1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/CodeGen/ValueTypes.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 auto *BV = dyn_cast<BuildVectorSDNode>(N); 141 if (!BV) 142 return false; 143 144 APInt SplatUndef; 145 unsigned SplatBitSize; 146 bool HasUndefs; 147 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 148 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 149 EltSize) && 150 EltSize == SplatBitSize; 151 } 152 153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 154 // specializations of the more general isConstantSplatVector()? 155 156 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 unsigned i = 0, e = N->getNumOperands(); 164 165 // Skip over all of the undef values. 166 while (i != e && N->getOperand(i).isUndef()) 167 ++i; 168 169 // Do not accept an all-undef vector. 170 if (i == e) return false; 171 172 // Do not accept build_vectors that aren't all constants or which have non-~0 173 // elements. We have to be a bit careful here, as the type of the constant 174 // may not be the same as the type of the vector elements due to type 175 // legalization (the elements are promoted to a legal type for the target and 176 // a vector of a type may be legal when the base element type is not). 177 // We only want to check enough bits to cover the vector elements, because 178 // we care if the resultant vector is all ones, not whether the individual 179 // constants are. 180 SDValue NotZero = N->getOperand(i); 181 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 182 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 183 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 184 return false; 185 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 186 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 187 return false; 188 } else 189 return false; 190 191 // Okay, we have at least one ~0 value, check to see if the rest match or are 192 // undefs. Even with the above element type twiddling, this should be OK, as 193 // the same type legalization should have applied to all the elements. 194 for (++i; i != e; ++i) 195 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 196 return false; 197 return true; 198 } 199 200 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 201 // Look through a bit convert. 202 while (N->getOpcode() == ISD::BITCAST) 203 N = N->getOperand(0).getNode(); 204 205 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 206 207 bool IsAllUndef = true; 208 for (const SDValue &Op : N->op_values()) { 209 if (Op.isUndef()) 210 continue; 211 IsAllUndef = false; 212 // Do not accept build_vectors that aren't all constants or which have non-0 213 // elements. We have to be a bit careful here, as the type of the constant 214 // may not be the same as the type of the vector elements due to type 215 // legalization (the elements are promoted to a legal type for the target 216 // and a vector of a type may be legal when the base element type is not). 217 // We only want to check enough bits to cover the vector elements, because 218 // we care if the resultant vector is all zeros, not whether the individual 219 // constants are. 220 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 221 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 222 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 223 return false; 224 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 225 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 226 return false; 227 } else 228 return false; 229 } 230 231 // Do not accept an all-undef vector. 232 if (IsAllUndef) 233 return false; 234 return true; 235 } 236 237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 238 if (N->getOpcode() != ISD::BUILD_VECTOR) 239 return false; 240 241 for (const SDValue &Op : N->op_values()) { 242 if (Op.isUndef()) 243 continue; 244 if (!isa<ConstantSDNode>(Op)) 245 return false; 246 } 247 return true; 248 } 249 250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 251 if (N->getOpcode() != ISD::BUILD_VECTOR) 252 return false; 253 254 for (const SDValue &Op : N->op_values()) { 255 if (Op.isUndef()) 256 continue; 257 if (!isa<ConstantFPSDNode>(Op)) 258 return false; 259 } 260 return true; 261 } 262 263 bool ISD::allOperandsUndef(const SDNode *N) { 264 // Return false if the node has no operands. 265 // This is "logically inconsistent" with the definition of "all" but 266 // is probably the desired behavior. 267 if (N->getNumOperands() == 0) 268 return false; 269 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 270 } 271 272 bool ISD::matchUnaryPredicate(SDValue Op, 273 std::function<bool(ConstantSDNode *)> Match, 274 bool AllowUndefs) { 275 // FIXME: Add support for scalar UNDEF cases? 276 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 277 return Match(Cst); 278 279 // FIXME: Add support for vector UNDEF cases? 280 if (ISD::BUILD_VECTOR != Op.getOpcode()) 281 return false; 282 283 EVT SVT = Op.getValueType().getScalarType(); 284 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 285 if (AllowUndefs && Op.getOperand(i).isUndef()) { 286 if (!Match(nullptr)) 287 return false; 288 continue; 289 } 290 291 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 292 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 293 return false; 294 } 295 return true; 296 } 297 298 bool ISD::matchBinaryPredicate( 299 SDValue LHS, SDValue RHS, 300 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 301 bool AllowUndefs, bool AllowTypeMismatch) { 302 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 303 return false; 304 305 // TODO: Add support for scalar UNDEF cases? 306 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 307 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 308 return Match(LHSCst, RHSCst); 309 310 // TODO: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 312 ISD::BUILD_VECTOR != RHS.getOpcode()) 313 return false; 314 315 EVT SVT = LHS.getValueType().getScalarType(); 316 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 317 SDValue LHSOp = LHS.getOperand(i); 318 SDValue RHSOp = RHS.getOperand(i); 319 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 320 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 321 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 322 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 323 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 324 return false; 325 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 326 LHSOp.getValueType() != RHSOp.getValueType())) 327 return false; 328 if (!Match(LHSCst, RHSCst)) 329 return false; 330 } 331 return true; 332 } 333 334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 335 switch (ExtType) { 336 case ISD::EXTLOAD: 337 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 338 case ISD::SEXTLOAD: 339 return ISD::SIGN_EXTEND; 340 case ISD::ZEXTLOAD: 341 return ISD::ZERO_EXTEND; 342 default: 343 break; 344 } 345 346 llvm_unreachable("Invalid LoadExtType"); 347 } 348 349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 350 // To perform this operation, we just need to swap the L and G bits of the 351 // operation. 352 unsigned OldL = (Operation >> 2) & 1; 353 unsigned OldG = (Operation >> 1) & 1; 354 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 355 (OldL << 1) | // New G bit 356 (OldG << 2)); // New L bit. 357 } 358 359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 360 unsigned Operation = Op; 361 if (isIntegerLike) 362 Operation ^= 7; // Flip L, G, E bits, but not U. 363 else 364 Operation ^= 15; // Flip all of the condition bits. 365 366 if (Operation > ISD::SETTRUE2) 367 Operation &= ~8; // Don't let N and U bits get set. 368 369 return ISD::CondCode(Operation); 370 } 371 372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 373 return getSetCCInverseImpl(Op, Type.isInteger()); 374 } 375 376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 377 bool isIntegerLike) { 378 return getSetCCInverseImpl(Op, isIntegerLike); 379 } 380 381 /// For an integer comparison, return 1 if the comparison is a signed operation 382 /// and 2 if the result is an unsigned comparison. Return zero if the operation 383 /// does not depend on the sign of the input (setne and seteq). 384 static int isSignedOp(ISD::CondCode Opcode) { 385 switch (Opcode) { 386 default: llvm_unreachable("Illegal integer setcc operation!"); 387 case ISD::SETEQ: 388 case ISD::SETNE: return 0; 389 case ISD::SETLT: 390 case ISD::SETLE: 391 case ISD::SETGT: 392 case ISD::SETGE: return 1; 393 case ISD::SETULT: 394 case ISD::SETULE: 395 case ISD::SETUGT: 396 case ISD::SETUGE: return 2; 397 } 398 } 399 400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 401 EVT Type) { 402 bool IsInteger = Type.isInteger(); 403 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 404 // Cannot fold a signed integer setcc with an unsigned integer setcc. 405 return ISD::SETCC_INVALID; 406 407 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 408 409 // If the N and U bits get set, then the resultant comparison DOES suddenly 410 // care about orderedness, and it is true when ordered. 411 if (Op > ISD::SETTRUE2) 412 Op &= ~16; // Clear the U bit if the N bit is set. 413 414 // Canonicalize illegal integer setcc's. 415 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 416 Op = ISD::SETNE; 417 418 return ISD::CondCode(Op); 419 } 420 421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 422 EVT Type) { 423 bool IsInteger = Type.isInteger(); 424 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 425 // Cannot fold a signed setcc with an unsigned setcc. 426 return ISD::SETCC_INVALID; 427 428 // Combine all of the condition bits. 429 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 430 431 // Canonicalize illegal integer setcc's. 432 if (IsInteger) { 433 switch (Result) { 434 default: break; 435 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 436 case ISD::SETOEQ: // SETEQ & SETU[LG]E 437 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 438 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 439 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 440 } 441 } 442 443 return Result; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SDNode Profile Support 448 //===----------------------------------------------------------------------===// 449 450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 452 ID.AddInteger(OpC); 453 } 454 455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 456 /// solely with their pointer. 457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 458 ID.AddPointer(VTList.VTs); 459 } 460 461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 462 static void AddNodeIDOperands(FoldingSetNodeID &ID, 463 ArrayRef<SDValue> Ops) { 464 for (auto& Op : Ops) { 465 ID.AddPointer(Op.getNode()); 466 ID.AddInteger(Op.getResNo()); 467 } 468 } 469 470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 471 static void AddNodeIDOperands(FoldingSetNodeID &ID, 472 ArrayRef<SDUse> Ops) { 473 for (auto& Op : Ops) { 474 ID.AddPointer(Op.getNode()); 475 ID.AddInteger(Op.getResNo()); 476 } 477 } 478 479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 480 SDVTList VTList, ArrayRef<SDValue> OpList) { 481 AddNodeIDOpcode(ID, OpC); 482 AddNodeIDValueTypes(ID, VTList); 483 AddNodeIDOperands(ID, OpList); 484 } 485 486 /// If this is an SDNode with special info, add this info to the NodeID data. 487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 488 switch (N->getOpcode()) { 489 case ISD::TargetExternalSymbol: 490 case ISD::ExternalSymbol: 491 case ISD::MCSymbol: 492 llvm_unreachable("Should only be used on nodes with operands"); 493 default: break; // Normal nodes don't need extra info. 494 case ISD::TargetConstant: 495 case ISD::Constant: { 496 const ConstantSDNode *C = cast<ConstantSDNode>(N); 497 ID.AddPointer(C->getConstantIntValue()); 498 ID.AddBoolean(C->isOpaque()); 499 break; 500 } 501 case ISD::TargetConstantFP: 502 case ISD::ConstantFP: 503 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 504 break; 505 case ISD::TargetGlobalAddress: 506 case ISD::GlobalAddress: 507 case ISD::TargetGlobalTLSAddress: 508 case ISD::GlobalTLSAddress: { 509 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 510 ID.AddPointer(GA->getGlobal()); 511 ID.AddInteger(GA->getOffset()); 512 ID.AddInteger(GA->getTargetFlags()); 513 break; 514 } 515 case ISD::BasicBlock: 516 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 517 break; 518 case ISD::Register: 519 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 520 break; 521 case ISD::RegisterMask: 522 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 523 break; 524 case ISD::SRCVALUE: 525 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 526 break; 527 case ISD::FrameIndex: 528 case ISD::TargetFrameIndex: 529 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 530 break; 531 case ISD::LIFETIME_START: 532 case ISD::LIFETIME_END: 533 if (cast<LifetimeSDNode>(N)->hasOffset()) { 534 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 536 } 537 break; 538 case ISD::JumpTable: 539 case ISD::TargetJumpTable: 540 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 542 break; 543 case ISD::ConstantPool: 544 case ISD::TargetConstantPool: { 545 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 546 ID.AddInteger(CP->getAlignment()); 547 ID.AddInteger(CP->getOffset()); 548 if (CP->isMachineConstantPoolEntry()) 549 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 550 else 551 ID.AddPointer(CP->getConstVal()); 552 ID.AddInteger(CP->getTargetFlags()); 553 break; 554 } 555 case ISD::TargetIndex: { 556 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 557 ID.AddInteger(TI->getIndex()); 558 ID.AddInteger(TI->getOffset()); 559 ID.AddInteger(TI->getTargetFlags()); 560 break; 561 } 562 case ISD::LOAD: { 563 const LoadSDNode *LD = cast<LoadSDNode>(N); 564 ID.AddInteger(LD->getMemoryVT().getRawBits()); 565 ID.AddInteger(LD->getRawSubclassData()); 566 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 567 break; 568 } 569 case ISD::STORE: { 570 const StoreSDNode *ST = cast<StoreSDNode>(N); 571 ID.AddInteger(ST->getMemoryVT().getRawBits()); 572 ID.AddInteger(ST->getRawSubclassData()); 573 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 574 break; 575 } 576 case ISD::MLOAD: { 577 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 578 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 579 ID.AddInteger(MLD->getRawSubclassData()); 580 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 581 break; 582 } 583 case ISD::MSTORE: { 584 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 585 ID.AddInteger(MST->getMemoryVT().getRawBits()); 586 ID.AddInteger(MST->getRawSubclassData()); 587 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 588 break; 589 } 590 case ISD::MGATHER: { 591 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 592 ID.AddInteger(MG->getMemoryVT().getRawBits()); 593 ID.AddInteger(MG->getRawSubclassData()); 594 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 595 break; 596 } 597 case ISD::MSCATTER: { 598 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 599 ID.AddInteger(MS->getMemoryVT().getRawBits()); 600 ID.AddInteger(MS->getRawSubclassData()); 601 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 602 break; 603 } 604 case ISD::ATOMIC_CMP_SWAP: 605 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 606 case ISD::ATOMIC_SWAP: 607 case ISD::ATOMIC_LOAD_ADD: 608 case ISD::ATOMIC_LOAD_SUB: 609 case ISD::ATOMIC_LOAD_AND: 610 case ISD::ATOMIC_LOAD_CLR: 611 case ISD::ATOMIC_LOAD_OR: 612 case ISD::ATOMIC_LOAD_XOR: 613 case ISD::ATOMIC_LOAD_NAND: 614 case ISD::ATOMIC_LOAD_MIN: 615 case ISD::ATOMIC_LOAD_MAX: 616 case ISD::ATOMIC_LOAD_UMIN: 617 case ISD::ATOMIC_LOAD_UMAX: 618 case ISD::ATOMIC_LOAD: 619 case ISD::ATOMIC_STORE: { 620 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 621 ID.AddInteger(AT->getMemoryVT().getRawBits()); 622 ID.AddInteger(AT->getRawSubclassData()); 623 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 624 break; 625 } 626 case ISD::PREFETCH: { 627 const MemSDNode *PF = cast<MemSDNode>(N); 628 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 629 break; 630 } 631 case ISD::VECTOR_SHUFFLE: { 632 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 633 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 634 i != e; ++i) 635 ID.AddInteger(SVN->getMaskElt(i)); 636 break; 637 } 638 case ISD::TargetBlockAddress: 639 case ISD::BlockAddress: { 640 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 641 ID.AddPointer(BA->getBlockAddress()); 642 ID.AddInteger(BA->getOffset()); 643 ID.AddInteger(BA->getTargetFlags()); 644 break; 645 } 646 } // end switch (N->getOpcode()) 647 648 // Target specific memory nodes could also have address spaces to check. 649 if (N->isTargetMemoryOpcode()) 650 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 651 } 652 653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 654 /// data. 655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 656 AddNodeIDOpcode(ID, N->getOpcode()); 657 // Add the return value info. 658 AddNodeIDValueTypes(ID, N->getVTList()); 659 // Add the operand info. 660 AddNodeIDOperands(ID, N->ops()); 661 662 // Handle SDNode leafs with special info. 663 AddNodeIDCustom(ID, N); 664 } 665 666 //===----------------------------------------------------------------------===// 667 // SelectionDAG Class 668 //===----------------------------------------------------------------------===// 669 670 /// doNotCSE - Return true if CSE should not be performed for this node. 671 static bool doNotCSE(SDNode *N) { 672 if (N->getValueType(0) == MVT::Glue) 673 return true; // Never CSE anything that produces a flag. 674 675 switch (N->getOpcode()) { 676 default: break; 677 case ISD::HANDLENODE: 678 case ISD::EH_LABEL: 679 return true; // Never CSE these nodes. 680 } 681 682 // Check that remaining values produced are not flags. 683 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 684 if (N->getValueType(i) == MVT::Glue) 685 return true; // Never CSE anything that produces a flag. 686 687 return false; 688 } 689 690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 691 /// SelectionDAG. 692 void SelectionDAG::RemoveDeadNodes() { 693 // Create a dummy node (which is not added to allnodes), that adds a reference 694 // to the root node, preventing it from being deleted. 695 HandleSDNode Dummy(getRoot()); 696 697 SmallVector<SDNode*, 128> DeadNodes; 698 699 // Add all obviously-dead nodes to the DeadNodes worklist. 700 for (SDNode &Node : allnodes()) 701 if (Node.use_empty()) 702 DeadNodes.push_back(&Node); 703 704 RemoveDeadNodes(DeadNodes); 705 706 // If the root changed (e.g. it was a dead load, update the root). 707 setRoot(Dummy.getValue()); 708 } 709 710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 711 /// given list, and any nodes that become unreachable as a result. 712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 713 714 // Process the worklist, deleting the nodes and adding their uses to the 715 // worklist. 716 while (!DeadNodes.empty()) { 717 SDNode *N = DeadNodes.pop_back_val(); 718 // Skip to next node if we've already managed to delete the node. This could 719 // happen if replacing a node causes a node previously added to the node to 720 // be deleted. 721 if (N->getOpcode() == ISD::DELETED_NODE) 722 continue; 723 724 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 725 DUL->NodeDeleted(N, nullptr); 726 727 // Take the node out of the appropriate CSE map. 728 RemoveNodeFromCSEMaps(N); 729 730 // Next, brutally remove the operand list. This is safe to do, as there are 731 // no cycles in the graph. 732 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 733 SDUse &Use = *I++; 734 SDNode *Operand = Use.getNode(); 735 Use.set(SDValue()); 736 737 // Now that we removed this operand, see if there are no uses of it left. 738 if (Operand->use_empty()) 739 DeadNodes.push_back(Operand); 740 } 741 742 DeallocateNode(N); 743 } 744 } 745 746 void SelectionDAG::RemoveDeadNode(SDNode *N){ 747 SmallVector<SDNode*, 16> DeadNodes(1, N); 748 749 // Create a dummy node that adds a reference to the root node, preventing 750 // it from being deleted. (This matters if the root is an operand of the 751 // dead node.) 752 HandleSDNode Dummy(getRoot()); 753 754 RemoveDeadNodes(DeadNodes); 755 } 756 757 void SelectionDAG::DeleteNode(SDNode *N) { 758 // First take this out of the appropriate CSE map. 759 RemoveNodeFromCSEMaps(N); 760 761 // Finally, remove uses due to operands of this node, remove from the 762 // AllNodes list, and delete the node. 763 DeleteNodeNotInCSEMaps(N); 764 } 765 766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 767 assert(N->getIterator() != AllNodes.begin() && 768 "Cannot delete the entry node!"); 769 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 770 771 // Drop all of the operands and decrement used node's use counts. 772 N->DropOperands(); 773 774 DeallocateNode(N); 775 } 776 777 void SDDbgInfo::erase(const SDNode *Node) { 778 DbgValMapType::iterator I = DbgValMap.find(Node); 779 if (I == DbgValMap.end()) 780 return; 781 for (auto &Val: I->second) 782 Val->setIsInvalidated(); 783 DbgValMap.erase(I); 784 } 785 786 void SelectionDAG::DeallocateNode(SDNode *N) { 787 // If we have operands, deallocate them. 788 removeOperands(N); 789 790 NodeAllocator.Deallocate(AllNodes.remove(N)); 791 792 // Set the opcode to DELETED_NODE to help catch bugs when node 793 // memory is reallocated. 794 // FIXME: There are places in SDag that have grown a dependency on the opcode 795 // value in the released node. 796 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 797 N->NodeType = ISD::DELETED_NODE; 798 799 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 800 // them and forget about that node. 801 DbgInfo->erase(N); 802 } 803 804 #ifndef NDEBUG 805 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 806 static void VerifySDNode(SDNode *N) { 807 switch (N->getOpcode()) { 808 default: 809 break; 810 case ISD::BUILD_PAIR: { 811 EVT VT = N->getValueType(0); 812 assert(N->getNumValues() == 1 && "Too many results!"); 813 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 814 "Wrong return type!"); 815 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 816 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 817 "Mismatched operand types!"); 818 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 819 "Wrong operand type!"); 820 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 821 "Wrong return type size"); 822 break; 823 } 824 case ISD::BUILD_VECTOR: { 825 assert(N->getNumValues() == 1 && "Too many results!"); 826 assert(N->getValueType(0).isVector() && "Wrong return type!"); 827 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 828 "Wrong number of operands!"); 829 EVT EltVT = N->getValueType(0).getVectorElementType(); 830 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 831 assert((I->getValueType() == EltVT || 832 (EltVT.isInteger() && I->getValueType().isInteger() && 833 EltVT.bitsLE(I->getValueType()))) && 834 "Wrong operand type!"); 835 assert(I->getValueType() == N->getOperand(0).getValueType() && 836 "Operands must all have the same type"); 837 } 838 break; 839 } 840 } 841 } 842 #endif // NDEBUG 843 844 /// Insert a newly allocated node into the DAG. 845 /// 846 /// Handles insertion into the all nodes list and CSE map, as well as 847 /// verification and other common operations when a new node is allocated. 848 void SelectionDAG::InsertNode(SDNode *N) { 849 AllNodes.push_back(N); 850 #ifndef NDEBUG 851 N->PersistentId = NextPersistentId++; 852 VerifySDNode(N); 853 #endif 854 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 855 DUL->NodeInserted(N); 856 } 857 858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 859 /// correspond to it. This is useful when we're about to delete or repurpose 860 /// the node. We don't want future request for structurally identical nodes 861 /// to return N anymore. 862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 863 bool Erased = false; 864 switch (N->getOpcode()) { 865 case ISD::HANDLENODE: return false; // noop. 866 case ISD::CONDCODE: 867 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 868 "Cond code doesn't exist!"); 869 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 870 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 871 break; 872 case ISD::ExternalSymbol: 873 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 874 break; 875 case ISD::TargetExternalSymbol: { 876 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 877 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 878 ESN->getSymbol(), ESN->getTargetFlags())); 879 break; 880 } 881 case ISD::MCSymbol: { 882 auto *MCSN = cast<MCSymbolSDNode>(N); 883 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 884 break; 885 } 886 case ISD::VALUETYPE: { 887 EVT VT = cast<VTSDNode>(N)->getVT(); 888 if (VT.isExtended()) { 889 Erased = ExtendedValueTypeNodes.erase(VT); 890 } else { 891 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 892 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 893 } 894 break; 895 } 896 default: 897 // Remove it from the CSE Map. 898 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 899 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 900 Erased = CSEMap.RemoveNode(N); 901 break; 902 } 903 #ifndef NDEBUG 904 // Verify that the node was actually in one of the CSE maps, unless it has a 905 // flag result (which cannot be CSE'd) or is one of the special cases that are 906 // not subject to CSE. 907 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 908 !N->isMachineOpcode() && !doNotCSE(N)) { 909 N->dump(this); 910 dbgs() << "\n"; 911 llvm_unreachable("Node is not in map!"); 912 } 913 #endif 914 return Erased; 915 } 916 917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 918 /// maps and modified in place. Add it back to the CSE maps, unless an identical 919 /// node already exists, in which case transfer all its users to the existing 920 /// node. This transfer can potentially trigger recursive merging. 921 void 922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 923 // For node types that aren't CSE'd, just act as if no identical node 924 // already exists. 925 if (!doNotCSE(N)) { 926 SDNode *Existing = CSEMap.GetOrInsertNode(N); 927 if (Existing != N) { 928 // If there was already an existing matching node, use ReplaceAllUsesWith 929 // to replace the dead one with the existing one. This can cause 930 // recursive merging of other unrelated nodes down the line. 931 ReplaceAllUsesWith(N, Existing); 932 933 // N is now dead. Inform the listeners and delete it. 934 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 935 DUL->NodeDeleted(N, Existing); 936 DeleteNodeNotInCSEMaps(N); 937 return; 938 } 939 } 940 941 // If the node doesn't already exist, we updated it. Inform listeners. 942 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 943 DUL->NodeUpdated(N); 944 } 945 946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 947 /// were replaced with those specified. If this node is never memoized, 948 /// return null, otherwise return a pointer to the slot it would take. If a 949 /// node already exists with these operands, the slot will be non-null. 950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 951 void *&InsertPos) { 952 if (doNotCSE(N)) 953 return nullptr; 954 955 SDValue Ops[] = { Op }; 956 FoldingSetNodeID ID; 957 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 958 AddNodeIDCustom(ID, N); 959 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 960 if (Node) 961 Node->intersectFlagsWith(N->getFlags()); 962 return Node; 963 } 964 965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 966 /// were replaced with those specified. If this node is never memoized, 967 /// return null, otherwise return a pointer to the slot it would take. If a 968 /// node already exists with these operands, the slot will be non-null. 969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 970 SDValue Op1, SDValue Op2, 971 void *&InsertPos) { 972 if (doNotCSE(N)) 973 return nullptr; 974 975 SDValue Ops[] = { Op1, Op2 }; 976 FoldingSetNodeID ID; 977 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 978 AddNodeIDCustom(ID, N); 979 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 980 if (Node) 981 Node->intersectFlagsWith(N->getFlags()); 982 return Node; 983 } 984 985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 986 /// were replaced with those specified. If this node is never memoized, 987 /// return null, otherwise return a pointer to the slot it would take. If a 988 /// node already exists with these operands, the slot will be non-null. 989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 990 void *&InsertPos) { 991 if (doNotCSE(N)) 992 return nullptr; 993 994 FoldingSetNodeID ID; 995 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 996 AddNodeIDCustom(ID, N); 997 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 998 if (Node) 999 Node->intersectFlagsWith(N->getFlags()); 1000 return Node; 1001 } 1002 1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 1004 Type *Ty = VT == MVT::iPTR ? 1005 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1006 VT.getTypeForEVT(*getContext()); 1007 1008 return getDataLayout().getABITypeAlignment(Ty); 1009 } 1010 1011 // EntryNode could meaningfully have debug info if we can find it... 1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1013 : TM(tm), OptLevel(OL), 1014 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1015 Root(getEntryNode()) { 1016 InsertNode(&EntryNode); 1017 DbgInfo = new SDDbgInfo(); 1018 } 1019 1020 void SelectionDAG::init(MachineFunction &NewMF, 1021 OptimizationRemarkEmitter &NewORE, 1022 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1023 LegacyDivergenceAnalysis * Divergence, 1024 ProfileSummaryInfo *PSIin, 1025 BlockFrequencyInfo *BFIin) { 1026 MF = &NewMF; 1027 SDAGISelPass = PassPtr; 1028 ORE = &NewORE; 1029 TLI = getSubtarget().getTargetLowering(); 1030 TSI = getSubtarget().getSelectionDAGInfo(); 1031 LibInfo = LibraryInfo; 1032 Context = &MF->getFunction().getContext(); 1033 DA = Divergence; 1034 PSI = PSIin; 1035 BFI = BFIin; 1036 } 1037 1038 SelectionDAG::~SelectionDAG() { 1039 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1040 allnodes_clear(); 1041 OperandRecycler.clear(OperandAllocator); 1042 delete DbgInfo; 1043 } 1044 1045 bool SelectionDAG::shouldOptForSize() const { 1046 return MF->getFunction().hasOptSize() || 1047 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1048 } 1049 1050 void SelectionDAG::allnodes_clear() { 1051 assert(&*AllNodes.begin() == &EntryNode); 1052 AllNodes.remove(AllNodes.begin()); 1053 while (!AllNodes.empty()) 1054 DeallocateNode(&AllNodes.front()); 1055 #ifndef NDEBUG 1056 NextPersistentId = 0; 1057 #endif 1058 } 1059 1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1061 void *&InsertPos) { 1062 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1063 if (N) { 1064 switch (N->getOpcode()) { 1065 default: break; 1066 case ISD::Constant: 1067 case ISD::ConstantFP: 1068 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1069 "debug location. Use another overload."); 1070 } 1071 } 1072 return N; 1073 } 1074 1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1076 const SDLoc &DL, void *&InsertPos) { 1077 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1078 if (N) { 1079 switch (N->getOpcode()) { 1080 case ISD::Constant: 1081 case ISD::ConstantFP: 1082 // Erase debug location from the node if the node is used at several 1083 // different places. Do not propagate one location to all uses as it 1084 // will cause a worse single stepping debugging experience. 1085 if (N->getDebugLoc() != DL.getDebugLoc()) 1086 N->setDebugLoc(DebugLoc()); 1087 break; 1088 default: 1089 // When the node's point of use is located earlier in the instruction 1090 // sequence than its prior point of use, update its debug info to the 1091 // earlier location. 1092 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1093 N->setDebugLoc(DL.getDebugLoc()); 1094 break; 1095 } 1096 } 1097 return N; 1098 } 1099 1100 void SelectionDAG::clear() { 1101 allnodes_clear(); 1102 OperandRecycler.clear(OperandAllocator); 1103 OperandAllocator.Reset(); 1104 CSEMap.clear(); 1105 1106 ExtendedValueTypeNodes.clear(); 1107 ExternalSymbols.clear(); 1108 TargetExternalSymbols.clear(); 1109 MCSymbols.clear(); 1110 SDCallSiteDbgInfo.clear(); 1111 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1112 static_cast<CondCodeSDNode*>(nullptr)); 1113 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1114 static_cast<SDNode*>(nullptr)); 1115 1116 EntryNode.UseList = nullptr; 1117 InsertNode(&EntryNode); 1118 Root = getEntryNode(); 1119 DbgInfo->clear(); 1120 } 1121 1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1123 return VT.bitsGT(Op.getValueType()) 1124 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1125 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1126 } 1127 1128 std::pair<SDValue, SDValue> 1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1130 const SDLoc &DL, EVT VT) { 1131 assert(!VT.bitsEq(Op.getValueType()) && 1132 "Strict no-op FP extend/round not allowed."); 1133 SDValue Res = 1134 VT.bitsGT(Op.getValueType()) 1135 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1136 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1137 {Chain, Op, getIntPtrConstant(0, DL)}); 1138 1139 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1140 } 1141 1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1143 return VT.bitsGT(Op.getValueType()) ? 1144 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1145 getNode(ISD::TRUNCATE, DL, VT, Op); 1146 } 1147 1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1149 return VT.bitsGT(Op.getValueType()) ? 1150 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1151 getNode(ISD::TRUNCATE, DL, VT, Op); 1152 } 1153 1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1155 return VT.bitsGT(Op.getValueType()) ? 1156 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1157 getNode(ISD::TRUNCATE, DL, VT, Op); 1158 } 1159 1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1161 EVT OpVT) { 1162 if (VT.bitsLE(Op.getValueType())) 1163 return getNode(ISD::TRUNCATE, SL, VT, Op); 1164 1165 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1166 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1167 } 1168 1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1170 assert(!VT.isVector() && 1171 "getZeroExtendInReg should use the vector element type instead of " 1172 "the vector type!"); 1173 if (Op.getValueType().getScalarType() == VT) return Op; 1174 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1175 APInt Imm = APInt::getLowBitsSet(BitWidth, 1176 VT.getSizeInBits()); 1177 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1178 getConstant(Imm, DL, Op.getValueType())); 1179 } 1180 1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1182 // Only unsigned pointer semantics are supported right now. In the future this 1183 // might delegate to TLI to check pointer signedness. 1184 return getZExtOrTrunc(Op, DL, VT); 1185 } 1186 1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1188 // Only unsigned pointer semantics are supported right now. In the future this 1189 // might delegate to TLI to check pointer signedness. 1190 return getZeroExtendInReg(Op, DL, VT); 1191 } 1192 1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1195 EVT EltVT = VT.getScalarType(); 1196 SDValue NegOne = 1197 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1198 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1199 } 1200 1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1202 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1203 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1204 } 1205 1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1207 EVT OpVT) { 1208 if (!V) 1209 return getConstant(0, DL, VT); 1210 1211 switch (TLI->getBooleanContents(OpVT)) { 1212 case TargetLowering::ZeroOrOneBooleanContent: 1213 case TargetLowering::UndefinedBooleanContent: 1214 return getConstant(1, DL, VT); 1215 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1216 return getAllOnesConstant(DL, VT); 1217 } 1218 llvm_unreachable("Unexpected boolean content enum!"); 1219 } 1220 1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1222 bool isT, bool isO) { 1223 EVT EltVT = VT.getScalarType(); 1224 assert((EltVT.getSizeInBits() >= 64 || 1225 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1226 "getConstant with a uint64_t value that doesn't fit in the type!"); 1227 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1228 } 1229 1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1231 bool isT, bool isO) { 1232 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1233 } 1234 1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1236 EVT VT, bool isT, bool isO) { 1237 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1238 1239 EVT EltVT = VT.getScalarType(); 1240 const ConstantInt *Elt = &Val; 1241 1242 // In some cases the vector type is legal but the element type is illegal and 1243 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1244 // inserted value (the type does not need to match the vector element type). 1245 // Any extra bits introduced will be truncated away. 1246 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1247 TargetLowering::TypePromoteInteger) { 1248 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1249 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1250 Elt = ConstantInt::get(*getContext(), NewVal); 1251 } 1252 // In other cases the element type is illegal and needs to be expanded, for 1253 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1254 // the value into n parts and use a vector type with n-times the elements. 1255 // Then bitcast to the type requested. 1256 // Legalizing constants too early makes the DAGCombiner's job harder so we 1257 // only legalize if the DAG tells us we must produce legal types. 1258 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1259 TLI->getTypeAction(*getContext(), EltVT) == 1260 TargetLowering::TypeExpandInteger) { 1261 const APInt &NewVal = Elt->getValue(); 1262 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1263 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1264 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1265 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1266 1267 // Check the temporary vector is the correct size. If this fails then 1268 // getTypeToTransformTo() probably returned a type whose size (in bits) 1269 // isn't a power-of-2 factor of the requested type size. 1270 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1271 1272 SmallVector<SDValue, 2> EltParts; 1273 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1274 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1275 .zextOrTrunc(ViaEltSizeInBits), DL, 1276 ViaEltVT, isT, isO)); 1277 } 1278 1279 // EltParts is currently in little endian order. If we actually want 1280 // big-endian order then reverse it now. 1281 if (getDataLayout().isBigEndian()) 1282 std::reverse(EltParts.begin(), EltParts.end()); 1283 1284 // The elements must be reversed when the element order is different 1285 // to the endianness of the elements (because the BITCAST is itself a 1286 // vector shuffle in this situation). However, we do not need any code to 1287 // perform this reversal because getConstant() is producing a vector 1288 // splat. 1289 // This situation occurs in MIPS MSA. 1290 1291 SmallVector<SDValue, 8> Ops; 1292 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1293 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1294 1295 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1296 return V; 1297 } 1298 1299 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1300 "APInt size does not match type size!"); 1301 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1302 FoldingSetNodeID ID; 1303 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1304 ID.AddPointer(Elt); 1305 ID.AddBoolean(isO); 1306 void *IP = nullptr; 1307 SDNode *N = nullptr; 1308 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1309 if (!VT.isVector()) 1310 return SDValue(N, 0); 1311 1312 if (!N) { 1313 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1314 CSEMap.InsertNode(N, IP); 1315 InsertNode(N); 1316 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1317 } 1318 1319 SDValue Result(N, 0); 1320 if (VT.isScalableVector()) 1321 Result = getSplatVector(VT, DL, Result); 1322 else if (VT.isVector()) 1323 Result = getSplatBuildVector(VT, DL, Result); 1324 1325 return Result; 1326 } 1327 1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1329 bool isTarget) { 1330 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1331 } 1332 1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1334 const SDLoc &DL, bool LegalTypes) { 1335 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1336 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1337 return getConstant(Val, DL, ShiftVT); 1338 } 1339 1340 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1341 bool isTarget) { 1342 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1343 } 1344 1345 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1346 bool isTarget) { 1347 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1348 } 1349 1350 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1351 EVT VT, bool isTarget) { 1352 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1353 1354 EVT EltVT = VT.getScalarType(); 1355 1356 // Do the map lookup using the actual bit pattern for the floating point 1357 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1358 // we don't have issues with SNANs. 1359 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1360 FoldingSetNodeID ID; 1361 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1362 ID.AddPointer(&V); 1363 void *IP = nullptr; 1364 SDNode *N = nullptr; 1365 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1366 if (!VT.isVector()) 1367 return SDValue(N, 0); 1368 1369 if (!N) { 1370 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1371 CSEMap.InsertNode(N, IP); 1372 InsertNode(N); 1373 } 1374 1375 SDValue Result(N, 0); 1376 if (VT.isVector()) 1377 Result = getSplatBuildVector(VT, DL, Result); 1378 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1379 return Result; 1380 } 1381 1382 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1383 bool isTarget) { 1384 EVT EltVT = VT.getScalarType(); 1385 if (EltVT == MVT::f32) 1386 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1387 else if (EltVT == MVT::f64) 1388 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1389 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1390 EltVT == MVT::f16) { 1391 bool Ignored; 1392 APFloat APF = APFloat(Val); 1393 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1394 &Ignored); 1395 return getConstantFP(APF, DL, VT, isTarget); 1396 } else 1397 llvm_unreachable("Unsupported type in getConstantFP"); 1398 } 1399 1400 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1401 EVT VT, int64_t Offset, bool isTargetGA, 1402 unsigned TargetFlags) { 1403 assert((TargetFlags == 0 || isTargetGA) && 1404 "Cannot set target flags on target-independent globals"); 1405 1406 // Truncate (with sign-extension) the offset value to the pointer size. 1407 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1408 if (BitWidth < 64) 1409 Offset = SignExtend64(Offset, BitWidth); 1410 1411 unsigned Opc; 1412 if (GV->isThreadLocal()) 1413 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1414 else 1415 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1416 1417 FoldingSetNodeID ID; 1418 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1419 ID.AddPointer(GV); 1420 ID.AddInteger(Offset); 1421 ID.AddInteger(TargetFlags); 1422 void *IP = nullptr; 1423 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1424 return SDValue(E, 0); 1425 1426 auto *N = newSDNode<GlobalAddressSDNode>( 1427 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1428 CSEMap.InsertNode(N, IP); 1429 InsertNode(N); 1430 return SDValue(N, 0); 1431 } 1432 1433 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1434 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1435 FoldingSetNodeID ID; 1436 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1437 ID.AddInteger(FI); 1438 void *IP = nullptr; 1439 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1440 return SDValue(E, 0); 1441 1442 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1443 CSEMap.InsertNode(N, IP); 1444 InsertNode(N); 1445 return SDValue(N, 0); 1446 } 1447 1448 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1449 unsigned TargetFlags) { 1450 assert((TargetFlags == 0 || isTarget) && 1451 "Cannot set target flags on target-independent jump tables"); 1452 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1453 FoldingSetNodeID ID; 1454 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1455 ID.AddInteger(JTI); 1456 ID.AddInteger(TargetFlags); 1457 void *IP = nullptr; 1458 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1459 return SDValue(E, 0); 1460 1461 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1462 CSEMap.InsertNode(N, IP); 1463 InsertNode(N); 1464 return SDValue(N, 0); 1465 } 1466 1467 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1468 unsigned Alignment, int Offset, 1469 bool isTarget, 1470 unsigned TargetFlags) { 1471 assert((TargetFlags == 0 || isTarget) && 1472 "Cannot set target flags on target-independent globals"); 1473 if (Alignment == 0) 1474 Alignment = shouldOptForSize() 1475 ? getDataLayout().getABITypeAlignment(C->getType()) 1476 : getDataLayout().getPrefTypeAlignment(C->getType()); 1477 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1478 FoldingSetNodeID ID; 1479 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1480 ID.AddInteger(Alignment); 1481 ID.AddInteger(Offset); 1482 ID.AddPointer(C); 1483 ID.AddInteger(TargetFlags); 1484 void *IP = nullptr; 1485 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1486 return SDValue(E, 0); 1487 1488 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1489 TargetFlags); 1490 CSEMap.InsertNode(N, IP); 1491 InsertNode(N); 1492 return SDValue(N, 0); 1493 } 1494 1495 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1496 unsigned Alignment, int Offset, 1497 bool isTarget, 1498 unsigned TargetFlags) { 1499 assert((TargetFlags == 0 || isTarget) && 1500 "Cannot set target flags on target-independent globals"); 1501 if (Alignment == 0) 1502 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1503 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1504 FoldingSetNodeID ID; 1505 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1506 ID.AddInteger(Alignment); 1507 ID.AddInteger(Offset); 1508 C->addSelectionDAGCSEId(ID); 1509 ID.AddInteger(TargetFlags); 1510 void *IP = nullptr; 1511 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1512 return SDValue(E, 0); 1513 1514 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1515 TargetFlags); 1516 CSEMap.InsertNode(N, IP); 1517 InsertNode(N); 1518 return SDValue(N, 0); 1519 } 1520 1521 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1522 unsigned TargetFlags) { 1523 FoldingSetNodeID ID; 1524 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1525 ID.AddInteger(Index); 1526 ID.AddInteger(Offset); 1527 ID.AddInteger(TargetFlags); 1528 void *IP = nullptr; 1529 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1530 return SDValue(E, 0); 1531 1532 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1533 CSEMap.InsertNode(N, IP); 1534 InsertNode(N); 1535 return SDValue(N, 0); 1536 } 1537 1538 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1539 FoldingSetNodeID ID; 1540 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1541 ID.AddPointer(MBB); 1542 void *IP = nullptr; 1543 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1544 return SDValue(E, 0); 1545 1546 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1547 CSEMap.InsertNode(N, IP); 1548 InsertNode(N); 1549 return SDValue(N, 0); 1550 } 1551 1552 SDValue SelectionDAG::getValueType(EVT VT) { 1553 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1554 ValueTypeNodes.size()) 1555 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1556 1557 SDNode *&N = VT.isExtended() ? 1558 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1559 1560 if (N) return SDValue(N, 0); 1561 N = newSDNode<VTSDNode>(VT); 1562 InsertNode(N); 1563 return SDValue(N, 0); 1564 } 1565 1566 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1567 SDNode *&N = ExternalSymbols[Sym]; 1568 if (N) return SDValue(N, 0); 1569 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1570 InsertNode(N); 1571 return SDValue(N, 0); 1572 } 1573 1574 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1575 SDNode *&N = MCSymbols[Sym]; 1576 if (N) 1577 return SDValue(N, 0); 1578 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1579 InsertNode(N); 1580 return SDValue(N, 0); 1581 } 1582 1583 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1584 unsigned TargetFlags) { 1585 SDNode *&N = 1586 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1587 if (N) return SDValue(N, 0); 1588 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1589 InsertNode(N); 1590 return SDValue(N, 0); 1591 } 1592 1593 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1594 if ((unsigned)Cond >= CondCodeNodes.size()) 1595 CondCodeNodes.resize(Cond+1); 1596 1597 if (!CondCodeNodes[Cond]) { 1598 auto *N = newSDNode<CondCodeSDNode>(Cond); 1599 CondCodeNodes[Cond] = N; 1600 InsertNode(N); 1601 } 1602 1603 return SDValue(CondCodeNodes[Cond], 0); 1604 } 1605 1606 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1607 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1608 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1609 std::swap(N1, N2); 1610 ShuffleVectorSDNode::commuteMask(M); 1611 } 1612 1613 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1614 SDValue N2, ArrayRef<int> Mask) { 1615 assert(VT.getVectorNumElements() == Mask.size() && 1616 "Must have the same number of vector elements as mask elements!"); 1617 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1618 "Invalid VECTOR_SHUFFLE"); 1619 1620 // Canonicalize shuffle undef, undef -> undef 1621 if (N1.isUndef() && N2.isUndef()) 1622 return getUNDEF(VT); 1623 1624 // Validate that all indices in Mask are within the range of the elements 1625 // input to the shuffle. 1626 int NElts = Mask.size(); 1627 assert(llvm::all_of(Mask, 1628 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1629 "Index out of range"); 1630 1631 // Copy the mask so we can do any needed cleanup. 1632 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1633 1634 // Canonicalize shuffle v, v -> v, undef 1635 if (N1 == N2) { 1636 N2 = getUNDEF(VT); 1637 for (int i = 0; i != NElts; ++i) 1638 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1639 } 1640 1641 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1642 if (N1.isUndef()) 1643 commuteShuffle(N1, N2, MaskVec); 1644 1645 if (TLI->hasVectorBlend()) { 1646 // If shuffling a splat, try to blend the splat instead. We do this here so 1647 // that even when this arises during lowering we don't have to re-handle it. 1648 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1649 BitVector UndefElements; 1650 SDValue Splat = BV->getSplatValue(&UndefElements); 1651 if (!Splat) 1652 return; 1653 1654 for (int i = 0; i < NElts; ++i) { 1655 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1656 continue; 1657 1658 // If this input comes from undef, mark it as such. 1659 if (UndefElements[MaskVec[i] - Offset]) { 1660 MaskVec[i] = -1; 1661 continue; 1662 } 1663 1664 // If we can blend a non-undef lane, use that instead. 1665 if (!UndefElements[i]) 1666 MaskVec[i] = i + Offset; 1667 } 1668 }; 1669 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1670 BlendSplat(N1BV, 0); 1671 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1672 BlendSplat(N2BV, NElts); 1673 } 1674 1675 // Canonicalize all index into lhs, -> shuffle lhs, undef 1676 // Canonicalize all index into rhs, -> shuffle rhs, undef 1677 bool AllLHS = true, AllRHS = true; 1678 bool N2Undef = N2.isUndef(); 1679 for (int i = 0; i != NElts; ++i) { 1680 if (MaskVec[i] >= NElts) { 1681 if (N2Undef) 1682 MaskVec[i] = -1; 1683 else 1684 AllLHS = false; 1685 } else if (MaskVec[i] >= 0) { 1686 AllRHS = false; 1687 } 1688 } 1689 if (AllLHS && AllRHS) 1690 return getUNDEF(VT); 1691 if (AllLHS && !N2Undef) 1692 N2 = getUNDEF(VT); 1693 if (AllRHS) { 1694 N1 = getUNDEF(VT); 1695 commuteShuffle(N1, N2, MaskVec); 1696 } 1697 // Reset our undef status after accounting for the mask. 1698 N2Undef = N2.isUndef(); 1699 // Re-check whether both sides ended up undef. 1700 if (N1.isUndef() && N2Undef) 1701 return getUNDEF(VT); 1702 1703 // If Identity shuffle return that node. 1704 bool Identity = true, AllSame = true; 1705 for (int i = 0; i != NElts; ++i) { 1706 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1707 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1708 } 1709 if (Identity && NElts) 1710 return N1; 1711 1712 // Shuffling a constant splat doesn't change the result. 1713 if (N2Undef) { 1714 SDValue V = N1; 1715 1716 // Look through any bitcasts. We check that these don't change the number 1717 // (and size) of elements and just changes their types. 1718 while (V.getOpcode() == ISD::BITCAST) 1719 V = V->getOperand(0); 1720 1721 // A splat should always show up as a build vector node. 1722 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1723 BitVector UndefElements; 1724 SDValue Splat = BV->getSplatValue(&UndefElements); 1725 // If this is a splat of an undef, shuffling it is also undef. 1726 if (Splat && Splat.isUndef()) 1727 return getUNDEF(VT); 1728 1729 bool SameNumElts = 1730 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1731 1732 // We only have a splat which can skip shuffles if there is a splatted 1733 // value and no undef lanes rearranged by the shuffle. 1734 if (Splat && UndefElements.none()) { 1735 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1736 // number of elements match or the value splatted is a zero constant. 1737 if (SameNumElts) 1738 return N1; 1739 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1740 if (C->isNullValue()) 1741 return N1; 1742 } 1743 1744 // If the shuffle itself creates a splat, build the vector directly. 1745 if (AllSame && SameNumElts) { 1746 EVT BuildVT = BV->getValueType(0); 1747 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1748 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1749 1750 // We may have jumped through bitcasts, so the type of the 1751 // BUILD_VECTOR may not match the type of the shuffle. 1752 if (BuildVT != VT) 1753 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1754 return NewBV; 1755 } 1756 } 1757 } 1758 1759 FoldingSetNodeID ID; 1760 SDValue Ops[2] = { N1, N2 }; 1761 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1762 for (int i = 0; i != NElts; ++i) 1763 ID.AddInteger(MaskVec[i]); 1764 1765 void* IP = nullptr; 1766 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1767 return SDValue(E, 0); 1768 1769 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1770 // SDNode doesn't have access to it. This memory will be "leaked" when 1771 // the node is deallocated, but recovered when the NodeAllocator is released. 1772 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1773 llvm::copy(MaskVec, MaskAlloc); 1774 1775 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1776 dl.getDebugLoc(), MaskAlloc); 1777 createOperands(N, Ops); 1778 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 SDValue V = SDValue(N, 0); 1782 NewSDValueDbgMsg(V, "Creating new node: ", this); 1783 return V; 1784 } 1785 1786 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1787 EVT VT = SV.getValueType(0); 1788 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1789 ShuffleVectorSDNode::commuteMask(MaskVec); 1790 1791 SDValue Op0 = SV.getOperand(0); 1792 SDValue Op1 = SV.getOperand(1); 1793 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1794 } 1795 1796 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1797 FoldingSetNodeID ID; 1798 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1799 ID.AddInteger(RegNo); 1800 void *IP = nullptr; 1801 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1802 return SDValue(E, 0); 1803 1804 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1805 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1806 CSEMap.InsertNode(N, IP); 1807 InsertNode(N); 1808 return SDValue(N, 0); 1809 } 1810 1811 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1812 FoldingSetNodeID ID; 1813 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1814 ID.AddPointer(RegMask); 1815 void *IP = nullptr; 1816 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1817 return SDValue(E, 0); 1818 1819 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1820 CSEMap.InsertNode(N, IP); 1821 InsertNode(N); 1822 return SDValue(N, 0); 1823 } 1824 1825 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1826 MCSymbol *Label) { 1827 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1828 } 1829 1830 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1831 SDValue Root, MCSymbol *Label) { 1832 FoldingSetNodeID ID; 1833 SDValue Ops[] = { Root }; 1834 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1835 ID.AddPointer(Label); 1836 void *IP = nullptr; 1837 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1838 return SDValue(E, 0); 1839 1840 auto *N = 1841 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1842 createOperands(N, Ops); 1843 1844 CSEMap.InsertNode(N, IP); 1845 InsertNode(N); 1846 return SDValue(N, 0); 1847 } 1848 1849 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1850 int64_t Offset, bool isTarget, 1851 unsigned TargetFlags) { 1852 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1853 1854 FoldingSetNodeID ID; 1855 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1856 ID.AddPointer(BA); 1857 ID.AddInteger(Offset); 1858 ID.AddInteger(TargetFlags); 1859 void *IP = nullptr; 1860 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1861 return SDValue(E, 0); 1862 1863 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1864 CSEMap.InsertNode(N, IP); 1865 InsertNode(N); 1866 return SDValue(N, 0); 1867 } 1868 1869 SDValue SelectionDAG::getSrcValue(const Value *V) { 1870 assert((!V || V->getType()->isPointerTy()) && 1871 "SrcValue is not a pointer?"); 1872 1873 FoldingSetNodeID ID; 1874 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1875 ID.AddPointer(V); 1876 1877 void *IP = nullptr; 1878 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1879 return SDValue(E, 0); 1880 1881 auto *N = newSDNode<SrcValueSDNode>(V); 1882 CSEMap.InsertNode(N, IP); 1883 InsertNode(N); 1884 return SDValue(N, 0); 1885 } 1886 1887 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1888 FoldingSetNodeID ID; 1889 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1890 ID.AddPointer(MD); 1891 1892 void *IP = nullptr; 1893 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1894 return SDValue(E, 0); 1895 1896 auto *N = newSDNode<MDNodeSDNode>(MD); 1897 CSEMap.InsertNode(N, IP); 1898 InsertNode(N); 1899 return SDValue(N, 0); 1900 } 1901 1902 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1903 if (VT == V.getValueType()) 1904 return V; 1905 1906 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1907 } 1908 1909 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1910 unsigned SrcAS, unsigned DestAS) { 1911 SDValue Ops[] = {Ptr}; 1912 FoldingSetNodeID ID; 1913 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1914 ID.AddInteger(SrcAS); 1915 ID.AddInteger(DestAS); 1916 1917 void *IP = nullptr; 1918 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1919 return SDValue(E, 0); 1920 1921 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1922 VT, SrcAS, DestAS); 1923 createOperands(N, Ops); 1924 1925 CSEMap.InsertNode(N, IP); 1926 InsertNode(N); 1927 return SDValue(N, 0); 1928 } 1929 1930 /// getShiftAmountOperand - Return the specified value casted to 1931 /// the target's desired shift amount type. 1932 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1933 EVT OpTy = Op.getValueType(); 1934 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1935 if (OpTy == ShTy || OpTy.isVector()) return Op; 1936 1937 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1938 } 1939 1940 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1941 SDLoc dl(Node); 1942 const TargetLowering &TLI = getTargetLoweringInfo(); 1943 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1944 EVT VT = Node->getValueType(0); 1945 SDValue Tmp1 = Node->getOperand(0); 1946 SDValue Tmp2 = Node->getOperand(1); 1947 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1948 1949 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1950 Tmp2, MachinePointerInfo(V)); 1951 SDValue VAList = VAListLoad; 1952 1953 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1954 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1955 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1956 1957 VAList = 1958 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1959 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1960 } 1961 1962 // Increment the pointer, VAList, to the next vaarg 1963 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1964 getConstant(getDataLayout().getTypeAllocSize( 1965 VT.getTypeForEVT(*getContext())), 1966 dl, VAList.getValueType())); 1967 // Store the incremented VAList to the legalized pointer 1968 Tmp1 = 1969 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1970 // Load the actual argument out of the pointer VAList 1971 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1972 } 1973 1974 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1975 SDLoc dl(Node); 1976 const TargetLowering &TLI = getTargetLoweringInfo(); 1977 // This defaults to loading a pointer from the input and storing it to the 1978 // output, returning the chain. 1979 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1980 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1981 SDValue Tmp1 = 1982 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1983 Node->getOperand(2), MachinePointerInfo(VS)); 1984 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1985 MachinePointerInfo(VD)); 1986 } 1987 1988 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1989 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1990 unsigned ByteSize = VT.getStoreSize(); 1991 Type *Ty = VT.getTypeForEVT(*getContext()); 1992 unsigned StackAlign = 1993 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1994 1995 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1996 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1997 } 1998 1999 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2000 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2001 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2002 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2003 const DataLayout &DL = getDataLayout(); 2004 unsigned Align = 2005 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 2006 2007 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 2008 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 2009 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2010 } 2011 2012 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2013 ISD::CondCode Cond, const SDLoc &dl) { 2014 EVT OpVT = N1.getValueType(); 2015 2016 // These setcc operations always fold. 2017 switch (Cond) { 2018 default: break; 2019 case ISD::SETFALSE: 2020 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2021 case ISD::SETTRUE: 2022 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2023 2024 case ISD::SETOEQ: 2025 case ISD::SETOGT: 2026 case ISD::SETOGE: 2027 case ISD::SETOLT: 2028 case ISD::SETOLE: 2029 case ISD::SETONE: 2030 case ISD::SETO: 2031 case ISD::SETUO: 2032 case ISD::SETUEQ: 2033 case ISD::SETUNE: 2034 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2035 break; 2036 } 2037 2038 if (OpVT.isInteger()) { 2039 // For EQ and NE, we can always pick a value for the undef to make the 2040 // predicate pass or fail, so we can return undef. 2041 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2042 // icmp eq/ne X, undef -> undef. 2043 if ((N1.isUndef() || N2.isUndef()) && 2044 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2045 return getUNDEF(VT); 2046 2047 // If both operands are undef, we can return undef for int comparison. 2048 // icmp undef, undef -> undef. 2049 if (N1.isUndef() && N2.isUndef()) 2050 return getUNDEF(VT); 2051 2052 // icmp X, X -> true/false 2053 // icmp X, undef -> true/false because undef could be X. 2054 if (N1 == N2) 2055 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2056 } 2057 2058 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2059 const APInt &C2 = N2C->getAPIntValue(); 2060 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2061 const APInt &C1 = N1C->getAPIntValue(); 2062 2063 switch (Cond) { 2064 default: llvm_unreachable("Unknown integer setcc!"); 2065 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2066 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2067 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2068 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2069 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2070 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2071 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2072 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2073 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2074 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2075 } 2076 } 2077 } 2078 2079 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2080 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2081 2082 if (N1CFP && N2CFP) { 2083 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2084 switch (Cond) { 2085 default: break; 2086 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2087 return getUNDEF(VT); 2088 LLVM_FALLTHROUGH; 2089 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2090 OpVT); 2091 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2092 return getUNDEF(VT); 2093 LLVM_FALLTHROUGH; 2094 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2095 R==APFloat::cmpLessThan, dl, VT, 2096 OpVT); 2097 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2098 return getUNDEF(VT); 2099 LLVM_FALLTHROUGH; 2100 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2101 OpVT); 2102 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2103 return getUNDEF(VT); 2104 LLVM_FALLTHROUGH; 2105 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2106 VT, OpVT); 2107 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2108 return getUNDEF(VT); 2109 LLVM_FALLTHROUGH; 2110 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2111 R==APFloat::cmpEqual, dl, VT, 2112 OpVT); 2113 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2114 return getUNDEF(VT); 2115 LLVM_FALLTHROUGH; 2116 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2117 R==APFloat::cmpEqual, dl, VT, OpVT); 2118 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2119 OpVT); 2120 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2121 OpVT); 2122 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2123 R==APFloat::cmpEqual, dl, VT, 2124 OpVT); 2125 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2126 OpVT); 2127 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2128 R==APFloat::cmpLessThan, dl, VT, 2129 OpVT); 2130 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2131 R==APFloat::cmpUnordered, dl, VT, 2132 OpVT); 2133 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2134 VT, OpVT); 2135 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2136 OpVT); 2137 } 2138 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2139 // Ensure that the constant occurs on the RHS. 2140 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2141 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2142 return SDValue(); 2143 return getSetCC(dl, VT, N2, N1, SwappedCond); 2144 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2145 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2146 // If an operand is known to be a nan (or undef that could be a nan), we can 2147 // fold it. 2148 // Choosing NaN for the undef will always make unordered comparison succeed 2149 // and ordered comparison fails. 2150 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2151 switch (ISD::getUnorderedFlavor(Cond)) { 2152 default: 2153 llvm_unreachable("Unknown flavor!"); 2154 case 0: // Known false. 2155 return getBoolConstant(false, dl, VT, OpVT); 2156 case 1: // Known true. 2157 return getBoolConstant(true, dl, VT, OpVT); 2158 case 2: // Undefined. 2159 return getUNDEF(VT); 2160 } 2161 } 2162 2163 // Could not fold it. 2164 return SDValue(); 2165 } 2166 2167 /// See if the specified operand can be simplified with the knowledge that only 2168 /// the bits specified by DemandedBits are used. 2169 /// TODO: really we should be making this into the DAG equivalent of 2170 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2171 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2172 EVT VT = V.getValueType(); 2173 APInt DemandedElts = VT.isVector() 2174 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2175 : APInt(1, 1); 2176 return GetDemandedBits(V, DemandedBits, DemandedElts); 2177 } 2178 2179 /// See if the specified operand can be simplified with the knowledge that only 2180 /// the bits specified by DemandedBits are used in the elements specified by 2181 /// DemandedElts. 2182 /// TODO: really we should be making this into the DAG equivalent of 2183 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2184 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2185 const APInt &DemandedElts) { 2186 switch (V.getOpcode()) { 2187 default: 2188 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2189 *this, 0); 2190 break; 2191 case ISD::Constant: { 2192 auto *CV = cast<ConstantSDNode>(V.getNode()); 2193 assert(CV && "Const value should be ConstSDNode."); 2194 const APInt &CVal = CV->getAPIntValue(); 2195 APInt NewVal = CVal & DemandedBits; 2196 if (NewVal != CVal) 2197 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2198 break; 2199 } 2200 case ISD::SRL: 2201 // Only look at single-use SRLs. 2202 if (!V.getNode()->hasOneUse()) 2203 break; 2204 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2205 // See if we can recursively simplify the LHS. 2206 unsigned Amt = RHSC->getZExtValue(); 2207 2208 // Watch out for shift count overflow though. 2209 if (Amt >= DemandedBits.getBitWidth()) 2210 break; 2211 APInt SrcDemandedBits = DemandedBits << Amt; 2212 if (SDValue SimplifyLHS = 2213 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2214 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2215 V.getOperand(1)); 2216 } 2217 break; 2218 case ISD::AND: { 2219 // X & -1 -> X (ignoring bits which aren't demanded). 2220 // Also handle the case where masked out bits in X are known to be zero. 2221 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2222 const APInt &AndVal = RHSC->getAPIntValue(); 2223 if (DemandedBits.isSubsetOf(AndVal) || 2224 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2225 AndVal)) 2226 return V.getOperand(0); 2227 } 2228 break; 2229 } 2230 } 2231 return SDValue(); 2232 } 2233 2234 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2235 /// use this predicate to simplify operations downstream. 2236 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2237 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2238 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2239 } 2240 2241 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2242 /// this predicate to simplify operations downstream. Mask is known to be zero 2243 /// for bits that V cannot have. 2244 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2245 unsigned Depth) const { 2246 EVT VT = V.getValueType(); 2247 APInt DemandedElts = VT.isVector() 2248 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2249 : APInt(1, 1); 2250 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2251 } 2252 2253 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2254 /// DemandedElts. We use this predicate to simplify operations downstream. 2255 /// Mask is known to be zero for bits that V cannot have. 2256 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2257 const APInt &DemandedElts, 2258 unsigned Depth) const { 2259 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2260 } 2261 2262 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2263 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2264 unsigned Depth) const { 2265 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2266 } 2267 2268 /// isSplatValue - Return true if the vector V has the same value 2269 /// across all DemandedElts. 2270 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2271 APInt &UndefElts) { 2272 if (!DemandedElts) 2273 return false; // No demanded elts, better to assume we don't know anything. 2274 2275 EVT VT = V.getValueType(); 2276 assert(VT.isVector() && "Vector type expected"); 2277 2278 unsigned NumElts = VT.getVectorNumElements(); 2279 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2280 UndefElts = APInt::getNullValue(NumElts); 2281 2282 switch (V.getOpcode()) { 2283 case ISD::BUILD_VECTOR: { 2284 SDValue Scl; 2285 for (unsigned i = 0; i != NumElts; ++i) { 2286 SDValue Op = V.getOperand(i); 2287 if (Op.isUndef()) { 2288 UndefElts.setBit(i); 2289 continue; 2290 } 2291 if (!DemandedElts[i]) 2292 continue; 2293 if (Scl && Scl != Op) 2294 return false; 2295 Scl = Op; 2296 } 2297 return true; 2298 } 2299 case ISD::VECTOR_SHUFFLE: { 2300 // Check if this is a shuffle node doing a splat. 2301 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2302 int SplatIndex = -1; 2303 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2304 for (int i = 0; i != (int)NumElts; ++i) { 2305 int M = Mask[i]; 2306 if (M < 0) { 2307 UndefElts.setBit(i); 2308 continue; 2309 } 2310 if (!DemandedElts[i]) 2311 continue; 2312 if (0 <= SplatIndex && SplatIndex != M) 2313 return false; 2314 SplatIndex = M; 2315 } 2316 return true; 2317 } 2318 case ISD::EXTRACT_SUBVECTOR: { 2319 SDValue Src = V.getOperand(0); 2320 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2321 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2322 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2323 // Offset the demanded elts by the subvector index. 2324 uint64_t Idx = SubIdx->getZExtValue(); 2325 APInt UndefSrcElts; 2326 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2327 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2328 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2329 return true; 2330 } 2331 } 2332 break; 2333 } 2334 case ISD::ADD: 2335 case ISD::SUB: 2336 case ISD::AND: { 2337 APInt UndefLHS, UndefRHS; 2338 SDValue LHS = V.getOperand(0); 2339 SDValue RHS = V.getOperand(1); 2340 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2341 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2342 UndefElts = UndefLHS | UndefRHS; 2343 return true; 2344 } 2345 break; 2346 } 2347 } 2348 2349 return false; 2350 } 2351 2352 /// Helper wrapper to main isSplatValue function. 2353 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2354 EVT VT = V.getValueType(); 2355 assert(VT.isVector() && "Vector type expected"); 2356 unsigned NumElts = VT.getVectorNumElements(); 2357 2358 APInt UndefElts; 2359 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2360 return isSplatValue(V, DemandedElts, UndefElts) && 2361 (AllowUndefs || !UndefElts); 2362 } 2363 2364 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2365 V = peekThroughExtractSubvectors(V); 2366 2367 EVT VT = V.getValueType(); 2368 unsigned Opcode = V.getOpcode(); 2369 switch (Opcode) { 2370 default: { 2371 APInt UndefElts; 2372 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2373 if (isSplatValue(V, DemandedElts, UndefElts)) { 2374 // Handle case where all demanded elements are UNDEF. 2375 if (DemandedElts.isSubsetOf(UndefElts)) { 2376 SplatIdx = 0; 2377 return getUNDEF(VT); 2378 } 2379 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2380 return V; 2381 } 2382 break; 2383 } 2384 case ISD::VECTOR_SHUFFLE: { 2385 // Check if this is a shuffle node doing a splat. 2386 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2387 // getTargetVShiftNode currently struggles without the splat source. 2388 auto *SVN = cast<ShuffleVectorSDNode>(V); 2389 if (!SVN->isSplat()) 2390 break; 2391 int Idx = SVN->getSplatIndex(); 2392 int NumElts = V.getValueType().getVectorNumElements(); 2393 SplatIdx = Idx % NumElts; 2394 return V.getOperand(Idx / NumElts); 2395 } 2396 } 2397 2398 return SDValue(); 2399 } 2400 2401 SDValue SelectionDAG::getSplatValue(SDValue V) { 2402 int SplatIdx; 2403 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2404 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2405 SrcVector.getValueType().getScalarType(), SrcVector, 2406 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2407 return SDValue(); 2408 } 2409 2410 const APInt * 2411 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2412 const APInt &DemandedElts) const { 2413 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2414 V.getOpcode() == ISD::SRA) && 2415 "Unknown shift node"); 2416 unsigned BitWidth = V.getScalarValueSizeInBits(); 2417 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2418 // Shifting more than the bitwidth is not valid. 2419 const APInt &ShAmt = SA->getAPIntValue(); 2420 if (ShAmt.ult(BitWidth)) 2421 return &ShAmt; 2422 } 2423 return nullptr; 2424 } 2425 2426 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2427 SDValue V, const APInt &DemandedElts) const { 2428 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2429 V.getOpcode() == ISD::SRA) && 2430 "Unknown shift node"); 2431 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2432 return ValidAmt; 2433 unsigned BitWidth = V.getScalarValueSizeInBits(); 2434 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2435 if (!BV) 2436 return nullptr; 2437 const APInt *MinShAmt = nullptr; 2438 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2439 if (!DemandedElts[i]) 2440 continue; 2441 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2442 if (!SA) 2443 return nullptr; 2444 // Shifting more than the bitwidth is not valid. 2445 const APInt &ShAmt = SA->getAPIntValue(); 2446 if (ShAmt.uge(BitWidth)) 2447 return nullptr; 2448 if (MinShAmt && MinShAmt->ule(ShAmt)) 2449 continue; 2450 MinShAmt = &ShAmt; 2451 } 2452 return MinShAmt; 2453 } 2454 2455 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2456 SDValue V, const APInt &DemandedElts) const { 2457 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2458 V.getOpcode() == ISD::SRA) && 2459 "Unknown shift node"); 2460 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2461 return ValidAmt; 2462 unsigned BitWidth = V.getScalarValueSizeInBits(); 2463 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2464 if (!BV) 2465 return nullptr; 2466 const APInt *MaxShAmt = nullptr; 2467 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2468 if (!DemandedElts[i]) 2469 continue; 2470 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2471 if (!SA) 2472 return nullptr; 2473 // Shifting more than the bitwidth is not valid. 2474 const APInt &ShAmt = SA->getAPIntValue(); 2475 if (ShAmt.uge(BitWidth)) 2476 return nullptr; 2477 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2478 continue; 2479 MaxShAmt = &ShAmt; 2480 } 2481 return MaxShAmt; 2482 } 2483 2484 /// Determine which bits of Op are known to be either zero or one and return 2485 /// them in Known. For vectors, the known bits are those that are shared by 2486 /// every vector element. 2487 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2488 EVT VT = Op.getValueType(); 2489 APInt DemandedElts = VT.isVector() 2490 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2491 : APInt(1, 1); 2492 return computeKnownBits(Op, DemandedElts, Depth); 2493 } 2494 2495 /// Determine which bits of Op are known to be either zero or one and return 2496 /// them in Known. The DemandedElts argument allows us to only collect the known 2497 /// bits that are shared by the requested vector elements. 2498 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2499 unsigned Depth) const { 2500 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2501 2502 KnownBits Known(BitWidth); // Don't know anything. 2503 2504 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2505 // We know all of the bits for a constant! 2506 Known.One = C->getAPIntValue(); 2507 Known.Zero = ~Known.One; 2508 return Known; 2509 } 2510 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2511 // We know all of the bits for a constant fp! 2512 Known.One = C->getValueAPF().bitcastToAPInt(); 2513 Known.Zero = ~Known.One; 2514 return Known; 2515 } 2516 2517 if (Depth >= MaxRecursionDepth) 2518 return Known; // Limit search depth. 2519 2520 KnownBits Known2; 2521 unsigned NumElts = DemandedElts.getBitWidth(); 2522 assert((!Op.getValueType().isVector() || 2523 NumElts == Op.getValueType().getVectorNumElements()) && 2524 "Unexpected vector size"); 2525 2526 if (!DemandedElts) 2527 return Known; // No demanded elts, better to assume we don't know anything. 2528 2529 unsigned Opcode = Op.getOpcode(); 2530 switch (Opcode) { 2531 case ISD::BUILD_VECTOR: 2532 // Collect the known bits that are shared by every demanded vector element. 2533 Known.Zero.setAllBits(); Known.One.setAllBits(); 2534 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2535 if (!DemandedElts[i]) 2536 continue; 2537 2538 SDValue SrcOp = Op.getOperand(i); 2539 Known2 = computeKnownBits(SrcOp, Depth + 1); 2540 2541 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2542 if (SrcOp.getValueSizeInBits() != BitWidth) { 2543 assert(SrcOp.getValueSizeInBits() > BitWidth && 2544 "Expected BUILD_VECTOR implicit truncation"); 2545 Known2 = Known2.trunc(BitWidth); 2546 } 2547 2548 // Known bits are the values that are shared by every demanded element. 2549 Known.One &= Known2.One; 2550 Known.Zero &= Known2.Zero; 2551 2552 // If we don't know any bits, early out. 2553 if (Known.isUnknown()) 2554 break; 2555 } 2556 break; 2557 case ISD::VECTOR_SHUFFLE: { 2558 // Collect the known bits that are shared by every vector element referenced 2559 // by the shuffle. 2560 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2561 Known.Zero.setAllBits(); Known.One.setAllBits(); 2562 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2563 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2564 for (unsigned i = 0; i != NumElts; ++i) { 2565 if (!DemandedElts[i]) 2566 continue; 2567 2568 int M = SVN->getMaskElt(i); 2569 if (M < 0) { 2570 // For UNDEF elements, we don't know anything about the common state of 2571 // the shuffle result. 2572 Known.resetAll(); 2573 DemandedLHS.clearAllBits(); 2574 DemandedRHS.clearAllBits(); 2575 break; 2576 } 2577 2578 if ((unsigned)M < NumElts) 2579 DemandedLHS.setBit((unsigned)M % NumElts); 2580 else 2581 DemandedRHS.setBit((unsigned)M % NumElts); 2582 } 2583 // Known bits are the values that are shared by every demanded element. 2584 if (!!DemandedLHS) { 2585 SDValue LHS = Op.getOperand(0); 2586 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2587 Known.One &= Known2.One; 2588 Known.Zero &= Known2.Zero; 2589 } 2590 // If we don't know any bits, early out. 2591 if (Known.isUnknown()) 2592 break; 2593 if (!!DemandedRHS) { 2594 SDValue RHS = Op.getOperand(1); 2595 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2596 Known.One &= Known2.One; 2597 Known.Zero &= Known2.Zero; 2598 } 2599 break; 2600 } 2601 case ISD::CONCAT_VECTORS: { 2602 // Split DemandedElts and test each of the demanded subvectors. 2603 Known.Zero.setAllBits(); Known.One.setAllBits(); 2604 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2605 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2606 unsigned NumSubVectors = Op.getNumOperands(); 2607 for (unsigned i = 0; i != NumSubVectors; ++i) { 2608 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2609 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2610 if (!!DemandedSub) { 2611 SDValue Sub = Op.getOperand(i); 2612 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2613 Known.One &= Known2.One; 2614 Known.Zero &= Known2.Zero; 2615 } 2616 // If we don't know any bits, early out. 2617 if (Known.isUnknown()) 2618 break; 2619 } 2620 break; 2621 } 2622 case ISD::INSERT_SUBVECTOR: { 2623 // If we know the element index, demand any elements from the subvector and 2624 // the remainder from the src its inserted into, otherwise assume we need 2625 // the original demanded base elements and ALL the inserted subvector 2626 // elements. 2627 SDValue Src = Op.getOperand(0); 2628 SDValue Sub = Op.getOperand(1); 2629 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2630 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2631 APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts); 2632 APInt DemandedSrcElts = DemandedElts; 2633 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2634 uint64_t Idx = SubIdx->getZExtValue(); 2635 DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2636 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2637 } 2638 Known.One.setAllBits(); 2639 Known.Zero.setAllBits(); 2640 if (!!DemandedSubElts) { 2641 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2642 if (Known.isUnknown()) 2643 break; // early-out. 2644 } 2645 if (!!DemandedSrcElts) { 2646 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2647 Known.One &= Known2.One; 2648 Known.Zero &= Known2.Zero; 2649 } 2650 break; 2651 } 2652 case ISD::EXTRACT_SUBVECTOR: { 2653 // If we know the element index, just demand that subvector elements, 2654 // otherwise demand them all. 2655 SDValue Src = Op.getOperand(0); 2656 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2657 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2658 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 2659 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2660 // Offset the demanded elts by the subvector index. 2661 uint64_t Idx = SubIdx->getZExtValue(); 2662 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2663 } 2664 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2665 break; 2666 } 2667 case ISD::SCALAR_TO_VECTOR: { 2668 // We know about scalar_to_vector as much as we know about it source, 2669 // which becomes the first element of otherwise unknown vector. 2670 if (DemandedElts != 1) 2671 break; 2672 2673 SDValue N0 = Op.getOperand(0); 2674 Known = computeKnownBits(N0, Depth + 1); 2675 if (N0.getValueSizeInBits() != BitWidth) 2676 Known = Known.trunc(BitWidth); 2677 2678 break; 2679 } 2680 case ISD::BITCAST: { 2681 SDValue N0 = Op.getOperand(0); 2682 EVT SubVT = N0.getValueType(); 2683 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2684 2685 // Ignore bitcasts from unsupported types. 2686 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2687 break; 2688 2689 // Fast handling of 'identity' bitcasts. 2690 if (BitWidth == SubBitWidth) { 2691 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2692 break; 2693 } 2694 2695 bool IsLE = getDataLayout().isLittleEndian(); 2696 2697 // Bitcast 'small element' vector to 'large element' scalar/vector. 2698 if ((BitWidth % SubBitWidth) == 0) { 2699 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2700 2701 // Collect known bits for the (larger) output by collecting the known 2702 // bits from each set of sub elements and shift these into place. 2703 // We need to separately call computeKnownBits for each set of 2704 // sub elements as the knownbits for each is likely to be different. 2705 unsigned SubScale = BitWidth / SubBitWidth; 2706 APInt SubDemandedElts(NumElts * SubScale, 0); 2707 for (unsigned i = 0; i != NumElts; ++i) 2708 if (DemandedElts[i]) 2709 SubDemandedElts.setBit(i * SubScale); 2710 2711 for (unsigned i = 0; i != SubScale; ++i) { 2712 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2713 Depth + 1); 2714 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2715 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2716 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2717 } 2718 } 2719 2720 // Bitcast 'large element' scalar/vector to 'small element' vector. 2721 if ((SubBitWidth % BitWidth) == 0) { 2722 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2723 2724 // Collect known bits for the (smaller) output by collecting the known 2725 // bits from the overlapping larger input elements and extracting the 2726 // sub sections we actually care about. 2727 unsigned SubScale = SubBitWidth / BitWidth; 2728 APInt SubDemandedElts(NumElts / SubScale, 0); 2729 for (unsigned i = 0; i != NumElts; ++i) 2730 if (DemandedElts[i]) 2731 SubDemandedElts.setBit(i / SubScale); 2732 2733 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2734 2735 Known.Zero.setAllBits(); Known.One.setAllBits(); 2736 for (unsigned i = 0; i != NumElts; ++i) 2737 if (DemandedElts[i]) { 2738 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2739 unsigned Offset = (Shifts % SubScale) * BitWidth; 2740 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2741 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2742 // If we don't know any bits, early out. 2743 if (Known.isUnknown()) 2744 break; 2745 } 2746 } 2747 break; 2748 } 2749 case ISD::AND: 2750 // If either the LHS or the RHS are Zero, the result is zero. 2751 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2752 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2753 2754 // Output known-1 bits are only known if set in both the LHS & RHS. 2755 Known.One &= Known2.One; 2756 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2757 Known.Zero |= Known2.Zero; 2758 break; 2759 case ISD::OR: 2760 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2761 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2762 2763 // Output known-0 bits are only known if clear in both the LHS & RHS. 2764 Known.Zero &= Known2.Zero; 2765 // Output known-1 are known to be set if set in either the LHS | RHS. 2766 Known.One |= Known2.One; 2767 break; 2768 case ISD::XOR: { 2769 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2770 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2771 2772 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2773 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2774 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2775 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2776 Known.Zero = KnownZeroOut; 2777 break; 2778 } 2779 case ISD::MUL: { 2780 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2781 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2782 2783 // If low bits are zero in either operand, output low known-0 bits. 2784 // Also compute a conservative estimate for high known-0 bits. 2785 // More trickiness is possible, but this is sufficient for the 2786 // interesting case of alignment computation. 2787 unsigned TrailZ = Known.countMinTrailingZeros() + 2788 Known2.countMinTrailingZeros(); 2789 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2790 Known2.countMinLeadingZeros(), 2791 BitWidth) - BitWidth; 2792 2793 Known.resetAll(); 2794 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2795 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2796 break; 2797 } 2798 case ISD::UDIV: { 2799 // For the purposes of computing leading zeros we can conservatively 2800 // treat a udiv as a logical right shift by the power of 2 known to 2801 // be less than the denominator. 2802 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2803 unsigned LeadZ = Known2.countMinLeadingZeros(); 2804 2805 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2806 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2807 if (RHSMaxLeadingZeros != BitWidth) 2808 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2809 2810 Known.Zero.setHighBits(LeadZ); 2811 break; 2812 } 2813 case ISD::SELECT: 2814 case ISD::VSELECT: 2815 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2816 // If we don't know any bits, early out. 2817 if (Known.isUnknown()) 2818 break; 2819 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2820 2821 // Only known if known in both the LHS and RHS. 2822 Known.One &= Known2.One; 2823 Known.Zero &= Known2.Zero; 2824 break; 2825 case ISD::SELECT_CC: 2826 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2827 // If we don't know any bits, early out. 2828 if (Known.isUnknown()) 2829 break; 2830 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2831 2832 // Only known if known in both the LHS and RHS. 2833 Known.One &= Known2.One; 2834 Known.Zero &= Known2.Zero; 2835 break; 2836 case ISD::SMULO: 2837 case ISD::UMULO: 2838 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2839 if (Op.getResNo() != 1) 2840 break; 2841 // The boolean result conforms to getBooleanContents. 2842 // If we know the result of a setcc has the top bits zero, use this info. 2843 // We know that we have an integer-based boolean since these operations 2844 // are only available for integer. 2845 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2846 TargetLowering::ZeroOrOneBooleanContent && 2847 BitWidth > 1) 2848 Known.Zero.setBitsFrom(1); 2849 break; 2850 case ISD::SETCC: 2851 case ISD::STRICT_FSETCC: 2852 case ISD::STRICT_FSETCCS: { 2853 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2854 // If we know the result of a setcc has the top bits zero, use this info. 2855 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2856 TargetLowering::ZeroOrOneBooleanContent && 2857 BitWidth > 1) 2858 Known.Zero.setBitsFrom(1); 2859 break; 2860 } 2861 case ISD::SHL: 2862 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2863 2864 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2865 unsigned Shift = ShAmt->getZExtValue(); 2866 Known.Zero <<= Shift; 2867 Known.One <<= Shift; 2868 // Low bits are known zero. 2869 Known.Zero.setLowBits(Shift); 2870 break; 2871 } 2872 2873 // No matter the shift amount, the trailing zeros will stay zero. 2874 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2875 Known.One.clearAllBits(); 2876 2877 // Minimum shift low bits are known zero. 2878 if (const APInt *ShMinAmt = 2879 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2880 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2881 break; 2882 case ISD::SRL: 2883 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2884 2885 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2886 unsigned Shift = ShAmt->getZExtValue(); 2887 Known.Zero.lshrInPlace(Shift); 2888 Known.One.lshrInPlace(Shift); 2889 // High bits are known zero. 2890 Known.Zero.setHighBits(Shift); 2891 break; 2892 } 2893 2894 // No matter the shift amount, the leading zeros will stay zero. 2895 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2896 Known.One.clearAllBits(); 2897 2898 // Minimum shift high bits are known zero. 2899 if (const APInt *ShMinAmt = 2900 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2901 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2902 break; 2903 case ISD::SRA: 2904 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2905 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2906 unsigned Shift = ShAmt->getZExtValue(); 2907 // Sign extend known zero/one bit (else is unknown). 2908 Known.Zero.ashrInPlace(Shift); 2909 Known.One.ashrInPlace(Shift); 2910 } 2911 break; 2912 case ISD::FSHL: 2913 case ISD::FSHR: 2914 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2915 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2916 2917 // For fshl, 0-shift returns the 1st arg. 2918 // For fshr, 0-shift returns the 2nd arg. 2919 if (Amt == 0) { 2920 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2921 DemandedElts, Depth + 1); 2922 break; 2923 } 2924 2925 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2926 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2927 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2928 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2929 if (Opcode == ISD::FSHL) { 2930 Known.One <<= Amt; 2931 Known.Zero <<= Amt; 2932 Known2.One.lshrInPlace(BitWidth - Amt); 2933 Known2.Zero.lshrInPlace(BitWidth - Amt); 2934 } else { 2935 Known.One <<= BitWidth - Amt; 2936 Known.Zero <<= BitWidth - Amt; 2937 Known2.One.lshrInPlace(Amt); 2938 Known2.Zero.lshrInPlace(Amt); 2939 } 2940 Known.One |= Known2.One; 2941 Known.Zero |= Known2.Zero; 2942 } 2943 break; 2944 case ISD::SIGN_EXTEND_INREG: { 2945 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2946 unsigned EBits = EVT.getScalarSizeInBits(); 2947 2948 // Sign extension. Compute the demanded bits in the result that are not 2949 // present in the input. 2950 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2951 2952 APInt InSignMask = APInt::getSignMask(EBits); 2953 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2954 2955 // If the sign extended bits are demanded, we know that the sign 2956 // bit is demanded. 2957 InSignMask = InSignMask.zext(BitWidth); 2958 if (NewBits.getBoolValue()) 2959 InputDemandedBits |= InSignMask; 2960 2961 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2962 Known.One &= InputDemandedBits; 2963 Known.Zero &= InputDemandedBits; 2964 2965 // If the sign bit of the input is known set or clear, then we know the 2966 // top bits of the result. 2967 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2968 Known.Zero |= NewBits; 2969 Known.One &= ~NewBits; 2970 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2971 Known.One |= NewBits; 2972 Known.Zero &= ~NewBits; 2973 } else { // Input sign bit unknown 2974 Known.Zero &= ~NewBits; 2975 Known.One &= ~NewBits; 2976 } 2977 break; 2978 } 2979 case ISD::CTTZ: 2980 case ISD::CTTZ_ZERO_UNDEF: { 2981 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2982 // If we have a known 1, its position is our upper bound. 2983 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2984 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2985 Known.Zero.setBitsFrom(LowBits); 2986 break; 2987 } 2988 case ISD::CTLZ: 2989 case ISD::CTLZ_ZERO_UNDEF: { 2990 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2991 // If we have a known 1, its position is our upper bound. 2992 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2993 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2994 Known.Zero.setBitsFrom(LowBits); 2995 break; 2996 } 2997 case ISD::CTPOP: { 2998 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2999 // If we know some of the bits are zero, they can't be one. 3000 unsigned PossibleOnes = Known2.countMaxPopulation(); 3001 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3002 break; 3003 } 3004 case ISD::LOAD: { 3005 LoadSDNode *LD = cast<LoadSDNode>(Op); 3006 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3007 if (ISD::isNON_EXTLoad(LD) && Cst) { 3008 // Determine any common known bits from the loaded constant pool value. 3009 Type *CstTy = Cst->getType(); 3010 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3011 // If its a vector splat, then we can (quickly) reuse the scalar path. 3012 // NOTE: We assume all elements match and none are UNDEF. 3013 if (CstTy->isVectorTy()) { 3014 if (const Constant *Splat = Cst->getSplatValue()) { 3015 Cst = Splat; 3016 CstTy = Cst->getType(); 3017 } 3018 } 3019 // TODO - do we need to handle different bitwidths? 3020 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3021 // Iterate across all vector elements finding common known bits. 3022 Known.One.setAllBits(); 3023 Known.Zero.setAllBits(); 3024 for (unsigned i = 0; i != NumElts; ++i) { 3025 if (!DemandedElts[i]) 3026 continue; 3027 if (Constant *Elt = Cst->getAggregateElement(i)) { 3028 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3029 const APInt &Value = CInt->getValue(); 3030 Known.One &= Value; 3031 Known.Zero &= ~Value; 3032 continue; 3033 } 3034 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3035 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3036 Known.One &= Value; 3037 Known.Zero &= ~Value; 3038 continue; 3039 } 3040 } 3041 Known.One.clearAllBits(); 3042 Known.Zero.clearAllBits(); 3043 break; 3044 } 3045 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3046 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3047 const APInt &Value = CInt->getValue(); 3048 Known.One = Value; 3049 Known.Zero = ~Value; 3050 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3051 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3052 Known.One = Value; 3053 Known.Zero = ~Value; 3054 } 3055 } 3056 } 3057 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3058 // If this is a ZEXTLoad and we are looking at the loaded value. 3059 EVT VT = LD->getMemoryVT(); 3060 unsigned MemBits = VT.getScalarSizeInBits(); 3061 Known.Zero.setBitsFrom(MemBits); 3062 } else if (const MDNode *Ranges = LD->getRanges()) { 3063 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3064 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3065 } 3066 break; 3067 } 3068 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3069 EVT InVT = Op.getOperand(0).getValueType(); 3070 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3071 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3072 Known = Known.zext(BitWidth); 3073 break; 3074 } 3075 case ISD::ZERO_EXTEND: { 3076 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3077 Known = Known.zext(BitWidth); 3078 break; 3079 } 3080 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3081 EVT InVT = Op.getOperand(0).getValueType(); 3082 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3083 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3084 // If the sign bit is known to be zero or one, then sext will extend 3085 // it to the top bits, else it will just zext. 3086 Known = Known.sext(BitWidth); 3087 break; 3088 } 3089 case ISD::SIGN_EXTEND: { 3090 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3091 // If the sign bit is known to be zero or one, then sext will extend 3092 // it to the top bits, else it will just zext. 3093 Known = Known.sext(BitWidth); 3094 break; 3095 } 3096 case ISD::ANY_EXTEND_VECTOR_INREG: { 3097 EVT InVT = Op.getOperand(0).getValueType(); 3098 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3099 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3100 Known = Known.anyext(BitWidth); 3101 break; 3102 } 3103 case ISD::ANY_EXTEND: { 3104 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3105 Known = Known.anyext(BitWidth); 3106 break; 3107 } 3108 case ISD::TRUNCATE: { 3109 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3110 Known = Known.trunc(BitWidth); 3111 break; 3112 } 3113 case ISD::AssertZext: { 3114 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3115 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3116 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3117 Known.Zero |= (~InMask); 3118 Known.One &= (~Known.Zero); 3119 break; 3120 } 3121 case ISD::FGETSIGN: 3122 // All bits are zero except the low bit. 3123 Known.Zero.setBitsFrom(1); 3124 break; 3125 case ISD::USUBO: 3126 case ISD::SSUBO: 3127 if (Op.getResNo() == 1) { 3128 // If we know the result of a setcc has the top bits zero, use this info. 3129 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3130 TargetLowering::ZeroOrOneBooleanContent && 3131 BitWidth > 1) 3132 Known.Zero.setBitsFrom(1); 3133 break; 3134 } 3135 LLVM_FALLTHROUGH; 3136 case ISD::SUB: 3137 case ISD::SUBC: { 3138 assert(Op.getResNo() == 0 && 3139 "We only compute knownbits for the difference here."); 3140 3141 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3142 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3143 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3144 Known, Known2); 3145 break; 3146 } 3147 case ISD::UADDO: 3148 case ISD::SADDO: 3149 case ISD::ADDCARRY: 3150 if (Op.getResNo() == 1) { 3151 // If we know the result of a setcc has the top bits zero, use this info. 3152 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3153 TargetLowering::ZeroOrOneBooleanContent && 3154 BitWidth > 1) 3155 Known.Zero.setBitsFrom(1); 3156 break; 3157 } 3158 LLVM_FALLTHROUGH; 3159 case ISD::ADD: 3160 case ISD::ADDC: 3161 case ISD::ADDE: { 3162 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3163 3164 // With ADDE and ADDCARRY, a carry bit may be added in. 3165 KnownBits Carry(1); 3166 if (Opcode == ISD::ADDE) 3167 // Can't track carry from glue, set carry to unknown. 3168 Carry.resetAll(); 3169 else if (Opcode == ISD::ADDCARRY) 3170 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3171 // the trouble (how often will we find a known carry bit). And I haven't 3172 // tested this very much yet, but something like this might work: 3173 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3174 // Carry = Carry.zextOrTrunc(1, false); 3175 Carry.resetAll(); 3176 else 3177 Carry.setAllZero(); 3178 3179 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3180 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3181 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3182 break; 3183 } 3184 case ISD::SREM: 3185 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3186 const APInt &RA = Rem->getAPIntValue().abs(); 3187 if (RA.isPowerOf2()) { 3188 APInt LowBits = RA - 1; 3189 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3190 3191 // The low bits of the first operand are unchanged by the srem. 3192 Known.Zero = Known2.Zero & LowBits; 3193 Known.One = Known2.One & LowBits; 3194 3195 // If the first operand is non-negative or has all low bits zero, then 3196 // the upper bits are all zero. 3197 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3198 Known.Zero |= ~LowBits; 3199 3200 // If the first operand is negative and not all low bits are zero, then 3201 // the upper bits are all one. 3202 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3203 Known.One |= ~LowBits; 3204 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3205 } 3206 } 3207 break; 3208 case ISD::UREM: { 3209 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3210 const APInt &RA = Rem->getAPIntValue(); 3211 if (RA.isPowerOf2()) { 3212 APInt LowBits = (RA - 1); 3213 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3214 3215 // The upper bits are all zero, the lower ones are unchanged. 3216 Known.Zero = Known2.Zero | ~LowBits; 3217 Known.One = Known2.One & LowBits; 3218 break; 3219 } 3220 } 3221 3222 // Since the result is less than or equal to either operand, any leading 3223 // zero bits in either operand must also exist in the result. 3224 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3225 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3226 3227 uint32_t Leaders = 3228 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3229 Known.resetAll(); 3230 Known.Zero.setHighBits(Leaders); 3231 break; 3232 } 3233 case ISD::EXTRACT_ELEMENT: { 3234 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3235 const unsigned Index = Op.getConstantOperandVal(1); 3236 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3237 3238 // Remove low part of known bits mask 3239 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3240 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3241 3242 // Remove high part of known bit mask 3243 Known = Known.trunc(EltBitWidth); 3244 break; 3245 } 3246 case ISD::EXTRACT_VECTOR_ELT: { 3247 SDValue InVec = Op.getOperand(0); 3248 SDValue EltNo = Op.getOperand(1); 3249 EVT VecVT = InVec.getValueType(); 3250 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3251 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3252 3253 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3254 // anything about the extended bits. 3255 if (BitWidth > EltBitWidth) 3256 Known = Known.trunc(EltBitWidth); 3257 3258 // If we know the element index, just demand that vector element, else for 3259 // an unknown element index, ignore DemandedElts and demand them all. 3260 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3261 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3262 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3263 DemandedSrcElts = 3264 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3265 3266 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3267 if (BitWidth > EltBitWidth) 3268 Known = Known.anyext(BitWidth); 3269 break; 3270 } 3271 case ISD::INSERT_VECTOR_ELT: { 3272 // If we know the element index, split the demand between the 3273 // source vector and the inserted element, otherwise assume we need 3274 // the original demanded vector elements and the value. 3275 SDValue InVec = Op.getOperand(0); 3276 SDValue InVal = Op.getOperand(1); 3277 SDValue EltNo = Op.getOperand(2); 3278 bool DemandedVal = true; 3279 APInt DemandedVecElts = DemandedElts; 3280 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3281 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3282 unsigned EltIdx = CEltNo->getZExtValue(); 3283 DemandedVal = !!DemandedElts[EltIdx]; 3284 DemandedVecElts.clearBit(EltIdx); 3285 } 3286 Known.One.setAllBits(); 3287 Known.Zero.setAllBits(); 3288 if (DemandedVal) { 3289 Known2 = computeKnownBits(InVal, Depth + 1); 3290 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3291 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3292 } 3293 if (!!DemandedVecElts) { 3294 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3295 Known.One &= Known2.One; 3296 Known.Zero &= Known2.Zero; 3297 } 3298 break; 3299 } 3300 case ISD::BITREVERSE: { 3301 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3302 Known.Zero = Known2.Zero.reverseBits(); 3303 Known.One = Known2.One.reverseBits(); 3304 break; 3305 } 3306 case ISD::BSWAP: { 3307 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3308 Known.Zero = Known2.Zero.byteSwap(); 3309 Known.One = Known2.One.byteSwap(); 3310 break; 3311 } 3312 case ISD::ABS: { 3313 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3314 3315 // If the source's MSB is zero then we know the rest of the bits already. 3316 if (Known2.isNonNegative()) { 3317 Known.Zero = Known2.Zero; 3318 Known.One = Known2.One; 3319 break; 3320 } 3321 3322 // We only know that the absolute values's MSB will be zero iff there is 3323 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3324 Known2.One.clearSignBit(); 3325 if (Known2.One.getBoolValue()) { 3326 Known.Zero = APInt::getSignMask(BitWidth); 3327 break; 3328 } 3329 break; 3330 } 3331 case ISD::UMIN: { 3332 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3333 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3334 3335 // UMIN - we know that the result will have the maximum of the 3336 // known zero leading bits of the inputs. 3337 unsigned LeadZero = Known.countMinLeadingZeros(); 3338 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3339 3340 Known.Zero &= Known2.Zero; 3341 Known.One &= Known2.One; 3342 Known.Zero.setHighBits(LeadZero); 3343 break; 3344 } 3345 case ISD::UMAX: { 3346 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3347 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3348 3349 // UMAX - we know that the result will have the maximum of the 3350 // known one leading bits of the inputs. 3351 unsigned LeadOne = Known.countMinLeadingOnes(); 3352 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3353 3354 Known.Zero &= Known2.Zero; 3355 Known.One &= Known2.One; 3356 Known.One.setHighBits(LeadOne); 3357 break; 3358 } 3359 case ISD::SMIN: 3360 case ISD::SMAX: { 3361 // If we have a clamp pattern, we know that the number of sign bits will be 3362 // the minimum of the clamp min/max range. 3363 bool IsMax = (Opcode == ISD::SMAX); 3364 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3365 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3366 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3367 CstHigh = 3368 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3369 if (CstLow && CstHigh) { 3370 if (!IsMax) 3371 std::swap(CstLow, CstHigh); 3372 3373 const APInt &ValueLow = CstLow->getAPIntValue(); 3374 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3375 if (ValueLow.sle(ValueHigh)) { 3376 unsigned LowSignBits = ValueLow.getNumSignBits(); 3377 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3378 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3379 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3380 Known.One.setHighBits(MinSignBits); 3381 break; 3382 } 3383 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3384 Known.Zero.setHighBits(MinSignBits); 3385 break; 3386 } 3387 } 3388 } 3389 3390 // Fallback - just get the shared known bits of the operands. 3391 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3392 if (Known.isUnknown()) break; // Early-out 3393 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3394 Known.Zero &= Known2.Zero; 3395 Known.One &= Known2.One; 3396 break; 3397 } 3398 case ISD::FrameIndex: 3399 case ISD::TargetFrameIndex: 3400 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3401 break; 3402 3403 default: 3404 if (Opcode < ISD::BUILTIN_OP_END) 3405 break; 3406 LLVM_FALLTHROUGH; 3407 case ISD::INTRINSIC_WO_CHAIN: 3408 case ISD::INTRINSIC_W_CHAIN: 3409 case ISD::INTRINSIC_VOID: 3410 // Allow the target to implement this method for its nodes. 3411 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3412 break; 3413 } 3414 3415 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3416 return Known; 3417 } 3418 3419 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3420 SDValue N1) const { 3421 // X + 0 never overflow 3422 if (isNullConstant(N1)) 3423 return OFK_Never; 3424 3425 KnownBits N1Known = computeKnownBits(N1); 3426 if (N1Known.Zero.getBoolValue()) { 3427 KnownBits N0Known = computeKnownBits(N0); 3428 3429 bool overflow; 3430 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3431 if (!overflow) 3432 return OFK_Never; 3433 } 3434 3435 // mulhi + 1 never overflow 3436 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3437 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3438 return OFK_Never; 3439 3440 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3441 KnownBits N0Known = computeKnownBits(N0); 3442 3443 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3444 return OFK_Never; 3445 } 3446 3447 return OFK_Sometime; 3448 } 3449 3450 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3451 EVT OpVT = Val.getValueType(); 3452 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3453 3454 // Is the constant a known power of 2? 3455 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3456 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3457 3458 // A left-shift of a constant one will have exactly one bit set because 3459 // shifting the bit off the end is undefined. 3460 if (Val.getOpcode() == ISD::SHL) { 3461 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3462 if (C && C->getAPIntValue() == 1) 3463 return true; 3464 } 3465 3466 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3467 // one bit set. 3468 if (Val.getOpcode() == ISD::SRL) { 3469 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3470 if (C && C->getAPIntValue().isSignMask()) 3471 return true; 3472 } 3473 3474 // Are all operands of a build vector constant powers of two? 3475 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3476 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3477 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3478 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3479 return false; 3480 })) 3481 return true; 3482 3483 // More could be done here, though the above checks are enough 3484 // to handle some common cases. 3485 3486 // Fall back to computeKnownBits to catch other known cases. 3487 KnownBits Known = computeKnownBits(Val); 3488 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3489 } 3490 3491 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3492 EVT VT = Op.getValueType(); 3493 APInt DemandedElts = VT.isVector() 3494 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3495 : APInt(1, 1); 3496 return ComputeNumSignBits(Op, DemandedElts, Depth); 3497 } 3498 3499 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3500 unsigned Depth) const { 3501 EVT VT = Op.getValueType(); 3502 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3503 unsigned VTBits = VT.getScalarSizeInBits(); 3504 unsigned NumElts = DemandedElts.getBitWidth(); 3505 unsigned Tmp, Tmp2; 3506 unsigned FirstAnswer = 1; 3507 3508 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3509 const APInt &Val = C->getAPIntValue(); 3510 return Val.getNumSignBits(); 3511 } 3512 3513 if (Depth >= MaxRecursionDepth) 3514 return 1; // Limit search depth. 3515 3516 if (!DemandedElts) 3517 return 1; // No demanded elts, better to assume we don't know anything. 3518 3519 unsigned Opcode = Op.getOpcode(); 3520 switch (Opcode) { 3521 default: break; 3522 case ISD::AssertSext: 3523 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3524 return VTBits-Tmp+1; 3525 case ISD::AssertZext: 3526 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3527 return VTBits-Tmp; 3528 3529 case ISD::BUILD_VECTOR: 3530 Tmp = VTBits; 3531 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3532 if (!DemandedElts[i]) 3533 continue; 3534 3535 SDValue SrcOp = Op.getOperand(i); 3536 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3537 3538 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3539 if (SrcOp.getValueSizeInBits() != VTBits) { 3540 assert(SrcOp.getValueSizeInBits() > VTBits && 3541 "Expected BUILD_VECTOR implicit truncation"); 3542 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3543 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3544 } 3545 Tmp = std::min(Tmp, Tmp2); 3546 } 3547 return Tmp; 3548 3549 case ISD::VECTOR_SHUFFLE: { 3550 // Collect the minimum number of sign bits that are shared by every vector 3551 // element referenced by the shuffle. 3552 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3553 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3554 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3555 for (unsigned i = 0; i != NumElts; ++i) { 3556 int M = SVN->getMaskElt(i); 3557 if (!DemandedElts[i]) 3558 continue; 3559 // For UNDEF elements, we don't know anything about the common state of 3560 // the shuffle result. 3561 if (M < 0) 3562 return 1; 3563 if ((unsigned)M < NumElts) 3564 DemandedLHS.setBit((unsigned)M % NumElts); 3565 else 3566 DemandedRHS.setBit((unsigned)M % NumElts); 3567 } 3568 Tmp = std::numeric_limits<unsigned>::max(); 3569 if (!!DemandedLHS) 3570 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3571 if (!!DemandedRHS) { 3572 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3573 Tmp = std::min(Tmp, Tmp2); 3574 } 3575 // If we don't know anything, early out and try computeKnownBits fall-back. 3576 if (Tmp == 1) 3577 break; 3578 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3579 return Tmp; 3580 } 3581 3582 case ISD::BITCAST: { 3583 SDValue N0 = Op.getOperand(0); 3584 EVT SrcVT = N0.getValueType(); 3585 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3586 3587 // Ignore bitcasts from unsupported types.. 3588 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3589 break; 3590 3591 // Fast handling of 'identity' bitcasts. 3592 if (VTBits == SrcBits) 3593 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3594 3595 bool IsLE = getDataLayout().isLittleEndian(); 3596 3597 // Bitcast 'large element' scalar/vector to 'small element' vector. 3598 if ((SrcBits % VTBits) == 0) { 3599 assert(VT.isVector() && "Expected bitcast to vector"); 3600 3601 unsigned Scale = SrcBits / VTBits; 3602 APInt SrcDemandedElts(NumElts / Scale, 0); 3603 for (unsigned i = 0; i != NumElts; ++i) 3604 if (DemandedElts[i]) 3605 SrcDemandedElts.setBit(i / Scale); 3606 3607 // Fast case - sign splat can be simply split across the small elements. 3608 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3609 if (Tmp == SrcBits) 3610 return VTBits; 3611 3612 // Slow case - determine how far the sign extends into each sub-element. 3613 Tmp2 = VTBits; 3614 for (unsigned i = 0; i != NumElts; ++i) 3615 if (DemandedElts[i]) { 3616 unsigned SubOffset = i % Scale; 3617 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3618 SubOffset = SubOffset * VTBits; 3619 if (Tmp <= SubOffset) 3620 return 1; 3621 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3622 } 3623 return Tmp2; 3624 } 3625 break; 3626 } 3627 3628 case ISD::SIGN_EXTEND: 3629 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3630 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3631 case ISD::SIGN_EXTEND_INREG: 3632 // Max of the input and what this extends. 3633 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3634 Tmp = VTBits-Tmp+1; 3635 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3636 return std::max(Tmp, Tmp2); 3637 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3638 SDValue Src = Op.getOperand(0); 3639 EVT SrcVT = Src.getValueType(); 3640 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3641 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3642 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3643 } 3644 case ISD::SRA: 3645 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3646 // SRA X, C -> adds C sign bits. 3647 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) 3648 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3649 else if (const APInt *ShAmt = 3650 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3651 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3652 return Tmp; 3653 case ISD::SHL: 3654 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 3655 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3656 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3657 if (ShAmt->ult(Tmp)) 3658 return Tmp - ShAmt->getZExtValue(); 3659 } else if (const APInt *ShAmt = 3660 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3661 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3662 if (ShAmt->ult(Tmp)) 3663 return Tmp - ShAmt->getZExtValue(); 3664 } 3665 break; 3666 case ISD::AND: 3667 case ISD::OR: 3668 case ISD::XOR: // NOT is handled here. 3669 // Logical binary ops preserve the number of sign bits at the worst. 3670 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3671 if (Tmp != 1) { 3672 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3673 FirstAnswer = std::min(Tmp, Tmp2); 3674 // We computed what we know about the sign bits as our first 3675 // answer. Now proceed to the generic code that uses 3676 // computeKnownBits, and pick whichever answer is better. 3677 } 3678 break; 3679 3680 case ISD::SELECT: 3681 case ISD::VSELECT: 3682 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3683 if (Tmp == 1) return 1; // Early out. 3684 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3685 return std::min(Tmp, Tmp2); 3686 case ISD::SELECT_CC: 3687 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3688 if (Tmp == 1) return 1; // Early out. 3689 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3690 return std::min(Tmp, Tmp2); 3691 3692 case ISD::SMIN: 3693 case ISD::SMAX: { 3694 // If we have a clamp pattern, we know that the number of sign bits will be 3695 // the minimum of the clamp min/max range. 3696 bool IsMax = (Opcode == ISD::SMAX); 3697 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3698 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3699 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3700 CstHigh = 3701 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3702 if (CstLow && CstHigh) { 3703 if (!IsMax) 3704 std::swap(CstLow, CstHigh); 3705 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3706 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3707 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3708 return std::min(Tmp, Tmp2); 3709 } 3710 } 3711 3712 // Fallback - just get the minimum number of sign bits of the operands. 3713 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3714 if (Tmp == 1) 3715 return 1; // Early out. 3716 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3717 return std::min(Tmp, Tmp2); 3718 } 3719 case ISD::UMIN: 3720 case ISD::UMAX: 3721 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3722 if (Tmp == 1) 3723 return 1; // Early out. 3724 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3725 return std::min(Tmp, Tmp2); 3726 case ISD::SADDO: 3727 case ISD::UADDO: 3728 case ISD::SSUBO: 3729 case ISD::USUBO: 3730 case ISD::SMULO: 3731 case ISD::UMULO: 3732 if (Op.getResNo() != 1) 3733 break; 3734 // The boolean result conforms to getBooleanContents. Fall through. 3735 // If setcc returns 0/-1, all bits are sign bits. 3736 // We know that we have an integer-based boolean since these operations 3737 // are only available for integer. 3738 if (TLI->getBooleanContents(VT.isVector(), false) == 3739 TargetLowering::ZeroOrNegativeOneBooleanContent) 3740 return VTBits; 3741 break; 3742 case ISD::SETCC: 3743 case ISD::STRICT_FSETCC: 3744 case ISD::STRICT_FSETCCS: { 3745 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3746 // If setcc returns 0/-1, all bits are sign bits. 3747 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3748 TargetLowering::ZeroOrNegativeOneBooleanContent) 3749 return VTBits; 3750 break; 3751 } 3752 case ISD::ROTL: 3753 case ISD::ROTR: 3754 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3755 3756 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3757 if (Tmp == VTBits) 3758 return VTBits; 3759 3760 if (ConstantSDNode *C = 3761 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3762 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3763 3764 // Handle rotate right by N like a rotate left by 32-N. 3765 if (Opcode == ISD::ROTR) 3766 RotAmt = (VTBits - RotAmt) % VTBits; 3767 3768 // If we aren't rotating out all of the known-in sign bits, return the 3769 // number that are left. This handles rotl(sext(x), 1) for example. 3770 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3771 } 3772 break; 3773 case ISD::ADD: 3774 case ISD::ADDC: 3775 // Add can have at most one carry bit. Thus we know that the output 3776 // is, at worst, one more bit than the inputs. 3777 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3778 if (Tmp == 1) return 1; // Early out. 3779 3780 // Special case decrementing a value (ADD X, -1): 3781 if (ConstantSDNode *CRHS = 3782 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3783 if (CRHS->isAllOnesValue()) { 3784 KnownBits Known = 3785 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3786 3787 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3788 // sign bits set. 3789 if ((Known.Zero | 1).isAllOnesValue()) 3790 return VTBits; 3791 3792 // If we are subtracting one from a positive number, there is no carry 3793 // out of the result. 3794 if (Known.isNonNegative()) 3795 return Tmp; 3796 } 3797 3798 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3799 if (Tmp2 == 1) return 1; // Early out. 3800 return std::min(Tmp, Tmp2) - 1; 3801 case ISD::SUB: 3802 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3803 if (Tmp2 == 1) return 1; // Early out. 3804 3805 // Handle NEG. 3806 if (ConstantSDNode *CLHS = 3807 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3808 if (CLHS->isNullValue()) { 3809 KnownBits Known = 3810 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3811 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3812 // sign bits set. 3813 if ((Known.Zero | 1).isAllOnesValue()) 3814 return VTBits; 3815 3816 // If the input is known to be positive (the sign bit is known clear), 3817 // the output of the NEG has the same number of sign bits as the input. 3818 if (Known.isNonNegative()) 3819 return Tmp2; 3820 3821 // Otherwise, we treat this like a SUB. 3822 } 3823 3824 // Sub can have at most one carry bit. Thus we know that the output 3825 // is, at worst, one more bit than the inputs. 3826 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3827 if (Tmp == 1) return 1; // Early out. 3828 return std::min(Tmp, Tmp2) - 1; 3829 case ISD::MUL: { 3830 // The output of the Mul can be at most twice the valid bits in the inputs. 3831 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3832 if (SignBitsOp0 == 1) 3833 break; 3834 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3835 if (SignBitsOp1 == 1) 3836 break; 3837 unsigned OutValidBits = 3838 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3839 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3840 } 3841 case ISD::TRUNCATE: { 3842 // Check if the sign bits of source go down as far as the truncated value. 3843 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3844 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3845 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3846 return NumSrcSignBits - (NumSrcBits - VTBits); 3847 break; 3848 } 3849 case ISD::EXTRACT_ELEMENT: { 3850 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3851 const int BitWidth = Op.getValueSizeInBits(); 3852 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3853 3854 // Get reverse index (starting from 1), Op1 value indexes elements from 3855 // little end. Sign starts at big end. 3856 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3857 3858 // If the sign portion ends in our element the subtraction gives correct 3859 // result. Otherwise it gives either negative or > bitwidth result 3860 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3861 } 3862 case ISD::INSERT_VECTOR_ELT: { 3863 // If we know the element index, split the demand between the 3864 // source vector and the inserted element, otherwise assume we need 3865 // the original demanded vector elements and the value. 3866 SDValue InVec = Op.getOperand(0); 3867 SDValue InVal = Op.getOperand(1); 3868 SDValue EltNo = Op.getOperand(2); 3869 bool DemandedVal = true; 3870 APInt DemandedVecElts = DemandedElts; 3871 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3872 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3873 unsigned EltIdx = CEltNo->getZExtValue(); 3874 DemandedVal = !!DemandedElts[EltIdx]; 3875 DemandedVecElts.clearBit(EltIdx); 3876 } 3877 Tmp = std::numeric_limits<unsigned>::max(); 3878 if (DemandedVal) { 3879 // TODO - handle implicit truncation of inserted elements. 3880 if (InVal.getScalarValueSizeInBits() != VTBits) 3881 break; 3882 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3883 Tmp = std::min(Tmp, Tmp2); 3884 } 3885 if (!!DemandedVecElts) { 3886 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3887 Tmp = std::min(Tmp, Tmp2); 3888 } 3889 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3890 return Tmp; 3891 } 3892 case ISD::EXTRACT_VECTOR_ELT: { 3893 SDValue InVec = Op.getOperand(0); 3894 SDValue EltNo = Op.getOperand(1); 3895 EVT VecVT = InVec.getValueType(); 3896 const unsigned BitWidth = Op.getValueSizeInBits(); 3897 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3898 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3899 3900 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3901 // anything about sign bits. But if the sizes match we can derive knowledge 3902 // about sign bits from the vector operand. 3903 if (BitWidth != EltBitWidth) 3904 break; 3905 3906 // If we know the element index, just demand that vector element, else for 3907 // an unknown element index, ignore DemandedElts and demand them all. 3908 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3909 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3910 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3911 DemandedSrcElts = 3912 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3913 3914 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3915 } 3916 case ISD::EXTRACT_SUBVECTOR: { 3917 // If we know the element index, just demand that subvector elements, 3918 // otherwise demand them all. 3919 SDValue Src = Op.getOperand(0); 3920 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3921 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3922 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 3923 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3924 // Offset the demanded elts by the subvector index. 3925 uint64_t Idx = SubIdx->getZExtValue(); 3926 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3927 } 3928 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3929 } 3930 case ISD::CONCAT_VECTORS: { 3931 // Determine the minimum number of sign bits across all demanded 3932 // elts of the input vectors. Early out if the result is already 1. 3933 Tmp = std::numeric_limits<unsigned>::max(); 3934 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3935 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3936 unsigned NumSubVectors = Op.getNumOperands(); 3937 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3938 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3939 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3940 if (!DemandedSub) 3941 continue; 3942 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3943 Tmp = std::min(Tmp, Tmp2); 3944 } 3945 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3946 return Tmp; 3947 } 3948 case ISD::INSERT_SUBVECTOR: { 3949 // If we know the element index, demand any elements from the subvector and 3950 // the remainder from the src its inserted into, otherwise assume we need 3951 // the original demanded base elements and ALL the inserted subvector 3952 // elements. 3953 SDValue Src = Op.getOperand(0); 3954 SDValue Sub = Op.getOperand(1); 3955 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3956 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3957 APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts); 3958 APInt DemandedSrcElts = DemandedElts; 3959 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3960 uint64_t Idx = SubIdx->getZExtValue(); 3961 DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3962 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3963 } 3964 Tmp = std::numeric_limits<unsigned>::max(); 3965 if (!!DemandedSubElts) { 3966 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3967 if (Tmp == 1) 3968 return 1; // early-out 3969 } 3970 if (!!DemandedSrcElts) { 3971 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3972 Tmp = std::min(Tmp, Tmp2); 3973 } 3974 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3975 return Tmp; 3976 } 3977 } 3978 3979 // If we are looking at the loaded value of the SDNode. 3980 if (Op.getResNo() == 0) { 3981 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3982 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3983 unsigned ExtType = LD->getExtensionType(); 3984 switch (ExtType) { 3985 default: break; 3986 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3987 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3988 return VTBits - Tmp + 1; 3989 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3990 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3991 return VTBits - Tmp; 3992 case ISD::NON_EXTLOAD: 3993 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3994 // We only need to handle vectors - computeKnownBits should handle 3995 // scalar cases. 3996 Type *CstTy = Cst->getType(); 3997 if (CstTy->isVectorTy() && 3998 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3999 Tmp = VTBits; 4000 for (unsigned i = 0; i != NumElts; ++i) { 4001 if (!DemandedElts[i]) 4002 continue; 4003 if (Constant *Elt = Cst->getAggregateElement(i)) { 4004 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4005 const APInt &Value = CInt->getValue(); 4006 Tmp = std::min(Tmp, Value.getNumSignBits()); 4007 continue; 4008 } 4009 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4010 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4011 Tmp = std::min(Tmp, Value.getNumSignBits()); 4012 continue; 4013 } 4014 } 4015 // Unknown type. Conservatively assume no bits match sign bit. 4016 return 1; 4017 } 4018 return Tmp; 4019 } 4020 } 4021 break; 4022 } 4023 } 4024 } 4025 4026 // Allow the target to implement this method for its nodes. 4027 if (Opcode >= ISD::BUILTIN_OP_END || 4028 Opcode == ISD::INTRINSIC_WO_CHAIN || 4029 Opcode == ISD::INTRINSIC_W_CHAIN || 4030 Opcode == ISD::INTRINSIC_VOID) { 4031 unsigned NumBits = 4032 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4033 if (NumBits > 1) 4034 FirstAnswer = std::max(FirstAnswer, NumBits); 4035 } 4036 4037 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4038 // use this information. 4039 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4040 4041 APInt Mask; 4042 if (Known.isNonNegative()) { // sign bit is 0 4043 Mask = Known.Zero; 4044 } else if (Known.isNegative()) { // sign bit is 1; 4045 Mask = Known.One; 4046 } else { 4047 // Nothing known. 4048 return FirstAnswer; 4049 } 4050 4051 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 4052 // the number of identical bits in the top of the input value. 4053 Mask = ~Mask; 4054 Mask <<= Mask.getBitWidth()-VTBits; 4055 // Return # leading zeros. We use 'min' here in case Val was zero before 4056 // shifting. We don't want to return '64' as for an i32 "0". 4057 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 4058 } 4059 4060 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4061 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4062 !isa<ConstantSDNode>(Op.getOperand(1))) 4063 return false; 4064 4065 if (Op.getOpcode() == ISD::OR && 4066 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4067 return false; 4068 4069 return true; 4070 } 4071 4072 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4073 // If we're told that NaNs won't happen, assume they won't. 4074 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4075 return true; 4076 4077 if (Depth >= MaxRecursionDepth) 4078 return false; // Limit search depth. 4079 4080 // TODO: Handle vectors. 4081 // If the value is a constant, we can obviously see if it is a NaN or not. 4082 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4083 return !C->getValueAPF().isNaN() || 4084 (SNaN && !C->getValueAPF().isSignaling()); 4085 } 4086 4087 unsigned Opcode = Op.getOpcode(); 4088 switch (Opcode) { 4089 case ISD::FADD: 4090 case ISD::FSUB: 4091 case ISD::FMUL: 4092 case ISD::FDIV: 4093 case ISD::FREM: 4094 case ISD::FSIN: 4095 case ISD::FCOS: { 4096 if (SNaN) 4097 return true; 4098 // TODO: Need isKnownNeverInfinity 4099 return false; 4100 } 4101 case ISD::FCANONICALIZE: 4102 case ISD::FEXP: 4103 case ISD::FEXP2: 4104 case ISD::FTRUNC: 4105 case ISD::FFLOOR: 4106 case ISD::FCEIL: 4107 case ISD::FROUND: 4108 case ISD::FRINT: 4109 case ISD::FNEARBYINT: { 4110 if (SNaN) 4111 return true; 4112 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4113 } 4114 case ISD::FABS: 4115 case ISD::FNEG: 4116 case ISD::FCOPYSIGN: { 4117 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4118 } 4119 case ISD::SELECT: 4120 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4121 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4122 case ISD::FP_EXTEND: 4123 case ISD::FP_ROUND: { 4124 if (SNaN) 4125 return true; 4126 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4127 } 4128 case ISD::SINT_TO_FP: 4129 case ISD::UINT_TO_FP: 4130 return true; 4131 case ISD::FMA: 4132 case ISD::FMAD: { 4133 if (SNaN) 4134 return true; 4135 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4136 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4137 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4138 } 4139 case ISD::FSQRT: // Need is known positive 4140 case ISD::FLOG: 4141 case ISD::FLOG2: 4142 case ISD::FLOG10: 4143 case ISD::FPOWI: 4144 case ISD::FPOW: { 4145 if (SNaN) 4146 return true; 4147 // TODO: Refine on operand 4148 return false; 4149 } 4150 case ISD::FMINNUM: 4151 case ISD::FMAXNUM: { 4152 // Only one needs to be known not-nan, since it will be returned if the 4153 // other ends up being one. 4154 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4155 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4156 } 4157 case ISD::FMINNUM_IEEE: 4158 case ISD::FMAXNUM_IEEE: { 4159 if (SNaN) 4160 return true; 4161 // This can return a NaN if either operand is an sNaN, or if both operands 4162 // are NaN. 4163 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4164 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4165 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4166 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4167 } 4168 case ISD::FMINIMUM: 4169 case ISD::FMAXIMUM: { 4170 // TODO: Does this quiet or return the origina NaN as-is? 4171 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4172 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4173 } 4174 case ISD::EXTRACT_VECTOR_ELT: { 4175 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4176 } 4177 default: 4178 if (Opcode >= ISD::BUILTIN_OP_END || 4179 Opcode == ISD::INTRINSIC_WO_CHAIN || 4180 Opcode == ISD::INTRINSIC_W_CHAIN || 4181 Opcode == ISD::INTRINSIC_VOID) { 4182 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4183 } 4184 4185 return false; 4186 } 4187 } 4188 4189 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4190 assert(Op.getValueType().isFloatingPoint() && 4191 "Floating point type expected"); 4192 4193 // If the value is a constant, we can obviously see if it is a zero or not. 4194 // TODO: Add BuildVector support. 4195 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4196 return !C->isZero(); 4197 return false; 4198 } 4199 4200 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4201 assert(!Op.getValueType().isFloatingPoint() && 4202 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4203 4204 // If the value is a constant, we can obviously see if it is a zero or not. 4205 if (ISD::matchUnaryPredicate( 4206 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4207 return true; 4208 4209 // TODO: Recognize more cases here. 4210 switch (Op.getOpcode()) { 4211 default: break; 4212 case ISD::OR: 4213 if (isKnownNeverZero(Op.getOperand(1)) || 4214 isKnownNeverZero(Op.getOperand(0))) 4215 return true; 4216 break; 4217 } 4218 4219 return false; 4220 } 4221 4222 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4223 // Check the obvious case. 4224 if (A == B) return true; 4225 4226 // For for negative and positive zero. 4227 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4228 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4229 if (CA->isZero() && CB->isZero()) return true; 4230 4231 // Otherwise they may not be equal. 4232 return false; 4233 } 4234 4235 // FIXME: unify with llvm::haveNoCommonBitsSet. 4236 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4237 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4238 assert(A.getValueType() == B.getValueType() && 4239 "Values must have the same type"); 4240 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4241 } 4242 4243 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4244 ArrayRef<SDValue> Ops, 4245 SelectionDAG &DAG) { 4246 int NumOps = Ops.size(); 4247 assert(NumOps != 0 && "Can't build an empty vector!"); 4248 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4249 "Incorrect element count in BUILD_VECTOR!"); 4250 4251 // BUILD_VECTOR of UNDEFs is UNDEF. 4252 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4253 return DAG.getUNDEF(VT); 4254 4255 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4256 SDValue IdentitySrc; 4257 bool IsIdentity = true; 4258 for (int i = 0; i != NumOps; ++i) { 4259 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4260 Ops[i].getOperand(0).getValueType() != VT || 4261 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4262 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4263 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4264 IsIdentity = false; 4265 break; 4266 } 4267 IdentitySrc = Ops[i].getOperand(0); 4268 } 4269 if (IsIdentity) 4270 return IdentitySrc; 4271 4272 return SDValue(); 4273 } 4274 4275 /// Try to simplify vector concatenation to an input value, undef, or build 4276 /// vector. 4277 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4278 ArrayRef<SDValue> Ops, 4279 SelectionDAG &DAG) { 4280 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4281 assert(llvm::all_of(Ops, 4282 [Ops](SDValue Op) { 4283 return Ops[0].getValueType() == Op.getValueType(); 4284 }) && 4285 "Concatenation of vectors with inconsistent value types!"); 4286 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4287 VT.getVectorNumElements() && 4288 "Incorrect element count in vector concatenation!"); 4289 4290 if (Ops.size() == 1) 4291 return Ops[0]; 4292 4293 // Concat of UNDEFs is UNDEF. 4294 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4295 return DAG.getUNDEF(VT); 4296 4297 // Scan the operands and look for extract operations from a single source 4298 // that correspond to insertion at the same location via this concatenation: 4299 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4300 SDValue IdentitySrc; 4301 bool IsIdentity = true; 4302 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4303 SDValue Op = Ops[i]; 4304 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4305 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4306 Op.getOperand(0).getValueType() != VT || 4307 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4308 !isa<ConstantSDNode>(Op.getOperand(1)) || 4309 Op.getConstantOperandVal(1) != IdentityIndex) { 4310 IsIdentity = false; 4311 break; 4312 } 4313 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4314 "Unexpected identity source vector for concat of extracts"); 4315 IdentitySrc = Op.getOperand(0); 4316 } 4317 if (IsIdentity) { 4318 assert(IdentitySrc && "Failed to set source vector of extracts"); 4319 return IdentitySrc; 4320 } 4321 4322 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4323 // simplified to one big BUILD_VECTOR. 4324 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4325 EVT SVT = VT.getScalarType(); 4326 SmallVector<SDValue, 16> Elts; 4327 for (SDValue Op : Ops) { 4328 EVT OpVT = Op.getValueType(); 4329 if (Op.isUndef()) 4330 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4331 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4332 Elts.append(Op->op_begin(), Op->op_end()); 4333 else 4334 return SDValue(); 4335 } 4336 4337 // BUILD_VECTOR requires all inputs to be of the same type, find the 4338 // maximum type and extend them all. 4339 for (SDValue Op : Elts) 4340 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4341 4342 if (SVT.bitsGT(VT.getScalarType())) 4343 for (SDValue &Op : Elts) 4344 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4345 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4346 : DAG.getSExtOrTrunc(Op, DL, SVT); 4347 4348 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4349 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4350 return V; 4351 } 4352 4353 /// Gets or creates the specified node. 4354 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4355 FoldingSetNodeID ID; 4356 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4357 void *IP = nullptr; 4358 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4359 return SDValue(E, 0); 4360 4361 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4362 getVTList(VT)); 4363 CSEMap.InsertNode(N, IP); 4364 4365 InsertNode(N); 4366 SDValue V = SDValue(N, 0); 4367 NewSDValueDbgMsg(V, "Creating new node: ", this); 4368 return V; 4369 } 4370 4371 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4372 SDValue Operand, const SDNodeFlags Flags) { 4373 // Constant fold unary operations with an integer constant operand. Even 4374 // opaque constant will be folded, because the folding of unary operations 4375 // doesn't create new constants with different values. Nevertheless, the 4376 // opaque flag is preserved during folding to prevent future folding with 4377 // other constants. 4378 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4379 const APInt &Val = C->getAPIntValue(); 4380 switch (Opcode) { 4381 default: break; 4382 case ISD::SIGN_EXTEND: 4383 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4384 C->isTargetOpcode(), C->isOpaque()); 4385 case ISD::TRUNCATE: 4386 if (C->isOpaque()) 4387 break; 4388 LLVM_FALLTHROUGH; 4389 case ISD::ANY_EXTEND: 4390 case ISD::ZERO_EXTEND: 4391 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4392 C->isTargetOpcode(), C->isOpaque()); 4393 case ISD::UINT_TO_FP: 4394 case ISD::SINT_TO_FP: { 4395 APFloat apf(EVTToAPFloatSemantics(VT), 4396 APInt::getNullValue(VT.getSizeInBits())); 4397 (void)apf.convertFromAPInt(Val, 4398 Opcode==ISD::SINT_TO_FP, 4399 APFloat::rmNearestTiesToEven); 4400 return getConstantFP(apf, DL, VT); 4401 } 4402 case ISD::BITCAST: 4403 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4404 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4405 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4406 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4407 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4408 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4409 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4410 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4411 break; 4412 case ISD::ABS: 4413 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4414 C->isOpaque()); 4415 case ISD::BITREVERSE: 4416 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4417 C->isOpaque()); 4418 case ISD::BSWAP: 4419 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4420 C->isOpaque()); 4421 case ISD::CTPOP: 4422 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4423 C->isOpaque()); 4424 case ISD::CTLZ: 4425 case ISD::CTLZ_ZERO_UNDEF: 4426 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4427 C->isOpaque()); 4428 case ISD::CTTZ: 4429 case ISD::CTTZ_ZERO_UNDEF: 4430 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4431 C->isOpaque()); 4432 case ISD::FP16_TO_FP: { 4433 bool Ignored; 4434 APFloat FPV(APFloat::IEEEhalf(), 4435 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4436 4437 // This can return overflow, underflow, or inexact; we don't care. 4438 // FIXME need to be more flexible about rounding mode. 4439 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4440 APFloat::rmNearestTiesToEven, &Ignored); 4441 return getConstantFP(FPV, DL, VT); 4442 } 4443 } 4444 } 4445 4446 // Constant fold unary operations with a floating point constant operand. 4447 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4448 APFloat V = C->getValueAPF(); // make copy 4449 switch (Opcode) { 4450 case ISD::FNEG: 4451 V.changeSign(); 4452 return getConstantFP(V, DL, VT); 4453 case ISD::FABS: 4454 V.clearSign(); 4455 return getConstantFP(V, DL, VT); 4456 case ISD::FCEIL: { 4457 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4458 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4459 return getConstantFP(V, DL, VT); 4460 break; 4461 } 4462 case ISD::FTRUNC: { 4463 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4464 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4465 return getConstantFP(V, DL, VT); 4466 break; 4467 } 4468 case ISD::FFLOOR: { 4469 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4470 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4471 return getConstantFP(V, DL, VT); 4472 break; 4473 } 4474 case ISD::FP_EXTEND: { 4475 bool ignored; 4476 // This can return overflow, underflow, or inexact; we don't care. 4477 // FIXME need to be more flexible about rounding mode. 4478 (void)V.convert(EVTToAPFloatSemantics(VT), 4479 APFloat::rmNearestTiesToEven, &ignored); 4480 return getConstantFP(V, DL, VT); 4481 } 4482 case ISD::FP_TO_SINT: 4483 case ISD::FP_TO_UINT: { 4484 bool ignored; 4485 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4486 // FIXME need to be more flexible about rounding mode. 4487 APFloat::opStatus s = 4488 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4489 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4490 break; 4491 return getConstant(IntVal, DL, VT); 4492 } 4493 case ISD::BITCAST: 4494 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4495 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4496 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4497 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4498 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4499 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4500 break; 4501 case ISD::FP_TO_FP16: { 4502 bool Ignored; 4503 // This can return overflow, underflow, or inexact; we don't care. 4504 // FIXME need to be more flexible about rounding mode. 4505 (void)V.convert(APFloat::IEEEhalf(), 4506 APFloat::rmNearestTiesToEven, &Ignored); 4507 return getConstant(V.bitcastToAPInt(), DL, VT); 4508 } 4509 } 4510 } 4511 4512 // Constant fold unary operations with a vector integer or float operand. 4513 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4514 if (BV->isConstant()) { 4515 switch (Opcode) { 4516 default: 4517 // FIXME: Entirely reasonable to perform folding of other unary 4518 // operations here as the need arises. 4519 break; 4520 case ISD::FNEG: 4521 case ISD::FABS: 4522 case ISD::FCEIL: 4523 case ISD::FTRUNC: 4524 case ISD::FFLOOR: 4525 case ISD::FP_EXTEND: 4526 case ISD::FP_TO_SINT: 4527 case ISD::FP_TO_UINT: 4528 case ISD::TRUNCATE: 4529 case ISD::ANY_EXTEND: 4530 case ISD::ZERO_EXTEND: 4531 case ISD::SIGN_EXTEND: 4532 case ISD::UINT_TO_FP: 4533 case ISD::SINT_TO_FP: 4534 case ISD::ABS: 4535 case ISD::BITREVERSE: 4536 case ISD::BSWAP: 4537 case ISD::CTLZ: 4538 case ISD::CTLZ_ZERO_UNDEF: 4539 case ISD::CTTZ: 4540 case ISD::CTTZ_ZERO_UNDEF: 4541 case ISD::CTPOP: { 4542 SDValue Ops = { Operand }; 4543 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4544 return Fold; 4545 } 4546 } 4547 } 4548 } 4549 4550 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4551 switch (Opcode) { 4552 case ISD::TokenFactor: 4553 case ISD::MERGE_VALUES: 4554 case ISD::CONCAT_VECTORS: 4555 return Operand; // Factor, merge or concat of one node? No need. 4556 case ISD::BUILD_VECTOR: { 4557 // Attempt to simplify BUILD_VECTOR. 4558 SDValue Ops[] = {Operand}; 4559 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4560 return V; 4561 break; 4562 } 4563 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4564 case ISD::FP_EXTEND: 4565 assert(VT.isFloatingPoint() && 4566 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4567 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4568 assert((!VT.isVector() || 4569 VT.getVectorNumElements() == 4570 Operand.getValueType().getVectorNumElements()) && 4571 "Vector element count mismatch!"); 4572 assert(Operand.getValueType().bitsLT(VT) && 4573 "Invalid fpext node, dst < src!"); 4574 if (Operand.isUndef()) 4575 return getUNDEF(VT); 4576 break; 4577 case ISD::FP_TO_SINT: 4578 case ISD::FP_TO_UINT: 4579 if (Operand.isUndef()) 4580 return getUNDEF(VT); 4581 break; 4582 case ISD::SINT_TO_FP: 4583 case ISD::UINT_TO_FP: 4584 // [us]itofp(undef) = 0, because the result value is bounded. 4585 if (Operand.isUndef()) 4586 return getConstantFP(0.0, DL, VT); 4587 break; 4588 case ISD::SIGN_EXTEND: 4589 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4590 "Invalid SIGN_EXTEND!"); 4591 assert(VT.isVector() == Operand.getValueType().isVector() && 4592 "SIGN_EXTEND result type type should be vector iff the operand " 4593 "type is vector!"); 4594 if (Operand.getValueType() == VT) return Operand; // noop extension 4595 assert((!VT.isVector() || 4596 VT.getVectorNumElements() == 4597 Operand.getValueType().getVectorNumElements()) && 4598 "Vector element count mismatch!"); 4599 assert(Operand.getValueType().bitsLT(VT) && 4600 "Invalid sext node, dst < src!"); 4601 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4602 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4603 else if (OpOpcode == ISD::UNDEF) 4604 // sext(undef) = 0, because the top bits will all be the same. 4605 return getConstant(0, DL, VT); 4606 break; 4607 case ISD::ZERO_EXTEND: 4608 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4609 "Invalid ZERO_EXTEND!"); 4610 assert(VT.isVector() == Operand.getValueType().isVector() && 4611 "ZERO_EXTEND result type type should be vector iff the operand " 4612 "type is vector!"); 4613 if (Operand.getValueType() == VT) return Operand; // noop extension 4614 assert((!VT.isVector() || 4615 VT.getVectorNumElements() == 4616 Operand.getValueType().getVectorNumElements()) && 4617 "Vector element count mismatch!"); 4618 assert(Operand.getValueType().bitsLT(VT) && 4619 "Invalid zext node, dst < src!"); 4620 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4621 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4622 else if (OpOpcode == ISD::UNDEF) 4623 // zext(undef) = 0, because the top bits will be zero. 4624 return getConstant(0, DL, VT); 4625 break; 4626 case ISD::ANY_EXTEND: 4627 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4628 "Invalid ANY_EXTEND!"); 4629 assert(VT.isVector() == Operand.getValueType().isVector() && 4630 "ANY_EXTEND result type type should be vector iff the operand " 4631 "type is vector!"); 4632 if (Operand.getValueType() == VT) return Operand; // noop extension 4633 assert((!VT.isVector() || 4634 VT.getVectorNumElements() == 4635 Operand.getValueType().getVectorNumElements()) && 4636 "Vector element count mismatch!"); 4637 assert(Operand.getValueType().bitsLT(VT) && 4638 "Invalid anyext node, dst < src!"); 4639 4640 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4641 OpOpcode == ISD::ANY_EXTEND) 4642 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4643 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4644 else if (OpOpcode == ISD::UNDEF) 4645 return getUNDEF(VT); 4646 4647 // (ext (trunc x)) -> x 4648 if (OpOpcode == ISD::TRUNCATE) { 4649 SDValue OpOp = Operand.getOperand(0); 4650 if (OpOp.getValueType() == VT) { 4651 transferDbgValues(Operand, OpOp); 4652 return OpOp; 4653 } 4654 } 4655 break; 4656 case ISD::TRUNCATE: 4657 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4658 "Invalid TRUNCATE!"); 4659 assert(VT.isVector() == Operand.getValueType().isVector() && 4660 "TRUNCATE result type type should be vector iff the operand " 4661 "type is vector!"); 4662 if (Operand.getValueType() == VT) return Operand; // noop truncate 4663 assert((!VT.isVector() || 4664 VT.getVectorNumElements() == 4665 Operand.getValueType().getVectorNumElements()) && 4666 "Vector element count mismatch!"); 4667 assert(Operand.getValueType().bitsGT(VT) && 4668 "Invalid truncate node, src < dst!"); 4669 if (OpOpcode == ISD::TRUNCATE) 4670 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4671 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4672 OpOpcode == ISD::ANY_EXTEND) { 4673 // If the source is smaller than the dest, we still need an extend. 4674 if (Operand.getOperand(0).getValueType().getScalarType() 4675 .bitsLT(VT.getScalarType())) 4676 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4677 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4678 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4679 return Operand.getOperand(0); 4680 } 4681 if (OpOpcode == ISD::UNDEF) 4682 return getUNDEF(VT); 4683 break; 4684 case ISD::ANY_EXTEND_VECTOR_INREG: 4685 case ISD::ZERO_EXTEND_VECTOR_INREG: 4686 case ISD::SIGN_EXTEND_VECTOR_INREG: 4687 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4688 assert(Operand.getValueType().bitsLE(VT) && 4689 "The input must be the same size or smaller than the result."); 4690 assert(VT.getVectorNumElements() < 4691 Operand.getValueType().getVectorNumElements() && 4692 "The destination vector type must have fewer lanes than the input."); 4693 break; 4694 case ISD::ABS: 4695 assert(VT.isInteger() && VT == Operand.getValueType() && 4696 "Invalid ABS!"); 4697 if (OpOpcode == ISD::UNDEF) 4698 return getUNDEF(VT); 4699 break; 4700 case ISD::BSWAP: 4701 assert(VT.isInteger() && VT == Operand.getValueType() && 4702 "Invalid BSWAP!"); 4703 assert((VT.getScalarSizeInBits() % 16 == 0) && 4704 "BSWAP types must be a multiple of 16 bits!"); 4705 if (OpOpcode == ISD::UNDEF) 4706 return getUNDEF(VT); 4707 break; 4708 case ISD::BITREVERSE: 4709 assert(VT.isInteger() && VT == Operand.getValueType() && 4710 "Invalid BITREVERSE!"); 4711 if (OpOpcode == ISD::UNDEF) 4712 return getUNDEF(VT); 4713 break; 4714 case ISD::BITCAST: 4715 // Basic sanity checking. 4716 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4717 "Cannot BITCAST between types of different sizes!"); 4718 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4719 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4720 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4721 if (OpOpcode == ISD::UNDEF) 4722 return getUNDEF(VT); 4723 break; 4724 case ISD::SCALAR_TO_VECTOR: 4725 assert(VT.isVector() && !Operand.getValueType().isVector() && 4726 (VT.getVectorElementType() == Operand.getValueType() || 4727 (VT.getVectorElementType().isInteger() && 4728 Operand.getValueType().isInteger() && 4729 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4730 "Illegal SCALAR_TO_VECTOR node!"); 4731 if (OpOpcode == ISD::UNDEF) 4732 return getUNDEF(VT); 4733 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4734 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4735 isa<ConstantSDNode>(Operand.getOperand(1)) && 4736 Operand.getConstantOperandVal(1) == 0 && 4737 Operand.getOperand(0).getValueType() == VT) 4738 return Operand.getOperand(0); 4739 break; 4740 case ISD::FNEG: 4741 // Negation of an unknown bag of bits is still completely undefined. 4742 if (OpOpcode == ISD::UNDEF) 4743 return getUNDEF(VT); 4744 4745 if (OpOpcode == ISD::FNEG) // --X -> X 4746 return Operand.getOperand(0); 4747 break; 4748 case ISD::FABS: 4749 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4750 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4751 break; 4752 } 4753 4754 SDNode *N; 4755 SDVTList VTs = getVTList(VT); 4756 SDValue Ops[] = {Operand}; 4757 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4758 FoldingSetNodeID ID; 4759 AddNodeIDNode(ID, Opcode, VTs, Ops); 4760 void *IP = nullptr; 4761 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4762 E->intersectFlagsWith(Flags); 4763 return SDValue(E, 0); 4764 } 4765 4766 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4767 N->setFlags(Flags); 4768 createOperands(N, Ops); 4769 CSEMap.InsertNode(N, IP); 4770 } else { 4771 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4772 createOperands(N, Ops); 4773 } 4774 4775 InsertNode(N); 4776 SDValue V = SDValue(N, 0); 4777 NewSDValueDbgMsg(V, "Creating new node: ", this); 4778 return V; 4779 } 4780 4781 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4782 const APInt &C2) { 4783 switch (Opcode) { 4784 case ISD::ADD: return C1 + C2; 4785 case ISD::SUB: return C1 - C2; 4786 case ISD::MUL: return C1 * C2; 4787 case ISD::AND: return C1 & C2; 4788 case ISD::OR: return C1 | C2; 4789 case ISD::XOR: return C1 ^ C2; 4790 case ISD::SHL: return C1 << C2; 4791 case ISD::SRL: return C1.lshr(C2); 4792 case ISD::SRA: return C1.ashr(C2); 4793 case ISD::ROTL: return C1.rotl(C2); 4794 case ISD::ROTR: return C1.rotr(C2); 4795 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4796 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4797 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4798 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4799 case ISD::SADDSAT: return C1.sadd_sat(C2); 4800 case ISD::UADDSAT: return C1.uadd_sat(C2); 4801 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4802 case ISD::USUBSAT: return C1.usub_sat(C2); 4803 case ISD::UDIV: 4804 if (!C2.getBoolValue()) 4805 break; 4806 return C1.udiv(C2); 4807 case ISD::UREM: 4808 if (!C2.getBoolValue()) 4809 break; 4810 return C1.urem(C2); 4811 case ISD::SDIV: 4812 if (!C2.getBoolValue()) 4813 break; 4814 return C1.sdiv(C2); 4815 case ISD::SREM: 4816 if (!C2.getBoolValue()) 4817 break; 4818 return C1.srem(C2); 4819 } 4820 return llvm::None; 4821 } 4822 4823 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4824 const GlobalAddressSDNode *GA, 4825 const SDNode *N2) { 4826 if (GA->getOpcode() != ISD::GlobalAddress) 4827 return SDValue(); 4828 if (!TLI->isOffsetFoldingLegal(GA)) 4829 return SDValue(); 4830 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4831 if (!C2) 4832 return SDValue(); 4833 int64_t Offset = C2->getSExtValue(); 4834 switch (Opcode) { 4835 case ISD::ADD: break; 4836 case ISD::SUB: Offset = -uint64_t(Offset); break; 4837 default: return SDValue(); 4838 } 4839 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4840 GA->getOffset() + uint64_t(Offset)); 4841 } 4842 4843 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4844 switch (Opcode) { 4845 case ISD::SDIV: 4846 case ISD::UDIV: 4847 case ISD::SREM: 4848 case ISD::UREM: { 4849 // If a divisor is zero/undef or any element of a divisor vector is 4850 // zero/undef, the whole op is undef. 4851 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4852 SDValue Divisor = Ops[1]; 4853 if (Divisor.isUndef() || isNullConstant(Divisor)) 4854 return true; 4855 4856 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4857 llvm::any_of(Divisor->op_values(), 4858 [](SDValue V) { return V.isUndef() || 4859 isNullConstant(V); }); 4860 // TODO: Handle signed overflow. 4861 } 4862 // TODO: Handle oversized shifts. 4863 default: 4864 return false; 4865 } 4866 } 4867 4868 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4869 EVT VT, ArrayRef<SDValue> Ops) { 4870 // If the opcode is a target-specific ISD node, there's nothing we can 4871 // do here and the operand rules may not line up with the below, so 4872 // bail early. 4873 if (Opcode >= ISD::BUILTIN_OP_END) 4874 return SDValue(); 4875 4876 // For now, the array Ops should only contain two values. 4877 // This enforcement will be removed once this function is merged with 4878 // FoldConstantVectorArithmetic 4879 if (Ops.size() != 2) 4880 return SDValue(); 4881 4882 if (isUndef(Opcode, Ops)) 4883 return getUNDEF(VT); 4884 4885 SDNode *N1 = Ops[0].getNode(); 4886 SDNode *N2 = Ops[1].getNode(); 4887 4888 // Handle the case of two scalars. 4889 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4890 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4891 if (C1->isOpaque() || C2->isOpaque()) 4892 return SDValue(); 4893 4894 Optional<APInt> FoldAttempt = 4895 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4896 if (!FoldAttempt) 4897 return SDValue(); 4898 4899 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4900 assert((!Folded || !VT.isVector()) && 4901 "Can't fold vectors ops with scalar operands"); 4902 return Folded; 4903 } 4904 } 4905 4906 // fold (add Sym, c) -> Sym+c 4907 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4908 return FoldSymbolOffset(Opcode, VT, GA, N2); 4909 if (TLI->isCommutativeBinOp(Opcode)) 4910 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4911 return FoldSymbolOffset(Opcode, VT, GA, N1); 4912 4913 // For vectors, extract each constant element and fold them individually. 4914 // Either input may be an undef value. 4915 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4916 if (!BV1 && !N1->isUndef()) 4917 return SDValue(); 4918 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4919 if (!BV2 && !N2->isUndef()) 4920 return SDValue(); 4921 // If both operands are undef, that's handled the same way as scalars. 4922 if (!BV1 && !BV2) 4923 return SDValue(); 4924 4925 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4926 "Vector binop with different number of elements in operands?"); 4927 4928 EVT SVT = VT.getScalarType(); 4929 EVT LegalSVT = SVT; 4930 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4931 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4932 if (LegalSVT.bitsLT(SVT)) 4933 return SDValue(); 4934 } 4935 SmallVector<SDValue, 4> Outputs; 4936 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4937 for (unsigned I = 0; I != NumOps; ++I) { 4938 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4939 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4940 if (SVT.isInteger()) { 4941 if (V1->getValueType(0).bitsGT(SVT)) 4942 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4943 if (V2->getValueType(0).bitsGT(SVT)) 4944 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4945 } 4946 4947 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4948 return SDValue(); 4949 4950 // Fold one vector element. 4951 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4952 if (LegalSVT != SVT) 4953 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4954 4955 // Scalar folding only succeeded if the result is a constant or UNDEF. 4956 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4957 ScalarResult.getOpcode() != ISD::ConstantFP) 4958 return SDValue(); 4959 Outputs.push_back(ScalarResult); 4960 } 4961 4962 assert(VT.getVectorNumElements() == Outputs.size() && 4963 "Vector size mismatch!"); 4964 4965 // We may have a vector type but a scalar result. Create a splat. 4966 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4967 4968 // Build a big vector out of the scalar elements we generated. 4969 return getBuildVector(VT, SDLoc(), Outputs); 4970 } 4971 4972 // TODO: Merge with FoldConstantArithmetic 4973 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4974 const SDLoc &DL, EVT VT, 4975 ArrayRef<SDValue> Ops, 4976 const SDNodeFlags Flags) { 4977 // If the opcode is a target-specific ISD node, there's nothing we can 4978 // do here and the operand rules may not line up with the below, so 4979 // bail early. 4980 if (Opcode >= ISD::BUILTIN_OP_END) 4981 return SDValue(); 4982 4983 if (isUndef(Opcode, Ops)) 4984 return getUNDEF(VT); 4985 4986 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4987 if (!VT.isVector()) 4988 return SDValue(); 4989 4990 unsigned NumElts = VT.getVectorNumElements(); 4991 4992 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4993 return !Op.getValueType().isVector() || 4994 Op.getValueType().getVectorNumElements() == NumElts; 4995 }; 4996 4997 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4998 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4999 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5000 (BV && BV->isConstant()); 5001 }; 5002 5003 // All operands must be vector types with the same number of elements as 5004 // the result type and must be either UNDEF or a build vector of constant 5005 // or UNDEF scalars. 5006 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5007 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5008 return SDValue(); 5009 5010 // If we are comparing vectors, then the result needs to be a i1 boolean 5011 // that is then sign-extended back to the legal result type. 5012 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5013 5014 // Find legal integer scalar type for constant promotion and 5015 // ensure that its scalar size is at least as large as source. 5016 EVT LegalSVT = VT.getScalarType(); 5017 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5018 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5019 if (LegalSVT.bitsLT(VT.getScalarType())) 5020 return SDValue(); 5021 } 5022 5023 // Constant fold each scalar lane separately. 5024 SmallVector<SDValue, 4> ScalarResults; 5025 for (unsigned i = 0; i != NumElts; i++) { 5026 SmallVector<SDValue, 4> ScalarOps; 5027 for (SDValue Op : Ops) { 5028 EVT InSVT = Op.getValueType().getScalarType(); 5029 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5030 if (!InBV) { 5031 // We've checked that this is UNDEF or a constant of some kind. 5032 if (Op.isUndef()) 5033 ScalarOps.push_back(getUNDEF(InSVT)); 5034 else 5035 ScalarOps.push_back(Op); 5036 continue; 5037 } 5038 5039 SDValue ScalarOp = InBV->getOperand(i); 5040 EVT ScalarVT = ScalarOp.getValueType(); 5041 5042 // Build vector (integer) scalar operands may need implicit 5043 // truncation - do this before constant folding. 5044 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5045 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5046 5047 ScalarOps.push_back(ScalarOp); 5048 } 5049 5050 // Constant fold the scalar operands. 5051 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5052 5053 // Legalize the (integer) scalar constant if necessary. 5054 if (LegalSVT != SVT) 5055 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5056 5057 // Scalar folding only succeeded if the result is a constant or UNDEF. 5058 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5059 ScalarResult.getOpcode() != ISD::ConstantFP) 5060 return SDValue(); 5061 ScalarResults.push_back(ScalarResult); 5062 } 5063 5064 SDValue V = getBuildVector(VT, DL, ScalarResults); 5065 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5066 return V; 5067 } 5068 5069 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5070 EVT VT, SDValue N1, SDValue N2) { 5071 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5072 // should. That will require dealing with a potentially non-default 5073 // rounding mode, checking the "opStatus" return value from the APFloat 5074 // math calculations, and possibly other variations. 5075 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5076 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5077 if (N1CFP && N2CFP) { 5078 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5079 switch (Opcode) { 5080 case ISD::FADD: 5081 C1.add(C2, APFloat::rmNearestTiesToEven); 5082 return getConstantFP(C1, DL, VT); 5083 case ISD::FSUB: 5084 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5085 return getConstantFP(C1, DL, VT); 5086 case ISD::FMUL: 5087 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5088 return getConstantFP(C1, DL, VT); 5089 case ISD::FDIV: 5090 C1.divide(C2, APFloat::rmNearestTiesToEven); 5091 return getConstantFP(C1, DL, VT); 5092 case ISD::FREM: 5093 C1.mod(C2); 5094 return getConstantFP(C1, DL, VT); 5095 case ISD::FCOPYSIGN: 5096 C1.copySign(C2); 5097 return getConstantFP(C1, DL, VT); 5098 default: break; 5099 } 5100 } 5101 if (N1CFP && Opcode == ISD::FP_ROUND) { 5102 APFloat C1 = N1CFP->getValueAPF(); // make copy 5103 bool Unused; 5104 // This can return overflow, underflow, or inexact; we don't care. 5105 // FIXME need to be more flexible about rounding mode. 5106 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5107 &Unused); 5108 return getConstantFP(C1, DL, VT); 5109 } 5110 5111 switch (Opcode) { 5112 case ISD::FSUB: 5113 // -0.0 - undef --> undef (consistent with "fneg undef") 5114 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5115 return getUNDEF(VT); 5116 LLVM_FALLTHROUGH; 5117 5118 case ISD::FADD: 5119 case ISD::FMUL: 5120 case ISD::FDIV: 5121 case ISD::FREM: 5122 // If both operands are undef, the result is undef. If 1 operand is undef, 5123 // the result is NaN. This should match the behavior of the IR optimizer. 5124 if (N1.isUndef() && N2.isUndef()) 5125 return getUNDEF(VT); 5126 if (N1.isUndef() || N2.isUndef()) 5127 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5128 } 5129 return SDValue(); 5130 } 5131 5132 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5133 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5134 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5135 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5136 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5137 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5138 5139 // Canonicalize constant to RHS if commutative. 5140 if (TLI->isCommutativeBinOp(Opcode)) { 5141 if (N1C && !N2C) { 5142 std::swap(N1C, N2C); 5143 std::swap(N1, N2); 5144 } else if (N1CFP && !N2CFP) { 5145 std::swap(N1CFP, N2CFP); 5146 std::swap(N1, N2); 5147 } 5148 } 5149 5150 switch (Opcode) { 5151 default: break; 5152 case ISD::TokenFactor: 5153 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5154 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5155 // Fold trivial token factors. 5156 if (N1.getOpcode() == ISD::EntryToken) return N2; 5157 if (N2.getOpcode() == ISD::EntryToken) return N1; 5158 if (N1 == N2) return N1; 5159 break; 5160 case ISD::BUILD_VECTOR: { 5161 // Attempt to simplify BUILD_VECTOR. 5162 SDValue Ops[] = {N1, N2}; 5163 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5164 return V; 5165 break; 5166 } 5167 case ISD::CONCAT_VECTORS: { 5168 SDValue Ops[] = {N1, N2}; 5169 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5170 return V; 5171 break; 5172 } 5173 case ISD::AND: 5174 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5175 assert(N1.getValueType() == N2.getValueType() && 5176 N1.getValueType() == VT && "Binary operator types must match!"); 5177 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5178 // worth handling here. 5179 if (N2C && N2C->isNullValue()) 5180 return N2; 5181 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5182 return N1; 5183 break; 5184 case ISD::OR: 5185 case ISD::XOR: 5186 case ISD::ADD: 5187 case ISD::SUB: 5188 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5189 assert(N1.getValueType() == N2.getValueType() && 5190 N1.getValueType() == VT && "Binary operator types must match!"); 5191 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5192 // it's worth handling here. 5193 if (N2C && N2C->isNullValue()) 5194 return N1; 5195 break; 5196 case ISD::MUL: 5197 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5198 assert(N1.getValueType() == N2.getValueType() && 5199 N1.getValueType() == VT && "Binary operator types must match!"); 5200 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5201 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5202 APInt N2CImm = N2C->getAPIntValue(); 5203 return getVScale(DL, VT, MulImm * N2CImm); 5204 } 5205 break; 5206 case ISD::UDIV: 5207 case ISD::UREM: 5208 case ISD::MULHU: 5209 case ISD::MULHS: 5210 case ISD::SDIV: 5211 case ISD::SREM: 5212 case ISD::SMIN: 5213 case ISD::SMAX: 5214 case ISD::UMIN: 5215 case ISD::UMAX: 5216 case ISD::SADDSAT: 5217 case ISD::SSUBSAT: 5218 case ISD::UADDSAT: 5219 case ISD::USUBSAT: 5220 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5221 assert(N1.getValueType() == N2.getValueType() && 5222 N1.getValueType() == VT && "Binary operator types must match!"); 5223 break; 5224 case ISD::FADD: 5225 case ISD::FSUB: 5226 case ISD::FMUL: 5227 case ISD::FDIV: 5228 case ISD::FREM: 5229 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5230 assert(N1.getValueType() == N2.getValueType() && 5231 N1.getValueType() == VT && "Binary operator types must match!"); 5232 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 5233 return V; 5234 break; 5235 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5236 assert(N1.getValueType() == VT && 5237 N1.getValueType().isFloatingPoint() && 5238 N2.getValueType().isFloatingPoint() && 5239 "Invalid FCOPYSIGN!"); 5240 break; 5241 case ISD::SHL: 5242 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5243 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5244 APInt ShiftImm = N2C->getAPIntValue(); 5245 return getVScale(DL, VT, MulImm << ShiftImm); 5246 } 5247 LLVM_FALLTHROUGH; 5248 case ISD::SRA: 5249 case ISD::SRL: 5250 if (SDValue V = simplifyShift(N1, N2)) 5251 return V; 5252 LLVM_FALLTHROUGH; 5253 case ISD::ROTL: 5254 case ISD::ROTR: 5255 assert(VT == N1.getValueType() && 5256 "Shift operators return type must be the same as their first arg"); 5257 assert(VT.isInteger() && N2.getValueType().isInteger() && 5258 "Shifts only work on integers"); 5259 assert((!VT.isVector() || VT == N2.getValueType()) && 5260 "Vector shift amounts must be in the same as their first arg"); 5261 // Verify that the shift amount VT is big enough to hold valid shift 5262 // amounts. This catches things like trying to shift an i1024 value by an 5263 // i8, which is easy to fall into in generic code that uses 5264 // TLI.getShiftAmount(). 5265 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 5266 "Invalid use of small shift amount with oversized value!"); 5267 5268 // Always fold shifts of i1 values so the code generator doesn't need to 5269 // handle them. Since we know the size of the shift has to be less than the 5270 // size of the value, the shift/rotate count is guaranteed to be zero. 5271 if (VT == MVT::i1) 5272 return N1; 5273 if (N2C && N2C->isNullValue()) 5274 return N1; 5275 break; 5276 case ISD::FP_ROUND: 5277 assert(VT.isFloatingPoint() && 5278 N1.getValueType().isFloatingPoint() && 5279 VT.bitsLE(N1.getValueType()) && 5280 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5281 "Invalid FP_ROUND!"); 5282 if (N1.getValueType() == VT) return N1; // noop conversion. 5283 break; 5284 case ISD::AssertSext: 5285 case ISD::AssertZext: { 5286 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5287 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5288 assert(VT.isInteger() && EVT.isInteger() && 5289 "Cannot *_EXTEND_INREG FP types"); 5290 assert(!EVT.isVector() && 5291 "AssertSExt/AssertZExt type should be the vector element type " 5292 "rather than the vector type!"); 5293 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5294 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5295 break; 5296 } 5297 case ISD::SIGN_EXTEND_INREG: { 5298 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5299 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5300 assert(VT.isInteger() && EVT.isInteger() && 5301 "Cannot *_EXTEND_INREG FP types"); 5302 assert(EVT.isVector() == VT.isVector() && 5303 "SIGN_EXTEND_INREG type should be vector iff the operand " 5304 "type is vector!"); 5305 assert((!EVT.isVector() || 5306 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5307 "Vector element counts must match in SIGN_EXTEND_INREG"); 5308 assert(EVT.bitsLE(VT) && "Not extending!"); 5309 if (EVT == VT) return N1; // Not actually extending 5310 5311 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5312 unsigned FromBits = EVT.getScalarSizeInBits(); 5313 Val <<= Val.getBitWidth() - FromBits; 5314 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5315 return getConstant(Val, DL, ConstantVT); 5316 }; 5317 5318 if (N1C) { 5319 const APInt &Val = N1C->getAPIntValue(); 5320 return SignExtendInReg(Val, VT); 5321 } 5322 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5323 SmallVector<SDValue, 8> Ops; 5324 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5325 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5326 SDValue Op = N1.getOperand(i); 5327 if (Op.isUndef()) { 5328 Ops.push_back(getUNDEF(OpVT)); 5329 continue; 5330 } 5331 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5332 APInt Val = C->getAPIntValue(); 5333 Ops.push_back(SignExtendInReg(Val, OpVT)); 5334 } 5335 return getBuildVector(VT, DL, Ops); 5336 } 5337 break; 5338 } 5339 case ISD::EXTRACT_VECTOR_ELT: 5340 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5341 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5342 element type of the vector."); 5343 5344 // Extract from an undefined value or using an undefined index is undefined. 5345 if (N1.isUndef() || N2.isUndef()) 5346 return getUNDEF(VT); 5347 5348 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5349 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5350 return getUNDEF(VT); 5351 5352 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5353 // expanding copies of large vectors from registers. 5354 if (N2C && 5355 N1.getOpcode() == ISD::CONCAT_VECTORS && 5356 N1.getNumOperands() > 0) { 5357 unsigned Factor = 5358 N1.getOperand(0).getValueType().getVectorNumElements(); 5359 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5360 N1.getOperand(N2C->getZExtValue() / Factor), 5361 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5362 } 5363 5364 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5365 // expanding large vector constants. 5366 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5367 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5368 5369 if (VT != Elt.getValueType()) 5370 // If the vector element type is not legal, the BUILD_VECTOR operands 5371 // are promoted and implicitly truncated, and the result implicitly 5372 // extended. Make that explicit here. 5373 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5374 5375 return Elt; 5376 } 5377 5378 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5379 // operations are lowered to scalars. 5380 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5381 // If the indices are the same, return the inserted element else 5382 // if the indices are known different, extract the element from 5383 // the original vector. 5384 SDValue N1Op2 = N1.getOperand(2); 5385 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5386 5387 if (N1Op2C && N2C) { 5388 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5389 if (VT == N1.getOperand(1).getValueType()) 5390 return N1.getOperand(1); 5391 else 5392 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5393 } 5394 5395 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5396 } 5397 } 5398 5399 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5400 // when vector types are scalarized and v1iX is legal. 5401 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5402 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5403 N1.getValueType().getVectorNumElements() == 1) { 5404 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5405 N1.getOperand(1)); 5406 } 5407 break; 5408 case ISD::EXTRACT_ELEMENT: 5409 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5410 assert(!N1.getValueType().isVector() && !VT.isVector() && 5411 (N1.getValueType().isInteger() == VT.isInteger()) && 5412 N1.getValueType() != VT && 5413 "Wrong types for EXTRACT_ELEMENT!"); 5414 5415 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5416 // 64-bit integers into 32-bit parts. Instead of building the extract of 5417 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5418 if (N1.getOpcode() == ISD::BUILD_PAIR) 5419 return N1.getOperand(N2C->getZExtValue()); 5420 5421 // EXTRACT_ELEMENT of a constant int is also very common. 5422 if (N1C) { 5423 unsigned ElementSize = VT.getSizeInBits(); 5424 unsigned Shift = ElementSize * N2C->getZExtValue(); 5425 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5426 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5427 } 5428 break; 5429 case ISD::EXTRACT_SUBVECTOR: 5430 if (VT.isSimple() && N1.getValueType().isSimple()) { 5431 assert(VT.isVector() && N1.getValueType().isVector() && 5432 "Extract subvector VTs must be a vectors!"); 5433 assert(VT.getVectorElementType() == 5434 N1.getValueType().getVectorElementType() && 5435 "Extract subvector VTs must have the same element type!"); 5436 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5437 "Extract subvector must be from larger vector to smaller vector!"); 5438 5439 if (N2C) { 5440 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5441 <= N1.getValueType().getVectorNumElements()) 5442 && "Extract subvector overflow!"); 5443 } 5444 5445 // Trivial extraction. 5446 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5447 return N1; 5448 5449 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5450 if (N1.isUndef()) 5451 return getUNDEF(VT); 5452 5453 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5454 // the concat have the same type as the extract. 5455 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5456 N1.getNumOperands() > 0 && 5457 VT == N1.getOperand(0).getValueType()) { 5458 unsigned Factor = VT.getVectorNumElements(); 5459 return N1.getOperand(N2C->getZExtValue() / Factor); 5460 } 5461 5462 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5463 // during shuffle legalization. 5464 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5465 VT == N1.getOperand(1).getValueType()) 5466 return N1.getOperand(1); 5467 } 5468 break; 5469 } 5470 5471 // Perform trivial constant folding. 5472 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5473 return SV; 5474 5475 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5476 return V; 5477 5478 // Canonicalize an UNDEF to the RHS, even over a constant. 5479 if (N1.isUndef()) { 5480 if (TLI->isCommutativeBinOp(Opcode)) { 5481 std::swap(N1, N2); 5482 } else { 5483 switch (Opcode) { 5484 case ISD::SIGN_EXTEND_INREG: 5485 case ISD::SUB: 5486 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5487 case ISD::UDIV: 5488 case ISD::SDIV: 5489 case ISD::UREM: 5490 case ISD::SREM: 5491 case ISD::SSUBSAT: 5492 case ISD::USUBSAT: 5493 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5494 } 5495 } 5496 } 5497 5498 // Fold a bunch of operators when the RHS is undef. 5499 if (N2.isUndef()) { 5500 switch (Opcode) { 5501 case ISD::XOR: 5502 if (N1.isUndef()) 5503 // Handle undef ^ undef -> 0 special case. This is a common 5504 // idiom (misuse). 5505 return getConstant(0, DL, VT); 5506 LLVM_FALLTHROUGH; 5507 case ISD::ADD: 5508 case ISD::SUB: 5509 case ISD::UDIV: 5510 case ISD::SDIV: 5511 case ISD::UREM: 5512 case ISD::SREM: 5513 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5514 case ISD::MUL: 5515 case ISD::AND: 5516 case ISD::SSUBSAT: 5517 case ISD::USUBSAT: 5518 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5519 case ISD::OR: 5520 case ISD::SADDSAT: 5521 case ISD::UADDSAT: 5522 return getAllOnesConstant(DL, VT); 5523 } 5524 } 5525 5526 // Memoize this node if possible. 5527 SDNode *N; 5528 SDVTList VTs = getVTList(VT); 5529 SDValue Ops[] = {N1, N2}; 5530 if (VT != MVT::Glue) { 5531 FoldingSetNodeID ID; 5532 AddNodeIDNode(ID, Opcode, VTs, Ops); 5533 void *IP = nullptr; 5534 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5535 E->intersectFlagsWith(Flags); 5536 return SDValue(E, 0); 5537 } 5538 5539 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5540 N->setFlags(Flags); 5541 createOperands(N, Ops); 5542 CSEMap.InsertNode(N, IP); 5543 } else { 5544 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5545 createOperands(N, Ops); 5546 } 5547 5548 InsertNode(N); 5549 SDValue V = SDValue(N, 0); 5550 NewSDValueDbgMsg(V, "Creating new node: ", this); 5551 return V; 5552 } 5553 5554 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5555 SDValue N1, SDValue N2, SDValue N3, 5556 const SDNodeFlags Flags) { 5557 // Perform various simplifications. 5558 switch (Opcode) { 5559 case ISD::FMA: { 5560 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5561 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5562 N3.getValueType() == VT && "FMA types must match!"); 5563 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5564 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5565 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5566 if (N1CFP && N2CFP && N3CFP) { 5567 APFloat V1 = N1CFP->getValueAPF(); 5568 const APFloat &V2 = N2CFP->getValueAPF(); 5569 const APFloat &V3 = N3CFP->getValueAPF(); 5570 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5571 return getConstantFP(V1, DL, VT); 5572 } 5573 break; 5574 } 5575 case ISD::BUILD_VECTOR: { 5576 // Attempt to simplify BUILD_VECTOR. 5577 SDValue Ops[] = {N1, N2, N3}; 5578 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5579 return V; 5580 break; 5581 } 5582 case ISD::CONCAT_VECTORS: { 5583 SDValue Ops[] = {N1, N2, N3}; 5584 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5585 return V; 5586 break; 5587 } 5588 case ISD::SETCC: { 5589 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5590 assert(N1.getValueType() == N2.getValueType() && 5591 "SETCC operands must have the same type!"); 5592 assert(VT.isVector() == N1.getValueType().isVector() && 5593 "SETCC type should be vector iff the operand type is vector!"); 5594 assert((!VT.isVector() || 5595 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5596 "SETCC vector element counts must match!"); 5597 // Use FoldSetCC to simplify SETCC's. 5598 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5599 return V; 5600 // Vector constant folding. 5601 SDValue Ops[] = {N1, N2, N3}; 5602 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5603 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5604 return V; 5605 } 5606 break; 5607 } 5608 case ISD::SELECT: 5609 case ISD::VSELECT: 5610 if (SDValue V = simplifySelect(N1, N2, N3)) 5611 return V; 5612 break; 5613 case ISD::VECTOR_SHUFFLE: 5614 llvm_unreachable("should use getVectorShuffle constructor!"); 5615 case ISD::INSERT_VECTOR_ELT: { 5616 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5617 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5618 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5619 return getUNDEF(VT); 5620 5621 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5622 if (N3.isUndef()) 5623 return getUNDEF(VT); 5624 5625 // If the inserted element is an UNDEF, just use the input vector. 5626 if (N2.isUndef()) 5627 return N1; 5628 5629 break; 5630 } 5631 case ISD::INSERT_SUBVECTOR: { 5632 // Inserting undef into undef is still undef. 5633 if (N1.isUndef() && N2.isUndef()) 5634 return getUNDEF(VT); 5635 SDValue Index = N3; 5636 if (VT.isSimple() && N1.getValueType().isSimple() 5637 && N2.getValueType().isSimple()) { 5638 assert(VT.isVector() && N1.getValueType().isVector() && 5639 N2.getValueType().isVector() && 5640 "Insert subvector VTs must be a vectors"); 5641 assert(VT == N1.getValueType() && 5642 "Dest and insert subvector source types must match!"); 5643 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5644 "Insert subvector must be from smaller vector to larger vector!"); 5645 if (isa<ConstantSDNode>(Index)) { 5646 assert((N2.getValueType().getVectorNumElements() + 5647 cast<ConstantSDNode>(Index)->getZExtValue() 5648 <= VT.getVectorNumElements()) 5649 && "Insert subvector overflow!"); 5650 } 5651 5652 // Trivial insertion. 5653 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5654 return N2; 5655 5656 // If this is an insert of an extracted vector into an undef vector, we 5657 // can just use the input to the extract. 5658 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5659 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5660 return N2.getOperand(0); 5661 } 5662 break; 5663 } 5664 case ISD::BITCAST: 5665 // Fold bit_convert nodes from a type to themselves. 5666 if (N1.getValueType() == VT) 5667 return N1; 5668 break; 5669 } 5670 5671 // Memoize node if it doesn't produce a flag. 5672 SDNode *N; 5673 SDVTList VTs = getVTList(VT); 5674 SDValue Ops[] = {N1, N2, N3}; 5675 if (VT != MVT::Glue) { 5676 FoldingSetNodeID ID; 5677 AddNodeIDNode(ID, Opcode, VTs, Ops); 5678 void *IP = nullptr; 5679 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5680 E->intersectFlagsWith(Flags); 5681 return SDValue(E, 0); 5682 } 5683 5684 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5685 N->setFlags(Flags); 5686 createOperands(N, Ops); 5687 CSEMap.InsertNode(N, IP); 5688 } else { 5689 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5690 createOperands(N, Ops); 5691 } 5692 5693 InsertNode(N); 5694 SDValue V = SDValue(N, 0); 5695 NewSDValueDbgMsg(V, "Creating new node: ", this); 5696 return V; 5697 } 5698 5699 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5700 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5701 SDValue Ops[] = { N1, N2, N3, N4 }; 5702 return getNode(Opcode, DL, VT, Ops); 5703 } 5704 5705 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5706 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5707 SDValue N5) { 5708 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5709 return getNode(Opcode, DL, VT, Ops); 5710 } 5711 5712 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5713 /// the incoming stack arguments to be loaded from the stack. 5714 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5715 SmallVector<SDValue, 8> ArgChains; 5716 5717 // Include the original chain at the beginning of the list. When this is 5718 // used by target LowerCall hooks, this helps legalize find the 5719 // CALLSEQ_BEGIN node. 5720 ArgChains.push_back(Chain); 5721 5722 // Add a chain value for each stack argument. 5723 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5724 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5725 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5726 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5727 if (FI->getIndex() < 0) 5728 ArgChains.push_back(SDValue(L, 1)); 5729 5730 // Build a tokenfactor for all the chains. 5731 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5732 } 5733 5734 /// getMemsetValue - Vectorized representation of the memset value 5735 /// operand. 5736 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5737 const SDLoc &dl) { 5738 assert(!Value.isUndef()); 5739 5740 unsigned NumBits = VT.getScalarSizeInBits(); 5741 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5742 assert(C->getAPIntValue().getBitWidth() == 8); 5743 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5744 if (VT.isInteger()) { 5745 bool IsOpaque = VT.getSizeInBits() > 64 || 5746 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5747 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5748 } 5749 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5750 VT); 5751 } 5752 5753 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5754 EVT IntVT = VT.getScalarType(); 5755 if (!IntVT.isInteger()) 5756 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5757 5758 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5759 if (NumBits > 8) { 5760 // Use a multiplication with 0x010101... to extend the input to the 5761 // required length. 5762 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5763 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5764 DAG.getConstant(Magic, dl, IntVT)); 5765 } 5766 5767 if (VT != Value.getValueType() && !VT.isInteger()) 5768 Value = DAG.getBitcast(VT.getScalarType(), Value); 5769 if (VT != Value.getValueType()) 5770 Value = DAG.getSplatBuildVector(VT, dl, Value); 5771 5772 return Value; 5773 } 5774 5775 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5776 /// used when a memcpy is turned into a memset when the source is a constant 5777 /// string ptr. 5778 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5779 const TargetLowering &TLI, 5780 const ConstantDataArraySlice &Slice) { 5781 // Handle vector with all elements zero. 5782 if (Slice.Array == nullptr) { 5783 if (VT.isInteger()) 5784 return DAG.getConstant(0, dl, VT); 5785 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5786 return DAG.getConstantFP(0.0, dl, VT); 5787 else if (VT.isVector()) { 5788 unsigned NumElts = VT.getVectorNumElements(); 5789 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5790 return DAG.getNode(ISD::BITCAST, dl, VT, 5791 DAG.getConstant(0, dl, 5792 EVT::getVectorVT(*DAG.getContext(), 5793 EltVT, NumElts))); 5794 } else 5795 llvm_unreachable("Expected type!"); 5796 } 5797 5798 assert(!VT.isVector() && "Can't handle vector type here!"); 5799 unsigned NumVTBits = VT.getSizeInBits(); 5800 unsigned NumVTBytes = NumVTBits / 8; 5801 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5802 5803 APInt Val(NumVTBits, 0); 5804 if (DAG.getDataLayout().isLittleEndian()) { 5805 for (unsigned i = 0; i != NumBytes; ++i) 5806 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5807 } else { 5808 for (unsigned i = 0; i != NumBytes; ++i) 5809 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5810 } 5811 5812 // If the "cost" of materializing the integer immediate is less than the cost 5813 // of a load, then it is cost effective to turn the load into the immediate. 5814 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5815 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5816 return DAG.getConstant(Val, dl, VT); 5817 return SDValue(nullptr, 0); 5818 } 5819 5820 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5821 const SDLoc &DL, 5822 const SDNodeFlags Flags) { 5823 EVT VT = Base.getValueType(); 5824 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5825 } 5826 5827 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5828 const SDLoc &DL, 5829 const SDNodeFlags Flags) { 5830 assert(Offset.getValueType().isInteger()); 5831 EVT BasePtrVT = Ptr.getValueType(); 5832 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5833 } 5834 5835 /// Returns true if memcpy source is constant data. 5836 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5837 uint64_t SrcDelta = 0; 5838 GlobalAddressSDNode *G = nullptr; 5839 if (Src.getOpcode() == ISD::GlobalAddress) 5840 G = cast<GlobalAddressSDNode>(Src); 5841 else if (Src.getOpcode() == ISD::ADD && 5842 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5843 Src.getOperand(1).getOpcode() == ISD::Constant) { 5844 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5845 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5846 } 5847 if (!G) 5848 return false; 5849 5850 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5851 SrcDelta + G->getOffset()); 5852 } 5853 5854 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5855 SelectionDAG &DAG) { 5856 // On Darwin, -Os means optimize for size without hurting performance, so 5857 // only really optimize for size when -Oz (MinSize) is used. 5858 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5859 return MF.getFunction().hasMinSize(); 5860 return DAG.shouldOptForSize(); 5861 } 5862 5863 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5864 SmallVector<SDValue, 32> &OutChains, unsigned From, 5865 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5866 SmallVector<SDValue, 16> &OutStoreChains) { 5867 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5868 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5869 SmallVector<SDValue, 16> GluedLoadChains; 5870 for (unsigned i = From; i < To; ++i) { 5871 OutChains.push_back(OutLoadChains[i]); 5872 GluedLoadChains.push_back(OutLoadChains[i]); 5873 } 5874 5875 // Chain for all loads. 5876 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5877 GluedLoadChains); 5878 5879 for (unsigned i = From; i < To; ++i) { 5880 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5881 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5882 ST->getBasePtr(), ST->getMemoryVT(), 5883 ST->getMemOperand()); 5884 OutChains.push_back(NewStore); 5885 } 5886 } 5887 5888 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5889 SDValue Chain, SDValue Dst, SDValue Src, 5890 uint64_t Size, Align Alignment, 5891 bool isVol, bool AlwaysInline, 5892 MachinePointerInfo DstPtrInfo, 5893 MachinePointerInfo SrcPtrInfo) { 5894 // Turn a memcpy of undef to nop. 5895 // FIXME: We need to honor volatile even is Src is undef. 5896 if (Src.isUndef()) 5897 return Chain; 5898 5899 // Expand memcpy to a series of load and store ops if the size operand falls 5900 // below a certain threshold. 5901 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5902 // rather than maybe a humongous number of loads and stores. 5903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5904 const DataLayout &DL = DAG.getDataLayout(); 5905 LLVMContext &C = *DAG.getContext(); 5906 std::vector<EVT> MemOps; 5907 bool DstAlignCanChange = false; 5908 MachineFunction &MF = DAG.getMachineFunction(); 5909 MachineFrameInfo &MFI = MF.getFrameInfo(); 5910 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5911 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5912 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5913 DstAlignCanChange = true; 5914 MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src)); 5915 if (!SrcAlign || Alignment > *SrcAlign) 5916 SrcAlign = Alignment; 5917 assert(SrcAlign && "SrcAlign must be set"); 5918 ConstantDataArraySlice Slice; 5919 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5920 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5921 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5922 const MemOp Op = isZeroConstant 5923 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 5924 /*IsZeroMemset*/ true, isVol) 5925 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 5926 *SrcAlign, isVol, CopyFromConstant); 5927 if (!TLI.findOptimalMemOpLowering( 5928 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 5929 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5930 return SDValue(); 5931 5932 if (DstAlignCanChange) { 5933 Type *Ty = MemOps[0].getTypeForEVT(C); 5934 Align NewAlign = DL.getABITypeAlign(Ty); 5935 5936 // Don't promote to an alignment that would require dynamic stack 5937 // realignment. 5938 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5939 if (!TRI->needsStackRealignment(MF)) 5940 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 5941 NewAlign = NewAlign / 2; 5942 5943 if (NewAlign > Alignment) { 5944 // Give the stack frame object a larger alignment if needed. 5945 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 5946 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5947 Alignment = NewAlign; 5948 } 5949 } 5950 5951 MachineMemOperand::Flags MMOFlags = 5952 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5953 SmallVector<SDValue, 16> OutLoadChains; 5954 SmallVector<SDValue, 16> OutStoreChains; 5955 SmallVector<SDValue, 32> OutChains; 5956 unsigned NumMemOps = MemOps.size(); 5957 uint64_t SrcOff = 0, DstOff = 0; 5958 for (unsigned i = 0; i != NumMemOps; ++i) { 5959 EVT VT = MemOps[i]; 5960 unsigned VTSize = VT.getSizeInBits() / 8; 5961 SDValue Value, Store; 5962 5963 if (VTSize > Size) { 5964 // Issuing an unaligned load / store pair that overlaps with the previous 5965 // pair. Adjust the offset accordingly. 5966 assert(i == NumMemOps-1 && i != 0); 5967 SrcOff -= VTSize - Size; 5968 DstOff -= VTSize - Size; 5969 } 5970 5971 if (CopyFromConstant && 5972 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5973 // It's unlikely a store of a vector immediate can be done in a single 5974 // instruction. It would require a load from a constantpool first. 5975 // We only handle zero vectors here. 5976 // FIXME: Handle other cases where store of vector immediate is done in 5977 // a single instruction. 5978 ConstantDataArraySlice SubSlice; 5979 if (SrcOff < Slice.Length) { 5980 SubSlice = Slice; 5981 SubSlice.move(SrcOff); 5982 } else { 5983 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5984 SubSlice.Array = nullptr; 5985 SubSlice.Offset = 0; 5986 SubSlice.Length = VTSize; 5987 } 5988 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5989 if (Value.getNode()) { 5990 Store = DAG.getStore( 5991 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5992 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 5993 OutChains.push_back(Store); 5994 } 5995 } 5996 5997 if (!Store.getNode()) { 5998 // The type might not be legal for the target. This should only happen 5999 // if the type is smaller than a legal type, as on PPC, so the right 6000 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6001 // to Load/Store if NVT==VT. 6002 // FIXME does the case above also need this? 6003 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6004 assert(NVT.bitsGE(VT)); 6005 6006 bool isDereferenceable = 6007 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6008 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6009 if (isDereferenceable) 6010 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6011 6012 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6013 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6014 SrcPtrInfo.getWithOffset(SrcOff), VT, 6015 commonAlignment(*SrcAlign, SrcOff).value(), 6016 SrcMMOFlags); 6017 OutLoadChains.push_back(Value.getValue(1)); 6018 6019 Store = DAG.getTruncStore( 6020 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6021 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6022 OutStoreChains.push_back(Store); 6023 } 6024 SrcOff += VTSize; 6025 DstOff += VTSize; 6026 Size -= VTSize; 6027 } 6028 6029 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6030 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6031 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6032 6033 if (NumLdStInMemcpy) { 6034 // It may be that memcpy might be converted to memset if it's memcpy 6035 // of constants. In such a case, we won't have loads and stores, but 6036 // just stores. In the absence of loads, there is nothing to gang up. 6037 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6038 // If target does not care, just leave as it. 6039 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6040 OutChains.push_back(OutLoadChains[i]); 6041 OutChains.push_back(OutStoreChains[i]); 6042 } 6043 } else { 6044 // Ld/St less than/equal limit set by target. 6045 if (NumLdStInMemcpy <= GluedLdStLimit) { 6046 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6047 NumLdStInMemcpy, OutLoadChains, 6048 OutStoreChains); 6049 } else { 6050 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6051 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6052 unsigned GlueIter = 0; 6053 6054 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6055 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6056 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6057 6058 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6059 OutLoadChains, OutStoreChains); 6060 GlueIter += GluedLdStLimit; 6061 } 6062 6063 // Residual ld/st. 6064 if (RemainingLdStInMemcpy) { 6065 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6066 RemainingLdStInMemcpy, OutLoadChains, 6067 OutStoreChains); 6068 } 6069 } 6070 } 6071 } 6072 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6073 } 6074 6075 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6076 SDValue Chain, SDValue Dst, SDValue Src, 6077 uint64_t Size, Align Alignment, 6078 bool isVol, bool AlwaysInline, 6079 MachinePointerInfo DstPtrInfo, 6080 MachinePointerInfo SrcPtrInfo) { 6081 // Turn a memmove of undef to nop. 6082 // FIXME: We need to honor volatile even is Src is undef. 6083 if (Src.isUndef()) 6084 return Chain; 6085 6086 // Expand memmove to a series of load and store ops if the size operand falls 6087 // below a certain threshold. 6088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6089 const DataLayout &DL = DAG.getDataLayout(); 6090 LLVMContext &C = *DAG.getContext(); 6091 std::vector<EVT> MemOps; 6092 bool DstAlignCanChange = false; 6093 MachineFunction &MF = DAG.getMachineFunction(); 6094 MachineFrameInfo &MFI = MF.getFrameInfo(); 6095 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6096 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6097 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6098 DstAlignCanChange = true; 6099 MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src)); 6100 if (!SrcAlign || Alignment > *SrcAlign) 6101 SrcAlign = Alignment; 6102 assert(SrcAlign && "SrcAlign must be set"); 6103 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6104 if (!TLI.findOptimalMemOpLowering( 6105 MemOps, Limit, 6106 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6107 /*IsVolatile*/ true), 6108 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6109 MF.getFunction().getAttributes())) 6110 return SDValue(); 6111 6112 if (DstAlignCanChange) { 6113 Type *Ty = MemOps[0].getTypeForEVT(C); 6114 Align NewAlign = DL.getABITypeAlign(Ty); 6115 if (NewAlign > Alignment) { 6116 // Give the stack frame object a larger alignment if needed. 6117 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6118 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6119 Alignment = NewAlign; 6120 } 6121 } 6122 6123 MachineMemOperand::Flags MMOFlags = 6124 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6125 uint64_t SrcOff = 0, DstOff = 0; 6126 SmallVector<SDValue, 8> LoadValues; 6127 SmallVector<SDValue, 8> LoadChains; 6128 SmallVector<SDValue, 8> OutChains; 6129 unsigned NumMemOps = MemOps.size(); 6130 for (unsigned i = 0; i < NumMemOps; i++) { 6131 EVT VT = MemOps[i]; 6132 unsigned VTSize = VT.getSizeInBits() / 8; 6133 SDValue Value; 6134 6135 bool isDereferenceable = 6136 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6137 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6138 if (isDereferenceable) 6139 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6140 6141 Value = DAG.getLoad( 6142 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6143 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6144 LoadValues.push_back(Value); 6145 LoadChains.push_back(Value.getValue(1)); 6146 SrcOff += VTSize; 6147 } 6148 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6149 OutChains.clear(); 6150 for (unsigned i = 0; i < NumMemOps; i++) { 6151 EVT VT = MemOps[i]; 6152 unsigned VTSize = VT.getSizeInBits() / 8; 6153 SDValue Store; 6154 6155 Store = DAG.getStore( 6156 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6157 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6158 OutChains.push_back(Store); 6159 DstOff += VTSize; 6160 } 6161 6162 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6163 } 6164 6165 /// Lower the call to 'memset' intrinsic function into a series of store 6166 /// operations. 6167 /// 6168 /// \param DAG Selection DAG where lowered code is placed. 6169 /// \param dl Link to corresponding IR location. 6170 /// \param Chain Control flow dependency. 6171 /// \param Dst Pointer to destination memory location. 6172 /// \param Src Value of byte to write into the memory. 6173 /// \param Size Number of bytes to write. 6174 /// \param Alignment Alignment of the destination in bytes. 6175 /// \param isVol True if destination is volatile. 6176 /// \param DstPtrInfo IR information on the memory pointer. 6177 /// \returns New head in the control flow, if lowering was successful, empty 6178 /// SDValue otherwise. 6179 /// 6180 /// The function tries to replace 'llvm.memset' intrinsic with several store 6181 /// operations and value calculation code. This is usually profitable for small 6182 /// memory size. 6183 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6184 SDValue Chain, SDValue Dst, SDValue Src, 6185 uint64_t Size, Align Alignment, bool isVol, 6186 MachinePointerInfo DstPtrInfo) { 6187 // Turn a memset of undef to nop. 6188 // FIXME: We need to honor volatile even is Src is undef. 6189 if (Src.isUndef()) 6190 return Chain; 6191 6192 // Expand memset to a series of load/store ops if the size operand 6193 // falls below a certain threshold. 6194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6195 std::vector<EVT> MemOps; 6196 bool DstAlignCanChange = false; 6197 MachineFunction &MF = DAG.getMachineFunction(); 6198 MachineFrameInfo &MFI = MF.getFrameInfo(); 6199 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6200 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6201 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6202 DstAlignCanChange = true; 6203 bool IsZeroVal = 6204 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6205 if (!TLI.findOptimalMemOpLowering( 6206 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6207 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6208 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6209 return SDValue(); 6210 6211 if (DstAlignCanChange) { 6212 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6213 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6214 if (NewAlign > Alignment) { 6215 // Give the stack frame object a larger alignment if needed. 6216 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6217 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6218 Alignment = NewAlign; 6219 } 6220 } 6221 6222 SmallVector<SDValue, 8> OutChains; 6223 uint64_t DstOff = 0; 6224 unsigned NumMemOps = MemOps.size(); 6225 6226 // Find the largest store and generate the bit pattern for it. 6227 EVT LargestVT = MemOps[0]; 6228 for (unsigned i = 1; i < NumMemOps; i++) 6229 if (MemOps[i].bitsGT(LargestVT)) 6230 LargestVT = MemOps[i]; 6231 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6232 6233 for (unsigned i = 0; i < NumMemOps; i++) { 6234 EVT VT = MemOps[i]; 6235 unsigned VTSize = VT.getSizeInBits() / 8; 6236 if (VTSize > Size) { 6237 // Issuing an unaligned load / store pair that overlaps with the previous 6238 // pair. Adjust the offset accordingly. 6239 assert(i == NumMemOps-1 && i != 0); 6240 DstOff -= VTSize - Size; 6241 } 6242 6243 // If this store is smaller than the largest store see whether we can get 6244 // the smaller value for free with a truncate. 6245 SDValue Value = MemSetValue; 6246 if (VT.bitsLT(LargestVT)) { 6247 if (!LargestVT.isVector() && !VT.isVector() && 6248 TLI.isTruncateFree(LargestVT, VT)) 6249 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6250 else 6251 Value = getMemsetValue(Src, VT, DAG, dl); 6252 } 6253 assert(Value.getValueType() == VT && "Value with wrong type."); 6254 SDValue Store = DAG.getStore( 6255 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6256 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6257 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6258 OutChains.push_back(Store); 6259 DstOff += VT.getSizeInBits() / 8; 6260 Size -= VTSize; 6261 } 6262 6263 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6264 } 6265 6266 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6267 unsigned AS) { 6268 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6269 // pointer operands can be losslessly bitcasted to pointers of address space 0 6270 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6271 report_fatal_error("cannot lower memory intrinsic in address space " + 6272 Twine(AS)); 6273 } 6274 } 6275 6276 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6277 SDValue Src, SDValue Size, Align Alignment, 6278 bool isVol, bool AlwaysInline, bool isTailCall, 6279 MachinePointerInfo DstPtrInfo, 6280 MachinePointerInfo SrcPtrInfo) { 6281 // Check to see if we should lower the memcpy to loads and stores first. 6282 // For cases within the target-specified limits, this is the best choice. 6283 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6284 if (ConstantSize) { 6285 // Memcpy with size zero? Just return the original chain. 6286 if (ConstantSize->isNullValue()) 6287 return Chain; 6288 6289 SDValue Result = getMemcpyLoadsAndStores( 6290 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6291 isVol, false, DstPtrInfo, SrcPtrInfo); 6292 if (Result.getNode()) 6293 return Result; 6294 } 6295 6296 // Then check to see if we should lower the memcpy with target-specific 6297 // code. If the target chooses to do this, this is the next best. 6298 if (TSI) { 6299 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6300 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, 6301 AlwaysInline, DstPtrInfo, SrcPtrInfo); 6302 if (Result.getNode()) 6303 return Result; 6304 } 6305 6306 // If we really need inline code and the target declined to provide it, 6307 // use a (potentially long) sequence of loads and stores. 6308 if (AlwaysInline) { 6309 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6310 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6311 ConstantSize->getZExtValue(), Alignment, 6312 isVol, true, DstPtrInfo, SrcPtrInfo); 6313 } 6314 6315 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6316 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6317 6318 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6319 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6320 // respect volatile, so they may do things like read or write memory 6321 // beyond the given memory regions. But fixing this isn't easy, and most 6322 // people don't care. 6323 6324 // Emit a library call. 6325 TargetLowering::ArgListTy Args; 6326 TargetLowering::ArgListEntry Entry; 6327 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6328 Entry.Node = Dst; Args.push_back(Entry); 6329 Entry.Node = Src; Args.push_back(Entry); 6330 6331 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6332 Entry.Node = Size; Args.push_back(Entry); 6333 // FIXME: pass in SDLoc 6334 TargetLowering::CallLoweringInfo CLI(*this); 6335 CLI.setDebugLoc(dl) 6336 .setChain(Chain) 6337 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6338 Dst.getValueType().getTypeForEVT(*getContext()), 6339 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6340 TLI->getPointerTy(getDataLayout())), 6341 std::move(Args)) 6342 .setDiscardResult() 6343 .setTailCall(isTailCall); 6344 6345 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6346 return CallResult.second; 6347 } 6348 6349 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6350 SDValue Dst, unsigned DstAlign, 6351 SDValue Src, unsigned SrcAlign, 6352 SDValue Size, Type *SizeTy, 6353 unsigned ElemSz, bool isTailCall, 6354 MachinePointerInfo DstPtrInfo, 6355 MachinePointerInfo SrcPtrInfo) { 6356 // Emit a library call. 6357 TargetLowering::ArgListTy Args; 6358 TargetLowering::ArgListEntry Entry; 6359 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6360 Entry.Node = Dst; 6361 Args.push_back(Entry); 6362 6363 Entry.Node = Src; 6364 Args.push_back(Entry); 6365 6366 Entry.Ty = SizeTy; 6367 Entry.Node = Size; 6368 Args.push_back(Entry); 6369 6370 RTLIB::Libcall LibraryCall = 6371 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6372 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6373 report_fatal_error("Unsupported element size"); 6374 6375 TargetLowering::CallLoweringInfo CLI(*this); 6376 CLI.setDebugLoc(dl) 6377 .setChain(Chain) 6378 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6379 Type::getVoidTy(*getContext()), 6380 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6381 TLI->getPointerTy(getDataLayout())), 6382 std::move(Args)) 6383 .setDiscardResult() 6384 .setTailCall(isTailCall); 6385 6386 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6387 return CallResult.second; 6388 } 6389 6390 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6391 SDValue Src, SDValue Size, Align Alignment, 6392 bool isVol, bool isTailCall, 6393 MachinePointerInfo DstPtrInfo, 6394 MachinePointerInfo SrcPtrInfo) { 6395 // Check to see if we should lower the memmove to loads and stores first. 6396 // For cases within the target-specified limits, this is the best choice. 6397 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6398 if (ConstantSize) { 6399 // Memmove with size zero? Just return the original chain. 6400 if (ConstantSize->isNullValue()) 6401 return Chain; 6402 6403 SDValue Result = getMemmoveLoadsAndStores( 6404 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6405 isVol, false, DstPtrInfo, SrcPtrInfo); 6406 if (Result.getNode()) 6407 return Result; 6408 } 6409 6410 // Then check to see if we should lower the memmove with target-specific 6411 // code. If the target chooses to do this, this is the next best. 6412 if (TSI) { 6413 SDValue Result = TSI->EmitTargetCodeForMemmove( 6414 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo, 6415 SrcPtrInfo); 6416 if (Result.getNode()) 6417 return Result; 6418 } 6419 6420 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6421 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6422 6423 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6424 // not be safe. See memcpy above for more details. 6425 6426 // Emit a library call. 6427 TargetLowering::ArgListTy Args; 6428 TargetLowering::ArgListEntry Entry; 6429 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6430 Entry.Node = Dst; Args.push_back(Entry); 6431 Entry.Node = Src; Args.push_back(Entry); 6432 6433 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6434 Entry.Node = Size; Args.push_back(Entry); 6435 // FIXME: pass in SDLoc 6436 TargetLowering::CallLoweringInfo CLI(*this); 6437 CLI.setDebugLoc(dl) 6438 .setChain(Chain) 6439 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6440 Dst.getValueType().getTypeForEVT(*getContext()), 6441 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6442 TLI->getPointerTy(getDataLayout())), 6443 std::move(Args)) 6444 .setDiscardResult() 6445 .setTailCall(isTailCall); 6446 6447 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6448 return CallResult.second; 6449 } 6450 6451 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6452 SDValue Dst, unsigned DstAlign, 6453 SDValue Src, unsigned SrcAlign, 6454 SDValue Size, Type *SizeTy, 6455 unsigned ElemSz, bool isTailCall, 6456 MachinePointerInfo DstPtrInfo, 6457 MachinePointerInfo SrcPtrInfo) { 6458 // Emit a library call. 6459 TargetLowering::ArgListTy Args; 6460 TargetLowering::ArgListEntry Entry; 6461 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6462 Entry.Node = Dst; 6463 Args.push_back(Entry); 6464 6465 Entry.Node = Src; 6466 Args.push_back(Entry); 6467 6468 Entry.Ty = SizeTy; 6469 Entry.Node = Size; 6470 Args.push_back(Entry); 6471 6472 RTLIB::Libcall LibraryCall = 6473 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6474 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6475 report_fatal_error("Unsupported element size"); 6476 6477 TargetLowering::CallLoweringInfo CLI(*this); 6478 CLI.setDebugLoc(dl) 6479 .setChain(Chain) 6480 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6481 Type::getVoidTy(*getContext()), 6482 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6483 TLI->getPointerTy(getDataLayout())), 6484 std::move(Args)) 6485 .setDiscardResult() 6486 .setTailCall(isTailCall); 6487 6488 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6489 return CallResult.second; 6490 } 6491 6492 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6493 SDValue Src, SDValue Size, Align Alignment, 6494 bool isVol, bool isTailCall, 6495 MachinePointerInfo DstPtrInfo) { 6496 // Check to see if we should lower the memset to stores first. 6497 // For cases within the target-specified limits, this is the best choice. 6498 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6499 if (ConstantSize) { 6500 // Memset with size zero? Just return the original chain. 6501 if (ConstantSize->isNullValue()) 6502 return Chain; 6503 6504 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6505 ConstantSize->getZExtValue(), Alignment, 6506 isVol, DstPtrInfo); 6507 6508 if (Result.getNode()) 6509 return Result; 6510 } 6511 6512 // Then check to see if we should lower the memset with target-specific 6513 // code. If the target chooses to do this, this is the next best. 6514 if (TSI) { 6515 SDValue Result = TSI->EmitTargetCodeForMemset( 6516 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo); 6517 if (Result.getNode()) 6518 return Result; 6519 } 6520 6521 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6522 6523 // Emit a library call. 6524 TargetLowering::ArgListTy Args; 6525 TargetLowering::ArgListEntry Entry; 6526 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6527 Args.push_back(Entry); 6528 Entry.Node = Src; 6529 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6530 Args.push_back(Entry); 6531 Entry.Node = Size; 6532 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6533 Args.push_back(Entry); 6534 6535 // FIXME: pass in SDLoc 6536 TargetLowering::CallLoweringInfo CLI(*this); 6537 CLI.setDebugLoc(dl) 6538 .setChain(Chain) 6539 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6540 Dst.getValueType().getTypeForEVT(*getContext()), 6541 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6542 TLI->getPointerTy(getDataLayout())), 6543 std::move(Args)) 6544 .setDiscardResult() 6545 .setTailCall(isTailCall); 6546 6547 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6548 return CallResult.second; 6549 } 6550 6551 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6552 SDValue Dst, unsigned DstAlign, 6553 SDValue Value, SDValue Size, Type *SizeTy, 6554 unsigned ElemSz, bool isTailCall, 6555 MachinePointerInfo DstPtrInfo) { 6556 // Emit a library call. 6557 TargetLowering::ArgListTy Args; 6558 TargetLowering::ArgListEntry Entry; 6559 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6560 Entry.Node = Dst; 6561 Args.push_back(Entry); 6562 6563 Entry.Ty = Type::getInt8Ty(*getContext()); 6564 Entry.Node = Value; 6565 Args.push_back(Entry); 6566 6567 Entry.Ty = SizeTy; 6568 Entry.Node = Size; 6569 Args.push_back(Entry); 6570 6571 RTLIB::Libcall LibraryCall = 6572 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6573 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6574 report_fatal_error("Unsupported element size"); 6575 6576 TargetLowering::CallLoweringInfo CLI(*this); 6577 CLI.setDebugLoc(dl) 6578 .setChain(Chain) 6579 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6580 Type::getVoidTy(*getContext()), 6581 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6582 TLI->getPointerTy(getDataLayout())), 6583 std::move(Args)) 6584 .setDiscardResult() 6585 .setTailCall(isTailCall); 6586 6587 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6588 return CallResult.second; 6589 } 6590 6591 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6592 SDVTList VTList, ArrayRef<SDValue> Ops, 6593 MachineMemOperand *MMO) { 6594 FoldingSetNodeID ID; 6595 ID.AddInteger(MemVT.getRawBits()); 6596 AddNodeIDNode(ID, Opcode, VTList, Ops); 6597 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6598 void* IP = nullptr; 6599 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6600 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6601 return SDValue(E, 0); 6602 } 6603 6604 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6605 VTList, MemVT, MMO); 6606 createOperands(N, Ops); 6607 6608 CSEMap.InsertNode(N, IP); 6609 InsertNode(N); 6610 return SDValue(N, 0); 6611 } 6612 6613 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6614 EVT MemVT, SDVTList VTs, SDValue Chain, 6615 SDValue Ptr, SDValue Cmp, SDValue Swp, 6616 MachineMemOperand *MMO) { 6617 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6618 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6619 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6620 6621 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6622 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6623 } 6624 6625 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6626 SDValue Chain, SDValue Ptr, SDValue Val, 6627 MachineMemOperand *MMO) { 6628 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6629 Opcode == ISD::ATOMIC_LOAD_SUB || 6630 Opcode == ISD::ATOMIC_LOAD_AND || 6631 Opcode == ISD::ATOMIC_LOAD_CLR || 6632 Opcode == ISD::ATOMIC_LOAD_OR || 6633 Opcode == ISD::ATOMIC_LOAD_XOR || 6634 Opcode == ISD::ATOMIC_LOAD_NAND || 6635 Opcode == ISD::ATOMIC_LOAD_MIN || 6636 Opcode == ISD::ATOMIC_LOAD_MAX || 6637 Opcode == ISD::ATOMIC_LOAD_UMIN || 6638 Opcode == ISD::ATOMIC_LOAD_UMAX || 6639 Opcode == ISD::ATOMIC_LOAD_FADD || 6640 Opcode == ISD::ATOMIC_LOAD_FSUB || 6641 Opcode == ISD::ATOMIC_SWAP || 6642 Opcode == ISD::ATOMIC_STORE) && 6643 "Invalid Atomic Op"); 6644 6645 EVT VT = Val.getValueType(); 6646 6647 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6648 getVTList(VT, MVT::Other); 6649 SDValue Ops[] = {Chain, Ptr, Val}; 6650 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6651 } 6652 6653 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6654 EVT VT, SDValue Chain, SDValue Ptr, 6655 MachineMemOperand *MMO) { 6656 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6657 6658 SDVTList VTs = getVTList(VT, MVT::Other); 6659 SDValue Ops[] = {Chain, Ptr}; 6660 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6661 } 6662 6663 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6664 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6665 if (Ops.size() == 1) 6666 return Ops[0]; 6667 6668 SmallVector<EVT, 4> VTs; 6669 VTs.reserve(Ops.size()); 6670 for (unsigned i = 0; i < Ops.size(); ++i) 6671 VTs.push_back(Ops[i].getValueType()); 6672 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6673 } 6674 6675 SDValue SelectionDAG::getMemIntrinsicNode( 6676 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6677 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6678 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6679 if (Align == 0) // Ensure that codegen never sees alignment 0 6680 Align = getEVTAlignment(MemVT); 6681 6682 if (!Size && MemVT.isScalableVector()) 6683 Size = MemoryLocation::UnknownSize; 6684 else if (!Size) 6685 Size = MemVT.getStoreSize(); 6686 6687 MachineFunction &MF = getMachineFunction(); 6688 MachineMemOperand *MMO = 6689 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); 6690 6691 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6692 } 6693 6694 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6695 SDVTList VTList, 6696 ArrayRef<SDValue> Ops, EVT MemVT, 6697 MachineMemOperand *MMO) { 6698 assert((Opcode == ISD::INTRINSIC_VOID || 6699 Opcode == ISD::INTRINSIC_W_CHAIN || 6700 Opcode == ISD::PREFETCH || 6701 ((int)Opcode <= std::numeric_limits<int>::max() && 6702 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6703 "Opcode is not a memory-accessing opcode!"); 6704 6705 // Memoize the node unless it returns a flag. 6706 MemIntrinsicSDNode *N; 6707 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6708 FoldingSetNodeID ID; 6709 AddNodeIDNode(ID, Opcode, VTList, Ops); 6710 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6711 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6712 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6713 void *IP = nullptr; 6714 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6715 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6716 return SDValue(E, 0); 6717 } 6718 6719 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6720 VTList, MemVT, MMO); 6721 createOperands(N, Ops); 6722 6723 CSEMap.InsertNode(N, IP); 6724 } else { 6725 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6726 VTList, MemVT, MMO); 6727 createOperands(N, Ops); 6728 } 6729 InsertNode(N); 6730 SDValue V(N, 0); 6731 NewSDValueDbgMsg(V, "Creating new node: ", this); 6732 return V; 6733 } 6734 6735 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6736 SDValue Chain, int FrameIndex, 6737 int64_t Size, int64_t Offset) { 6738 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6739 const auto VTs = getVTList(MVT::Other); 6740 SDValue Ops[2] = { 6741 Chain, 6742 getFrameIndex(FrameIndex, 6743 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6744 true)}; 6745 6746 FoldingSetNodeID ID; 6747 AddNodeIDNode(ID, Opcode, VTs, Ops); 6748 ID.AddInteger(FrameIndex); 6749 ID.AddInteger(Size); 6750 ID.AddInteger(Offset); 6751 void *IP = nullptr; 6752 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6753 return SDValue(E, 0); 6754 6755 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6756 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6757 createOperands(N, Ops); 6758 CSEMap.InsertNode(N, IP); 6759 InsertNode(N); 6760 SDValue V(N, 0); 6761 NewSDValueDbgMsg(V, "Creating new node: ", this); 6762 return V; 6763 } 6764 6765 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6766 /// MachinePointerInfo record from it. This is particularly useful because the 6767 /// code generator has many cases where it doesn't bother passing in a 6768 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6769 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6770 SelectionDAG &DAG, SDValue Ptr, 6771 int64_t Offset = 0) { 6772 // If this is FI+Offset, we can model it. 6773 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6774 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6775 FI->getIndex(), Offset); 6776 6777 // If this is (FI+Offset1)+Offset2, we can model it. 6778 if (Ptr.getOpcode() != ISD::ADD || 6779 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6780 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6781 return Info; 6782 6783 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6784 return MachinePointerInfo::getFixedStack( 6785 DAG.getMachineFunction(), FI, 6786 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6787 } 6788 6789 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6790 /// MachinePointerInfo record from it. This is particularly useful because the 6791 /// code generator has many cases where it doesn't bother passing in a 6792 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6793 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6794 SelectionDAG &DAG, SDValue Ptr, 6795 SDValue OffsetOp) { 6796 // If the 'Offset' value isn't a constant, we can't handle this. 6797 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6798 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6799 if (OffsetOp.isUndef()) 6800 return InferPointerInfo(Info, DAG, Ptr); 6801 return Info; 6802 } 6803 6804 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6805 EVT VT, const SDLoc &dl, SDValue Chain, 6806 SDValue Ptr, SDValue Offset, 6807 MachinePointerInfo PtrInfo, EVT MemVT, 6808 unsigned Alignment, 6809 MachineMemOperand::Flags MMOFlags, 6810 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6811 assert(Chain.getValueType() == MVT::Other && 6812 "Invalid chain type"); 6813 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6814 Alignment = getEVTAlignment(MemVT); 6815 6816 MMOFlags |= MachineMemOperand::MOLoad; 6817 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6818 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6819 // clients. 6820 if (PtrInfo.V.isNull()) 6821 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6822 6823 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6824 MachineFunction &MF = getMachineFunction(); 6825 MachineMemOperand *MMO = MF.getMachineMemOperand( 6826 PtrInfo, MMOFlags, Size, Alignment, AAInfo, Ranges); 6827 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6828 } 6829 6830 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6831 EVT VT, const SDLoc &dl, SDValue Chain, 6832 SDValue Ptr, SDValue Offset, EVT MemVT, 6833 MachineMemOperand *MMO) { 6834 if (VT == MemVT) { 6835 ExtType = ISD::NON_EXTLOAD; 6836 } else if (ExtType == ISD::NON_EXTLOAD) { 6837 assert(VT == MemVT && "Non-extending load from different memory type!"); 6838 } else { 6839 // Extending load. 6840 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6841 "Should only be an extending load, not truncating!"); 6842 assert(VT.isInteger() == MemVT.isInteger() && 6843 "Cannot convert from FP to Int or Int -> FP!"); 6844 assert(VT.isVector() == MemVT.isVector() && 6845 "Cannot use an ext load to convert to or from a vector!"); 6846 assert((!VT.isVector() || 6847 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6848 "Cannot use an ext load to change the number of vector elements!"); 6849 } 6850 6851 bool Indexed = AM != ISD::UNINDEXED; 6852 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6853 6854 SDVTList VTs = Indexed ? 6855 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6856 SDValue Ops[] = { Chain, Ptr, Offset }; 6857 FoldingSetNodeID ID; 6858 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6859 ID.AddInteger(MemVT.getRawBits()); 6860 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6861 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6862 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6863 void *IP = nullptr; 6864 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6865 cast<LoadSDNode>(E)->refineAlignment(MMO); 6866 return SDValue(E, 0); 6867 } 6868 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6869 ExtType, MemVT, MMO); 6870 createOperands(N, Ops); 6871 6872 CSEMap.InsertNode(N, IP); 6873 InsertNode(N); 6874 SDValue V(N, 0); 6875 NewSDValueDbgMsg(V, "Creating new node: ", this); 6876 return V; 6877 } 6878 6879 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6880 SDValue Ptr, MachinePointerInfo PtrInfo, 6881 unsigned Alignment, 6882 MachineMemOperand::Flags MMOFlags, 6883 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6884 SDValue Undef = getUNDEF(Ptr.getValueType()); 6885 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6886 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6887 } 6888 6889 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6890 SDValue Ptr, MachineMemOperand *MMO) { 6891 SDValue Undef = getUNDEF(Ptr.getValueType()); 6892 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6893 VT, MMO); 6894 } 6895 6896 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6897 EVT VT, SDValue Chain, SDValue Ptr, 6898 MachinePointerInfo PtrInfo, EVT MemVT, 6899 unsigned Alignment, 6900 MachineMemOperand::Flags MMOFlags, 6901 const AAMDNodes &AAInfo) { 6902 SDValue Undef = getUNDEF(Ptr.getValueType()); 6903 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6904 MemVT, Alignment, MMOFlags, AAInfo); 6905 } 6906 6907 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6908 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6909 MachineMemOperand *MMO) { 6910 SDValue Undef = getUNDEF(Ptr.getValueType()); 6911 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6912 MemVT, MMO); 6913 } 6914 6915 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6916 SDValue Base, SDValue Offset, 6917 ISD::MemIndexedMode AM) { 6918 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6919 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6920 // Don't propagate the invariant or dereferenceable flags. 6921 auto MMOFlags = 6922 LD->getMemOperand()->getFlags() & 6923 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6924 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6925 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6926 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6927 LD->getAAInfo()); 6928 } 6929 6930 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6931 SDValue Ptr, MachinePointerInfo PtrInfo, 6932 unsigned Alignment, 6933 MachineMemOperand::Flags MMOFlags, 6934 const AAMDNodes &AAInfo) { 6935 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6936 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6937 Alignment = getEVTAlignment(Val.getValueType()); 6938 6939 MMOFlags |= MachineMemOperand::MOStore; 6940 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6941 6942 if (PtrInfo.V.isNull()) 6943 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6944 6945 MachineFunction &MF = getMachineFunction(); 6946 uint64_t Size = 6947 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 6948 MachineMemOperand *MMO = 6949 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 6950 return getStore(Chain, dl, Val, Ptr, MMO); 6951 } 6952 6953 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6954 SDValue Ptr, MachineMemOperand *MMO) { 6955 assert(Chain.getValueType() == MVT::Other && 6956 "Invalid chain type"); 6957 EVT VT = Val.getValueType(); 6958 SDVTList VTs = getVTList(MVT::Other); 6959 SDValue Undef = getUNDEF(Ptr.getValueType()); 6960 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6961 FoldingSetNodeID ID; 6962 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6963 ID.AddInteger(VT.getRawBits()); 6964 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6965 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6966 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6967 void *IP = nullptr; 6968 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6969 cast<StoreSDNode>(E)->refineAlignment(MMO); 6970 return SDValue(E, 0); 6971 } 6972 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6973 ISD::UNINDEXED, false, VT, MMO); 6974 createOperands(N, Ops); 6975 6976 CSEMap.InsertNode(N, IP); 6977 InsertNode(N); 6978 SDValue V(N, 0); 6979 NewSDValueDbgMsg(V, "Creating new node: ", this); 6980 return V; 6981 } 6982 6983 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6984 SDValue Ptr, MachinePointerInfo PtrInfo, 6985 EVT SVT, unsigned Alignment, 6986 MachineMemOperand::Flags MMOFlags, 6987 const AAMDNodes &AAInfo) { 6988 assert(Chain.getValueType() == MVT::Other && 6989 "Invalid chain type"); 6990 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6991 Alignment = getEVTAlignment(SVT); 6992 6993 MMOFlags |= MachineMemOperand::MOStore; 6994 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6995 6996 if (PtrInfo.V.isNull()) 6997 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6998 6999 MachineFunction &MF = getMachineFunction(); 7000 MachineMemOperand *MMO = MF.getMachineMemOperand( 7001 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7002 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7003 } 7004 7005 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7006 SDValue Ptr, EVT SVT, 7007 MachineMemOperand *MMO) { 7008 EVT VT = Val.getValueType(); 7009 7010 assert(Chain.getValueType() == MVT::Other && 7011 "Invalid chain type"); 7012 if (VT == SVT) 7013 return getStore(Chain, dl, Val, Ptr, MMO); 7014 7015 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7016 "Should only be a truncating store, not extending!"); 7017 assert(VT.isInteger() == SVT.isInteger() && 7018 "Can't do FP-INT conversion!"); 7019 assert(VT.isVector() == SVT.isVector() && 7020 "Cannot use trunc store to convert to or from a vector!"); 7021 assert((!VT.isVector() || 7022 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7023 "Cannot use trunc store to change the number of vector elements!"); 7024 7025 SDVTList VTs = getVTList(MVT::Other); 7026 SDValue Undef = getUNDEF(Ptr.getValueType()); 7027 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7028 FoldingSetNodeID ID; 7029 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7030 ID.AddInteger(SVT.getRawBits()); 7031 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7032 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7033 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7034 void *IP = nullptr; 7035 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7036 cast<StoreSDNode>(E)->refineAlignment(MMO); 7037 return SDValue(E, 0); 7038 } 7039 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7040 ISD::UNINDEXED, true, SVT, MMO); 7041 createOperands(N, Ops); 7042 7043 CSEMap.InsertNode(N, IP); 7044 InsertNode(N); 7045 SDValue V(N, 0); 7046 NewSDValueDbgMsg(V, "Creating new node: ", this); 7047 return V; 7048 } 7049 7050 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7051 SDValue Base, SDValue Offset, 7052 ISD::MemIndexedMode AM) { 7053 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7054 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7055 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7056 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7057 FoldingSetNodeID ID; 7058 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7059 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7060 ID.AddInteger(ST->getRawSubclassData()); 7061 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7062 void *IP = nullptr; 7063 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7064 return SDValue(E, 0); 7065 7066 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7067 ST->isTruncatingStore(), ST->getMemoryVT(), 7068 ST->getMemOperand()); 7069 createOperands(N, Ops); 7070 7071 CSEMap.InsertNode(N, IP); 7072 InsertNode(N); 7073 SDValue V(N, 0); 7074 NewSDValueDbgMsg(V, "Creating new node: ", this); 7075 return V; 7076 } 7077 7078 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7079 SDValue Base, SDValue Offset, SDValue Mask, 7080 SDValue PassThru, EVT MemVT, 7081 MachineMemOperand *MMO, 7082 ISD::MemIndexedMode AM, 7083 ISD::LoadExtType ExtTy, bool isExpanding) { 7084 bool Indexed = AM != ISD::UNINDEXED; 7085 assert((Indexed || Offset.isUndef()) && 7086 "Unindexed masked load with an offset!"); 7087 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7088 : getVTList(VT, MVT::Other); 7089 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7090 FoldingSetNodeID ID; 7091 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7092 ID.AddInteger(MemVT.getRawBits()); 7093 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7094 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7095 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7096 void *IP = nullptr; 7097 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7098 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7099 return SDValue(E, 0); 7100 } 7101 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7102 AM, ExtTy, isExpanding, MemVT, MMO); 7103 createOperands(N, Ops); 7104 7105 CSEMap.InsertNode(N, IP); 7106 InsertNode(N); 7107 SDValue V(N, 0); 7108 NewSDValueDbgMsg(V, "Creating new node: ", this); 7109 return V; 7110 } 7111 7112 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7113 SDValue Base, SDValue Offset, 7114 ISD::MemIndexedMode AM) { 7115 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7116 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7117 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7118 Offset, LD->getMask(), LD->getPassThru(), 7119 LD->getMemoryVT(), LD->getMemOperand(), AM, 7120 LD->getExtensionType(), LD->isExpandingLoad()); 7121 } 7122 7123 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7124 SDValue Val, SDValue Base, SDValue Offset, 7125 SDValue Mask, EVT MemVT, 7126 MachineMemOperand *MMO, 7127 ISD::MemIndexedMode AM, bool IsTruncating, 7128 bool IsCompressing) { 7129 assert(Chain.getValueType() == MVT::Other && 7130 "Invalid chain type"); 7131 bool Indexed = AM != ISD::UNINDEXED; 7132 assert((Indexed || Offset.isUndef()) && 7133 "Unindexed masked store with an offset!"); 7134 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7135 : getVTList(MVT::Other); 7136 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7137 FoldingSetNodeID ID; 7138 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7139 ID.AddInteger(MemVT.getRawBits()); 7140 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7141 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7142 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7143 void *IP = nullptr; 7144 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7145 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7146 return SDValue(E, 0); 7147 } 7148 auto *N = 7149 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7150 IsTruncating, IsCompressing, MemVT, MMO); 7151 createOperands(N, Ops); 7152 7153 CSEMap.InsertNode(N, IP); 7154 InsertNode(N); 7155 SDValue V(N, 0); 7156 NewSDValueDbgMsg(V, "Creating new node: ", this); 7157 return V; 7158 } 7159 7160 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7161 SDValue Base, SDValue Offset, 7162 ISD::MemIndexedMode AM) { 7163 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7164 assert(ST->getOffset().isUndef() && 7165 "Masked store is already a indexed store!"); 7166 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7167 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7168 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7169 } 7170 7171 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7172 ArrayRef<SDValue> Ops, 7173 MachineMemOperand *MMO, 7174 ISD::MemIndexType IndexType) { 7175 assert(Ops.size() == 6 && "Incompatible number of operands"); 7176 7177 FoldingSetNodeID ID; 7178 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7179 ID.AddInteger(VT.getRawBits()); 7180 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7181 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7182 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7183 void *IP = nullptr; 7184 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7185 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7186 return SDValue(E, 0); 7187 } 7188 7189 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7190 VTs, VT, MMO, IndexType); 7191 createOperands(N, Ops); 7192 7193 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7194 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7195 assert(N->getMask().getValueType().getVectorNumElements() == 7196 N->getValueType(0).getVectorNumElements() && 7197 "Vector width mismatch between mask and data"); 7198 assert(N->getIndex().getValueType().getVectorNumElements() >= 7199 N->getValueType(0).getVectorNumElements() && 7200 "Vector width mismatch between index and data"); 7201 assert(isa<ConstantSDNode>(N->getScale()) && 7202 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7203 "Scale should be a constant power of 2"); 7204 7205 CSEMap.InsertNode(N, IP); 7206 InsertNode(N); 7207 SDValue V(N, 0); 7208 NewSDValueDbgMsg(V, "Creating new node: ", this); 7209 return V; 7210 } 7211 7212 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7213 ArrayRef<SDValue> Ops, 7214 MachineMemOperand *MMO, 7215 ISD::MemIndexType IndexType) { 7216 assert(Ops.size() == 6 && "Incompatible number of operands"); 7217 7218 FoldingSetNodeID ID; 7219 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7220 ID.AddInteger(VT.getRawBits()); 7221 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7222 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7223 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7224 void *IP = nullptr; 7225 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7226 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7227 return SDValue(E, 0); 7228 } 7229 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7230 VTs, VT, MMO, IndexType); 7231 createOperands(N, Ops); 7232 7233 assert(N->getMask().getValueType().getVectorNumElements() == 7234 N->getValue().getValueType().getVectorNumElements() && 7235 "Vector width mismatch between mask and data"); 7236 assert(N->getIndex().getValueType().getVectorNumElements() >= 7237 N->getValue().getValueType().getVectorNumElements() && 7238 "Vector width mismatch between index and data"); 7239 assert(isa<ConstantSDNode>(N->getScale()) && 7240 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7241 "Scale should be a constant power of 2"); 7242 7243 CSEMap.InsertNode(N, IP); 7244 InsertNode(N); 7245 SDValue V(N, 0); 7246 NewSDValueDbgMsg(V, "Creating new node: ", this); 7247 return V; 7248 } 7249 7250 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7251 // select undef, T, F --> T (if T is a constant), otherwise F 7252 // select, ?, undef, F --> F 7253 // select, ?, T, undef --> T 7254 if (Cond.isUndef()) 7255 return isConstantValueOfAnyType(T) ? T : F; 7256 if (T.isUndef()) 7257 return F; 7258 if (F.isUndef()) 7259 return T; 7260 7261 // select true, T, F --> T 7262 // select false, T, F --> F 7263 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7264 return CondC->isNullValue() ? F : T; 7265 7266 // TODO: This should simplify VSELECT with constant condition using something 7267 // like this (but check boolean contents to be complete?): 7268 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7269 // return T; 7270 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7271 // return F; 7272 7273 // select ?, T, T --> T 7274 if (T == F) 7275 return T; 7276 7277 return SDValue(); 7278 } 7279 7280 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7281 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7282 if (X.isUndef()) 7283 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7284 // shift X, undef --> undef (because it may shift by the bitwidth) 7285 if (Y.isUndef()) 7286 return getUNDEF(X.getValueType()); 7287 7288 // shift 0, Y --> 0 7289 // shift X, 0 --> X 7290 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7291 return X; 7292 7293 // shift X, C >= bitwidth(X) --> undef 7294 // All vector elements must be too big (or undef) to avoid partial undefs. 7295 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7296 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7297 }; 7298 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7299 return getUNDEF(X.getValueType()); 7300 7301 return SDValue(); 7302 } 7303 7304 // TODO: Use fast-math-flags to enable more simplifications. 7305 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 7306 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7307 if (!YC) 7308 return SDValue(); 7309 7310 // X + -0.0 --> X 7311 if (Opcode == ISD::FADD) 7312 if (YC->getValueAPF().isNegZero()) 7313 return X; 7314 7315 // X - +0.0 --> X 7316 if (Opcode == ISD::FSUB) 7317 if (YC->getValueAPF().isPosZero()) 7318 return X; 7319 7320 // X * 1.0 --> X 7321 // X / 1.0 --> X 7322 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7323 if (YC->getValueAPF().isExactlyValue(1.0)) 7324 return X; 7325 7326 return SDValue(); 7327 } 7328 7329 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7330 SDValue Ptr, SDValue SV, unsigned Align) { 7331 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7332 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7333 } 7334 7335 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7336 ArrayRef<SDUse> Ops) { 7337 switch (Ops.size()) { 7338 case 0: return getNode(Opcode, DL, VT); 7339 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7340 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7341 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7342 default: break; 7343 } 7344 7345 // Copy from an SDUse array into an SDValue array for use with 7346 // the regular getNode logic. 7347 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7348 return getNode(Opcode, DL, VT, NewOps); 7349 } 7350 7351 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7352 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7353 unsigned NumOps = Ops.size(); 7354 switch (NumOps) { 7355 case 0: return getNode(Opcode, DL, VT); 7356 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7357 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7358 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7359 default: break; 7360 } 7361 7362 switch (Opcode) { 7363 default: break; 7364 case ISD::BUILD_VECTOR: 7365 // Attempt to simplify BUILD_VECTOR. 7366 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7367 return V; 7368 break; 7369 case ISD::CONCAT_VECTORS: 7370 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7371 return V; 7372 break; 7373 case ISD::SELECT_CC: 7374 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7375 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7376 "LHS and RHS of condition must have same type!"); 7377 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7378 "True and False arms of SelectCC must have same type!"); 7379 assert(Ops[2].getValueType() == VT && 7380 "select_cc node must be of same type as true and false value!"); 7381 break; 7382 case ISD::BR_CC: 7383 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7384 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7385 "LHS/RHS of comparison should match types!"); 7386 break; 7387 } 7388 7389 // Memoize nodes. 7390 SDNode *N; 7391 SDVTList VTs = getVTList(VT); 7392 7393 if (VT != MVT::Glue) { 7394 FoldingSetNodeID ID; 7395 AddNodeIDNode(ID, Opcode, VTs, Ops); 7396 void *IP = nullptr; 7397 7398 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7399 return SDValue(E, 0); 7400 7401 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7402 createOperands(N, Ops); 7403 7404 CSEMap.InsertNode(N, IP); 7405 } else { 7406 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7407 createOperands(N, Ops); 7408 } 7409 7410 InsertNode(N); 7411 SDValue V(N, 0); 7412 NewSDValueDbgMsg(V, "Creating new node: ", this); 7413 return V; 7414 } 7415 7416 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7417 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7418 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7419 } 7420 7421 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7422 ArrayRef<SDValue> Ops) { 7423 if (VTList.NumVTs == 1) 7424 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7425 7426 switch (Opcode) { 7427 case ISD::STRICT_FP_EXTEND: 7428 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7429 "Invalid STRICT_FP_EXTEND!"); 7430 assert(VTList.VTs[0].isFloatingPoint() && 7431 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7432 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7433 "STRICT_FP_EXTEND result type should be vector iff the operand " 7434 "type is vector!"); 7435 assert((!VTList.VTs[0].isVector() || 7436 VTList.VTs[0].getVectorNumElements() == 7437 Ops[1].getValueType().getVectorNumElements()) && 7438 "Vector element count mismatch!"); 7439 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7440 "Invalid fpext node, dst <= src!"); 7441 break; 7442 case ISD::STRICT_FP_ROUND: 7443 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7444 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7445 "STRICT_FP_ROUND result type should be vector iff the operand " 7446 "type is vector!"); 7447 assert((!VTList.VTs[0].isVector() || 7448 VTList.VTs[0].getVectorNumElements() == 7449 Ops[1].getValueType().getVectorNumElements()) && 7450 "Vector element count mismatch!"); 7451 assert(VTList.VTs[0].isFloatingPoint() && 7452 Ops[1].getValueType().isFloatingPoint() && 7453 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7454 isa<ConstantSDNode>(Ops[2]) && 7455 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7456 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7457 "Invalid STRICT_FP_ROUND!"); 7458 break; 7459 #if 0 7460 // FIXME: figure out how to safely handle things like 7461 // int foo(int x) { return 1 << (x & 255); } 7462 // int bar() { return foo(256); } 7463 case ISD::SRA_PARTS: 7464 case ISD::SRL_PARTS: 7465 case ISD::SHL_PARTS: 7466 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7467 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7468 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7469 else if (N3.getOpcode() == ISD::AND) 7470 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7471 // If the and is only masking out bits that cannot effect the shift, 7472 // eliminate the and. 7473 unsigned NumBits = VT.getScalarSizeInBits()*2; 7474 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7475 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7476 } 7477 break; 7478 #endif 7479 } 7480 7481 // Memoize the node unless it returns a flag. 7482 SDNode *N; 7483 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7484 FoldingSetNodeID ID; 7485 AddNodeIDNode(ID, Opcode, VTList, Ops); 7486 void *IP = nullptr; 7487 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7488 return SDValue(E, 0); 7489 7490 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7491 createOperands(N, Ops); 7492 CSEMap.InsertNode(N, IP); 7493 } else { 7494 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7495 createOperands(N, Ops); 7496 } 7497 InsertNode(N); 7498 SDValue V(N, 0); 7499 NewSDValueDbgMsg(V, "Creating new node: ", this); 7500 return V; 7501 } 7502 7503 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7504 SDVTList VTList) { 7505 return getNode(Opcode, DL, VTList, None); 7506 } 7507 7508 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7509 SDValue N1) { 7510 SDValue Ops[] = { N1 }; 7511 return getNode(Opcode, DL, VTList, Ops); 7512 } 7513 7514 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7515 SDValue N1, SDValue N2) { 7516 SDValue Ops[] = { N1, N2 }; 7517 return getNode(Opcode, DL, VTList, Ops); 7518 } 7519 7520 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7521 SDValue N1, SDValue N2, SDValue N3) { 7522 SDValue Ops[] = { N1, N2, N3 }; 7523 return getNode(Opcode, DL, VTList, Ops); 7524 } 7525 7526 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7527 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7528 SDValue Ops[] = { N1, N2, N3, N4 }; 7529 return getNode(Opcode, DL, VTList, Ops); 7530 } 7531 7532 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7533 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7534 SDValue N5) { 7535 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7536 return getNode(Opcode, DL, VTList, Ops); 7537 } 7538 7539 SDVTList SelectionDAG::getVTList(EVT VT) { 7540 return makeVTList(SDNode::getValueTypeList(VT), 1); 7541 } 7542 7543 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7544 FoldingSetNodeID ID; 7545 ID.AddInteger(2U); 7546 ID.AddInteger(VT1.getRawBits()); 7547 ID.AddInteger(VT2.getRawBits()); 7548 7549 void *IP = nullptr; 7550 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7551 if (!Result) { 7552 EVT *Array = Allocator.Allocate<EVT>(2); 7553 Array[0] = VT1; 7554 Array[1] = VT2; 7555 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7556 VTListMap.InsertNode(Result, IP); 7557 } 7558 return Result->getSDVTList(); 7559 } 7560 7561 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7562 FoldingSetNodeID ID; 7563 ID.AddInteger(3U); 7564 ID.AddInteger(VT1.getRawBits()); 7565 ID.AddInteger(VT2.getRawBits()); 7566 ID.AddInteger(VT3.getRawBits()); 7567 7568 void *IP = nullptr; 7569 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7570 if (!Result) { 7571 EVT *Array = Allocator.Allocate<EVT>(3); 7572 Array[0] = VT1; 7573 Array[1] = VT2; 7574 Array[2] = VT3; 7575 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7576 VTListMap.InsertNode(Result, IP); 7577 } 7578 return Result->getSDVTList(); 7579 } 7580 7581 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7582 FoldingSetNodeID ID; 7583 ID.AddInteger(4U); 7584 ID.AddInteger(VT1.getRawBits()); 7585 ID.AddInteger(VT2.getRawBits()); 7586 ID.AddInteger(VT3.getRawBits()); 7587 ID.AddInteger(VT4.getRawBits()); 7588 7589 void *IP = nullptr; 7590 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7591 if (!Result) { 7592 EVT *Array = Allocator.Allocate<EVT>(4); 7593 Array[0] = VT1; 7594 Array[1] = VT2; 7595 Array[2] = VT3; 7596 Array[3] = VT4; 7597 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7598 VTListMap.InsertNode(Result, IP); 7599 } 7600 return Result->getSDVTList(); 7601 } 7602 7603 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7604 unsigned NumVTs = VTs.size(); 7605 FoldingSetNodeID ID; 7606 ID.AddInteger(NumVTs); 7607 for (unsigned index = 0; index < NumVTs; index++) { 7608 ID.AddInteger(VTs[index].getRawBits()); 7609 } 7610 7611 void *IP = nullptr; 7612 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7613 if (!Result) { 7614 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7615 llvm::copy(VTs, Array); 7616 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7617 VTListMap.InsertNode(Result, IP); 7618 } 7619 return Result->getSDVTList(); 7620 } 7621 7622 7623 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7624 /// specified operands. If the resultant node already exists in the DAG, 7625 /// this does not modify the specified node, instead it returns the node that 7626 /// already exists. If the resultant node does not exist in the DAG, the 7627 /// input node is returned. As a degenerate case, if you specify the same 7628 /// input operands as the node already has, the input node is returned. 7629 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7630 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7631 7632 // Check to see if there is no change. 7633 if (Op == N->getOperand(0)) return N; 7634 7635 // See if the modified node already exists. 7636 void *InsertPos = nullptr; 7637 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7638 return Existing; 7639 7640 // Nope it doesn't. Remove the node from its current place in the maps. 7641 if (InsertPos) 7642 if (!RemoveNodeFromCSEMaps(N)) 7643 InsertPos = nullptr; 7644 7645 // Now we update the operands. 7646 N->OperandList[0].set(Op); 7647 7648 updateDivergence(N); 7649 // If this gets put into a CSE map, add it. 7650 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7651 return N; 7652 } 7653 7654 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7655 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7656 7657 // Check to see if there is no change. 7658 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7659 return N; // No operands changed, just return the input node. 7660 7661 // See if the modified node already exists. 7662 void *InsertPos = nullptr; 7663 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7664 return Existing; 7665 7666 // Nope it doesn't. Remove the node from its current place in the maps. 7667 if (InsertPos) 7668 if (!RemoveNodeFromCSEMaps(N)) 7669 InsertPos = nullptr; 7670 7671 // Now we update the operands. 7672 if (N->OperandList[0] != Op1) 7673 N->OperandList[0].set(Op1); 7674 if (N->OperandList[1] != Op2) 7675 N->OperandList[1].set(Op2); 7676 7677 updateDivergence(N); 7678 // If this gets put into a CSE map, add it. 7679 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7680 return N; 7681 } 7682 7683 SDNode *SelectionDAG:: 7684 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7685 SDValue Ops[] = { Op1, Op2, Op3 }; 7686 return UpdateNodeOperands(N, Ops); 7687 } 7688 7689 SDNode *SelectionDAG:: 7690 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7691 SDValue Op3, SDValue Op4) { 7692 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7693 return UpdateNodeOperands(N, Ops); 7694 } 7695 7696 SDNode *SelectionDAG:: 7697 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7698 SDValue Op3, SDValue Op4, SDValue Op5) { 7699 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7700 return UpdateNodeOperands(N, Ops); 7701 } 7702 7703 SDNode *SelectionDAG:: 7704 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7705 unsigned NumOps = Ops.size(); 7706 assert(N->getNumOperands() == NumOps && 7707 "Update with wrong number of operands"); 7708 7709 // If no operands changed just return the input node. 7710 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7711 return N; 7712 7713 // See if the modified node already exists. 7714 void *InsertPos = nullptr; 7715 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7716 return Existing; 7717 7718 // Nope it doesn't. Remove the node from its current place in the maps. 7719 if (InsertPos) 7720 if (!RemoveNodeFromCSEMaps(N)) 7721 InsertPos = nullptr; 7722 7723 // Now we update the operands. 7724 for (unsigned i = 0; i != NumOps; ++i) 7725 if (N->OperandList[i] != Ops[i]) 7726 N->OperandList[i].set(Ops[i]); 7727 7728 updateDivergence(N); 7729 // If this gets put into a CSE map, add it. 7730 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7731 return N; 7732 } 7733 7734 /// DropOperands - Release the operands and set this node to have 7735 /// zero operands. 7736 void SDNode::DropOperands() { 7737 // Unlike the code in MorphNodeTo that does this, we don't need to 7738 // watch for dead nodes here. 7739 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7740 SDUse &Use = *I++; 7741 Use.set(SDValue()); 7742 } 7743 } 7744 7745 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7746 ArrayRef<MachineMemOperand *> NewMemRefs) { 7747 if (NewMemRefs.empty()) { 7748 N->clearMemRefs(); 7749 return; 7750 } 7751 7752 // Check if we can avoid allocating by storing a single reference directly. 7753 if (NewMemRefs.size() == 1) { 7754 N->MemRefs = NewMemRefs[0]; 7755 N->NumMemRefs = 1; 7756 return; 7757 } 7758 7759 MachineMemOperand **MemRefsBuffer = 7760 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7761 llvm::copy(NewMemRefs, MemRefsBuffer); 7762 N->MemRefs = MemRefsBuffer; 7763 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7764 } 7765 7766 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7767 /// machine opcode. 7768 /// 7769 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7770 EVT VT) { 7771 SDVTList VTs = getVTList(VT); 7772 return SelectNodeTo(N, MachineOpc, VTs, None); 7773 } 7774 7775 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7776 EVT VT, SDValue Op1) { 7777 SDVTList VTs = getVTList(VT); 7778 SDValue Ops[] = { Op1 }; 7779 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7780 } 7781 7782 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7783 EVT VT, SDValue Op1, 7784 SDValue Op2) { 7785 SDVTList VTs = getVTList(VT); 7786 SDValue Ops[] = { Op1, Op2 }; 7787 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7788 } 7789 7790 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7791 EVT VT, SDValue Op1, 7792 SDValue Op2, SDValue Op3) { 7793 SDVTList VTs = getVTList(VT); 7794 SDValue Ops[] = { Op1, Op2, Op3 }; 7795 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7796 } 7797 7798 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7799 EVT VT, ArrayRef<SDValue> Ops) { 7800 SDVTList VTs = getVTList(VT); 7801 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7802 } 7803 7804 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7805 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7806 SDVTList VTs = getVTList(VT1, VT2); 7807 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7808 } 7809 7810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7811 EVT VT1, EVT VT2) { 7812 SDVTList VTs = getVTList(VT1, VT2); 7813 return SelectNodeTo(N, MachineOpc, VTs, None); 7814 } 7815 7816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7817 EVT VT1, EVT VT2, EVT VT3, 7818 ArrayRef<SDValue> Ops) { 7819 SDVTList VTs = getVTList(VT1, VT2, VT3); 7820 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7821 } 7822 7823 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7824 EVT VT1, EVT VT2, 7825 SDValue Op1, SDValue Op2) { 7826 SDVTList VTs = getVTList(VT1, VT2); 7827 SDValue Ops[] = { Op1, Op2 }; 7828 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7829 } 7830 7831 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7832 SDVTList VTs,ArrayRef<SDValue> Ops) { 7833 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7834 // Reset the NodeID to -1. 7835 New->setNodeId(-1); 7836 if (New != N) { 7837 ReplaceAllUsesWith(N, New); 7838 RemoveDeadNode(N); 7839 } 7840 return New; 7841 } 7842 7843 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7844 /// the line number information on the merged node since it is not possible to 7845 /// preserve the information that operation is associated with multiple lines. 7846 /// This will make the debugger working better at -O0, were there is a higher 7847 /// probability having other instructions associated with that line. 7848 /// 7849 /// For IROrder, we keep the smaller of the two 7850 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7851 DebugLoc NLoc = N->getDebugLoc(); 7852 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7853 N->setDebugLoc(DebugLoc()); 7854 } 7855 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7856 N->setIROrder(Order); 7857 return N; 7858 } 7859 7860 /// MorphNodeTo - This *mutates* the specified node to have the specified 7861 /// return type, opcode, and operands. 7862 /// 7863 /// Note that MorphNodeTo returns the resultant node. If there is already a 7864 /// node of the specified opcode and operands, it returns that node instead of 7865 /// the current one. Note that the SDLoc need not be the same. 7866 /// 7867 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7868 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7869 /// node, and because it doesn't require CSE recalculation for any of 7870 /// the node's users. 7871 /// 7872 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7873 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7874 /// the legalizer which maintain worklists that would need to be updated when 7875 /// deleting things. 7876 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7877 SDVTList VTs, ArrayRef<SDValue> Ops) { 7878 // If an identical node already exists, use it. 7879 void *IP = nullptr; 7880 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7881 FoldingSetNodeID ID; 7882 AddNodeIDNode(ID, Opc, VTs, Ops); 7883 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7884 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7885 } 7886 7887 if (!RemoveNodeFromCSEMaps(N)) 7888 IP = nullptr; 7889 7890 // Start the morphing. 7891 N->NodeType = Opc; 7892 N->ValueList = VTs.VTs; 7893 N->NumValues = VTs.NumVTs; 7894 7895 // Clear the operands list, updating used nodes to remove this from their 7896 // use list. Keep track of any operands that become dead as a result. 7897 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7898 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7899 SDUse &Use = *I++; 7900 SDNode *Used = Use.getNode(); 7901 Use.set(SDValue()); 7902 if (Used->use_empty()) 7903 DeadNodeSet.insert(Used); 7904 } 7905 7906 // For MachineNode, initialize the memory references information. 7907 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7908 MN->clearMemRefs(); 7909 7910 // Swap for an appropriately sized array from the recycler. 7911 removeOperands(N); 7912 createOperands(N, Ops); 7913 7914 // Delete any nodes that are still dead after adding the uses for the 7915 // new operands. 7916 if (!DeadNodeSet.empty()) { 7917 SmallVector<SDNode *, 16> DeadNodes; 7918 for (SDNode *N : DeadNodeSet) 7919 if (N->use_empty()) 7920 DeadNodes.push_back(N); 7921 RemoveDeadNodes(DeadNodes); 7922 } 7923 7924 if (IP) 7925 CSEMap.InsertNode(N, IP); // Memoize the new node. 7926 return N; 7927 } 7928 7929 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7930 unsigned OrigOpc = Node->getOpcode(); 7931 unsigned NewOpc; 7932 switch (OrigOpc) { 7933 default: 7934 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7935 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7936 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 7937 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7938 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 7939 #include "llvm/IR/ConstrainedOps.def" 7940 } 7941 7942 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7943 7944 // We're taking this node out of the chain, so we need to re-link things. 7945 SDValue InputChain = Node->getOperand(0); 7946 SDValue OutputChain = SDValue(Node, 1); 7947 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7948 7949 SmallVector<SDValue, 3> Ops; 7950 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7951 Ops.push_back(Node->getOperand(i)); 7952 7953 SDVTList VTs = getVTList(Node->getValueType(0)); 7954 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7955 7956 // MorphNodeTo can operate in two ways: if an existing node with the 7957 // specified operands exists, it can just return it. Otherwise, it 7958 // updates the node in place to have the requested operands. 7959 if (Res == Node) { 7960 // If we updated the node in place, reset the node ID. To the isel, 7961 // this should be just like a newly allocated machine node. 7962 Res->setNodeId(-1); 7963 } else { 7964 ReplaceAllUsesWith(Node, Res); 7965 RemoveDeadNode(Node); 7966 } 7967 7968 return Res; 7969 } 7970 7971 /// getMachineNode - These are used for target selectors to create a new node 7972 /// with specified return type(s), MachineInstr opcode, and operands. 7973 /// 7974 /// Note that getMachineNode returns the resultant node. If there is already a 7975 /// node of the specified opcode and operands, it returns that node instead of 7976 /// the current one. 7977 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7978 EVT VT) { 7979 SDVTList VTs = getVTList(VT); 7980 return getMachineNode(Opcode, dl, VTs, None); 7981 } 7982 7983 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7984 EVT VT, SDValue Op1) { 7985 SDVTList VTs = getVTList(VT); 7986 SDValue Ops[] = { Op1 }; 7987 return getMachineNode(Opcode, dl, VTs, Ops); 7988 } 7989 7990 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7991 EVT VT, SDValue Op1, SDValue Op2) { 7992 SDVTList VTs = getVTList(VT); 7993 SDValue Ops[] = { Op1, Op2 }; 7994 return getMachineNode(Opcode, dl, VTs, Ops); 7995 } 7996 7997 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7998 EVT VT, SDValue Op1, SDValue Op2, 7999 SDValue Op3) { 8000 SDVTList VTs = getVTList(VT); 8001 SDValue Ops[] = { Op1, Op2, Op3 }; 8002 return getMachineNode(Opcode, dl, VTs, Ops); 8003 } 8004 8005 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8006 EVT VT, ArrayRef<SDValue> Ops) { 8007 SDVTList VTs = getVTList(VT); 8008 return getMachineNode(Opcode, dl, VTs, Ops); 8009 } 8010 8011 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8012 EVT VT1, EVT VT2, SDValue Op1, 8013 SDValue Op2) { 8014 SDVTList VTs = getVTList(VT1, VT2); 8015 SDValue Ops[] = { Op1, Op2 }; 8016 return getMachineNode(Opcode, dl, VTs, Ops); 8017 } 8018 8019 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8020 EVT VT1, EVT VT2, SDValue Op1, 8021 SDValue Op2, SDValue Op3) { 8022 SDVTList VTs = getVTList(VT1, VT2); 8023 SDValue Ops[] = { Op1, Op2, Op3 }; 8024 return getMachineNode(Opcode, dl, VTs, Ops); 8025 } 8026 8027 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8028 EVT VT1, EVT VT2, 8029 ArrayRef<SDValue> Ops) { 8030 SDVTList VTs = getVTList(VT1, VT2); 8031 return getMachineNode(Opcode, dl, VTs, Ops); 8032 } 8033 8034 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8035 EVT VT1, EVT VT2, EVT VT3, 8036 SDValue Op1, SDValue Op2) { 8037 SDVTList VTs = getVTList(VT1, VT2, VT3); 8038 SDValue Ops[] = { Op1, Op2 }; 8039 return getMachineNode(Opcode, dl, VTs, Ops); 8040 } 8041 8042 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8043 EVT VT1, EVT VT2, EVT VT3, 8044 SDValue Op1, SDValue Op2, 8045 SDValue Op3) { 8046 SDVTList VTs = getVTList(VT1, VT2, VT3); 8047 SDValue Ops[] = { Op1, Op2, Op3 }; 8048 return getMachineNode(Opcode, dl, VTs, Ops); 8049 } 8050 8051 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8052 EVT VT1, EVT VT2, EVT VT3, 8053 ArrayRef<SDValue> Ops) { 8054 SDVTList VTs = getVTList(VT1, VT2, VT3); 8055 return getMachineNode(Opcode, dl, VTs, Ops); 8056 } 8057 8058 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8059 ArrayRef<EVT> ResultTys, 8060 ArrayRef<SDValue> Ops) { 8061 SDVTList VTs = getVTList(ResultTys); 8062 return getMachineNode(Opcode, dl, VTs, Ops); 8063 } 8064 8065 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8066 SDVTList VTs, 8067 ArrayRef<SDValue> Ops) { 8068 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8069 MachineSDNode *N; 8070 void *IP = nullptr; 8071 8072 if (DoCSE) { 8073 FoldingSetNodeID ID; 8074 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8075 IP = nullptr; 8076 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8077 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8078 } 8079 } 8080 8081 // Allocate a new MachineSDNode. 8082 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8083 createOperands(N, Ops); 8084 8085 if (DoCSE) 8086 CSEMap.InsertNode(N, IP); 8087 8088 InsertNode(N); 8089 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8090 return N; 8091 } 8092 8093 /// getTargetExtractSubreg - A convenience function for creating 8094 /// TargetOpcode::EXTRACT_SUBREG nodes. 8095 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8096 SDValue Operand) { 8097 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8098 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8099 VT, Operand, SRIdxVal); 8100 return SDValue(Subreg, 0); 8101 } 8102 8103 /// getTargetInsertSubreg - A convenience function for creating 8104 /// TargetOpcode::INSERT_SUBREG nodes. 8105 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8106 SDValue Operand, SDValue Subreg) { 8107 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8108 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8109 VT, Operand, Subreg, SRIdxVal); 8110 return SDValue(Result, 0); 8111 } 8112 8113 /// getNodeIfExists - Get the specified node if it's already available, or 8114 /// else return NULL. 8115 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8116 ArrayRef<SDValue> Ops, 8117 const SDNodeFlags Flags) { 8118 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8119 FoldingSetNodeID ID; 8120 AddNodeIDNode(ID, Opcode, VTList, Ops); 8121 void *IP = nullptr; 8122 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8123 E->intersectFlagsWith(Flags); 8124 return E; 8125 } 8126 } 8127 return nullptr; 8128 } 8129 8130 /// getDbgValue - Creates a SDDbgValue node. 8131 /// 8132 /// SDNode 8133 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8134 SDNode *N, unsigned R, bool IsIndirect, 8135 const DebugLoc &DL, unsigned O) { 8136 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8137 "Expected inlined-at fields to agree"); 8138 return new (DbgInfo->getAlloc()) 8139 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8140 } 8141 8142 /// Constant 8143 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8144 DIExpression *Expr, 8145 const Value *C, 8146 const DebugLoc &DL, unsigned O) { 8147 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8148 "Expected inlined-at fields to agree"); 8149 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8150 } 8151 8152 /// FrameIndex 8153 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8154 DIExpression *Expr, unsigned FI, 8155 bool IsIndirect, 8156 const DebugLoc &DL, 8157 unsigned O) { 8158 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8159 "Expected inlined-at fields to agree"); 8160 return new (DbgInfo->getAlloc()) 8161 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8162 } 8163 8164 /// VReg 8165 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8166 DIExpression *Expr, 8167 unsigned VReg, bool IsIndirect, 8168 const DebugLoc &DL, unsigned O) { 8169 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8170 "Expected inlined-at fields to agree"); 8171 return new (DbgInfo->getAlloc()) 8172 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8173 } 8174 8175 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8176 unsigned OffsetInBits, unsigned SizeInBits, 8177 bool InvalidateDbg) { 8178 SDNode *FromNode = From.getNode(); 8179 SDNode *ToNode = To.getNode(); 8180 assert(FromNode && ToNode && "Can't modify dbg values"); 8181 8182 // PR35338 8183 // TODO: assert(From != To && "Redundant dbg value transfer"); 8184 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8185 if (From == To || FromNode == ToNode) 8186 return; 8187 8188 if (!FromNode->getHasDebugValue()) 8189 return; 8190 8191 SmallVector<SDDbgValue *, 2> ClonedDVs; 8192 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8193 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8194 continue; 8195 8196 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8197 8198 // Just transfer the dbg value attached to From. 8199 if (Dbg->getResNo() != From.getResNo()) 8200 continue; 8201 8202 DIVariable *Var = Dbg->getVariable(); 8203 auto *Expr = Dbg->getExpression(); 8204 // If a fragment is requested, update the expression. 8205 if (SizeInBits) { 8206 // When splitting a larger (e.g., sign-extended) value whose 8207 // lower bits are described with an SDDbgValue, do not attempt 8208 // to transfer the SDDbgValue to the upper bits. 8209 if (auto FI = Expr->getFragmentInfo()) 8210 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8211 continue; 8212 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8213 SizeInBits); 8214 if (!Fragment) 8215 continue; 8216 Expr = *Fragment; 8217 } 8218 // Clone the SDDbgValue and move it to To. 8219 SDDbgValue *Clone = getDbgValue( 8220 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8221 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8222 ClonedDVs.push_back(Clone); 8223 8224 if (InvalidateDbg) { 8225 // Invalidate value and indicate the SDDbgValue should not be emitted. 8226 Dbg->setIsInvalidated(); 8227 Dbg->setIsEmitted(); 8228 } 8229 } 8230 8231 for (SDDbgValue *Dbg : ClonedDVs) 8232 AddDbgValue(Dbg, ToNode, false); 8233 } 8234 8235 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8236 if (!N.getHasDebugValue()) 8237 return; 8238 8239 SmallVector<SDDbgValue *, 2> ClonedDVs; 8240 for (auto DV : GetDbgValues(&N)) { 8241 if (DV->isInvalidated()) 8242 continue; 8243 switch (N.getOpcode()) { 8244 default: 8245 break; 8246 case ISD::ADD: 8247 SDValue N0 = N.getOperand(0); 8248 SDValue N1 = N.getOperand(1); 8249 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8250 isConstantIntBuildVectorOrConstantInt(N1)) { 8251 uint64_t Offset = N.getConstantOperandVal(1); 8252 // Rewrite an ADD constant node into a DIExpression. Since we are 8253 // performing arithmetic to compute the variable's *value* in the 8254 // DIExpression, we need to mark the expression with a 8255 // DW_OP_stack_value. 8256 auto *DIExpr = DV->getExpression(); 8257 DIExpr = 8258 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8259 SDDbgValue *Clone = 8260 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8261 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8262 ClonedDVs.push_back(Clone); 8263 DV->setIsInvalidated(); 8264 DV->setIsEmitted(); 8265 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8266 N0.getNode()->dumprFull(this); 8267 dbgs() << " into " << *DIExpr << '\n'); 8268 } 8269 } 8270 } 8271 8272 for (SDDbgValue *Dbg : ClonedDVs) 8273 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8274 } 8275 8276 /// Creates a SDDbgLabel node. 8277 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8278 const DebugLoc &DL, unsigned O) { 8279 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8280 "Expected inlined-at fields to agree"); 8281 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8282 } 8283 8284 namespace { 8285 8286 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8287 /// pointed to by a use iterator is deleted, increment the use iterator 8288 /// so that it doesn't dangle. 8289 /// 8290 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8291 SDNode::use_iterator &UI; 8292 SDNode::use_iterator &UE; 8293 8294 void NodeDeleted(SDNode *N, SDNode *E) override { 8295 // Increment the iterator as needed. 8296 while (UI != UE && N == *UI) 8297 ++UI; 8298 } 8299 8300 public: 8301 RAUWUpdateListener(SelectionDAG &d, 8302 SDNode::use_iterator &ui, 8303 SDNode::use_iterator &ue) 8304 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8305 }; 8306 8307 } // end anonymous namespace 8308 8309 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8310 /// This can cause recursive merging of nodes in the DAG. 8311 /// 8312 /// This version assumes From has a single result value. 8313 /// 8314 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8315 SDNode *From = FromN.getNode(); 8316 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8317 "Cannot replace with this method!"); 8318 assert(From != To.getNode() && "Cannot replace uses of with self"); 8319 8320 // Preserve Debug Values 8321 transferDbgValues(FromN, To); 8322 8323 // Iterate over all the existing uses of From. New uses will be added 8324 // to the beginning of the use list, which we avoid visiting. 8325 // This specifically avoids visiting uses of From that arise while the 8326 // replacement is happening, because any such uses would be the result 8327 // of CSE: If an existing node looks like From after one of its operands 8328 // is replaced by To, we don't want to replace of all its users with To 8329 // too. See PR3018 for more info. 8330 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8331 RAUWUpdateListener Listener(*this, UI, UE); 8332 while (UI != UE) { 8333 SDNode *User = *UI; 8334 8335 // This node is about to morph, remove its old self from the CSE maps. 8336 RemoveNodeFromCSEMaps(User); 8337 8338 // A user can appear in a use list multiple times, and when this 8339 // happens the uses are usually next to each other in the list. 8340 // To help reduce the number of CSE recomputations, process all 8341 // the uses of this user that we can find this way. 8342 do { 8343 SDUse &Use = UI.getUse(); 8344 ++UI; 8345 Use.set(To); 8346 if (To->isDivergent() != From->isDivergent()) 8347 updateDivergence(User); 8348 } while (UI != UE && *UI == User); 8349 // Now that we have modified User, add it back to the CSE maps. If it 8350 // already exists there, recursively merge the results together. 8351 AddModifiedNodeToCSEMaps(User); 8352 } 8353 8354 // If we just RAUW'd the root, take note. 8355 if (FromN == getRoot()) 8356 setRoot(To); 8357 } 8358 8359 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8360 /// This can cause recursive merging of nodes in the DAG. 8361 /// 8362 /// This version assumes that for each value of From, there is a 8363 /// corresponding value in To in the same position with the same type. 8364 /// 8365 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8366 #ifndef NDEBUG 8367 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8368 assert((!From->hasAnyUseOfValue(i) || 8369 From->getValueType(i) == To->getValueType(i)) && 8370 "Cannot use this version of ReplaceAllUsesWith!"); 8371 #endif 8372 8373 // Handle the trivial case. 8374 if (From == To) 8375 return; 8376 8377 // Preserve Debug Info. Only do this if there's a use. 8378 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8379 if (From->hasAnyUseOfValue(i)) { 8380 assert((i < To->getNumValues()) && "Invalid To location"); 8381 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8382 } 8383 8384 // Iterate over just the existing users of From. See the comments in 8385 // the ReplaceAllUsesWith above. 8386 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8387 RAUWUpdateListener Listener(*this, UI, UE); 8388 while (UI != UE) { 8389 SDNode *User = *UI; 8390 8391 // This node is about to morph, remove its old self from the CSE maps. 8392 RemoveNodeFromCSEMaps(User); 8393 8394 // A user can appear in a use list multiple times, and when this 8395 // happens the uses are usually next to each other in the list. 8396 // To help reduce the number of CSE recomputations, process all 8397 // the uses of this user that we can find this way. 8398 do { 8399 SDUse &Use = UI.getUse(); 8400 ++UI; 8401 Use.setNode(To); 8402 if (To->isDivergent() != From->isDivergent()) 8403 updateDivergence(User); 8404 } while (UI != UE && *UI == User); 8405 8406 // Now that we have modified User, add it back to the CSE maps. If it 8407 // already exists there, recursively merge the results together. 8408 AddModifiedNodeToCSEMaps(User); 8409 } 8410 8411 // If we just RAUW'd the root, take note. 8412 if (From == getRoot().getNode()) 8413 setRoot(SDValue(To, getRoot().getResNo())); 8414 } 8415 8416 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8417 /// This can cause recursive merging of nodes in the DAG. 8418 /// 8419 /// This version can replace From with any result values. To must match the 8420 /// number and types of values returned by From. 8421 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8422 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8423 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8424 8425 // Preserve Debug Info. 8426 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8427 transferDbgValues(SDValue(From, i), To[i]); 8428 8429 // Iterate over just the existing users of From. See the comments in 8430 // the ReplaceAllUsesWith above. 8431 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8432 RAUWUpdateListener Listener(*this, UI, UE); 8433 while (UI != UE) { 8434 SDNode *User = *UI; 8435 8436 // This node is about to morph, remove its old self from the CSE maps. 8437 RemoveNodeFromCSEMaps(User); 8438 8439 // A user can appear in a use list multiple times, and when this happens the 8440 // uses are usually next to each other in the list. To help reduce the 8441 // number of CSE and divergence recomputations, process all the uses of this 8442 // user that we can find this way. 8443 bool To_IsDivergent = false; 8444 do { 8445 SDUse &Use = UI.getUse(); 8446 const SDValue &ToOp = To[Use.getResNo()]; 8447 ++UI; 8448 Use.set(ToOp); 8449 To_IsDivergent |= ToOp->isDivergent(); 8450 } while (UI != UE && *UI == User); 8451 8452 if (To_IsDivergent != From->isDivergent()) 8453 updateDivergence(User); 8454 8455 // Now that we have modified User, add it back to the CSE maps. If it 8456 // already exists there, recursively merge the results together. 8457 AddModifiedNodeToCSEMaps(User); 8458 } 8459 8460 // If we just RAUW'd the root, take note. 8461 if (From == getRoot().getNode()) 8462 setRoot(SDValue(To[getRoot().getResNo()])); 8463 } 8464 8465 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8466 /// uses of other values produced by From.getNode() alone. The Deleted 8467 /// vector is handled the same way as for ReplaceAllUsesWith. 8468 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8469 // Handle the really simple, really trivial case efficiently. 8470 if (From == To) return; 8471 8472 // Handle the simple, trivial, case efficiently. 8473 if (From.getNode()->getNumValues() == 1) { 8474 ReplaceAllUsesWith(From, To); 8475 return; 8476 } 8477 8478 // Preserve Debug Info. 8479 transferDbgValues(From, To); 8480 8481 // Iterate over just the existing users of From. See the comments in 8482 // the ReplaceAllUsesWith above. 8483 SDNode::use_iterator UI = From.getNode()->use_begin(), 8484 UE = From.getNode()->use_end(); 8485 RAUWUpdateListener Listener(*this, UI, UE); 8486 while (UI != UE) { 8487 SDNode *User = *UI; 8488 bool UserRemovedFromCSEMaps = false; 8489 8490 // A user can appear in a use list multiple times, and when this 8491 // happens the uses are usually next to each other in the list. 8492 // To help reduce the number of CSE recomputations, process all 8493 // the uses of this user that we can find this way. 8494 do { 8495 SDUse &Use = UI.getUse(); 8496 8497 // Skip uses of different values from the same node. 8498 if (Use.getResNo() != From.getResNo()) { 8499 ++UI; 8500 continue; 8501 } 8502 8503 // If this node hasn't been modified yet, it's still in the CSE maps, 8504 // so remove its old self from the CSE maps. 8505 if (!UserRemovedFromCSEMaps) { 8506 RemoveNodeFromCSEMaps(User); 8507 UserRemovedFromCSEMaps = true; 8508 } 8509 8510 ++UI; 8511 Use.set(To); 8512 if (To->isDivergent() != From->isDivergent()) 8513 updateDivergence(User); 8514 } while (UI != UE && *UI == User); 8515 // We are iterating over all uses of the From node, so if a use 8516 // doesn't use the specific value, no changes are made. 8517 if (!UserRemovedFromCSEMaps) 8518 continue; 8519 8520 // Now that we have modified User, add it back to the CSE maps. If it 8521 // already exists there, recursively merge the results together. 8522 AddModifiedNodeToCSEMaps(User); 8523 } 8524 8525 // If we just RAUW'd the root, take note. 8526 if (From == getRoot()) 8527 setRoot(To); 8528 } 8529 8530 namespace { 8531 8532 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8533 /// to record information about a use. 8534 struct UseMemo { 8535 SDNode *User; 8536 unsigned Index; 8537 SDUse *Use; 8538 }; 8539 8540 /// operator< - Sort Memos by User. 8541 bool operator<(const UseMemo &L, const UseMemo &R) { 8542 return (intptr_t)L.User < (intptr_t)R.User; 8543 } 8544 8545 } // end anonymous namespace 8546 8547 void SelectionDAG::updateDivergence(SDNode * N) 8548 { 8549 if (TLI->isSDNodeAlwaysUniform(N)) 8550 return; 8551 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8552 for (auto &Op : N->ops()) { 8553 if (Op.Val.getValueType() != MVT::Other) 8554 IsDivergent |= Op.getNode()->isDivergent(); 8555 } 8556 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8557 N->SDNodeBits.IsDivergent = IsDivergent; 8558 for (auto U : N->uses()) { 8559 updateDivergence(U); 8560 } 8561 } 8562 } 8563 8564 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8565 DenseMap<SDNode *, unsigned> Degree; 8566 Order.reserve(AllNodes.size()); 8567 for (auto &N : allnodes()) { 8568 unsigned NOps = N.getNumOperands(); 8569 Degree[&N] = NOps; 8570 if (0 == NOps) 8571 Order.push_back(&N); 8572 } 8573 for (size_t I = 0; I != Order.size(); ++I) { 8574 SDNode *N = Order[I]; 8575 for (auto U : N->uses()) { 8576 unsigned &UnsortedOps = Degree[U]; 8577 if (0 == --UnsortedOps) 8578 Order.push_back(U); 8579 } 8580 } 8581 } 8582 8583 #ifndef NDEBUG 8584 void SelectionDAG::VerifyDAGDiverence() { 8585 std::vector<SDNode *> TopoOrder; 8586 CreateTopologicalOrder(TopoOrder); 8587 const TargetLowering &TLI = getTargetLoweringInfo(); 8588 DenseMap<const SDNode *, bool> DivergenceMap; 8589 for (auto &N : allnodes()) { 8590 DivergenceMap[&N] = false; 8591 } 8592 for (auto N : TopoOrder) { 8593 bool IsDivergent = DivergenceMap[N]; 8594 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8595 for (auto &Op : N->ops()) { 8596 if (Op.Val.getValueType() != MVT::Other) 8597 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8598 } 8599 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8600 DivergenceMap[N] = true; 8601 } 8602 } 8603 for (auto &N : allnodes()) { 8604 (void)N; 8605 assert(DivergenceMap[&N] == N.isDivergent() && 8606 "Divergence bit inconsistency detected\n"); 8607 } 8608 } 8609 #endif 8610 8611 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8612 /// uses of other values produced by From.getNode() alone. The same value 8613 /// may appear in both the From and To list. The Deleted vector is 8614 /// handled the same way as for ReplaceAllUsesWith. 8615 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8616 const SDValue *To, 8617 unsigned Num){ 8618 // Handle the simple, trivial case efficiently. 8619 if (Num == 1) 8620 return ReplaceAllUsesOfValueWith(*From, *To); 8621 8622 transferDbgValues(*From, *To); 8623 8624 // Read up all the uses and make records of them. This helps 8625 // processing new uses that are introduced during the 8626 // replacement process. 8627 SmallVector<UseMemo, 4> Uses; 8628 for (unsigned i = 0; i != Num; ++i) { 8629 unsigned FromResNo = From[i].getResNo(); 8630 SDNode *FromNode = From[i].getNode(); 8631 for (SDNode::use_iterator UI = FromNode->use_begin(), 8632 E = FromNode->use_end(); UI != E; ++UI) { 8633 SDUse &Use = UI.getUse(); 8634 if (Use.getResNo() == FromResNo) { 8635 UseMemo Memo = { *UI, i, &Use }; 8636 Uses.push_back(Memo); 8637 } 8638 } 8639 } 8640 8641 // Sort the uses, so that all the uses from a given User are together. 8642 llvm::sort(Uses); 8643 8644 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8645 UseIndex != UseIndexEnd; ) { 8646 // We know that this user uses some value of From. If it is the right 8647 // value, update it. 8648 SDNode *User = Uses[UseIndex].User; 8649 8650 // This node is about to morph, remove its old self from the CSE maps. 8651 RemoveNodeFromCSEMaps(User); 8652 8653 // The Uses array is sorted, so all the uses for a given User 8654 // are next to each other in the list. 8655 // To help reduce the number of CSE recomputations, process all 8656 // the uses of this user that we can find this way. 8657 do { 8658 unsigned i = Uses[UseIndex].Index; 8659 SDUse &Use = *Uses[UseIndex].Use; 8660 ++UseIndex; 8661 8662 Use.set(To[i]); 8663 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8664 8665 // Now that we have modified User, add it back to the CSE maps. If it 8666 // already exists there, recursively merge the results together. 8667 AddModifiedNodeToCSEMaps(User); 8668 } 8669 } 8670 8671 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8672 /// based on their topological order. It returns the maximum id and a vector 8673 /// of the SDNodes* in assigned order by reference. 8674 unsigned SelectionDAG::AssignTopologicalOrder() { 8675 unsigned DAGSize = 0; 8676 8677 // SortedPos tracks the progress of the algorithm. Nodes before it are 8678 // sorted, nodes after it are unsorted. When the algorithm completes 8679 // it is at the end of the list. 8680 allnodes_iterator SortedPos = allnodes_begin(); 8681 8682 // Visit all the nodes. Move nodes with no operands to the front of 8683 // the list immediately. Annotate nodes that do have operands with their 8684 // operand count. Before we do this, the Node Id fields of the nodes 8685 // may contain arbitrary values. After, the Node Id fields for nodes 8686 // before SortedPos will contain the topological sort index, and the 8687 // Node Id fields for nodes At SortedPos and after will contain the 8688 // count of outstanding operands. 8689 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8690 SDNode *N = &*I++; 8691 checkForCycles(N, this); 8692 unsigned Degree = N->getNumOperands(); 8693 if (Degree == 0) { 8694 // A node with no uses, add it to the result array immediately. 8695 N->setNodeId(DAGSize++); 8696 allnodes_iterator Q(N); 8697 if (Q != SortedPos) 8698 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8699 assert(SortedPos != AllNodes.end() && "Overran node list"); 8700 ++SortedPos; 8701 } else { 8702 // Temporarily use the Node Id as scratch space for the degree count. 8703 N->setNodeId(Degree); 8704 } 8705 } 8706 8707 // Visit all the nodes. As we iterate, move nodes into sorted order, 8708 // such that by the time the end is reached all nodes will be sorted. 8709 for (SDNode &Node : allnodes()) { 8710 SDNode *N = &Node; 8711 checkForCycles(N, this); 8712 // N is in sorted position, so all its uses have one less operand 8713 // that needs to be sorted. 8714 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8715 UI != UE; ++UI) { 8716 SDNode *P = *UI; 8717 unsigned Degree = P->getNodeId(); 8718 assert(Degree != 0 && "Invalid node degree"); 8719 --Degree; 8720 if (Degree == 0) { 8721 // All of P's operands are sorted, so P may sorted now. 8722 P->setNodeId(DAGSize++); 8723 if (P->getIterator() != SortedPos) 8724 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8725 assert(SortedPos != AllNodes.end() && "Overran node list"); 8726 ++SortedPos; 8727 } else { 8728 // Update P's outstanding operand count. 8729 P->setNodeId(Degree); 8730 } 8731 } 8732 if (Node.getIterator() == SortedPos) { 8733 #ifndef NDEBUG 8734 allnodes_iterator I(N); 8735 SDNode *S = &*++I; 8736 dbgs() << "Overran sorted position:\n"; 8737 S->dumprFull(this); dbgs() << "\n"; 8738 dbgs() << "Checking if this is due to cycles\n"; 8739 checkForCycles(this, true); 8740 #endif 8741 llvm_unreachable(nullptr); 8742 } 8743 } 8744 8745 assert(SortedPos == AllNodes.end() && 8746 "Topological sort incomplete!"); 8747 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8748 "First node in topological sort is not the entry token!"); 8749 assert(AllNodes.front().getNodeId() == 0 && 8750 "First node in topological sort has non-zero id!"); 8751 assert(AllNodes.front().getNumOperands() == 0 && 8752 "First node in topological sort has operands!"); 8753 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8754 "Last node in topologic sort has unexpected id!"); 8755 assert(AllNodes.back().use_empty() && 8756 "Last node in topologic sort has users!"); 8757 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8758 return DAGSize; 8759 } 8760 8761 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8762 /// value is produced by SD. 8763 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8764 if (SD) { 8765 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8766 SD->setHasDebugValue(true); 8767 } 8768 DbgInfo->add(DB, SD, isParameter); 8769 } 8770 8771 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8772 DbgInfo->add(DB); 8773 } 8774 8775 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8776 SDValue NewMemOp) { 8777 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8778 // The new memory operation must have the same position as the old load in 8779 // terms of memory dependency. Create a TokenFactor for the old load and new 8780 // memory operation and update uses of the old load's output chain to use that 8781 // TokenFactor. 8782 SDValue OldChain = SDValue(OldLoad, 1); 8783 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8784 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8785 return NewChain; 8786 8787 SDValue TokenFactor = 8788 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8789 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8790 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8791 return TokenFactor; 8792 } 8793 8794 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8795 Function **OutFunction) { 8796 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8797 8798 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8799 auto *Module = MF->getFunction().getParent(); 8800 auto *Function = Module->getFunction(Symbol); 8801 8802 if (OutFunction != nullptr) 8803 *OutFunction = Function; 8804 8805 if (Function != nullptr) { 8806 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8807 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8808 } 8809 8810 std::string ErrorStr; 8811 raw_string_ostream ErrorFormatter(ErrorStr); 8812 8813 ErrorFormatter << "Undefined external symbol "; 8814 ErrorFormatter << '"' << Symbol << '"'; 8815 ErrorFormatter.flush(); 8816 8817 report_fatal_error(ErrorStr); 8818 } 8819 8820 //===----------------------------------------------------------------------===// 8821 // SDNode Class 8822 //===----------------------------------------------------------------------===// 8823 8824 bool llvm::isNullConstant(SDValue V) { 8825 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8826 return Const != nullptr && Const->isNullValue(); 8827 } 8828 8829 bool llvm::isNullFPConstant(SDValue V) { 8830 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8831 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8832 } 8833 8834 bool llvm::isAllOnesConstant(SDValue V) { 8835 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8836 return Const != nullptr && Const->isAllOnesValue(); 8837 } 8838 8839 bool llvm::isOneConstant(SDValue V) { 8840 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8841 return Const != nullptr && Const->isOne(); 8842 } 8843 8844 SDValue llvm::peekThroughBitcasts(SDValue V) { 8845 while (V.getOpcode() == ISD::BITCAST) 8846 V = V.getOperand(0); 8847 return V; 8848 } 8849 8850 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8851 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8852 V = V.getOperand(0); 8853 return V; 8854 } 8855 8856 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8857 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8858 V = V.getOperand(0); 8859 return V; 8860 } 8861 8862 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8863 if (V.getOpcode() != ISD::XOR) 8864 return false; 8865 V = peekThroughBitcasts(V.getOperand(1)); 8866 unsigned NumBits = V.getScalarValueSizeInBits(); 8867 ConstantSDNode *C = 8868 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8869 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8870 } 8871 8872 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8873 bool AllowTruncation) { 8874 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8875 return CN; 8876 8877 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8878 BitVector UndefElements; 8879 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8880 8881 // BuildVectors can truncate their operands. Ignore that case here unless 8882 // AllowTruncation is set. 8883 if (CN && (UndefElements.none() || AllowUndefs)) { 8884 EVT CVT = CN->getValueType(0); 8885 EVT NSVT = N.getValueType().getScalarType(); 8886 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8887 if (AllowTruncation || (CVT == NSVT)) 8888 return CN; 8889 } 8890 } 8891 8892 return nullptr; 8893 } 8894 8895 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8896 bool AllowUndefs, 8897 bool AllowTruncation) { 8898 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8899 return CN; 8900 8901 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8902 BitVector UndefElements; 8903 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8904 8905 // BuildVectors can truncate their operands. Ignore that case here unless 8906 // AllowTruncation is set. 8907 if (CN && (UndefElements.none() || AllowUndefs)) { 8908 EVT CVT = CN->getValueType(0); 8909 EVT NSVT = N.getValueType().getScalarType(); 8910 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8911 if (AllowTruncation || (CVT == NSVT)) 8912 return CN; 8913 } 8914 } 8915 8916 return nullptr; 8917 } 8918 8919 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8920 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8921 return CN; 8922 8923 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8924 BitVector UndefElements; 8925 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8926 if (CN && (UndefElements.none() || AllowUndefs)) 8927 return CN; 8928 } 8929 8930 return nullptr; 8931 } 8932 8933 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8934 const APInt &DemandedElts, 8935 bool AllowUndefs) { 8936 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8937 return CN; 8938 8939 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8940 BitVector UndefElements; 8941 ConstantFPSDNode *CN = 8942 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8943 if (CN && (UndefElements.none() || AllowUndefs)) 8944 return CN; 8945 } 8946 8947 return nullptr; 8948 } 8949 8950 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8951 // TODO: may want to use peekThroughBitcast() here. 8952 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8953 return C && C->isNullValue(); 8954 } 8955 8956 bool llvm::isOneOrOneSplat(SDValue N) { 8957 // TODO: may want to use peekThroughBitcast() here. 8958 unsigned BitWidth = N.getScalarValueSizeInBits(); 8959 ConstantSDNode *C = isConstOrConstSplat(N); 8960 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8961 } 8962 8963 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8964 N = peekThroughBitcasts(N); 8965 unsigned BitWidth = N.getScalarValueSizeInBits(); 8966 ConstantSDNode *C = isConstOrConstSplat(N); 8967 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8968 } 8969 8970 HandleSDNode::~HandleSDNode() { 8971 DropOperands(); 8972 } 8973 8974 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8975 const DebugLoc &DL, 8976 const GlobalValue *GA, EVT VT, 8977 int64_t o, unsigned TF) 8978 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8979 TheGlobal = GA; 8980 } 8981 8982 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8983 EVT VT, unsigned SrcAS, 8984 unsigned DestAS) 8985 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8986 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8987 8988 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8989 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8990 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8991 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8992 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8993 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8994 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8995 8996 // We check here that the size of the memory operand fits within the size of 8997 // the MMO. This is because the MMO might indicate only a possible address 8998 // range instead of specifying the affected memory addresses precisely. 8999 // TODO: Make MachineMemOperands aware of scalable vectors. 9000 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9001 "Size mismatch!"); 9002 } 9003 9004 /// Profile - Gather unique data for the node. 9005 /// 9006 void SDNode::Profile(FoldingSetNodeID &ID) const { 9007 AddNodeIDNode(ID, this); 9008 } 9009 9010 namespace { 9011 9012 struct EVTArray { 9013 std::vector<EVT> VTs; 9014 9015 EVTArray() { 9016 VTs.reserve(MVT::LAST_VALUETYPE); 9017 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9018 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9019 } 9020 }; 9021 9022 } // end anonymous namespace 9023 9024 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9025 static ManagedStatic<EVTArray> SimpleVTArray; 9026 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9027 9028 /// getValueTypeList - Return a pointer to the specified value type. 9029 /// 9030 const EVT *SDNode::getValueTypeList(EVT VT) { 9031 if (VT.isExtended()) { 9032 sys::SmartScopedLock<true> Lock(*VTMutex); 9033 return &(*EVTs->insert(VT).first); 9034 } else { 9035 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9036 "Value type out of range!"); 9037 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9038 } 9039 } 9040 9041 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9042 /// indicated value. This method ignores uses of other values defined by this 9043 /// operation. 9044 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9045 assert(Value < getNumValues() && "Bad value!"); 9046 9047 // TODO: Only iterate over uses of a given value of the node 9048 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9049 if (UI.getUse().getResNo() == Value) { 9050 if (NUses == 0) 9051 return false; 9052 --NUses; 9053 } 9054 } 9055 9056 // Found exactly the right number of uses? 9057 return NUses == 0; 9058 } 9059 9060 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9061 /// value. This method ignores uses of other values defined by this operation. 9062 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9063 assert(Value < getNumValues() && "Bad value!"); 9064 9065 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9066 if (UI.getUse().getResNo() == Value) 9067 return true; 9068 9069 return false; 9070 } 9071 9072 /// isOnlyUserOf - Return true if this node is the only use of N. 9073 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9074 bool Seen = false; 9075 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9076 SDNode *User = *I; 9077 if (User == this) 9078 Seen = true; 9079 else 9080 return false; 9081 } 9082 9083 return Seen; 9084 } 9085 9086 /// Return true if the only users of N are contained in Nodes. 9087 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9088 bool Seen = false; 9089 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9090 SDNode *User = *I; 9091 if (llvm::any_of(Nodes, 9092 [&User](const SDNode *Node) { return User == Node; })) 9093 Seen = true; 9094 else 9095 return false; 9096 } 9097 9098 return Seen; 9099 } 9100 9101 /// isOperand - Return true if this node is an operand of N. 9102 bool SDValue::isOperandOf(const SDNode *N) const { 9103 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9104 } 9105 9106 bool SDNode::isOperandOf(const SDNode *N) const { 9107 return any_of(N->op_values(), 9108 [this](SDValue Op) { return this == Op.getNode(); }); 9109 } 9110 9111 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9112 /// be a chain) reaches the specified operand without crossing any 9113 /// side-effecting instructions on any chain path. In practice, this looks 9114 /// through token factors and non-volatile loads. In order to remain efficient, 9115 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9116 /// 9117 /// Note that we only need to examine chains when we're searching for 9118 /// side-effects; SelectionDAG requires that all side-effects are represented 9119 /// by chains, even if another operand would force a specific ordering. This 9120 /// constraint is necessary to allow transformations like splitting loads. 9121 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9122 unsigned Depth) const { 9123 if (*this == Dest) return true; 9124 9125 // Don't search too deeply, we just want to be able to see through 9126 // TokenFactor's etc. 9127 if (Depth == 0) return false; 9128 9129 // If this is a token factor, all inputs to the TF happen in parallel. 9130 if (getOpcode() == ISD::TokenFactor) { 9131 // First, try a shallow search. 9132 if (is_contained((*this)->ops(), Dest)) { 9133 // We found the chain we want as an operand of this TokenFactor. 9134 // Essentially, we reach the chain without side-effects if we could 9135 // serialize the TokenFactor into a simple chain of operations with 9136 // Dest as the last operation. This is automatically true if the 9137 // chain has one use: there are no other ordering constraints. 9138 // If the chain has more than one use, we give up: some other 9139 // use of Dest might force a side-effect between Dest and the current 9140 // node. 9141 if (Dest.hasOneUse()) 9142 return true; 9143 } 9144 // Next, try a deep search: check whether every operand of the TokenFactor 9145 // reaches Dest. 9146 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9147 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9148 }); 9149 } 9150 9151 // Loads don't have side effects, look through them. 9152 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9153 if (Ld->isUnordered()) 9154 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9155 } 9156 return false; 9157 } 9158 9159 bool SDNode::hasPredecessor(const SDNode *N) const { 9160 SmallPtrSet<const SDNode *, 32> Visited; 9161 SmallVector<const SDNode *, 16> Worklist; 9162 Worklist.push_back(this); 9163 return hasPredecessorHelper(N, Visited, Worklist); 9164 } 9165 9166 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9167 this->Flags.intersectWith(Flags); 9168 } 9169 9170 SDValue 9171 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9172 ArrayRef<ISD::NodeType> CandidateBinOps, 9173 bool AllowPartials) { 9174 // The pattern must end in an extract from index 0. 9175 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9176 !isNullConstant(Extract->getOperand(1))) 9177 return SDValue(); 9178 9179 // Match against one of the candidate binary ops. 9180 SDValue Op = Extract->getOperand(0); 9181 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9182 return Op.getOpcode() == unsigned(BinOp); 9183 })) 9184 return SDValue(); 9185 9186 // Floating-point reductions may require relaxed constraints on the final step 9187 // of the reduction because they may reorder intermediate operations. 9188 unsigned CandidateBinOp = Op.getOpcode(); 9189 if (Op.getValueType().isFloatingPoint()) { 9190 SDNodeFlags Flags = Op->getFlags(); 9191 switch (CandidateBinOp) { 9192 case ISD::FADD: 9193 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9194 return SDValue(); 9195 break; 9196 default: 9197 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9198 } 9199 } 9200 9201 // Matching failed - attempt to see if we did enough stages that a partial 9202 // reduction from a subvector is possible. 9203 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9204 if (!AllowPartials || !Op) 9205 return SDValue(); 9206 EVT OpVT = Op.getValueType(); 9207 EVT OpSVT = OpVT.getScalarType(); 9208 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9209 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9210 return SDValue(); 9211 BinOp = (ISD::NodeType)CandidateBinOp; 9212 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9213 getVectorIdxConstant(0, SDLoc(Op))); 9214 }; 9215 9216 // At each stage, we're looking for something that looks like: 9217 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9218 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9219 // i32 undef, i32 undef, i32 undef, i32 undef> 9220 // %a = binop <8 x i32> %op, %s 9221 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9222 // we expect something like: 9223 // <4,5,6,7,u,u,u,u> 9224 // <2,3,u,u,u,u,u,u> 9225 // <1,u,u,u,u,u,u,u> 9226 // While a partial reduction match would be: 9227 // <2,3,u,u,u,u,u,u> 9228 // <1,u,u,u,u,u,u,u> 9229 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9230 SDValue PrevOp; 9231 for (unsigned i = 0; i < Stages; ++i) { 9232 unsigned MaskEnd = (1 << i); 9233 9234 if (Op.getOpcode() != CandidateBinOp) 9235 return PartialReduction(PrevOp, MaskEnd); 9236 9237 SDValue Op0 = Op.getOperand(0); 9238 SDValue Op1 = Op.getOperand(1); 9239 9240 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9241 if (Shuffle) { 9242 Op = Op1; 9243 } else { 9244 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9245 Op = Op0; 9246 } 9247 9248 // The first operand of the shuffle should be the same as the other operand 9249 // of the binop. 9250 if (!Shuffle || Shuffle->getOperand(0) != Op) 9251 return PartialReduction(PrevOp, MaskEnd); 9252 9253 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9254 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9255 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9256 return PartialReduction(PrevOp, MaskEnd); 9257 9258 PrevOp = Op; 9259 } 9260 9261 BinOp = (ISD::NodeType)CandidateBinOp; 9262 return Op; 9263 } 9264 9265 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9266 assert(N->getNumValues() == 1 && 9267 "Can't unroll a vector with multiple results!"); 9268 9269 EVT VT = N->getValueType(0); 9270 unsigned NE = VT.getVectorNumElements(); 9271 EVT EltVT = VT.getVectorElementType(); 9272 SDLoc dl(N); 9273 9274 SmallVector<SDValue, 8> Scalars; 9275 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9276 9277 // If ResNE is 0, fully unroll the vector op. 9278 if (ResNE == 0) 9279 ResNE = NE; 9280 else if (NE > ResNE) 9281 NE = ResNE; 9282 9283 unsigned i; 9284 for (i= 0; i != NE; ++i) { 9285 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9286 SDValue Operand = N->getOperand(j); 9287 EVT OperandVT = Operand.getValueType(); 9288 if (OperandVT.isVector()) { 9289 // A vector operand; extract a single element. 9290 EVT OperandEltVT = OperandVT.getVectorElementType(); 9291 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9292 Operand, getVectorIdxConstant(i, dl)); 9293 } else { 9294 // A scalar operand; just use it as is. 9295 Operands[j] = Operand; 9296 } 9297 } 9298 9299 switch (N->getOpcode()) { 9300 default: { 9301 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9302 N->getFlags())); 9303 break; 9304 } 9305 case ISD::VSELECT: 9306 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9307 break; 9308 case ISD::SHL: 9309 case ISD::SRA: 9310 case ISD::SRL: 9311 case ISD::ROTL: 9312 case ISD::ROTR: 9313 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9314 getShiftAmountOperand(Operands[0].getValueType(), 9315 Operands[1]))); 9316 break; 9317 case ISD::SIGN_EXTEND_INREG: { 9318 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9319 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9320 Operands[0], 9321 getValueType(ExtVT))); 9322 } 9323 } 9324 } 9325 9326 for (; i < ResNE; ++i) 9327 Scalars.push_back(getUNDEF(EltVT)); 9328 9329 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9330 return getBuildVector(VecVT, dl, Scalars); 9331 } 9332 9333 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9334 SDNode *N, unsigned ResNE) { 9335 unsigned Opcode = N->getOpcode(); 9336 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9337 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9338 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9339 "Expected an overflow opcode"); 9340 9341 EVT ResVT = N->getValueType(0); 9342 EVT OvVT = N->getValueType(1); 9343 EVT ResEltVT = ResVT.getVectorElementType(); 9344 EVT OvEltVT = OvVT.getVectorElementType(); 9345 SDLoc dl(N); 9346 9347 // If ResNE is 0, fully unroll the vector op. 9348 unsigned NE = ResVT.getVectorNumElements(); 9349 if (ResNE == 0) 9350 ResNE = NE; 9351 else if (NE > ResNE) 9352 NE = ResNE; 9353 9354 SmallVector<SDValue, 8> LHSScalars; 9355 SmallVector<SDValue, 8> RHSScalars; 9356 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9357 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9358 9359 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9360 SDVTList VTs = getVTList(ResEltVT, SVT); 9361 SmallVector<SDValue, 8> ResScalars; 9362 SmallVector<SDValue, 8> OvScalars; 9363 for (unsigned i = 0; i < NE; ++i) { 9364 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9365 SDValue Ov = 9366 getSelect(dl, OvEltVT, Res.getValue(1), 9367 getBoolConstant(true, dl, OvEltVT, ResVT), 9368 getConstant(0, dl, OvEltVT)); 9369 9370 ResScalars.push_back(Res); 9371 OvScalars.push_back(Ov); 9372 } 9373 9374 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9375 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9376 9377 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9378 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9379 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9380 getBuildVector(NewOvVT, dl, OvScalars)); 9381 } 9382 9383 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9384 LoadSDNode *Base, 9385 unsigned Bytes, 9386 int Dist) const { 9387 if (LD->isVolatile() || Base->isVolatile()) 9388 return false; 9389 // TODO: probably too restrictive for atomics, revisit 9390 if (!LD->isSimple()) 9391 return false; 9392 if (LD->isIndexed() || Base->isIndexed()) 9393 return false; 9394 if (LD->getChain() != Base->getChain()) 9395 return false; 9396 EVT VT = LD->getValueType(0); 9397 if (VT.getSizeInBits() / 8 != Bytes) 9398 return false; 9399 9400 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9401 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9402 9403 int64_t Offset = 0; 9404 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9405 return (Dist * Bytes == Offset); 9406 return false; 9407 } 9408 9409 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9410 /// it cannot be inferred. 9411 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9412 // If this is a GlobalAddress + cst, return the alignment. 9413 const GlobalValue *GV = nullptr; 9414 int64_t GVOffset = 0; 9415 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9416 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9417 KnownBits Known(PtrWidth); 9418 llvm::computeKnownBits(GV, Known, getDataLayout()); 9419 unsigned AlignBits = Known.countMinTrailingZeros(); 9420 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9421 if (Align) 9422 return MinAlign(Align, GVOffset); 9423 } 9424 9425 // If this is a direct reference to a stack slot, use information about the 9426 // stack slot's alignment. 9427 int FrameIdx = INT_MIN; 9428 int64_t FrameOffset = 0; 9429 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9430 FrameIdx = FI->getIndex(); 9431 } else if (isBaseWithConstantOffset(Ptr) && 9432 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9433 // Handle FI+Cst 9434 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9435 FrameOffset = Ptr.getConstantOperandVal(1); 9436 } 9437 9438 if (FrameIdx != INT_MIN) { 9439 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9440 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9441 FrameOffset); 9442 return FIInfoAlign; 9443 } 9444 9445 return 0; 9446 } 9447 9448 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9449 /// which is split (or expanded) into two not necessarily identical pieces. 9450 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9451 // Currently all types are split in half. 9452 EVT LoVT, HiVT; 9453 if (!VT.isVector()) 9454 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9455 else 9456 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9457 9458 return std::make_pair(LoVT, HiVT); 9459 } 9460 9461 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9462 /// low/high part. 9463 std::pair<SDValue, SDValue> 9464 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9465 const EVT &HiVT) { 9466 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9467 N.getValueType().getVectorNumElements() && 9468 "More vector elements requested than available!"); 9469 SDValue Lo, Hi; 9470 Lo = 9471 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9472 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9473 getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 9474 return std::make_pair(Lo, Hi); 9475 } 9476 9477 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9478 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9479 EVT VT = N.getValueType(); 9480 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9481 NextPowerOf2(VT.getVectorNumElements())); 9482 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9483 getVectorIdxConstant(0, DL)); 9484 } 9485 9486 void SelectionDAG::ExtractVectorElements(SDValue Op, 9487 SmallVectorImpl<SDValue> &Args, 9488 unsigned Start, unsigned Count) { 9489 EVT VT = Op.getValueType(); 9490 if (Count == 0) 9491 Count = VT.getVectorNumElements(); 9492 9493 EVT EltVT = VT.getVectorElementType(); 9494 SDLoc SL(Op); 9495 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9496 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9497 getVectorIdxConstant(i, SL))); 9498 } 9499 } 9500 9501 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9502 unsigned GlobalAddressSDNode::getAddressSpace() const { 9503 return getGlobal()->getType()->getAddressSpace(); 9504 } 9505 9506 Type *ConstantPoolSDNode::getType() const { 9507 if (isMachineConstantPoolEntry()) 9508 return Val.MachineCPVal->getType(); 9509 return Val.ConstVal->getType(); 9510 } 9511 9512 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9513 unsigned &SplatBitSize, 9514 bool &HasAnyUndefs, 9515 unsigned MinSplatBits, 9516 bool IsBigEndian) const { 9517 EVT VT = getValueType(0); 9518 assert(VT.isVector() && "Expected a vector type"); 9519 unsigned VecWidth = VT.getSizeInBits(); 9520 if (MinSplatBits > VecWidth) 9521 return false; 9522 9523 // FIXME: The widths are based on this node's type, but build vectors can 9524 // truncate their operands. 9525 SplatValue = APInt(VecWidth, 0); 9526 SplatUndef = APInt(VecWidth, 0); 9527 9528 // Get the bits. Bits with undefined values (when the corresponding element 9529 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9530 // in SplatValue. If any of the values are not constant, give up and return 9531 // false. 9532 unsigned int NumOps = getNumOperands(); 9533 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9534 unsigned EltWidth = VT.getScalarSizeInBits(); 9535 9536 for (unsigned j = 0; j < NumOps; ++j) { 9537 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9538 SDValue OpVal = getOperand(i); 9539 unsigned BitPos = j * EltWidth; 9540 9541 if (OpVal.isUndef()) 9542 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9543 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9544 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9545 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9546 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9547 else 9548 return false; 9549 } 9550 9551 // The build_vector is all constants or undefs. Find the smallest element 9552 // size that splats the vector. 9553 HasAnyUndefs = (SplatUndef != 0); 9554 9555 // FIXME: This does not work for vectors with elements less than 8 bits. 9556 while (VecWidth > 8) { 9557 unsigned HalfSize = VecWidth / 2; 9558 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9559 APInt LowValue = SplatValue.trunc(HalfSize); 9560 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9561 APInt LowUndef = SplatUndef.trunc(HalfSize); 9562 9563 // If the two halves do not match (ignoring undef bits), stop here. 9564 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9565 MinSplatBits > HalfSize) 9566 break; 9567 9568 SplatValue = HighValue | LowValue; 9569 SplatUndef = HighUndef & LowUndef; 9570 9571 VecWidth = HalfSize; 9572 } 9573 9574 SplatBitSize = VecWidth; 9575 return true; 9576 } 9577 9578 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9579 BitVector *UndefElements) const { 9580 if (UndefElements) { 9581 UndefElements->clear(); 9582 UndefElements->resize(getNumOperands()); 9583 } 9584 assert(getNumOperands() == DemandedElts.getBitWidth() && 9585 "Unexpected vector size"); 9586 if (!DemandedElts) 9587 return SDValue(); 9588 SDValue Splatted; 9589 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9590 if (!DemandedElts[i]) 9591 continue; 9592 SDValue Op = getOperand(i); 9593 if (Op.isUndef()) { 9594 if (UndefElements) 9595 (*UndefElements)[i] = true; 9596 } else if (!Splatted) { 9597 Splatted = Op; 9598 } else if (Splatted != Op) { 9599 return SDValue(); 9600 } 9601 } 9602 9603 if (!Splatted) { 9604 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9605 assert(getOperand(FirstDemandedIdx).isUndef() && 9606 "Can only have a splat without a constant for all undefs."); 9607 return getOperand(FirstDemandedIdx); 9608 } 9609 9610 return Splatted; 9611 } 9612 9613 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9614 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9615 return getSplatValue(DemandedElts, UndefElements); 9616 } 9617 9618 ConstantSDNode * 9619 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9620 BitVector *UndefElements) const { 9621 return dyn_cast_or_null<ConstantSDNode>( 9622 getSplatValue(DemandedElts, UndefElements)); 9623 } 9624 9625 ConstantSDNode * 9626 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9627 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9628 } 9629 9630 ConstantFPSDNode * 9631 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9632 BitVector *UndefElements) const { 9633 return dyn_cast_or_null<ConstantFPSDNode>( 9634 getSplatValue(DemandedElts, UndefElements)); 9635 } 9636 9637 ConstantFPSDNode * 9638 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9639 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9640 } 9641 9642 int32_t 9643 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9644 uint32_t BitWidth) const { 9645 if (ConstantFPSDNode *CN = 9646 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9647 bool IsExact; 9648 APSInt IntVal(BitWidth); 9649 const APFloat &APF = CN->getValueAPF(); 9650 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9651 APFloat::opOK || 9652 !IsExact) 9653 return -1; 9654 9655 return IntVal.exactLogBase2(); 9656 } 9657 return -1; 9658 } 9659 9660 bool BuildVectorSDNode::isConstant() const { 9661 for (const SDValue &Op : op_values()) { 9662 unsigned Opc = Op.getOpcode(); 9663 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9664 return false; 9665 } 9666 return true; 9667 } 9668 9669 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9670 // Find the first non-undef value in the shuffle mask. 9671 unsigned i, e; 9672 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9673 /* search */; 9674 9675 // If all elements are undefined, this shuffle can be considered a splat 9676 // (although it should eventually get simplified away completely). 9677 if (i == e) 9678 return true; 9679 9680 // Make sure all remaining elements are either undef or the same as the first 9681 // non-undef value. 9682 for (int Idx = Mask[i]; i != e; ++i) 9683 if (Mask[i] >= 0 && Mask[i] != Idx) 9684 return false; 9685 return true; 9686 } 9687 9688 // Returns the SDNode if it is a constant integer BuildVector 9689 // or constant integer. 9690 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9691 if (isa<ConstantSDNode>(N)) 9692 return N.getNode(); 9693 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9694 return N.getNode(); 9695 // Treat a GlobalAddress supporting constant offset folding as a 9696 // constant integer. 9697 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9698 if (GA->getOpcode() == ISD::GlobalAddress && 9699 TLI->isOffsetFoldingLegal(GA)) 9700 return GA; 9701 return nullptr; 9702 } 9703 9704 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9705 if (isa<ConstantFPSDNode>(N)) 9706 return N.getNode(); 9707 9708 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9709 return N.getNode(); 9710 9711 return nullptr; 9712 } 9713 9714 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9715 assert(!Node->OperandList && "Node already has operands"); 9716 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9717 "too many operands to fit into SDNode"); 9718 SDUse *Ops = OperandRecycler.allocate( 9719 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9720 9721 bool IsDivergent = false; 9722 for (unsigned I = 0; I != Vals.size(); ++I) { 9723 Ops[I].setUser(Node); 9724 Ops[I].setInitial(Vals[I]); 9725 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9726 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9727 } 9728 Node->NumOperands = Vals.size(); 9729 Node->OperandList = Ops; 9730 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9731 if (!TLI->isSDNodeAlwaysUniform(Node)) 9732 Node->SDNodeBits.IsDivergent = IsDivergent; 9733 checkForCycles(Node); 9734 } 9735 9736 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9737 SmallVectorImpl<SDValue> &Vals) { 9738 size_t Limit = SDNode::getMaxNumOperands(); 9739 while (Vals.size() > Limit) { 9740 unsigned SliceIdx = Vals.size() - Limit; 9741 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9742 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9743 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9744 Vals.emplace_back(NewTF); 9745 } 9746 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9747 } 9748 9749 #ifndef NDEBUG 9750 static void checkForCyclesHelper(const SDNode *N, 9751 SmallPtrSetImpl<const SDNode*> &Visited, 9752 SmallPtrSetImpl<const SDNode*> &Checked, 9753 const llvm::SelectionDAG *DAG) { 9754 // If this node has already been checked, don't check it again. 9755 if (Checked.count(N)) 9756 return; 9757 9758 // If a node has already been visited on this depth-first walk, reject it as 9759 // a cycle. 9760 if (!Visited.insert(N).second) { 9761 errs() << "Detected cycle in SelectionDAG\n"; 9762 dbgs() << "Offending node:\n"; 9763 N->dumprFull(DAG); dbgs() << "\n"; 9764 abort(); 9765 } 9766 9767 for (const SDValue &Op : N->op_values()) 9768 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9769 9770 Checked.insert(N); 9771 Visited.erase(N); 9772 } 9773 #endif 9774 9775 void llvm::checkForCycles(const llvm::SDNode *N, 9776 const llvm::SelectionDAG *DAG, 9777 bool force) { 9778 #ifndef NDEBUG 9779 bool check = force; 9780 #ifdef EXPENSIVE_CHECKS 9781 check = true; 9782 #endif // EXPENSIVE_CHECKS 9783 if (check) { 9784 assert(N && "Checking nonexistent SDNode"); 9785 SmallPtrSet<const SDNode*, 32> visited; 9786 SmallPtrSet<const SDNode*, 32> checked; 9787 checkForCyclesHelper(N, visited, checked, DAG); 9788 } 9789 #endif // !NDEBUG 9790 } 9791 9792 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9793 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9794 } 9795