and indicate the SDDbgValue should not be emitted. 9311 Dbg->setIsInvalidated(); 9312 Dbg->setIsEmitted(); 9313 } 9314 } 9315 9316 for (SDDbgValue *Dbg : ClonedDVs) { 9317 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9318 "Transferred DbgValues should depend on the new SDNode"); 9319 AddDbgValue(Dbg, false); 9320 } 9321 } 9322 9323 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9324 if (!N.getHasDebugValue()) 9325 return; 9326 9327 SmallVector<SDDbgValue *, 2> ClonedDVs; 9328 for (auto DV : GetDbgValues(&N)) { 9329 if (DV->isInvalidated()) 9330 continue; 9331 switch (N.getOpcode()) { 9332 default: 9333 break; 9334 case ISD::ADD: 9335 SDValue N0 = N.getOperand(0); 9336 SDValue N1 = N.getOperand(1); 9337 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9338 isConstantIntBuildVectorOrConstantInt(N1)) { 9339 uint64_t Offset = N.getConstantOperandVal(1); 9340 9341 // Rewrite an ADD constant node into a DIExpression. Since we are 9342 // performing arithmetic to compute the variable's *value* in the 9343 // DIExpression, we need to mark the expression with a 9344 // DW_OP_stack_value. 9345 auto *DIExpr = DV->getExpression(); 9346 auto NewLocOps = DV->copyLocationOps(); 9347 bool Changed = false; 9348 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9349 // We're not given a ResNo to compare against because the whole 9350 // node is going away. We know that any ISD::ADD only has one 9351 // result, so we can assume any node match is using the result. 9352 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9353 NewLocOps[i].getSDNode() != &N) 9354 continue; 9355 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9356 SmallVector<uint64_t, 3> ExprOps; 9357 DIExpression::appendOffset(ExprOps, Offset); 9358 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9359 Changed = true; 9360 } 9361 (void)Changed; 9362 assert(Changed && "Salvage target doesn't use N"); 9363 9364 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9365 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9366 NewLocOps, AdditionalDependencies, 9367 DV->isIndirect(), DV->getDebugLoc(), 9368 DV->getOrder(), DV->isVariadic()); 9369 ClonedDVs.push_back(Clone); 9370 DV->setIsInvalidated(); 9371 DV->setIsEmitted(); 9372 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9373 N0.getNode()->dumprFull(this); 9374 dbgs() << " into " << *DIExpr << '\n'); 9375 } 9376 } 9377 } 9378 9379 for (SDDbgValue *Dbg : ClonedDVs) { 9380 assert(!Dbg->getSDNodes().empty() && 9381 "Salvaged DbgValue should depend on a new SDNode"); 9382 AddDbgValue(Dbg, false); 9383 } 9384 } 9385 9386 /// Creates a SDDbgLabel node. 9387 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9388 const DebugLoc &DL, unsigned O) { 9389 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9390 "Expected inlined-at fields to agree"); 9391 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9392 } 9393 9394 namespace { 9395 9396 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9397 /// pointed to by a use iterator is deleted, increment the use iterator 9398 /// so that it doesn't dangle. 9399 /// 9400 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9401 SDNode::use_iterator &UI; 9402 SDNode::use_iterator &UE; 9403 9404 void NodeDeleted(SDNode *N, SDNode *E) override { 9405 // Increment the iterator as needed. 9406 while (UI != UE && N == *UI) 9407 ++UI; 9408 } 9409 9410 public: 9411 RAUWUpdateListener(SelectionDAG &d, 9412 SDNode::use_iterator &ui, 9413 SDNode::use_iterator &ue) 9414 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9415 }; 9416 9417 } // end anonymous namespace 9418 9419 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9420 /// This can cause recursive merging of nodes in the DAG. 9421 /// 9422 /// This version assumes From has a single result value. 9423 /// 9424 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9425 SDNode *From = FromN.getNode(); 9426 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9427 "Cannot replace with this method!"); 9428 assert(From != To.getNode() && "Cannot replace uses of with self"); 9429 9430 // Preserve Debug Values 9431 transferDbgValues(FromN, To); 9432 9433 // Iterate over all the existing uses of From. New uses will be added 9434 // to the beginning of the use list, which we avoid visiting. 9435 // This specifically avoids visiting uses of From that arise while the 9436 // replacement is happening, because any such uses would be the result 9437 // of CSE: If an existing node looks like From after one of its operands 9438 // is replaced by To, we don't want to replace of all its users with To 9439 // too. See PR3018 for more info. 9440 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9441 RAUWUpdateListener Listener(*this, UI, UE); 9442 while (UI != UE) { 9443 SDNode *User = *UI; 9444 9445 // This node is about to morph, remove its old self from the CSE maps. 9446 RemoveNodeFromCSEMaps(User); 9447 9448 // A user can appear in a use list multiple times, and when this 9449 // happens the uses are usually next to each other in the list. 9450 // To help reduce the number of CSE recomputations, process all 9451 // the uses of this user that we can find this way. 9452 do { 9453 SDUse &Use = UI.getUse(); 9454 ++UI; 9455 Use.set(To); 9456 if (To->isDivergent() != From->isDivergent()) 9457 updateDivergence(User); 9458 } while (UI != UE && *UI == User); 9459 // Now that we have modified User, add it back to the CSE maps. If it 9460 // already exists there, recursively merge the results together. 9461 AddModifiedNodeToCSEMaps(User); 9462 } 9463 9464 // If we just RAUW'd the root, take note. 9465 if (FromN == getRoot()) 9466 setRoot(To); 9467 } 9468 9469 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9470 /// This can cause recursive merging of nodes in the DAG. 9471 /// 9472 /// This version assumes that for each value of From, there is a 9473 /// corresponding value in To in the same position with the same type. 9474 /// 9475 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9476 #ifndef NDEBUG 9477 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9478 assert((!From->hasAnyUseOfValue(i) || 9479 From->getValueType(i) == To->getValueType(i)) && 9480 "Cannot use this version of ReplaceAllUsesWith!"); 9481 #endif 9482 9483 // Handle the trivial case. 9484 if (From == To) 9485 return; 9486 9487 // Preserve Debug Info. Only do this if there's a use. 9488 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9489 if (From->hasAnyUseOfValue(i)) { 9490 assert((i < To->getNumValues()) && "Invalid To location"); 9491 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9492 } 9493 9494 // Iterate over just the existing users of From. See the comments in 9495 // the ReplaceAllUsesWith above. 9496 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9497 RAUWUpdateListener Listener(*this, UI, UE); 9498 while (UI != UE) { 9499 SDNode *User = *UI; 9500 9501 // This node is about to morph, remove its old self from the CSE maps. 9502 RemoveNodeFromCSEMaps(User); 9503 9504 // A user can appear in a use list multiple times, and when this 9505 // happens the uses are usually next to each other in the list. 9506 // To help reduce the number of CSE recomputations, process all 9507 // the uses of this user that we can find this way. 9508 do { 9509 SDUse &Use = UI.getUse(); 9510 ++UI; 9511 Use.setNode(To); 9512 if (To->isDivergent() != From->isDivergent()) 9513 updateDivergence(User); 9514 } while (UI != UE && *UI == User); 9515 9516 // Now that we have modified User, add it back to the CSE maps. If it 9517 // already exists there, recursively merge the results together. 9518 AddModifiedNodeToCSEMaps(User); 9519 } 9520 9521 // If we just RAUW'd the root, take note. 9522 if (From == getRoot().getNode()) 9523 setRoot(SDValue(To, getRoot().getResNo())); 9524 } 9525 9526 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9527 /// This can cause recursive merging of nodes in the DAG. 9528 /// 9529 /// This version can replace From with any result values. To must match the 9530 /// number and types of values returned by From. 9531 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9532 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9533 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9534 9535 // Preserve Debug Info. 9536 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9537 transferDbgValues(SDValue(From, i), To[i]); 9538 9539 // Iterate over just the existing users of From. See the comments in 9540 // the ReplaceAllUsesWith above. 9541 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9542 RAUWUpdateListener Listener(*this, UI, UE); 9543 while (UI != UE) { 9544 SDNode *User = *UI; 9545 9546 // This node is about to morph, remove its old self from the CSE maps. 9547 RemoveNodeFromCSEMaps(User); 9548 9549 // A user can appear in a use list multiple times, and when this happens the 9550 // uses are usually next to each other in the list. To help reduce the 9551 // number of CSE and divergence recomputations, process all the uses of this 9552 // user that we can find this way. 9553 bool To_IsDivergent = false; 9554 do { 9555 SDUse &Use = UI.getUse(); 9556 const SDValue &ToOp = To[Use.getResNo()]; 9557 ++UI; 9558 Use.set(ToOp); 9559 To_IsDivergent |= ToOp->isDivergent(); 9560 } while (UI != UE && *UI == User); 9561 9562 if (To_IsDivergent != From->isDivergent()) 9563 updateDivergence(User); 9564 9565 // Now that we have modified User, add it back to the CSE maps. If it 9566 // already exists there, recursively merge the results together. 9567 AddModifiedNodeToCSEMaps(User); 9568 } 9569 9570 // If we just RAUW'd the root, take note. 9571 if (From == getRoot().getNode()) 9572 setRoot(SDValue(To[getRoot().getResNo()])); 9573 } 9574 9575 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9576 /// uses of other values produced by From.getNode() alone. The Deleted 9577 /// vector is handled the same way as for ReplaceAllUsesWith. 9578 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9579 // Handle the really simple, really trivial case efficiently. 9580 if (From == To) return; 9581 9582 // Handle the simple, trivial, case efficiently. 9583 if (From.getNode()->getNumValues() == 1) { 9584 ReplaceAllUsesWith(From, To); 9585 return; 9586 } 9587 9588 // Preserve Debug Info. 9589 transferDbgValues(From, To); 9590 9591 // Iterate over just the existing users of From. See the comments in 9592 // the ReplaceAllUsesWith above. 9593 SDNode::use_iterator UI = From.getNode()->use_begin(), 9594 UE = From.getNode()->use_end(); 9595 RAUWUpdateListener Listener(*this, UI, UE); 9596 while (UI != UE) { 9597 SDNode *User = *UI; 9598 bool UserRemovedFromCSEMaps = false; 9599 9600 // A user can appear in a use list multiple times, and when this 9601 // happens the uses are usually next to each other in the list. 9602 // To help reduce the number of CSE recomputations, process all 9603 // the uses of this user that we can find this way. 9604 do { 9605 SDUse &Use = UI.getUse(); 9606 9607 // Skip uses of different values from the same node. 9608 if (Use.getResNo() != From.getResNo()) { 9609 ++UI; 9610 continue; 9611 } 9612 9613 // If this node hasn't been modified yet, it's still in the CSE maps, 9614 // so remove its old self from the CSE maps. 9615 if (!UserRemovedFromCSEMaps) { 9616 RemoveNodeFromCSEMaps(User); 9617 UserRemovedFromCSEMaps = true; 9618 } 9619 9620 ++UI; 9621 Use.set(To); 9622 if (To->isDivergent() != From->isDivergent()) 9623 updateDivergence(User); 9624 } while (UI != UE && *UI == User); 9625 // We are iterating over all uses of the From node, so if a use 9626 // doesn't use the specific value, no changes are made. 9627 if (!UserRemovedFromCSEMaps) 9628 continue; 9629 9630 // Now that we have modified User, add it back to the CSE maps. If it 9631 // already exists there, recursively merge the results together. 9632 AddModifiedNodeToCSEMaps(User); 9633 } 9634 9635 // If we just RAUW'd the root, take note. 9636 if (From == getRoot()) 9637 setRoot(To); 9638 } 9639 9640 namespace { 9641 9642 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9643 /// to record information about a use. 9644 struct UseMemo { 9645 SDNode *User; 9646 unsigned Index; 9647 SDUse *Use; 9648 }; 9649 9650 /// operator< - Sort Memos by User. 9651 bool operator<(const UseMemo &L, const UseMemo &R) { 9652 return (intptr_t)L.User < (intptr_t)R.User; 9653 } 9654 9655 } // end anonymous namespace 9656 9657 bool SelectionDAG::calculateDivergence(SDNode *N) { 9658 if (TLI->isSDNodeAlwaysUniform(N)) { 9659 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9660 "Conflicting divergence information!"); 9661 return false; 9662 } 9663 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9664 return true; 9665 for (auto &Op : N->ops()) { 9666 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9667 return true; 9668 } 9669 return false; 9670 } 9671 9672 void SelectionDAG::updateDivergence(SDNode *N) { 9673 SmallVector<SDNode *, 16> Worklist(1, N); 9674 do { 9675 N = Worklist.pop_back_val(); 9676 bool IsDivergent = calculateDivergence(N); 9677 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9678 N->SDNodeBits.IsDivergent = IsDivergent; 9679 llvm::append_range(Worklist, N->uses()); 9680 } 9681 } while (!Worklist.empty()); 9682 } 9683 9684 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9685 DenseMap<SDNode *, unsigned> Degree; 9686 Order.reserve(AllNodes.size()); 9687 for (auto &N : allnodes()) { 9688 unsigned NOps = N.getNumOperands(); 9689 Degree[&N] = NOps; 9690 if (0 == NOps) 9691 Order.push_back(&N); 9692 } 9693 for (size_t I = 0; I != Order.size(); ++I) { 9694 SDNode *N = Order[I]; 9695 for (auto U : N->uses()) { 9696 unsigned &UnsortedOps = Degree[U]; 9697 if (0 == --UnsortedOps) 9698 Order.push_back(U); 9699 } 9700 } 9701 } 9702 9703 #ifndef NDEBUG 9704 void SelectionDAG::VerifyDAGDivergence() { 9705 std::vector<SDNode *> TopoOrder; 9706 CreateTopologicalOrder(TopoOrder); 9707 for (auto *N : TopoOrder) { 9708 assert(calculateDivergence(N) == N->isDivergent() && 9709 "Divergence bit inconsistency detected"); 9710 } 9711 } 9712 #endif 9713 9714 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9715 /// uses of other values produced by From.getNode() alone. The same value 9716 /// may appear in both the From and To list. The Deleted vector is 9717 /// handled the same way as for ReplaceAllUsesWith. 9718 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9719 const SDValue *To, 9720 unsigned Num){ 9721 // Handle the simple, trivial case efficiently. 9722 if (Num == 1) 9723 return ReplaceAllUsesOfValueWith(*From, *To); 9724 9725 transferDbgValues(*From, *To); 9726 9727 // Read up all the uses and make records of them. This helps 9728 // processing new uses that are introduced during the 9729 // replacement process. 9730 SmallVector<UseMemo, 4> Uses; 9731 for (unsigned i = 0; i != Num; ++i) { 9732 unsigned FromResNo = From[i].getResNo(); 9733 SDNode *FromNode = From[i].getNode(); 9734 for (SDNode::use_iterator UI = FromNode->use_begin(), 9735 E = FromNode->use_end(); UI != E; ++UI) { 9736 SDUse &Use = UI.getUse(); 9737 if (Use.getResNo() == FromResNo) { 9738 UseMemo Memo = { *UI, i, &Use }; 9739 Uses.push_back(Memo); 9740 } 9741 } 9742 } 9743 9744 // Sort the uses, so that all the uses from a given User are together. 9745 llvm::sort(Uses); 9746 9747 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9748 UseIndex != UseIndexEnd; ) { 9749 // We know that this user uses some value of From. If it is the right 9750 // value, update it. 9751 SDNode *User = Uses[UseIndex].User; 9752 9753 // This node is about to morph, remove its old self from the CSE maps. 9754 RemoveNodeFromCSEMaps(User); 9755 9756 // The Uses array is sorted, so all the uses for a given User 9757 // are next to each other in the list. 9758 // To help reduce the number of CSE recomputations, process all 9759 // the uses of this user that we can find this way. 9760 do { 9761 unsigned i = Uses[UseIndex].Index; 9762 SDUse &Use = *Uses[UseIndex].Use; 9763 ++UseIndex; 9764 9765 Use.set(To[i]); 9766 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9767 9768 // Now that we have modified User, add it back to the CSE maps. If it 9769 // already exists there, recursively merge the results together. 9770 AddModifiedNodeToCSEMaps(User); 9771 } 9772 } 9773 9774 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9775 /// based on their topological order. It returns the maximum id and a vector 9776 /// of the SDNodes* in assigned order by reference. 9777 unsigned SelectionDAG::AssignTopologicalOrder() { 9778 unsigned DAGSize = 0; 9779 9780 // SortedPos tracks the progress of the algorithm. Nodes before it are 9781 // sorted, nodes after it are unsorted. When the algorithm completes 9782 // it is at the end of the list. 9783 allnodes_iterator SortedPos = allnodes_begin(); 9784 9785 // Visit all the nodes. Move nodes with no operands to the front of 9786 // the list immediately. Annotate nodes that do have operands with their 9787 // operand count. Before we do this, the Node Id fields of the nodes 9788 // may contain arbitrary values. After, the Node Id fields for nodes 9789 // before SortedPos will contain the topological sort index, and the 9790 // Node Id fields for nodes At SortedPos and after will contain the 9791 // count of outstanding operands. 9792 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9793 checkForCycles(&N, this); 9794 unsigned Degree = N.getNumOperands(); 9795 if (Degree == 0) { 9796 // A node with no uses, add it to the result array immediately. 9797 N.setNodeId(DAGSize++); 9798 allnodes_iterator Q(&N); 9799 if (Q != SortedPos) 9800 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9801 assert(SortedPos != AllNodes.end() && "Overran node list"); 9802 ++SortedPos; 9803 } else { 9804 // Temporarily use the Node Id as scratch space for the degree count. 9805 N.setNodeId(Degree); 9806 } 9807 } 9808 9809 // Visit all the nodes. As we iterate, move nodes into sorted order, 9810 // such that by the time the end is reached all nodes will be sorted. 9811 for (SDNode &Node : allnodes()) { 9812 SDNode *N = &Node; 9813 checkForCycles(N, this); 9814 // N is in sorted position, so all its uses have one less operand 9815 // that needs to be sorted. 9816 for (SDNode *P : N->uses()) { 9817 unsigned Degree = P->getNodeId(); 9818 assert(Degree != 0 && "Invalid node degree"); 9819 --Degree; 9820 if (Degree == 0) { 9821 // All of P's operands are sorted, so P may sorted now. 9822 P->setNodeId(DAGSize++); 9823 if (P->getIterator() != SortedPos) 9824 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9825 assert(SortedPos != AllNodes.end() && "Overran node list"); 9826 ++SortedPos; 9827 } else { 9828 // Update P's outstanding operand count. 9829 P->setNodeId(Degree); 9830 } 9831 } 9832 if (Node.getIterator() == SortedPos) { 9833 #ifndef NDEBUG 9834 allnodes_iterator I(N); 9835 SDNode *S = &*++I; 9836 dbgs() << "Overran sorted position:\n"; 9837 S->dumprFull(this); dbgs() << "\n"; 9838 dbgs() << "Checking if this is due to cycles\n"; 9839 checkForCycles(this, true); 9840 #endif 9841 llvm_unreachable(nullptr); 9842 } 9843 } 9844 9845 assert(SortedPos == AllNodes.end() && 9846 "Topological sort incomplete!"); 9847 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9848 "First node in topological sort is not the entry token!"); 9849 assert(AllNodes.front().getNodeId() == 0 && 9850 "First node in topological sort has non-zero id!"); 9851 assert(AllNodes.front().getNumOperands() == 0 && 9852 "First node in topological sort has operands!"); 9853 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9854 "Last node in topologic sort has unexpected id!"); 9855 assert(AllNodes.back().use_empty() && 9856 "Last node in topologic sort has users!"); 9857 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9858 return DAGSize; 9859 } 9860 9861 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9862 /// value is produced by SD. 9863 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9864 for (SDNode *SD : DB->getSDNodes()) { 9865 if (!SD) 9866 continue; 9867 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9868 SD->setHasDebugValue(true); 9869 } 9870 DbgInfo->add(DB, isParameter); 9871 } 9872 9873 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9874 9875 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9876 SDValue NewMemOpChain) { 9877 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9878 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9879 // The new memory operation must have the same position as the old load in 9880 // terms of memory dependency. Create a TokenFactor for the old load and new 9881 // memory operation and update uses of the old load's output chain to use that 9882 // TokenFactor. 9883 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9884 return NewMemOpChain; 9885 9886 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9887 OldChain, NewMemOpChain); 9888 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9889 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9890 return TokenFactor; 9891 } 9892 9893 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9894 SDValue NewMemOp) { 9895 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9896 SDValue OldChain = SDValue(OldLoad, 1); 9897 SDValue NewMemOpChain = NewMemOp.getValue(1); 9898 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9899 } 9900 9901 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9902 Function **OutFunction) { 9903 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9904 9905 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9906 auto *Module = MF->getFunction().getParent(); 9907 auto *Function = Module->getFunction(Symbol); 9908 9909 if (OutFunction != nullptr) 9910 *OutFunction = Function; 9911 9912 if (Function != nullptr) { 9913 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9914 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9915 } 9916 9917 std::string ErrorStr; 9918 raw_string_ostream ErrorFormatter(ErrorStr); 9919 ErrorFormatter << "Undefined external symbol "; 9920 ErrorFormatter << '"' << Symbol << '"'; 9921 report_fatal_error(Twine(ErrorFormatter.str())); 9922 } 9923 9924 //===----------------------------------------------------------------------===// 9925 // SDNode Class 9926 //===----------------------------------------------------------------------===// 9927 9928 bool llvm::isNullConstant(SDValue V) { 9929 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9930 return Const != nullptr && Const->isZero(); 9931 } 9932 9933 bool llvm::isNullFPConstant(SDValue V) { 9934 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9935 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9936 } 9937 9938 bool llvm::isAllOnesConstant(SDValue V) { 9939 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9940 return Const != nullptr && Const->isAllOnes(); 9941 } 9942 9943 bool llvm::isOneConstant(SDValue V) { 9944 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9945 return Const != nullptr && Const->isOne(); 9946 } 9947 9948 SDValue llvm::peekThroughBitcasts(SDValue V) { 9949 while (V.getOpcode() == ISD::BITCAST) 9950 V = V.getOperand(0); 9951 return V; 9952 } 9953 9954 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9955 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9956 V = V.getOperand(0); 9957 return V; 9958 } 9959 9960 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9961 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9962 V = V.getOperand(0); 9963 return V; 9964 } 9965 9966 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9967 if (V.getOpcode() != ISD::XOR) 9968 return false; 9969 V = peekThroughBitcasts(V.getOperand(1)); 9970 unsigned NumBits = V.getScalarValueSizeInBits(); 9971 ConstantSDNode *C = 9972 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9973 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9974 } 9975 9976 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9977 bool AllowTruncation) { 9978 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9979 return CN; 9980 9981 // SplatVectors can truncate their operands. Ignore that case here unless 9982 // AllowTruncation is set. 9983 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9984 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9985 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9986 EVT CVT = CN->getValueType(0); 9987 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9988 if (AllowTruncation || CVT == VecEltVT) 9989 return CN; 9990 } 9991 } 9992 9993 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9994 BitVector UndefElements; 9995 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9996 9997 // BuildVectors can truncate their operands. Ignore that case here unless 9998 // AllowTruncation is set. 9999 if (CN && (UndefElements.none() || AllowUndefs)) { 10000 EVT CVT = CN->getValueType(0); 10001 EVT NSVT = N.getValueType().getScalarType(); 10002 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10003 if (AllowTruncation || (CVT == NSVT)) 10004 return CN; 10005 } 10006 } 10007 10008 return nullptr; 10009 } 10010 10011 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10012 bool AllowUndefs, 10013 bool AllowTruncation) { 10014 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10015 return CN; 10016 10017 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10018 BitVector UndefElements; 10019 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10020 10021 // BuildVectors can truncate their operands. Ignore that case here unless 10022 // AllowTruncation is set. 10023 if (CN && (UndefElements.none() || AllowUndefs)) { 10024 EVT CVT = CN->getValueType(0); 10025 EVT NSVT = N.getValueType().getScalarType(); 10026 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10027 if (AllowTruncation || (CVT == NSVT)) 10028 return CN; 10029 } 10030 } 10031 10032 return nullptr; 10033 } 10034 10035 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10036 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10037 return CN; 10038 10039 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10040 BitVector UndefElements; 10041 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10042 if (CN && (UndefElements.none() || AllowUndefs)) 10043 return CN; 10044 } 10045 10046 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10047 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10048 return CN; 10049 10050 return nullptr; 10051 } 10052 10053 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10054 const APInt &DemandedElts, 10055 bool AllowUndefs) { 10056 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10057 return CN; 10058 10059 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10060 BitVector UndefElements; 10061 ConstantFPSDNode *CN = 10062 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10063 if (CN && (UndefElements.none() || AllowUndefs)) 10064 return CN; 10065 } 10066 10067 return nullptr; 10068 } 10069 10070 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10071 // TODO: may want to use peekThroughBitcast() here. 10072 ConstantSDNode *C = 10073 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10074 return C && C->isZero(); 10075 } 10076 10077 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10078 // TODO: may want to use peekThroughBitcast() here. 10079 unsigned BitWidth = N.getScalarValueSizeInBits(); 10080 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10081 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10082 } 10083 10084 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10085 N = peekThroughBitcasts(N); 10086 unsigned BitWidth = N.getScalarValueSizeInBits(); 10087 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10088 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10089 } 10090 10091 HandleSDNode::~HandleSDNode() { 10092 DropOperands(); 10093 } 10094 10095 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10096 const DebugLoc &DL, 10097 const GlobalValue *GA, EVT VT, 10098 int64_t o, unsigned TF) 10099 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10100 TheGlobal = GA; 10101 } 10102 10103 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10104 EVT VT, unsigned SrcAS, 10105 unsigned DestAS) 10106 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10107 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10108 10109 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10110 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10111 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10112 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10113 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10114 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10115 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10116 10117 // We check here that the size of the memory operand fits within the size of 10118 // the MMO. This is because the MMO might indicate only a possible address 10119 // range instead of specifying the affected memory addresses precisely. 10120 // TODO: Make MachineMemOperands aware of scalable vectors. 10121 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10122 "Size mismatch!"); 10123 } 10124 10125 /// Profile - Gather unique data for the node. 10126 /// 10127 void SDNode::Profile(FoldingSetNodeID &ID) const { 10128 AddNodeIDNode(ID, this); 10129 } 10130 10131 namespace { 10132 10133 struct EVTArray { 10134 std::vector<EVT> VTs; 10135 10136 EVTArray() { 10137 VTs.reserve(MVT::VALUETYPE_SIZE); 10138 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10139 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10140 } 10141 }; 10142 10143 } // end anonymous namespace 10144 10145 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10146 static ManagedStatic<EVTArray> SimpleVTArray; 10147 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10148 10149 /// getValueTypeList - Return a pointer to the specified value type. 10150 /// 10151 const EVT *SDNode::getValueTypeList(EVT VT) { 10152 if (VT.isExtended()) { 10153 sys::SmartScopedLock<true> Lock(*VTMutex); 10154 return &(*EVTs->insert(VT).first); 10155 } 10156 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10157 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10158 } 10159 10160 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10161 /// indicated value. This method ignores uses of other values defined by this 10162 /// operation. 10163 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10164 assert(Value < getNumValues() && "Bad value!"); 10165 10166 // TODO: Only iterate over uses of a given value of the node 10167 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10168 if (UI.getUse().getResNo() == Value) { 10169 if (NUses == 0) 10170 return false; 10171 --NUses; 10172 } 10173 } 10174 10175 // Found exactly the right number of uses? 10176 return NUses == 0; 10177 } 10178 10179 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10180 /// value. This method ignores uses of other values defined by this operation. 10181 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10182 assert(Value < getNumValues() && "Bad value!"); 10183 10184 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10185 if (UI.getUse().getResNo() == Value) 10186 return true; 10187 10188 return false; 10189 } 10190 10191 /// isOnlyUserOf - Return true if this node is the only use of N. 10192 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10193 bool Seen = false; 10194 for (const SDNode *User : N->uses()) { 10195 if (User == this) 10196 Seen = true; 10197 else 10198 return false; 10199 } 10200 10201 return Seen; 10202 } 10203 10204 /// Return true if the only users of N are contained in Nodes. 10205 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10206 bool Seen = false; 10207 for (const SDNode *User : N->uses()) { 10208 if (llvm::is_contained(Nodes, User)) 10209 Seen = true; 10210 else 10211 return false; 10212 } 10213 10214 return Seen; 10215 } 10216 10217 /// isOperand - Return true if this node is an operand of N. 10218 bool SDValue::isOperandOf(const SDNode *N) const { 10219 return is_contained(N->op_values(), *this); 10220 } 10221 10222 bool SDNode::isOperandOf(const SDNode *N) const { 10223 return any_of(N->op_values(), 10224 [this](SDValue Op) { return this == Op.getNode(); }); 10225 } 10226 10227 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10228 /// be a chain) reaches the specified operand without crossing any 10229 /// side-effecting instructions on any chain path. In practice, this looks 10230 /// through token factors and non-volatile loads. In order to remain efficient, 10231 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10232 /// 10233 /// Note that we only need to examine chains when we're searching for 10234 /// side-effects; SelectionDAG requires that all side-effects are represented 10235 /// by chains, even if another operand would force a specific ordering. This 10236 /// constraint is necessary to allow transformations like splitting loads. 10237 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10238 unsigned Depth) const { 10239 if (*this == Dest) return true; 10240 10241 // Don't search too deeply, we just want to be able to see through 10242 // TokenFactor's etc. 10243 if (Depth == 0) return false; 10244 10245 // If this is a token factor, all inputs to the TF happen in parallel. 10246 if (getOpcode() == ISD::TokenFactor) { 10247 // First, try a shallow search. 10248 if (is_contained((*this)->ops(), Dest)) { 10249 // We found the chain we want as an operand of this TokenFactor. 10250 // Essentially, we reach the chain without side-effects if we could 10251 // serialize the TokenFactor into a simple chain of operations with 10252 // Dest as the last operation. This is automatically true if the 10253 // chain has one use: there are no other ordering constraints. 10254 // If the chain has more than one use, we give up: some other 10255 // use of Dest might force a side-effect between Dest and the current 10256 // node. 10257 if (Dest.hasOneUse()) 10258 return true; 10259 } 10260 // Next, try a deep search: check whether every operand of the TokenFactor 10261 // reaches Dest. 10262 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10263 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10264 }); 10265 } 10266 10267 // Loads don't have side effects, look through them. 10268 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10269 if (Ld->isUnordered()) 10270 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10271 } 10272 return false; 10273 } 10274 10275 bool SDNode::hasPredecessor(const SDNode *N) const { 10276 SmallPtrSet<const SDNode *, 32> Visited; 10277 SmallVector<const SDNode *, 16> Worklist; 10278 Worklist.push_back(this); 10279 return hasPredecessorHelper(N, Visited, Worklist); 10280 } 10281 10282 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10283 this->Flags.intersectWith(Flags); 10284 } 10285 10286 SDValue 10287 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10288 ArrayRef<ISD::NodeType> CandidateBinOps, 10289 bool AllowPartials) { 10290 // The pattern must end in an extract from index 0. 10291 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10292 !isNullConstant(Extract->getOperand(1))) 10293 return SDValue(); 10294 10295 // Match against one of the candidate binary ops. 10296 SDValue Op = Extract->getOperand(0); 10297 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10298 return Op.getOpcode() == unsigned(BinOp); 10299 })) 10300 return SDValue(); 10301 10302 // Floating-point reductions may require relaxed constraints on the final step 10303 // of the reduction because they may reorder intermediate operations. 10304 unsigned CandidateBinOp = Op.getOpcode(); 10305 if (Op.getValueType().isFloatingPoint()) { 10306 SDNodeFlags Flags = Op->getFlags(); 10307 switch (CandidateBinOp) { 10308 case ISD::FADD: 10309 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10310 return SDValue(); 10311 break; 10312 default: 10313 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10314 } 10315 } 10316 10317 // Matching failed - attempt to see if we did enough stages that a partial 10318 // reduction from a subvector is possible. 10319 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10320 if (!AllowPartials || !Op) 10321 return SDValue(); 10322 EVT OpVT = Op.getValueType(); 10323 EVT OpSVT = OpVT.getScalarType(); 10324 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10325 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10326 return SDValue(); 10327 BinOp = (ISD::NodeType)CandidateBinOp; 10328 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10329 getVectorIdxConstant(0, SDLoc(Op))); 10330 }; 10331 10332 // At each stage, we're looking for something that looks like: 10333 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10334 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10335 // i32 undef, i32 undef, i32 undef, i32 undef> 10336 // %a = binop <8 x i32> %op, %s 10337 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10338 // we expect something like: 10339 // <4,5,6,7,u,u,u,u> 10340 // <2,3,u,u,u,u,u,u> 10341 // <1,u,u,u,u,u,u,u> 10342 // While a partial reduction match would be: 10343 // <2,3,u,u,u,u,u,u> 10344 // <1,u,u,u,u,u,u,u> 10345 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10346 SDValue PrevOp; 10347 for (unsigned i = 0; i < Stages; ++i) { 10348 unsigned MaskEnd = (1 << i); 10349 10350 if (Op.getOpcode() != CandidateBinOp) 10351 return PartialReduction(PrevOp, MaskEnd); 10352 10353 SDValue Op0 = Op.getOperand(0); 10354 SDValue Op1 = Op.getOperand(1); 10355 10356 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10357 if (Shuffle) { 10358 Op = Op1; 10359 } else { 10360 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10361 Op = Op0; 10362 } 10363 10364 // The first operand of the shuffle should be the same as the other operand 10365 // of the binop. 10366 if (!Shuffle || Shuffle->getOperand(0) != Op) 10367 return PartialReduction(PrevOp, MaskEnd); 10368 10369 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10370 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10371 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10372 return PartialReduction(PrevOp, MaskEnd); 10373 10374 PrevOp = Op; 10375 } 10376 10377 // Handle subvector reductions, which tend to appear after the shuffle 10378 // reduction stages. 10379 while (Op.getOpcode() == CandidateBinOp) { 10380 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10381 SDValue Op0 = Op.getOperand(0); 10382 SDValue Op1 = Op.getOperand(1); 10383 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10384 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10385 Op0.getOperand(0) != Op1.getOperand(0)) 10386 break; 10387 SDValue Src = Op0.getOperand(0); 10388 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10389 if (NumSrcElts != (2 * NumElts)) 10390 break; 10391 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10392 Op1.getConstantOperandAPInt(1) == NumElts) && 10393 !(Op1.getConstantOperandAPInt(1) == 0 && 10394 Op0.getConstantOperandAPInt(1) == NumElts)) 10395 break; 10396 Op = Src; 10397 } 10398 10399 BinOp = (ISD::NodeType)CandidateBinOp; 10400 return Op; 10401 } 10402 10403 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10404 assert(N->getNumValues() == 1 && 10405 "Can't unroll a vector with multiple results!"); 10406 10407 EVT VT = N->getValueType(0); 10408 unsigned NE = VT.getVectorNumElements(); 10409 EVT EltVT = VT.getVectorElementType(); 10410 SDLoc dl(N); 10411 10412 SmallVector<SDValue, 8> Scalars; 10413 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10414 10415 // If ResNE is 0, fully unroll the vector op. 10416 if (ResNE == 0) 10417 ResNE = NE; 10418 else if (NE > ResNE) 10419 NE = ResNE; 10420 10421 unsigned i; 10422 for (i= 0; i != NE; ++i) { 10423 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10424 SDValue Operand = N->getOperand(j); 10425 EVT OperandVT = Operand.getValueType(); 10426 if (OperandVT.isVector()) { 10427 // A vector operand; extract a single element. 10428 EVT OperandEltVT = OperandVT.getVectorElementType(); 10429 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10430 Operand, getVectorIdxConstant(i, dl)); 10431 } else { 10432 // A scalar operand; just use it as is. 10433 Operands[j] = Operand; 10434 } 10435 } 10436 10437 switch (N->getOpcode()) { 10438 default: { 10439 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10440 N->getFlags())); 10441 break; 10442 } 10443 case ISD::VSELECT: 10444 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10445 break; 10446 case ISD::SHL: 10447 case ISD::SRA: 10448 case ISD::SRL: 10449 case ISD::ROTL: 10450 case ISD::ROTR: 10451 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10452 getShiftAmountOperand(Operands[0].getValueType(), 10453 Operands[1]))); 10454 break; 10455 case ISD::SIGN_EXTEND_INREG: { 10456 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10457 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10458 Operands[0], 10459 getValueType(ExtVT))); 10460 } 10461 } 10462 } 10463 10464 for (; i < ResNE; ++i) 10465 Scalars.push_back(getUNDEF(EltVT)); 10466 10467 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10468 return getBuildVector(VecVT, dl, Scalars); 10469 } 10470 10471 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10472 SDNode *N, unsigned ResNE) { 10473 unsigned Opcode = N->getOpcode(); 10474 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10475 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10476 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10477 "Expected an overflow opcode"); 10478 10479 EVT ResVT = N->getValueType(0); 10480 EVT OvVT = N->getValueType(1); 10481 EVT ResEltVT = ResVT.getVectorElementType(); 10482 EVT OvEltVT = OvVT.getVectorElementType(); 10483 SDLoc dl(N); 10484 10485 // If ResNE is 0, fully unroll the vector op. 10486 unsigned NE = ResVT.getVectorNumElements(); 10487 if (ResNE == 0) 10488 ResNE = NE; 10489 else if (NE > ResNE) 10490 NE = ResNE; 10491 10492 SmallVector<SDValue, 8> LHSScalars; 10493 SmallVector<SDValue, 8> RHSScalars; 10494 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10495 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10496 10497 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10498 SDVTList VTs = getVTList(ResEltVT, SVT); 10499 SmallVector<SDValue, 8> ResScalars; 10500 SmallVector<SDValue, 8> OvScalars; 10501 for (unsigned i = 0; i < NE; ++i) { 10502 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10503 SDValue Ov = 10504 getSelect(dl, OvEltVT, Res.getValue(1), 10505 getBoolConstant(true, dl, OvEltVT, ResVT), 10506 getConstant(0, dl, OvEltVT)); 10507 10508 ResScalars.push_back(Res); 10509 OvScalars.push_back(Ov); 10510 } 10511 10512 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10513 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10514 10515 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10516 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10517 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10518 getBuildVector(NewOvVT, dl, OvScalars)); 10519 } 10520 10521 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10522 LoadSDNode *Base, 10523 unsigned Bytes, 10524 int Dist) const { 10525 if (LD->isVolatile() || Base->isVolatile()) 10526 return false; 10527 // TODO: probably too restrictive for atomics, revisit 10528 if (!LD->isSimple()) 10529 return false; 10530 if (LD->isIndexed() || Base->isIndexed()) 10531 return false; 10532 if (LD->getChain() != Base->getChain()) 10533 return false; 10534 EVT VT = LD->getValueType(0); 10535 if (VT.getSizeInBits() / 8 != Bytes) 10536 return false; 10537 10538 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10539 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10540 10541 int64_t Offset = 0; 10542 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10543 return (Dist * Bytes == Offset); 10544 return false; 10545 } 10546 10547 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10548 /// if it cannot be inferred. 10549 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10550 // If this is a GlobalAddress + cst, return the alignment. 10551 const GlobalValue *GV = nullptr; 10552 int64_t GVOffset = 0; 10553 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10554 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10555 KnownBits Known(PtrWidth); 10556 llvm::computeKnownBits(GV, Known, getDataLayout()); 10557 unsigned AlignBits = Known.countMinTrailingZeros(); 10558 if (AlignBits) 10559 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10560 } 10561 10562 // If this is a direct reference to a stack slot, use information about the 10563 // stack slot's alignment. 10564 int FrameIdx = INT_MIN; 10565 int64_t FrameOffset = 0; 10566 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10567 FrameIdx = FI->getIndex(); 10568 } else if (isBaseWithConstantOffset(Ptr) && 10569 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10570 // Handle FI+Cst 10571 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10572 FrameOffset = Ptr.getConstantOperandVal(1); 10573 } 10574 10575 if (FrameIdx != INT_MIN) { 10576 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10577 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10578 } 10579 10580 return None; 10581 } 10582 10583 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10584 /// which is split (or expanded) into two not necessarily identical pieces. 10585 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10586 // Currently all types are split in half. 10587 EVT LoVT, HiVT; 10588 if (!VT.isVector()) 10589 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10590 else 10591 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10592 10593 return std::make_pair(LoVT, HiVT); 10594 } 10595 10596 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10597 /// type, dependent on an enveloping VT that has been split into two identical 10598 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10599 std::pair<EVT, EVT> 10600 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10601 bool *HiIsEmpty) const { 10602 EVT EltTp = VT.getVectorElementType(); 10603 // Examples: 10604 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10605 // custom VL=9 with enveloping VL=8/8 yields 8/1 10606 // custom VL=10 with enveloping VL=8/8 yields 8/2 10607 // etc. 10608 ElementCount VTNumElts = VT.getVectorElementCount(); 10609 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10610 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10611 "Mixing fixed width and scalable vectors when enveloping a type"); 10612 EVT LoVT, HiVT; 10613 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10614 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10615 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10616 *HiIsEmpty = false; 10617 } else { 10618 // Flag that hi type has zero storage size, but return split envelop type 10619 // (this would be easier if vector types with zero elements were allowed). 10620 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10621 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10622 *HiIsEmpty = true; 10623 } 10624 return std::make_pair(LoVT, HiVT); 10625 } 10626 10627 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10628 /// low/high part. 10629 std::pair<SDValue, SDValue> 10630 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10631 const EVT &HiVT) { 10632 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10633 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10634 "Splitting vector with an invalid mixture of fixed and scalable " 10635 "vector types"); 10636 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10637 N.getValueType().getVectorMinNumElements() && 10638 "More vector elements requested than available!"); 10639 SDValue Lo, Hi; 10640 Lo = 10641 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10642 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10643 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10644 // IDX with the runtime scaling factor of the result vector type. For 10645 // fixed-width result vectors, that runtime scaling factor is 1. 10646 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10647 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10648 return std::make_pair(Lo, Hi); 10649 } 10650 10651 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10652 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10653 EVT VT = N.getValueType(); 10654 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10655 NextPowerOf2(VT.getVectorNumElements())); 10656 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10657 getVectorIdxConstant(0, DL)); 10658 } 10659 10660 void SelectionDAG::ExtractVectorElements(SDValue Op, 10661 SmallVectorImpl<SDValue> &Args, 10662 unsigned Start, unsigned Count, 10663 EVT EltVT) { 10664 EVT VT = Op.getValueType(); 10665 if (Count == 0) 10666 Count = VT.getVectorNumElements(); 10667 if (EltVT == EVT()) 10668 EltVT = VT.getVectorElementType(); 10669 SDLoc SL(Op); 10670 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10671 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10672 getVectorIdxConstant(i, SL))); 10673 } 10674 } 10675 10676 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10677 unsigned GlobalAddressSDNode::getAddressSpace() const { 10678 return getGlobal()->getType()->getAddressSpace(); 10679 } 10680 10681 Type *ConstantPoolSDNode::getType() const { 10682 if (isMachineConstantPoolEntry()) 10683 return Val.MachineCPVal->getType(); 10684 return Val.ConstVal->getType(); 10685 } 10686 10687 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10688 unsigned &SplatBitSize, 10689 bool &HasAnyUndefs, 10690 unsigned MinSplatBits, 10691 bool IsBigEndian) const { 10692 EVT VT = getValueType(0); 10693 assert(VT.isVector() && "Expected a vector type"); 10694 unsigned VecWidth = VT.getSizeInBits(); 10695 if (MinSplatBits > VecWidth) 10696 return false; 10697 10698 // FIXME: The widths are based on this node's type, but build vectors can 10699 // truncate their operands. 10700 SplatValue = APInt(VecWidth, 0); 10701 SplatUndef = APInt(VecWidth, 0); 10702 10703 // Get the bits. Bits with undefined values (when the corresponding element 10704 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10705 // in SplatValue. If any of the values are not constant, give up and return 10706 // false. 10707 unsigned int NumOps = getNumOperands(); 10708 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10709 unsigned EltWidth = VT.getScalarSizeInBits(); 10710 10711 for (unsigned j = 0; j < NumOps; ++j) { 10712 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10713 SDValue OpVal = getOperand(i); 10714 unsigned BitPos = j * EltWidth; 10715 10716 if (OpVal.isUndef()) 10717 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10718 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10719 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10720 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10721 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10722 else 10723 return false; 10724 } 10725 10726 // The build_vector is all constants or undefs. Find the smallest element 10727 // size that splats the vector. 10728 HasAnyUndefs = (SplatUndef != 0); 10729 10730 // FIXME: This does not work for vectors with elements less than 8 bits. 10731 while (VecWidth > 8) { 10732 unsigned HalfSize = VecWidth / 2; 10733 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10734 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10735 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10736 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10737 10738 // If the two halves do not match (ignoring undef bits), stop here. 10739 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10740 MinSplatBits > HalfSize) 10741 break; 10742 10743 SplatValue = HighValue | LowValue; 10744 SplatUndef = HighUndef & LowUndef; 10745 10746 VecWidth = HalfSize; 10747 } 10748 10749 SplatBitSize = VecWidth; 10750 return true; 10751 } 10752 10753 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10754 BitVector *UndefElements) const { 10755 unsigned NumOps = getNumOperands(); 10756 if (UndefElements) { 10757 UndefElements->clear(); 10758 UndefElements->resize(NumOps); 10759 } 10760 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10761 if (!DemandedElts) 10762 return SDValue(); 10763 SDValue Splatted; 10764 for (unsigned i = 0; i != NumOps; ++i) { 10765 if (!DemandedElts[i]) 10766 continue; 10767 SDValue Op = getOperand(i); 10768 if (Op.isUndef()) { 10769 if (UndefElements) 10770 (*UndefElements)[i] = true; 10771 } else if (!Splatted) { 10772 Splatted = Op; 10773 } else if (Splatted != Op) { 10774 return SDValue(); 10775 } 10776 } 10777 10778 if (!Splatted) { 10779 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10780 assert(getOperand(FirstDemandedIdx).isUndef() && 10781 "Can only have a splat without a constant for all undefs."); 10782 return getOperand(FirstDemandedIdx); 10783 } 10784 10785 return Splatted; 10786 } 10787 10788 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10789 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10790 return getSplatValue(DemandedElts, UndefElements); 10791 } 10792 10793 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10794 SmallVectorImpl<SDValue> &Sequence, 10795 BitVector *UndefElements) const { 10796 unsigned NumOps = getNumOperands(); 10797 Sequence.clear(); 10798 if (UndefElements) { 10799 UndefElements->clear(); 10800 UndefElements->resize(NumOps); 10801 } 10802 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10803 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10804 return false; 10805 10806 // Set the undefs even if we don't find a sequence (like getSplatValue). 10807 if (UndefElements) 10808 for (unsigned I = 0; I != NumOps; ++I) 10809 if (DemandedElts[I] && getOperand(I).isUndef()) 10810 (*UndefElements)[I] = true; 10811 10812 // Iteratively widen the sequence length looking for repetitions. 10813 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10814 Sequence.append(SeqLen, SDValue()); 10815 for (unsigned I = 0; I != NumOps; ++I) { 10816 if (!DemandedElts[I]) 10817 continue; 10818 SDValue &SeqOp = Sequence[I % SeqLen]; 10819 SDValue Op = getOperand(I); 10820 if (Op.isUndef()) { 10821 if (!SeqOp) 10822 SeqOp = Op; 10823 continue; 10824 } 10825 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10826 Sequence.clear(); 10827 break; 10828 } 10829 SeqOp = Op; 10830 } 10831 if (!Sequence.empty()) 10832 return true; 10833 } 10834 10835 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10836 return false; 10837 } 10838 10839 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10840 BitVector *UndefElements) const { 10841 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10842 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10843 } 10844 10845 ConstantSDNode * 10846 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10847 BitVector *UndefElements) const { 10848 return dyn_cast_or_null<ConstantSDNode>( 10849 getSplatValue(DemandedElts, UndefElements)); 10850 } 10851 10852 ConstantSDNode * 10853 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10854 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10855 } 10856 10857 ConstantFPSDNode * 10858 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10859 BitVector *UndefElements) const { 10860 return dyn_cast_or_null<ConstantFPSDNode>( 10861 getSplatValue(DemandedElts, UndefElements)); 10862 } 10863 10864 ConstantFPSDNode * 10865 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10866 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10867 } 10868 10869 int32_t 10870 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10871 uint32_t BitWidth) const { 10872 if (ConstantFPSDNode *CN = 10873 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10874 bool IsExact; 10875 APSInt IntVal(BitWidth); 10876 const APFloat &APF = CN->getValueAPF(); 10877 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10878 APFloat::opOK || 10879 !IsExact) 10880 return -1; 10881 10882 return IntVal.exactLogBase2(); 10883 } 10884 return -1; 10885 } 10886 10887 bool BuildVectorSDNode::getConstantRawBits( 10888 bool IsLittleEndian, unsigned DstEltSizeInBits, 10889 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10890 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10891 if (!isConstant()) 10892 return false; 10893 10894 unsigned NumSrcOps = getNumOperands(); 10895 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10896 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10897 "Invalid bitcast scale"); 10898 10899 // Extract raw src bits. 10900 SmallVector<APInt> SrcBitElements(NumSrcOps, 10901 APInt::getNullValue(SrcEltSizeInBits)); 10902 BitVector SrcUndeElements(NumSrcOps, false); 10903 10904 for (unsigned I = 0; I != NumSrcOps; ++I) { 10905 SDValue Op = getOperand(I); 10906 if (Op.isUndef()) { 10907 SrcUndeElements.set(I); 10908 continue; 10909 } 10910 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10911 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10912 assert((CInt || CFP) && "Unknown constant"); 10913 SrcBitElements[I] = 10914 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10915 : CFP->getValueAPF().bitcastToAPInt(); 10916 } 10917 10918 // Recast to dst width. 10919 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10920 SrcBitElements, UndefElements, SrcUndeElements); 10921 return true; 10922 } 10923 10924 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10925 unsigned DstEltSizeInBits, 10926 SmallVectorImpl<APInt> &DstBitElements, 10927 ArrayRef<APInt> SrcBitElements, 10928 BitVector &DstUndefElements, 10929 const BitVector &SrcUndefElements) { 10930 unsigned NumSrcOps = SrcBitElements.size(); 10931 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10932 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10933 "Invalid bitcast scale"); 10934 assert(NumSrcOps == SrcUndefElements.size() && 10935 "Vector size mismatch"); 10936 10937 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10938 DstUndefElements.clear(); 10939 DstUndefElements.resize(NumDstOps, false); 10940 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10941 10942 // Concatenate src elements constant bits together into dst element. 10943 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10944 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10945 for (unsigned I = 0; I != NumDstOps; ++I) { 10946 DstUndefElements.set(I); 10947 APInt &DstBits = DstBitElements[I]; 10948 for (unsigned J = 0; J != Scale; ++J) { 10949 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10950 if (SrcUndefElements[Idx]) 10951 continue; 10952 DstUndefElements.reset(I); 10953 const APInt &SrcBits = SrcBitElements[Idx]; 10954 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10955 "Illegal constant bitwidths"); 10956 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10957 } 10958 } 10959 return; 10960 } 10961 10962 // Split src element constant bits into dst elements. 10963 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10964 for (unsigned I = 0; I != NumSrcOps; ++I) { 10965 if (SrcUndefElements[I]) { 10966 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10967 continue; 10968 } 10969 const APInt &SrcBits = SrcBitElements[I]; 10970 for (unsigned J = 0; J != Scale; ++J) { 10971 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10972 APInt &DstBits = DstBitElements[Idx]; 10973 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 10974 } 10975 } 10976 } 10977 10978 bool BuildVectorSDNode::isConstant() const { 10979 for (const SDValue &Op : op_values()) { 10980 unsigned Opc = Op.getOpcode(); 10981 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10982 return false; 10983 } 10984 return true; 10985 } 10986 10987 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10988 // Find the first non-undef value in the shuffle mask. 10989 unsigned i, e; 10990 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10991 /* search */; 10992 10993 // If all elements are undefined, this shuffle can be considered a splat 10994 // (although it should eventually get simplified away completely). 10995 if (i == e) 10996 return true; 10997 10998 // Make sure all remaining elements are either undef or the same as the first 10999 // non-undef value. 11000 for (int Idx = Mask[i]; i != e; ++i) 11001 if (Mask[i] >= 0 && Mask[i] != Idx) 11002 return false; 11003 return true; 11004 } 11005 11006 // Returns the SDNode if it is a constant integer BuildVector 11007 // or constant integer. 11008 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11009 if (isa<ConstantSDNode>(N)) 11010 return N.getNode(); 11011 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11012 return N.getNode(); 11013 // Treat a GlobalAddress supporting constant offset folding as a 11014 // constant integer. 11015 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11016 if (GA->getOpcode() == ISD::GlobalAddress && 11017 TLI->isOffsetFoldingLegal(GA)) 11018 return GA; 11019 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11020 isa<ConstantSDNode>(N.getOperand(0))) 11021 return N.getNode(); 11022 return nullptr; 11023 } 11024 11025 // Returns the SDNode if it is a constant float BuildVector 11026 // or constant float. 11027 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11028 if (isa<ConstantFPSDNode>(N)) 11029 return N.getNode(); 11030 11031 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11032 return N.getNode(); 11033 11034 return nullptr; 11035 } 11036 11037 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11038 assert(!Node->OperandList && "Node already has operands"); 11039 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11040 "too many operands to fit into SDNode"); 11041 SDUse *Ops = OperandRecycler.allocate( 11042 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11043 11044 bool IsDivergent = false; 11045 for (unsigned I = 0; I != Vals.size(); ++I) { 11046 Ops[I].setUser(Node); 11047 Ops[I].setInitial(Vals[I]); 11048 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11049 IsDivergent |= Ops[I].getNode()->isDivergent(); 11050 } 11051 Node->NumOperands = Vals.size(); 11052 Node->OperandList = Ops; 11053 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11054 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11055 Node->SDNodeBits.IsDivergent = IsDivergent; 11056 } 11057 checkForCycles(Node); 11058 } 11059 11060 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11061 SmallVectorImpl<SDValue> &Vals) { 11062 size_t Limit = SDNode::getMaxNumOperands(); 11063 while (Vals.size() > Limit) { 11064 unsigned SliceIdx = Vals.size() - Limit; 11065 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11066 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11067 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11068 Vals.emplace_back(NewTF); 11069 } 11070 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11071 } 11072 11073 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11074 EVT VT, SDNodeFlags Flags) { 11075 switch (Opcode) { 11076 default: 11077 return SDValue(); 11078 case ISD::ADD: 11079 case ISD::OR: 11080 case ISD::XOR: 11081 case ISD::UMAX: 11082 return getConstant(0, DL, VT); 11083 case ISD::MUL: 11084 return getConstant(1, DL, VT); 11085 case ISD::AND: 11086 case ISD::UMIN: 11087 return getAllOnesConstant(DL, VT); 11088 case ISD::SMAX: 11089 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11090 case ISD::SMIN: 11091 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11092 case ISD::FADD: 11093 return getConstantFP(-0.0, DL, VT); 11094 case ISD::FMUL: 11095 return getConstantFP(1.0, DL, VT); 11096 case ISD::FMINNUM: 11097 case ISD::FMAXNUM: { 11098 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11099 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11100 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11101 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11102 APFloat::getLargest(Semantics); 11103 if (Opcode == ISD::FMAXNUM) 11104 NeutralAF.changeSign(); 11105 11106 return getConstantFP(NeutralAF, DL, VT); 11107 } 11108 } 11109 } 11110 11111 #ifndef NDEBUG 11112 static void checkForCyclesHelper(const SDNode *N, 11113 SmallPtrSetImpl<const SDNode*> &Visited, 11114 SmallPtrSetImpl<const SDNode*> &Checked, 11115 const llvm::SelectionDAG *DAG) { 11116 // If this node has already been checked, don't check it again. 11117 if (Checked.count(N)) 11118 return; 11119 11120 // If a node has already been visited on this depth-first walk, reject it as 11121 // a cycle. 11122 if (!Visited.insert(N).second) { 11123 errs() << "Detected cycle in SelectionDAG\n"; 11124 dbgs() << "Offending node:\n"; 11125 N->dumprFull(DAG); dbgs() << "\n"; 11126 abort(); 11127 } 11128 11129 for (const SDValue &Op : N->op_values()) 11130 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11131 11132 Checked.insert(N); 11133 Visited.erase(N); 11134 } 11135 #endif 11136 11137 void llvm::checkForCycles(const llvm::SDNode *N, 11138 const llvm::SelectionDAG *DAG, 11139 bool force) { 11140 #ifndef NDEBUG 11141 bool check = force; 11142 #ifdef EXPENSIVE_CHECKS 11143 check = true; 11144 #endif // EXPENSIVE_CHECKS 11145 if (check) { 11146 assert(N && "Checking nonexistent SDNode"); 11147 SmallPtrSet<const SDNode*, 32> visited; 11148 SmallPtrSet<const SDNode*, 32> checked; 11149 checkForCyclesHelper(N, visited, checked, DAG); 11150 } 11151 #endif // !NDEBUG 11152 } 11153 11154 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11155 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11156 } 11157