1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/CodeGen/ValueTypes.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   auto *BV = dyn_cast<BuildVectorSDNode>(N);
141   if (!BV)
142     return false;
143 
144   APInt SplatUndef;
145   unsigned SplatBitSize;
146   bool HasUndefs;
147   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
148   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
149                              EltSize) &&
150          EltSize == SplatBitSize;
151 }
152 
153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
154 // specializations of the more general isConstantSplatVector()?
155 
156 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   unsigned i = 0, e = N->getNumOperands();
164 
165   // Skip over all of the undef values.
166   while (i != e && N->getOperand(i).isUndef())
167     ++i;
168 
169   // Do not accept an all-undef vector.
170   if (i == e) return false;
171 
172   // Do not accept build_vectors that aren't all constants or which have non-~0
173   // elements. We have to be a bit careful here, as the type of the constant
174   // may not be the same as the type of the vector elements due to type
175   // legalization (the elements are promoted to a legal type for the target and
176   // a vector of a type may be legal when the base element type is not).
177   // We only want to check enough bits to cover the vector elements, because
178   // we care if the resultant vector is all ones, not whether the individual
179   // constants are.
180   SDValue NotZero = N->getOperand(i);
181   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
182   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
183     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
184       return false;
185   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
186     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
187       return false;
188   } else
189     return false;
190 
191   // Okay, we have at least one ~0 value, check to see if the rest match or are
192   // undefs. Even with the above element type twiddling, this should be OK, as
193   // the same type legalization should have applied to all the elements.
194   for (++i; i != e; ++i)
195     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
196       return false;
197   return true;
198 }
199 
200 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
201   // Look through a bit convert.
202   while (N->getOpcode() == ISD::BITCAST)
203     N = N->getOperand(0).getNode();
204 
205   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
206 
207   bool IsAllUndef = true;
208   for (const SDValue &Op : N->op_values()) {
209     if (Op.isUndef())
210       continue;
211     IsAllUndef = false;
212     // Do not accept build_vectors that aren't all constants or which have non-0
213     // elements. We have to be a bit careful here, as the type of the constant
214     // may not be the same as the type of the vector elements due to type
215     // legalization (the elements are promoted to a legal type for the target
216     // and a vector of a type may be legal when the base element type is not).
217     // We only want to check enough bits to cover the vector elements, because
218     // we care if the resultant vector is all zeros, not whether the individual
219     // constants are.
220     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
221     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
222       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
223         return false;
224     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
225       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
226         return false;
227     } else
228       return false;
229   }
230 
231   // Do not accept an all-undef vector.
232   if (IsAllUndef)
233     return false;
234   return true;
235 }
236 
237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
238   if (N->getOpcode() != ISD::BUILD_VECTOR)
239     return false;
240 
241   for (const SDValue &Op : N->op_values()) {
242     if (Op.isUndef())
243       continue;
244     if (!isa<ConstantSDNode>(Op))
245       return false;
246   }
247   return true;
248 }
249 
250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
251   if (N->getOpcode() != ISD::BUILD_VECTOR)
252     return false;
253 
254   for (const SDValue &Op : N->op_values()) {
255     if (Op.isUndef())
256       continue;
257     if (!isa<ConstantFPSDNode>(Op))
258       return false;
259   }
260   return true;
261 }
262 
263 bool ISD::allOperandsUndef(const SDNode *N) {
264   // Return false if the node has no operands.
265   // This is "logically inconsistent" with the definition of "all" but
266   // is probably the desired behavior.
267   if (N->getNumOperands() == 0)
268     return false;
269   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
270 }
271 
272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs, bool AllowTypeMismatch) {
302   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
326                                LHSOp.getValueType() != RHSOp.getValueType()))
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
360   unsigned Operation = Op;
361   if (isIntegerLike)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
373   return getSetCCInverseImpl(Op, Type.isInteger());
374 }
375 
376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
377                                                bool isIntegerLike) {
378   return getSetCCInverseImpl(Op, isIntegerLike);
379 }
380 
381 /// For an integer comparison, return 1 if the comparison is a signed operation
382 /// and 2 if the result is an unsigned comparison. Return zero if the operation
383 /// does not depend on the sign of the input (setne and seteq).
384 static int isSignedOp(ISD::CondCode Opcode) {
385   switch (Opcode) {
386   default: llvm_unreachable("Illegal integer setcc operation!");
387   case ISD::SETEQ:
388   case ISD::SETNE: return 0;
389   case ISD::SETLT:
390   case ISD::SETLE:
391   case ISD::SETGT:
392   case ISD::SETGE: return 1;
393   case ISD::SETULT:
394   case ISD::SETULE:
395   case ISD::SETUGT:
396   case ISD::SETUGE: return 2;
397   }
398 }
399 
400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
401                                        EVT Type) {
402   bool IsInteger = Type.isInteger();
403   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
404     // Cannot fold a signed integer setcc with an unsigned integer setcc.
405     return ISD::SETCC_INVALID;
406 
407   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
408 
409   // If the N and U bits get set, then the resultant comparison DOES suddenly
410   // care about orderedness, and it is true when ordered.
411   if (Op > ISD::SETTRUE2)
412     Op &= ~16;     // Clear the U bit if the N bit is set.
413 
414   // Canonicalize illegal integer setcc's.
415   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
416     Op = ISD::SETNE;
417 
418   return ISD::CondCode(Op);
419 }
420 
421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
422                                         EVT Type) {
423   bool IsInteger = Type.isInteger();
424   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
425     // Cannot fold a signed setcc with an unsigned setcc.
426     return ISD::SETCC_INVALID;
427 
428   // Combine all of the condition bits.
429   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
430 
431   // Canonicalize illegal integer setcc's.
432   if (IsInteger) {
433     switch (Result) {
434     default: break;
435     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
436     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
437     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
438     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
439     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
440     }
441   }
442 
443   return Result;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                           SDNode Profile Support
448 //===----------------------------------------------------------------------===//
449 
450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
452   ID.AddInteger(OpC);
453 }
454 
455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
456 /// solely with their pointer.
457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
458   ID.AddPointer(VTList.VTs);
459 }
460 
461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
462 static void AddNodeIDOperands(FoldingSetNodeID &ID,
463                               ArrayRef<SDValue> Ops) {
464   for (auto& Op : Ops) {
465     ID.AddPointer(Op.getNode());
466     ID.AddInteger(Op.getResNo());
467   }
468 }
469 
470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
471 static void AddNodeIDOperands(FoldingSetNodeID &ID,
472                               ArrayRef<SDUse> Ops) {
473   for (auto& Op : Ops) {
474     ID.AddPointer(Op.getNode());
475     ID.AddInteger(Op.getResNo());
476   }
477 }
478 
479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
480                           SDVTList VTList, ArrayRef<SDValue> OpList) {
481   AddNodeIDOpcode(ID, OpC);
482   AddNodeIDValueTypes(ID, VTList);
483   AddNodeIDOperands(ID, OpList);
484 }
485 
486 /// If this is an SDNode with special info, add this info to the NodeID data.
487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
488   switch (N->getOpcode()) {
489   case ISD::TargetExternalSymbol:
490   case ISD::ExternalSymbol:
491   case ISD::MCSymbol:
492     llvm_unreachable("Should only be used on nodes with operands");
493   default: break;  // Normal nodes don't need extra info.
494   case ISD::TargetConstant:
495   case ISD::Constant: {
496     const ConstantSDNode *C = cast<ConstantSDNode>(N);
497     ID.AddPointer(C->getConstantIntValue());
498     ID.AddBoolean(C->isOpaque());
499     break;
500   }
501   case ISD::TargetConstantFP:
502   case ISD::ConstantFP:
503     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
504     break;
505   case ISD::TargetGlobalAddress:
506   case ISD::GlobalAddress:
507   case ISD::TargetGlobalTLSAddress:
508   case ISD::GlobalTLSAddress: {
509     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
510     ID.AddPointer(GA->getGlobal());
511     ID.AddInteger(GA->getOffset());
512     ID.AddInteger(GA->getTargetFlags());
513     break;
514   }
515   case ISD::BasicBlock:
516     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
517     break;
518   case ISD::Register:
519     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
520     break;
521   case ISD::RegisterMask:
522     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
523     break;
524   case ISD::SRCVALUE:
525     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
526     break;
527   case ISD::FrameIndex:
528   case ISD::TargetFrameIndex:
529     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
530     break;
531   case ISD::LIFETIME_START:
532   case ISD::LIFETIME_END:
533     if (cast<LifetimeSDNode>(N)->hasOffset()) {
534       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
536     }
537     break;
538   case ISD::JumpTable:
539   case ISD::TargetJumpTable:
540     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
542     break;
543   case ISD::ConstantPool:
544   case ISD::TargetConstantPool: {
545     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
546     ID.AddInteger(CP->getAlignment());
547     ID.AddInteger(CP->getOffset());
548     if (CP->isMachineConstantPoolEntry())
549       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
550     else
551       ID.AddPointer(CP->getConstVal());
552     ID.AddInteger(CP->getTargetFlags());
553     break;
554   }
555   case ISD::TargetIndex: {
556     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
557     ID.AddInteger(TI->getIndex());
558     ID.AddInteger(TI->getOffset());
559     ID.AddInteger(TI->getTargetFlags());
560     break;
561   }
562   case ISD::LOAD: {
563     const LoadSDNode *LD = cast<LoadSDNode>(N);
564     ID.AddInteger(LD->getMemoryVT().getRawBits());
565     ID.AddInteger(LD->getRawSubclassData());
566     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::STORE: {
570     const StoreSDNode *ST = cast<StoreSDNode>(N);
571     ID.AddInteger(ST->getMemoryVT().getRawBits());
572     ID.AddInteger(ST->getRawSubclassData());
573     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
574     break;
575   }
576   case ISD::MLOAD: {
577     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
578     ID.AddInteger(MLD->getMemoryVT().getRawBits());
579     ID.AddInteger(MLD->getRawSubclassData());
580     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
581     break;
582   }
583   case ISD::MSTORE: {
584     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
585     ID.AddInteger(MST->getMemoryVT().getRawBits());
586     ID.AddInteger(MST->getRawSubclassData());
587     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
588     break;
589   }
590   case ISD::MGATHER: {
591     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
592     ID.AddInteger(MG->getMemoryVT().getRawBits());
593     ID.AddInteger(MG->getRawSubclassData());
594     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
595     break;
596   }
597   case ISD::MSCATTER: {
598     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
599     ID.AddInteger(MS->getMemoryVT().getRawBits());
600     ID.AddInteger(MS->getRawSubclassData());
601     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
602     break;
603   }
604   case ISD::ATOMIC_CMP_SWAP:
605   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
606   case ISD::ATOMIC_SWAP:
607   case ISD::ATOMIC_LOAD_ADD:
608   case ISD::ATOMIC_LOAD_SUB:
609   case ISD::ATOMIC_LOAD_AND:
610   case ISD::ATOMIC_LOAD_CLR:
611   case ISD::ATOMIC_LOAD_OR:
612   case ISD::ATOMIC_LOAD_XOR:
613   case ISD::ATOMIC_LOAD_NAND:
614   case ISD::ATOMIC_LOAD_MIN:
615   case ISD::ATOMIC_LOAD_MAX:
616   case ISD::ATOMIC_LOAD_UMIN:
617   case ISD::ATOMIC_LOAD_UMAX:
618   case ISD::ATOMIC_LOAD:
619   case ISD::ATOMIC_STORE: {
620     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
621     ID.AddInteger(AT->getMemoryVT().getRawBits());
622     ID.AddInteger(AT->getRawSubclassData());
623     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
624     break;
625   }
626   case ISD::PREFETCH: {
627     const MemSDNode *PF = cast<MemSDNode>(N);
628     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
629     break;
630   }
631   case ISD::VECTOR_SHUFFLE: {
632     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
633     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
634          i != e; ++i)
635       ID.AddInteger(SVN->getMaskElt(i));
636     break;
637   }
638   case ISD::TargetBlockAddress:
639   case ISD::BlockAddress: {
640     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
641     ID.AddPointer(BA->getBlockAddress());
642     ID.AddInteger(BA->getOffset());
643     ID.AddInteger(BA->getTargetFlags());
644     break;
645   }
646   } // end switch (N->getOpcode())
647 
648   // Target specific memory nodes could also have address spaces to check.
649   if (N->isTargetMemoryOpcode())
650     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
651 }
652 
653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
654 /// data.
655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
656   AddNodeIDOpcode(ID, N->getOpcode());
657   // Add the return value info.
658   AddNodeIDValueTypes(ID, N->getVTList());
659   // Add the operand info.
660   AddNodeIDOperands(ID, N->ops());
661 
662   // Handle SDNode leafs with special info.
663   AddNodeIDCustom(ID, N);
664 }
665 
666 //===----------------------------------------------------------------------===//
667 //                              SelectionDAG Class
668 //===----------------------------------------------------------------------===//
669 
670 /// doNotCSE - Return true if CSE should not be performed for this node.
671 static bool doNotCSE(SDNode *N) {
672   if (N->getValueType(0) == MVT::Glue)
673     return true; // Never CSE anything that produces a flag.
674 
675   switch (N->getOpcode()) {
676   default: break;
677   case ISD::HANDLENODE:
678   case ISD::EH_LABEL:
679     return true;   // Never CSE these nodes.
680   }
681 
682   // Check that remaining values produced are not flags.
683   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
684     if (N->getValueType(i) == MVT::Glue)
685       return true; // Never CSE anything that produces a flag.
686 
687   return false;
688 }
689 
690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
691 /// SelectionDAG.
692 void SelectionDAG::RemoveDeadNodes() {
693   // Create a dummy node (which is not added to allnodes), that adds a reference
694   // to the root node, preventing it from being deleted.
695   HandleSDNode Dummy(getRoot());
696 
697   SmallVector<SDNode*, 128> DeadNodes;
698 
699   // Add all obviously-dead nodes to the DeadNodes worklist.
700   for (SDNode &Node : allnodes())
701     if (Node.use_empty())
702       DeadNodes.push_back(&Node);
703 
704   RemoveDeadNodes(DeadNodes);
705 
706   // If the root changed (e.g. it was a dead load, update the root).
707   setRoot(Dummy.getValue());
708 }
709 
710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
711 /// given list, and any nodes that become unreachable as a result.
712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
713 
714   // Process the worklist, deleting the nodes and adding their uses to the
715   // worklist.
716   while (!DeadNodes.empty()) {
717     SDNode *N = DeadNodes.pop_back_val();
718     // Skip to next node if we've already managed to delete the node. This could
719     // happen if replacing a node causes a node previously added to the node to
720     // be deleted.
721     if (N->getOpcode() == ISD::DELETED_NODE)
722       continue;
723 
724     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
725       DUL->NodeDeleted(N, nullptr);
726 
727     // Take the node out of the appropriate CSE map.
728     RemoveNodeFromCSEMaps(N);
729 
730     // Next, brutally remove the operand list.  This is safe to do, as there are
731     // no cycles in the graph.
732     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
733       SDUse &Use = *I++;
734       SDNode *Operand = Use.getNode();
735       Use.set(SDValue());
736 
737       // Now that we removed this operand, see if there are no uses of it left.
738       if (Operand->use_empty())
739         DeadNodes.push_back(Operand);
740     }
741 
742     DeallocateNode(N);
743   }
744 }
745 
746 void SelectionDAG::RemoveDeadNode(SDNode *N){
747   SmallVector<SDNode*, 16> DeadNodes(1, N);
748 
749   // Create a dummy node that adds a reference to the root node, preventing
750   // it from being deleted.  (This matters if the root is an operand of the
751   // dead node.)
752   HandleSDNode Dummy(getRoot());
753 
754   RemoveDeadNodes(DeadNodes);
755 }
756 
757 void SelectionDAG::DeleteNode(SDNode *N) {
758   // First take this out of the appropriate CSE map.
759   RemoveNodeFromCSEMaps(N);
760 
761   // Finally, remove uses due to operands of this node, remove from the
762   // AllNodes list, and delete the node.
763   DeleteNodeNotInCSEMaps(N);
764 }
765 
766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
767   assert(N->getIterator() != AllNodes.begin() &&
768          "Cannot delete the entry node!");
769   assert(N->use_empty() && "Cannot delete a node that is not dead!");
770 
771   // Drop all of the operands and decrement used node's use counts.
772   N->DropOperands();
773 
774   DeallocateNode(N);
775 }
776 
777 void SDDbgInfo::erase(const SDNode *Node) {
778   DbgValMapType::iterator I = DbgValMap.find(Node);
779   if (I == DbgValMap.end())
780     return;
781   for (auto &Val: I->second)
782     Val->setIsInvalidated();
783   DbgValMap.erase(I);
784 }
785 
786 void SelectionDAG::DeallocateNode(SDNode *N) {
787   // If we have operands, deallocate them.
788   removeOperands(N);
789 
790   NodeAllocator.Deallocate(AllNodes.remove(N));
791 
792   // Set the opcode to DELETED_NODE to help catch bugs when node
793   // memory is reallocated.
794   // FIXME: There are places in SDag that have grown a dependency on the opcode
795   // value in the released node.
796   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
797   N->NodeType = ISD::DELETED_NODE;
798 
799   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
800   // them and forget about that node.
801   DbgInfo->erase(N);
802 }
803 
804 #ifndef NDEBUG
805 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
806 static void VerifySDNode(SDNode *N) {
807   switch (N->getOpcode()) {
808   default:
809     break;
810   case ISD::BUILD_PAIR: {
811     EVT VT = N->getValueType(0);
812     assert(N->getNumValues() == 1 && "Too many results!");
813     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
814            "Wrong return type!");
815     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
816     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
817            "Mismatched operand types!");
818     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
819            "Wrong operand type!");
820     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
821            "Wrong return type size");
822     break;
823   }
824   case ISD::BUILD_VECTOR: {
825     assert(N->getNumValues() == 1 && "Too many results!");
826     assert(N->getValueType(0).isVector() && "Wrong return type!");
827     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
828            "Wrong number of operands!");
829     EVT EltVT = N->getValueType(0).getVectorElementType();
830     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
831       assert((I->getValueType() == EltVT ||
832              (EltVT.isInteger() && I->getValueType().isInteger() &&
833               EltVT.bitsLE(I->getValueType()))) &&
834             "Wrong operand type!");
835       assert(I->getValueType() == N->getOperand(0).getValueType() &&
836              "Operands must all have the same type");
837     }
838     break;
839   }
840   }
841 }
842 #endif // NDEBUG
843 
844 /// Insert a newly allocated node into the DAG.
845 ///
846 /// Handles insertion into the all nodes list and CSE map, as well as
847 /// verification and other common operations when a new node is allocated.
848 void SelectionDAG::InsertNode(SDNode *N) {
849   AllNodes.push_back(N);
850 #ifndef NDEBUG
851   N->PersistentId = NextPersistentId++;
852   VerifySDNode(N);
853 #endif
854   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
855     DUL->NodeInserted(N);
856 }
857 
858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
859 /// correspond to it.  This is useful when we're about to delete or repurpose
860 /// the node.  We don't want future request for structurally identical nodes
861 /// to return N anymore.
862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
863   bool Erased = false;
864   switch (N->getOpcode()) {
865   case ISD::HANDLENODE: return false;  // noop.
866   case ISD::CONDCODE:
867     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
868            "Cond code doesn't exist!");
869     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
870     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
871     break;
872   case ISD::ExternalSymbol:
873     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
874     break;
875   case ISD::TargetExternalSymbol: {
876     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
877     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
878         ESN->getSymbol(), ESN->getTargetFlags()));
879     break;
880   }
881   case ISD::MCSymbol: {
882     auto *MCSN = cast<MCSymbolSDNode>(N);
883     Erased = MCSymbols.erase(MCSN->getMCSymbol());
884     break;
885   }
886   case ISD::VALUETYPE: {
887     EVT VT = cast<VTSDNode>(N)->getVT();
888     if (VT.isExtended()) {
889       Erased = ExtendedValueTypeNodes.erase(VT);
890     } else {
891       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
892       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
893     }
894     break;
895   }
896   default:
897     // Remove it from the CSE Map.
898     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
899     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
900     Erased = CSEMap.RemoveNode(N);
901     break;
902   }
903 #ifndef NDEBUG
904   // Verify that the node was actually in one of the CSE maps, unless it has a
905   // flag result (which cannot be CSE'd) or is one of the special cases that are
906   // not subject to CSE.
907   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
908       !N->isMachineOpcode() && !doNotCSE(N)) {
909     N->dump(this);
910     dbgs() << "\n";
911     llvm_unreachable("Node is not in map!");
912   }
913 #endif
914   return Erased;
915 }
916 
917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
918 /// maps and modified in place. Add it back to the CSE maps, unless an identical
919 /// node already exists, in which case transfer all its users to the existing
920 /// node. This transfer can potentially trigger recursive merging.
921 void
922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
923   // For node types that aren't CSE'd, just act as if no identical node
924   // already exists.
925   if (!doNotCSE(N)) {
926     SDNode *Existing = CSEMap.GetOrInsertNode(N);
927     if (Existing != N) {
928       // If there was already an existing matching node, use ReplaceAllUsesWith
929       // to replace the dead one with the existing one.  This can cause
930       // recursive merging of other unrelated nodes down the line.
931       ReplaceAllUsesWith(N, Existing);
932 
933       // N is now dead. Inform the listeners and delete it.
934       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
935         DUL->NodeDeleted(N, Existing);
936       DeleteNodeNotInCSEMaps(N);
937       return;
938     }
939   }
940 
941   // If the node doesn't already exist, we updated it.  Inform listeners.
942   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
943     DUL->NodeUpdated(N);
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
951                                            void *&InsertPos) {
952   if (doNotCSE(N))
953     return nullptr;
954 
955   SDValue Ops[] = { Op };
956   FoldingSetNodeID ID;
957   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
958   AddNodeIDCustom(ID, N);
959   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
960   if (Node)
961     Node->intersectFlagsWith(N->getFlags());
962   return Node;
963 }
964 
965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
966 /// were replaced with those specified.  If this node is never memoized,
967 /// return null, otherwise return a pointer to the slot it would take.  If a
968 /// node already exists with these operands, the slot will be non-null.
969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
970                                            SDValue Op1, SDValue Op2,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   SDValue Ops[] = { Op1, Op2 };
976   FoldingSetNodeID ID;
977   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978   AddNodeIDCustom(ID, N);
979   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980   if (Node)
981     Node->intersectFlagsWith(N->getFlags());
982   return Node;
983 }
984 
985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
986 /// were replaced with those specified.  If this node is never memoized,
987 /// return null, otherwise return a pointer to the slot it would take.  If a
988 /// node already exists with these operands, the slot will be non-null.
989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
990                                            void *&InsertPos) {
991   if (doNotCSE(N))
992     return nullptr;
993 
994   FoldingSetNodeID ID;
995   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
996   AddNodeIDCustom(ID, N);
997   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
998   if (Node)
999     Node->intersectFlagsWith(N->getFlags());
1000   return Node;
1001 }
1002 
1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
1004   Type *Ty = VT == MVT::iPTR ?
1005                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1006                    VT.getTypeForEVT(*getContext());
1007 
1008   return getDataLayout().getABITypeAlignment(Ty);
1009 }
1010 
1011 // EntryNode could meaningfully have debug info if we can find it...
1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1013     : TM(tm), OptLevel(OL),
1014       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1015       Root(getEntryNode()) {
1016   InsertNode(&EntryNode);
1017   DbgInfo = new SDDbgInfo();
1018 }
1019 
1020 void SelectionDAG::init(MachineFunction &NewMF,
1021                         OptimizationRemarkEmitter &NewORE,
1022                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1023                         LegacyDivergenceAnalysis * Divergence,
1024                         ProfileSummaryInfo *PSIin,
1025                         BlockFrequencyInfo *BFIin) {
1026   MF = &NewMF;
1027   SDAGISelPass = PassPtr;
1028   ORE = &NewORE;
1029   TLI = getSubtarget().getTargetLowering();
1030   TSI = getSubtarget().getSelectionDAGInfo();
1031   LibInfo = LibraryInfo;
1032   Context = &MF->getFunction().getContext();
1033   DA = Divergence;
1034   PSI = PSIin;
1035   BFI = BFIin;
1036 }
1037 
1038 SelectionDAG::~SelectionDAG() {
1039   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1040   allnodes_clear();
1041   OperandRecycler.clear(OperandAllocator);
1042   delete DbgInfo;
1043 }
1044 
1045 bool SelectionDAG::shouldOptForSize() const {
1046   return MF->getFunction().hasOptSize() ||
1047       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1048 }
1049 
1050 void SelectionDAG::allnodes_clear() {
1051   assert(&*AllNodes.begin() == &EntryNode);
1052   AllNodes.remove(AllNodes.begin());
1053   while (!AllNodes.empty())
1054     DeallocateNode(&AllNodes.front());
1055 #ifndef NDEBUG
1056   NextPersistentId = 0;
1057 #endif
1058 }
1059 
1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1061                                           void *&InsertPos) {
1062   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1063   if (N) {
1064     switch (N->getOpcode()) {
1065     default: break;
1066     case ISD::Constant:
1067     case ISD::ConstantFP:
1068       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1069                        "debug location.  Use another overload.");
1070     }
1071   }
1072   return N;
1073 }
1074 
1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1076                                           const SDLoc &DL, void *&InsertPos) {
1077   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1078   if (N) {
1079     switch (N->getOpcode()) {
1080     case ISD::Constant:
1081     case ISD::ConstantFP:
1082       // Erase debug location from the node if the node is used at several
1083       // different places. Do not propagate one location to all uses as it
1084       // will cause a worse single stepping debugging experience.
1085       if (N->getDebugLoc() != DL.getDebugLoc())
1086         N->setDebugLoc(DebugLoc());
1087       break;
1088     default:
1089       // When the node's point of use is located earlier in the instruction
1090       // sequence than its prior point of use, update its debug info to the
1091       // earlier location.
1092       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1093         N->setDebugLoc(DL.getDebugLoc());
1094       break;
1095     }
1096   }
1097   return N;
1098 }
1099 
1100 void SelectionDAG::clear() {
1101   allnodes_clear();
1102   OperandRecycler.clear(OperandAllocator);
1103   OperandAllocator.Reset();
1104   CSEMap.clear();
1105 
1106   ExtendedValueTypeNodes.clear();
1107   ExternalSymbols.clear();
1108   TargetExternalSymbols.clear();
1109   MCSymbols.clear();
1110   SDCallSiteDbgInfo.clear();
1111   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1112             static_cast<CondCodeSDNode*>(nullptr));
1113   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1114             static_cast<SDNode*>(nullptr));
1115 
1116   EntryNode.UseList = nullptr;
1117   InsertNode(&EntryNode);
1118   Root = getEntryNode();
1119   DbgInfo->clear();
1120 }
1121 
1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1123   return VT.bitsGT(Op.getValueType())
1124              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1125              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1126 }
1127 
1128 std::pair<SDValue, SDValue>
1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1130                                        const SDLoc &DL, EVT VT) {
1131   assert(!VT.bitsEq(Op.getValueType()) &&
1132          "Strict no-op FP extend/round not allowed.");
1133   SDValue Res =
1134       VT.bitsGT(Op.getValueType())
1135           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1136           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1137                     {Chain, Op, getIntPtrConstant(0, DL)});
1138 
1139   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1140 }
1141 
1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143   return VT.bitsGT(Op.getValueType()) ?
1144     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1145     getNode(ISD::TRUNCATE, DL, VT, Op);
1146 }
1147 
1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1149   return VT.bitsGT(Op.getValueType()) ?
1150     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1151     getNode(ISD::TRUNCATE, DL, VT, Op);
1152 }
1153 
1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1155   return VT.bitsGT(Op.getValueType()) ?
1156     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1157     getNode(ISD::TRUNCATE, DL, VT, Op);
1158 }
1159 
1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1161                                         EVT OpVT) {
1162   if (VT.bitsLE(Op.getValueType()))
1163     return getNode(ISD::TRUNCATE, SL, VT, Op);
1164 
1165   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1166   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1167 }
1168 
1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1170   assert(!VT.isVector() &&
1171          "getZeroExtendInReg should use the vector element type instead of "
1172          "the vector type!");
1173   if (Op.getValueType().getScalarType() == VT) return Op;
1174   unsigned BitWidth = Op.getScalarValueSizeInBits();
1175   APInt Imm = APInt::getLowBitsSet(BitWidth,
1176                                    VT.getSizeInBits());
1177   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1178                  getConstant(Imm, DL, Op.getValueType()));
1179 }
1180 
1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1182   // Only unsigned pointer semantics are supported right now. In the future this
1183   // might delegate to TLI to check pointer signedness.
1184   return getZExtOrTrunc(Op, DL, VT);
1185 }
1186 
1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1188   // Only unsigned pointer semantics are supported right now. In the future this
1189   // might delegate to TLI to check pointer signedness.
1190   return getZeroExtendInReg(Op, DL, VT);
1191 }
1192 
1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1195   EVT EltVT = VT.getScalarType();
1196   SDValue NegOne =
1197     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1198   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1199 }
1200 
1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1203   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1204 }
1205 
1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1207                                       EVT OpVT) {
1208   if (!V)
1209     return getConstant(0, DL, VT);
1210 
1211   switch (TLI->getBooleanContents(OpVT)) {
1212   case TargetLowering::ZeroOrOneBooleanContent:
1213   case TargetLowering::UndefinedBooleanContent:
1214     return getConstant(1, DL, VT);
1215   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1216     return getAllOnesConstant(DL, VT);
1217   }
1218   llvm_unreachable("Unexpected boolean content enum!");
1219 }
1220 
1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1222                                   bool isT, bool isO) {
1223   EVT EltVT = VT.getScalarType();
1224   assert((EltVT.getSizeInBits() >= 64 ||
1225          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1226          "getConstant with a uint64_t value that doesn't fit in the type!");
1227   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1228 }
1229 
1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1231                                   bool isT, bool isO) {
1232   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1233 }
1234 
1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1236                                   EVT VT, bool isT, bool isO) {
1237   assert(VT.isInteger() && "Cannot create FP integer constant!");
1238 
1239   EVT EltVT = VT.getScalarType();
1240   const ConstantInt *Elt = &Val;
1241 
1242   // In some cases the vector type is legal but the element type is illegal and
1243   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1244   // inserted value (the type does not need to match the vector element type).
1245   // Any extra bits introduced will be truncated away.
1246   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1247       TargetLowering::TypePromoteInteger) {
1248    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1249    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1250    Elt = ConstantInt::get(*getContext(), NewVal);
1251   }
1252   // In other cases the element type is illegal and needs to be expanded, for
1253   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1254   // the value into n parts and use a vector type with n-times the elements.
1255   // Then bitcast to the type requested.
1256   // Legalizing constants too early makes the DAGCombiner's job harder so we
1257   // only legalize if the DAG tells us we must produce legal types.
1258   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1259            TLI->getTypeAction(*getContext(), EltVT) ==
1260            TargetLowering::TypeExpandInteger) {
1261     const APInt &NewVal = Elt->getValue();
1262     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1263     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1264     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1265     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1266 
1267     // Check the temporary vector is the correct size. If this fails then
1268     // getTypeToTransformTo() probably returned a type whose size (in bits)
1269     // isn't a power-of-2 factor of the requested type size.
1270     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1271 
1272     SmallVector<SDValue, 2> EltParts;
1273     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1274       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1275                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1276                                      ViaEltVT, isT, isO));
1277     }
1278 
1279     // EltParts is currently in little endian order. If we actually want
1280     // big-endian order then reverse it now.
1281     if (getDataLayout().isBigEndian())
1282       std::reverse(EltParts.begin(), EltParts.end());
1283 
1284     // The elements must be reversed when the element order is different
1285     // to the endianness of the elements (because the BITCAST is itself a
1286     // vector shuffle in this situation). However, we do not need any code to
1287     // perform this reversal because getConstant() is producing a vector
1288     // splat.
1289     // This situation occurs in MIPS MSA.
1290 
1291     SmallVector<SDValue, 8> Ops;
1292     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1293       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1294 
1295     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1296     return V;
1297   }
1298 
1299   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1300          "APInt size does not match type size!");
1301   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1302   FoldingSetNodeID ID;
1303   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1304   ID.AddPointer(Elt);
1305   ID.AddBoolean(isO);
1306   void *IP = nullptr;
1307   SDNode *N = nullptr;
1308   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1309     if (!VT.isVector())
1310       return SDValue(N, 0);
1311 
1312   if (!N) {
1313     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1314     CSEMap.InsertNode(N, IP);
1315     InsertNode(N);
1316     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1317   }
1318 
1319   SDValue Result(N, 0);
1320   if (VT.isScalableVector())
1321     Result = getSplatVector(VT, DL, Result);
1322   else if (VT.isVector())
1323     Result = getSplatBuildVector(VT, DL, Result);
1324 
1325   return Result;
1326 }
1327 
1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1329                                         bool isTarget) {
1330   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1331 }
1332 
1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1334                                              const SDLoc &DL, bool LegalTypes) {
1335   assert(VT.isInteger() && "Shift amount is not an integer type!");
1336   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1337   return getConstant(Val, DL, ShiftVT);
1338 }
1339 
1340 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1341                                            bool isTarget) {
1342   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1343 }
1344 
1345 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1346                                     bool isTarget) {
1347   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1348 }
1349 
1350 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1351                                     EVT VT, bool isTarget) {
1352   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1353 
1354   EVT EltVT = VT.getScalarType();
1355 
1356   // Do the map lookup using the actual bit pattern for the floating point
1357   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1358   // we don't have issues with SNANs.
1359   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1360   FoldingSetNodeID ID;
1361   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1362   ID.AddPointer(&V);
1363   void *IP = nullptr;
1364   SDNode *N = nullptr;
1365   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1366     if (!VT.isVector())
1367       return SDValue(N, 0);
1368 
1369   if (!N) {
1370     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1371     CSEMap.InsertNode(N, IP);
1372     InsertNode(N);
1373   }
1374 
1375   SDValue Result(N, 0);
1376   if (VT.isVector())
1377     Result = getSplatBuildVector(VT, DL, Result);
1378   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1379   return Result;
1380 }
1381 
1382 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1383                                     bool isTarget) {
1384   EVT EltVT = VT.getScalarType();
1385   if (EltVT == MVT::f32)
1386     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1387   else if (EltVT == MVT::f64)
1388     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1389   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1390            EltVT == MVT::f16) {
1391     bool Ignored;
1392     APFloat APF = APFloat(Val);
1393     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1394                 &Ignored);
1395     return getConstantFP(APF, DL, VT, isTarget);
1396   } else
1397     llvm_unreachable("Unsupported type in getConstantFP");
1398 }
1399 
1400 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1401                                        EVT VT, int64_t Offset, bool isTargetGA,
1402                                        unsigned TargetFlags) {
1403   assert((TargetFlags == 0 || isTargetGA) &&
1404          "Cannot set target flags on target-independent globals");
1405 
1406   // Truncate (with sign-extension) the offset value to the pointer size.
1407   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1408   if (BitWidth < 64)
1409     Offset = SignExtend64(Offset, BitWidth);
1410 
1411   unsigned Opc;
1412   if (GV->isThreadLocal())
1413     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1414   else
1415     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1416 
1417   FoldingSetNodeID ID;
1418   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1419   ID.AddPointer(GV);
1420   ID.AddInteger(Offset);
1421   ID.AddInteger(TargetFlags);
1422   void *IP = nullptr;
1423   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1424     return SDValue(E, 0);
1425 
1426   auto *N = newSDNode<GlobalAddressSDNode>(
1427       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1428   CSEMap.InsertNode(N, IP);
1429     InsertNode(N);
1430   return SDValue(N, 0);
1431 }
1432 
1433 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1434   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1435   FoldingSetNodeID ID;
1436   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1437   ID.AddInteger(FI);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1443   CSEMap.InsertNode(N, IP);
1444   InsertNode(N);
1445   return SDValue(N, 0);
1446 }
1447 
1448 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1449                                    unsigned TargetFlags) {
1450   assert((TargetFlags == 0 || isTarget) &&
1451          "Cannot set target flags on target-independent jump tables");
1452   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1453   FoldingSetNodeID ID;
1454   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1455   ID.AddInteger(JTI);
1456   ID.AddInteger(TargetFlags);
1457   void *IP = nullptr;
1458   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459     return SDValue(E, 0);
1460 
1461   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1462   CSEMap.InsertNode(N, IP);
1463   InsertNode(N);
1464   return SDValue(N, 0);
1465 }
1466 
1467 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1468                                       unsigned Alignment, int Offset,
1469                                       bool isTarget,
1470                                       unsigned TargetFlags) {
1471   assert((TargetFlags == 0 || isTarget) &&
1472          "Cannot set target flags on target-independent globals");
1473   if (Alignment == 0)
1474     Alignment = shouldOptForSize()
1475                     ? getDataLayout().getABITypeAlignment(C->getType())
1476                     : getDataLayout().getPrefTypeAlignment(C->getType());
1477   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1478   FoldingSetNodeID ID;
1479   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1480   ID.AddInteger(Alignment);
1481   ID.AddInteger(Offset);
1482   ID.AddPointer(C);
1483   ID.AddInteger(TargetFlags);
1484   void *IP = nullptr;
1485   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1486     return SDValue(E, 0);
1487 
1488   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1489                                           TargetFlags);
1490   CSEMap.InsertNode(N, IP);
1491   InsertNode(N);
1492   return SDValue(N, 0);
1493 }
1494 
1495 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1496                                       unsigned Alignment, int Offset,
1497                                       bool isTarget,
1498                                       unsigned TargetFlags) {
1499   assert((TargetFlags == 0 || isTarget) &&
1500          "Cannot set target flags on target-independent globals");
1501   if (Alignment == 0)
1502     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1503   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1504   FoldingSetNodeID ID;
1505   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1506   ID.AddInteger(Alignment);
1507   ID.AddInteger(Offset);
1508   C->addSelectionDAGCSEId(ID);
1509   ID.AddInteger(TargetFlags);
1510   void *IP = nullptr;
1511   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1512     return SDValue(E, 0);
1513 
1514   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1515                                           TargetFlags);
1516   CSEMap.InsertNode(N, IP);
1517   InsertNode(N);
1518   return SDValue(N, 0);
1519 }
1520 
1521 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1522                                      unsigned TargetFlags) {
1523   FoldingSetNodeID ID;
1524   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1525   ID.AddInteger(Index);
1526   ID.AddInteger(Offset);
1527   ID.AddInteger(TargetFlags);
1528   void *IP = nullptr;
1529   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1530     return SDValue(E, 0);
1531 
1532   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1533   CSEMap.InsertNode(N, IP);
1534   InsertNode(N);
1535   return SDValue(N, 0);
1536 }
1537 
1538 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1539   FoldingSetNodeID ID;
1540   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1541   ID.AddPointer(MBB);
1542   void *IP = nullptr;
1543   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1544     return SDValue(E, 0);
1545 
1546   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1547   CSEMap.InsertNode(N, IP);
1548   InsertNode(N);
1549   return SDValue(N, 0);
1550 }
1551 
1552 SDValue SelectionDAG::getValueType(EVT VT) {
1553   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1554       ValueTypeNodes.size())
1555     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1556 
1557   SDNode *&N = VT.isExtended() ?
1558     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1559 
1560   if (N) return SDValue(N, 0);
1561   N = newSDNode<VTSDNode>(VT);
1562   InsertNode(N);
1563   return SDValue(N, 0);
1564 }
1565 
1566 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1567   SDNode *&N = ExternalSymbols[Sym];
1568   if (N) return SDValue(N, 0);
1569   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1570   InsertNode(N);
1571   return SDValue(N, 0);
1572 }
1573 
1574 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1575   SDNode *&N = MCSymbols[Sym];
1576   if (N)
1577     return SDValue(N, 0);
1578   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1579   InsertNode(N);
1580   return SDValue(N, 0);
1581 }
1582 
1583 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1584                                               unsigned TargetFlags) {
1585   SDNode *&N =
1586       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1587   if (N) return SDValue(N, 0);
1588   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1594   if ((unsigned)Cond >= CondCodeNodes.size())
1595     CondCodeNodes.resize(Cond+1);
1596 
1597   if (!CondCodeNodes[Cond]) {
1598     auto *N = newSDNode<CondCodeSDNode>(Cond);
1599     CondCodeNodes[Cond] = N;
1600     InsertNode(N);
1601   }
1602 
1603   return SDValue(CondCodeNodes[Cond], 0);
1604 }
1605 
1606 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1607 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1608 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1609   std::swap(N1, N2);
1610   ShuffleVectorSDNode::commuteMask(M);
1611 }
1612 
1613 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1614                                        SDValue N2, ArrayRef<int> Mask) {
1615   assert(VT.getVectorNumElements() == Mask.size() &&
1616            "Must have the same number of vector elements as mask elements!");
1617   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1618          "Invalid VECTOR_SHUFFLE");
1619 
1620   // Canonicalize shuffle undef, undef -> undef
1621   if (N1.isUndef() && N2.isUndef())
1622     return getUNDEF(VT);
1623 
1624   // Validate that all indices in Mask are within the range of the elements
1625   // input to the shuffle.
1626   int NElts = Mask.size();
1627   assert(llvm::all_of(Mask,
1628                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1629          "Index out of range");
1630 
1631   // Copy the mask so we can do any needed cleanup.
1632   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1633 
1634   // Canonicalize shuffle v, v -> v, undef
1635   if (N1 == N2) {
1636     N2 = getUNDEF(VT);
1637     for (int i = 0; i != NElts; ++i)
1638       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1639   }
1640 
1641   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1642   if (N1.isUndef())
1643     commuteShuffle(N1, N2, MaskVec);
1644 
1645   if (TLI->hasVectorBlend()) {
1646     // If shuffling a splat, try to blend the splat instead. We do this here so
1647     // that even when this arises during lowering we don't have to re-handle it.
1648     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1649       BitVector UndefElements;
1650       SDValue Splat = BV->getSplatValue(&UndefElements);
1651       if (!Splat)
1652         return;
1653 
1654       for (int i = 0; i < NElts; ++i) {
1655         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1656           continue;
1657 
1658         // If this input comes from undef, mark it as such.
1659         if (UndefElements[MaskVec[i] - Offset]) {
1660           MaskVec[i] = -1;
1661           continue;
1662         }
1663 
1664         // If we can blend a non-undef lane, use that instead.
1665         if (!UndefElements[i])
1666           MaskVec[i] = i + Offset;
1667       }
1668     };
1669     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1670       BlendSplat(N1BV, 0);
1671     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1672       BlendSplat(N2BV, NElts);
1673   }
1674 
1675   // Canonicalize all index into lhs, -> shuffle lhs, undef
1676   // Canonicalize all index into rhs, -> shuffle rhs, undef
1677   bool AllLHS = true, AllRHS = true;
1678   bool N2Undef = N2.isUndef();
1679   for (int i = 0; i != NElts; ++i) {
1680     if (MaskVec[i] >= NElts) {
1681       if (N2Undef)
1682         MaskVec[i] = -1;
1683       else
1684         AllLHS = false;
1685     } else if (MaskVec[i] >= 0) {
1686       AllRHS = false;
1687     }
1688   }
1689   if (AllLHS && AllRHS)
1690     return getUNDEF(VT);
1691   if (AllLHS && !N2Undef)
1692     N2 = getUNDEF(VT);
1693   if (AllRHS) {
1694     N1 = getUNDEF(VT);
1695     commuteShuffle(N1, N2, MaskVec);
1696   }
1697   // Reset our undef status after accounting for the mask.
1698   N2Undef = N2.isUndef();
1699   // Re-check whether both sides ended up undef.
1700   if (N1.isUndef() && N2Undef)
1701     return getUNDEF(VT);
1702 
1703   // If Identity shuffle return that node.
1704   bool Identity = true, AllSame = true;
1705   for (int i = 0; i != NElts; ++i) {
1706     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1707     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1708   }
1709   if (Identity && NElts)
1710     return N1;
1711 
1712   // Shuffling a constant splat doesn't change the result.
1713   if (N2Undef) {
1714     SDValue V = N1;
1715 
1716     // Look through any bitcasts. We check that these don't change the number
1717     // (and size) of elements and just changes their types.
1718     while (V.getOpcode() == ISD::BITCAST)
1719       V = V->getOperand(0);
1720 
1721     // A splat should always show up as a build vector node.
1722     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1723       BitVector UndefElements;
1724       SDValue Splat = BV->getSplatValue(&UndefElements);
1725       // If this is a splat of an undef, shuffling it is also undef.
1726       if (Splat && Splat.isUndef())
1727         return getUNDEF(VT);
1728 
1729       bool SameNumElts =
1730           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1731 
1732       // We only have a splat which can skip shuffles if there is a splatted
1733       // value and no undef lanes rearranged by the shuffle.
1734       if (Splat && UndefElements.none()) {
1735         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1736         // number of elements match or the value splatted is a zero constant.
1737         if (SameNumElts)
1738           return N1;
1739         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1740           if (C->isNullValue())
1741             return N1;
1742       }
1743 
1744       // If the shuffle itself creates a splat, build the vector directly.
1745       if (AllSame && SameNumElts) {
1746         EVT BuildVT = BV->getValueType(0);
1747         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1748         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1749 
1750         // We may have jumped through bitcasts, so the type of the
1751         // BUILD_VECTOR may not match the type of the shuffle.
1752         if (BuildVT != VT)
1753           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1754         return NewBV;
1755       }
1756     }
1757   }
1758 
1759   FoldingSetNodeID ID;
1760   SDValue Ops[2] = { N1, N2 };
1761   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1762   for (int i = 0; i != NElts; ++i)
1763     ID.AddInteger(MaskVec[i]);
1764 
1765   void* IP = nullptr;
1766   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1767     return SDValue(E, 0);
1768 
1769   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1770   // SDNode doesn't have access to it.  This memory will be "leaked" when
1771   // the node is deallocated, but recovered when the NodeAllocator is released.
1772   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1773   llvm::copy(MaskVec, MaskAlloc);
1774 
1775   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1776                                            dl.getDebugLoc(), MaskAlloc);
1777   createOperands(N, Ops);
1778 
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   SDValue V = SDValue(N, 0);
1782   NewSDValueDbgMsg(V, "Creating new node: ", this);
1783   return V;
1784 }
1785 
1786 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1787   EVT VT = SV.getValueType(0);
1788   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1789   ShuffleVectorSDNode::commuteMask(MaskVec);
1790 
1791   SDValue Op0 = SV.getOperand(0);
1792   SDValue Op1 = SV.getOperand(1);
1793   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1794 }
1795 
1796 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1797   FoldingSetNodeID ID;
1798   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1799   ID.AddInteger(RegNo);
1800   void *IP = nullptr;
1801   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1802     return SDValue(E, 0);
1803 
1804   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1805   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1806   CSEMap.InsertNode(N, IP);
1807   InsertNode(N);
1808   return SDValue(N, 0);
1809 }
1810 
1811 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1812   FoldingSetNodeID ID;
1813   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1814   ID.AddPointer(RegMask);
1815   void *IP = nullptr;
1816   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1817     return SDValue(E, 0);
1818 
1819   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1820   CSEMap.InsertNode(N, IP);
1821   InsertNode(N);
1822   return SDValue(N, 0);
1823 }
1824 
1825 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1826                                  MCSymbol *Label) {
1827   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1828 }
1829 
1830 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1831                                    SDValue Root, MCSymbol *Label) {
1832   FoldingSetNodeID ID;
1833   SDValue Ops[] = { Root };
1834   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1835   ID.AddPointer(Label);
1836   void *IP = nullptr;
1837   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1838     return SDValue(E, 0);
1839 
1840   auto *N =
1841       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1842   createOperands(N, Ops);
1843 
1844   CSEMap.InsertNode(N, IP);
1845   InsertNode(N);
1846   return SDValue(N, 0);
1847 }
1848 
1849 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1850                                       int64_t Offset, bool isTarget,
1851                                       unsigned TargetFlags) {
1852   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1853 
1854   FoldingSetNodeID ID;
1855   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1856   ID.AddPointer(BA);
1857   ID.AddInteger(Offset);
1858   ID.AddInteger(TargetFlags);
1859   void *IP = nullptr;
1860   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1861     return SDValue(E, 0);
1862 
1863   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1864   CSEMap.InsertNode(N, IP);
1865   InsertNode(N);
1866   return SDValue(N, 0);
1867 }
1868 
1869 SDValue SelectionDAG::getSrcValue(const Value *V) {
1870   assert((!V || V->getType()->isPointerTy()) &&
1871          "SrcValue is not a pointer?");
1872 
1873   FoldingSetNodeID ID;
1874   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1875   ID.AddPointer(V);
1876 
1877   void *IP = nullptr;
1878   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1879     return SDValue(E, 0);
1880 
1881   auto *N = newSDNode<SrcValueSDNode>(V);
1882   CSEMap.InsertNode(N, IP);
1883   InsertNode(N);
1884   return SDValue(N, 0);
1885 }
1886 
1887 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1888   FoldingSetNodeID ID;
1889   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1890   ID.AddPointer(MD);
1891 
1892   void *IP = nullptr;
1893   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1894     return SDValue(E, 0);
1895 
1896   auto *N = newSDNode<MDNodeSDNode>(MD);
1897   CSEMap.InsertNode(N, IP);
1898   InsertNode(N);
1899   return SDValue(N, 0);
1900 }
1901 
1902 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1903   if (VT == V.getValueType())
1904     return V;
1905 
1906   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1907 }
1908 
1909 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1910                                        unsigned SrcAS, unsigned DestAS) {
1911   SDValue Ops[] = {Ptr};
1912   FoldingSetNodeID ID;
1913   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1914   ID.AddInteger(SrcAS);
1915   ID.AddInteger(DestAS);
1916 
1917   void *IP = nullptr;
1918   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1919     return SDValue(E, 0);
1920 
1921   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1922                                            VT, SrcAS, DestAS);
1923   createOperands(N, Ops);
1924 
1925   CSEMap.InsertNode(N, IP);
1926   InsertNode(N);
1927   return SDValue(N, 0);
1928 }
1929 
1930 /// getShiftAmountOperand - Return the specified value casted to
1931 /// the target's desired shift amount type.
1932 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1933   EVT OpTy = Op.getValueType();
1934   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1935   if (OpTy == ShTy || OpTy.isVector()) return Op;
1936 
1937   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1938 }
1939 
1940 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1941   SDLoc dl(Node);
1942   const TargetLowering &TLI = getTargetLoweringInfo();
1943   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1944   EVT VT = Node->getValueType(0);
1945   SDValue Tmp1 = Node->getOperand(0);
1946   SDValue Tmp2 = Node->getOperand(1);
1947   const MaybeAlign MA(Node->getConstantOperandVal(3));
1948 
1949   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1950                                Tmp2, MachinePointerInfo(V));
1951   SDValue VAList = VAListLoad;
1952 
1953   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1954     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1955                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1956 
1957     VAList =
1958         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1959                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1960   }
1961 
1962   // Increment the pointer, VAList, to the next vaarg
1963   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1964                  getConstant(getDataLayout().getTypeAllocSize(
1965                                                VT.getTypeForEVT(*getContext())),
1966                              dl, VAList.getValueType()));
1967   // Store the incremented VAList to the legalized pointer
1968   Tmp1 =
1969       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1970   // Load the actual argument out of the pointer VAList
1971   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1972 }
1973 
1974 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1975   SDLoc dl(Node);
1976   const TargetLowering &TLI = getTargetLoweringInfo();
1977   // This defaults to loading a pointer from the input and storing it to the
1978   // output, returning the chain.
1979   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1980   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1981   SDValue Tmp1 =
1982       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1983               Node->getOperand(2), MachinePointerInfo(VS));
1984   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1985                   MachinePointerInfo(VD));
1986 }
1987 
1988 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1989   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1990   unsigned ByteSize = VT.getStoreSize();
1991   Type *Ty = VT.getTypeForEVT(*getContext());
1992   unsigned StackAlign =
1993       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1994 
1995   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1996   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1997 }
1998 
1999 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2000   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2001   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2002   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2003   const DataLayout &DL = getDataLayout();
2004   unsigned Align =
2005       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
2006 
2007   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
2008   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
2009   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2010 }
2011 
2012 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2013                                 ISD::CondCode Cond, const SDLoc &dl) {
2014   EVT OpVT = N1.getValueType();
2015 
2016   // These setcc operations always fold.
2017   switch (Cond) {
2018   default: break;
2019   case ISD::SETFALSE:
2020   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2021   case ISD::SETTRUE:
2022   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2023 
2024   case ISD::SETOEQ:
2025   case ISD::SETOGT:
2026   case ISD::SETOGE:
2027   case ISD::SETOLT:
2028   case ISD::SETOLE:
2029   case ISD::SETONE:
2030   case ISD::SETO:
2031   case ISD::SETUO:
2032   case ISD::SETUEQ:
2033   case ISD::SETUNE:
2034     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2035     break;
2036   }
2037 
2038   if (OpVT.isInteger()) {
2039     // For EQ and NE, we can always pick a value for the undef to make the
2040     // predicate pass or fail, so we can return undef.
2041     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2042     // icmp eq/ne X, undef -> undef.
2043     if ((N1.isUndef() || N2.isUndef()) &&
2044         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2045       return getUNDEF(VT);
2046 
2047     // If both operands are undef, we can return undef for int comparison.
2048     // icmp undef, undef -> undef.
2049     if (N1.isUndef() && N2.isUndef())
2050       return getUNDEF(VT);
2051 
2052     // icmp X, X -> true/false
2053     // icmp X, undef -> true/false because undef could be X.
2054     if (N1 == N2)
2055       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2056   }
2057 
2058   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2059     const APInt &C2 = N2C->getAPIntValue();
2060     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2061       const APInt &C1 = N1C->getAPIntValue();
2062 
2063       switch (Cond) {
2064       default: llvm_unreachable("Unknown integer setcc!");
2065       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2066       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2067       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2068       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2069       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2070       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2071       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2072       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2073       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2074       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2075       }
2076     }
2077   }
2078 
2079   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2080   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2081 
2082   if (N1CFP && N2CFP) {
2083     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2084     switch (Cond) {
2085     default: break;
2086     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2087                         return getUNDEF(VT);
2088                       LLVM_FALLTHROUGH;
2089     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2090                                              OpVT);
2091     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2092                         return getUNDEF(VT);
2093                       LLVM_FALLTHROUGH;
2094     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2095                                              R==APFloat::cmpLessThan, dl, VT,
2096                                              OpVT);
2097     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2098                         return getUNDEF(VT);
2099                       LLVM_FALLTHROUGH;
2100     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2101                                              OpVT);
2102     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2103                         return getUNDEF(VT);
2104                       LLVM_FALLTHROUGH;
2105     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2106                                              VT, OpVT);
2107     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2108                         return getUNDEF(VT);
2109                       LLVM_FALLTHROUGH;
2110     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2111                                              R==APFloat::cmpEqual, dl, VT,
2112                                              OpVT);
2113     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2114                         return getUNDEF(VT);
2115                       LLVM_FALLTHROUGH;
2116     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2117                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2118     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2119                                              OpVT);
2120     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2121                                              OpVT);
2122     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2123                                              R==APFloat::cmpEqual, dl, VT,
2124                                              OpVT);
2125     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2126                                              OpVT);
2127     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2128                                              R==APFloat::cmpLessThan, dl, VT,
2129                                              OpVT);
2130     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2131                                              R==APFloat::cmpUnordered, dl, VT,
2132                                              OpVT);
2133     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2134                                              VT, OpVT);
2135     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2136                                              OpVT);
2137     }
2138   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2139     // Ensure that the constant occurs on the RHS.
2140     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2141     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2142       return SDValue();
2143     return getSetCC(dl, VT, N2, N1, SwappedCond);
2144   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2145              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2146     // If an operand is known to be a nan (or undef that could be a nan), we can
2147     // fold it.
2148     // Choosing NaN for the undef will always make unordered comparison succeed
2149     // and ordered comparison fails.
2150     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2151     switch (ISD::getUnorderedFlavor(Cond)) {
2152     default:
2153       llvm_unreachable("Unknown flavor!");
2154     case 0: // Known false.
2155       return getBoolConstant(false, dl, VT, OpVT);
2156     case 1: // Known true.
2157       return getBoolConstant(true, dl, VT, OpVT);
2158     case 2: // Undefined.
2159       return getUNDEF(VT);
2160     }
2161   }
2162 
2163   // Could not fold it.
2164   return SDValue();
2165 }
2166 
2167 /// See if the specified operand can be simplified with the knowledge that only
2168 /// the bits specified by DemandedBits are used.
2169 /// TODO: really we should be making this into the DAG equivalent of
2170 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2171 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2172   EVT VT = V.getValueType();
2173   APInt DemandedElts = VT.isVector()
2174                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2175                            : APInt(1, 1);
2176   return GetDemandedBits(V, DemandedBits, DemandedElts);
2177 }
2178 
2179 /// See if the specified operand can be simplified with the knowledge that only
2180 /// the bits specified by DemandedBits are used in the elements specified by
2181 /// DemandedElts.
2182 /// TODO: really we should be making this into the DAG equivalent of
2183 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2184 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2185                                       const APInt &DemandedElts) {
2186   switch (V.getOpcode()) {
2187   default:
2188     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2189                                                 *this, 0);
2190     break;
2191   case ISD::Constant: {
2192     auto *CV = cast<ConstantSDNode>(V.getNode());
2193     assert(CV && "Const value should be ConstSDNode.");
2194     const APInt &CVal = CV->getAPIntValue();
2195     APInt NewVal = CVal & DemandedBits;
2196     if (NewVal != CVal)
2197       return getConstant(NewVal, SDLoc(V), V.getValueType());
2198     break;
2199   }
2200   case ISD::SRL:
2201     // Only look at single-use SRLs.
2202     if (!V.getNode()->hasOneUse())
2203       break;
2204     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2205       // See if we can recursively simplify the LHS.
2206       unsigned Amt = RHSC->getZExtValue();
2207 
2208       // Watch out for shift count overflow though.
2209       if (Amt >= DemandedBits.getBitWidth())
2210         break;
2211       APInt SrcDemandedBits = DemandedBits << Amt;
2212       if (SDValue SimplifyLHS =
2213               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2214         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2215                        V.getOperand(1));
2216     }
2217     break;
2218   case ISD::AND: {
2219     // X & -1 -> X (ignoring bits which aren't demanded).
2220     // Also handle the case where masked out bits in X are known to be zero.
2221     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2222       const APInt &AndVal = RHSC->getAPIntValue();
2223       if (DemandedBits.isSubsetOf(AndVal) ||
2224           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2225                                   AndVal))
2226         return V.getOperand(0);
2227     }
2228     break;
2229   }
2230   }
2231   return SDValue();
2232 }
2233 
2234 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2235 /// use this predicate to simplify operations downstream.
2236 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2237   unsigned BitWidth = Op.getScalarValueSizeInBits();
2238   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2239 }
2240 
2241 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2242 /// this predicate to simplify operations downstream.  Mask is known to be zero
2243 /// for bits that V cannot have.
2244 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2245                                      unsigned Depth) const {
2246   EVT VT = V.getValueType();
2247   APInt DemandedElts = VT.isVector()
2248                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2249                            : APInt(1, 1);
2250   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2251 }
2252 
2253 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2254 /// DemandedElts.  We use this predicate to simplify operations downstream.
2255 /// Mask is known to be zero for bits that V cannot have.
2256 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2257                                      const APInt &DemandedElts,
2258                                      unsigned Depth) const {
2259   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2260 }
2261 
2262 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2263 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2264                                         unsigned Depth) const {
2265   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2266 }
2267 
2268 /// isSplatValue - Return true if the vector V has the same value
2269 /// across all DemandedElts.
2270 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2271                                 APInt &UndefElts) {
2272   if (!DemandedElts)
2273     return false; // No demanded elts, better to assume we don't know anything.
2274 
2275   EVT VT = V.getValueType();
2276   assert(VT.isVector() && "Vector type expected");
2277 
2278   unsigned NumElts = VT.getVectorNumElements();
2279   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2280   UndefElts = APInt::getNullValue(NumElts);
2281 
2282   switch (V.getOpcode()) {
2283   case ISD::BUILD_VECTOR: {
2284     SDValue Scl;
2285     for (unsigned i = 0; i != NumElts; ++i) {
2286       SDValue Op = V.getOperand(i);
2287       if (Op.isUndef()) {
2288         UndefElts.setBit(i);
2289         continue;
2290       }
2291       if (!DemandedElts[i])
2292         continue;
2293       if (Scl && Scl != Op)
2294         return false;
2295       Scl = Op;
2296     }
2297     return true;
2298   }
2299   case ISD::VECTOR_SHUFFLE: {
2300     // Check if this is a shuffle node doing a splat.
2301     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2302     int SplatIndex = -1;
2303     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2304     for (int i = 0; i != (int)NumElts; ++i) {
2305       int M = Mask[i];
2306       if (M < 0) {
2307         UndefElts.setBit(i);
2308         continue;
2309       }
2310       if (!DemandedElts[i])
2311         continue;
2312       if (0 <= SplatIndex && SplatIndex != M)
2313         return false;
2314       SplatIndex = M;
2315     }
2316     return true;
2317   }
2318   case ISD::EXTRACT_SUBVECTOR: {
2319     SDValue Src = V.getOperand(0);
2320     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2321     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2322     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2323       // Offset the demanded elts by the subvector index.
2324       uint64_t Idx = SubIdx->getZExtValue();
2325       APInt UndefSrcElts;
2326       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2327       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2328         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2329         return true;
2330       }
2331     }
2332     break;
2333   }
2334   case ISD::ADD:
2335   case ISD::SUB:
2336   case ISD::AND: {
2337     APInt UndefLHS, UndefRHS;
2338     SDValue LHS = V.getOperand(0);
2339     SDValue RHS = V.getOperand(1);
2340     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2341         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2342       UndefElts = UndefLHS | UndefRHS;
2343       return true;
2344     }
2345     break;
2346   }
2347   }
2348 
2349   return false;
2350 }
2351 
2352 /// Helper wrapper to main isSplatValue function.
2353 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2354   EVT VT = V.getValueType();
2355   assert(VT.isVector() && "Vector type expected");
2356   unsigned NumElts = VT.getVectorNumElements();
2357 
2358   APInt UndefElts;
2359   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2360   return isSplatValue(V, DemandedElts, UndefElts) &&
2361          (AllowUndefs || !UndefElts);
2362 }
2363 
2364 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2365   V = peekThroughExtractSubvectors(V);
2366 
2367   EVT VT = V.getValueType();
2368   unsigned Opcode = V.getOpcode();
2369   switch (Opcode) {
2370   default: {
2371     APInt UndefElts;
2372     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2373     if (isSplatValue(V, DemandedElts, UndefElts)) {
2374       // Handle case where all demanded elements are UNDEF.
2375       if (DemandedElts.isSubsetOf(UndefElts)) {
2376         SplatIdx = 0;
2377         return getUNDEF(VT);
2378       }
2379       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2380       return V;
2381     }
2382     break;
2383   }
2384   case ISD::VECTOR_SHUFFLE: {
2385     // Check if this is a shuffle node doing a splat.
2386     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2387     // getTargetVShiftNode currently struggles without the splat source.
2388     auto *SVN = cast<ShuffleVectorSDNode>(V);
2389     if (!SVN->isSplat())
2390       break;
2391     int Idx = SVN->getSplatIndex();
2392     int NumElts = V.getValueType().getVectorNumElements();
2393     SplatIdx = Idx % NumElts;
2394     return V.getOperand(Idx / NumElts);
2395   }
2396   }
2397 
2398   return SDValue();
2399 }
2400 
2401 SDValue SelectionDAG::getSplatValue(SDValue V) {
2402   int SplatIdx;
2403   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2404     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2405                    SrcVector.getValueType().getScalarType(), SrcVector,
2406                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2407   return SDValue();
2408 }
2409 
2410 const APInt *
2411 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2412                                           const APInt &DemandedElts) const {
2413   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2414           V.getOpcode() == ISD::SRA) &&
2415          "Unknown shift node");
2416   unsigned BitWidth = V.getScalarValueSizeInBits();
2417   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2418     // Shifting more than the bitwidth is not valid.
2419     const APInt &ShAmt = SA->getAPIntValue();
2420     if (ShAmt.ult(BitWidth))
2421       return &ShAmt;
2422   }
2423   return nullptr;
2424 }
2425 
2426 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2427     SDValue V, const APInt &DemandedElts) const {
2428   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2429           V.getOpcode() == ISD::SRA) &&
2430          "Unknown shift node");
2431   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2432     return ValidAmt;
2433   unsigned BitWidth = V.getScalarValueSizeInBits();
2434   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2435   if (!BV)
2436     return nullptr;
2437   const APInt *MinShAmt = nullptr;
2438   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2439     if (!DemandedElts[i])
2440       continue;
2441     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2442     if (!SA)
2443       return nullptr;
2444     // Shifting more than the bitwidth is not valid.
2445     const APInt &ShAmt = SA->getAPIntValue();
2446     if (ShAmt.uge(BitWidth))
2447       return nullptr;
2448     if (MinShAmt && MinShAmt->ule(ShAmt))
2449       continue;
2450     MinShAmt = &ShAmt;
2451   }
2452   return MinShAmt;
2453 }
2454 
2455 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2456     SDValue V, const APInt &DemandedElts) const {
2457   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2458           V.getOpcode() == ISD::SRA) &&
2459          "Unknown shift node");
2460   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2461     return ValidAmt;
2462   unsigned BitWidth = V.getScalarValueSizeInBits();
2463   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2464   if (!BV)
2465     return nullptr;
2466   const APInt *MaxShAmt = nullptr;
2467   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2468     if (!DemandedElts[i])
2469       continue;
2470     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2471     if (!SA)
2472       return nullptr;
2473     // Shifting more than the bitwidth is not valid.
2474     const APInt &ShAmt = SA->getAPIntValue();
2475     if (ShAmt.uge(BitWidth))
2476       return nullptr;
2477     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2478       continue;
2479     MaxShAmt = &ShAmt;
2480   }
2481   return MaxShAmt;
2482 }
2483 
2484 /// Determine which bits of Op are known to be either zero or one and return
2485 /// them in Known. For vectors, the known bits are those that are shared by
2486 /// every vector element.
2487 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2488   EVT VT = Op.getValueType();
2489   APInt DemandedElts = VT.isVector()
2490                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2491                            : APInt(1, 1);
2492   return computeKnownBits(Op, DemandedElts, Depth);
2493 }
2494 
2495 /// Determine which bits of Op are known to be either zero or one and return
2496 /// them in Known. The DemandedElts argument allows us to only collect the known
2497 /// bits that are shared by the requested vector elements.
2498 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2499                                          unsigned Depth) const {
2500   unsigned BitWidth = Op.getScalarValueSizeInBits();
2501 
2502   KnownBits Known(BitWidth);   // Don't know anything.
2503 
2504   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2505     // We know all of the bits for a constant!
2506     Known.One = C->getAPIntValue();
2507     Known.Zero = ~Known.One;
2508     return Known;
2509   }
2510   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2511     // We know all of the bits for a constant fp!
2512     Known.One = C->getValueAPF().bitcastToAPInt();
2513     Known.Zero = ~Known.One;
2514     return Known;
2515   }
2516 
2517   if (Depth >= MaxRecursionDepth)
2518     return Known;  // Limit search depth.
2519 
2520   KnownBits Known2;
2521   unsigned NumElts = DemandedElts.getBitWidth();
2522   assert((!Op.getValueType().isVector() ||
2523           NumElts == Op.getValueType().getVectorNumElements()) &&
2524          "Unexpected vector size");
2525 
2526   if (!DemandedElts)
2527     return Known;  // No demanded elts, better to assume we don't know anything.
2528 
2529   unsigned Opcode = Op.getOpcode();
2530   switch (Opcode) {
2531   case ISD::BUILD_VECTOR:
2532     // Collect the known bits that are shared by every demanded vector element.
2533     Known.Zero.setAllBits(); Known.One.setAllBits();
2534     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2535       if (!DemandedElts[i])
2536         continue;
2537 
2538       SDValue SrcOp = Op.getOperand(i);
2539       Known2 = computeKnownBits(SrcOp, Depth + 1);
2540 
2541       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2542       if (SrcOp.getValueSizeInBits() != BitWidth) {
2543         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2544                "Expected BUILD_VECTOR implicit truncation");
2545         Known2 = Known2.trunc(BitWidth);
2546       }
2547 
2548       // Known bits are the values that are shared by every demanded element.
2549       Known.One &= Known2.One;
2550       Known.Zero &= Known2.Zero;
2551 
2552       // If we don't know any bits, early out.
2553       if (Known.isUnknown())
2554         break;
2555     }
2556     break;
2557   case ISD::VECTOR_SHUFFLE: {
2558     // Collect the known bits that are shared by every vector element referenced
2559     // by the shuffle.
2560     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2561     Known.Zero.setAllBits(); Known.One.setAllBits();
2562     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2563     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2564     for (unsigned i = 0; i != NumElts; ++i) {
2565       if (!DemandedElts[i])
2566         continue;
2567 
2568       int M = SVN->getMaskElt(i);
2569       if (M < 0) {
2570         // For UNDEF elements, we don't know anything about the common state of
2571         // the shuffle result.
2572         Known.resetAll();
2573         DemandedLHS.clearAllBits();
2574         DemandedRHS.clearAllBits();
2575         break;
2576       }
2577 
2578       if ((unsigned)M < NumElts)
2579         DemandedLHS.setBit((unsigned)M % NumElts);
2580       else
2581         DemandedRHS.setBit((unsigned)M % NumElts);
2582     }
2583     // Known bits are the values that are shared by every demanded element.
2584     if (!!DemandedLHS) {
2585       SDValue LHS = Op.getOperand(0);
2586       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2587       Known.One &= Known2.One;
2588       Known.Zero &= Known2.Zero;
2589     }
2590     // If we don't know any bits, early out.
2591     if (Known.isUnknown())
2592       break;
2593     if (!!DemandedRHS) {
2594       SDValue RHS = Op.getOperand(1);
2595       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2596       Known.One &= Known2.One;
2597       Known.Zero &= Known2.Zero;
2598     }
2599     break;
2600   }
2601   case ISD::CONCAT_VECTORS: {
2602     // Split DemandedElts and test each of the demanded subvectors.
2603     Known.Zero.setAllBits(); Known.One.setAllBits();
2604     EVT SubVectorVT = Op.getOperand(0).getValueType();
2605     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2606     unsigned NumSubVectors = Op.getNumOperands();
2607     for (unsigned i = 0; i != NumSubVectors; ++i) {
2608       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2609       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2610       if (!!DemandedSub) {
2611         SDValue Sub = Op.getOperand(i);
2612         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2613         Known.One &= Known2.One;
2614         Known.Zero &= Known2.Zero;
2615       }
2616       // If we don't know any bits, early out.
2617       if (Known.isUnknown())
2618         break;
2619     }
2620     break;
2621   }
2622   case ISD::INSERT_SUBVECTOR: {
2623     // If we know the element index, demand any elements from the subvector and
2624     // the remainder from the src its inserted into, otherwise assume we need
2625     // the original demanded base elements and ALL the inserted subvector
2626     // elements.
2627     SDValue Src = Op.getOperand(0);
2628     SDValue Sub = Op.getOperand(1);
2629     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2630     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2631     APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts);
2632     APInt DemandedSrcElts = DemandedElts;
2633     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2634       uint64_t Idx = SubIdx->getZExtValue();
2635       DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2636       DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2637     }
2638     Known.One.setAllBits();
2639     Known.Zero.setAllBits();
2640     if (!!DemandedSubElts) {
2641       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2642       if (Known.isUnknown())
2643         break; // early-out.
2644     }
2645     if (!!DemandedSrcElts) {
2646       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2647       Known.One &= Known2.One;
2648       Known.Zero &= Known2.Zero;
2649     }
2650     break;
2651   }
2652   case ISD::EXTRACT_SUBVECTOR: {
2653     // If we know the element index, just demand that subvector elements,
2654     // otherwise demand them all.
2655     SDValue Src = Op.getOperand(0);
2656     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2657     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2658     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2659     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2660       // Offset the demanded elts by the subvector index.
2661       uint64_t Idx = SubIdx->getZExtValue();
2662       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2663     }
2664     Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2665     break;
2666   }
2667   case ISD::SCALAR_TO_VECTOR: {
2668     // We know about scalar_to_vector as much as we know about it source,
2669     // which becomes the first element of otherwise unknown vector.
2670     if (DemandedElts != 1)
2671       break;
2672 
2673     SDValue N0 = Op.getOperand(0);
2674     Known = computeKnownBits(N0, Depth + 1);
2675     if (N0.getValueSizeInBits() != BitWidth)
2676       Known = Known.trunc(BitWidth);
2677 
2678     break;
2679   }
2680   case ISD::BITCAST: {
2681     SDValue N0 = Op.getOperand(0);
2682     EVT SubVT = N0.getValueType();
2683     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2684 
2685     // Ignore bitcasts from unsupported types.
2686     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2687       break;
2688 
2689     // Fast handling of 'identity' bitcasts.
2690     if (BitWidth == SubBitWidth) {
2691       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2692       break;
2693     }
2694 
2695     bool IsLE = getDataLayout().isLittleEndian();
2696 
2697     // Bitcast 'small element' vector to 'large element' scalar/vector.
2698     if ((BitWidth % SubBitWidth) == 0) {
2699       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2700 
2701       // Collect known bits for the (larger) output by collecting the known
2702       // bits from each set of sub elements and shift these into place.
2703       // We need to separately call computeKnownBits for each set of
2704       // sub elements as the knownbits for each is likely to be different.
2705       unsigned SubScale = BitWidth / SubBitWidth;
2706       APInt SubDemandedElts(NumElts * SubScale, 0);
2707       for (unsigned i = 0; i != NumElts; ++i)
2708         if (DemandedElts[i])
2709           SubDemandedElts.setBit(i * SubScale);
2710 
2711       for (unsigned i = 0; i != SubScale; ++i) {
2712         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2713                          Depth + 1);
2714         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2715         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2716         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2717       }
2718     }
2719 
2720     // Bitcast 'large element' scalar/vector to 'small element' vector.
2721     if ((SubBitWidth % BitWidth) == 0) {
2722       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2723 
2724       // Collect known bits for the (smaller) output by collecting the known
2725       // bits from the overlapping larger input elements and extracting the
2726       // sub sections we actually care about.
2727       unsigned SubScale = SubBitWidth / BitWidth;
2728       APInt SubDemandedElts(NumElts / SubScale, 0);
2729       for (unsigned i = 0; i != NumElts; ++i)
2730         if (DemandedElts[i])
2731           SubDemandedElts.setBit(i / SubScale);
2732 
2733       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2734 
2735       Known.Zero.setAllBits(); Known.One.setAllBits();
2736       for (unsigned i = 0; i != NumElts; ++i)
2737         if (DemandedElts[i]) {
2738           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2739           unsigned Offset = (Shifts % SubScale) * BitWidth;
2740           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2741           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2742           // If we don't know any bits, early out.
2743           if (Known.isUnknown())
2744             break;
2745         }
2746     }
2747     break;
2748   }
2749   case ISD::AND:
2750     // If either the LHS or the RHS are Zero, the result is zero.
2751     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2752     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2753 
2754     // Output known-1 bits are only known if set in both the LHS & RHS.
2755     Known.One &= Known2.One;
2756     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2757     Known.Zero |= Known2.Zero;
2758     break;
2759   case ISD::OR:
2760     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2761     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2762 
2763     // Output known-0 bits are only known if clear in both the LHS & RHS.
2764     Known.Zero &= Known2.Zero;
2765     // Output known-1 are known to be set if set in either the LHS | RHS.
2766     Known.One |= Known2.One;
2767     break;
2768   case ISD::XOR: {
2769     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2770     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2771 
2772     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2773     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2774     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2775     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2776     Known.Zero = KnownZeroOut;
2777     break;
2778   }
2779   case ISD::MUL: {
2780     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2781     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2782 
2783     // If low bits are zero in either operand, output low known-0 bits.
2784     // Also compute a conservative estimate for high known-0 bits.
2785     // More trickiness is possible, but this is sufficient for the
2786     // interesting case of alignment computation.
2787     unsigned TrailZ = Known.countMinTrailingZeros() +
2788                       Known2.countMinTrailingZeros();
2789     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2790                                Known2.countMinLeadingZeros(),
2791                                BitWidth) - BitWidth;
2792 
2793     Known.resetAll();
2794     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2795     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2796     break;
2797   }
2798   case ISD::UDIV: {
2799     // For the purposes of computing leading zeros we can conservatively
2800     // treat a udiv as a logical right shift by the power of 2 known to
2801     // be less than the denominator.
2802     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2803     unsigned LeadZ = Known2.countMinLeadingZeros();
2804 
2805     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2806     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2807     if (RHSMaxLeadingZeros != BitWidth)
2808       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2809 
2810     Known.Zero.setHighBits(LeadZ);
2811     break;
2812   }
2813   case ISD::SELECT:
2814   case ISD::VSELECT:
2815     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2816     // If we don't know any bits, early out.
2817     if (Known.isUnknown())
2818       break;
2819     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2820 
2821     // Only known if known in both the LHS and RHS.
2822     Known.One &= Known2.One;
2823     Known.Zero &= Known2.Zero;
2824     break;
2825   case ISD::SELECT_CC:
2826     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2827     // If we don't know any bits, early out.
2828     if (Known.isUnknown())
2829       break;
2830     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2831 
2832     // Only known if known in both the LHS and RHS.
2833     Known.One &= Known2.One;
2834     Known.Zero &= Known2.Zero;
2835     break;
2836   case ISD::SMULO:
2837   case ISD::UMULO:
2838   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2839     if (Op.getResNo() != 1)
2840       break;
2841     // The boolean result conforms to getBooleanContents.
2842     // If we know the result of a setcc has the top bits zero, use this info.
2843     // We know that we have an integer-based boolean since these operations
2844     // are only available for integer.
2845     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2846             TargetLowering::ZeroOrOneBooleanContent &&
2847         BitWidth > 1)
2848       Known.Zero.setBitsFrom(1);
2849     break;
2850   case ISD::SETCC:
2851   case ISD::STRICT_FSETCC:
2852   case ISD::STRICT_FSETCCS: {
2853     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2854     // If we know the result of a setcc has the top bits zero, use this info.
2855     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2856             TargetLowering::ZeroOrOneBooleanContent &&
2857         BitWidth > 1)
2858       Known.Zero.setBitsFrom(1);
2859     break;
2860   }
2861   case ISD::SHL:
2862     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2863 
2864     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2865       unsigned Shift = ShAmt->getZExtValue();
2866       Known.Zero <<= Shift;
2867       Known.One <<= Shift;
2868       // Low bits are known zero.
2869       Known.Zero.setLowBits(Shift);
2870       break;
2871     }
2872 
2873     // No matter the shift amount, the trailing zeros will stay zero.
2874     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2875     Known.One.clearAllBits();
2876 
2877     // Minimum shift low bits are known zero.
2878     if (const APInt *ShMinAmt =
2879             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2880       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2881     break;
2882   case ISD::SRL:
2883     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2884 
2885     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2886       unsigned Shift = ShAmt->getZExtValue();
2887       Known.Zero.lshrInPlace(Shift);
2888       Known.One.lshrInPlace(Shift);
2889       // High bits are known zero.
2890       Known.Zero.setHighBits(Shift);
2891       break;
2892     }
2893 
2894     // No matter the shift amount, the leading zeros will stay zero.
2895     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2896     Known.One.clearAllBits();
2897 
2898     // Minimum shift high bits are known zero.
2899     if (const APInt *ShMinAmt =
2900             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2901       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2902     break;
2903   case ISD::SRA:
2904     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2905       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2906       unsigned Shift = ShAmt->getZExtValue();
2907       // Sign extend known zero/one bit (else is unknown).
2908       Known.Zero.ashrInPlace(Shift);
2909       Known.One.ashrInPlace(Shift);
2910     }
2911     break;
2912   case ISD::FSHL:
2913   case ISD::FSHR:
2914     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2915       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2916 
2917       // For fshl, 0-shift returns the 1st arg.
2918       // For fshr, 0-shift returns the 2nd arg.
2919       if (Amt == 0) {
2920         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2921                                  DemandedElts, Depth + 1);
2922         break;
2923       }
2924 
2925       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2926       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2927       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2928       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2929       if (Opcode == ISD::FSHL) {
2930         Known.One <<= Amt;
2931         Known.Zero <<= Amt;
2932         Known2.One.lshrInPlace(BitWidth - Amt);
2933         Known2.Zero.lshrInPlace(BitWidth - Amt);
2934       } else {
2935         Known.One <<= BitWidth - Amt;
2936         Known.Zero <<= BitWidth - Amt;
2937         Known2.One.lshrInPlace(Amt);
2938         Known2.Zero.lshrInPlace(Amt);
2939       }
2940       Known.One |= Known2.One;
2941       Known.Zero |= Known2.Zero;
2942     }
2943     break;
2944   case ISD::SIGN_EXTEND_INREG: {
2945     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2946     unsigned EBits = EVT.getScalarSizeInBits();
2947 
2948     // Sign extension.  Compute the demanded bits in the result that are not
2949     // present in the input.
2950     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2951 
2952     APInt InSignMask = APInt::getSignMask(EBits);
2953     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2954 
2955     // If the sign extended bits are demanded, we know that the sign
2956     // bit is demanded.
2957     InSignMask = InSignMask.zext(BitWidth);
2958     if (NewBits.getBoolValue())
2959       InputDemandedBits |= InSignMask;
2960 
2961     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2962     Known.One &= InputDemandedBits;
2963     Known.Zero &= InputDemandedBits;
2964 
2965     // If the sign bit of the input is known set or clear, then we know the
2966     // top bits of the result.
2967     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2968       Known.Zero |= NewBits;
2969       Known.One  &= ~NewBits;
2970     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2971       Known.One  |= NewBits;
2972       Known.Zero &= ~NewBits;
2973     } else {                              // Input sign bit unknown
2974       Known.Zero &= ~NewBits;
2975       Known.One  &= ~NewBits;
2976     }
2977     break;
2978   }
2979   case ISD::CTTZ:
2980   case ISD::CTTZ_ZERO_UNDEF: {
2981     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2982     // If we have a known 1, its position is our upper bound.
2983     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2984     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2985     Known.Zero.setBitsFrom(LowBits);
2986     break;
2987   }
2988   case ISD::CTLZ:
2989   case ISD::CTLZ_ZERO_UNDEF: {
2990     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2991     // If we have a known 1, its position is our upper bound.
2992     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2993     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2994     Known.Zero.setBitsFrom(LowBits);
2995     break;
2996   }
2997   case ISD::CTPOP: {
2998     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2999     // If we know some of the bits are zero, they can't be one.
3000     unsigned PossibleOnes = Known2.countMaxPopulation();
3001     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3002     break;
3003   }
3004   case ISD::LOAD: {
3005     LoadSDNode *LD = cast<LoadSDNode>(Op);
3006     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3007     if (ISD::isNON_EXTLoad(LD) && Cst) {
3008       // Determine any common known bits from the loaded constant pool value.
3009       Type *CstTy = Cst->getType();
3010       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3011         // If its a vector splat, then we can (quickly) reuse the scalar path.
3012         // NOTE: We assume all elements match and none are UNDEF.
3013         if (CstTy->isVectorTy()) {
3014           if (const Constant *Splat = Cst->getSplatValue()) {
3015             Cst = Splat;
3016             CstTy = Cst->getType();
3017           }
3018         }
3019         // TODO - do we need to handle different bitwidths?
3020         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3021           // Iterate across all vector elements finding common known bits.
3022           Known.One.setAllBits();
3023           Known.Zero.setAllBits();
3024           for (unsigned i = 0; i != NumElts; ++i) {
3025             if (!DemandedElts[i])
3026               continue;
3027             if (Constant *Elt = Cst->getAggregateElement(i)) {
3028               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3029                 const APInt &Value = CInt->getValue();
3030                 Known.One &= Value;
3031                 Known.Zero &= ~Value;
3032                 continue;
3033               }
3034               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3035                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3036                 Known.One &= Value;
3037                 Known.Zero &= ~Value;
3038                 continue;
3039               }
3040             }
3041             Known.One.clearAllBits();
3042             Known.Zero.clearAllBits();
3043             break;
3044           }
3045         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3046           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3047             const APInt &Value = CInt->getValue();
3048             Known.One = Value;
3049             Known.Zero = ~Value;
3050           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3051             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3052             Known.One = Value;
3053             Known.Zero = ~Value;
3054           }
3055         }
3056       }
3057     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3058       // If this is a ZEXTLoad and we are looking at the loaded value.
3059       EVT VT = LD->getMemoryVT();
3060       unsigned MemBits = VT.getScalarSizeInBits();
3061       Known.Zero.setBitsFrom(MemBits);
3062     } else if (const MDNode *Ranges = LD->getRanges()) {
3063       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3064         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3065     }
3066     break;
3067   }
3068   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3069     EVT InVT = Op.getOperand(0).getValueType();
3070     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3071     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3072     Known = Known.zext(BitWidth);
3073     break;
3074   }
3075   case ISD::ZERO_EXTEND: {
3076     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3077     Known = Known.zext(BitWidth);
3078     break;
3079   }
3080   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3081     EVT InVT = Op.getOperand(0).getValueType();
3082     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3083     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3084     // If the sign bit is known to be zero or one, then sext will extend
3085     // it to the top bits, else it will just zext.
3086     Known = Known.sext(BitWidth);
3087     break;
3088   }
3089   case ISD::SIGN_EXTEND: {
3090     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3091     // If the sign bit is known to be zero or one, then sext will extend
3092     // it to the top bits, else it will just zext.
3093     Known = Known.sext(BitWidth);
3094     break;
3095   }
3096   case ISD::ANY_EXTEND_VECTOR_INREG: {
3097     EVT InVT = Op.getOperand(0).getValueType();
3098     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3099     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3100     Known = Known.anyext(BitWidth);
3101     break;
3102   }
3103   case ISD::ANY_EXTEND: {
3104     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3105     Known = Known.anyext(BitWidth);
3106     break;
3107   }
3108   case ISD::TRUNCATE: {
3109     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3110     Known = Known.trunc(BitWidth);
3111     break;
3112   }
3113   case ISD::AssertZext: {
3114     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3115     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3116     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3117     Known.Zero |= (~InMask);
3118     Known.One  &= (~Known.Zero);
3119     break;
3120   }
3121   case ISD::FGETSIGN:
3122     // All bits are zero except the low bit.
3123     Known.Zero.setBitsFrom(1);
3124     break;
3125   case ISD::USUBO:
3126   case ISD::SSUBO:
3127     if (Op.getResNo() == 1) {
3128       // If we know the result of a setcc has the top bits zero, use this info.
3129       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3130               TargetLowering::ZeroOrOneBooleanContent &&
3131           BitWidth > 1)
3132         Known.Zero.setBitsFrom(1);
3133       break;
3134     }
3135     LLVM_FALLTHROUGH;
3136   case ISD::SUB:
3137   case ISD::SUBC: {
3138     assert(Op.getResNo() == 0 &&
3139            "We only compute knownbits for the difference here.");
3140 
3141     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3142     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3143     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3144                                         Known, Known2);
3145     break;
3146   }
3147   case ISD::UADDO:
3148   case ISD::SADDO:
3149   case ISD::ADDCARRY:
3150     if (Op.getResNo() == 1) {
3151       // If we know the result of a setcc has the top bits zero, use this info.
3152       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3153               TargetLowering::ZeroOrOneBooleanContent &&
3154           BitWidth > 1)
3155         Known.Zero.setBitsFrom(1);
3156       break;
3157     }
3158     LLVM_FALLTHROUGH;
3159   case ISD::ADD:
3160   case ISD::ADDC:
3161   case ISD::ADDE: {
3162     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3163 
3164     // With ADDE and ADDCARRY, a carry bit may be added in.
3165     KnownBits Carry(1);
3166     if (Opcode == ISD::ADDE)
3167       // Can't track carry from glue, set carry to unknown.
3168       Carry.resetAll();
3169     else if (Opcode == ISD::ADDCARRY)
3170       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3171       // the trouble (how often will we find a known carry bit). And I haven't
3172       // tested this very much yet, but something like this might work:
3173       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3174       //   Carry = Carry.zextOrTrunc(1, false);
3175       Carry.resetAll();
3176     else
3177       Carry.setAllZero();
3178 
3179     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3180     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3181     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3182     break;
3183   }
3184   case ISD::SREM:
3185     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3186       const APInt &RA = Rem->getAPIntValue().abs();
3187       if (RA.isPowerOf2()) {
3188         APInt LowBits = RA - 1;
3189         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3190 
3191         // The low bits of the first operand are unchanged by the srem.
3192         Known.Zero = Known2.Zero & LowBits;
3193         Known.One = Known2.One & LowBits;
3194 
3195         // If the first operand is non-negative or has all low bits zero, then
3196         // the upper bits are all zero.
3197         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3198           Known.Zero |= ~LowBits;
3199 
3200         // If the first operand is negative and not all low bits are zero, then
3201         // the upper bits are all one.
3202         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3203           Known.One |= ~LowBits;
3204         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3205       }
3206     }
3207     break;
3208   case ISD::UREM: {
3209     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3210       const APInt &RA = Rem->getAPIntValue();
3211       if (RA.isPowerOf2()) {
3212         APInt LowBits = (RA - 1);
3213         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3214 
3215         // The upper bits are all zero, the lower ones are unchanged.
3216         Known.Zero = Known2.Zero | ~LowBits;
3217         Known.One = Known2.One & LowBits;
3218         break;
3219       }
3220     }
3221 
3222     // Since the result is less than or equal to either operand, any leading
3223     // zero bits in either operand must also exist in the result.
3224     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3225     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3226 
3227     uint32_t Leaders =
3228         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3229     Known.resetAll();
3230     Known.Zero.setHighBits(Leaders);
3231     break;
3232   }
3233   case ISD::EXTRACT_ELEMENT: {
3234     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3235     const unsigned Index = Op.getConstantOperandVal(1);
3236     const unsigned EltBitWidth = Op.getValueSizeInBits();
3237 
3238     // Remove low part of known bits mask
3239     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3240     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3241 
3242     // Remove high part of known bit mask
3243     Known = Known.trunc(EltBitWidth);
3244     break;
3245   }
3246   case ISD::EXTRACT_VECTOR_ELT: {
3247     SDValue InVec = Op.getOperand(0);
3248     SDValue EltNo = Op.getOperand(1);
3249     EVT VecVT = InVec.getValueType();
3250     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3251     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3252 
3253     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3254     // anything about the extended bits.
3255     if (BitWidth > EltBitWidth)
3256       Known = Known.trunc(EltBitWidth);
3257 
3258     // If we know the element index, just demand that vector element, else for
3259     // an unknown element index, ignore DemandedElts and demand them all.
3260     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3261     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3262     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3263       DemandedSrcElts =
3264           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3265 
3266     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3267     if (BitWidth > EltBitWidth)
3268       Known = Known.anyext(BitWidth);
3269     break;
3270   }
3271   case ISD::INSERT_VECTOR_ELT: {
3272     // If we know the element index, split the demand between the
3273     // source vector and the inserted element, otherwise assume we need
3274     // the original demanded vector elements and the value.
3275     SDValue InVec = Op.getOperand(0);
3276     SDValue InVal = Op.getOperand(1);
3277     SDValue EltNo = Op.getOperand(2);
3278     bool DemandedVal = true;
3279     APInt DemandedVecElts = DemandedElts;
3280     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3281     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3282       unsigned EltIdx = CEltNo->getZExtValue();
3283       DemandedVal = !!DemandedElts[EltIdx];
3284       DemandedVecElts.clearBit(EltIdx);
3285     }
3286     Known.One.setAllBits();
3287     Known.Zero.setAllBits();
3288     if (DemandedVal) {
3289       Known2 = computeKnownBits(InVal, Depth + 1);
3290       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3291       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3292     }
3293     if (!!DemandedVecElts) {
3294       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3295       Known.One &= Known2.One;
3296       Known.Zero &= Known2.Zero;
3297     }
3298     break;
3299   }
3300   case ISD::BITREVERSE: {
3301     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3302     Known.Zero = Known2.Zero.reverseBits();
3303     Known.One = Known2.One.reverseBits();
3304     break;
3305   }
3306   case ISD::BSWAP: {
3307     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3308     Known.Zero = Known2.Zero.byteSwap();
3309     Known.One = Known2.One.byteSwap();
3310     break;
3311   }
3312   case ISD::ABS: {
3313     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3314 
3315     // If the source's MSB is zero then we know the rest of the bits already.
3316     if (Known2.isNonNegative()) {
3317       Known.Zero = Known2.Zero;
3318       Known.One = Known2.One;
3319       break;
3320     }
3321 
3322     // We only know that the absolute values's MSB will be zero iff there is
3323     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3324     Known2.One.clearSignBit();
3325     if (Known2.One.getBoolValue()) {
3326       Known.Zero = APInt::getSignMask(BitWidth);
3327       break;
3328     }
3329     break;
3330   }
3331   case ISD::UMIN: {
3332     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3333     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3334 
3335     // UMIN - we know that the result will have the maximum of the
3336     // known zero leading bits of the inputs.
3337     unsigned LeadZero = Known.countMinLeadingZeros();
3338     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3339 
3340     Known.Zero &= Known2.Zero;
3341     Known.One &= Known2.One;
3342     Known.Zero.setHighBits(LeadZero);
3343     break;
3344   }
3345   case ISD::UMAX: {
3346     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3347     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3348 
3349     // UMAX - we know that the result will have the maximum of the
3350     // known one leading bits of the inputs.
3351     unsigned LeadOne = Known.countMinLeadingOnes();
3352     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3353 
3354     Known.Zero &= Known2.Zero;
3355     Known.One &= Known2.One;
3356     Known.One.setHighBits(LeadOne);
3357     break;
3358   }
3359   case ISD::SMIN:
3360   case ISD::SMAX: {
3361     // If we have a clamp pattern, we know that the number of sign bits will be
3362     // the minimum of the clamp min/max range.
3363     bool IsMax = (Opcode == ISD::SMAX);
3364     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3365     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3366       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3367         CstHigh =
3368             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3369     if (CstLow && CstHigh) {
3370       if (!IsMax)
3371         std::swap(CstLow, CstHigh);
3372 
3373       const APInt &ValueLow = CstLow->getAPIntValue();
3374       const APInt &ValueHigh = CstHigh->getAPIntValue();
3375       if (ValueLow.sle(ValueHigh)) {
3376         unsigned LowSignBits = ValueLow.getNumSignBits();
3377         unsigned HighSignBits = ValueHigh.getNumSignBits();
3378         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3379         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3380           Known.One.setHighBits(MinSignBits);
3381           break;
3382         }
3383         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3384           Known.Zero.setHighBits(MinSignBits);
3385           break;
3386         }
3387       }
3388     }
3389 
3390     // Fallback - just get the shared known bits of the operands.
3391     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3392     if (Known.isUnknown()) break; // Early-out
3393     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3394     Known.Zero &= Known2.Zero;
3395     Known.One &= Known2.One;
3396     break;
3397   }
3398   case ISD::FrameIndex:
3399   case ISD::TargetFrameIndex:
3400     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3401     break;
3402 
3403   default:
3404     if (Opcode < ISD::BUILTIN_OP_END)
3405       break;
3406     LLVM_FALLTHROUGH;
3407   case ISD::INTRINSIC_WO_CHAIN:
3408   case ISD::INTRINSIC_W_CHAIN:
3409   case ISD::INTRINSIC_VOID:
3410     // Allow the target to implement this method for its nodes.
3411     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3412     break;
3413   }
3414 
3415   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3416   return Known;
3417 }
3418 
3419 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3420                                                              SDValue N1) const {
3421   // X + 0 never overflow
3422   if (isNullConstant(N1))
3423     return OFK_Never;
3424 
3425   KnownBits N1Known = computeKnownBits(N1);
3426   if (N1Known.Zero.getBoolValue()) {
3427     KnownBits N0Known = computeKnownBits(N0);
3428 
3429     bool overflow;
3430     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3431     if (!overflow)
3432       return OFK_Never;
3433   }
3434 
3435   // mulhi + 1 never overflow
3436   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3437       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3438     return OFK_Never;
3439 
3440   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3441     KnownBits N0Known = computeKnownBits(N0);
3442 
3443     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3444       return OFK_Never;
3445   }
3446 
3447   return OFK_Sometime;
3448 }
3449 
3450 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3451   EVT OpVT = Val.getValueType();
3452   unsigned BitWidth = OpVT.getScalarSizeInBits();
3453 
3454   // Is the constant a known power of 2?
3455   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3456     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3457 
3458   // A left-shift of a constant one will have exactly one bit set because
3459   // shifting the bit off the end is undefined.
3460   if (Val.getOpcode() == ISD::SHL) {
3461     auto *C = isConstOrConstSplat(Val.getOperand(0));
3462     if (C && C->getAPIntValue() == 1)
3463       return true;
3464   }
3465 
3466   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3467   // one bit set.
3468   if (Val.getOpcode() == ISD::SRL) {
3469     auto *C = isConstOrConstSplat(Val.getOperand(0));
3470     if (C && C->getAPIntValue().isSignMask())
3471       return true;
3472   }
3473 
3474   // Are all operands of a build vector constant powers of two?
3475   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3476     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3477           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3478             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3479           return false;
3480         }))
3481       return true;
3482 
3483   // More could be done here, though the above checks are enough
3484   // to handle some common cases.
3485 
3486   // Fall back to computeKnownBits to catch other known cases.
3487   KnownBits Known = computeKnownBits(Val);
3488   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3489 }
3490 
3491 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3492   EVT VT = Op.getValueType();
3493   APInt DemandedElts = VT.isVector()
3494                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3495                            : APInt(1, 1);
3496   return ComputeNumSignBits(Op, DemandedElts, Depth);
3497 }
3498 
3499 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3500                                           unsigned Depth) const {
3501   EVT VT = Op.getValueType();
3502   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3503   unsigned VTBits = VT.getScalarSizeInBits();
3504   unsigned NumElts = DemandedElts.getBitWidth();
3505   unsigned Tmp, Tmp2;
3506   unsigned FirstAnswer = 1;
3507 
3508   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3509     const APInt &Val = C->getAPIntValue();
3510     return Val.getNumSignBits();
3511   }
3512 
3513   if (Depth >= MaxRecursionDepth)
3514     return 1;  // Limit search depth.
3515 
3516   if (!DemandedElts)
3517     return 1;  // No demanded elts, better to assume we don't know anything.
3518 
3519   unsigned Opcode = Op.getOpcode();
3520   switch (Opcode) {
3521   default: break;
3522   case ISD::AssertSext:
3523     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3524     return VTBits-Tmp+1;
3525   case ISD::AssertZext:
3526     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3527     return VTBits-Tmp;
3528 
3529   case ISD::BUILD_VECTOR:
3530     Tmp = VTBits;
3531     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3532       if (!DemandedElts[i])
3533         continue;
3534 
3535       SDValue SrcOp = Op.getOperand(i);
3536       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3537 
3538       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3539       if (SrcOp.getValueSizeInBits() != VTBits) {
3540         assert(SrcOp.getValueSizeInBits() > VTBits &&
3541                "Expected BUILD_VECTOR implicit truncation");
3542         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3543         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3544       }
3545       Tmp = std::min(Tmp, Tmp2);
3546     }
3547     return Tmp;
3548 
3549   case ISD::VECTOR_SHUFFLE: {
3550     // Collect the minimum number of sign bits that are shared by every vector
3551     // element referenced by the shuffle.
3552     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3553     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3554     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3555     for (unsigned i = 0; i != NumElts; ++i) {
3556       int M = SVN->getMaskElt(i);
3557       if (!DemandedElts[i])
3558         continue;
3559       // For UNDEF elements, we don't know anything about the common state of
3560       // the shuffle result.
3561       if (M < 0)
3562         return 1;
3563       if ((unsigned)M < NumElts)
3564         DemandedLHS.setBit((unsigned)M % NumElts);
3565       else
3566         DemandedRHS.setBit((unsigned)M % NumElts);
3567     }
3568     Tmp = std::numeric_limits<unsigned>::max();
3569     if (!!DemandedLHS)
3570       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3571     if (!!DemandedRHS) {
3572       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3573       Tmp = std::min(Tmp, Tmp2);
3574     }
3575     // If we don't know anything, early out and try computeKnownBits fall-back.
3576     if (Tmp == 1)
3577       break;
3578     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3579     return Tmp;
3580   }
3581 
3582   case ISD::BITCAST: {
3583     SDValue N0 = Op.getOperand(0);
3584     EVT SrcVT = N0.getValueType();
3585     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3586 
3587     // Ignore bitcasts from unsupported types..
3588     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3589       break;
3590 
3591     // Fast handling of 'identity' bitcasts.
3592     if (VTBits == SrcBits)
3593       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3594 
3595     bool IsLE = getDataLayout().isLittleEndian();
3596 
3597     // Bitcast 'large element' scalar/vector to 'small element' vector.
3598     if ((SrcBits % VTBits) == 0) {
3599       assert(VT.isVector() && "Expected bitcast to vector");
3600 
3601       unsigned Scale = SrcBits / VTBits;
3602       APInt SrcDemandedElts(NumElts / Scale, 0);
3603       for (unsigned i = 0; i != NumElts; ++i)
3604         if (DemandedElts[i])
3605           SrcDemandedElts.setBit(i / Scale);
3606 
3607       // Fast case - sign splat can be simply split across the small elements.
3608       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3609       if (Tmp == SrcBits)
3610         return VTBits;
3611 
3612       // Slow case - determine how far the sign extends into each sub-element.
3613       Tmp2 = VTBits;
3614       for (unsigned i = 0; i != NumElts; ++i)
3615         if (DemandedElts[i]) {
3616           unsigned SubOffset = i % Scale;
3617           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3618           SubOffset = SubOffset * VTBits;
3619           if (Tmp <= SubOffset)
3620             return 1;
3621           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3622         }
3623       return Tmp2;
3624     }
3625     break;
3626   }
3627 
3628   case ISD::SIGN_EXTEND:
3629     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3630     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3631   case ISD::SIGN_EXTEND_INREG:
3632     // Max of the input and what this extends.
3633     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3634     Tmp = VTBits-Tmp+1;
3635     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3636     return std::max(Tmp, Tmp2);
3637   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3638     SDValue Src = Op.getOperand(0);
3639     EVT SrcVT = Src.getValueType();
3640     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3641     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3642     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3643   }
3644   case ISD::SRA:
3645     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3646     // SRA X, C -> adds C sign bits.
3647     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts))
3648       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3649     else if (const APInt *ShAmt =
3650                  getValidMinimumShiftAmountConstant(Op, DemandedElts))
3651       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3652     return Tmp;
3653   case ISD::SHL:
3654     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3655       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3656       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3657       if (ShAmt->ult(Tmp))
3658         return Tmp - ShAmt->getZExtValue();
3659     } else if (const APInt *ShAmt =
3660                    getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3661       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3662       if (ShAmt->ult(Tmp))
3663         return Tmp - ShAmt->getZExtValue();
3664     }
3665     break;
3666   case ISD::AND:
3667   case ISD::OR:
3668   case ISD::XOR:    // NOT is handled here.
3669     // Logical binary ops preserve the number of sign bits at the worst.
3670     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3671     if (Tmp != 1) {
3672       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3673       FirstAnswer = std::min(Tmp, Tmp2);
3674       // We computed what we know about the sign bits as our first
3675       // answer. Now proceed to the generic code that uses
3676       // computeKnownBits, and pick whichever answer is better.
3677     }
3678     break;
3679 
3680   case ISD::SELECT:
3681   case ISD::VSELECT:
3682     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3683     if (Tmp == 1) return 1;  // Early out.
3684     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3685     return std::min(Tmp, Tmp2);
3686   case ISD::SELECT_CC:
3687     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3688     if (Tmp == 1) return 1;  // Early out.
3689     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3690     return std::min(Tmp, Tmp2);
3691 
3692   case ISD::SMIN:
3693   case ISD::SMAX: {
3694     // If we have a clamp pattern, we know that the number of sign bits will be
3695     // the minimum of the clamp min/max range.
3696     bool IsMax = (Opcode == ISD::SMAX);
3697     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3698     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3699       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3700         CstHigh =
3701             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3702     if (CstLow && CstHigh) {
3703       if (!IsMax)
3704         std::swap(CstLow, CstHigh);
3705       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3706         Tmp = CstLow->getAPIntValue().getNumSignBits();
3707         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3708         return std::min(Tmp, Tmp2);
3709       }
3710     }
3711 
3712     // Fallback - just get the minimum number of sign bits of the operands.
3713     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3714     if (Tmp == 1)
3715       return 1;  // Early out.
3716     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3717     return std::min(Tmp, Tmp2);
3718   }
3719   case ISD::UMIN:
3720   case ISD::UMAX:
3721     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3722     if (Tmp == 1)
3723       return 1;  // Early out.
3724     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3725     return std::min(Tmp, Tmp2);
3726   case ISD::SADDO:
3727   case ISD::UADDO:
3728   case ISD::SSUBO:
3729   case ISD::USUBO:
3730   case ISD::SMULO:
3731   case ISD::UMULO:
3732     if (Op.getResNo() != 1)
3733       break;
3734     // The boolean result conforms to getBooleanContents.  Fall through.
3735     // If setcc returns 0/-1, all bits are sign bits.
3736     // We know that we have an integer-based boolean since these operations
3737     // are only available for integer.
3738     if (TLI->getBooleanContents(VT.isVector(), false) ==
3739         TargetLowering::ZeroOrNegativeOneBooleanContent)
3740       return VTBits;
3741     break;
3742   case ISD::SETCC:
3743   case ISD::STRICT_FSETCC:
3744   case ISD::STRICT_FSETCCS: {
3745     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3746     // If setcc returns 0/-1, all bits are sign bits.
3747     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3748         TargetLowering::ZeroOrNegativeOneBooleanContent)
3749       return VTBits;
3750     break;
3751   }
3752   case ISD::ROTL:
3753   case ISD::ROTR:
3754     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3755 
3756     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3757     if (Tmp == VTBits)
3758       return VTBits;
3759 
3760     if (ConstantSDNode *C =
3761             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3762       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3763 
3764       // Handle rotate right by N like a rotate left by 32-N.
3765       if (Opcode == ISD::ROTR)
3766         RotAmt = (VTBits - RotAmt) % VTBits;
3767 
3768       // If we aren't rotating out all of the known-in sign bits, return the
3769       // number that are left.  This handles rotl(sext(x), 1) for example.
3770       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3771     }
3772     break;
3773   case ISD::ADD:
3774   case ISD::ADDC:
3775     // Add can have at most one carry bit.  Thus we know that the output
3776     // is, at worst, one more bit than the inputs.
3777     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3778     if (Tmp == 1) return 1; // Early out.
3779 
3780     // Special case decrementing a value (ADD X, -1):
3781     if (ConstantSDNode *CRHS =
3782             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3783       if (CRHS->isAllOnesValue()) {
3784         KnownBits Known =
3785             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3786 
3787         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3788         // sign bits set.
3789         if ((Known.Zero | 1).isAllOnesValue())
3790           return VTBits;
3791 
3792         // If we are subtracting one from a positive number, there is no carry
3793         // out of the result.
3794         if (Known.isNonNegative())
3795           return Tmp;
3796       }
3797 
3798     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3799     if (Tmp2 == 1) return 1; // Early out.
3800     return std::min(Tmp, Tmp2) - 1;
3801   case ISD::SUB:
3802     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3803     if (Tmp2 == 1) return 1; // Early out.
3804 
3805     // Handle NEG.
3806     if (ConstantSDNode *CLHS =
3807             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3808       if (CLHS->isNullValue()) {
3809         KnownBits Known =
3810             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3811         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3812         // sign bits set.
3813         if ((Known.Zero | 1).isAllOnesValue())
3814           return VTBits;
3815 
3816         // If the input is known to be positive (the sign bit is known clear),
3817         // the output of the NEG has the same number of sign bits as the input.
3818         if (Known.isNonNegative())
3819           return Tmp2;
3820 
3821         // Otherwise, we treat this like a SUB.
3822       }
3823 
3824     // Sub can have at most one carry bit.  Thus we know that the output
3825     // is, at worst, one more bit than the inputs.
3826     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3827     if (Tmp == 1) return 1; // Early out.
3828     return std::min(Tmp, Tmp2) - 1;
3829   case ISD::MUL: {
3830     // The output of the Mul can be at most twice the valid bits in the inputs.
3831     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3832     if (SignBitsOp0 == 1)
3833       break;
3834     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3835     if (SignBitsOp1 == 1)
3836       break;
3837     unsigned OutValidBits =
3838         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3839     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3840   }
3841   case ISD::TRUNCATE: {
3842     // Check if the sign bits of source go down as far as the truncated value.
3843     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3844     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3845     if (NumSrcSignBits > (NumSrcBits - VTBits))
3846       return NumSrcSignBits - (NumSrcBits - VTBits);
3847     break;
3848   }
3849   case ISD::EXTRACT_ELEMENT: {
3850     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3851     const int BitWidth = Op.getValueSizeInBits();
3852     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3853 
3854     // Get reverse index (starting from 1), Op1 value indexes elements from
3855     // little end. Sign starts at big end.
3856     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3857 
3858     // If the sign portion ends in our element the subtraction gives correct
3859     // result. Otherwise it gives either negative or > bitwidth result
3860     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3861   }
3862   case ISD::INSERT_VECTOR_ELT: {
3863     // If we know the element index, split the demand between the
3864     // source vector and the inserted element, otherwise assume we need
3865     // the original demanded vector elements and the value.
3866     SDValue InVec = Op.getOperand(0);
3867     SDValue InVal = Op.getOperand(1);
3868     SDValue EltNo = Op.getOperand(2);
3869     bool DemandedVal = true;
3870     APInt DemandedVecElts = DemandedElts;
3871     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3872     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3873       unsigned EltIdx = CEltNo->getZExtValue();
3874       DemandedVal = !!DemandedElts[EltIdx];
3875       DemandedVecElts.clearBit(EltIdx);
3876     }
3877     Tmp = std::numeric_limits<unsigned>::max();
3878     if (DemandedVal) {
3879       // TODO - handle implicit truncation of inserted elements.
3880       if (InVal.getScalarValueSizeInBits() != VTBits)
3881         break;
3882       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3883       Tmp = std::min(Tmp, Tmp2);
3884     }
3885     if (!!DemandedVecElts) {
3886       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3887       Tmp = std::min(Tmp, Tmp2);
3888     }
3889     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3890     return Tmp;
3891   }
3892   case ISD::EXTRACT_VECTOR_ELT: {
3893     SDValue InVec = Op.getOperand(0);
3894     SDValue EltNo = Op.getOperand(1);
3895     EVT VecVT = InVec.getValueType();
3896     const unsigned BitWidth = Op.getValueSizeInBits();
3897     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3898     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3899 
3900     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3901     // anything about sign bits. But if the sizes match we can derive knowledge
3902     // about sign bits from the vector operand.
3903     if (BitWidth != EltBitWidth)
3904       break;
3905 
3906     // If we know the element index, just demand that vector element, else for
3907     // an unknown element index, ignore DemandedElts and demand them all.
3908     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3909     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3910     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3911       DemandedSrcElts =
3912           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3913 
3914     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3915   }
3916   case ISD::EXTRACT_SUBVECTOR: {
3917     // If we know the element index, just demand that subvector elements,
3918     // otherwise demand them all.
3919     SDValue Src = Op.getOperand(0);
3920     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3921     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3922     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3923     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3924       // Offset the demanded elts by the subvector index.
3925       uint64_t Idx = SubIdx->getZExtValue();
3926       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3927     }
3928     return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3929   }
3930   case ISD::CONCAT_VECTORS: {
3931     // Determine the minimum number of sign bits across all demanded
3932     // elts of the input vectors. Early out if the result is already 1.
3933     Tmp = std::numeric_limits<unsigned>::max();
3934     EVT SubVectorVT = Op.getOperand(0).getValueType();
3935     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3936     unsigned NumSubVectors = Op.getNumOperands();
3937     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3938       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3939       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3940       if (!DemandedSub)
3941         continue;
3942       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3943       Tmp = std::min(Tmp, Tmp2);
3944     }
3945     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3946     return Tmp;
3947   }
3948   case ISD::INSERT_SUBVECTOR: {
3949     // If we know the element index, demand any elements from the subvector and
3950     // the remainder from the src its inserted into, otherwise assume we need
3951     // the original demanded base elements and ALL the inserted subvector
3952     // elements.
3953     SDValue Src = Op.getOperand(0);
3954     SDValue Sub = Op.getOperand(1);
3955     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3956     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3957     APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts);
3958     APInt DemandedSrcElts = DemandedElts;
3959     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3960       uint64_t Idx = SubIdx->getZExtValue();
3961       DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3962       DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3963     }
3964     Tmp = std::numeric_limits<unsigned>::max();
3965     if (!!DemandedSubElts) {
3966       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3967       if (Tmp == 1)
3968         return 1; // early-out
3969     }
3970     if (!!DemandedSrcElts) {
3971       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3972       Tmp = std::min(Tmp, Tmp2);
3973     }
3974     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3975     return Tmp;
3976   }
3977   }
3978 
3979   // If we are looking at the loaded value of the SDNode.
3980   if (Op.getResNo() == 0) {
3981     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3982     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3983       unsigned ExtType = LD->getExtensionType();
3984       switch (ExtType) {
3985       default: break;
3986       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3987         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3988         return VTBits - Tmp + 1;
3989       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3990         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3991         return VTBits - Tmp;
3992       case ISD::NON_EXTLOAD:
3993         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3994           // We only need to handle vectors - computeKnownBits should handle
3995           // scalar cases.
3996           Type *CstTy = Cst->getType();
3997           if (CstTy->isVectorTy() &&
3998               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3999             Tmp = VTBits;
4000             for (unsigned i = 0; i != NumElts; ++i) {
4001               if (!DemandedElts[i])
4002                 continue;
4003               if (Constant *Elt = Cst->getAggregateElement(i)) {
4004                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4005                   const APInt &Value = CInt->getValue();
4006                   Tmp = std::min(Tmp, Value.getNumSignBits());
4007                   continue;
4008                 }
4009                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4010                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4011                   Tmp = std::min(Tmp, Value.getNumSignBits());
4012                   continue;
4013                 }
4014               }
4015               // Unknown type. Conservatively assume no bits match sign bit.
4016               return 1;
4017             }
4018             return Tmp;
4019           }
4020         }
4021         break;
4022       }
4023     }
4024   }
4025 
4026   // Allow the target to implement this method for its nodes.
4027   if (Opcode >= ISD::BUILTIN_OP_END ||
4028       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4029       Opcode == ISD::INTRINSIC_W_CHAIN ||
4030       Opcode == ISD::INTRINSIC_VOID) {
4031     unsigned NumBits =
4032         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4033     if (NumBits > 1)
4034       FirstAnswer = std::max(FirstAnswer, NumBits);
4035   }
4036 
4037   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4038   // use this information.
4039   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4040 
4041   APInt Mask;
4042   if (Known.isNonNegative()) {        // sign bit is 0
4043     Mask = Known.Zero;
4044   } else if (Known.isNegative()) {  // sign bit is 1;
4045     Mask = Known.One;
4046   } else {
4047     // Nothing known.
4048     return FirstAnswer;
4049   }
4050 
4051   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
4052   // the number of identical bits in the top of the input value.
4053   Mask = ~Mask;
4054   Mask <<= Mask.getBitWidth()-VTBits;
4055   // Return # leading zeros.  We use 'min' here in case Val was zero before
4056   // shifting.  We don't want to return '64' as for an i32 "0".
4057   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
4058 }
4059 
4060 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4061   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4062       !isa<ConstantSDNode>(Op.getOperand(1)))
4063     return false;
4064 
4065   if (Op.getOpcode() == ISD::OR &&
4066       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4067     return false;
4068 
4069   return true;
4070 }
4071 
4072 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4073   // If we're told that NaNs won't happen, assume they won't.
4074   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4075     return true;
4076 
4077   if (Depth >= MaxRecursionDepth)
4078     return false; // Limit search depth.
4079 
4080   // TODO: Handle vectors.
4081   // If the value is a constant, we can obviously see if it is a NaN or not.
4082   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4083     return !C->getValueAPF().isNaN() ||
4084            (SNaN && !C->getValueAPF().isSignaling());
4085   }
4086 
4087   unsigned Opcode = Op.getOpcode();
4088   switch (Opcode) {
4089   case ISD::FADD:
4090   case ISD::FSUB:
4091   case ISD::FMUL:
4092   case ISD::FDIV:
4093   case ISD::FREM:
4094   case ISD::FSIN:
4095   case ISD::FCOS: {
4096     if (SNaN)
4097       return true;
4098     // TODO: Need isKnownNeverInfinity
4099     return false;
4100   }
4101   case ISD::FCANONICALIZE:
4102   case ISD::FEXP:
4103   case ISD::FEXP2:
4104   case ISD::FTRUNC:
4105   case ISD::FFLOOR:
4106   case ISD::FCEIL:
4107   case ISD::FROUND:
4108   case ISD::FRINT:
4109   case ISD::FNEARBYINT: {
4110     if (SNaN)
4111       return true;
4112     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4113   }
4114   case ISD::FABS:
4115   case ISD::FNEG:
4116   case ISD::FCOPYSIGN: {
4117     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4118   }
4119   case ISD::SELECT:
4120     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4121            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4122   case ISD::FP_EXTEND:
4123   case ISD::FP_ROUND: {
4124     if (SNaN)
4125       return true;
4126     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4127   }
4128   case ISD::SINT_TO_FP:
4129   case ISD::UINT_TO_FP:
4130     return true;
4131   case ISD::FMA:
4132   case ISD::FMAD: {
4133     if (SNaN)
4134       return true;
4135     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4136            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4137            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4138   }
4139   case ISD::FSQRT: // Need is known positive
4140   case ISD::FLOG:
4141   case ISD::FLOG2:
4142   case ISD::FLOG10:
4143   case ISD::FPOWI:
4144   case ISD::FPOW: {
4145     if (SNaN)
4146       return true;
4147     // TODO: Refine on operand
4148     return false;
4149   }
4150   case ISD::FMINNUM:
4151   case ISD::FMAXNUM: {
4152     // Only one needs to be known not-nan, since it will be returned if the
4153     // other ends up being one.
4154     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4155            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4156   }
4157   case ISD::FMINNUM_IEEE:
4158   case ISD::FMAXNUM_IEEE: {
4159     if (SNaN)
4160       return true;
4161     // This can return a NaN if either operand is an sNaN, or if both operands
4162     // are NaN.
4163     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4164             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4165            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4166             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4167   }
4168   case ISD::FMINIMUM:
4169   case ISD::FMAXIMUM: {
4170     // TODO: Does this quiet or return the origina NaN as-is?
4171     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4172            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4173   }
4174   case ISD::EXTRACT_VECTOR_ELT: {
4175     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4176   }
4177   default:
4178     if (Opcode >= ISD::BUILTIN_OP_END ||
4179         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4180         Opcode == ISD::INTRINSIC_W_CHAIN ||
4181         Opcode == ISD::INTRINSIC_VOID) {
4182       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4183     }
4184 
4185     return false;
4186   }
4187 }
4188 
4189 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4190   assert(Op.getValueType().isFloatingPoint() &&
4191          "Floating point type expected");
4192 
4193   // If the value is a constant, we can obviously see if it is a zero or not.
4194   // TODO: Add BuildVector support.
4195   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4196     return !C->isZero();
4197   return false;
4198 }
4199 
4200 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4201   assert(!Op.getValueType().isFloatingPoint() &&
4202          "Floating point types unsupported - use isKnownNeverZeroFloat");
4203 
4204   // If the value is a constant, we can obviously see if it is a zero or not.
4205   if (ISD::matchUnaryPredicate(
4206           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4207     return true;
4208 
4209   // TODO: Recognize more cases here.
4210   switch (Op.getOpcode()) {
4211   default: break;
4212   case ISD::OR:
4213     if (isKnownNeverZero(Op.getOperand(1)) ||
4214         isKnownNeverZero(Op.getOperand(0)))
4215       return true;
4216     break;
4217   }
4218 
4219   return false;
4220 }
4221 
4222 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4223   // Check the obvious case.
4224   if (A == B) return true;
4225 
4226   // For for negative and positive zero.
4227   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4228     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4229       if (CA->isZero() && CB->isZero()) return true;
4230 
4231   // Otherwise they may not be equal.
4232   return false;
4233 }
4234 
4235 // FIXME: unify with llvm::haveNoCommonBitsSet.
4236 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4237 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4238   assert(A.getValueType() == B.getValueType() &&
4239          "Values must have the same type");
4240   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4241 }
4242 
4243 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4244                                 ArrayRef<SDValue> Ops,
4245                                 SelectionDAG &DAG) {
4246   int NumOps = Ops.size();
4247   assert(NumOps != 0 && "Can't build an empty vector!");
4248   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4249          "Incorrect element count in BUILD_VECTOR!");
4250 
4251   // BUILD_VECTOR of UNDEFs is UNDEF.
4252   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4253     return DAG.getUNDEF(VT);
4254 
4255   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4256   SDValue IdentitySrc;
4257   bool IsIdentity = true;
4258   for (int i = 0; i != NumOps; ++i) {
4259     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4260         Ops[i].getOperand(0).getValueType() != VT ||
4261         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4262         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4263         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4264       IsIdentity = false;
4265       break;
4266     }
4267     IdentitySrc = Ops[i].getOperand(0);
4268   }
4269   if (IsIdentity)
4270     return IdentitySrc;
4271 
4272   return SDValue();
4273 }
4274 
4275 /// Try to simplify vector concatenation to an input value, undef, or build
4276 /// vector.
4277 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4278                                   ArrayRef<SDValue> Ops,
4279                                   SelectionDAG &DAG) {
4280   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4281   assert(llvm::all_of(Ops,
4282                       [Ops](SDValue Op) {
4283                         return Ops[0].getValueType() == Op.getValueType();
4284                       }) &&
4285          "Concatenation of vectors with inconsistent value types!");
4286   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4287              VT.getVectorNumElements() &&
4288          "Incorrect element count in vector concatenation!");
4289 
4290   if (Ops.size() == 1)
4291     return Ops[0];
4292 
4293   // Concat of UNDEFs is UNDEF.
4294   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4295     return DAG.getUNDEF(VT);
4296 
4297   // Scan the operands and look for extract operations from a single source
4298   // that correspond to insertion at the same location via this concatenation:
4299   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4300   SDValue IdentitySrc;
4301   bool IsIdentity = true;
4302   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4303     SDValue Op = Ops[i];
4304     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4305     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4306         Op.getOperand(0).getValueType() != VT ||
4307         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4308         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4309         Op.getConstantOperandVal(1) != IdentityIndex) {
4310       IsIdentity = false;
4311       break;
4312     }
4313     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4314            "Unexpected identity source vector for concat of extracts");
4315     IdentitySrc = Op.getOperand(0);
4316   }
4317   if (IsIdentity) {
4318     assert(IdentitySrc && "Failed to set source vector of extracts");
4319     return IdentitySrc;
4320   }
4321 
4322   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4323   // simplified to one big BUILD_VECTOR.
4324   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4325   EVT SVT = VT.getScalarType();
4326   SmallVector<SDValue, 16> Elts;
4327   for (SDValue Op : Ops) {
4328     EVT OpVT = Op.getValueType();
4329     if (Op.isUndef())
4330       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4331     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4332       Elts.append(Op->op_begin(), Op->op_end());
4333     else
4334       return SDValue();
4335   }
4336 
4337   // BUILD_VECTOR requires all inputs to be of the same type, find the
4338   // maximum type and extend them all.
4339   for (SDValue Op : Elts)
4340     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4341 
4342   if (SVT.bitsGT(VT.getScalarType()))
4343     for (SDValue &Op : Elts)
4344       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4345                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4346                : DAG.getSExtOrTrunc(Op, DL, SVT);
4347 
4348   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4349   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4350   return V;
4351 }
4352 
4353 /// Gets or creates the specified node.
4354 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4355   FoldingSetNodeID ID;
4356   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4357   void *IP = nullptr;
4358   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4359     return SDValue(E, 0);
4360 
4361   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4362                               getVTList(VT));
4363   CSEMap.InsertNode(N, IP);
4364 
4365   InsertNode(N);
4366   SDValue V = SDValue(N, 0);
4367   NewSDValueDbgMsg(V, "Creating new node: ", this);
4368   return V;
4369 }
4370 
4371 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4372                               SDValue Operand, const SDNodeFlags Flags) {
4373   // Constant fold unary operations with an integer constant operand. Even
4374   // opaque constant will be folded, because the folding of unary operations
4375   // doesn't create new constants with different values. Nevertheless, the
4376   // opaque flag is preserved during folding to prevent future folding with
4377   // other constants.
4378   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4379     const APInt &Val = C->getAPIntValue();
4380     switch (Opcode) {
4381     default: break;
4382     case ISD::SIGN_EXTEND:
4383       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4384                          C->isTargetOpcode(), C->isOpaque());
4385     case ISD::TRUNCATE:
4386       if (C->isOpaque())
4387         break;
4388       LLVM_FALLTHROUGH;
4389     case ISD::ANY_EXTEND:
4390     case ISD::ZERO_EXTEND:
4391       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4392                          C->isTargetOpcode(), C->isOpaque());
4393     case ISD::UINT_TO_FP:
4394     case ISD::SINT_TO_FP: {
4395       APFloat apf(EVTToAPFloatSemantics(VT),
4396                   APInt::getNullValue(VT.getSizeInBits()));
4397       (void)apf.convertFromAPInt(Val,
4398                                  Opcode==ISD::SINT_TO_FP,
4399                                  APFloat::rmNearestTiesToEven);
4400       return getConstantFP(apf, DL, VT);
4401     }
4402     case ISD::BITCAST:
4403       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4404         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4405       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4406         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4407       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4408         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4409       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4410         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4411       break;
4412     case ISD::ABS:
4413       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4414                          C->isOpaque());
4415     case ISD::BITREVERSE:
4416       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4417                          C->isOpaque());
4418     case ISD::BSWAP:
4419       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4420                          C->isOpaque());
4421     case ISD::CTPOP:
4422       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4423                          C->isOpaque());
4424     case ISD::CTLZ:
4425     case ISD::CTLZ_ZERO_UNDEF:
4426       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4427                          C->isOpaque());
4428     case ISD::CTTZ:
4429     case ISD::CTTZ_ZERO_UNDEF:
4430       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4431                          C->isOpaque());
4432     case ISD::FP16_TO_FP: {
4433       bool Ignored;
4434       APFloat FPV(APFloat::IEEEhalf(),
4435                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4436 
4437       // This can return overflow, underflow, or inexact; we don't care.
4438       // FIXME need to be more flexible about rounding mode.
4439       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4440                         APFloat::rmNearestTiesToEven, &Ignored);
4441       return getConstantFP(FPV, DL, VT);
4442     }
4443     }
4444   }
4445 
4446   // Constant fold unary operations with a floating point constant operand.
4447   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4448     APFloat V = C->getValueAPF();    // make copy
4449     switch (Opcode) {
4450     case ISD::FNEG:
4451       V.changeSign();
4452       return getConstantFP(V, DL, VT);
4453     case ISD::FABS:
4454       V.clearSign();
4455       return getConstantFP(V, DL, VT);
4456     case ISD::FCEIL: {
4457       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4458       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4459         return getConstantFP(V, DL, VT);
4460       break;
4461     }
4462     case ISD::FTRUNC: {
4463       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4464       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4465         return getConstantFP(V, DL, VT);
4466       break;
4467     }
4468     case ISD::FFLOOR: {
4469       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4470       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4471         return getConstantFP(V, DL, VT);
4472       break;
4473     }
4474     case ISD::FP_EXTEND: {
4475       bool ignored;
4476       // This can return overflow, underflow, or inexact; we don't care.
4477       // FIXME need to be more flexible about rounding mode.
4478       (void)V.convert(EVTToAPFloatSemantics(VT),
4479                       APFloat::rmNearestTiesToEven, &ignored);
4480       return getConstantFP(V, DL, VT);
4481     }
4482     case ISD::FP_TO_SINT:
4483     case ISD::FP_TO_UINT: {
4484       bool ignored;
4485       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4486       // FIXME need to be more flexible about rounding mode.
4487       APFloat::opStatus s =
4488           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4489       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4490         break;
4491       return getConstant(IntVal, DL, VT);
4492     }
4493     case ISD::BITCAST:
4494       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4495         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4496       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4497         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4498       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4499         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4500       break;
4501     case ISD::FP_TO_FP16: {
4502       bool Ignored;
4503       // This can return overflow, underflow, or inexact; we don't care.
4504       // FIXME need to be more flexible about rounding mode.
4505       (void)V.convert(APFloat::IEEEhalf(),
4506                       APFloat::rmNearestTiesToEven, &Ignored);
4507       return getConstant(V.bitcastToAPInt(), DL, VT);
4508     }
4509     }
4510   }
4511 
4512   // Constant fold unary operations with a vector integer or float operand.
4513   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4514     if (BV->isConstant()) {
4515       switch (Opcode) {
4516       default:
4517         // FIXME: Entirely reasonable to perform folding of other unary
4518         // operations here as the need arises.
4519         break;
4520       case ISD::FNEG:
4521       case ISD::FABS:
4522       case ISD::FCEIL:
4523       case ISD::FTRUNC:
4524       case ISD::FFLOOR:
4525       case ISD::FP_EXTEND:
4526       case ISD::FP_TO_SINT:
4527       case ISD::FP_TO_UINT:
4528       case ISD::TRUNCATE:
4529       case ISD::ANY_EXTEND:
4530       case ISD::ZERO_EXTEND:
4531       case ISD::SIGN_EXTEND:
4532       case ISD::UINT_TO_FP:
4533       case ISD::SINT_TO_FP:
4534       case ISD::ABS:
4535       case ISD::BITREVERSE:
4536       case ISD::BSWAP:
4537       case ISD::CTLZ:
4538       case ISD::CTLZ_ZERO_UNDEF:
4539       case ISD::CTTZ:
4540       case ISD::CTTZ_ZERO_UNDEF:
4541       case ISD::CTPOP: {
4542         SDValue Ops = { Operand };
4543         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4544           return Fold;
4545       }
4546       }
4547     }
4548   }
4549 
4550   unsigned OpOpcode = Operand.getNode()->getOpcode();
4551   switch (Opcode) {
4552   case ISD::TokenFactor:
4553   case ISD::MERGE_VALUES:
4554   case ISD::CONCAT_VECTORS:
4555     return Operand;         // Factor, merge or concat of one node?  No need.
4556   case ISD::BUILD_VECTOR: {
4557     // Attempt to simplify BUILD_VECTOR.
4558     SDValue Ops[] = {Operand};
4559     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4560       return V;
4561     break;
4562   }
4563   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4564   case ISD::FP_EXTEND:
4565     assert(VT.isFloatingPoint() &&
4566            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4567     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4568     assert((!VT.isVector() ||
4569             VT.getVectorNumElements() ==
4570             Operand.getValueType().getVectorNumElements()) &&
4571            "Vector element count mismatch!");
4572     assert(Operand.getValueType().bitsLT(VT) &&
4573            "Invalid fpext node, dst < src!");
4574     if (Operand.isUndef())
4575       return getUNDEF(VT);
4576     break;
4577   case ISD::FP_TO_SINT:
4578   case ISD::FP_TO_UINT:
4579     if (Operand.isUndef())
4580       return getUNDEF(VT);
4581     break;
4582   case ISD::SINT_TO_FP:
4583   case ISD::UINT_TO_FP:
4584     // [us]itofp(undef) = 0, because the result value is bounded.
4585     if (Operand.isUndef())
4586       return getConstantFP(0.0, DL, VT);
4587     break;
4588   case ISD::SIGN_EXTEND:
4589     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4590            "Invalid SIGN_EXTEND!");
4591     assert(VT.isVector() == Operand.getValueType().isVector() &&
4592            "SIGN_EXTEND result type type should be vector iff the operand "
4593            "type is vector!");
4594     if (Operand.getValueType() == VT) return Operand;   // noop extension
4595     assert((!VT.isVector() ||
4596             VT.getVectorNumElements() ==
4597             Operand.getValueType().getVectorNumElements()) &&
4598            "Vector element count mismatch!");
4599     assert(Operand.getValueType().bitsLT(VT) &&
4600            "Invalid sext node, dst < src!");
4601     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4602       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4603     else if (OpOpcode == ISD::UNDEF)
4604       // sext(undef) = 0, because the top bits will all be the same.
4605       return getConstant(0, DL, VT);
4606     break;
4607   case ISD::ZERO_EXTEND:
4608     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4609            "Invalid ZERO_EXTEND!");
4610     assert(VT.isVector() == Operand.getValueType().isVector() &&
4611            "ZERO_EXTEND result type type should be vector iff the operand "
4612            "type is vector!");
4613     if (Operand.getValueType() == VT) return Operand;   // noop extension
4614     assert((!VT.isVector() ||
4615             VT.getVectorNumElements() ==
4616             Operand.getValueType().getVectorNumElements()) &&
4617            "Vector element count mismatch!");
4618     assert(Operand.getValueType().bitsLT(VT) &&
4619            "Invalid zext node, dst < src!");
4620     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4621       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4622     else if (OpOpcode == ISD::UNDEF)
4623       // zext(undef) = 0, because the top bits will be zero.
4624       return getConstant(0, DL, VT);
4625     break;
4626   case ISD::ANY_EXTEND:
4627     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4628            "Invalid ANY_EXTEND!");
4629     assert(VT.isVector() == Operand.getValueType().isVector() &&
4630            "ANY_EXTEND result type type should be vector iff the operand "
4631            "type is vector!");
4632     if (Operand.getValueType() == VT) return Operand;   // noop extension
4633     assert((!VT.isVector() ||
4634             VT.getVectorNumElements() ==
4635             Operand.getValueType().getVectorNumElements()) &&
4636            "Vector element count mismatch!");
4637     assert(Operand.getValueType().bitsLT(VT) &&
4638            "Invalid anyext node, dst < src!");
4639 
4640     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4641         OpOpcode == ISD::ANY_EXTEND)
4642       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4643       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4644     else if (OpOpcode == ISD::UNDEF)
4645       return getUNDEF(VT);
4646 
4647     // (ext (trunc x)) -> x
4648     if (OpOpcode == ISD::TRUNCATE) {
4649       SDValue OpOp = Operand.getOperand(0);
4650       if (OpOp.getValueType() == VT) {
4651         transferDbgValues(Operand, OpOp);
4652         return OpOp;
4653       }
4654     }
4655     break;
4656   case ISD::TRUNCATE:
4657     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4658            "Invalid TRUNCATE!");
4659     assert(VT.isVector() == Operand.getValueType().isVector() &&
4660            "TRUNCATE result type type should be vector iff the operand "
4661            "type is vector!");
4662     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4663     assert((!VT.isVector() ||
4664             VT.getVectorNumElements() ==
4665             Operand.getValueType().getVectorNumElements()) &&
4666            "Vector element count mismatch!");
4667     assert(Operand.getValueType().bitsGT(VT) &&
4668            "Invalid truncate node, src < dst!");
4669     if (OpOpcode == ISD::TRUNCATE)
4670       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4671     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4672         OpOpcode == ISD::ANY_EXTEND) {
4673       // If the source is smaller than the dest, we still need an extend.
4674       if (Operand.getOperand(0).getValueType().getScalarType()
4675             .bitsLT(VT.getScalarType()))
4676         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4677       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4678         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4679       return Operand.getOperand(0);
4680     }
4681     if (OpOpcode == ISD::UNDEF)
4682       return getUNDEF(VT);
4683     break;
4684   case ISD::ANY_EXTEND_VECTOR_INREG:
4685   case ISD::ZERO_EXTEND_VECTOR_INREG:
4686   case ISD::SIGN_EXTEND_VECTOR_INREG:
4687     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4688     assert(Operand.getValueType().bitsLE(VT) &&
4689            "The input must be the same size or smaller than the result.");
4690     assert(VT.getVectorNumElements() <
4691              Operand.getValueType().getVectorNumElements() &&
4692            "The destination vector type must have fewer lanes than the input.");
4693     break;
4694   case ISD::ABS:
4695     assert(VT.isInteger() && VT == Operand.getValueType() &&
4696            "Invalid ABS!");
4697     if (OpOpcode == ISD::UNDEF)
4698       return getUNDEF(VT);
4699     break;
4700   case ISD::BSWAP:
4701     assert(VT.isInteger() && VT == Operand.getValueType() &&
4702            "Invalid BSWAP!");
4703     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4704            "BSWAP types must be a multiple of 16 bits!");
4705     if (OpOpcode == ISD::UNDEF)
4706       return getUNDEF(VT);
4707     break;
4708   case ISD::BITREVERSE:
4709     assert(VT.isInteger() && VT == Operand.getValueType() &&
4710            "Invalid BITREVERSE!");
4711     if (OpOpcode == ISD::UNDEF)
4712       return getUNDEF(VT);
4713     break;
4714   case ISD::BITCAST:
4715     // Basic sanity checking.
4716     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4717            "Cannot BITCAST between types of different sizes!");
4718     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4719     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4720       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4721     if (OpOpcode == ISD::UNDEF)
4722       return getUNDEF(VT);
4723     break;
4724   case ISD::SCALAR_TO_VECTOR:
4725     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4726            (VT.getVectorElementType() == Operand.getValueType() ||
4727             (VT.getVectorElementType().isInteger() &&
4728              Operand.getValueType().isInteger() &&
4729              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4730            "Illegal SCALAR_TO_VECTOR node!");
4731     if (OpOpcode == ISD::UNDEF)
4732       return getUNDEF(VT);
4733     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4734     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4735         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4736         Operand.getConstantOperandVal(1) == 0 &&
4737         Operand.getOperand(0).getValueType() == VT)
4738       return Operand.getOperand(0);
4739     break;
4740   case ISD::FNEG:
4741     // Negation of an unknown bag of bits is still completely undefined.
4742     if (OpOpcode == ISD::UNDEF)
4743       return getUNDEF(VT);
4744 
4745     if (OpOpcode == ISD::FNEG)  // --X -> X
4746       return Operand.getOperand(0);
4747     break;
4748   case ISD::FABS:
4749     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4750       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4751     break;
4752   }
4753 
4754   SDNode *N;
4755   SDVTList VTs = getVTList(VT);
4756   SDValue Ops[] = {Operand};
4757   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4758     FoldingSetNodeID ID;
4759     AddNodeIDNode(ID, Opcode, VTs, Ops);
4760     void *IP = nullptr;
4761     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4762       E->intersectFlagsWith(Flags);
4763       return SDValue(E, 0);
4764     }
4765 
4766     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4767     N->setFlags(Flags);
4768     createOperands(N, Ops);
4769     CSEMap.InsertNode(N, IP);
4770   } else {
4771     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4772     createOperands(N, Ops);
4773   }
4774 
4775   InsertNode(N);
4776   SDValue V = SDValue(N, 0);
4777   NewSDValueDbgMsg(V, "Creating new node: ", this);
4778   return V;
4779 }
4780 
4781 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4782                                        const APInt &C2) {
4783   switch (Opcode) {
4784   case ISD::ADD:  return C1 + C2;
4785   case ISD::SUB:  return C1 - C2;
4786   case ISD::MUL:  return C1 * C2;
4787   case ISD::AND:  return C1 & C2;
4788   case ISD::OR:   return C1 | C2;
4789   case ISD::XOR:  return C1 ^ C2;
4790   case ISD::SHL:  return C1 << C2;
4791   case ISD::SRL:  return C1.lshr(C2);
4792   case ISD::SRA:  return C1.ashr(C2);
4793   case ISD::ROTL: return C1.rotl(C2);
4794   case ISD::ROTR: return C1.rotr(C2);
4795   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4796   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4797   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4798   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4799   case ISD::SADDSAT: return C1.sadd_sat(C2);
4800   case ISD::UADDSAT: return C1.uadd_sat(C2);
4801   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4802   case ISD::USUBSAT: return C1.usub_sat(C2);
4803   case ISD::UDIV:
4804     if (!C2.getBoolValue())
4805       break;
4806     return C1.udiv(C2);
4807   case ISD::UREM:
4808     if (!C2.getBoolValue())
4809       break;
4810     return C1.urem(C2);
4811   case ISD::SDIV:
4812     if (!C2.getBoolValue())
4813       break;
4814     return C1.sdiv(C2);
4815   case ISD::SREM:
4816     if (!C2.getBoolValue())
4817       break;
4818     return C1.srem(C2);
4819   }
4820   return llvm::None;
4821 }
4822 
4823 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4824                                        const GlobalAddressSDNode *GA,
4825                                        const SDNode *N2) {
4826   if (GA->getOpcode() != ISD::GlobalAddress)
4827     return SDValue();
4828   if (!TLI->isOffsetFoldingLegal(GA))
4829     return SDValue();
4830   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4831   if (!C2)
4832     return SDValue();
4833   int64_t Offset = C2->getSExtValue();
4834   switch (Opcode) {
4835   case ISD::ADD: break;
4836   case ISD::SUB: Offset = -uint64_t(Offset); break;
4837   default: return SDValue();
4838   }
4839   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4840                           GA->getOffset() + uint64_t(Offset));
4841 }
4842 
4843 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4844   switch (Opcode) {
4845   case ISD::SDIV:
4846   case ISD::UDIV:
4847   case ISD::SREM:
4848   case ISD::UREM: {
4849     // If a divisor is zero/undef or any element of a divisor vector is
4850     // zero/undef, the whole op is undef.
4851     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4852     SDValue Divisor = Ops[1];
4853     if (Divisor.isUndef() || isNullConstant(Divisor))
4854       return true;
4855 
4856     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4857            llvm::any_of(Divisor->op_values(),
4858                         [](SDValue V) { return V.isUndef() ||
4859                                         isNullConstant(V); });
4860     // TODO: Handle signed overflow.
4861   }
4862   // TODO: Handle oversized shifts.
4863   default:
4864     return false;
4865   }
4866 }
4867 
4868 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4869                                              EVT VT, ArrayRef<SDValue> Ops) {
4870   // If the opcode is a target-specific ISD node, there's nothing we can
4871   // do here and the operand rules may not line up with the below, so
4872   // bail early.
4873   if (Opcode >= ISD::BUILTIN_OP_END)
4874     return SDValue();
4875 
4876   // For now, the array Ops should only contain two values.
4877   // This enforcement will be removed once this function is merged with
4878   // FoldConstantVectorArithmetic
4879   if (Ops.size() != 2)
4880     return SDValue();
4881 
4882   if (isUndef(Opcode, Ops))
4883     return getUNDEF(VT);
4884 
4885   SDNode *N1 = Ops[0].getNode();
4886   SDNode *N2 = Ops[1].getNode();
4887 
4888   // Handle the case of two scalars.
4889   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4890     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4891       if (C1->isOpaque() || C2->isOpaque())
4892         return SDValue();
4893 
4894       Optional<APInt> FoldAttempt =
4895           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4896       if (!FoldAttempt)
4897         return SDValue();
4898 
4899       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4900       assert((!Folded || !VT.isVector()) &&
4901              "Can't fold vectors ops with scalar operands");
4902       return Folded;
4903     }
4904   }
4905 
4906   // fold (add Sym, c) -> Sym+c
4907   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4908     return FoldSymbolOffset(Opcode, VT, GA, N2);
4909   if (TLI->isCommutativeBinOp(Opcode))
4910     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4911       return FoldSymbolOffset(Opcode, VT, GA, N1);
4912 
4913   // For vectors, extract each constant element and fold them individually.
4914   // Either input may be an undef value.
4915   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4916   if (!BV1 && !N1->isUndef())
4917     return SDValue();
4918   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4919   if (!BV2 && !N2->isUndef())
4920     return SDValue();
4921   // If both operands are undef, that's handled the same way as scalars.
4922   if (!BV1 && !BV2)
4923     return SDValue();
4924 
4925   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4926          "Vector binop with different number of elements in operands?");
4927 
4928   EVT SVT = VT.getScalarType();
4929   EVT LegalSVT = SVT;
4930   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4931     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4932     if (LegalSVT.bitsLT(SVT))
4933       return SDValue();
4934   }
4935   SmallVector<SDValue, 4> Outputs;
4936   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4937   for (unsigned I = 0; I != NumOps; ++I) {
4938     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4939     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4940     if (SVT.isInteger()) {
4941       if (V1->getValueType(0).bitsGT(SVT))
4942         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4943       if (V2->getValueType(0).bitsGT(SVT))
4944         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4945     }
4946 
4947     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4948       return SDValue();
4949 
4950     // Fold one vector element.
4951     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4952     if (LegalSVT != SVT)
4953       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4954 
4955     // Scalar folding only succeeded if the result is a constant or UNDEF.
4956     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4957         ScalarResult.getOpcode() != ISD::ConstantFP)
4958       return SDValue();
4959     Outputs.push_back(ScalarResult);
4960   }
4961 
4962   assert(VT.getVectorNumElements() == Outputs.size() &&
4963          "Vector size mismatch!");
4964 
4965   // We may have a vector type but a scalar result. Create a splat.
4966   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4967 
4968   // Build a big vector out of the scalar elements we generated.
4969   return getBuildVector(VT, SDLoc(), Outputs);
4970 }
4971 
4972 // TODO: Merge with FoldConstantArithmetic
4973 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4974                                                    const SDLoc &DL, EVT VT,
4975                                                    ArrayRef<SDValue> Ops,
4976                                                    const SDNodeFlags Flags) {
4977   // If the opcode is a target-specific ISD node, there's nothing we can
4978   // do here and the operand rules may not line up with the below, so
4979   // bail early.
4980   if (Opcode >= ISD::BUILTIN_OP_END)
4981     return SDValue();
4982 
4983   if (isUndef(Opcode, Ops))
4984     return getUNDEF(VT);
4985 
4986   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4987   if (!VT.isVector())
4988     return SDValue();
4989 
4990   unsigned NumElts = VT.getVectorNumElements();
4991 
4992   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4993     return !Op.getValueType().isVector() ||
4994            Op.getValueType().getVectorNumElements() == NumElts;
4995   };
4996 
4997   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4998     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4999     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5000            (BV && BV->isConstant());
5001   };
5002 
5003   // All operands must be vector types with the same number of elements as
5004   // the result type and must be either UNDEF or a build vector of constant
5005   // or UNDEF scalars.
5006   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5007       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5008     return SDValue();
5009 
5010   // If we are comparing vectors, then the result needs to be a i1 boolean
5011   // that is then sign-extended back to the legal result type.
5012   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5013 
5014   // Find legal integer scalar type for constant promotion and
5015   // ensure that its scalar size is at least as large as source.
5016   EVT LegalSVT = VT.getScalarType();
5017   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5018     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5019     if (LegalSVT.bitsLT(VT.getScalarType()))
5020       return SDValue();
5021   }
5022 
5023   // Constant fold each scalar lane separately.
5024   SmallVector<SDValue, 4> ScalarResults;
5025   for (unsigned i = 0; i != NumElts; i++) {
5026     SmallVector<SDValue, 4> ScalarOps;
5027     for (SDValue Op : Ops) {
5028       EVT InSVT = Op.getValueType().getScalarType();
5029       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5030       if (!InBV) {
5031         // We've checked that this is UNDEF or a constant of some kind.
5032         if (Op.isUndef())
5033           ScalarOps.push_back(getUNDEF(InSVT));
5034         else
5035           ScalarOps.push_back(Op);
5036         continue;
5037       }
5038 
5039       SDValue ScalarOp = InBV->getOperand(i);
5040       EVT ScalarVT = ScalarOp.getValueType();
5041 
5042       // Build vector (integer) scalar operands may need implicit
5043       // truncation - do this before constant folding.
5044       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5045         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5046 
5047       ScalarOps.push_back(ScalarOp);
5048     }
5049 
5050     // Constant fold the scalar operands.
5051     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5052 
5053     // Legalize the (integer) scalar constant if necessary.
5054     if (LegalSVT != SVT)
5055       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5056 
5057     // Scalar folding only succeeded if the result is a constant or UNDEF.
5058     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5059         ScalarResult.getOpcode() != ISD::ConstantFP)
5060       return SDValue();
5061     ScalarResults.push_back(ScalarResult);
5062   }
5063 
5064   SDValue V = getBuildVector(VT, DL, ScalarResults);
5065   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5066   return V;
5067 }
5068 
5069 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5070                                          EVT VT, SDValue N1, SDValue N2) {
5071   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5072   //       should. That will require dealing with a potentially non-default
5073   //       rounding mode, checking the "opStatus" return value from the APFloat
5074   //       math calculations, and possibly other variations.
5075   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5076   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5077   if (N1CFP && N2CFP) {
5078     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5079     switch (Opcode) {
5080     case ISD::FADD:
5081       C1.add(C2, APFloat::rmNearestTiesToEven);
5082       return getConstantFP(C1, DL, VT);
5083     case ISD::FSUB:
5084       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5085       return getConstantFP(C1, DL, VT);
5086     case ISD::FMUL:
5087       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5088       return getConstantFP(C1, DL, VT);
5089     case ISD::FDIV:
5090       C1.divide(C2, APFloat::rmNearestTiesToEven);
5091       return getConstantFP(C1, DL, VT);
5092     case ISD::FREM:
5093       C1.mod(C2);
5094       return getConstantFP(C1, DL, VT);
5095     case ISD::FCOPYSIGN:
5096       C1.copySign(C2);
5097       return getConstantFP(C1, DL, VT);
5098     default: break;
5099     }
5100   }
5101   if (N1CFP && Opcode == ISD::FP_ROUND) {
5102     APFloat C1 = N1CFP->getValueAPF();    // make copy
5103     bool Unused;
5104     // This can return overflow, underflow, or inexact; we don't care.
5105     // FIXME need to be more flexible about rounding mode.
5106     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5107                       &Unused);
5108     return getConstantFP(C1, DL, VT);
5109   }
5110 
5111   switch (Opcode) {
5112   case ISD::FSUB:
5113     // -0.0 - undef --> undef (consistent with "fneg undef")
5114     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5115       return getUNDEF(VT);
5116     LLVM_FALLTHROUGH;
5117 
5118   case ISD::FADD:
5119   case ISD::FMUL:
5120   case ISD::FDIV:
5121   case ISD::FREM:
5122     // If both operands are undef, the result is undef. If 1 operand is undef,
5123     // the result is NaN. This should match the behavior of the IR optimizer.
5124     if (N1.isUndef() && N2.isUndef())
5125       return getUNDEF(VT);
5126     if (N1.isUndef() || N2.isUndef())
5127       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5128   }
5129   return SDValue();
5130 }
5131 
5132 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5133                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5134   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5135   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5136   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5137   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5138 
5139   // Canonicalize constant to RHS if commutative.
5140   if (TLI->isCommutativeBinOp(Opcode)) {
5141     if (N1C && !N2C) {
5142       std::swap(N1C, N2C);
5143       std::swap(N1, N2);
5144     } else if (N1CFP && !N2CFP) {
5145       std::swap(N1CFP, N2CFP);
5146       std::swap(N1, N2);
5147     }
5148   }
5149 
5150   switch (Opcode) {
5151   default: break;
5152   case ISD::TokenFactor:
5153     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5154            N2.getValueType() == MVT::Other && "Invalid token factor!");
5155     // Fold trivial token factors.
5156     if (N1.getOpcode() == ISD::EntryToken) return N2;
5157     if (N2.getOpcode() == ISD::EntryToken) return N1;
5158     if (N1 == N2) return N1;
5159     break;
5160   case ISD::BUILD_VECTOR: {
5161     // Attempt to simplify BUILD_VECTOR.
5162     SDValue Ops[] = {N1, N2};
5163     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5164       return V;
5165     break;
5166   }
5167   case ISD::CONCAT_VECTORS: {
5168     SDValue Ops[] = {N1, N2};
5169     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5170       return V;
5171     break;
5172   }
5173   case ISD::AND:
5174     assert(VT.isInteger() && "This operator does not apply to FP types!");
5175     assert(N1.getValueType() == N2.getValueType() &&
5176            N1.getValueType() == VT && "Binary operator types must match!");
5177     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5178     // worth handling here.
5179     if (N2C && N2C->isNullValue())
5180       return N2;
5181     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5182       return N1;
5183     break;
5184   case ISD::OR:
5185   case ISD::XOR:
5186   case ISD::ADD:
5187   case ISD::SUB:
5188     assert(VT.isInteger() && "This operator does not apply to FP types!");
5189     assert(N1.getValueType() == N2.getValueType() &&
5190            N1.getValueType() == VT && "Binary operator types must match!");
5191     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5192     // it's worth handling here.
5193     if (N2C && N2C->isNullValue())
5194       return N1;
5195     break;
5196   case ISD::MUL:
5197     assert(VT.isInteger() && "This operator does not apply to FP types!");
5198     assert(N1.getValueType() == N2.getValueType() &&
5199            N1.getValueType() == VT && "Binary operator types must match!");
5200     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5201       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5202       APInt N2CImm = N2C->getAPIntValue();
5203       return getVScale(DL, VT, MulImm * N2CImm);
5204     }
5205     break;
5206   case ISD::UDIV:
5207   case ISD::UREM:
5208   case ISD::MULHU:
5209   case ISD::MULHS:
5210   case ISD::SDIV:
5211   case ISD::SREM:
5212   case ISD::SMIN:
5213   case ISD::SMAX:
5214   case ISD::UMIN:
5215   case ISD::UMAX:
5216   case ISD::SADDSAT:
5217   case ISD::SSUBSAT:
5218   case ISD::UADDSAT:
5219   case ISD::USUBSAT:
5220     assert(VT.isInteger() && "This operator does not apply to FP types!");
5221     assert(N1.getValueType() == N2.getValueType() &&
5222            N1.getValueType() == VT && "Binary operator types must match!");
5223     break;
5224   case ISD::FADD:
5225   case ISD::FSUB:
5226   case ISD::FMUL:
5227   case ISD::FDIV:
5228   case ISD::FREM:
5229     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5230     assert(N1.getValueType() == N2.getValueType() &&
5231            N1.getValueType() == VT && "Binary operator types must match!");
5232     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5233       return V;
5234     break;
5235   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5236     assert(N1.getValueType() == VT &&
5237            N1.getValueType().isFloatingPoint() &&
5238            N2.getValueType().isFloatingPoint() &&
5239            "Invalid FCOPYSIGN!");
5240     break;
5241   case ISD::SHL:
5242     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5243       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5244       APInt ShiftImm = N2C->getAPIntValue();
5245       return getVScale(DL, VT, MulImm << ShiftImm);
5246     }
5247     LLVM_FALLTHROUGH;
5248   case ISD::SRA:
5249   case ISD::SRL:
5250     if (SDValue V = simplifyShift(N1, N2))
5251       return V;
5252     LLVM_FALLTHROUGH;
5253   case ISD::ROTL:
5254   case ISD::ROTR:
5255     assert(VT == N1.getValueType() &&
5256            "Shift operators return type must be the same as their first arg");
5257     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5258            "Shifts only work on integers");
5259     assert((!VT.isVector() || VT == N2.getValueType()) &&
5260            "Vector shift amounts must be in the same as their first arg");
5261     // Verify that the shift amount VT is big enough to hold valid shift
5262     // amounts.  This catches things like trying to shift an i1024 value by an
5263     // i8, which is easy to fall into in generic code that uses
5264     // TLI.getShiftAmount().
5265     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5266            "Invalid use of small shift amount with oversized value!");
5267 
5268     // Always fold shifts of i1 values so the code generator doesn't need to
5269     // handle them.  Since we know the size of the shift has to be less than the
5270     // size of the value, the shift/rotate count is guaranteed to be zero.
5271     if (VT == MVT::i1)
5272       return N1;
5273     if (N2C && N2C->isNullValue())
5274       return N1;
5275     break;
5276   case ISD::FP_ROUND:
5277     assert(VT.isFloatingPoint() &&
5278            N1.getValueType().isFloatingPoint() &&
5279            VT.bitsLE(N1.getValueType()) &&
5280            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5281            "Invalid FP_ROUND!");
5282     if (N1.getValueType() == VT) return N1;  // noop conversion.
5283     break;
5284   case ISD::AssertSext:
5285   case ISD::AssertZext: {
5286     EVT EVT = cast<VTSDNode>(N2)->getVT();
5287     assert(VT == N1.getValueType() && "Not an inreg extend!");
5288     assert(VT.isInteger() && EVT.isInteger() &&
5289            "Cannot *_EXTEND_INREG FP types");
5290     assert(!EVT.isVector() &&
5291            "AssertSExt/AssertZExt type should be the vector element type "
5292            "rather than the vector type!");
5293     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5294     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5295     break;
5296   }
5297   case ISD::SIGN_EXTEND_INREG: {
5298     EVT EVT = cast<VTSDNode>(N2)->getVT();
5299     assert(VT == N1.getValueType() && "Not an inreg extend!");
5300     assert(VT.isInteger() && EVT.isInteger() &&
5301            "Cannot *_EXTEND_INREG FP types");
5302     assert(EVT.isVector() == VT.isVector() &&
5303            "SIGN_EXTEND_INREG type should be vector iff the operand "
5304            "type is vector!");
5305     assert((!EVT.isVector() ||
5306             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5307            "Vector element counts must match in SIGN_EXTEND_INREG");
5308     assert(EVT.bitsLE(VT) && "Not extending!");
5309     if (EVT == VT) return N1;  // Not actually extending
5310 
5311     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5312       unsigned FromBits = EVT.getScalarSizeInBits();
5313       Val <<= Val.getBitWidth() - FromBits;
5314       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5315       return getConstant(Val, DL, ConstantVT);
5316     };
5317 
5318     if (N1C) {
5319       const APInt &Val = N1C->getAPIntValue();
5320       return SignExtendInReg(Val, VT);
5321     }
5322     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5323       SmallVector<SDValue, 8> Ops;
5324       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5325       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5326         SDValue Op = N1.getOperand(i);
5327         if (Op.isUndef()) {
5328           Ops.push_back(getUNDEF(OpVT));
5329           continue;
5330         }
5331         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5332         APInt Val = C->getAPIntValue();
5333         Ops.push_back(SignExtendInReg(Val, OpVT));
5334       }
5335       return getBuildVector(VT, DL, Ops);
5336     }
5337     break;
5338   }
5339   case ISD::EXTRACT_VECTOR_ELT:
5340     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5341            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5342              element type of the vector.");
5343 
5344     // Extract from an undefined value or using an undefined index is undefined.
5345     if (N1.isUndef() || N2.isUndef())
5346       return getUNDEF(VT);
5347 
5348     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5349     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5350       return getUNDEF(VT);
5351 
5352     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5353     // expanding copies of large vectors from registers.
5354     if (N2C &&
5355         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5356         N1.getNumOperands() > 0) {
5357       unsigned Factor =
5358         N1.getOperand(0).getValueType().getVectorNumElements();
5359       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5360                      N1.getOperand(N2C->getZExtValue() / Factor),
5361                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5362     }
5363 
5364     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5365     // expanding large vector constants.
5366     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5367       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5368 
5369       if (VT != Elt.getValueType())
5370         // If the vector element type is not legal, the BUILD_VECTOR operands
5371         // are promoted and implicitly truncated, and the result implicitly
5372         // extended. Make that explicit here.
5373         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5374 
5375       return Elt;
5376     }
5377 
5378     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5379     // operations are lowered to scalars.
5380     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5381       // If the indices are the same, return the inserted element else
5382       // if the indices are known different, extract the element from
5383       // the original vector.
5384       SDValue N1Op2 = N1.getOperand(2);
5385       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5386 
5387       if (N1Op2C && N2C) {
5388         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5389           if (VT == N1.getOperand(1).getValueType())
5390             return N1.getOperand(1);
5391           else
5392             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5393         }
5394 
5395         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5396       }
5397     }
5398 
5399     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5400     // when vector types are scalarized and v1iX is legal.
5401     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5402     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5403         N1.getValueType().getVectorNumElements() == 1) {
5404       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5405                      N1.getOperand(1));
5406     }
5407     break;
5408   case ISD::EXTRACT_ELEMENT:
5409     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5410     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5411            (N1.getValueType().isInteger() == VT.isInteger()) &&
5412            N1.getValueType() != VT &&
5413            "Wrong types for EXTRACT_ELEMENT!");
5414 
5415     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5416     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5417     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5418     if (N1.getOpcode() == ISD::BUILD_PAIR)
5419       return N1.getOperand(N2C->getZExtValue());
5420 
5421     // EXTRACT_ELEMENT of a constant int is also very common.
5422     if (N1C) {
5423       unsigned ElementSize = VT.getSizeInBits();
5424       unsigned Shift = ElementSize * N2C->getZExtValue();
5425       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5426       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5427     }
5428     break;
5429   case ISD::EXTRACT_SUBVECTOR:
5430     if (VT.isSimple() && N1.getValueType().isSimple()) {
5431       assert(VT.isVector() && N1.getValueType().isVector() &&
5432              "Extract subvector VTs must be a vectors!");
5433       assert(VT.getVectorElementType() ==
5434              N1.getValueType().getVectorElementType() &&
5435              "Extract subvector VTs must have the same element type!");
5436       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5437              "Extract subvector must be from larger vector to smaller vector!");
5438 
5439       if (N2C) {
5440         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5441                 <= N1.getValueType().getVectorNumElements())
5442                && "Extract subvector overflow!");
5443       }
5444 
5445       // Trivial extraction.
5446       if (VT.getSimpleVT() == N1.getSimpleValueType())
5447         return N1;
5448 
5449       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5450       if (N1.isUndef())
5451         return getUNDEF(VT);
5452 
5453       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5454       // the concat have the same type as the extract.
5455       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5456           N1.getNumOperands() > 0 &&
5457           VT == N1.getOperand(0).getValueType()) {
5458         unsigned Factor = VT.getVectorNumElements();
5459         return N1.getOperand(N2C->getZExtValue() / Factor);
5460       }
5461 
5462       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5463       // during shuffle legalization.
5464       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5465           VT == N1.getOperand(1).getValueType())
5466         return N1.getOperand(1);
5467     }
5468     break;
5469   }
5470 
5471   // Perform trivial constant folding.
5472   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5473     return SV;
5474 
5475   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5476     return V;
5477 
5478   // Canonicalize an UNDEF to the RHS, even over a constant.
5479   if (N1.isUndef()) {
5480     if (TLI->isCommutativeBinOp(Opcode)) {
5481       std::swap(N1, N2);
5482     } else {
5483       switch (Opcode) {
5484       case ISD::SIGN_EXTEND_INREG:
5485       case ISD::SUB:
5486         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5487       case ISD::UDIV:
5488       case ISD::SDIV:
5489       case ISD::UREM:
5490       case ISD::SREM:
5491       case ISD::SSUBSAT:
5492       case ISD::USUBSAT:
5493         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5494       }
5495     }
5496   }
5497 
5498   // Fold a bunch of operators when the RHS is undef.
5499   if (N2.isUndef()) {
5500     switch (Opcode) {
5501     case ISD::XOR:
5502       if (N1.isUndef())
5503         // Handle undef ^ undef -> 0 special case. This is a common
5504         // idiom (misuse).
5505         return getConstant(0, DL, VT);
5506       LLVM_FALLTHROUGH;
5507     case ISD::ADD:
5508     case ISD::SUB:
5509     case ISD::UDIV:
5510     case ISD::SDIV:
5511     case ISD::UREM:
5512     case ISD::SREM:
5513       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5514     case ISD::MUL:
5515     case ISD::AND:
5516     case ISD::SSUBSAT:
5517     case ISD::USUBSAT:
5518       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5519     case ISD::OR:
5520     case ISD::SADDSAT:
5521     case ISD::UADDSAT:
5522       return getAllOnesConstant(DL, VT);
5523     }
5524   }
5525 
5526   // Memoize this node if possible.
5527   SDNode *N;
5528   SDVTList VTs = getVTList(VT);
5529   SDValue Ops[] = {N1, N2};
5530   if (VT != MVT::Glue) {
5531     FoldingSetNodeID ID;
5532     AddNodeIDNode(ID, Opcode, VTs, Ops);
5533     void *IP = nullptr;
5534     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5535       E->intersectFlagsWith(Flags);
5536       return SDValue(E, 0);
5537     }
5538 
5539     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5540     N->setFlags(Flags);
5541     createOperands(N, Ops);
5542     CSEMap.InsertNode(N, IP);
5543   } else {
5544     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5545     createOperands(N, Ops);
5546   }
5547 
5548   InsertNode(N);
5549   SDValue V = SDValue(N, 0);
5550   NewSDValueDbgMsg(V, "Creating new node: ", this);
5551   return V;
5552 }
5553 
5554 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5555                               SDValue N1, SDValue N2, SDValue N3,
5556                               const SDNodeFlags Flags) {
5557   // Perform various simplifications.
5558   switch (Opcode) {
5559   case ISD::FMA: {
5560     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5561     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5562            N3.getValueType() == VT && "FMA types must match!");
5563     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5564     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5565     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5566     if (N1CFP && N2CFP && N3CFP) {
5567       APFloat  V1 = N1CFP->getValueAPF();
5568       const APFloat &V2 = N2CFP->getValueAPF();
5569       const APFloat &V3 = N3CFP->getValueAPF();
5570       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5571       return getConstantFP(V1, DL, VT);
5572     }
5573     break;
5574   }
5575   case ISD::BUILD_VECTOR: {
5576     // Attempt to simplify BUILD_VECTOR.
5577     SDValue Ops[] = {N1, N2, N3};
5578     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5579       return V;
5580     break;
5581   }
5582   case ISD::CONCAT_VECTORS: {
5583     SDValue Ops[] = {N1, N2, N3};
5584     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5585       return V;
5586     break;
5587   }
5588   case ISD::SETCC: {
5589     assert(VT.isInteger() && "SETCC result type must be an integer!");
5590     assert(N1.getValueType() == N2.getValueType() &&
5591            "SETCC operands must have the same type!");
5592     assert(VT.isVector() == N1.getValueType().isVector() &&
5593            "SETCC type should be vector iff the operand type is vector!");
5594     assert((!VT.isVector() ||
5595             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5596            "SETCC vector element counts must match!");
5597     // Use FoldSetCC to simplify SETCC's.
5598     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5599       return V;
5600     // Vector constant folding.
5601     SDValue Ops[] = {N1, N2, N3};
5602     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5603       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5604       return V;
5605     }
5606     break;
5607   }
5608   case ISD::SELECT:
5609   case ISD::VSELECT:
5610     if (SDValue V = simplifySelect(N1, N2, N3))
5611       return V;
5612     break;
5613   case ISD::VECTOR_SHUFFLE:
5614     llvm_unreachable("should use getVectorShuffle constructor!");
5615   case ISD::INSERT_VECTOR_ELT: {
5616     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5617     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5618     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5619       return getUNDEF(VT);
5620 
5621     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5622     if (N3.isUndef())
5623       return getUNDEF(VT);
5624 
5625     // If the inserted element is an UNDEF, just use the input vector.
5626     if (N2.isUndef())
5627       return N1;
5628 
5629     break;
5630   }
5631   case ISD::INSERT_SUBVECTOR: {
5632     // Inserting undef into undef is still undef.
5633     if (N1.isUndef() && N2.isUndef())
5634       return getUNDEF(VT);
5635     SDValue Index = N3;
5636     if (VT.isSimple() && N1.getValueType().isSimple()
5637         && N2.getValueType().isSimple()) {
5638       assert(VT.isVector() && N1.getValueType().isVector() &&
5639              N2.getValueType().isVector() &&
5640              "Insert subvector VTs must be a vectors");
5641       assert(VT == N1.getValueType() &&
5642              "Dest and insert subvector source types must match!");
5643       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5644              "Insert subvector must be from smaller vector to larger vector!");
5645       if (isa<ConstantSDNode>(Index)) {
5646         assert((N2.getValueType().getVectorNumElements() +
5647                 cast<ConstantSDNode>(Index)->getZExtValue()
5648                 <= VT.getVectorNumElements())
5649                && "Insert subvector overflow!");
5650       }
5651 
5652       // Trivial insertion.
5653       if (VT.getSimpleVT() == N2.getSimpleValueType())
5654         return N2;
5655 
5656       // If this is an insert of an extracted vector into an undef vector, we
5657       // can just use the input to the extract.
5658       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5659           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5660         return N2.getOperand(0);
5661     }
5662     break;
5663   }
5664   case ISD::BITCAST:
5665     // Fold bit_convert nodes from a type to themselves.
5666     if (N1.getValueType() == VT)
5667       return N1;
5668     break;
5669   }
5670 
5671   // Memoize node if it doesn't produce a flag.
5672   SDNode *N;
5673   SDVTList VTs = getVTList(VT);
5674   SDValue Ops[] = {N1, N2, N3};
5675   if (VT != MVT::Glue) {
5676     FoldingSetNodeID ID;
5677     AddNodeIDNode(ID, Opcode, VTs, Ops);
5678     void *IP = nullptr;
5679     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5680       E->intersectFlagsWith(Flags);
5681       return SDValue(E, 0);
5682     }
5683 
5684     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5685     N->setFlags(Flags);
5686     createOperands(N, Ops);
5687     CSEMap.InsertNode(N, IP);
5688   } else {
5689     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5690     createOperands(N, Ops);
5691   }
5692 
5693   InsertNode(N);
5694   SDValue V = SDValue(N, 0);
5695   NewSDValueDbgMsg(V, "Creating new node: ", this);
5696   return V;
5697 }
5698 
5699 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5700                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5701   SDValue Ops[] = { N1, N2, N3, N4 };
5702   return getNode(Opcode, DL, VT, Ops);
5703 }
5704 
5705 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5706                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5707                               SDValue N5) {
5708   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5709   return getNode(Opcode, DL, VT, Ops);
5710 }
5711 
5712 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5713 /// the incoming stack arguments to be loaded from the stack.
5714 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5715   SmallVector<SDValue, 8> ArgChains;
5716 
5717   // Include the original chain at the beginning of the list. When this is
5718   // used by target LowerCall hooks, this helps legalize find the
5719   // CALLSEQ_BEGIN node.
5720   ArgChains.push_back(Chain);
5721 
5722   // Add a chain value for each stack argument.
5723   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5724        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5725     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5726       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5727         if (FI->getIndex() < 0)
5728           ArgChains.push_back(SDValue(L, 1));
5729 
5730   // Build a tokenfactor for all the chains.
5731   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5732 }
5733 
5734 /// getMemsetValue - Vectorized representation of the memset value
5735 /// operand.
5736 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5737                               const SDLoc &dl) {
5738   assert(!Value.isUndef());
5739 
5740   unsigned NumBits = VT.getScalarSizeInBits();
5741   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5742     assert(C->getAPIntValue().getBitWidth() == 8);
5743     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5744     if (VT.isInteger()) {
5745       bool IsOpaque = VT.getSizeInBits() > 64 ||
5746           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5747       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5748     }
5749     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5750                              VT);
5751   }
5752 
5753   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5754   EVT IntVT = VT.getScalarType();
5755   if (!IntVT.isInteger())
5756     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5757 
5758   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5759   if (NumBits > 8) {
5760     // Use a multiplication with 0x010101... to extend the input to the
5761     // required length.
5762     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5763     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5764                         DAG.getConstant(Magic, dl, IntVT));
5765   }
5766 
5767   if (VT != Value.getValueType() && !VT.isInteger())
5768     Value = DAG.getBitcast(VT.getScalarType(), Value);
5769   if (VT != Value.getValueType())
5770     Value = DAG.getSplatBuildVector(VT, dl, Value);
5771 
5772   return Value;
5773 }
5774 
5775 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5776 /// used when a memcpy is turned into a memset when the source is a constant
5777 /// string ptr.
5778 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5779                                   const TargetLowering &TLI,
5780                                   const ConstantDataArraySlice &Slice) {
5781   // Handle vector with all elements zero.
5782   if (Slice.Array == nullptr) {
5783     if (VT.isInteger())
5784       return DAG.getConstant(0, dl, VT);
5785     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5786       return DAG.getConstantFP(0.0, dl, VT);
5787     else if (VT.isVector()) {
5788       unsigned NumElts = VT.getVectorNumElements();
5789       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5790       return DAG.getNode(ISD::BITCAST, dl, VT,
5791                          DAG.getConstant(0, dl,
5792                                          EVT::getVectorVT(*DAG.getContext(),
5793                                                           EltVT, NumElts)));
5794     } else
5795       llvm_unreachable("Expected type!");
5796   }
5797 
5798   assert(!VT.isVector() && "Can't handle vector type here!");
5799   unsigned NumVTBits = VT.getSizeInBits();
5800   unsigned NumVTBytes = NumVTBits / 8;
5801   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5802 
5803   APInt Val(NumVTBits, 0);
5804   if (DAG.getDataLayout().isLittleEndian()) {
5805     for (unsigned i = 0; i != NumBytes; ++i)
5806       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5807   } else {
5808     for (unsigned i = 0; i != NumBytes; ++i)
5809       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5810   }
5811 
5812   // If the "cost" of materializing the integer immediate is less than the cost
5813   // of a load, then it is cost effective to turn the load into the immediate.
5814   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5815   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5816     return DAG.getConstant(Val, dl, VT);
5817   return SDValue(nullptr, 0);
5818 }
5819 
5820 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5821                                            const SDLoc &DL,
5822                                            const SDNodeFlags Flags) {
5823   EVT VT = Base.getValueType();
5824   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5825 }
5826 
5827 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5828                                            const SDLoc &DL,
5829                                            const SDNodeFlags Flags) {
5830   assert(Offset.getValueType().isInteger());
5831   EVT BasePtrVT = Ptr.getValueType();
5832   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5833 }
5834 
5835 /// Returns true if memcpy source is constant data.
5836 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5837   uint64_t SrcDelta = 0;
5838   GlobalAddressSDNode *G = nullptr;
5839   if (Src.getOpcode() == ISD::GlobalAddress)
5840     G = cast<GlobalAddressSDNode>(Src);
5841   else if (Src.getOpcode() == ISD::ADD &&
5842            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5843            Src.getOperand(1).getOpcode() == ISD::Constant) {
5844     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5845     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5846   }
5847   if (!G)
5848     return false;
5849 
5850   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5851                                   SrcDelta + G->getOffset());
5852 }
5853 
5854 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5855                                       SelectionDAG &DAG) {
5856   // On Darwin, -Os means optimize for size without hurting performance, so
5857   // only really optimize for size when -Oz (MinSize) is used.
5858   if (MF.getTarget().getTargetTriple().isOSDarwin())
5859     return MF.getFunction().hasMinSize();
5860   return DAG.shouldOptForSize();
5861 }
5862 
5863 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5864                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5865                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5866                           SmallVector<SDValue, 16> &OutStoreChains) {
5867   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5868   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5869   SmallVector<SDValue, 16> GluedLoadChains;
5870   for (unsigned i = From; i < To; ++i) {
5871     OutChains.push_back(OutLoadChains[i]);
5872     GluedLoadChains.push_back(OutLoadChains[i]);
5873   }
5874 
5875   // Chain for all loads.
5876   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5877                                   GluedLoadChains);
5878 
5879   for (unsigned i = From; i < To; ++i) {
5880     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5881     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5882                                   ST->getBasePtr(), ST->getMemoryVT(),
5883                                   ST->getMemOperand());
5884     OutChains.push_back(NewStore);
5885   }
5886 }
5887 
5888 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5889                                        SDValue Chain, SDValue Dst, SDValue Src,
5890                                        uint64_t Size, Align Alignment,
5891                                        bool isVol, bool AlwaysInline,
5892                                        MachinePointerInfo DstPtrInfo,
5893                                        MachinePointerInfo SrcPtrInfo) {
5894   // Turn a memcpy of undef to nop.
5895   // FIXME: We need to honor volatile even is Src is undef.
5896   if (Src.isUndef())
5897     return Chain;
5898 
5899   // Expand memcpy to a series of load and store ops if the size operand falls
5900   // below a certain threshold.
5901   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5902   // rather than maybe a humongous number of loads and stores.
5903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5904   const DataLayout &DL = DAG.getDataLayout();
5905   LLVMContext &C = *DAG.getContext();
5906   std::vector<EVT> MemOps;
5907   bool DstAlignCanChange = false;
5908   MachineFunction &MF = DAG.getMachineFunction();
5909   MachineFrameInfo &MFI = MF.getFrameInfo();
5910   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5911   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5912   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5913     DstAlignCanChange = true;
5914   MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src));
5915   if (!SrcAlign || Alignment > *SrcAlign)
5916     SrcAlign = Alignment;
5917   assert(SrcAlign && "SrcAlign must be set");
5918   ConstantDataArraySlice Slice;
5919   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5920   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5921   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5922   const MemOp Op = isZeroConstant
5923                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
5924                                     /*IsZeroMemset*/ true, isVol)
5925                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
5926                                      *SrcAlign, isVol, CopyFromConstant);
5927   if (!TLI.findOptimalMemOpLowering(
5928           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
5929           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5930     return SDValue();
5931 
5932   if (DstAlignCanChange) {
5933     Type *Ty = MemOps[0].getTypeForEVT(C);
5934     Align NewAlign = DL.getABITypeAlign(Ty);
5935 
5936     // Don't promote to an alignment that would require dynamic stack
5937     // realignment.
5938     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5939     if (!TRI->needsStackRealignment(MF))
5940       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
5941         NewAlign = NewAlign / 2;
5942 
5943     if (NewAlign > Alignment) {
5944       // Give the stack frame object a larger alignment if needed.
5945       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
5946         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5947       Alignment = NewAlign;
5948     }
5949   }
5950 
5951   MachineMemOperand::Flags MMOFlags =
5952       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5953   SmallVector<SDValue, 16> OutLoadChains;
5954   SmallVector<SDValue, 16> OutStoreChains;
5955   SmallVector<SDValue, 32> OutChains;
5956   unsigned NumMemOps = MemOps.size();
5957   uint64_t SrcOff = 0, DstOff = 0;
5958   for (unsigned i = 0; i != NumMemOps; ++i) {
5959     EVT VT = MemOps[i];
5960     unsigned VTSize = VT.getSizeInBits() / 8;
5961     SDValue Value, Store;
5962 
5963     if (VTSize > Size) {
5964       // Issuing an unaligned load / store pair  that overlaps with the previous
5965       // pair. Adjust the offset accordingly.
5966       assert(i == NumMemOps-1 && i != 0);
5967       SrcOff -= VTSize - Size;
5968       DstOff -= VTSize - Size;
5969     }
5970 
5971     if (CopyFromConstant &&
5972         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5973       // It's unlikely a store of a vector immediate can be done in a single
5974       // instruction. It would require a load from a constantpool first.
5975       // We only handle zero vectors here.
5976       // FIXME: Handle other cases where store of vector immediate is done in
5977       // a single instruction.
5978       ConstantDataArraySlice SubSlice;
5979       if (SrcOff < Slice.Length) {
5980         SubSlice = Slice;
5981         SubSlice.move(SrcOff);
5982       } else {
5983         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5984         SubSlice.Array = nullptr;
5985         SubSlice.Offset = 0;
5986         SubSlice.Length = VTSize;
5987       }
5988       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5989       if (Value.getNode()) {
5990         Store = DAG.getStore(
5991             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5992             DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
5993         OutChains.push_back(Store);
5994       }
5995     }
5996 
5997     if (!Store.getNode()) {
5998       // The type might not be legal for the target.  This should only happen
5999       // if the type is smaller than a legal type, as on PPC, so the right
6000       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6001       // to Load/Store if NVT==VT.
6002       // FIXME does the case above also need this?
6003       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6004       assert(NVT.bitsGE(VT));
6005 
6006       bool isDereferenceable =
6007         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6008       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6009       if (isDereferenceable)
6010         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6011 
6012       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6013                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6014                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6015                              commonAlignment(*SrcAlign, SrcOff).value(),
6016                              SrcMMOFlags);
6017       OutLoadChains.push_back(Value.getValue(1));
6018 
6019       Store = DAG.getTruncStore(
6020           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6021           DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags);
6022       OutStoreChains.push_back(Store);
6023     }
6024     SrcOff += VTSize;
6025     DstOff += VTSize;
6026     Size -= VTSize;
6027   }
6028 
6029   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6030                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6031   unsigned NumLdStInMemcpy = OutStoreChains.size();
6032 
6033   if (NumLdStInMemcpy) {
6034     // It may be that memcpy might be converted to memset if it's memcpy
6035     // of constants. In such a case, we won't have loads and stores, but
6036     // just stores. In the absence of loads, there is nothing to gang up.
6037     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6038       // If target does not care, just leave as it.
6039       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6040         OutChains.push_back(OutLoadChains[i]);
6041         OutChains.push_back(OutStoreChains[i]);
6042       }
6043     } else {
6044       // Ld/St less than/equal limit set by target.
6045       if (NumLdStInMemcpy <= GluedLdStLimit) {
6046           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6047                                         NumLdStInMemcpy, OutLoadChains,
6048                                         OutStoreChains);
6049       } else {
6050         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6051         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6052         unsigned GlueIter = 0;
6053 
6054         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6055           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6056           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6057 
6058           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6059                                        OutLoadChains, OutStoreChains);
6060           GlueIter += GluedLdStLimit;
6061         }
6062 
6063         // Residual ld/st.
6064         if (RemainingLdStInMemcpy) {
6065           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6066                                         RemainingLdStInMemcpy, OutLoadChains,
6067                                         OutStoreChains);
6068         }
6069       }
6070     }
6071   }
6072   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6073 }
6074 
6075 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6076                                         SDValue Chain, SDValue Dst, SDValue Src,
6077                                         uint64_t Size, Align Alignment,
6078                                         bool isVol, bool AlwaysInline,
6079                                         MachinePointerInfo DstPtrInfo,
6080                                         MachinePointerInfo SrcPtrInfo) {
6081   // Turn a memmove of undef to nop.
6082   // FIXME: We need to honor volatile even is Src is undef.
6083   if (Src.isUndef())
6084     return Chain;
6085 
6086   // Expand memmove to a series of load and store ops if the size operand falls
6087   // below a certain threshold.
6088   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6089   const DataLayout &DL = DAG.getDataLayout();
6090   LLVMContext &C = *DAG.getContext();
6091   std::vector<EVT> MemOps;
6092   bool DstAlignCanChange = false;
6093   MachineFunction &MF = DAG.getMachineFunction();
6094   MachineFrameInfo &MFI = MF.getFrameInfo();
6095   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6096   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6097   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6098     DstAlignCanChange = true;
6099   MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src));
6100   if (!SrcAlign || Alignment > *SrcAlign)
6101     SrcAlign = Alignment;
6102   assert(SrcAlign && "SrcAlign must be set");
6103   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6104   if (!TLI.findOptimalMemOpLowering(
6105           MemOps, Limit,
6106           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6107                       /*IsVolatile*/ true),
6108           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6109           MF.getFunction().getAttributes()))
6110     return SDValue();
6111 
6112   if (DstAlignCanChange) {
6113     Type *Ty = MemOps[0].getTypeForEVT(C);
6114     Align NewAlign = DL.getABITypeAlign(Ty);
6115     if (NewAlign > Alignment) {
6116       // Give the stack frame object a larger alignment if needed.
6117       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6118         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6119       Alignment = NewAlign;
6120     }
6121   }
6122 
6123   MachineMemOperand::Flags MMOFlags =
6124       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6125   uint64_t SrcOff = 0, DstOff = 0;
6126   SmallVector<SDValue, 8> LoadValues;
6127   SmallVector<SDValue, 8> LoadChains;
6128   SmallVector<SDValue, 8> OutChains;
6129   unsigned NumMemOps = MemOps.size();
6130   for (unsigned i = 0; i < NumMemOps; i++) {
6131     EVT VT = MemOps[i];
6132     unsigned VTSize = VT.getSizeInBits() / 8;
6133     SDValue Value;
6134 
6135     bool isDereferenceable =
6136       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6137     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6138     if (isDereferenceable)
6139       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6140 
6141     Value = DAG.getLoad(
6142         VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6143         SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags);
6144     LoadValues.push_back(Value);
6145     LoadChains.push_back(Value.getValue(1));
6146     SrcOff += VTSize;
6147   }
6148   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6149   OutChains.clear();
6150   for (unsigned i = 0; i < NumMemOps; i++) {
6151     EVT VT = MemOps[i];
6152     unsigned VTSize = VT.getSizeInBits() / 8;
6153     SDValue Store;
6154 
6155     Store = DAG.getStore(
6156         Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6157         DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6158     OutChains.push_back(Store);
6159     DstOff += VTSize;
6160   }
6161 
6162   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6163 }
6164 
6165 /// Lower the call to 'memset' intrinsic function into a series of store
6166 /// operations.
6167 ///
6168 /// \param DAG Selection DAG where lowered code is placed.
6169 /// \param dl Link to corresponding IR location.
6170 /// \param Chain Control flow dependency.
6171 /// \param Dst Pointer to destination memory location.
6172 /// \param Src Value of byte to write into the memory.
6173 /// \param Size Number of bytes to write.
6174 /// \param Alignment Alignment of the destination in bytes.
6175 /// \param isVol True if destination is volatile.
6176 /// \param DstPtrInfo IR information on the memory pointer.
6177 /// \returns New head in the control flow, if lowering was successful, empty
6178 /// SDValue otherwise.
6179 ///
6180 /// The function tries to replace 'llvm.memset' intrinsic with several store
6181 /// operations and value calculation code. This is usually profitable for small
6182 /// memory size.
6183 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6184                                SDValue Chain, SDValue Dst, SDValue Src,
6185                                uint64_t Size, Align Alignment, bool isVol,
6186                                MachinePointerInfo DstPtrInfo) {
6187   // Turn a memset of undef to nop.
6188   // FIXME: We need to honor volatile even is Src is undef.
6189   if (Src.isUndef())
6190     return Chain;
6191 
6192   // Expand memset to a series of load/store ops if the size operand
6193   // falls below a certain threshold.
6194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6195   std::vector<EVT> MemOps;
6196   bool DstAlignCanChange = false;
6197   MachineFunction &MF = DAG.getMachineFunction();
6198   MachineFrameInfo &MFI = MF.getFrameInfo();
6199   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6200   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6201   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6202     DstAlignCanChange = true;
6203   bool IsZeroVal =
6204     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6205   if (!TLI.findOptimalMemOpLowering(
6206           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6207           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6208           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6209     return SDValue();
6210 
6211   if (DstAlignCanChange) {
6212     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6213     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6214     if (NewAlign > Alignment) {
6215       // Give the stack frame object a larger alignment if needed.
6216       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6217         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6218       Alignment = NewAlign;
6219     }
6220   }
6221 
6222   SmallVector<SDValue, 8> OutChains;
6223   uint64_t DstOff = 0;
6224   unsigned NumMemOps = MemOps.size();
6225 
6226   // Find the largest store and generate the bit pattern for it.
6227   EVT LargestVT = MemOps[0];
6228   for (unsigned i = 1; i < NumMemOps; i++)
6229     if (MemOps[i].bitsGT(LargestVT))
6230       LargestVT = MemOps[i];
6231   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6232 
6233   for (unsigned i = 0; i < NumMemOps; i++) {
6234     EVT VT = MemOps[i];
6235     unsigned VTSize = VT.getSizeInBits() / 8;
6236     if (VTSize > Size) {
6237       // Issuing an unaligned load / store pair  that overlaps with the previous
6238       // pair. Adjust the offset accordingly.
6239       assert(i == NumMemOps-1 && i != 0);
6240       DstOff -= VTSize - Size;
6241     }
6242 
6243     // If this store is smaller than the largest store see whether we can get
6244     // the smaller value for free with a truncate.
6245     SDValue Value = MemSetValue;
6246     if (VT.bitsLT(LargestVT)) {
6247       if (!LargestVT.isVector() && !VT.isVector() &&
6248           TLI.isTruncateFree(LargestVT, VT))
6249         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6250       else
6251         Value = getMemsetValue(Src, VT, DAG, dl);
6252     }
6253     assert(Value.getValueType() == VT && "Value with wrong type.");
6254     SDValue Store = DAG.getStore(
6255         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6256         DstPtrInfo.getWithOffset(DstOff), Alignment.value(),
6257         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6258     OutChains.push_back(Store);
6259     DstOff += VT.getSizeInBits() / 8;
6260     Size -= VTSize;
6261   }
6262 
6263   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6264 }
6265 
6266 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6267                                             unsigned AS) {
6268   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6269   // pointer operands can be losslessly bitcasted to pointers of address space 0
6270   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6271     report_fatal_error("cannot lower memory intrinsic in address space " +
6272                        Twine(AS));
6273   }
6274 }
6275 
6276 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6277                                 SDValue Src, SDValue Size, Align Alignment,
6278                                 bool isVol, bool AlwaysInline, bool isTailCall,
6279                                 MachinePointerInfo DstPtrInfo,
6280                                 MachinePointerInfo SrcPtrInfo) {
6281   // Check to see if we should lower the memcpy to loads and stores first.
6282   // For cases within the target-specified limits, this is the best choice.
6283   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6284   if (ConstantSize) {
6285     // Memcpy with size zero? Just return the original chain.
6286     if (ConstantSize->isNullValue())
6287       return Chain;
6288 
6289     SDValue Result = getMemcpyLoadsAndStores(
6290         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6291         isVol, false, DstPtrInfo, SrcPtrInfo);
6292     if (Result.getNode())
6293       return Result;
6294   }
6295 
6296   // Then check to see if we should lower the memcpy with target-specific
6297   // code. If the target chooses to do this, this is the next best.
6298   if (TSI) {
6299     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6300         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol,
6301         AlwaysInline, DstPtrInfo, SrcPtrInfo);
6302     if (Result.getNode())
6303       return Result;
6304   }
6305 
6306   // If we really need inline code and the target declined to provide it,
6307   // use a (potentially long) sequence of loads and stores.
6308   if (AlwaysInline) {
6309     assert(ConstantSize && "AlwaysInline requires a constant size!");
6310     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6311                                    ConstantSize->getZExtValue(), Alignment,
6312                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6313   }
6314 
6315   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6316   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6317 
6318   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6319   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6320   // respect volatile, so they may do things like read or write memory
6321   // beyond the given memory regions. But fixing this isn't easy, and most
6322   // people don't care.
6323 
6324   // Emit a library call.
6325   TargetLowering::ArgListTy Args;
6326   TargetLowering::ArgListEntry Entry;
6327   Entry.Ty = Type::getInt8PtrTy(*getContext());
6328   Entry.Node = Dst; Args.push_back(Entry);
6329   Entry.Node = Src; Args.push_back(Entry);
6330 
6331   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6332   Entry.Node = Size; Args.push_back(Entry);
6333   // FIXME: pass in SDLoc
6334   TargetLowering::CallLoweringInfo CLI(*this);
6335   CLI.setDebugLoc(dl)
6336       .setChain(Chain)
6337       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6338                     Dst.getValueType().getTypeForEVT(*getContext()),
6339                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6340                                       TLI->getPointerTy(getDataLayout())),
6341                     std::move(Args))
6342       .setDiscardResult()
6343       .setTailCall(isTailCall);
6344 
6345   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6346   return CallResult.second;
6347 }
6348 
6349 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6350                                       SDValue Dst, unsigned DstAlign,
6351                                       SDValue Src, unsigned SrcAlign,
6352                                       SDValue Size, Type *SizeTy,
6353                                       unsigned ElemSz, bool isTailCall,
6354                                       MachinePointerInfo DstPtrInfo,
6355                                       MachinePointerInfo SrcPtrInfo) {
6356   // Emit a library call.
6357   TargetLowering::ArgListTy Args;
6358   TargetLowering::ArgListEntry Entry;
6359   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6360   Entry.Node = Dst;
6361   Args.push_back(Entry);
6362 
6363   Entry.Node = Src;
6364   Args.push_back(Entry);
6365 
6366   Entry.Ty = SizeTy;
6367   Entry.Node = Size;
6368   Args.push_back(Entry);
6369 
6370   RTLIB::Libcall LibraryCall =
6371       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6372   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6373     report_fatal_error("Unsupported element size");
6374 
6375   TargetLowering::CallLoweringInfo CLI(*this);
6376   CLI.setDebugLoc(dl)
6377       .setChain(Chain)
6378       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6379                     Type::getVoidTy(*getContext()),
6380                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6381                                       TLI->getPointerTy(getDataLayout())),
6382                     std::move(Args))
6383       .setDiscardResult()
6384       .setTailCall(isTailCall);
6385 
6386   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6387   return CallResult.second;
6388 }
6389 
6390 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6391                                  SDValue Src, SDValue Size, Align Alignment,
6392                                  bool isVol, bool isTailCall,
6393                                  MachinePointerInfo DstPtrInfo,
6394                                  MachinePointerInfo SrcPtrInfo) {
6395   // Check to see if we should lower the memmove to loads and stores first.
6396   // For cases within the target-specified limits, this is the best choice.
6397   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6398   if (ConstantSize) {
6399     // Memmove with size zero? Just return the original chain.
6400     if (ConstantSize->isNullValue())
6401       return Chain;
6402 
6403     SDValue Result = getMemmoveLoadsAndStores(
6404         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6405         isVol, false, DstPtrInfo, SrcPtrInfo);
6406     if (Result.getNode())
6407       return Result;
6408   }
6409 
6410   // Then check to see if we should lower the memmove with target-specific
6411   // code. If the target chooses to do this, this is the next best.
6412   if (TSI) {
6413     SDValue Result = TSI->EmitTargetCodeForMemmove(
6414         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo,
6415         SrcPtrInfo);
6416     if (Result.getNode())
6417       return Result;
6418   }
6419 
6420   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6421   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6422 
6423   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6424   // not be safe.  See memcpy above for more details.
6425 
6426   // Emit a library call.
6427   TargetLowering::ArgListTy Args;
6428   TargetLowering::ArgListEntry Entry;
6429   Entry.Ty = Type::getInt8PtrTy(*getContext());
6430   Entry.Node = Dst; Args.push_back(Entry);
6431   Entry.Node = Src; Args.push_back(Entry);
6432 
6433   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6434   Entry.Node = Size; Args.push_back(Entry);
6435   // FIXME:  pass in SDLoc
6436   TargetLowering::CallLoweringInfo CLI(*this);
6437   CLI.setDebugLoc(dl)
6438       .setChain(Chain)
6439       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6440                     Dst.getValueType().getTypeForEVT(*getContext()),
6441                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6442                                       TLI->getPointerTy(getDataLayout())),
6443                     std::move(Args))
6444       .setDiscardResult()
6445       .setTailCall(isTailCall);
6446 
6447   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6448   return CallResult.second;
6449 }
6450 
6451 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6452                                        SDValue Dst, unsigned DstAlign,
6453                                        SDValue Src, unsigned SrcAlign,
6454                                        SDValue Size, Type *SizeTy,
6455                                        unsigned ElemSz, bool isTailCall,
6456                                        MachinePointerInfo DstPtrInfo,
6457                                        MachinePointerInfo SrcPtrInfo) {
6458   // Emit a library call.
6459   TargetLowering::ArgListTy Args;
6460   TargetLowering::ArgListEntry Entry;
6461   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6462   Entry.Node = Dst;
6463   Args.push_back(Entry);
6464 
6465   Entry.Node = Src;
6466   Args.push_back(Entry);
6467 
6468   Entry.Ty = SizeTy;
6469   Entry.Node = Size;
6470   Args.push_back(Entry);
6471 
6472   RTLIB::Libcall LibraryCall =
6473       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6474   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6475     report_fatal_error("Unsupported element size");
6476 
6477   TargetLowering::CallLoweringInfo CLI(*this);
6478   CLI.setDebugLoc(dl)
6479       .setChain(Chain)
6480       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6481                     Type::getVoidTy(*getContext()),
6482                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6483                                       TLI->getPointerTy(getDataLayout())),
6484                     std::move(Args))
6485       .setDiscardResult()
6486       .setTailCall(isTailCall);
6487 
6488   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6489   return CallResult.second;
6490 }
6491 
6492 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6493                                 SDValue Src, SDValue Size, Align Alignment,
6494                                 bool isVol, bool isTailCall,
6495                                 MachinePointerInfo DstPtrInfo) {
6496   // Check to see if we should lower the memset to stores first.
6497   // For cases within the target-specified limits, this is the best choice.
6498   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6499   if (ConstantSize) {
6500     // Memset with size zero? Just return the original chain.
6501     if (ConstantSize->isNullValue())
6502       return Chain;
6503 
6504     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6505                                      ConstantSize->getZExtValue(), Alignment,
6506                                      isVol, DstPtrInfo);
6507 
6508     if (Result.getNode())
6509       return Result;
6510   }
6511 
6512   // Then check to see if we should lower the memset with target-specific
6513   // code. If the target chooses to do this, this is the next best.
6514   if (TSI) {
6515     SDValue Result = TSI->EmitTargetCodeForMemset(
6516         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo);
6517     if (Result.getNode())
6518       return Result;
6519   }
6520 
6521   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6522 
6523   // Emit a library call.
6524   TargetLowering::ArgListTy Args;
6525   TargetLowering::ArgListEntry Entry;
6526   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6527   Args.push_back(Entry);
6528   Entry.Node = Src;
6529   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6530   Args.push_back(Entry);
6531   Entry.Node = Size;
6532   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6533   Args.push_back(Entry);
6534 
6535   // FIXME: pass in SDLoc
6536   TargetLowering::CallLoweringInfo CLI(*this);
6537   CLI.setDebugLoc(dl)
6538       .setChain(Chain)
6539       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6540                     Dst.getValueType().getTypeForEVT(*getContext()),
6541                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6542                                       TLI->getPointerTy(getDataLayout())),
6543                     std::move(Args))
6544       .setDiscardResult()
6545       .setTailCall(isTailCall);
6546 
6547   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6548   return CallResult.second;
6549 }
6550 
6551 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6552                                       SDValue Dst, unsigned DstAlign,
6553                                       SDValue Value, SDValue Size, Type *SizeTy,
6554                                       unsigned ElemSz, bool isTailCall,
6555                                       MachinePointerInfo DstPtrInfo) {
6556   // Emit a library call.
6557   TargetLowering::ArgListTy Args;
6558   TargetLowering::ArgListEntry Entry;
6559   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6560   Entry.Node = Dst;
6561   Args.push_back(Entry);
6562 
6563   Entry.Ty = Type::getInt8Ty(*getContext());
6564   Entry.Node = Value;
6565   Args.push_back(Entry);
6566 
6567   Entry.Ty = SizeTy;
6568   Entry.Node = Size;
6569   Args.push_back(Entry);
6570 
6571   RTLIB::Libcall LibraryCall =
6572       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6573   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6574     report_fatal_error("Unsupported element size");
6575 
6576   TargetLowering::CallLoweringInfo CLI(*this);
6577   CLI.setDebugLoc(dl)
6578       .setChain(Chain)
6579       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6580                     Type::getVoidTy(*getContext()),
6581                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6582                                       TLI->getPointerTy(getDataLayout())),
6583                     std::move(Args))
6584       .setDiscardResult()
6585       .setTailCall(isTailCall);
6586 
6587   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6588   return CallResult.second;
6589 }
6590 
6591 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6592                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6593                                 MachineMemOperand *MMO) {
6594   FoldingSetNodeID ID;
6595   ID.AddInteger(MemVT.getRawBits());
6596   AddNodeIDNode(ID, Opcode, VTList, Ops);
6597   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6598   void* IP = nullptr;
6599   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6600     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6601     return SDValue(E, 0);
6602   }
6603 
6604   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6605                                     VTList, MemVT, MMO);
6606   createOperands(N, Ops);
6607 
6608   CSEMap.InsertNode(N, IP);
6609   InsertNode(N);
6610   return SDValue(N, 0);
6611 }
6612 
6613 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6614                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6615                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6616                                        MachineMemOperand *MMO) {
6617   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6618          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6619   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6620 
6621   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6622   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6623 }
6624 
6625 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6626                                 SDValue Chain, SDValue Ptr, SDValue Val,
6627                                 MachineMemOperand *MMO) {
6628   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6629           Opcode == ISD::ATOMIC_LOAD_SUB ||
6630           Opcode == ISD::ATOMIC_LOAD_AND ||
6631           Opcode == ISD::ATOMIC_LOAD_CLR ||
6632           Opcode == ISD::ATOMIC_LOAD_OR ||
6633           Opcode == ISD::ATOMIC_LOAD_XOR ||
6634           Opcode == ISD::ATOMIC_LOAD_NAND ||
6635           Opcode == ISD::ATOMIC_LOAD_MIN ||
6636           Opcode == ISD::ATOMIC_LOAD_MAX ||
6637           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6638           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6639           Opcode == ISD::ATOMIC_LOAD_FADD ||
6640           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6641           Opcode == ISD::ATOMIC_SWAP ||
6642           Opcode == ISD::ATOMIC_STORE) &&
6643          "Invalid Atomic Op");
6644 
6645   EVT VT = Val.getValueType();
6646 
6647   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6648                                                getVTList(VT, MVT::Other);
6649   SDValue Ops[] = {Chain, Ptr, Val};
6650   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6651 }
6652 
6653 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6654                                 EVT VT, SDValue Chain, SDValue Ptr,
6655                                 MachineMemOperand *MMO) {
6656   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6657 
6658   SDVTList VTs = getVTList(VT, MVT::Other);
6659   SDValue Ops[] = {Chain, Ptr};
6660   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6661 }
6662 
6663 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6664 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6665   if (Ops.size() == 1)
6666     return Ops[0];
6667 
6668   SmallVector<EVT, 4> VTs;
6669   VTs.reserve(Ops.size());
6670   for (unsigned i = 0; i < Ops.size(); ++i)
6671     VTs.push_back(Ops[i].getValueType());
6672   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6673 }
6674 
6675 SDValue SelectionDAG::getMemIntrinsicNode(
6676     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6677     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6678     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6679   if (Align == 0)  // Ensure that codegen never sees alignment 0
6680     Align = getEVTAlignment(MemVT);
6681 
6682   if (!Size && MemVT.isScalableVector())
6683     Size = MemoryLocation::UnknownSize;
6684   else if (!Size)
6685     Size = MemVT.getStoreSize();
6686 
6687   MachineFunction &MF = getMachineFunction();
6688   MachineMemOperand *MMO =
6689       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6690 
6691   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6692 }
6693 
6694 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6695                                           SDVTList VTList,
6696                                           ArrayRef<SDValue> Ops, EVT MemVT,
6697                                           MachineMemOperand *MMO) {
6698   assert((Opcode == ISD::INTRINSIC_VOID ||
6699           Opcode == ISD::INTRINSIC_W_CHAIN ||
6700           Opcode == ISD::PREFETCH ||
6701           ((int)Opcode <= std::numeric_limits<int>::max() &&
6702            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6703          "Opcode is not a memory-accessing opcode!");
6704 
6705   // Memoize the node unless it returns a flag.
6706   MemIntrinsicSDNode *N;
6707   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6708     FoldingSetNodeID ID;
6709     AddNodeIDNode(ID, Opcode, VTList, Ops);
6710     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6711         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6712     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6713     void *IP = nullptr;
6714     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6715       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6716       return SDValue(E, 0);
6717     }
6718 
6719     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6720                                       VTList, MemVT, MMO);
6721     createOperands(N, Ops);
6722 
6723   CSEMap.InsertNode(N, IP);
6724   } else {
6725     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6726                                       VTList, MemVT, MMO);
6727     createOperands(N, Ops);
6728   }
6729   InsertNode(N);
6730   SDValue V(N, 0);
6731   NewSDValueDbgMsg(V, "Creating new node: ", this);
6732   return V;
6733 }
6734 
6735 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6736                                       SDValue Chain, int FrameIndex,
6737                                       int64_t Size, int64_t Offset) {
6738   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6739   const auto VTs = getVTList(MVT::Other);
6740   SDValue Ops[2] = {
6741       Chain,
6742       getFrameIndex(FrameIndex,
6743                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6744                     true)};
6745 
6746   FoldingSetNodeID ID;
6747   AddNodeIDNode(ID, Opcode, VTs, Ops);
6748   ID.AddInteger(FrameIndex);
6749   ID.AddInteger(Size);
6750   ID.AddInteger(Offset);
6751   void *IP = nullptr;
6752   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6753     return SDValue(E, 0);
6754 
6755   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6756       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6757   createOperands(N, Ops);
6758   CSEMap.InsertNode(N, IP);
6759   InsertNode(N);
6760   SDValue V(N, 0);
6761   NewSDValueDbgMsg(V, "Creating new node: ", this);
6762   return V;
6763 }
6764 
6765 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6766 /// MachinePointerInfo record from it.  This is particularly useful because the
6767 /// code generator has many cases where it doesn't bother passing in a
6768 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6769 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6770                                            SelectionDAG &DAG, SDValue Ptr,
6771                                            int64_t Offset = 0) {
6772   // If this is FI+Offset, we can model it.
6773   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6774     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6775                                              FI->getIndex(), Offset);
6776 
6777   // If this is (FI+Offset1)+Offset2, we can model it.
6778   if (Ptr.getOpcode() != ISD::ADD ||
6779       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6780       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6781     return Info;
6782 
6783   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6784   return MachinePointerInfo::getFixedStack(
6785       DAG.getMachineFunction(), FI,
6786       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6787 }
6788 
6789 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6790 /// MachinePointerInfo record from it.  This is particularly useful because the
6791 /// code generator has many cases where it doesn't bother passing in a
6792 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6793 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6794                                            SelectionDAG &DAG, SDValue Ptr,
6795                                            SDValue OffsetOp) {
6796   // If the 'Offset' value isn't a constant, we can't handle this.
6797   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6798     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6799   if (OffsetOp.isUndef())
6800     return InferPointerInfo(Info, DAG, Ptr);
6801   return Info;
6802 }
6803 
6804 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6805                               EVT VT, const SDLoc &dl, SDValue Chain,
6806                               SDValue Ptr, SDValue Offset,
6807                               MachinePointerInfo PtrInfo, EVT MemVT,
6808                               unsigned Alignment,
6809                               MachineMemOperand::Flags MMOFlags,
6810                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6811   assert(Chain.getValueType() == MVT::Other &&
6812         "Invalid chain type");
6813   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6814     Alignment = getEVTAlignment(MemVT);
6815 
6816   MMOFlags |= MachineMemOperand::MOLoad;
6817   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6818   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6819   // clients.
6820   if (PtrInfo.V.isNull())
6821     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6822 
6823   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6824   MachineFunction &MF = getMachineFunction();
6825   MachineMemOperand *MMO = MF.getMachineMemOperand(
6826       PtrInfo, MMOFlags, Size, Alignment, AAInfo, Ranges);
6827   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6828 }
6829 
6830 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6831                               EVT VT, const SDLoc &dl, SDValue Chain,
6832                               SDValue Ptr, SDValue Offset, EVT MemVT,
6833                               MachineMemOperand *MMO) {
6834   if (VT == MemVT) {
6835     ExtType = ISD::NON_EXTLOAD;
6836   } else if (ExtType == ISD::NON_EXTLOAD) {
6837     assert(VT == MemVT && "Non-extending load from different memory type!");
6838   } else {
6839     // Extending load.
6840     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6841            "Should only be an extending load, not truncating!");
6842     assert(VT.isInteger() == MemVT.isInteger() &&
6843            "Cannot convert from FP to Int or Int -> FP!");
6844     assert(VT.isVector() == MemVT.isVector() &&
6845            "Cannot use an ext load to convert to or from a vector!");
6846     assert((!VT.isVector() ||
6847             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6848            "Cannot use an ext load to change the number of vector elements!");
6849   }
6850 
6851   bool Indexed = AM != ISD::UNINDEXED;
6852   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6853 
6854   SDVTList VTs = Indexed ?
6855     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6856   SDValue Ops[] = { Chain, Ptr, Offset };
6857   FoldingSetNodeID ID;
6858   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6859   ID.AddInteger(MemVT.getRawBits());
6860   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6861       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6862   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6863   void *IP = nullptr;
6864   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6865     cast<LoadSDNode>(E)->refineAlignment(MMO);
6866     return SDValue(E, 0);
6867   }
6868   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6869                                   ExtType, MemVT, MMO);
6870   createOperands(N, Ops);
6871 
6872   CSEMap.InsertNode(N, IP);
6873   InsertNode(N);
6874   SDValue V(N, 0);
6875   NewSDValueDbgMsg(V, "Creating new node: ", this);
6876   return V;
6877 }
6878 
6879 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6880                               SDValue Ptr, MachinePointerInfo PtrInfo,
6881                               unsigned Alignment,
6882                               MachineMemOperand::Flags MMOFlags,
6883                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6884   SDValue Undef = getUNDEF(Ptr.getValueType());
6885   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6886                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6887 }
6888 
6889 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6890                               SDValue Ptr, MachineMemOperand *MMO) {
6891   SDValue Undef = getUNDEF(Ptr.getValueType());
6892   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6893                  VT, MMO);
6894 }
6895 
6896 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6897                                  EVT VT, SDValue Chain, SDValue Ptr,
6898                                  MachinePointerInfo PtrInfo, EVT MemVT,
6899                                  unsigned Alignment,
6900                                  MachineMemOperand::Flags MMOFlags,
6901                                  const AAMDNodes &AAInfo) {
6902   SDValue Undef = getUNDEF(Ptr.getValueType());
6903   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6904                  MemVT, Alignment, MMOFlags, AAInfo);
6905 }
6906 
6907 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6908                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6909                                  MachineMemOperand *MMO) {
6910   SDValue Undef = getUNDEF(Ptr.getValueType());
6911   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6912                  MemVT, MMO);
6913 }
6914 
6915 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6916                                      SDValue Base, SDValue Offset,
6917                                      ISD::MemIndexedMode AM) {
6918   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6919   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6920   // Don't propagate the invariant or dereferenceable flags.
6921   auto MMOFlags =
6922       LD->getMemOperand()->getFlags() &
6923       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6924   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6925                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6926                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6927                  LD->getAAInfo());
6928 }
6929 
6930 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6931                                SDValue Ptr, MachinePointerInfo PtrInfo,
6932                                unsigned Alignment,
6933                                MachineMemOperand::Flags MMOFlags,
6934                                const AAMDNodes &AAInfo) {
6935   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6936   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6937     Alignment = getEVTAlignment(Val.getValueType());
6938 
6939   MMOFlags |= MachineMemOperand::MOStore;
6940   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6941 
6942   if (PtrInfo.V.isNull())
6943     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6944 
6945   MachineFunction &MF = getMachineFunction();
6946   uint64_t Size =
6947       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
6948   MachineMemOperand *MMO =
6949       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
6950   return getStore(Chain, dl, Val, Ptr, MMO);
6951 }
6952 
6953 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6954                                SDValue Ptr, MachineMemOperand *MMO) {
6955   assert(Chain.getValueType() == MVT::Other &&
6956         "Invalid chain type");
6957   EVT VT = Val.getValueType();
6958   SDVTList VTs = getVTList(MVT::Other);
6959   SDValue Undef = getUNDEF(Ptr.getValueType());
6960   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6961   FoldingSetNodeID ID;
6962   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6963   ID.AddInteger(VT.getRawBits());
6964   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6965       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6966   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6967   void *IP = nullptr;
6968   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6969     cast<StoreSDNode>(E)->refineAlignment(MMO);
6970     return SDValue(E, 0);
6971   }
6972   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6973                                    ISD::UNINDEXED, false, VT, MMO);
6974   createOperands(N, Ops);
6975 
6976   CSEMap.InsertNode(N, IP);
6977   InsertNode(N);
6978   SDValue V(N, 0);
6979   NewSDValueDbgMsg(V, "Creating new node: ", this);
6980   return V;
6981 }
6982 
6983 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6984                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6985                                     EVT SVT, unsigned Alignment,
6986                                     MachineMemOperand::Flags MMOFlags,
6987                                     const AAMDNodes &AAInfo) {
6988   assert(Chain.getValueType() == MVT::Other &&
6989         "Invalid chain type");
6990   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6991     Alignment = getEVTAlignment(SVT);
6992 
6993   MMOFlags |= MachineMemOperand::MOStore;
6994   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6995 
6996   if (PtrInfo.V.isNull())
6997     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6998 
6999   MachineFunction &MF = getMachineFunction();
7000   MachineMemOperand *MMO = MF.getMachineMemOperand(
7001       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
7002   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7003 }
7004 
7005 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7006                                     SDValue Ptr, EVT SVT,
7007                                     MachineMemOperand *MMO) {
7008   EVT VT = Val.getValueType();
7009 
7010   assert(Chain.getValueType() == MVT::Other &&
7011         "Invalid chain type");
7012   if (VT == SVT)
7013     return getStore(Chain, dl, Val, Ptr, MMO);
7014 
7015   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7016          "Should only be a truncating store, not extending!");
7017   assert(VT.isInteger() == SVT.isInteger() &&
7018          "Can't do FP-INT conversion!");
7019   assert(VT.isVector() == SVT.isVector() &&
7020          "Cannot use trunc store to convert to or from a vector!");
7021   assert((!VT.isVector() ||
7022           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7023          "Cannot use trunc store to change the number of vector elements!");
7024 
7025   SDVTList VTs = getVTList(MVT::Other);
7026   SDValue Undef = getUNDEF(Ptr.getValueType());
7027   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7028   FoldingSetNodeID ID;
7029   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7030   ID.AddInteger(SVT.getRawBits());
7031   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7032       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7033   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7034   void *IP = nullptr;
7035   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7036     cast<StoreSDNode>(E)->refineAlignment(MMO);
7037     return SDValue(E, 0);
7038   }
7039   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7040                                    ISD::UNINDEXED, true, SVT, MMO);
7041   createOperands(N, Ops);
7042 
7043   CSEMap.InsertNode(N, IP);
7044   InsertNode(N);
7045   SDValue V(N, 0);
7046   NewSDValueDbgMsg(V, "Creating new node: ", this);
7047   return V;
7048 }
7049 
7050 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7051                                       SDValue Base, SDValue Offset,
7052                                       ISD::MemIndexedMode AM) {
7053   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7054   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7055   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7056   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7057   FoldingSetNodeID ID;
7058   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7059   ID.AddInteger(ST->getMemoryVT().getRawBits());
7060   ID.AddInteger(ST->getRawSubclassData());
7061   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7062   void *IP = nullptr;
7063   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7064     return SDValue(E, 0);
7065 
7066   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7067                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7068                                    ST->getMemOperand());
7069   createOperands(N, Ops);
7070 
7071   CSEMap.InsertNode(N, IP);
7072   InsertNode(N);
7073   SDValue V(N, 0);
7074   NewSDValueDbgMsg(V, "Creating new node: ", this);
7075   return V;
7076 }
7077 
7078 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7079                                     SDValue Base, SDValue Offset, SDValue Mask,
7080                                     SDValue PassThru, EVT MemVT,
7081                                     MachineMemOperand *MMO,
7082                                     ISD::MemIndexedMode AM,
7083                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7084   bool Indexed = AM != ISD::UNINDEXED;
7085   assert((Indexed || Offset.isUndef()) &&
7086          "Unindexed masked load with an offset!");
7087   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7088                          : getVTList(VT, MVT::Other);
7089   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7090   FoldingSetNodeID ID;
7091   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7092   ID.AddInteger(MemVT.getRawBits());
7093   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7094       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7095   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7096   void *IP = nullptr;
7097   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7098     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7099     return SDValue(E, 0);
7100   }
7101   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7102                                         AM, ExtTy, isExpanding, MemVT, MMO);
7103   createOperands(N, Ops);
7104 
7105   CSEMap.InsertNode(N, IP);
7106   InsertNode(N);
7107   SDValue V(N, 0);
7108   NewSDValueDbgMsg(V, "Creating new node: ", this);
7109   return V;
7110 }
7111 
7112 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7113                                            SDValue Base, SDValue Offset,
7114                                            ISD::MemIndexedMode AM) {
7115   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7116   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7117   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7118                        Offset, LD->getMask(), LD->getPassThru(),
7119                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7120                        LD->getExtensionType(), LD->isExpandingLoad());
7121 }
7122 
7123 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7124                                      SDValue Val, SDValue Base, SDValue Offset,
7125                                      SDValue Mask, EVT MemVT,
7126                                      MachineMemOperand *MMO,
7127                                      ISD::MemIndexedMode AM, bool IsTruncating,
7128                                      bool IsCompressing) {
7129   assert(Chain.getValueType() == MVT::Other &&
7130         "Invalid chain type");
7131   bool Indexed = AM != ISD::UNINDEXED;
7132   assert((Indexed || Offset.isUndef()) &&
7133          "Unindexed masked store with an offset!");
7134   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7135                          : getVTList(MVT::Other);
7136   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7137   FoldingSetNodeID ID;
7138   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7139   ID.AddInteger(MemVT.getRawBits());
7140   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7141       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7142   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7143   void *IP = nullptr;
7144   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7145     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7146     return SDValue(E, 0);
7147   }
7148   auto *N =
7149       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7150                                    IsTruncating, IsCompressing, MemVT, MMO);
7151   createOperands(N, Ops);
7152 
7153   CSEMap.InsertNode(N, IP);
7154   InsertNode(N);
7155   SDValue V(N, 0);
7156   NewSDValueDbgMsg(V, "Creating new node: ", this);
7157   return V;
7158 }
7159 
7160 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7161                                             SDValue Base, SDValue Offset,
7162                                             ISD::MemIndexedMode AM) {
7163   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7164   assert(ST->getOffset().isUndef() &&
7165          "Masked store is already a indexed store!");
7166   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7167                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7168                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7169 }
7170 
7171 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7172                                       ArrayRef<SDValue> Ops,
7173                                       MachineMemOperand *MMO,
7174                                       ISD::MemIndexType IndexType) {
7175   assert(Ops.size() == 6 && "Incompatible number of operands");
7176 
7177   FoldingSetNodeID ID;
7178   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7179   ID.AddInteger(VT.getRawBits());
7180   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7181       dl.getIROrder(), VTs, VT, MMO, IndexType));
7182   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7183   void *IP = nullptr;
7184   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7185     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7186     return SDValue(E, 0);
7187   }
7188 
7189   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7190                                           VTs, VT, MMO, IndexType);
7191   createOperands(N, Ops);
7192 
7193   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7194          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7195   assert(N->getMask().getValueType().getVectorNumElements() ==
7196              N->getValueType(0).getVectorNumElements() &&
7197          "Vector width mismatch between mask and data");
7198   assert(N->getIndex().getValueType().getVectorNumElements() >=
7199              N->getValueType(0).getVectorNumElements() &&
7200          "Vector width mismatch between index and data");
7201   assert(isa<ConstantSDNode>(N->getScale()) &&
7202          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7203          "Scale should be a constant power of 2");
7204 
7205   CSEMap.InsertNode(N, IP);
7206   InsertNode(N);
7207   SDValue V(N, 0);
7208   NewSDValueDbgMsg(V, "Creating new node: ", this);
7209   return V;
7210 }
7211 
7212 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7213                                        ArrayRef<SDValue> Ops,
7214                                        MachineMemOperand *MMO,
7215                                        ISD::MemIndexType IndexType) {
7216   assert(Ops.size() == 6 && "Incompatible number of operands");
7217 
7218   FoldingSetNodeID ID;
7219   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7220   ID.AddInteger(VT.getRawBits());
7221   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7222       dl.getIROrder(), VTs, VT, MMO, IndexType));
7223   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7224   void *IP = nullptr;
7225   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7226     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7227     return SDValue(E, 0);
7228   }
7229   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7230                                            VTs, VT, MMO, IndexType);
7231   createOperands(N, Ops);
7232 
7233   assert(N->getMask().getValueType().getVectorNumElements() ==
7234              N->getValue().getValueType().getVectorNumElements() &&
7235          "Vector width mismatch between mask and data");
7236   assert(N->getIndex().getValueType().getVectorNumElements() >=
7237              N->getValue().getValueType().getVectorNumElements() &&
7238          "Vector width mismatch between index and data");
7239   assert(isa<ConstantSDNode>(N->getScale()) &&
7240          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7241          "Scale should be a constant power of 2");
7242 
7243   CSEMap.InsertNode(N, IP);
7244   InsertNode(N);
7245   SDValue V(N, 0);
7246   NewSDValueDbgMsg(V, "Creating new node: ", this);
7247   return V;
7248 }
7249 
7250 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7251   // select undef, T, F --> T (if T is a constant), otherwise F
7252   // select, ?, undef, F --> F
7253   // select, ?, T, undef --> T
7254   if (Cond.isUndef())
7255     return isConstantValueOfAnyType(T) ? T : F;
7256   if (T.isUndef())
7257     return F;
7258   if (F.isUndef())
7259     return T;
7260 
7261   // select true, T, F --> T
7262   // select false, T, F --> F
7263   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7264     return CondC->isNullValue() ? F : T;
7265 
7266   // TODO: This should simplify VSELECT with constant condition using something
7267   // like this (but check boolean contents to be complete?):
7268   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7269   //    return T;
7270   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7271   //    return F;
7272 
7273   // select ?, T, T --> T
7274   if (T == F)
7275     return T;
7276 
7277   return SDValue();
7278 }
7279 
7280 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7281   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7282   if (X.isUndef())
7283     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7284   // shift X, undef --> undef (because it may shift by the bitwidth)
7285   if (Y.isUndef())
7286     return getUNDEF(X.getValueType());
7287 
7288   // shift 0, Y --> 0
7289   // shift X, 0 --> X
7290   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7291     return X;
7292 
7293   // shift X, C >= bitwidth(X) --> undef
7294   // All vector elements must be too big (or undef) to avoid partial undefs.
7295   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7296     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7297   };
7298   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7299     return getUNDEF(X.getValueType());
7300 
7301   return SDValue();
7302 }
7303 
7304 // TODO: Use fast-math-flags to enable more simplifications.
7305 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7306   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7307   if (!YC)
7308     return SDValue();
7309 
7310   // X + -0.0 --> X
7311   if (Opcode == ISD::FADD)
7312     if (YC->getValueAPF().isNegZero())
7313       return X;
7314 
7315   // X - +0.0 --> X
7316   if (Opcode == ISD::FSUB)
7317     if (YC->getValueAPF().isPosZero())
7318       return X;
7319 
7320   // X * 1.0 --> X
7321   // X / 1.0 --> X
7322   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7323     if (YC->getValueAPF().isExactlyValue(1.0))
7324       return X;
7325 
7326   return SDValue();
7327 }
7328 
7329 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7330                                SDValue Ptr, SDValue SV, unsigned Align) {
7331   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7332   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7333 }
7334 
7335 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7336                               ArrayRef<SDUse> Ops) {
7337   switch (Ops.size()) {
7338   case 0: return getNode(Opcode, DL, VT);
7339   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7340   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7341   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7342   default: break;
7343   }
7344 
7345   // Copy from an SDUse array into an SDValue array for use with
7346   // the regular getNode logic.
7347   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7348   return getNode(Opcode, DL, VT, NewOps);
7349 }
7350 
7351 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7352                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7353   unsigned NumOps = Ops.size();
7354   switch (NumOps) {
7355   case 0: return getNode(Opcode, DL, VT);
7356   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7357   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7358   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7359   default: break;
7360   }
7361 
7362   switch (Opcode) {
7363   default: break;
7364   case ISD::BUILD_VECTOR:
7365     // Attempt to simplify BUILD_VECTOR.
7366     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7367       return V;
7368     break;
7369   case ISD::CONCAT_VECTORS:
7370     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7371       return V;
7372     break;
7373   case ISD::SELECT_CC:
7374     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7375     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7376            "LHS and RHS of condition must have same type!");
7377     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7378            "True and False arms of SelectCC must have same type!");
7379     assert(Ops[2].getValueType() == VT &&
7380            "select_cc node must be of same type as true and false value!");
7381     break;
7382   case ISD::BR_CC:
7383     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7384     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7385            "LHS/RHS of comparison should match types!");
7386     break;
7387   }
7388 
7389   // Memoize nodes.
7390   SDNode *N;
7391   SDVTList VTs = getVTList(VT);
7392 
7393   if (VT != MVT::Glue) {
7394     FoldingSetNodeID ID;
7395     AddNodeIDNode(ID, Opcode, VTs, Ops);
7396     void *IP = nullptr;
7397 
7398     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7399       return SDValue(E, 0);
7400 
7401     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7402     createOperands(N, Ops);
7403 
7404     CSEMap.InsertNode(N, IP);
7405   } else {
7406     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7407     createOperands(N, Ops);
7408   }
7409 
7410   InsertNode(N);
7411   SDValue V(N, 0);
7412   NewSDValueDbgMsg(V, "Creating new node: ", this);
7413   return V;
7414 }
7415 
7416 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7417                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7418   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7419 }
7420 
7421 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7422                               ArrayRef<SDValue> Ops) {
7423   if (VTList.NumVTs == 1)
7424     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7425 
7426   switch (Opcode) {
7427   case ISD::STRICT_FP_EXTEND:
7428     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7429            "Invalid STRICT_FP_EXTEND!");
7430     assert(VTList.VTs[0].isFloatingPoint() &&
7431            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7432     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7433            "STRICT_FP_EXTEND result type should be vector iff the operand "
7434            "type is vector!");
7435     assert((!VTList.VTs[0].isVector() ||
7436             VTList.VTs[0].getVectorNumElements() ==
7437             Ops[1].getValueType().getVectorNumElements()) &&
7438            "Vector element count mismatch!");
7439     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7440            "Invalid fpext node, dst <= src!");
7441     break;
7442   case ISD::STRICT_FP_ROUND:
7443     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7444     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7445            "STRICT_FP_ROUND result type should be vector iff the operand "
7446            "type is vector!");
7447     assert((!VTList.VTs[0].isVector() ||
7448             VTList.VTs[0].getVectorNumElements() ==
7449             Ops[1].getValueType().getVectorNumElements()) &&
7450            "Vector element count mismatch!");
7451     assert(VTList.VTs[0].isFloatingPoint() &&
7452            Ops[1].getValueType().isFloatingPoint() &&
7453            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7454            isa<ConstantSDNode>(Ops[2]) &&
7455            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7456             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7457            "Invalid STRICT_FP_ROUND!");
7458     break;
7459 #if 0
7460   // FIXME: figure out how to safely handle things like
7461   // int foo(int x) { return 1 << (x & 255); }
7462   // int bar() { return foo(256); }
7463   case ISD::SRA_PARTS:
7464   case ISD::SRL_PARTS:
7465   case ISD::SHL_PARTS:
7466     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7467         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7468       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7469     else if (N3.getOpcode() == ISD::AND)
7470       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7471         // If the and is only masking out bits that cannot effect the shift,
7472         // eliminate the and.
7473         unsigned NumBits = VT.getScalarSizeInBits()*2;
7474         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7475           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7476       }
7477     break;
7478 #endif
7479   }
7480 
7481   // Memoize the node unless it returns a flag.
7482   SDNode *N;
7483   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7484     FoldingSetNodeID ID;
7485     AddNodeIDNode(ID, Opcode, VTList, Ops);
7486     void *IP = nullptr;
7487     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7488       return SDValue(E, 0);
7489 
7490     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7491     createOperands(N, Ops);
7492     CSEMap.InsertNode(N, IP);
7493   } else {
7494     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7495     createOperands(N, Ops);
7496   }
7497   InsertNode(N);
7498   SDValue V(N, 0);
7499   NewSDValueDbgMsg(V, "Creating new node: ", this);
7500   return V;
7501 }
7502 
7503 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7504                               SDVTList VTList) {
7505   return getNode(Opcode, DL, VTList, None);
7506 }
7507 
7508 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7509                               SDValue N1) {
7510   SDValue Ops[] = { N1 };
7511   return getNode(Opcode, DL, VTList, Ops);
7512 }
7513 
7514 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7515                               SDValue N1, SDValue N2) {
7516   SDValue Ops[] = { N1, N2 };
7517   return getNode(Opcode, DL, VTList, Ops);
7518 }
7519 
7520 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7521                               SDValue N1, SDValue N2, SDValue N3) {
7522   SDValue Ops[] = { N1, N2, N3 };
7523   return getNode(Opcode, DL, VTList, Ops);
7524 }
7525 
7526 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7527                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7528   SDValue Ops[] = { N1, N2, N3, N4 };
7529   return getNode(Opcode, DL, VTList, Ops);
7530 }
7531 
7532 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7533                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7534                               SDValue N5) {
7535   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7536   return getNode(Opcode, DL, VTList, Ops);
7537 }
7538 
7539 SDVTList SelectionDAG::getVTList(EVT VT) {
7540   return makeVTList(SDNode::getValueTypeList(VT), 1);
7541 }
7542 
7543 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7544   FoldingSetNodeID ID;
7545   ID.AddInteger(2U);
7546   ID.AddInteger(VT1.getRawBits());
7547   ID.AddInteger(VT2.getRawBits());
7548 
7549   void *IP = nullptr;
7550   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7551   if (!Result) {
7552     EVT *Array = Allocator.Allocate<EVT>(2);
7553     Array[0] = VT1;
7554     Array[1] = VT2;
7555     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7556     VTListMap.InsertNode(Result, IP);
7557   }
7558   return Result->getSDVTList();
7559 }
7560 
7561 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7562   FoldingSetNodeID ID;
7563   ID.AddInteger(3U);
7564   ID.AddInteger(VT1.getRawBits());
7565   ID.AddInteger(VT2.getRawBits());
7566   ID.AddInteger(VT3.getRawBits());
7567 
7568   void *IP = nullptr;
7569   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7570   if (!Result) {
7571     EVT *Array = Allocator.Allocate<EVT>(3);
7572     Array[0] = VT1;
7573     Array[1] = VT2;
7574     Array[2] = VT3;
7575     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7576     VTListMap.InsertNode(Result, IP);
7577   }
7578   return Result->getSDVTList();
7579 }
7580 
7581 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7582   FoldingSetNodeID ID;
7583   ID.AddInteger(4U);
7584   ID.AddInteger(VT1.getRawBits());
7585   ID.AddInteger(VT2.getRawBits());
7586   ID.AddInteger(VT3.getRawBits());
7587   ID.AddInteger(VT4.getRawBits());
7588 
7589   void *IP = nullptr;
7590   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7591   if (!Result) {
7592     EVT *Array = Allocator.Allocate<EVT>(4);
7593     Array[0] = VT1;
7594     Array[1] = VT2;
7595     Array[2] = VT3;
7596     Array[3] = VT4;
7597     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7598     VTListMap.InsertNode(Result, IP);
7599   }
7600   return Result->getSDVTList();
7601 }
7602 
7603 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7604   unsigned NumVTs = VTs.size();
7605   FoldingSetNodeID ID;
7606   ID.AddInteger(NumVTs);
7607   for (unsigned index = 0; index < NumVTs; index++) {
7608     ID.AddInteger(VTs[index].getRawBits());
7609   }
7610 
7611   void *IP = nullptr;
7612   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7613   if (!Result) {
7614     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7615     llvm::copy(VTs, Array);
7616     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7617     VTListMap.InsertNode(Result, IP);
7618   }
7619   return Result->getSDVTList();
7620 }
7621 
7622 
7623 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7624 /// specified operands.  If the resultant node already exists in the DAG,
7625 /// this does not modify the specified node, instead it returns the node that
7626 /// already exists.  If the resultant node does not exist in the DAG, the
7627 /// input node is returned.  As a degenerate case, if you specify the same
7628 /// input operands as the node already has, the input node is returned.
7629 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7630   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7631 
7632   // Check to see if there is no change.
7633   if (Op == N->getOperand(0)) return N;
7634 
7635   // See if the modified node already exists.
7636   void *InsertPos = nullptr;
7637   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7638     return Existing;
7639 
7640   // Nope it doesn't.  Remove the node from its current place in the maps.
7641   if (InsertPos)
7642     if (!RemoveNodeFromCSEMaps(N))
7643       InsertPos = nullptr;
7644 
7645   // Now we update the operands.
7646   N->OperandList[0].set(Op);
7647 
7648   updateDivergence(N);
7649   // If this gets put into a CSE map, add it.
7650   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7651   return N;
7652 }
7653 
7654 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7655   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7656 
7657   // Check to see if there is no change.
7658   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7659     return N;   // No operands changed, just return the input node.
7660 
7661   // See if the modified node already exists.
7662   void *InsertPos = nullptr;
7663   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7664     return Existing;
7665 
7666   // Nope it doesn't.  Remove the node from its current place in the maps.
7667   if (InsertPos)
7668     if (!RemoveNodeFromCSEMaps(N))
7669       InsertPos = nullptr;
7670 
7671   // Now we update the operands.
7672   if (N->OperandList[0] != Op1)
7673     N->OperandList[0].set(Op1);
7674   if (N->OperandList[1] != Op2)
7675     N->OperandList[1].set(Op2);
7676 
7677   updateDivergence(N);
7678   // If this gets put into a CSE map, add it.
7679   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7680   return N;
7681 }
7682 
7683 SDNode *SelectionDAG::
7684 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7685   SDValue Ops[] = { Op1, Op2, Op3 };
7686   return UpdateNodeOperands(N, Ops);
7687 }
7688 
7689 SDNode *SelectionDAG::
7690 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7691                    SDValue Op3, SDValue Op4) {
7692   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7693   return UpdateNodeOperands(N, Ops);
7694 }
7695 
7696 SDNode *SelectionDAG::
7697 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7698                    SDValue Op3, SDValue Op4, SDValue Op5) {
7699   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7700   return UpdateNodeOperands(N, Ops);
7701 }
7702 
7703 SDNode *SelectionDAG::
7704 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7705   unsigned NumOps = Ops.size();
7706   assert(N->getNumOperands() == NumOps &&
7707          "Update with wrong number of operands");
7708 
7709   // If no operands changed just return the input node.
7710   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7711     return N;
7712 
7713   // See if the modified node already exists.
7714   void *InsertPos = nullptr;
7715   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7716     return Existing;
7717 
7718   // Nope it doesn't.  Remove the node from its current place in the maps.
7719   if (InsertPos)
7720     if (!RemoveNodeFromCSEMaps(N))
7721       InsertPos = nullptr;
7722 
7723   // Now we update the operands.
7724   for (unsigned i = 0; i != NumOps; ++i)
7725     if (N->OperandList[i] != Ops[i])
7726       N->OperandList[i].set(Ops[i]);
7727 
7728   updateDivergence(N);
7729   // If this gets put into a CSE map, add it.
7730   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7731   return N;
7732 }
7733 
7734 /// DropOperands - Release the operands and set this node to have
7735 /// zero operands.
7736 void SDNode::DropOperands() {
7737   // Unlike the code in MorphNodeTo that does this, we don't need to
7738   // watch for dead nodes here.
7739   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7740     SDUse &Use = *I++;
7741     Use.set(SDValue());
7742   }
7743 }
7744 
7745 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7746                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7747   if (NewMemRefs.empty()) {
7748     N->clearMemRefs();
7749     return;
7750   }
7751 
7752   // Check if we can avoid allocating by storing a single reference directly.
7753   if (NewMemRefs.size() == 1) {
7754     N->MemRefs = NewMemRefs[0];
7755     N->NumMemRefs = 1;
7756     return;
7757   }
7758 
7759   MachineMemOperand **MemRefsBuffer =
7760       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7761   llvm::copy(NewMemRefs, MemRefsBuffer);
7762   N->MemRefs = MemRefsBuffer;
7763   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7764 }
7765 
7766 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7767 /// machine opcode.
7768 ///
7769 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7770                                    EVT VT) {
7771   SDVTList VTs = getVTList(VT);
7772   return SelectNodeTo(N, MachineOpc, VTs, None);
7773 }
7774 
7775 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7776                                    EVT VT, SDValue Op1) {
7777   SDVTList VTs = getVTList(VT);
7778   SDValue Ops[] = { Op1 };
7779   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7780 }
7781 
7782 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7783                                    EVT VT, SDValue Op1,
7784                                    SDValue Op2) {
7785   SDVTList VTs = getVTList(VT);
7786   SDValue Ops[] = { Op1, Op2 };
7787   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7788 }
7789 
7790 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7791                                    EVT VT, SDValue Op1,
7792                                    SDValue Op2, SDValue Op3) {
7793   SDVTList VTs = getVTList(VT);
7794   SDValue Ops[] = { Op1, Op2, Op3 };
7795   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7796 }
7797 
7798 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7799                                    EVT VT, ArrayRef<SDValue> Ops) {
7800   SDVTList VTs = getVTList(VT);
7801   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7802 }
7803 
7804 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7805                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7806   SDVTList VTs = getVTList(VT1, VT2);
7807   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7808 }
7809 
7810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7811                                    EVT VT1, EVT VT2) {
7812   SDVTList VTs = getVTList(VT1, VT2);
7813   return SelectNodeTo(N, MachineOpc, VTs, None);
7814 }
7815 
7816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7817                                    EVT VT1, EVT VT2, EVT VT3,
7818                                    ArrayRef<SDValue> Ops) {
7819   SDVTList VTs = getVTList(VT1, VT2, VT3);
7820   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7821 }
7822 
7823 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7824                                    EVT VT1, EVT VT2,
7825                                    SDValue Op1, SDValue Op2) {
7826   SDVTList VTs = getVTList(VT1, VT2);
7827   SDValue Ops[] = { Op1, Op2 };
7828   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7829 }
7830 
7831 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7832                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7833   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7834   // Reset the NodeID to -1.
7835   New->setNodeId(-1);
7836   if (New != N) {
7837     ReplaceAllUsesWith(N, New);
7838     RemoveDeadNode(N);
7839   }
7840   return New;
7841 }
7842 
7843 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7844 /// the line number information on the merged node since it is not possible to
7845 /// preserve the information that operation is associated with multiple lines.
7846 /// This will make the debugger working better at -O0, were there is a higher
7847 /// probability having other instructions associated with that line.
7848 ///
7849 /// For IROrder, we keep the smaller of the two
7850 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7851   DebugLoc NLoc = N->getDebugLoc();
7852   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7853     N->setDebugLoc(DebugLoc());
7854   }
7855   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7856   N->setIROrder(Order);
7857   return N;
7858 }
7859 
7860 /// MorphNodeTo - This *mutates* the specified node to have the specified
7861 /// return type, opcode, and operands.
7862 ///
7863 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7864 /// node of the specified opcode and operands, it returns that node instead of
7865 /// the current one.  Note that the SDLoc need not be the same.
7866 ///
7867 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7868 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7869 /// node, and because it doesn't require CSE recalculation for any of
7870 /// the node's users.
7871 ///
7872 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7873 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7874 /// the legalizer which maintain worklists that would need to be updated when
7875 /// deleting things.
7876 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7877                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7878   // If an identical node already exists, use it.
7879   void *IP = nullptr;
7880   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7881     FoldingSetNodeID ID;
7882     AddNodeIDNode(ID, Opc, VTs, Ops);
7883     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7884       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7885   }
7886 
7887   if (!RemoveNodeFromCSEMaps(N))
7888     IP = nullptr;
7889 
7890   // Start the morphing.
7891   N->NodeType = Opc;
7892   N->ValueList = VTs.VTs;
7893   N->NumValues = VTs.NumVTs;
7894 
7895   // Clear the operands list, updating used nodes to remove this from their
7896   // use list.  Keep track of any operands that become dead as a result.
7897   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7898   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7899     SDUse &Use = *I++;
7900     SDNode *Used = Use.getNode();
7901     Use.set(SDValue());
7902     if (Used->use_empty())
7903       DeadNodeSet.insert(Used);
7904   }
7905 
7906   // For MachineNode, initialize the memory references information.
7907   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7908     MN->clearMemRefs();
7909 
7910   // Swap for an appropriately sized array from the recycler.
7911   removeOperands(N);
7912   createOperands(N, Ops);
7913 
7914   // Delete any nodes that are still dead after adding the uses for the
7915   // new operands.
7916   if (!DeadNodeSet.empty()) {
7917     SmallVector<SDNode *, 16> DeadNodes;
7918     for (SDNode *N : DeadNodeSet)
7919       if (N->use_empty())
7920         DeadNodes.push_back(N);
7921     RemoveDeadNodes(DeadNodes);
7922   }
7923 
7924   if (IP)
7925     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7926   return N;
7927 }
7928 
7929 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7930   unsigned OrigOpc = Node->getOpcode();
7931   unsigned NewOpc;
7932   switch (OrigOpc) {
7933   default:
7934     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7935 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7936   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7937 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7938   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
7939 #include "llvm/IR/ConstrainedOps.def"
7940   }
7941 
7942   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7943 
7944   // We're taking this node out of the chain, so we need to re-link things.
7945   SDValue InputChain = Node->getOperand(0);
7946   SDValue OutputChain = SDValue(Node, 1);
7947   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7948 
7949   SmallVector<SDValue, 3> Ops;
7950   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7951     Ops.push_back(Node->getOperand(i));
7952 
7953   SDVTList VTs = getVTList(Node->getValueType(0));
7954   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7955 
7956   // MorphNodeTo can operate in two ways: if an existing node with the
7957   // specified operands exists, it can just return it.  Otherwise, it
7958   // updates the node in place to have the requested operands.
7959   if (Res == Node) {
7960     // If we updated the node in place, reset the node ID.  To the isel,
7961     // this should be just like a newly allocated machine node.
7962     Res->setNodeId(-1);
7963   } else {
7964     ReplaceAllUsesWith(Node, Res);
7965     RemoveDeadNode(Node);
7966   }
7967 
7968   return Res;
7969 }
7970 
7971 /// getMachineNode - These are used for target selectors to create a new node
7972 /// with specified return type(s), MachineInstr opcode, and operands.
7973 ///
7974 /// Note that getMachineNode returns the resultant node.  If there is already a
7975 /// node of the specified opcode and operands, it returns that node instead of
7976 /// the current one.
7977 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7978                                             EVT VT) {
7979   SDVTList VTs = getVTList(VT);
7980   return getMachineNode(Opcode, dl, VTs, None);
7981 }
7982 
7983 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7984                                             EVT VT, SDValue Op1) {
7985   SDVTList VTs = getVTList(VT);
7986   SDValue Ops[] = { Op1 };
7987   return getMachineNode(Opcode, dl, VTs, Ops);
7988 }
7989 
7990 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7991                                             EVT VT, SDValue Op1, SDValue Op2) {
7992   SDVTList VTs = getVTList(VT);
7993   SDValue Ops[] = { Op1, Op2 };
7994   return getMachineNode(Opcode, dl, VTs, Ops);
7995 }
7996 
7997 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7998                                             EVT VT, SDValue Op1, SDValue Op2,
7999                                             SDValue Op3) {
8000   SDVTList VTs = getVTList(VT);
8001   SDValue Ops[] = { Op1, Op2, Op3 };
8002   return getMachineNode(Opcode, dl, VTs, Ops);
8003 }
8004 
8005 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8006                                             EVT VT, ArrayRef<SDValue> Ops) {
8007   SDVTList VTs = getVTList(VT);
8008   return getMachineNode(Opcode, dl, VTs, Ops);
8009 }
8010 
8011 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8012                                             EVT VT1, EVT VT2, SDValue Op1,
8013                                             SDValue Op2) {
8014   SDVTList VTs = getVTList(VT1, VT2);
8015   SDValue Ops[] = { Op1, Op2 };
8016   return getMachineNode(Opcode, dl, VTs, Ops);
8017 }
8018 
8019 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8020                                             EVT VT1, EVT VT2, SDValue Op1,
8021                                             SDValue Op2, SDValue Op3) {
8022   SDVTList VTs = getVTList(VT1, VT2);
8023   SDValue Ops[] = { Op1, Op2, Op3 };
8024   return getMachineNode(Opcode, dl, VTs, Ops);
8025 }
8026 
8027 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8028                                             EVT VT1, EVT VT2,
8029                                             ArrayRef<SDValue> Ops) {
8030   SDVTList VTs = getVTList(VT1, VT2);
8031   return getMachineNode(Opcode, dl, VTs, Ops);
8032 }
8033 
8034 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8035                                             EVT VT1, EVT VT2, EVT VT3,
8036                                             SDValue Op1, SDValue Op2) {
8037   SDVTList VTs = getVTList(VT1, VT2, VT3);
8038   SDValue Ops[] = { Op1, Op2 };
8039   return getMachineNode(Opcode, dl, VTs, Ops);
8040 }
8041 
8042 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8043                                             EVT VT1, EVT VT2, EVT VT3,
8044                                             SDValue Op1, SDValue Op2,
8045                                             SDValue Op3) {
8046   SDVTList VTs = getVTList(VT1, VT2, VT3);
8047   SDValue Ops[] = { Op1, Op2, Op3 };
8048   return getMachineNode(Opcode, dl, VTs, Ops);
8049 }
8050 
8051 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8052                                             EVT VT1, EVT VT2, EVT VT3,
8053                                             ArrayRef<SDValue> Ops) {
8054   SDVTList VTs = getVTList(VT1, VT2, VT3);
8055   return getMachineNode(Opcode, dl, VTs, Ops);
8056 }
8057 
8058 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8059                                             ArrayRef<EVT> ResultTys,
8060                                             ArrayRef<SDValue> Ops) {
8061   SDVTList VTs = getVTList(ResultTys);
8062   return getMachineNode(Opcode, dl, VTs, Ops);
8063 }
8064 
8065 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8066                                             SDVTList VTs,
8067                                             ArrayRef<SDValue> Ops) {
8068   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8069   MachineSDNode *N;
8070   void *IP = nullptr;
8071 
8072   if (DoCSE) {
8073     FoldingSetNodeID ID;
8074     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8075     IP = nullptr;
8076     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8077       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8078     }
8079   }
8080 
8081   // Allocate a new MachineSDNode.
8082   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8083   createOperands(N, Ops);
8084 
8085   if (DoCSE)
8086     CSEMap.InsertNode(N, IP);
8087 
8088   InsertNode(N);
8089   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8090   return N;
8091 }
8092 
8093 /// getTargetExtractSubreg - A convenience function for creating
8094 /// TargetOpcode::EXTRACT_SUBREG nodes.
8095 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8096                                              SDValue Operand) {
8097   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8098   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8099                                   VT, Operand, SRIdxVal);
8100   return SDValue(Subreg, 0);
8101 }
8102 
8103 /// getTargetInsertSubreg - A convenience function for creating
8104 /// TargetOpcode::INSERT_SUBREG nodes.
8105 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8106                                             SDValue Operand, SDValue Subreg) {
8107   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8108   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8109                                   VT, Operand, Subreg, SRIdxVal);
8110   return SDValue(Result, 0);
8111 }
8112 
8113 /// getNodeIfExists - Get the specified node if it's already available, or
8114 /// else return NULL.
8115 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8116                                       ArrayRef<SDValue> Ops,
8117                                       const SDNodeFlags Flags) {
8118   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8119     FoldingSetNodeID ID;
8120     AddNodeIDNode(ID, Opcode, VTList, Ops);
8121     void *IP = nullptr;
8122     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8123       E->intersectFlagsWith(Flags);
8124       return E;
8125     }
8126   }
8127   return nullptr;
8128 }
8129 
8130 /// getDbgValue - Creates a SDDbgValue node.
8131 ///
8132 /// SDNode
8133 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8134                                       SDNode *N, unsigned R, bool IsIndirect,
8135                                       const DebugLoc &DL, unsigned O) {
8136   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8137          "Expected inlined-at fields to agree");
8138   return new (DbgInfo->getAlloc())
8139       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8140 }
8141 
8142 /// Constant
8143 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8144                                               DIExpression *Expr,
8145                                               const Value *C,
8146                                               const DebugLoc &DL, unsigned O) {
8147   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8148          "Expected inlined-at fields to agree");
8149   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8150 }
8151 
8152 /// FrameIndex
8153 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8154                                                 DIExpression *Expr, unsigned FI,
8155                                                 bool IsIndirect,
8156                                                 const DebugLoc &DL,
8157                                                 unsigned O) {
8158   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8159          "Expected inlined-at fields to agree");
8160   return new (DbgInfo->getAlloc())
8161       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8162 }
8163 
8164 /// VReg
8165 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8166                                           DIExpression *Expr,
8167                                           unsigned VReg, bool IsIndirect,
8168                                           const DebugLoc &DL, unsigned O) {
8169   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8170          "Expected inlined-at fields to agree");
8171   return new (DbgInfo->getAlloc())
8172       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8173 }
8174 
8175 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8176                                      unsigned OffsetInBits, unsigned SizeInBits,
8177                                      bool InvalidateDbg) {
8178   SDNode *FromNode = From.getNode();
8179   SDNode *ToNode = To.getNode();
8180   assert(FromNode && ToNode && "Can't modify dbg values");
8181 
8182   // PR35338
8183   // TODO: assert(From != To && "Redundant dbg value transfer");
8184   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8185   if (From == To || FromNode == ToNode)
8186     return;
8187 
8188   if (!FromNode->getHasDebugValue())
8189     return;
8190 
8191   SmallVector<SDDbgValue *, 2> ClonedDVs;
8192   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8193     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8194       continue;
8195 
8196     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8197 
8198     // Just transfer the dbg value attached to From.
8199     if (Dbg->getResNo() != From.getResNo())
8200       continue;
8201 
8202     DIVariable *Var = Dbg->getVariable();
8203     auto *Expr = Dbg->getExpression();
8204     // If a fragment is requested, update the expression.
8205     if (SizeInBits) {
8206       // When splitting a larger (e.g., sign-extended) value whose
8207       // lower bits are described with an SDDbgValue, do not attempt
8208       // to transfer the SDDbgValue to the upper bits.
8209       if (auto FI = Expr->getFragmentInfo())
8210         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8211           continue;
8212       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8213                                                              SizeInBits);
8214       if (!Fragment)
8215         continue;
8216       Expr = *Fragment;
8217     }
8218     // Clone the SDDbgValue and move it to To.
8219     SDDbgValue *Clone = getDbgValue(
8220         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8221         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8222     ClonedDVs.push_back(Clone);
8223 
8224     if (InvalidateDbg) {
8225       // Invalidate value and indicate the SDDbgValue should not be emitted.
8226       Dbg->setIsInvalidated();
8227       Dbg->setIsEmitted();
8228     }
8229   }
8230 
8231   for (SDDbgValue *Dbg : ClonedDVs)
8232     AddDbgValue(Dbg, ToNode, false);
8233 }
8234 
8235 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8236   if (!N.getHasDebugValue())
8237     return;
8238 
8239   SmallVector<SDDbgValue *, 2> ClonedDVs;
8240   for (auto DV : GetDbgValues(&N)) {
8241     if (DV->isInvalidated())
8242       continue;
8243     switch (N.getOpcode()) {
8244     default:
8245       break;
8246     case ISD::ADD:
8247       SDValue N0 = N.getOperand(0);
8248       SDValue N1 = N.getOperand(1);
8249       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8250           isConstantIntBuildVectorOrConstantInt(N1)) {
8251         uint64_t Offset = N.getConstantOperandVal(1);
8252         // Rewrite an ADD constant node into a DIExpression. Since we are
8253         // performing arithmetic to compute the variable's *value* in the
8254         // DIExpression, we need to mark the expression with a
8255         // DW_OP_stack_value.
8256         auto *DIExpr = DV->getExpression();
8257         DIExpr =
8258             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8259         SDDbgValue *Clone =
8260             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8261                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8262         ClonedDVs.push_back(Clone);
8263         DV->setIsInvalidated();
8264         DV->setIsEmitted();
8265         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8266                    N0.getNode()->dumprFull(this);
8267                    dbgs() << " into " << *DIExpr << '\n');
8268       }
8269     }
8270   }
8271 
8272   for (SDDbgValue *Dbg : ClonedDVs)
8273     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8274 }
8275 
8276 /// Creates a SDDbgLabel node.
8277 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8278                                       const DebugLoc &DL, unsigned O) {
8279   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8280          "Expected inlined-at fields to agree");
8281   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8282 }
8283 
8284 namespace {
8285 
8286 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8287 /// pointed to by a use iterator is deleted, increment the use iterator
8288 /// so that it doesn't dangle.
8289 ///
8290 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8291   SDNode::use_iterator &UI;
8292   SDNode::use_iterator &UE;
8293 
8294   void NodeDeleted(SDNode *N, SDNode *E) override {
8295     // Increment the iterator as needed.
8296     while (UI != UE && N == *UI)
8297       ++UI;
8298   }
8299 
8300 public:
8301   RAUWUpdateListener(SelectionDAG &d,
8302                      SDNode::use_iterator &ui,
8303                      SDNode::use_iterator &ue)
8304     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8305 };
8306 
8307 } // end anonymous namespace
8308 
8309 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8310 /// This can cause recursive merging of nodes in the DAG.
8311 ///
8312 /// This version assumes From has a single result value.
8313 ///
8314 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8315   SDNode *From = FromN.getNode();
8316   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8317          "Cannot replace with this method!");
8318   assert(From != To.getNode() && "Cannot replace uses of with self");
8319 
8320   // Preserve Debug Values
8321   transferDbgValues(FromN, To);
8322 
8323   // Iterate over all the existing uses of From. New uses will be added
8324   // to the beginning of the use list, which we avoid visiting.
8325   // This specifically avoids visiting uses of From that arise while the
8326   // replacement is happening, because any such uses would be the result
8327   // of CSE: If an existing node looks like From after one of its operands
8328   // is replaced by To, we don't want to replace of all its users with To
8329   // too. See PR3018 for more info.
8330   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8331   RAUWUpdateListener Listener(*this, UI, UE);
8332   while (UI != UE) {
8333     SDNode *User = *UI;
8334 
8335     // This node is about to morph, remove its old self from the CSE maps.
8336     RemoveNodeFromCSEMaps(User);
8337 
8338     // A user can appear in a use list multiple times, and when this
8339     // happens the uses are usually next to each other in the list.
8340     // To help reduce the number of CSE recomputations, process all
8341     // the uses of this user that we can find this way.
8342     do {
8343       SDUse &Use = UI.getUse();
8344       ++UI;
8345       Use.set(To);
8346       if (To->isDivergent() != From->isDivergent())
8347         updateDivergence(User);
8348     } while (UI != UE && *UI == User);
8349     // Now that we have modified User, add it back to the CSE maps.  If it
8350     // already exists there, recursively merge the results together.
8351     AddModifiedNodeToCSEMaps(User);
8352   }
8353 
8354   // If we just RAUW'd the root, take note.
8355   if (FromN == getRoot())
8356     setRoot(To);
8357 }
8358 
8359 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8360 /// This can cause recursive merging of nodes in the DAG.
8361 ///
8362 /// This version assumes that for each value of From, there is a
8363 /// corresponding value in To in the same position with the same type.
8364 ///
8365 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8366 #ifndef NDEBUG
8367   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8368     assert((!From->hasAnyUseOfValue(i) ||
8369             From->getValueType(i) == To->getValueType(i)) &&
8370            "Cannot use this version of ReplaceAllUsesWith!");
8371 #endif
8372 
8373   // Handle the trivial case.
8374   if (From == To)
8375     return;
8376 
8377   // Preserve Debug Info. Only do this if there's a use.
8378   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8379     if (From->hasAnyUseOfValue(i)) {
8380       assert((i < To->getNumValues()) && "Invalid To location");
8381       transferDbgValues(SDValue(From, i), SDValue(To, i));
8382     }
8383 
8384   // Iterate over just the existing users of From. See the comments in
8385   // the ReplaceAllUsesWith above.
8386   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8387   RAUWUpdateListener Listener(*this, UI, UE);
8388   while (UI != UE) {
8389     SDNode *User = *UI;
8390 
8391     // This node is about to morph, remove its old self from the CSE maps.
8392     RemoveNodeFromCSEMaps(User);
8393 
8394     // A user can appear in a use list multiple times, and when this
8395     // happens the uses are usually next to each other in the list.
8396     // To help reduce the number of CSE recomputations, process all
8397     // the uses of this user that we can find this way.
8398     do {
8399       SDUse &Use = UI.getUse();
8400       ++UI;
8401       Use.setNode(To);
8402       if (To->isDivergent() != From->isDivergent())
8403         updateDivergence(User);
8404     } while (UI != UE && *UI == User);
8405 
8406     // Now that we have modified User, add it back to the CSE maps.  If it
8407     // already exists there, recursively merge the results together.
8408     AddModifiedNodeToCSEMaps(User);
8409   }
8410 
8411   // If we just RAUW'd the root, take note.
8412   if (From == getRoot().getNode())
8413     setRoot(SDValue(To, getRoot().getResNo()));
8414 }
8415 
8416 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8417 /// This can cause recursive merging of nodes in the DAG.
8418 ///
8419 /// This version can replace From with any result values.  To must match the
8420 /// number and types of values returned by From.
8421 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8422   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8423     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8424 
8425   // Preserve Debug Info.
8426   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8427     transferDbgValues(SDValue(From, i), To[i]);
8428 
8429   // Iterate over just the existing users of From. See the comments in
8430   // the ReplaceAllUsesWith above.
8431   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8432   RAUWUpdateListener Listener(*this, UI, UE);
8433   while (UI != UE) {
8434     SDNode *User = *UI;
8435 
8436     // This node is about to morph, remove its old self from the CSE maps.
8437     RemoveNodeFromCSEMaps(User);
8438 
8439     // A user can appear in a use list multiple times, and when this happens the
8440     // uses are usually next to each other in the list.  To help reduce the
8441     // number of CSE and divergence recomputations, process all the uses of this
8442     // user that we can find this way.
8443     bool To_IsDivergent = false;
8444     do {
8445       SDUse &Use = UI.getUse();
8446       const SDValue &ToOp = To[Use.getResNo()];
8447       ++UI;
8448       Use.set(ToOp);
8449       To_IsDivergent |= ToOp->isDivergent();
8450     } while (UI != UE && *UI == User);
8451 
8452     if (To_IsDivergent != From->isDivergent())
8453       updateDivergence(User);
8454 
8455     // Now that we have modified User, add it back to the CSE maps.  If it
8456     // already exists there, recursively merge the results together.
8457     AddModifiedNodeToCSEMaps(User);
8458   }
8459 
8460   // If we just RAUW'd the root, take note.
8461   if (From == getRoot().getNode())
8462     setRoot(SDValue(To[getRoot().getResNo()]));
8463 }
8464 
8465 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8466 /// uses of other values produced by From.getNode() alone.  The Deleted
8467 /// vector is handled the same way as for ReplaceAllUsesWith.
8468 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8469   // Handle the really simple, really trivial case efficiently.
8470   if (From == To) return;
8471 
8472   // Handle the simple, trivial, case efficiently.
8473   if (From.getNode()->getNumValues() == 1) {
8474     ReplaceAllUsesWith(From, To);
8475     return;
8476   }
8477 
8478   // Preserve Debug Info.
8479   transferDbgValues(From, To);
8480 
8481   // Iterate over just the existing users of From. See the comments in
8482   // the ReplaceAllUsesWith above.
8483   SDNode::use_iterator UI = From.getNode()->use_begin(),
8484                        UE = From.getNode()->use_end();
8485   RAUWUpdateListener Listener(*this, UI, UE);
8486   while (UI != UE) {
8487     SDNode *User = *UI;
8488     bool UserRemovedFromCSEMaps = false;
8489 
8490     // A user can appear in a use list multiple times, and when this
8491     // happens the uses are usually next to each other in the list.
8492     // To help reduce the number of CSE recomputations, process all
8493     // the uses of this user that we can find this way.
8494     do {
8495       SDUse &Use = UI.getUse();
8496 
8497       // Skip uses of different values from the same node.
8498       if (Use.getResNo() != From.getResNo()) {
8499         ++UI;
8500         continue;
8501       }
8502 
8503       // If this node hasn't been modified yet, it's still in the CSE maps,
8504       // so remove its old self from the CSE maps.
8505       if (!UserRemovedFromCSEMaps) {
8506         RemoveNodeFromCSEMaps(User);
8507         UserRemovedFromCSEMaps = true;
8508       }
8509 
8510       ++UI;
8511       Use.set(To);
8512       if (To->isDivergent() != From->isDivergent())
8513         updateDivergence(User);
8514     } while (UI != UE && *UI == User);
8515     // We are iterating over all uses of the From node, so if a use
8516     // doesn't use the specific value, no changes are made.
8517     if (!UserRemovedFromCSEMaps)
8518       continue;
8519 
8520     // Now that we have modified User, add it back to the CSE maps.  If it
8521     // already exists there, recursively merge the results together.
8522     AddModifiedNodeToCSEMaps(User);
8523   }
8524 
8525   // If we just RAUW'd the root, take note.
8526   if (From == getRoot())
8527     setRoot(To);
8528 }
8529 
8530 namespace {
8531 
8532   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8533   /// to record information about a use.
8534   struct UseMemo {
8535     SDNode *User;
8536     unsigned Index;
8537     SDUse *Use;
8538   };
8539 
8540   /// operator< - Sort Memos by User.
8541   bool operator<(const UseMemo &L, const UseMemo &R) {
8542     return (intptr_t)L.User < (intptr_t)R.User;
8543   }
8544 
8545 } // end anonymous namespace
8546 
8547 void SelectionDAG::updateDivergence(SDNode * N)
8548 {
8549   if (TLI->isSDNodeAlwaysUniform(N))
8550     return;
8551   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8552   for (auto &Op : N->ops()) {
8553     if (Op.Val.getValueType() != MVT::Other)
8554       IsDivergent |= Op.getNode()->isDivergent();
8555   }
8556   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8557     N->SDNodeBits.IsDivergent = IsDivergent;
8558     for (auto U : N->uses()) {
8559       updateDivergence(U);
8560     }
8561   }
8562 }
8563 
8564 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8565   DenseMap<SDNode *, unsigned> Degree;
8566   Order.reserve(AllNodes.size());
8567   for (auto &N : allnodes()) {
8568     unsigned NOps = N.getNumOperands();
8569     Degree[&N] = NOps;
8570     if (0 == NOps)
8571       Order.push_back(&N);
8572   }
8573   for (size_t I = 0; I != Order.size(); ++I) {
8574     SDNode *N = Order[I];
8575     for (auto U : N->uses()) {
8576       unsigned &UnsortedOps = Degree[U];
8577       if (0 == --UnsortedOps)
8578         Order.push_back(U);
8579     }
8580   }
8581 }
8582 
8583 #ifndef NDEBUG
8584 void SelectionDAG::VerifyDAGDiverence() {
8585   std::vector<SDNode *> TopoOrder;
8586   CreateTopologicalOrder(TopoOrder);
8587   const TargetLowering &TLI = getTargetLoweringInfo();
8588   DenseMap<const SDNode *, bool> DivergenceMap;
8589   for (auto &N : allnodes()) {
8590     DivergenceMap[&N] = false;
8591   }
8592   for (auto N : TopoOrder) {
8593     bool IsDivergent = DivergenceMap[N];
8594     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8595     for (auto &Op : N->ops()) {
8596       if (Op.Val.getValueType() != MVT::Other)
8597         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8598     }
8599     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8600       DivergenceMap[N] = true;
8601     }
8602   }
8603   for (auto &N : allnodes()) {
8604     (void)N;
8605     assert(DivergenceMap[&N] == N.isDivergent() &&
8606            "Divergence bit inconsistency detected\n");
8607   }
8608 }
8609 #endif
8610 
8611 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8612 /// uses of other values produced by From.getNode() alone.  The same value
8613 /// may appear in both the From and To list.  The Deleted vector is
8614 /// handled the same way as for ReplaceAllUsesWith.
8615 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8616                                               const SDValue *To,
8617                                               unsigned Num){
8618   // Handle the simple, trivial case efficiently.
8619   if (Num == 1)
8620     return ReplaceAllUsesOfValueWith(*From, *To);
8621 
8622   transferDbgValues(*From, *To);
8623 
8624   // Read up all the uses and make records of them. This helps
8625   // processing new uses that are introduced during the
8626   // replacement process.
8627   SmallVector<UseMemo, 4> Uses;
8628   for (unsigned i = 0; i != Num; ++i) {
8629     unsigned FromResNo = From[i].getResNo();
8630     SDNode *FromNode = From[i].getNode();
8631     for (SDNode::use_iterator UI = FromNode->use_begin(),
8632          E = FromNode->use_end(); UI != E; ++UI) {
8633       SDUse &Use = UI.getUse();
8634       if (Use.getResNo() == FromResNo) {
8635         UseMemo Memo = { *UI, i, &Use };
8636         Uses.push_back(Memo);
8637       }
8638     }
8639   }
8640 
8641   // Sort the uses, so that all the uses from a given User are together.
8642   llvm::sort(Uses);
8643 
8644   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8645        UseIndex != UseIndexEnd; ) {
8646     // We know that this user uses some value of From.  If it is the right
8647     // value, update it.
8648     SDNode *User = Uses[UseIndex].User;
8649 
8650     // This node is about to morph, remove its old self from the CSE maps.
8651     RemoveNodeFromCSEMaps(User);
8652 
8653     // The Uses array is sorted, so all the uses for a given User
8654     // are next to each other in the list.
8655     // To help reduce the number of CSE recomputations, process all
8656     // the uses of this user that we can find this way.
8657     do {
8658       unsigned i = Uses[UseIndex].Index;
8659       SDUse &Use = *Uses[UseIndex].Use;
8660       ++UseIndex;
8661 
8662       Use.set(To[i]);
8663     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8664 
8665     // Now that we have modified User, add it back to the CSE maps.  If it
8666     // already exists there, recursively merge the results together.
8667     AddModifiedNodeToCSEMaps(User);
8668   }
8669 }
8670 
8671 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8672 /// based on their topological order. It returns the maximum id and a vector
8673 /// of the SDNodes* in assigned order by reference.
8674 unsigned SelectionDAG::AssignTopologicalOrder() {
8675   unsigned DAGSize = 0;
8676 
8677   // SortedPos tracks the progress of the algorithm. Nodes before it are
8678   // sorted, nodes after it are unsorted. When the algorithm completes
8679   // it is at the end of the list.
8680   allnodes_iterator SortedPos = allnodes_begin();
8681 
8682   // Visit all the nodes. Move nodes with no operands to the front of
8683   // the list immediately. Annotate nodes that do have operands with their
8684   // operand count. Before we do this, the Node Id fields of the nodes
8685   // may contain arbitrary values. After, the Node Id fields for nodes
8686   // before SortedPos will contain the topological sort index, and the
8687   // Node Id fields for nodes At SortedPos and after will contain the
8688   // count of outstanding operands.
8689   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8690     SDNode *N = &*I++;
8691     checkForCycles(N, this);
8692     unsigned Degree = N->getNumOperands();
8693     if (Degree == 0) {
8694       // A node with no uses, add it to the result array immediately.
8695       N->setNodeId(DAGSize++);
8696       allnodes_iterator Q(N);
8697       if (Q != SortedPos)
8698         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8699       assert(SortedPos != AllNodes.end() && "Overran node list");
8700       ++SortedPos;
8701     } else {
8702       // Temporarily use the Node Id as scratch space for the degree count.
8703       N->setNodeId(Degree);
8704     }
8705   }
8706 
8707   // Visit all the nodes. As we iterate, move nodes into sorted order,
8708   // such that by the time the end is reached all nodes will be sorted.
8709   for (SDNode &Node : allnodes()) {
8710     SDNode *N = &Node;
8711     checkForCycles(N, this);
8712     // N is in sorted position, so all its uses have one less operand
8713     // that needs to be sorted.
8714     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8715          UI != UE; ++UI) {
8716       SDNode *P = *UI;
8717       unsigned Degree = P->getNodeId();
8718       assert(Degree != 0 && "Invalid node degree");
8719       --Degree;
8720       if (Degree == 0) {
8721         // All of P's operands are sorted, so P may sorted now.
8722         P->setNodeId(DAGSize++);
8723         if (P->getIterator() != SortedPos)
8724           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8725         assert(SortedPos != AllNodes.end() && "Overran node list");
8726         ++SortedPos;
8727       } else {
8728         // Update P's outstanding operand count.
8729         P->setNodeId(Degree);
8730       }
8731     }
8732     if (Node.getIterator() == SortedPos) {
8733 #ifndef NDEBUG
8734       allnodes_iterator I(N);
8735       SDNode *S = &*++I;
8736       dbgs() << "Overran sorted position:\n";
8737       S->dumprFull(this); dbgs() << "\n";
8738       dbgs() << "Checking if this is due to cycles\n";
8739       checkForCycles(this, true);
8740 #endif
8741       llvm_unreachable(nullptr);
8742     }
8743   }
8744 
8745   assert(SortedPos == AllNodes.end() &&
8746          "Topological sort incomplete!");
8747   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8748          "First node in topological sort is not the entry token!");
8749   assert(AllNodes.front().getNodeId() == 0 &&
8750          "First node in topological sort has non-zero id!");
8751   assert(AllNodes.front().getNumOperands() == 0 &&
8752          "First node in topological sort has operands!");
8753   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8754          "Last node in topologic sort has unexpected id!");
8755   assert(AllNodes.back().use_empty() &&
8756          "Last node in topologic sort has users!");
8757   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8758   return DAGSize;
8759 }
8760 
8761 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8762 /// value is produced by SD.
8763 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8764   if (SD) {
8765     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8766     SD->setHasDebugValue(true);
8767   }
8768   DbgInfo->add(DB, SD, isParameter);
8769 }
8770 
8771 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8772   DbgInfo->add(DB);
8773 }
8774 
8775 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8776                                                    SDValue NewMemOp) {
8777   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8778   // The new memory operation must have the same position as the old load in
8779   // terms of memory dependency. Create a TokenFactor for the old load and new
8780   // memory operation and update uses of the old load's output chain to use that
8781   // TokenFactor.
8782   SDValue OldChain = SDValue(OldLoad, 1);
8783   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8784   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8785     return NewChain;
8786 
8787   SDValue TokenFactor =
8788       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8789   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8790   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8791   return TokenFactor;
8792 }
8793 
8794 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8795                                                      Function **OutFunction) {
8796   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8797 
8798   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8799   auto *Module = MF->getFunction().getParent();
8800   auto *Function = Module->getFunction(Symbol);
8801 
8802   if (OutFunction != nullptr)
8803       *OutFunction = Function;
8804 
8805   if (Function != nullptr) {
8806     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8807     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8808   }
8809 
8810   std::string ErrorStr;
8811   raw_string_ostream ErrorFormatter(ErrorStr);
8812 
8813   ErrorFormatter << "Undefined external symbol ";
8814   ErrorFormatter << '"' << Symbol << '"';
8815   ErrorFormatter.flush();
8816 
8817   report_fatal_error(ErrorStr);
8818 }
8819 
8820 //===----------------------------------------------------------------------===//
8821 //                              SDNode Class
8822 //===----------------------------------------------------------------------===//
8823 
8824 bool llvm::isNullConstant(SDValue V) {
8825   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8826   return Const != nullptr && Const->isNullValue();
8827 }
8828 
8829 bool llvm::isNullFPConstant(SDValue V) {
8830   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8831   return Const != nullptr && Const->isZero() && !Const->isNegative();
8832 }
8833 
8834 bool llvm::isAllOnesConstant(SDValue V) {
8835   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8836   return Const != nullptr && Const->isAllOnesValue();
8837 }
8838 
8839 bool llvm::isOneConstant(SDValue V) {
8840   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8841   return Const != nullptr && Const->isOne();
8842 }
8843 
8844 SDValue llvm::peekThroughBitcasts(SDValue V) {
8845   while (V.getOpcode() == ISD::BITCAST)
8846     V = V.getOperand(0);
8847   return V;
8848 }
8849 
8850 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8851   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8852     V = V.getOperand(0);
8853   return V;
8854 }
8855 
8856 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8857   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8858     V = V.getOperand(0);
8859   return V;
8860 }
8861 
8862 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8863   if (V.getOpcode() != ISD::XOR)
8864     return false;
8865   V = peekThroughBitcasts(V.getOperand(1));
8866   unsigned NumBits = V.getScalarValueSizeInBits();
8867   ConstantSDNode *C =
8868       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8869   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8870 }
8871 
8872 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8873                                           bool AllowTruncation) {
8874   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8875     return CN;
8876 
8877   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8878     BitVector UndefElements;
8879     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8880 
8881     // BuildVectors can truncate their operands. Ignore that case here unless
8882     // AllowTruncation is set.
8883     if (CN && (UndefElements.none() || AllowUndefs)) {
8884       EVT CVT = CN->getValueType(0);
8885       EVT NSVT = N.getValueType().getScalarType();
8886       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8887       if (AllowTruncation || (CVT == NSVT))
8888         return CN;
8889     }
8890   }
8891 
8892   return nullptr;
8893 }
8894 
8895 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8896                                           bool AllowUndefs,
8897                                           bool AllowTruncation) {
8898   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8899     return CN;
8900 
8901   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8902     BitVector UndefElements;
8903     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8904 
8905     // BuildVectors can truncate their operands. Ignore that case here unless
8906     // AllowTruncation is set.
8907     if (CN && (UndefElements.none() || AllowUndefs)) {
8908       EVT CVT = CN->getValueType(0);
8909       EVT NSVT = N.getValueType().getScalarType();
8910       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8911       if (AllowTruncation || (CVT == NSVT))
8912         return CN;
8913     }
8914   }
8915 
8916   return nullptr;
8917 }
8918 
8919 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8920   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8921     return CN;
8922 
8923   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8924     BitVector UndefElements;
8925     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8926     if (CN && (UndefElements.none() || AllowUndefs))
8927       return CN;
8928   }
8929 
8930   return nullptr;
8931 }
8932 
8933 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8934                                               const APInt &DemandedElts,
8935                                               bool AllowUndefs) {
8936   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8937     return CN;
8938 
8939   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8940     BitVector UndefElements;
8941     ConstantFPSDNode *CN =
8942         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8943     if (CN && (UndefElements.none() || AllowUndefs))
8944       return CN;
8945   }
8946 
8947   return nullptr;
8948 }
8949 
8950 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8951   // TODO: may want to use peekThroughBitcast() here.
8952   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8953   return C && C->isNullValue();
8954 }
8955 
8956 bool llvm::isOneOrOneSplat(SDValue N) {
8957   // TODO: may want to use peekThroughBitcast() here.
8958   unsigned BitWidth = N.getScalarValueSizeInBits();
8959   ConstantSDNode *C = isConstOrConstSplat(N);
8960   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8961 }
8962 
8963 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8964   N = peekThroughBitcasts(N);
8965   unsigned BitWidth = N.getScalarValueSizeInBits();
8966   ConstantSDNode *C = isConstOrConstSplat(N);
8967   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8968 }
8969 
8970 HandleSDNode::~HandleSDNode() {
8971   DropOperands();
8972 }
8973 
8974 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8975                                          const DebugLoc &DL,
8976                                          const GlobalValue *GA, EVT VT,
8977                                          int64_t o, unsigned TF)
8978     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8979   TheGlobal = GA;
8980 }
8981 
8982 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8983                                          EVT VT, unsigned SrcAS,
8984                                          unsigned DestAS)
8985     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8986       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8987 
8988 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8989                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8990     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8991   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8992   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8993   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8994   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8995 
8996   // We check here that the size of the memory operand fits within the size of
8997   // the MMO. This is because the MMO might indicate only a possible address
8998   // range instead of specifying the affected memory addresses precisely.
8999   // TODO: Make MachineMemOperands aware of scalable vectors.
9000   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9001          "Size mismatch!");
9002 }
9003 
9004 /// Profile - Gather unique data for the node.
9005 ///
9006 void SDNode::Profile(FoldingSetNodeID &ID) const {
9007   AddNodeIDNode(ID, this);
9008 }
9009 
9010 namespace {
9011 
9012   struct EVTArray {
9013     std::vector<EVT> VTs;
9014 
9015     EVTArray() {
9016       VTs.reserve(MVT::LAST_VALUETYPE);
9017       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9018         VTs.push_back(MVT((MVT::SimpleValueType)i));
9019     }
9020   };
9021 
9022 } // end anonymous namespace
9023 
9024 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9025 static ManagedStatic<EVTArray> SimpleVTArray;
9026 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9027 
9028 /// getValueTypeList - Return a pointer to the specified value type.
9029 ///
9030 const EVT *SDNode::getValueTypeList(EVT VT) {
9031   if (VT.isExtended()) {
9032     sys::SmartScopedLock<true> Lock(*VTMutex);
9033     return &(*EVTs->insert(VT).first);
9034   } else {
9035     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9036            "Value type out of range!");
9037     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9038   }
9039 }
9040 
9041 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9042 /// indicated value.  This method ignores uses of other values defined by this
9043 /// operation.
9044 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9045   assert(Value < getNumValues() && "Bad value!");
9046 
9047   // TODO: Only iterate over uses of a given value of the node
9048   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9049     if (UI.getUse().getResNo() == Value) {
9050       if (NUses == 0)
9051         return false;
9052       --NUses;
9053     }
9054   }
9055 
9056   // Found exactly the right number of uses?
9057   return NUses == 0;
9058 }
9059 
9060 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9061 /// value. This method ignores uses of other values defined by this operation.
9062 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9063   assert(Value < getNumValues() && "Bad value!");
9064 
9065   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9066     if (UI.getUse().getResNo() == Value)
9067       return true;
9068 
9069   return false;
9070 }
9071 
9072 /// isOnlyUserOf - Return true if this node is the only use of N.
9073 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9074   bool Seen = false;
9075   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9076     SDNode *User = *I;
9077     if (User == this)
9078       Seen = true;
9079     else
9080       return false;
9081   }
9082 
9083   return Seen;
9084 }
9085 
9086 /// Return true if the only users of N are contained in Nodes.
9087 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9088   bool Seen = false;
9089   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9090     SDNode *User = *I;
9091     if (llvm::any_of(Nodes,
9092                      [&User](const SDNode *Node) { return User == Node; }))
9093       Seen = true;
9094     else
9095       return false;
9096   }
9097 
9098   return Seen;
9099 }
9100 
9101 /// isOperand - Return true if this node is an operand of N.
9102 bool SDValue::isOperandOf(const SDNode *N) const {
9103   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9104 }
9105 
9106 bool SDNode::isOperandOf(const SDNode *N) const {
9107   return any_of(N->op_values(),
9108                 [this](SDValue Op) { return this == Op.getNode(); });
9109 }
9110 
9111 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9112 /// be a chain) reaches the specified operand without crossing any
9113 /// side-effecting instructions on any chain path.  In practice, this looks
9114 /// through token factors and non-volatile loads.  In order to remain efficient,
9115 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9116 ///
9117 /// Note that we only need to examine chains when we're searching for
9118 /// side-effects; SelectionDAG requires that all side-effects are represented
9119 /// by chains, even if another operand would force a specific ordering. This
9120 /// constraint is necessary to allow transformations like splitting loads.
9121 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9122                                              unsigned Depth) const {
9123   if (*this == Dest) return true;
9124 
9125   // Don't search too deeply, we just want to be able to see through
9126   // TokenFactor's etc.
9127   if (Depth == 0) return false;
9128 
9129   // If this is a token factor, all inputs to the TF happen in parallel.
9130   if (getOpcode() == ISD::TokenFactor) {
9131     // First, try a shallow search.
9132     if (is_contained((*this)->ops(), Dest)) {
9133       // We found the chain we want as an operand of this TokenFactor.
9134       // Essentially, we reach the chain without side-effects if we could
9135       // serialize the TokenFactor into a simple chain of operations with
9136       // Dest as the last operation. This is automatically true if the
9137       // chain has one use: there are no other ordering constraints.
9138       // If the chain has more than one use, we give up: some other
9139       // use of Dest might force a side-effect between Dest and the current
9140       // node.
9141       if (Dest.hasOneUse())
9142         return true;
9143     }
9144     // Next, try a deep search: check whether every operand of the TokenFactor
9145     // reaches Dest.
9146     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9147       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9148     });
9149   }
9150 
9151   // Loads don't have side effects, look through them.
9152   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9153     if (Ld->isUnordered())
9154       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9155   }
9156   return false;
9157 }
9158 
9159 bool SDNode::hasPredecessor(const SDNode *N) const {
9160   SmallPtrSet<const SDNode *, 32> Visited;
9161   SmallVector<const SDNode *, 16> Worklist;
9162   Worklist.push_back(this);
9163   return hasPredecessorHelper(N, Visited, Worklist);
9164 }
9165 
9166 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9167   this->Flags.intersectWith(Flags);
9168 }
9169 
9170 SDValue
9171 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9172                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9173                                   bool AllowPartials) {
9174   // The pattern must end in an extract from index 0.
9175   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9176       !isNullConstant(Extract->getOperand(1)))
9177     return SDValue();
9178 
9179   // Match against one of the candidate binary ops.
9180   SDValue Op = Extract->getOperand(0);
9181   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9182         return Op.getOpcode() == unsigned(BinOp);
9183       }))
9184     return SDValue();
9185 
9186   // Floating-point reductions may require relaxed constraints on the final step
9187   // of the reduction because they may reorder intermediate operations.
9188   unsigned CandidateBinOp = Op.getOpcode();
9189   if (Op.getValueType().isFloatingPoint()) {
9190     SDNodeFlags Flags = Op->getFlags();
9191     switch (CandidateBinOp) {
9192     case ISD::FADD:
9193       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9194         return SDValue();
9195       break;
9196     default:
9197       llvm_unreachable("Unhandled FP opcode for binop reduction");
9198     }
9199   }
9200 
9201   // Matching failed - attempt to see if we did enough stages that a partial
9202   // reduction from a subvector is possible.
9203   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9204     if (!AllowPartials || !Op)
9205       return SDValue();
9206     EVT OpVT = Op.getValueType();
9207     EVT OpSVT = OpVT.getScalarType();
9208     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9209     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9210       return SDValue();
9211     BinOp = (ISD::NodeType)CandidateBinOp;
9212     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9213                    getVectorIdxConstant(0, SDLoc(Op)));
9214   };
9215 
9216   // At each stage, we're looking for something that looks like:
9217   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9218   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9219   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9220   // %a = binop <8 x i32> %op, %s
9221   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9222   // we expect something like:
9223   // <4,5,6,7,u,u,u,u>
9224   // <2,3,u,u,u,u,u,u>
9225   // <1,u,u,u,u,u,u,u>
9226   // While a partial reduction match would be:
9227   // <2,3,u,u,u,u,u,u>
9228   // <1,u,u,u,u,u,u,u>
9229   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9230   SDValue PrevOp;
9231   for (unsigned i = 0; i < Stages; ++i) {
9232     unsigned MaskEnd = (1 << i);
9233 
9234     if (Op.getOpcode() != CandidateBinOp)
9235       return PartialReduction(PrevOp, MaskEnd);
9236 
9237     SDValue Op0 = Op.getOperand(0);
9238     SDValue Op1 = Op.getOperand(1);
9239 
9240     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9241     if (Shuffle) {
9242       Op = Op1;
9243     } else {
9244       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9245       Op = Op0;
9246     }
9247 
9248     // The first operand of the shuffle should be the same as the other operand
9249     // of the binop.
9250     if (!Shuffle || Shuffle->getOperand(0) != Op)
9251       return PartialReduction(PrevOp, MaskEnd);
9252 
9253     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9254     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9255       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9256         return PartialReduction(PrevOp, MaskEnd);
9257 
9258     PrevOp = Op;
9259   }
9260 
9261   BinOp = (ISD::NodeType)CandidateBinOp;
9262   return Op;
9263 }
9264 
9265 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9266   assert(N->getNumValues() == 1 &&
9267          "Can't unroll a vector with multiple results!");
9268 
9269   EVT VT = N->getValueType(0);
9270   unsigned NE = VT.getVectorNumElements();
9271   EVT EltVT = VT.getVectorElementType();
9272   SDLoc dl(N);
9273 
9274   SmallVector<SDValue, 8> Scalars;
9275   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9276 
9277   // If ResNE is 0, fully unroll the vector op.
9278   if (ResNE == 0)
9279     ResNE = NE;
9280   else if (NE > ResNE)
9281     NE = ResNE;
9282 
9283   unsigned i;
9284   for (i= 0; i != NE; ++i) {
9285     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9286       SDValue Operand = N->getOperand(j);
9287       EVT OperandVT = Operand.getValueType();
9288       if (OperandVT.isVector()) {
9289         // A vector operand; extract a single element.
9290         EVT OperandEltVT = OperandVT.getVectorElementType();
9291         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9292                               Operand, getVectorIdxConstant(i, dl));
9293       } else {
9294         // A scalar operand; just use it as is.
9295         Operands[j] = Operand;
9296       }
9297     }
9298 
9299     switch (N->getOpcode()) {
9300     default: {
9301       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9302                                 N->getFlags()));
9303       break;
9304     }
9305     case ISD::VSELECT:
9306       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9307       break;
9308     case ISD::SHL:
9309     case ISD::SRA:
9310     case ISD::SRL:
9311     case ISD::ROTL:
9312     case ISD::ROTR:
9313       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9314                                getShiftAmountOperand(Operands[0].getValueType(),
9315                                                      Operands[1])));
9316       break;
9317     case ISD::SIGN_EXTEND_INREG: {
9318       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9319       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9320                                 Operands[0],
9321                                 getValueType(ExtVT)));
9322     }
9323     }
9324   }
9325 
9326   for (; i < ResNE; ++i)
9327     Scalars.push_back(getUNDEF(EltVT));
9328 
9329   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9330   return getBuildVector(VecVT, dl, Scalars);
9331 }
9332 
9333 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9334     SDNode *N, unsigned ResNE) {
9335   unsigned Opcode = N->getOpcode();
9336   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9337           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9338           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9339          "Expected an overflow opcode");
9340 
9341   EVT ResVT = N->getValueType(0);
9342   EVT OvVT = N->getValueType(1);
9343   EVT ResEltVT = ResVT.getVectorElementType();
9344   EVT OvEltVT = OvVT.getVectorElementType();
9345   SDLoc dl(N);
9346 
9347   // If ResNE is 0, fully unroll the vector op.
9348   unsigned NE = ResVT.getVectorNumElements();
9349   if (ResNE == 0)
9350     ResNE = NE;
9351   else if (NE > ResNE)
9352     NE = ResNE;
9353 
9354   SmallVector<SDValue, 8> LHSScalars;
9355   SmallVector<SDValue, 8> RHSScalars;
9356   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9357   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9358 
9359   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9360   SDVTList VTs = getVTList(ResEltVT, SVT);
9361   SmallVector<SDValue, 8> ResScalars;
9362   SmallVector<SDValue, 8> OvScalars;
9363   for (unsigned i = 0; i < NE; ++i) {
9364     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9365     SDValue Ov =
9366         getSelect(dl, OvEltVT, Res.getValue(1),
9367                   getBoolConstant(true, dl, OvEltVT, ResVT),
9368                   getConstant(0, dl, OvEltVT));
9369 
9370     ResScalars.push_back(Res);
9371     OvScalars.push_back(Ov);
9372   }
9373 
9374   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9375   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9376 
9377   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9378   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9379   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9380                         getBuildVector(NewOvVT, dl, OvScalars));
9381 }
9382 
9383 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9384                                                   LoadSDNode *Base,
9385                                                   unsigned Bytes,
9386                                                   int Dist) const {
9387   if (LD->isVolatile() || Base->isVolatile())
9388     return false;
9389   // TODO: probably too restrictive for atomics, revisit
9390   if (!LD->isSimple())
9391     return false;
9392   if (LD->isIndexed() || Base->isIndexed())
9393     return false;
9394   if (LD->getChain() != Base->getChain())
9395     return false;
9396   EVT VT = LD->getValueType(0);
9397   if (VT.getSizeInBits() / 8 != Bytes)
9398     return false;
9399 
9400   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9401   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9402 
9403   int64_t Offset = 0;
9404   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9405     return (Dist * Bytes == Offset);
9406   return false;
9407 }
9408 
9409 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9410 /// it cannot be inferred.
9411 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9412   // If this is a GlobalAddress + cst, return the alignment.
9413   const GlobalValue *GV = nullptr;
9414   int64_t GVOffset = 0;
9415   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9416     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9417     KnownBits Known(PtrWidth);
9418     llvm::computeKnownBits(GV, Known, getDataLayout());
9419     unsigned AlignBits = Known.countMinTrailingZeros();
9420     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9421     if (Align)
9422       return MinAlign(Align, GVOffset);
9423   }
9424 
9425   // If this is a direct reference to a stack slot, use information about the
9426   // stack slot's alignment.
9427   int FrameIdx = INT_MIN;
9428   int64_t FrameOffset = 0;
9429   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9430     FrameIdx = FI->getIndex();
9431   } else if (isBaseWithConstantOffset(Ptr) &&
9432              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9433     // Handle FI+Cst
9434     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9435     FrameOffset = Ptr.getConstantOperandVal(1);
9436   }
9437 
9438   if (FrameIdx != INT_MIN) {
9439     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9440     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9441                                     FrameOffset);
9442     return FIInfoAlign;
9443   }
9444 
9445   return 0;
9446 }
9447 
9448 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9449 /// which is split (or expanded) into two not necessarily identical pieces.
9450 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9451   // Currently all types are split in half.
9452   EVT LoVT, HiVT;
9453   if (!VT.isVector())
9454     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9455   else
9456     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9457 
9458   return std::make_pair(LoVT, HiVT);
9459 }
9460 
9461 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9462 /// low/high part.
9463 std::pair<SDValue, SDValue>
9464 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9465                           const EVT &HiVT) {
9466   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9467          N.getValueType().getVectorNumElements() &&
9468          "More vector elements requested than available!");
9469   SDValue Lo, Hi;
9470   Lo =
9471       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9472   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9473                getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
9474   return std::make_pair(Lo, Hi);
9475 }
9476 
9477 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9478 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9479   EVT VT = N.getValueType();
9480   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9481                                 NextPowerOf2(VT.getVectorNumElements()));
9482   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9483                  getVectorIdxConstant(0, DL));
9484 }
9485 
9486 void SelectionDAG::ExtractVectorElements(SDValue Op,
9487                                          SmallVectorImpl<SDValue> &Args,
9488                                          unsigned Start, unsigned Count) {
9489   EVT VT = Op.getValueType();
9490   if (Count == 0)
9491     Count = VT.getVectorNumElements();
9492 
9493   EVT EltVT = VT.getVectorElementType();
9494   SDLoc SL(Op);
9495   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9496     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9497                            getVectorIdxConstant(i, SL)));
9498   }
9499 }
9500 
9501 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9502 unsigned GlobalAddressSDNode::getAddressSpace() const {
9503   return getGlobal()->getType()->getAddressSpace();
9504 }
9505 
9506 Type *ConstantPoolSDNode::getType() const {
9507   if (isMachineConstantPoolEntry())
9508     return Val.MachineCPVal->getType();
9509   return Val.ConstVal->getType();
9510 }
9511 
9512 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9513                                         unsigned &SplatBitSize,
9514                                         bool &HasAnyUndefs,
9515                                         unsigned MinSplatBits,
9516                                         bool IsBigEndian) const {
9517   EVT VT = getValueType(0);
9518   assert(VT.isVector() && "Expected a vector type");
9519   unsigned VecWidth = VT.getSizeInBits();
9520   if (MinSplatBits > VecWidth)
9521     return false;
9522 
9523   // FIXME: The widths are based on this node's type, but build vectors can
9524   // truncate their operands.
9525   SplatValue = APInt(VecWidth, 0);
9526   SplatUndef = APInt(VecWidth, 0);
9527 
9528   // Get the bits. Bits with undefined values (when the corresponding element
9529   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9530   // in SplatValue. If any of the values are not constant, give up and return
9531   // false.
9532   unsigned int NumOps = getNumOperands();
9533   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9534   unsigned EltWidth = VT.getScalarSizeInBits();
9535 
9536   for (unsigned j = 0; j < NumOps; ++j) {
9537     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9538     SDValue OpVal = getOperand(i);
9539     unsigned BitPos = j * EltWidth;
9540 
9541     if (OpVal.isUndef())
9542       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9543     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9544       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9545     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9546       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9547     else
9548       return false;
9549   }
9550 
9551   // The build_vector is all constants or undefs. Find the smallest element
9552   // size that splats the vector.
9553   HasAnyUndefs = (SplatUndef != 0);
9554 
9555   // FIXME: This does not work for vectors with elements less than 8 bits.
9556   while (VecWidth > 8) {
9557     unsigned HalfSize = VecWidth / 2;
9558     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9559     APInt LowValue = SplatValue.trunc(HalfSize);
9560     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9561     APInt LowUndef = SplatUndef.trunc(HalfSize);
9562 
9563     // If the two halves do not match (ignoring undef bits), stop here.
9564     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9565         MinSplatBits > HalfSize)
9566       break;
9567 
9568     SplatValue = HighValue | LowValue;
9569     SplatUndef = HighUndef & LowUndef;
9570 
9571     VecWidth = HalfSize;
9572   }
9573 
9574   SplatBitSize = VecWidth;
9575   return true;
9576 }
9577 
9578 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9579                                          BitVector *UndefElements) const {
9580   if (UndefElements) {
9581     UndefElements->clear();
9582     UndefElements->resize(getNumOperands());
9583   }
9584   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9585          "Unexpected vector size");
9586   if (!DemandedElts)
9587     return SDValue();
9588   SDValue Splatted;
9589   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9590     if (!DemandedElts[i])
9591       continue;
9592     SDValue Op = getOperand(i);
9593     if (Op.isUndef()) {
9594       if (UndefElements)
9595         (*UndefElements)[i] = true;
9596     } else if (!Splatted) {
9597       Splatted = Op;
9598     } else if (Splatted != Op) {
9599       return SDValue();
9600     }
9601   }
9602 
9603   if (!Splatted) {
9604     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9605     assert(getOperand(FirstDemandedIdx).isUndef() &&
9606            "Can only have a splat without a constant for all undefs.");
9607     return getOperand(FirstDemandedIdx);
9608   }
9609 
9610   return Splatted;
9611 }
9612 
9613 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9614   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9615   return getSplatValue(DemandedElts, UndefElements);
9616 }
9617 
9618 ConstantSDNode *
9619 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9620                                         BitVector *UndefElements) const {
9621   return dyn_cast_or_null<ConstantSDNode>(
9622       getSplatValue(DemandedElts, UndefElements));
9623 }
9624 
9625 ConstantSDNode *
9626 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9627   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9628 }
9629 
9630 ConstantFPSDNode *
9631 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9632                                           BitVector *UndefElements) const {
9633   return dyn_cast_or_null<ConstantFPSDNode>(
9634       getSplatValue(DemandedElts, UndefElements));
9635 }
9636 
9637 ConstantFPSDNode *
9638 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9639   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9640 }
9641 
9642 int32_t
9643 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9644                                                    uint32_t BitWidth) const {
9645   if (ConstantFPSDNode *CN =
9646           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9647     bool IsExact;
9648     APSInt IntVal(BitWidth);
9649     const APFloat &APF = CN->getValueAPF();
9650     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9651             APFloat::opOK ||
9652         !IsExact)
9653       return -1;
9654 
9655     return IntVal.exactLogBase2();
9656   }
9657   return -1;
9658 }
9659 
9660 bool BuildVectorSDNode::isConstant() const {
9661   for (const SDValue &Op : op_values()) {
9662     unsigned Opc = Op.getOpcode();
9663     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9664       return false;
9665   }
9666   return true;
9667 }
9668 
9669 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9670   // Find the first non-undef value in the shuffle mask.
9671   unsigned i, e;
9672   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9673     /* search */;
9674 
9675   // If all elements are undefined, this shuffle can be considered a splat
9676   // (although it should eventually get simplified away completely).
9677   if (i == e)
9678     return true;
9679 
9680   // Make sure all remaining elements are either undef or the same as the first
9681   // non-undef value.
9682   for (int Idx = Mask[i]; i != e; ++i)
9683     if (Mask[i] >= 0 && Mask[i] != Idx)
9684       return false;
9685   return true;
9686 }
9687 
9688 // Returns the SDNode if it is a constant integer BuildVector
9689 // or constant integer.
9690 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9691   if (isa<ConstantSDNode>(N))
9692     return N.getNode();
9693   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9694     return N.getNode();
9695   // Treat a GlobalAddress supporting constant offset folding as a
9696   // constant integer.
9697   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9698     if (GA->getOpcode() == ISD::GlobalAddress &&
9699         TLI->isOffsetFoldingLegal(GA))
9700       return GA;
9701   return nullptr;
9702 }
9703 
9704 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9705   if (isa<ConstantFPSDNode>(N))
9706     return N.getNode();
9707 
9708   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9709     return N.getNode();
9710 
9711   return nullptr;
9712 }
9713 
9714 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9715   assert(!Node->OperandList && "Node already has operands");
9716   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9717          "too many operands to fit into SDNode");
9718   SDUse *Ops = OperandRecycler.allocate(
9719       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9720 
9721   bool IsDivergent = false;
9722   for (unsigned I = 0; I != Vals.size(); ++I) {
9723     Ops[I].setUser(Node);
9724     Ops[I].setInitial(Vals[I]);
9725     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9726       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9727   }
9728   Node->NumOperands = Vals.size();
9729   Node->OperandList = Ops;
9730   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9731   if (!TLI->isSDNodeAlwaysUniform(Node))
9732     Node->SDNodeBits.IsDivergent = IsDivergent;
9733   checkForCycles(Node);
9734 }
9735 
9736 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9737                                      SmallVectorImpl<SDValue> &Vals) {
9738   size_t Limit = SDNode::getMaxNumOperands();
9739   while (Vals.size() > Limit) {
9740     unsigned SliceIdx = Vals.size() - Limit;
9741     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9742     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9743     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9744     Vals.emplace_back(NewTF);
9745   }
9746   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9747 }
9748 
9749 #ifndef NDEBUG
9750 static void checkForCyclesHelper(const SDNode *N,
9751                                  SmallPtrSetImpl<const SDNode*> &Visited,
9752                                  SmallPtrSetImpl<const SDNode*> &Checked,
9753                                  const llvm::SelectionDAG *DAG) {
9754   // If this node has already been checked, don't check it again.
9755   if (Checked.count(N))
9756     return;
9757 
9758   // If a node has already been visited on this depth-first walk, reject it as
9759   // a cycle.
9760   if (!Visited.insert(N).second) {
9761     errs() << "Detected cycle in SelectionDAG\n";
9762     dbgs() << "Offending node:\n";
9763     N->dumprFull(DAG); dbgs() << "\n";
9764     abort();
9765   }
9766 
9767   for (const SDValue &Op : N->op_values())
9768     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9769 
9770   Checked.insert(N);
9771   Visited.erase(N);
9772 }
9773 #endif
9774 
9775 void llvm::checkForCycles(const llvm::SDNode *N,
9776                           const llvm::SelectionDAG *DAG,
9777                           bool force) {
9778 #ifndef NDEBUG
9779   bool check = force;
9780 #ifdef EXPENSIVE_CHECKS
9781   check = true;
9782 #endif  // EXPENSIVE_CHECKS
9783   if (check) {
9784     assert(N && "Checking nonexistent SDNode");
9785     SmallPtrSet<const SDNode*, 32> visited;
9786     SmallPtrSet<const SDNode*, 32> checked;
9787     checkForCyclesHelper(N, visited, checked, DAG);
9788   }
9789 #endif  // !NDEBUG
9790 }
9791 
9792 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9793   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9794 }
9795