1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MachineValueType.h"
66 #include "llvm/Support/ManagedStatic.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/Mutex.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOptions.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <set>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
88   SDVTList Res = {VTs, NumVTs};
89   return Res;
90 }
91 
92 // Default null implementations of the callbacks.
93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
96 
97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
98 
99 #define DEBUG_TYPE "selectiondag"
100 
101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102        cl::Hidden, cl::init(true),
103        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
104 
105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
106        cl::desc("Number limit for gluing ld/st of memcpy."),
107        cl::Hidden, cl::init(0));
108 
109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
110   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
111 }
112 
113 //===----------------------------------------------------------------------===//
114 //                              ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
116 
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
122   return getValueAPF().bitwiseIsEqual(V);
123 }
124 
125 bool ConstantFPSDNode::isValueValidForType(EVT VT,
126                                            const APFloat& Val) {
127   assert(VT.isFloatingPoint() && "Can only convert between FP types");
128 
129   // convert modifies in place, so make a copy.
130   APFloat Val2 = APFloat(Val);
131   bool losesInfo;
132   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
133                       APFloat::rmNearestTiesToEven,
134                       &losesInfo);
135   return !losesInfo;
136 }
137 
138 //===----------------------------------------------------------------------===//
139 //                              ISD Namespace
140 //===----------------------------------------------------------------------===//
141 
142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
143   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
144     unsigned EltSize =
145         N->getValueType(0).getVectorElementType().getSizeInBits();
146     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
147       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
148       return true;
149     }
150     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
151       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
152       return true;
153     }
154   }
155 
156   auto *BV = dyn_cast<BuildVectorSDNode>(N);
157   if (!BV)
158     return false;
159 
160   APInt SplatUndef;
161   unsigned SplatBitSize;
162   bool HasUndefs;
163   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
164   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
165                              EltSize) &&
166          EltSize == SplatBitSize;
167 }
168 
169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
170 // specializations of the more general isConstantSplatVector()?
171 
172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
173   // Look through a bit convert.
174   while (N->getOpcode() == ISD::BITCAST)
175     N = N->getOperand(0).getNode();
176 
177   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
178     APInt SplatVal;
179     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
180   }
181 
182   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
183 
184   unsigned i = 0, e = N->getNumOperands();
185 
186   // Skip over all of the undef values.
187   while (i != e && N->getOperand(i).isUndef())
188     ++i;
189 
190   // Do not accept an all-undef vector.
191   if (i == e) return false;
192 
193   // Do not accept build_vectors that aren't all constants or which have non-~0
194   // elements. We have to be a bit careful here, as the type of the constant
195   // may not be the same as the type of the vector elements due to type
196   // legalization (the elements are promoted to a legal type for the target and
197   // a vector of a type may be legal when the base element type is not).
198   // We only want to check enough bits to cover the vector elements, because
199   // we care if the resultant vector is all ones, not whether the individual
200   // constants are.
201   SDValue NotZero = N->getOperand(i);
202   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
203   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
204     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
205       return false;
206   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
207     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
208       return false;
209   } else
210     return false;
211 
212   // Okay, we have at least one ~0 value, check to see if the rest match or are
213   // undefs. Even with the above element type twiddling, this should be OK, as
214   // the same type legalization should have applied to all the elements.
215   for (++i; i != e; ++i)
216     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
217       return false;
218   return true;
219 }
220 
221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
222   // Look through a bit convert.
223   while (N->getOpcode() == ISD::BITCAST)
224     N = N->getOperand(0).getNode();
225 
226   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
227     APInt SplatVal;
228     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
229   }
230 
231   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
232 
233   bool IsAllUndef = true;
234   for (const SDValue &Op : N->op_values()) {
235     if (Op.isUndef())
236       continue;
237     IsAllUndef = false;
238     // Do not accept build_vectors that aren't all constants or which have non-0
239     // elements. We have to be a bit careful here, as the type of the constant
240     // may not be the same as the type of the vector elements due to type
241     // legalization (the elements are promoted to a legal type for the target
242     // and a vector of a type may be legal when the base element type is not).
243     // We only want to check enough bits to cover the vector elements, because
244     // we care if the resultant vector is all zeros, not whether the individual
245     // constants are.
246     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
247     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
248       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
249         return false;
250     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
251       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
252         return false;
253     } else
254       return false;
255   }
256 
257   // Do not accept an all-undef vector.
258   if (IsAllUndef)
259     return false;
260   return true;
261 }
262 
263 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
264   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
265 }
266 
267 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
268   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
269 }
270 
271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
272   if (N->getOpcode() != ISD::BUILD_VECTOR)
273     return false;
274 
275   for (const SDValue &Op : N->op_values()) {
276     if (Op.isUndef())
277       continue;
278     if (!isa<ConstantSDNode>(Op))
279       return false;
280   }
281   return true;
282 }
283 
284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
285   if (N->getOpcode() != ISD::BUILD_VECTOR)
286     return false;
287 
288   for (const SDValue &Op : N->op_values()) {
289     if (Op.isUndef())
290       continue;
291     if (!isa<ConstantFPSDNode>(Op))
292       return false;
293   }
294   return true;
295 }
296 
297 bool ISD::allOperandsUndef(const SDNode *N) {
298   // Return false if the node has no operands.
299   // This is "logically inconsistent" with the definition of "all" but
300   // is probably the desired behavior.
301   if (N->getNumOperands() == 0)
302     return false;
303   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
304 }
305 
306 bool ISD::matchUnaryPredicate(SDValue Op,
307                               std::function<bool(ConstantSDNode *)> Match,
308                               bool AllowUndefs) {
309   // FIXME: Add support for scalar UNDEF cases?
310   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
311     return Match(Cst);
312 
313   // FIXME: Add support for vector UNDEF cases?
314   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
315       ISD::SPLAT_VECTOR != Op.getOpcode())
316     return false;
317 
318   EVT SVT = Op.getValueType().getScalarType();
319   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
320     if (AllowUndefs && Op.getOperand(i).isUndef()) {
321       if (!Match(nullptr))
322         return false;
323       continue;
324     }
325 
326     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
327     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
328       return false;
329   }
330   return true;
331 }
332 
333 bool ISD::matchBinaryPredicate(
334     SDValue LHS, SDValue RHS,
335     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
336     bool AllowUndefs, bool AllowTypeMismatch) {
337   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
338     return false;
339 
340   // TODO: Add support for scalar UNDEF cases?
341   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
342     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
343       return Match(LHSCst, RHSCst);
344 
345   // TODO: Add support for vector UNDEF cases?
346   if (LHS.getOpcode() != RHS.getOpcode() ||
347       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
348        LHS.getOpcode() != ISD::SPLAT_VECTOR))
349     return false;
350 
351   EVT SVT = LHS.getValueType().getScalarType();
352   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
353     SDValue LHSOp = LHS.getOperand(i);
354     SDValue RHSOp = RHS.getOperand(i);
355     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
356     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
357     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
358     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
359     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
360       return false;
361     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
362                                LHSOp.getValueType() != RHSOp.getValueType()))
363       return false;
364     if (!Match(LHSCst, RHSCst))
365       return false;
366   }
367   return true;
368 }
369 
370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
371   switch (VecReduceOpcode) {
372   default:
373     llvm_unreachable("Expected VECREDUCE opcode");
374   case ISD::VECREDUCE_FADD:
375   case ISD::VECREDUCE_SEQ_FADD:
376   case ISD::VP_REDUCE_FADD:
377   case ISD::VP_REDUCE_SEQ_FADD:
378     return ISD::FADD;
379   case ISD::VECREDUCE_FMUL:
380   case ISD::VECREDUCE_SEQ_FMUL:
381   case ISD::VP_REDUCE_FMUL:
382   case ISD::VP_REDUCE_SEQ_FMUL:
383     return ISD::FMUL;
384   case ISD::VECREDUCE_ADD:
385   case ISD::VP_REDUCE_ADD:
386     return ISD::ADD;
387   case ISD::VECREDUCE_MUL:
388   case ISD::VP_REDUCE_MUL:
389     return ISD::MUL;
390   case ISD::VECREDUCE_AND:
391   case ISD::VP_REDUCE_AND:
392     return ISD::AND;
393   case ISD::VECREDUCE_OR:
394   case ISD::VP_REDUCE_OR:
395     return ISD::OR;
396   case ISD::VECREDUCE_XOR:
397   case ISD::VP_REDUCE_XOR:
398     return ISD::XOR;
399   case ISD::VECREDUCE_SMAX:
400   case ISD::VP_REDUCE_SMAX:
401     return ISD::SMAX;
402   case ISD::VECREDUCE_SMIN:
403   case ISD::VP_REDUCE_SMIN:
404     return ISD::SMIN;
405   case ISD::VECREDUCE_UMAX:
406   case ISD::VP_REDUCE_UMAX:
407     return ISD::UMAX;
408   case ISD::VECREDUCE_UMIN:
409   case ISD::VP_REDUCE_UMIN:
410     return ISD::UMIN;
411   case ISD::VECREDUCE_FMAX:
412   case ISD::VP_REDUCE_FMAX:
413     return ISD::FMAXNUM;
414   case ISD::VECREDUCE_FMIN:
415   case ISD::VP_REDUCE_FMIN:
416     return ISD::FMINNUM;
417   }
418 }
419 
420 bool ISD::isVPOpcode(unsigned Opcode) {
421   switch (Opcode) {
422   default:
423     return false;
424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
425   case ISD::VPSD:                                                              \
426     return true;
427 #include "llvm/IR/VPIntrinsics.def"
428   }
429 }
430 
431 bool ISD::isVPBinaryOp(unsigned Opcode) {
432   switch (Opcode) {
433   default:
434     break;
435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
436 #define VP_PROPERTY_BINARYOP return true;
437 #define END_REGISTER_VP_SDNODE(VPSD) break;
438 #include "llvm/IR/VPIntrinsics.def"
439   }
440   return false;
441 }
442 
443 bool ISD::isVPReduction(unsigned Opcode) {
444   switch (Opcode) {
445   default:
446     break;
447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
449 #define END_REGISTER_VP_SDNODE(VPSD) break;
450 #include "llvm/IR/VPIntrinsics.def"
451   }
452   return false;
453 }
454 
455 /// The operand position of the vector mask.
456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
457   switch (Opcode) {
458   default:
459     return None;
460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
461   case ISD::VPSD:                                                              \
462     return MASKPOS;
463 #include "llvm/IR/VPIntrinsics.def"
464   }
465 }
466 
467 /// The operand position of the explicit vector length parameter.
468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
469   switch (Opcode) {
470   default:
471     return None;
472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
473   case ISD::VPSD:                                                              \
474     return EVLPOS;
475 #include "llvm/IR/VPIntrinsics.def"
476   }
477 }
478 
479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
480   switch (ExtType) {
481   case ISD::EXTLOAD:
482     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
483   case ISD::SEXTLOAD:
484     return ISD::SIGN_EXTEND;
485   case ISD::ZEXTLOAD:
486     return ISD::ZERO_EXTEND;
487   default:
488     break;
489   }
490 
491   llvm_unreachable("Invalid LoadExtType");
492 }
493 
494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
495   // To perform this operation, we just need to swap the L and G bits of the
496   // operation.
497   unsigned OldL = (Operation >> 2) & 1;
498   unsigned OldG = (Operation >> 1) & 1;
499   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
500                        (OldL << 1) |       // New G bit
501                        (OldG << 2));       // New L bit.
502 }
503 
504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
505   unsigned Operation = Op;
506   if (isIntegerLike)
507     Operation ^= 7;   // Flip L, G, E bits, but not U.
508   else
509     Operation ^= 15;  // Flip all of the condition bits.
510 
511   if (Operation > ISD::SETTRUE2)
512     Operation &= ~8;  // Don't let N and U bits get set.
513 
514   return ISD::CondCode(Operation);
515 }
516 
517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
518   return getSetCCInverseImpl(Op, Type.isInteger());
519 }
520 
521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
522                                                bool isIntegerLike) {
523   return getSetCCInverseImpl(Op, isIntegerLike);
524 }
525 
526 /// For an integer comparison, return 1 if the comparison is a signed operation
527 /// and 2 if the result is an unsigned comparison. Return zero if the operation
528 /// does not depend on the sign of the input (setne and seteq).
529 static int isSignedOp(ISD::CondCode Opcode) {
530   switch (Opcode) {
531   default: llvm_unreachable("Illegal integer setcc operation!");
532   case ISD::SETEQ:
533   case ISD::SETNE: return 0;
534   case ISD::SETLT:
535   case ISD::SETLE:
536   case ISD::SETGT:
537   case ISD::SETGE: return 1;
538   case ISD::SETULT:
539   case ISD::SETULE:
540   case ISD::SETUGT:
541   case ISD::SETUGE: return 2;
542   }
543 }
544 
545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
546                                        EVT Type) {
547   bool IsInteger = Type.isInteger();
548   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
549     // Cannot fold a signed integer setcc with an unsigned integer setcc.
550     return ISD::SETCC_INVALID;
551 
552   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
553 
554   // If the N and U bits get set, then the resultant comparison DOES suddenly
555   // care about orderedness, and it is true when ordered.
556   if (Op > ISD::SETTRUE2)
557     Op &= ~16;     // Clear the U bit if the N bit is set.
558 
559   // Canonicalize illegal integer setcc's.
560   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
561     Op = ISD::SETNE;
562 
563   return ISD::CondCode(Op);
564 }
565 
566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
567                                         EVT Type) {
568   bool IsInteger = Type.isInteger();
569   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
570     // Cannot fold a signed setcc with an unsigned setcc.
571     return ISD::SETCC_INVALID;
572 
573   // Combine all of the condition bits.
574   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
575 
576   // Canonicalize illegal integer setcc's.
577   if (IsInteger) {
578     switch (Result) {
579     default: break;
580     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
581     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
582     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
583     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
584     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
585     }
586   }
587 
588   return Result;
589 }
590 
591 //===----------------------------------------------------------------------===//
592 //                           SDNode Profile Support
593 //===----------------------------------------------------------------------===//
594 
595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
597   ID.AddInteger(OpC);
598 }
599 
600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
601 /// solely with their pointer.
602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
603   ID.AddPointer(VTList.VTs);
604 }
605 
606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
607 static void AddNodeIDOperands(FoldingSetNodeID &ID,
608                               ArrayRef<SDValue> Ops) {
609   for (auto& Op : Ops) {
610     ID.AddPointer(Op.getNode());
611     ID.AddInteger(Op.getResNo());
612   }
613 }
614 
615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
616 static void AddNodeIDOperands(FoldingSetNodeID &ID,
617                               ArrayRef<SDUse> Ops) {
618   for (auto& Op : Ops) {
619     ID.AddPointer(Op.getNode());
620     ID.AddInteger(Op.getResNo());
621   }
622 }
623 
624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
625                           SDVTList VTList, ArrayRef<SDValue> OpList) {
626   AddNodeIDOpcode(ID, OpC);
627   AddNodeIDValueTypes(ID, VTList);
628   AddNodeIDOperands(ID, OpList);
629 }
630 
631 /// If this is an SDNode with special info, add this info to the NodeID data.
632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
633   switch (N->getOpcode()) {
634   case ISD::TargetExternalSymbol:
635   case ISD::ExternalSymbol:
636   case ISD::MCSymbol:
637     llvm_unreachable("Should only be used on nodes with operands");
638   default: break;  // Normal nodes don't need extra info.
639   case ISD::TargetConstant:
640   case ISD::Constant: {
641     const ConstantSDNode *C = cast<ConstantSDNode>(N);
642     ID.AddPointer(C->getConstantIntValue());
643     ID.AddBoolean(C->isOpaque());
644     break;
645   }
646   case ISD::TargetConstantFP:
647   case ISD::ConstantFP:
648     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
649     break;
650   case ISD::TargetGlobalAddress:
651   case ISD::GlobalAddress:
652   case ISD::TargetGlobalTLSAddress:
653   case ISD::GlobalTLSAddress: {
654     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
655     ID.AddPointer(GA->getGlobal());
656     ID.AddInteger(GA->getOffset());
657     ID.AddInteger(GA->getTargetFlags());
658     break;
659   }
660   case ISD::BasicBlock:
661     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
662     break;
663   case ISD::Register:
664     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
665     break;
666   case ISD::RegisterMask:
667     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
668     break;
669   case ISD::SRCVALUE:
670     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
671     break;
672   case ISD::FrameIndex:
673   case ISD::TargetFrameIndex:
674     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
675     break;
676   case ISD::LIFETIME_START:
677   case ISD::LIFETIME_END:
678     if (cast<LifetimeSDNode>(N)->hasOffset()) {
679       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
680       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
681     }
682     break;
683   case ISD::PSEUDO_PROBE:
684     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
685     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
686     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
687     break;
688   case ISD::JumpTable:
689   case ISD::TargetJumpTable:
690     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
691     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
692     break;
693   case ISD::ConstantPool:
694   case ISD::TargetConstantPool: {
695     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
696     ID.AddInteger(CP->getAlign().value());
697     ID.AddInteger(CP->getOffset());
698     if (CP->isMachineConstantPoolEntry())
699       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
700     else
701       ID.AddPointer(CP->getConstVal());
702     ID.AddInteger(CP->getTargetFlags());
703     break;
704   }
705   case ISD::TargetIndex: {
706     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
707     ID.AddInteger(TI->getIndex());
708     ID.AddInteger(TI->getOffset());
709     ID.AddInteger(TI->getTargetFlags());
710     break;
711   }
712   case ISD::LOAD: {
713     const LoadSDNode *LD = cast<LoadSDNode>(N);
714     ID.AddInteger(LD->getMemoryVT().getRawBits());
715     ID.AddInteger(LD->getRawSubclassData());
716     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
717     break;
718   }
719   case ISD::STORE: {
720     const StoreSDNode *ST = cast<StoreSDNode>(N);
721     ID.AddInteger(ST->getMemoryVT().getRawBits());
722     ID.AddInteger(ST->getRawSubclassData());
723     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
724     break;
725   }
726   case ISD::VP_LOAD: {
727     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
728     ID.AddInteger(ELD->getMemoryVT().getRawBits());
729     ID.AddInteger(ELD->getRawSubclassData());
730     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VP_GATHER: {
741     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
742     ID.AddInteger(EG->getMemoryVT().getRawBits());
743     ID.AddInteger(EG->getRawSubclassData());
744     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
745     break;
746   }
747   case ISD::VP_SCATTER: {
748     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
749     ID.AddInteger(ES->getMemoryVT().getRawBits());
750     ID.AddInteger(ES->getRawSubclassData());
751     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
752     break;
753   }
754   case ISD::MLOAD: {
755     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
756     ID.AddInteger(MLD->getMemoryVT().getRawBits());
757     ID.AddInteger(MLD->getRawSubclassData());
758     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
759     break;
760   }
761   case ISD::MSTORE: {
762     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
763     ID.AddInteger(MST->getMemoryVT().getRawBits());
764     ID.AddInteger(MST->getRawSubclassData());
765     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
766     break;
767   }
768   case ISD::MGATHER: {
769     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
770     ID.AddInteger(MG->getMemoryVT().getRawBits());
771     ID.AddInteger(MG->getRawSubclassData());
772     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
773     break;
774   }
775   case ISD::MSCATTER: {
776     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
777     ID.AddInteger(MS->getMemoryVT().getRawBits());
778     ID.AddInteger(MS->getRawSubclassData());
779     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
780     break;
781   }
782   case ISD::ATOMIC_CMP_SWAP:
783   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
784   case ISD::ATOMIC_SWAP:
785   case ISD::ATOMIC_LOAD_ADD:
786   case ISD::ATOMIC_LOAD_SUB:
787   case ISD::ATOMIC_LOAD_AND:
788   case ISD::ATOMIC_LOAD_CLR:
789   case ISD::ATOMIC_LOAD_OR:
790   case ISD::ATOMIC_LOAD_XOR:
791   case ISD::ATOMIC_LOAD_NAND:
792   case ISD::ATOMIC_LOAD_MIN:
793   case ISD::ATOMIC_LOAD_MAX:
794   case ISD::ATOMIC_LOAD_UMIN:
795   case ISD::ATOMIC_LOAD_UMAX:
796   case ISD::ATOMIC_LOAD:
797   case ISD::ATOMIC_STORE: {
798     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
799     ID.AddInteger(AT->getMemoryVT().getRawBits());
800     ID.AddInteger(AT->getRawSubclassData());
801     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
802     break;
803   }
804   case ISD::PREFETCH: {
805     const MemSDNode *PF = cast<MemSDNode>(N);
806     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
807     break;
808   }
809   case ISD::VECTOR_SHUFFLE: {
810     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
811     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
812          i != e; ++i)
813       ID.AddInteger(SVN->getMaskElt(i));
814     break;
815   }
816   case ISD::TargetBlockAddress:
817   case ISD::BlockAddress: {
818     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
819     ID.AddPointer(BA->getBlockAddress());
820     ID.AddInteger(BA->getOffset());
821     ID.AddInteger(BA->getTargetFlags());
822     break;
823   }
824   } // end switch (N->getOpcode())
825 
826   // Target specific memory nodes could also have address spaces to check.
827   if (N->isTargetMemoryOpcode())
828     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
829 }
830 
831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
832 /// data.
833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
834   AddNodeIDOpcode(ID, N->getOpcode());
835   // Add the return value info.
836   AddNodeIDValueTypes(ID, N->getVTList());
837   // Add the operand info.
838   AddNodeIDOperands(ID, N->ops());
839 
840   // Handle SDNode leafs with special info.
841   AddNodeIDCustom(ID, N);
842 }
843 
844 //===----------------------------------------------------------------------===//
845 //                              SelectionDAG Class
846 //===----------------------------------------------------------------------===//
847 
848 /// doNotCSE - Return true if CSE should not be performed for this node.
849 static bool doNotCSE(SDNode *N) {
850   if (N->getValueType(0) == MVT::Glue)
851     return true; // Never CSE anything that produces a flag.
852 
853   switch (N->getOpcode()) {
854   default: break;
855   case ISD::HANDLENODE:
856   case ISD::EH_LABEL:
857     return true;   // Never CSE these nodes.
858   }
859 
860   // Check that remaining values produced are not flags.
861   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
862     if (N->getValueType(i) == MVT::Glue)
863       return true; // Never CSE anything that produces a flag.
864 
865   return false;
866 }
867 
868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
869 /// SelectionDAG.
870 void SelectionDAG::RemoveDeadNodes() {
871   // Create a dummy node (which is not added to allnodes), that adds a reference
872   // to the root node, preventing it from being deleted.
873   HandleSDNode Dummy(getRoot());
874 
875   SmallVector<SDNode*, 128> DeadNodes;
876 
877   // Add all obviously-dead nodes to the DeadNodes worklist.
878   for (SDNode &Node : allnodes())
879     if (Node.use_empty())
880       DeadNodes.push_back(&Node);
881 
882   RemoveDeadNodes(DeadNodes);
883 
884   // If the root changed (e.g. it was a dead load, update the root).
885   setRoot(Dummy.getValue());
886 }
887 
888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
889 /// given list, and any nodes that become unreachable as a result.
890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
891 
892   // Process the worklist, deleting the nodes and adding their uses to the
893   // worklist.
894   while (!DeadNodes.empty()) {
895     SDNode *N = DeadNodes.pop_back_val();
896     // Skip to next node if we've already managed to delete the node. This could
897     // happen if replacing a node causes a node previously added to the node to
898     // be deleted.
899     if (N->getOpcode() == ISD::DELETED_NODE)
900       continue;
901 
902     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
903       DUL->NodeDeleted(N, nullptr);
904 
905     // Take the node out of the appropriate CSE map.
906     RemoveNodeFromCSEMaps(N);
907 
908     // Next, brutally remove the operand list.  This is safe to do, as there are
909     // no cycles in the graph.
910     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
911       SDUse &Use = *I++;
912       SDNode *Operand = Use.getNode();
913       Use.set(SDValue());
914 
915       // Now that we removed this operand, see if there are no uses of it left.
916       if (Operand->use_empty())
917         DeadNodes.push_back(Operand);
918     }
919 
920     DeallocateNode(N);
921   }
922 }
923 
924 void SelectionDAG::RemoveDeadNode(SDNode *N){
925   SmallVector<SDNode*, 16> DeadNodes(1, N);
926 
927   // Create a dummy node that adds a reference to the root node, preventing
928   // it from being deleted.  (This matters if the root is an operand of the
929   // dead node.)
930   HandleSDNode Dummy(getRoot());
931 
932   RemoveDeadNodes(DeadNodes);
933 }
934 
935 void SelectionDAG::DeleteNode(SDNode *N) {
936   // First take this out of the appropriate CSE map.
937   RemoveNodeFromCSEMaps(N);
938 
939   // Finally, remove uses due to operands of this node, remove from the
940   // AllNodes list, and delete the node.
941   DeleteNodeNotInCSEMaps(N);
942 }
943 
944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
945   assert(N->getIterator() != AllNodes.begin() &&
946          "Cannot delete the entry node!");
947   assert(N->use_empty() && "Cannot delete a node that is not dead!");
948 
949   // Drop all of the operands and decrement used node's use counts.
950   N->DropOperands();
951 
952   DeallocateNode(N);
953 }
954 
955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
956   assert(!(V->isVariadic() && isParameter));
957   if (isParameter)
958     ByvalParmDbgValues.push_back(V);
959   else
960     DbgValues.push_back(V);
961   for (const SDNode *Node : V->getSDNodes())
962     if (Node)
963       DbgValMap[Node].push_back(V);
964 }
965 
966 void SDDbgInfo::erase(const SDNode *Node) {
967   DbgValMapType::iterator I = DbgValMap.find(Node);
968   if (I == DbgValMap.end())
969     return;
970   for (auto &Val: I->second)
971     Val->setIsInvalidated();
972   DbgValMap.erase(I);
973 }
974 
975 void SelectionDAG::DeallocateNode(SDNode *N) {
976   // If we have operands, deallocate them.
977   removeOperands(N);
978 
979   NodeAllocator.Deallocate(AllNodes.remove(N));
980 
981   // Set the opcode to DELETED_NODE to help catch bugs when node
982   // memory is reallocated.
983   // FIXME: There are places in SDag that have grown a dependency on the opcode
984   // value in the released node.
985   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
986   N->NodeType = ISD::DELETED_NODE;
987 
988   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
989   // them and forget about that node.
990   DbgInfo->erase(N);
991 }
992 
993 #ifndef NDEBUG
994 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
995 static void VerifySDNode(SDNode *N) {
996   switch (N->getOpcode()) {
997   default:
998     break;
999   case ISD::BUILD_PAIR: {
1000     EVT VT = N->getValueType(0);
1001     assert(N->getNumValues() == 1 && "Too many results!");
1002     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1003            "Wrong return type!");
1004     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1005     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1006            "Mismatched operand types!");
1007     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1008            "Wrong operand type!");
1009     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1010            "Wrong return type size");
1011     break;
1012   }
1013   case ISD::BUILD_VECTOR: {
1014     assert(N->getNumValues() == 1 && "Too many results!");
1015     assert(N->getValueType(0).isVector() && "Wrong return type!");
1016     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1017            "Wrong number of operands!");
1018     EVT EltVT = N->getValueType(0).getVectorElementType();
1019     for (const SDUse &Op : N->ops()) {
1020       assert((Op.getValueType() == EltVT ||
1021               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1022                EltVT.bitsLE(Op.getValueType()))) &&
1023              "Wrong operand type!");
1024       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1025              "Operands must all have the same type");
1026     }
1027     break;
1028   }
1029   }
1030 }
1031 #endif // NDEBUG
1032 
1033 /// Insert a newly allocated node into the DAG.
1034 ///
1035 /// Handles insertion into the all nodes list and CSE map, as well as
1036 /// verification and other common operations when a new node is allocated.
1037 void SelectionDAG::InsertNode(SDNode *N) {
1038   AllNodes.push_back(N);
1039 #ifndef NDEBUG
1040   N->PersistentId = NextPersistentId++;
1041   VerifySDNode(N);
1042 #endif
1043   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1044     DUL->NodeInserted(N);
1045 }
1046 
1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1048 /// correspond to it.  This is useful when we're about to delete or repurpose
1049 /// the node.  We don't want future request for structurally identical nodes
1050 /// to return N anymore.
1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1052   bool Erased = false;
1053   switch (N->getOpcode()) {
1054   case ISD::HANDLENODE: return false;  // noop.
1055   case ISD::CONDCODE:
1056     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1057            "Cond code doesn't exist!");
1058     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1059     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1060     break;
1061   case ISD::ExternalSymbol:
1062     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1063     break;
1064   case ISD::TargetExternalSymbol: {
1065     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1066     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1067         ESN->getSymbol(), ESN->getTargetFlags()));
1068     break;
1069   }
1070   case ISD::MCSymbol: {
1071     auto *MCSN = cast<MCSymbolSDNode>(N);
1072     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1073     break;
1074   }
1075   case ISD::VALUETYPE: {
1076     EVT VT = cast<VTSDNode>(N)->getVT();
1077     if (VT.isExtended()) {
1078       Erased = ExtendedValueTypeNodes.erase(VT);
1079     } else {
1080       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1081       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1082     }
1083     break;
1084   }
1085   default:
1086     // Remove it from the CSE Map.
1087     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1088     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1089     Erased = CSEMap.RemoveNode(N);
1090     break;
1091   }
1092 #ifndef NDEBUG
1093   // Verify that the node was actually in one of the CSE maps, unless it has a
1094   // flag result (which cannot be CSE'd) or is one of the special cases that are
1095   // not subject to CSE.
1096   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1097       !N->isMachineOpcode() && !doNotCSE(N)) {
1098     N->dump(this);
1099     dbgs() << "\n";
1100     llvm_unreachable("Node is not in map!");
1101   }
1102 #endif
1103   return Erased;
1104 }
1105 
1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1108 /// node already exists, in which case transfer all its users to the existing
1109 /// node. This transfer can potentially trigger recursive merging.
1110 void
1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1112   // For node types that aren't CSE'd, just act as if no identical node
1113   // already exists.
1114   if (!doNotCSE(N)) {
1115     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1116     if (Existing != N) {
1117       // If there was already an existing matching node, use ReplaceAllUsesWith
1118       // to replace the dead one with the existing one.  This can cause
1119       // recursive merging of other unrelated nodes down the line.
1120       ReplaceAllUsesWith(N, Existing);
1121 
1122       // N is now dead. Inform the listeners and delete it.
1123       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1124         DUL->NodeDeleted(N, Existing);
1125       DeleteNodeNotInCSEMaps(N);
1126       return;
1127     }
1128   }
1129 
1130   // If the node doesn't already exist, we updated it.  Inform listeners.
1131   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1132     DUL->NodeUpdated(N);
1133 }
1134 
1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1136 /// were replaced with those specified.  If this node is never memoized,
1137 /// return null, otherwise return a pointer to the slot it would take.  If a
1138 /// node already exists with these operands, the slot will be non-null.
1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1140                                            void *&InsertPos) {
1141   if (doNotCSE(N))
1142     return nullptr;
1143 
1144   SDValue Ops[] = { Op };
1145   FoldingSetNodeID ID;
1146   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1147   AddNodeIDCustom(ID, N);
1148   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1149   if (Node)
1150     Node->intersectFlagsWith(N->getFlags());
1151   return Node;
1152 }
1153 
1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1155 /// were replaced with those specified.  If this node is never memoized,
1156 /// return null, otherwise return a pointer to the slot it would take.  If a
1157 /// node already exists with these operands, the slot will be non-null.
1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1159                                            SDValue Op1, SDValue Op2,
1160                                            void *&InsertPos) {
1161   if (doNotCSE(N))
1162     return nullptr;
1163 
1164   SDValue Ops[] = { Op1, Op2 };
1165   FoldingSetNodeID ID;
1166   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1167   AddNodeIDCustom(ID, N);
1168   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1169   if (Node)
1170     Node->intersectFlagsWith(N->getFlags());
1171   return Node;
1172 }
1173 
1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1175 /// were replaced with those specified.  If this node is never memoized,
1176 /// return null, otherwise return a pointer to the slot it would take.  If a
1177 /// node already exists with these operands, the slot will be non-null.
1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1179                                            void *&InsertPos) {
1180   if (doNotCSE(N))
1181     return nullptr;
1182 
1183   FoldingSetNodeID ID;
1184   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1185   AddNodeIDCustom(ID, N);
1186   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1187   if (Node)
1188     Node->intersectFlagsWith(N->getFlags());
1189   return Node;
1190 }
1191 
1192 Align SelectionDAG::getEVTAlign(EVT VT) const {
1193   Type *Ty = VT == MVT::iPTR ?
1194                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1195                    VT.getTypeForEVT(*getContext());
1196 
1197   return getDataLayout().getABITypeAlign(Ty);
1198 }
1199 
1200 // EntryNode could meaningfully have debug info if we can find it...
1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1202     : TM(tm), OptLevel(OL),
1203       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1204       Root(getEntryNode()) {
1205   InsertNode(&EntryNode);
1206   DbgInfo = new SDDbgInfo();
1207 }
1208 
1209 void SelectionDAG::init(MachineFunction &NewMF,
1210                         OptimizationRemarkEmitter &NewORE,
1211                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1212                         LegacyDivergenceAnalysis * Divergence,
1213                         ProfileSummaryInfo *PSIin,
1214                         BlockFrequencyInfo *BFIin) {
1215   MF = &NewMF;
1216   SDAGISelPass = PassPtr;
1217   ORE = &NewORE;
1218   TLI = getSubtarget().getTargetLowering();
1219   TSI = getSubtarget().getSelectionDAGInfo();
1220   LibInfo = LibraryInfo;
1221   Context = &MF->getFunction().getContext();
1222   DA = Divergence;
1223   PSI = PSIin;
1224   BFI = BFIin;
1225 }
1226 
1227 SelectionDAG::~SelectionDAG() {
1228   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1229   allnodes_clear();
1230   OperandRecycler.clear(OperandAllocator);
1231   delete DbgInfo;
1232 }
1233 
1234 bool SelectionDAG::shouldOptForSize() const {
1235   return MF->getFunction().hasOptSize() ||
1236       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1237 }
1238 
1239 void SelectionDAG::allnodes_clear() {
1240   assert(&*AllNodes.begin() == &EntryNode);
1241   AllNodes.remove(AllNodes.begin());
1242   while (!AllNodes.empty())
1243     DeallocateNode(&AllNodes.front());
1244 #ifndef NDEBUG
1245   NextPersistentId = 0;
1246 #endif
1247 }
1248 
1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1250                                           void *&InsertPos) {
1251   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1252   if (N) {
1253     switch (N->getOpcode()) {
1254     default: break;
1255     case ISD::Constant:
1256     case ISD::ConstantFP:
1257       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1258                        "debug location.  Use another overload.");
1259     }
1260   }
1261   return N;
1262 }
1263 
1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1265                                           const SDLoc &DL, void *&InsertPos) {
1266   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1267   if (N) {
1268     switch (N->getOpcode()) {
1269     case ISD::Constant:
1270     case ISD::ConstantFP:
1271       // Erase debug location from the node if the node is used at several
1272       // different places. Do not propagate one location to all uses as it
1273       // will cause a worse single stepping debugging experience.
1274       if (N->getDebugLoc() != DL.getDebugLoc())
1275         N->setDebugLoc(DebugLoc());
1276       break;
1277     default:
1278       // When the node's point of use is located earlier in the instruction
1279       // sequence than its prior point of use, update its debug info to the
1280       // earlier location.
1281       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1282         N->setDebugLoc(DL.getDebugLoc());
1283       break;
1284     }
1285   }
1286   return N;
1287 }
1288 
1289 void SelectionDAG::clear() {
1290   allnodes_clear();
1291   OperandRecycler.clear(OperandAllocator);
1292   OperandAllocator.Reset();
1293   CSEMap.clear();
1294 
1295   ExtendedValueTypeNodes.clear();
1296   ExternalSymbols.clear();
1297   TargetExternalSymbols.clear();
1298   MCSymbols.clear();
1299   SDCallSiteDbgInfo.clear();
1300   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1301             static_cast<CondCodeSDNode*>(nullptr));
1302   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1303             static_cast<SDNode*>(nullptr));
1304 
1305   EntryNode.UseList = nullptr;
1306   InsertNode(&EntryNode);
1307   Root = getEntryNode();
1308   DbgInfo->clear();
1309 }
1310 
1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1312   return VT.bitsGT(Op.getValueType())
1313              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1314              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1315 }
1316 
1317 std::pair<SDValue, SDValue>
1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1319                                        const SDLoc &DL, EVT VT) {
1320   assert(!VT.bitsEq(Op.getValueType()) &&
1321          "Strict no-op FP extend/round not allowed.");
1322   SDValue Res =
1323       VT.bitsGT(Op.getValueType())
1324           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1325           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1326                     {Chain, Op, getIntPtrConstant(0, DL)});
1327 
1328   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1329 }
1330 
1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1332   return VT.bitsGT(Op.getValueType()) ?
1333     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1334     getNode(ISD::TRUNCATE, DL, VT, Op);
1335 }
1336 
1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1338   return VT.bitsGT(Op.getValueType()) ?
1339     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1340     getNode(ISD::TRUNCATE, DL, VT, Op);
1341 }
1342 
1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1344   return VT.bitsGT(Op.getValueType()) ?
1345     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1346     getNode(ISD::TRUNCATE, DL, VT, Op);
1347 }
1348 
1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1350                                         EVT OpVT) {
1351   if (VT.bitsLE(Op.getValueType()))
1352     return getNode(ISD::TRUNCATE, SL, VT, Op);
1353 
1354   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1355   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1356 }
1357 
1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1359   EVT OpVT = Op.getValueType();
1360   assert(VT.isInteger() && OpVT.isInteger() &&
1361          "Cannot getZeroExtendInReg FP types");
1362   assert(VT.isVector() == OpVT.isVector() &&
1363          "getZeroExtendInReg type should be vector iff the operand "
1364          "type is vector!");
1365   assert((!VT.isVector() ||
1366           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1367          "Vector element counts must match in getZeroExtendInReg");
1368   assert(VT.bitsLE(OpVT) && "Not extending!");
1369   if (OpVT == VT)
1370     return Op;
1371   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1372                                    VT.getScalarSizeInBits());
1373   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1374 }
1375 
1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1377   // Only unsigned pointer semantics are supported right now. In the future this
1378   // might delegate to TLI to check pointer signedness.
1379   return getZExtOrTrunc(Op, DL, VT);
1380 }
1381 
1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1383   // Only unsigned pointer semantics are supported right now. In the future this
1384   // might delegate to TLI to check pointer signedness.
1385   return getZeroExtendInReg(Op, DL, VT);
1386 }
1387 
1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1390   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1391 }
1392 
1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1394   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1395   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1396 }
1397 
1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1399                                       EVT OpVT) {
1400   if (!V)
1401     return getConstant(0, DL, VT);
1402 
1403   switch (TLI->getBooleanContents(OpVT)) {
1404   case TargetLowering::ZeroOrOneBooleanContent:
1405   case TargetLowering::UndefinedBooleanContent:
1406     return getConstant(1, DL, VT);
1407   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1408     return getAllOnesConstant(DL, VT);
1409   }
1410   llvm_unreachable("Unexpected boolean content enum!");
1411 }
1412 
1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1414                                   bool isT, bool isO) {
1415   EVT EltVT = VT.getScalarType();
1416   assert((EltVT.getSizeInBits() >= 64 ||
1417           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1418          "getConstant with a uint64_t value that doesn't fit in the type!");
1419   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1420 }
1421 
1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1423                                   bool isT, bool isO) {
1424   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1425 }
1426 
1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1428                                   EVT VT, bool isT, bool isO) {
1429   assert(VT.isInteger() && "Cannot create FP integer constant!");
1430 
1431   EVT EltVT = VT.getScalarType();
1432   const ConstantInt *Elt = &Val;
1433 
1434   // In some cases the vector type is legal but the element type is illegal and
1435   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1436   // inserted value (the type does not need to match the vector element type).
1437   // Any extra bits introduced will be truncated away.
1438   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1439                            TargetLowering::TypePromoteInteger) {
1440     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1441     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1442     Elt = ConstantInt::get(*getContext(), NewVal);
1443   }
1444   // In other cases the element type is illegal and needs to be expanded, for
1445   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1446   // the value into n parts and use a vector type with n-times the elements.
1447   // Then bitcast to the type requested.
1448   // Legalizing constants too early makes the DAGCombiner's job harder so we
1449   // only legalize if the DAG tells us we must produce legal types.
1450   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1451            TLI->getTypeAction(*getContext(), EltVT) ==
1452                TargetLowering::TypeExpandInteger) {
1453     const APInt &NewVal = Elt->getValue();
1454     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1455     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1456 
1457     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1458     if (VT.isScalableVector()) {
1459       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1460              "Can only handle an even split!");
1461       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1462 
1463       SmallVector<SDValue, 2> ScalarParts;
1464       for (unsigned i = 0; i != Parts; ++i)
1465         ScalarParts.push_back(getConstant(
1466             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1467             ViaEltVT, isT, isO));
1468 
1469       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1470     }
1471 
1472     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1473     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1474 
1475     // Check the temporary vector is the correct size. If this fails then
1476     // getTypeToTransformTo() probably returned a type whose size (in bits)
1477     // isn't a power-of-2 factor of the requested type size.
1478     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1479 
1480     SmallVector<SDValue, 2> EltParts;
1481     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1482       EltParts.push_back(getConstant(
1483           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1484           ViaEltVT, isT, isO));
1485 
1486     // EltParts is currently in little endian order. If we actually want
1487     // big-endian order then reverse it now.
1488     if (getDataLayout().isBigEndian())
1489       std::reverse(EltParts.begin(), EltParts.end());
1490 
1491     // The elements must be reversed when the element order is different
1492     // to the endianness of the elements (because the BITCAST is itself a
1493     // vector shuffle in this situation). However, we do not need any code to
1494     // perform this reversal because getConstant() is producing a vector
1495     // splat.
1496     // This situation occurs in MIPS MSA.
1497 
1498     SmallVector<SDValue, 8> Ops;
1499     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1500       llvm::append_range(Ops, EltParts);
1501 
1502     SDValue V =
1503         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1504     return V;
1505   }
1506 
1507   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1508          "APInt size does not match type size!");
1509   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1510   FoldingSetNodeID ID;
1511   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1512   ID.AddPointer(Elt);
1513   ID.AddBoolean(isO);
1514   void *IP = nullptr;
1515   SDNode *N = nullptr;
1516   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1517     if (!VT.isVector())
1518       return SDValue(N, 0);
1519 
1520   if (!N) {
1521     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1522     CSEMap.InsertNode(N, IP);
1523     InsertNode(N);
1524     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1525   }
1526 
1527   SDValue Result(N, 0);
1528   if (VT.isScalableVector())
1529     Result = getSplatVector(VT, DL, Result);
1530   else if (VT.isVector())
1531     Result = getSplatBuildVector(VT, DL, Result);
1532 
1533   return Result;
1534 }
1535 
1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1537                                         bool isTarget) {
1538   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1539 }
1540 
1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1542                                              const SDLoc &DL, bool LegalTypes) {
1543   assert(VT.isInteger() && "Shift amount is not an integer type!");
1544   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1545   return getConstant(Val, DL, ShiftVT);
1546 }
1547 
1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1549                                            bool isTarget) {
1550   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1551 }
1552 
1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1554                                     bool isTarget) {
1555   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1556 }
1557 
1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1559                                     EVT VT, bool isTarget) {
1560   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1561 
1562   EVT EltVT = VT.getScalarType();
1563 
1564   // Do the map lookup using the actual bit pattern for the floating point
1565   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1566   // we don't have issues with SNANs.
1567   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1568   FoldingSetNodeID ID;
1569   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1570   ID.AddPointer(&V);
1571   void *IP = nullptr;
1572   SDNode *N = nullptr;
1573   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1574     if (!VT.isVector())
1575       return SDValue(N, 0);
1576 
1577   if (!N) {
1578     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1579     CSEMap.InsertNode(N, IP);
1580     InsertNode(N);
1581   }
1582 
1583   SDValue Result(N, 0);
1584   if (VT.isScalableVector())
1585     Result = getSplatVector(VT, DL, Result);
1586   else if (VT.isVector())
1587     Result = getSplatBuildVector(VT, DL, Result);
1588   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1589   return Result;
1590 }
1591 
1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1593                                     bool isTarget) {
1594   EVT EltVT = VT.getScalarType();
1595   if (EltVT == MVT::f32)
1596     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1597   if (EltVT == MVT::f64)
1598     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1599   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1600       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1601     bool Ignored;
1602     APFloat APF = APFloat(Val);
1603     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1604                 &Ignored);
1605     return getConstantFP(APF, DL, VT, isTarget);
1606   }
1607   llvm_unreachable("Unsupported type in getConstantFP");
1608 }
1609 
1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1611                                        EVT VT, int64_t Offset, bool isTargetGA,
1612                                        unsigned TargetFlags) {
1613   assert((TargetFlags == 0 || isTargetGA) &&
1614          "Cannot set target flags on target-independent globals");
1615 
1616   // Truncate (with sign-extension) the offset value to the pointer size.
1617   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1618   if (BitWidth < 64)
1619     Offset = SignExtend64(Offset, BitWidth);
1620 
1621   unsigned Opc;
1622   if (GV->isThreadLocal())
1623     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1624   else
1625     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1626 
1627   FoldingSetNodeID ID;
1628   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1629   ID.AddPointer(GV);
1630   ID.AddInteger(Offset);
1631   ID.AddInteger(TargetFlags);
1632   void *IP = nullptr;
1633   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1634     return SDValue(E, 0);
1635 
1636   auto *N = newSDNode<GlobalAddressSDNode>(
1637       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1638   CSEMap.InsertNode(N, IP);
1639     InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1644   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(FI);
1648   void *IP = nullptr;
1649   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1650     return SDValue(E, 0);
1651 
1652   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1653   CSEMap.InsertNode(N, IP);
1654   InsertNode(N);
1655   return SDValue(N, 0);
1656 }
1657 
1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1659                                    unsigned TargetFlags) {
1660   assert((TargetFlags == 0 || isTarget) &&
1661          "Cannot set target flags on target-independent jump tables");
1662   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddInteger(JTI);
1666   ID.AddInteger(TargetFlags);
1667   void *IP = nullptr;
1668   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1669     return SDValue(E, 0);
1670 
1671   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1672   CSEMap.InsertNode(N, IP);
1673   InsertNode(N);
1674   return SDValue(N, 0);
1675 }
1676 
1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1678                                       MaybeAlign Alignment, int Offset,
1679                                       bool isTarget, unsigned TargetFlags) {
1680   assert((TargetFlags == 0 || isTarget) &&
1681          "Cannot set target flags on target-independent globals");
1682   if (!Alignment)
1683     Alignment = shouldOptForSize()
1684                     ? getDataLayout().getABITypeAlign(C->getType())
1685                     : getDataLayout().getPrefTypeAlign(C->getType());
1686   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1687   FoldingSetNodeID ID;
1688   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1689   ID.AddInteger(Alignment->value());
1690   ID.AddInteger(Offset);
1691   ID.AddPointer(C);
1692   ID.AddInteger(TargetFlags);
1693   void *IP = nullptr;
1694   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1695     return SDValue(E, 0);
1696 
1697   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1698                                           TargetFlags);
1699   CSEMap.InsertNode(N, IP);
1700   InsertNode(N);
1701   SDValue V = SDValue(N, 0);
1702   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1703   return V;
1704 }
1705 
1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1707                                       MaybeAlign Alignment, int Offset,
1708                                       bool isTarget, unsigned TargetFlags) {
1709   assert((TargetFlags == 0 || isTarget) &&
1710          "Cannot set target flags on target-independent globals");
1711   if (!Alignment)
1712     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1713   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1714   FoldingSetNodeID ID;
1715   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1716   ID.AddInteger(Alignment->value());
1717   ID.AddInteger(Offset);
1718   C->addSelectionDAGCSEId(ID);
1719   ID.AddInteger(TargetFlags);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1725                                           TargetFlags);
1726   CSEMap.InsertNode(N, IP);
1727   InsertNode(N);
1728   return SDValue(N, 0);
1729 }
1730 
1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1732                                      unsigned TargetFlags) {
1733   FoldingSetNodeID ID;
1734   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1735   ID.AddInteger(Index);
1736   ID.AddInteger(Offset);
1737   ID.AddInteger(TargetFlags);
1738   void *IP = nullptr;
1739   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1740     return SDValue(E, 0);
1741 
1742   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1743   CSEMap.InsertNode(N, IP);
1744   InsertNode(N);
1745   return SDValue(N, 0);
1746 }
1747 
1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1749   FoldingSetNodeID ID;
1750   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1751   ID.AddPointer(MBB);
1752   void *IP = nullptr;
1753   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1754     return SDValue(E, 0);
1755 
1756   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1757   CSEMap.InsertNode(N, IP);
1758   InsertNode(N);
1759   return SDValue(N, 0);
1760 }
1761 
1762 SDValue SelectionDAG::getValueType(EVT VT) {
1763   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1764       ValueTypeNodes.size())
1765     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1766 
1767   SDNode *&N = VT.isExtended() ?
1768     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1769 
1770   if (N) return SDValue(N, 0);
1771   N = newSDNode<VTSDNode>(VT);
1772   InsertNode(N);
1773   return SDValue(N, 0);
1774 }
1775 
1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1777   SDNode *&N = ExternalSymbols[Sym];
1778   if (N) return SDValue(N, 0);
1779   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1785   SDNode *&N = MCSymbols[Sym];
1786   if (N)
1787     return SDValue(N, 0);
1788   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1789   InsertNode(N);
1790   return SDValue(N, 0);
1791 }
1792 
1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1794                                               unsigned TargetFlags) {
1795   SDNode *&N =
1796       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1797   if (N) return SDValue(N, 0);
1798   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1804   if ((unsigned)Cond >= CondCodeNodes.size())
1805     CondCodeNodes.resize(Cond+1);
1806 
1807   if (!CondCodeNodes[Cond]) {
1808     auto *N = newSDNode<CondCodeSDNode>(Cond);
1809     CondCodeNodes[Cond] = N;
1810     InsertNode(N);
1811   }
1812 
1813   return SDValue(CondCodeNodes[Cond], 0);
1814 }
1815 
1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1817   APInt One(ResVT.getScalarSizeInBits(), 1);
1818   return getStepVector(DL, ResVT, One);
1819 }
1820 
1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1822   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1823   if (ResVT.isScalableVector())
1824     return getNode(
1825         ISD::STEP_VECTOR, DL, ResVT,
1826         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1827 
1828   SmallVector<SDValue, 16> OpsStepConstants;
1829   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1830     OpsStepConstants.push_back(
1831         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1832   return getBuildVector(ResVT, DL, OpsStepConstants);
1833 }
1834 
1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1838   std::swap(N1, N2);
1839   ShuffleVectorSDNode::commuteMask(M);
1840 }
1841 
1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1843                                        SDValue N2, ArrayRef<int> Mask) {
1844   assert(VT.getVectorNumElements() == Mask.size() &&
1845          "Must have the same number of vector elements as mask elements!");
1846   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1847          "Invalid VECTOR_SHUFFLE");
1848 
1849   // Canonicalize shuffle undef, undef -> undef
1850   if (N1.isUndef() && N2.isUndef())
1851     return getUNDEF(VT);
1852 
1853   // Validate that all indices in Mask are within the range of the elements
1854   // input to the shuffle.
1855   int NElts = Mask.size();
1856   assert(llvm::all_of(Mask,
1857                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1858          "Index out of range");
1859 
1860   // Copy the mask so we can do any needed cleanup.
1861   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1862 
1863   // Canonicalize shuffle v, v -> v, undef
1864   if (N1 == N2) {
1865     N2 = getUNDEF(VT);
1866     for (int i = 0; i != NElts; ++i)
1867       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1868   }
1869 
1870   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1871   if (N1.isUndef())
1872     commuteShuffle(N1, N2, MaskVec);
1873 
1874   if (TLI->hasVectorBlend()) {
1875     // If shuffling a splat, try to blend the splat instead. We do this here so
1876     // that even when this arises during lowering we don't have to re-handle it.
1877     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1878       BitVector UndefElements;
1879       SDValue Splat = BV->getSplatValue(&UndefElements);
1880       if (!Splat)
1881         return;
1882 
1883       for (int i = 0; i < NElts; ++i) {
1884         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1885           continue;
1886 
1887         // If this input comes from undef, mark it as such.
1888         if (UndefElements[MaskVec[i] - Offset]) {
1889           MaskVec[i] = -1;
1890           continue;
1891         }
1892 
1893         // If we can blend a non-undef lane, use that instead.
1894         if (!UndefElements[i])
1895           MaskVec[i] = i + Offset;
1896       }
1897     };
1898     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1899       BlendSplat(N1BV, 0);
1900     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1901       BlendSplat(N2BV, NElts);
1902   }
1903 
1904   // Canonicalize all index into lhs, -> shuffle lhs, undef
1905   // Canonicalize all index into rhs, -> shuffle rhs, undef
1906   bool AllLHS = true, AllRHS = true;
1907   bool N2Undef = N2.isUndef();
1908   for (int i = 0; i != NElts; ++i) {
1909     if (MaskVec[i] >= NElts) {
1910       if (N2Undef)
1911         MaskVec[i] = -1;
1912       else
1913         AllLHS = false;
1914     } else if (MaskVec[i] >= 0) {
1915       AllRHS = false;
1916     }
1917   }
1918   if (AllLHS && AllRHS)
1919     return getUNDEF(VT);
1920   if (AllLHS && !N2Undef)
1921     N2 = getUNDEF(VT);
1922   if (AllRHS) {
1923     N1 = getUNDEF(VT);
1924     commuteShuffle(N1, N2, MaskVec);
1925   }
1926   // Reset our undef status after accounting for the mask.
1927   N2Undef = N2.isUndef();
1928   // Re-check whether both sides ended up undef.
1929   if (N1.isUndef() && N2Undef)
1930     return getUNDEF(VT);
1931 
1932   // If Identity shuffle return that node.
1933   bool Identity = true, AllSame = true;
1934   for (int i = 0; i != NElts; ++i) {
1935     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1936     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1937   }
1938   if (Identity && NElts)
1939     return N1;
1940 
1941   // Shuffling a constant splat doesn't change the result.
1942   if (N2Undef) {
1943     SDValue V = N1;
1944 
1945     // Look through any bitcasts. We check that these don't change the number
1946     // (and size) of elements and just changes their types.
1947     while (V.getOpcode() == ISD::BITCAST)
1948       V = V->getOperand(0);
1949 
1950     // A splat should always show up as a build vector node.
1951     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1952       BitVector UndefElements;
1953       SDValue Splat = BV->getSplatValue(&UndefElements);
1954       // If this is a splat of an undef, shuffling it is also undef.
1955       if (Splat && Splat.isUndef())
1956         return getUNDEF(VT);
1957 
1958       bool SameNumElts =
1959           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1960 
1961       // We only have a splat which can skip shuffles if there is a splatted
1962       // value and no undef lanes rearranged by the shuffle.
1963       if (Splat && UndefElements.none()) {
1964         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1965         // number of elements match or the value splatted is a zero constant.
1966         if (SameNumElts)
1967           return N1;
1968         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1969           if (C->isZero())
1970             return N1;
1971       }
1972 
1973       // If the shuffle itself creates a splat, build the vector directly.
1974       if (AllSame && SameNumElts) {
1975         EVT BuildVT = BV->getValueType(0);
1976         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1977         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1978 
1979         // We may have jumped through bitcasts, so the type of the
1980         // BUILD_VECTOR may not match the type of the shuffle.
1981         if (BuildVT != VT)
1982           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1983         return NewBV;
1984       }
1985     }
1986   }
1987 
1988   FoldingSetNodeID ID;
1989   SDValue Ops[2] = { N1, N2 };
1990   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1991   for (int i = 0; i != NElts; ++i)
1992     ID.AddInteger(MaskVec[i]);
1993 
1994   void* IP = nullptr;
1995   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1996     return SDValue(E, 0);
1997 
1998   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1999   // SDNode doesn't have access to it.  This memory will be "leaked" when
2000   // the node is deallocated, but recovered when the NodeAllocator is released.
2001   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2002   llvm::copy(MaskVec, MaskAlloc);
2003 
2004   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2005                                            dl.getDebugLoc(), MaskAlloc);
2006   createOperands(N, Ops);
2007 
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   SDValue V = SDValue(N, 0);
2011   NewSDValueDbgMsg(V, "Creating new node: ", this);
2012   return V;
2013 }
2014 
2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2016   EVT VT = SV.getValueType(0);
2017   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2018   ShuffleVectorSDNode::commuteMask(MaskVec);
2019 
2020   SDValue Op0 = SV.getOperand(0);
2021   SDValue Op1 = SV.getOperand(1);
2022   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2023 }
2024 
2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2028   ID.AddInteger(RegNo);
2029   void *IP = nullptr;
2030   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2031     return SDValue(E, 0);
2032 
2033   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2034   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   return SDValue(N, 0);
2038 }
2039 
2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2041   FoldingSetNodeID ID;
2042   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2043   ID.AddPointer(RegMask);
2044   void *IP = nullptr;
2045   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2046     return SDValue(E, 0);
2047 
2048   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2049   CSEMap.InsertNode(N, IP);
2050   InsertNode(N);
2051   return SDValue(N, 0);
2052 }
2053 
2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2055                                  MCSymbol *Label) {
2056   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2057 }
2058 
2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2060                                    SDValue Root, MCSymbol *Label) {
2061   FoldingSetNodeID ID;
2062   SDValue Ops[] = { Root };
2063   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2064   ID.AddPointer(Label);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N =
2070       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2071   createOperands(N, Ops);
2072 
2073   CSEMap.InsertNode(N, IP);
2074   InsertNode(N);
2075   return SDValue(N, 0);
2076 }
2077 
2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2079                                       int64_t Offset, bool isTarget,
2080                                       unsigned TargetFlags) {
2081   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2082 
2083   FoldingSetNodeID ID;
2084   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2085   ID.AddPointer(BA);
2086   ID.AddInteger(Offset);
2087   ID.AddInteger(TargetFlags);
2088   void *IP = nullptr;
2089   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2090     return SDValue(E, 0);
2091 
2092   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2093   CSEMap.InsertNode(N, IP);
2094   InsertNode(N);
2095   return SDValue(N, 0);
2096 }
2097 
2098 SDValue SelectionDAG::getSrcValue(const Value *V) {
2099   FoldingSetNodeID ID;
2100   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2101   ID.AddPointer(V);
2102 
2103   void *IP = nullptr;
2104   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2105     return SDValue(E, 0);
2106 
2107   auto *N = newSDNode<SrcValueSDNode>(V);
2108   CSEMap.InsertNode(N, IP);
2109   InsertNode(N);
2110   return SDValue(N, 0);
2111 }
2112 
2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2114   FoldingSetNodeID ID;
2115   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2116   ID.AddPointer(MD);
2117 
2118   void *IP = nullptr;
2119   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2120     return SDValue(E, 0);
2121 
2122   auto *N = newSDNode<MDNodeSDNode>(MD);
2123   CSEMap.InsertNode(N, IP);
2124   InsertNode(N);
2125   return SDValue(N, 0);
2126 }
2127 
2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2129   if (VT == V.getValueType())
2130     return V;
2131 
2132   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2133 }
2134 
2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2136                                        unsigned SrcAS, unsigned DestAS) {
2137   SDValue Ops[] = {Ptr};
2138   FoldingSetNodeID ID;
2139   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2140   ID.AddInteger(SrcAS);
2141   ID.AddInteger(DestAS);
2142 
2143   void *IP = nullptr;
2144   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2145     return SDValue(E, 0);
2146 
2147   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2148                                            VT, SrcAS, DestAS);
2149   createOperands(N, Ops);
2150 
2151   CSEMap.InsertNode(N, IP);
2152   InsertNode(N);
2153   return SDValue(N, 0);
2154 }
2155 
2156 SDValue SelectionDAG::getFreeze(SDValue V) {
2157   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2158 }
2159 
2160 /// getShiftAmountOperand - Return the specified value casted to
2161 /// the target's desired shift amount type.
2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2163   EVT OpTy = Op.getValueType();
2164   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2165   if (OpTy == ShTy || OpTy.isVector()) return Op;
2166 
2167   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2168 }
2169 
2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2171   SDLoc dl(Node);
2172   const TargetLowering &TLI = getTargetLoweringInfo();
2173   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2174   EVT VT = Node->getValueType(0);
2175   SDValue Tmp1 = Node->getOperand(0);
2176   SDValue Tmp2 = Node->getOperand(1);
2177   const MaybeAlign MA(Node->getConstantOperandVal(3));
2178 
2179   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2180                                Tmp2, MachinePointerInfo(V));
2181   SDValue VAList = VAListLoad;
2182 
2183   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2184     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2185                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2186 
2187     VAList =
2188         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2189                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2190   }
2191 
2192   // Increment the pointer, VAList, to the next vaarg
2193   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2194                  getConstant(getDataLayout().getTypeAllocSize(
2195                                                VT.getTypeForEVT(*getContext())),
2196                              dl, VAList.getValueType()));
2197   // Store the incremented VAList to the legalized pointer
2198   Tmp1 =
2199       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2200   // Load the actual argument out of the pointer VAList
2201   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2202 }
2203 
2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2205   SDLoc dl(Node);
2206   const TargetLowering &TLI = getTargetLoweringInfo();
2207   // This defaults to loading a pointer from the input and storing it to the
2208   // output, returning the chain.
2209   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2210   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2211   SDValue Tmp1 =
2212       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2213               Node->getOperand(2), MachinePointerInfo(VS));
2214   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2215                   MachinePointerInfo(VD));
2216 }
2217 
2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2219   const DataLayout &DL = getDataLayout();
2220   Type *Ty = VT.getTypeForEVT(*getContext());
2221   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2222 
2223   if (TLI->isTypeLegal(VT) || !VT.isVector())
2224     return RedAlign;
2225 
2226   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2227   const Align StackAlign = TFI->getStackAlign();
2228 
2229   // See if we can choose a smaller ABI alignment in cases where it's an
2230   // illegal vector type that will get broken down.
2231   if (RedAlign > StackAlign) {
2232     EVT IntermediateVT;
2233     MVT RegisterVT;
2234     unsigned NumIntermediates;
2235     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2236                                 NumIntermediates, RegisterVT);
2237     Ty = IntermediateVT.getTypeForEVT(*getContext());
2238     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2239     if (RedAlign2 < RedAlign)
2240       RedAlign = RedAlign2;
2241   }
2242 
2243   return RedAlign;
2244 }
2245 
2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2247   MachineFrameInfo &MFI = MF->getFrameInfo();
2248   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2249   int StackID = 0;
2250   if (Bytes.isScalable())
2251     StackID = TFI->getStackIDForScalableVectors();
2252   // The stack id gives an indication of whether the object is scalable or
2253   // not, so it's safe to pass in the minimum size here.
2254   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2255                                        false, nullptr, StackID);
2256   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2257 }
2258 
2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2260   Type *Ty = VT.getTypeForEVT(*getContext());
2261   Align StackAlign =
2262       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2263   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2264 }
2265 
2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2267   TypeSize VT1Size = VT1.getStoreSize();
2268   TypeSize VT2Size = VT2.getStoreSize();
2269   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2270          "Don't know how to choose the maximum size when creating a stack "
2271          "temporary");
2272   TypeSize Bytes =
2273       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2274 
2275   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2276   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2277   const DataLayout &DL = getDataLayout();
2278   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2279   return CreateStackTemporary(Bytes, Align);
2280 }
2281 
2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2283                                 ISD::CondCode Cond, const SDLoc &dl) {
2284   EVT OpVT = N1.getValueType();
2285 
2286   // These setcc operations always fold.
2287   switch (Cond) {
2288   default: break;
2289   case ISD::SETFALSE:
2290   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2291   case ISD::SETTRUE:
2292   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2293 
2294   case ISD::SETOEQ:
2295   case ISD::SETOGT:
2296   case ISD::SETOGE:
2297   case ISD::SETOLT:
2298   case ISD::SETOLE:
2299   case ISD::SETONE:
2300   case ISD::SETO:
2301   case ISD::SETUO:
2302   case ISD::SETUEQ:
2303   case ISD::SETUNE:
2304     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2305     break;
2306   }
2307 
2308   if (OpVT.isInteger()) {
2309     // For EQ and NE, we can always pick a value for the undef to make the
2310     // predicate pass or fail, so we can return undef.
2311     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2312     // icmp eq/ne X, undef -> undef.
2313     if ((N1.isUndef() || N2.isUndef()) &&
2314         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2315       return getUNDEF(VT);
2316 
2317     // If both operands are undef, we can return undef for int comparison.
2318     // icmp undef, undef -> undef.
2319     if (N1.isUndef() && N2.isUndef())
2320       return getUNDEF(VT);
2321 
2322     // icmp X, X -> true/false
2323     // icmp X, undef -> true/false because undef could be X.
2324     if (N1 == N2)
2325       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2326   }
2327 
2328   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2329     const APInt &C2 = N2C->getAPIntValue();
2330     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2331       const APInt &C1 = N1C->getAPIntValue();
2332 
2333       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2334                              dl, VT, OpVT);
2335     }
2336   }
2337 
2338   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2339   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2340 
2341   if (N1CFP && N2CFP) {
2342     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2343     switch (Cond) {
2344     default: break;
2345     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2346                         return getUNDEF(VT);
2347                       LLVM_FALLTHROUGH;
2348     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2349                                              OpVT);
2350     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2351                         return getUNDEF(VT);
2352                       LLVM_FALLTHROUGH;
2353     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2354                                              R==APFloat::cmpLessThan, dl, VT,
2355                                              OpVT);
2356     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2357                         return getUNDEF(VT);
2358                       LLVM_FALLTHROUGH;
2359     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2360                                              OpVT);
2361     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2362                         return getUNDEF(VT);
2363                       LLVM_FALLTHROUGH;
2364     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2365                                              VT, OpVT);
2366     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2367                         return getUNDEF(VT);
2368                       LLVM_FALLTHROUGH;
2369     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2370                                              R==APFloat::cmpEqual, dl, VT,
2371                                              OpVT);
2372     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2373                         return getUNDEF(VT);
2374                       LLVM_FALLTHROUGH;
2375     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2376                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2377     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2378                                              OpVT);
2379     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2380                                              OpVT);
2381     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2382                                              R==APFloat::cmpEqual, dl, VT,
2383                                              OpVT);
2384     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2387                                              R==APFloat::cmpLessThan, dl, VT,
2388                                              OpVT);
2389     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpUnordered, dl, VT,
2391                                              OpVT);
2392     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2393                                              VT, OpVT);
2394     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2395                                              OpVT);
2396     }
2397   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2398     // Ensure that the constant occurs on the RHS.
2399     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2400     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2401       return SDValue();
2402     return getSetCC(dl, VT, N2, N1, SwappedCond);
2403   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2404              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2405     // If an operand is known to be a nan (or undef that could be a nan), we can
2406     // fold it.
2407     // Choosing NaN for the undef will always make unordered comparison succeed
2408     // and ordered comparison fails.
2409     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2410     switch (ISD::getUnorderedFlavor(Cond)) {
2411     default:
2412       llvm_unreachable("Unknown flavor!");
2413     case 0: // Known false.
2414       return getBoolConstant(false, dl, VT, OpVT);
2415     case 1: // Known true.
2416       return getBoolConstant(true, dl, VT, OpVT);
2417     case 2: // Undefined.
2418       return getUNDEF(VT);
2419     }
2420   }
2421 
2422   // Could not fold it.
2423   return SDValue();
2424 }
2425 
2426 /// See if the specified operand can be simplified with the knowledge that only
2427 /// the bits specified by DemandedBits are used.
2428 /// TODO: really we should be making this into the DAG equivalent of
2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2431   EVT VT = V.getValueType();
2432 
2433   if (VT.isScalableVector())
2434     return SDValue();
2435 
2436   APInt DemandedElts = VT.isVector()
2437                            ? APInt::getAllOnes(VT.getVectorNumElements())
2438                            : APInt(1, 1);
2439   return GetDemandedBits(V, DemandedBits, DemandedElts);
2440 }
2441 
2442 /// See if the specified operand can be simplified with the knowledge that only
2443 /// the bits specified by DemandedBits are used in the elements specified by
2444 /// DemandedElts.
2445 /// TODO: really we should be making this into the DAG equivalent of
2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2448                                       const APInt &DemandedElts) {
2449   switch (V.getOpcode()) {
2450   default:
2451     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2452                                                 *this, 0);
2453   case ISD::Constant: {
2454     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2455     APInt NewVal = CVal & DemandedBits;
2456     if (NewVal != CVal)
2457       return getConstant(NewVal, SDLoc(V), V.getValueType());
2458     break;
2459   }
2460   case ISD::SRL:
2461     // Only look at single-use SRLs.
2462     if (!V.getNode()->hasOneUse())
2463       break;
2464     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2465       // See if we can recursively simplify the LHS.
2466       unsigned Amt = RHSC->getZExtValue();
2467 
2468       // Watch out for shift count overflow though.
2469       if (Amt >= DemandedBits.getBitWidth())
2470         break;
2471       APInt SrcDemandedBits = DemandedBits << Amt;
2472       if (SDValue SimplifyLHS =
2473               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2474         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2475                        V.getOperand(1));
2476     }
2477     break;
2478   }
2479   return SDValue();
2480 }
2481 
2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2483 /// use this predicate to simplify operations downstream.
2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2485   unsigned BitWidth = Op.getScalarValueSizeInBits();
2486   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2487 }
2488 
2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2490 /// this predicate to simplify operations downstream.  Mask is known to be zero
2491 /// for bits that V cannot have.
2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2493                                      unsigned Depth) const {
2494   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2495 }
2496 
2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2498 /// DemandedElts.  We use this predicate to simplify operations downstream.
2499 /// Mask is known to be zero for bits that V cannot have.
2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2501                                      const APInt &DemandedElts,
2502                                      unsigned Depth) const {
2503   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2504 }
2505 
2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2508                                         unsigned Depth) const {
2509   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2510 }
2511 
2512 /// isSplatValue - Return true if the vector V has the same value
2513 /// across all DemandedElts. For scalable vectors it does not make
2514 /// sense to specify which elements are demanded or undefined, therefore
2515 /// they are simply ignored.
2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2517                                 APInt &UndefElts, unsigned Depth) const {
2518   unsigned Opcode = V.getOpcode();
2519   EVT VT = V.getValueType();
2520   assert(VT.isVector() && "Vector type expected");
2521 
2522   if (!VT.isScalableVector() && !DemandedElts)
2523     return false; // No demanded elts, better to assume we don't know anything.
2524 
2525   if (Depth >= MaxRecursionDepth)
2526     return false; // Limit search depth.
2527 
2528   // Deal with some common cases here that work for both fixed and scalable
2529   // vector types.
2530   switch (Opcode) {
2531   case ISD::SPLAT_VECTOR:
2532     UndefElts = V.getOperand(0).isUndef()
2533                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2534                     : APInt(DemandedElts.getBitWidth(), 0);
2535     return true;
2536   case ISD::ADD:
2537   case ISD::SUB:
2538   case ISD::AND:
2539   case ISD::XOR:
2540   case ISD::OR: {
2541     APInt UndefLHS, UndefRHS;
2542     SDValue LHS = V.getOperand(0);
2543     SDValue RHS = V.getOperand(1);
2544     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2545         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2546       UndefElts = UndefLHS | UndefRHS;
2547       return true;
2548     }
2549     return false;
2550   }
2551   case ISD::ABS:
2552   case ISD::TRUNCATE:
2553   case ISD::SIGN_EXTEND:
2554   case ISD::ZERO_EXTEND:
2555     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2556   default:
2557     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2558         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2559       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2560     break;
2561 }
2562 
2563   // We don't support other cases than those above for scalable vectors at
2564   // the moment.
2565   if (VT.isScalableVector())
2566     return false;
2567 
2568   unsigned NumElts = VT.getVectorNumElements();
2569   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2570   UndefElts = APInt::getZero(NumElts);
2571 
2572   switch (Opcode) {
2573   case ISD::BUILD_VECTOR: {
2574     SDValue Scl;
2575     for (unsigned i = 0; i != NumElts; ++i) {
2576       SDValue Op = V.getOperand(i);
2577       if (Op.isUndef()) {
2578         UndefElts.setBit(i);
2579         continue;
2580       }
2581       if (!DemandedElts[i])
2582         continue;
2583       if (Scl && Scl != Op)
2584         return false;
2585       Scl = Op;
2586     }
2587     return true;
2588   }
2589   case ISD::VECTOR_SHUFFLE: {
2590     // Check if this is a shuffle node doing a splat.
2591     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2592     int SplatIndex = -1;
2593     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2594     for (int i = 0; i != (int)NumElts; ++i) {
2595       int M = Mask[i];
2596       if (M < 0) {
2597         UndefElts.setBit(i);
2598         continue;
2599       }
2600       if (!DemandedElts[i])
2601         continue;
2602       if (0 <= SplatIndex && SplatIndex != M)
2603         return false;
2604       SplatIndex = M;
2605     }
2606     return true;
2607   }
2608   case ISD::EXTRACT_SUBVECTOR: {
2609     // Offset the demanded elts by the subvector index.
2610     SDValue Src = V.getOperand(0);
2611     // We don't support scalable vectors at the moment.
2612     if (Src.getValueType().isScalableVector())
2613       return false;
2614     uint64_t Idx = V.getConstantOperandVal(1);
2615     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2616     APInt UndefSrcElts;
2617     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2618     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2619       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2620       return true;
2621     }
2622     break;
2623   }
2624   case ISD::ANY_EXTEND_VECTOR_INREG:
2625   case ISD::SIGN_EXTEND_VECTOR_INREG:
2626   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2627     // Widen the demanded elts by the src element count.
2628     SDValue Src = V.getOperand(0);
2629     // We don't support scalable vectors at the moment.
2630     if (Src.getValueType().isScalableVector())
2631       return false;
2632     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2633     APInt UndefSrcElts;
2634     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2635     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2636       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2637       return true;
2638     }
2639     break;
2640   }
2641   }
2642 
2643   return false;
2644 }
2645 
2646 /// Helper wrapper to main isSplatValue function.
2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2648   EVT VT = V.getValueType();
2649   assert(VT.isVector() && "Vector type expected");
2650 
2651   APInt UndefElts;
2652   APInt DemandedElts;
2653 
2654   // For now we don't support this with scalable vectors.
2655   if (!VT.isScalableVector())
2656     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2657   return isSplatValue(V, DemandedElts, UndefElts) &&
2658          (AllowUndefs || !UndefElts);
2659 }
2660 
2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2662   V = peekThroughExtractSubvectors(V);
2663 
2664   EVT VT = V.getValueType();
2665   unsigned Opcode = V.getOpcode();
2666   switch (Opcode) {
2667   default: {
2668     APInt UndefElts;
2669     APInt DemandedElts;
2670 
2671     if (!VT.isScalableVector())
2672       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2673 
2674     if (isSplatValue(V, DemandedElts, UndefElts)) {
2675       if (VT.isScalableVector()) {
2676         // DemandedElts and UndefElts are ignored for scalable vectors, since
2677         // the only supported cases are SPLAT_VECTOR nodes.
2678         SplatIdx = 0;
2679       } else {
2680         // Handle case where all demanded elements are UNDEF.
2681         if (DemandedElts.isSubsetOf(UndefElts)) {
2682           SplatIdx = 0;
2683           return getUNDEF(VT);
2684         }
2685         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2686       }
2687       return V;
2688     }
2689     break;
2690   }
2691   case ISD::SPLAT_VECTOR:
2692     SplatIdx = 0;
2693     return V;
2694   case ISD::VECTOR_SHUFFLE: {
2695     if (VT.isScalableVector())
2696       return SDValue();
2697 
2698     // Check if this is a shuffle node doing a splat.
2699     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2700     // getTargetVShiftNode currently struggles without the splat source.
2701     auto *SVN = cast<ShuffleVectorSDNode>(V);
2702     if (!SVN->isSplat())
2703       break;
2704     int Idx = SVN->getSplatIndex();
2705     int NumElts = V.getValueType().getVectorNumElements();
2706     SplatIdx = Idx % NumElts;
2707     return V.getOperand(Idx / NumElts);
2708   }
2709   }
2710 
2711   return SDValue();
2712 }
2713 
2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2715   int SplatIdx;
2716   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2717     EVT SVT = SrcVector.getValueType().getScalarType();
2718     EVT LegalSVT = SVT;
2719     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2720       if (!SVT.isInteger())
2721         return SDValue();
2722       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2723       if (LegalSVT.bitsLT(SVT))
2724         return SDValue();
2725     }
2726     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2727                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2728   }
2729   return SDValue();
2730 }
2731 
2732 const APInt *
2733 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2734                                           const APInt &DemandedElts) const {
2735   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2736           V.getOpcode() == ISD::SRA) &&
2737          "Unknown shift node");
2738   unsigned BitWidth = V.getScalarValueSizeInBits();
2739   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2740     // Shifting more than the bitwidth is not valid.
2741     const APInt &ShAmt = SA->getAPIntValue();
2742     if (ShAmt.ult(BitWidth))
2743       return &ShAmt;
2744   }
2745   return nullptr;
2746 }
2747 
2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2749     SDValue V, const APInt &DemandedElts) const {
2750   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2751           V.getOpcode() == ISD::SRA) &&
2752          "Unknown shift node");
2753   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2754     return ValidAmt;
2755   unsigned BitWidth = V.getScalarValueSizeInBits();
2756   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2757   if (!BV)
2758     return nullptr;
2759   const APInt *MinShAmt = nullptr;
2760   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2761     if (!DemandedElts[i])
2762       continue;
2763     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2764     if (!SA)
2765       return nullptr;
2766     // Shifting more than the bitwidth is not valid.
2767     const APInt &ShAmt = SA->getAPIntValue();
2768     if (ShAmt.uge(BitWidth))
2769       return nullptr;
2770     if (MinShAmt && MinShAmt->ule(ShAmt))
2771       continue;
2772     MinShAmt = &ShAmt;
2773   }
2774   return MinShAmt;
2775 }
2776 
2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2778     SDValue V, const APInt &DemandedElts) const {
2779   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2780           V.getOpcode() == ISD::SRA) &&
2781          "Unknown shift node");
2782   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2783     return ValidAmt;
2784   unsigned BitWidth = V.getScalarValueSizeInBits();
2785   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2786   if (!BV)
2787     return nullptr;
2788   const APInt *MaxShAmt = nullptr;
2789   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2790     if (!DemandedElts[i])
2791       continue;
2792     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2793     if (!SA)
2794       return nullptr;
2795     // Shifting more than the bitwidth is not valid.
2796     const APInt &ShAmt = SA->getAPIntValue();
2797     if (ShAmt.uge(BitWidth))
2798       return nullptr;
2799     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2800       continue;
2801     MaxShAmt = &ShAmt;
2802   }
2803   return MaxShAmt;
2804 }
2805 
2806 /// Determine which bits of Op are known to be either zero or one and return
2807 /// them in Known. For vectors, the known bits are those that are shared by
2808 /// every vector element.
2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2810   EVT VT = Op.getValueType();
2811 
2812   // TOOD: Until we have a plan for how to represent demanded elements for
2813   // scalable vectors, we can just bail out for now.
2814   if (Op.getValueType().isScalableVector()) {
2815     unsigned BitWidth = Op.getScalarValueSizeInBits();
2816     return KnownBits(BitWidth);
2817   }
2818 
2819   APInt DemandedElts = VT.isVector()
2820                            ? APInt::getAllOnes(VT.getVectorNumElements())
2821                            : APInt(1, 1);
2822   return computeKnownBits(Op, DemandedElts, Depth);
2823 }
2824 
2825 /// Determine which bits of Op are known to be either zero or one and return
2826 /// them in Known. The DemandedElts argument allows us to only collect the known
2827 /// bits that are shared by the requested vector elements.
2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2829                                          unsigned Depth) const {
2830   unsigned BitWidth = Op.getScalarValueSizeInBits();
2831 
2832   KnownBits Known(BitWidth);   // Don't know anything.
2833 
2834   // TOOD: Until we have a plan for how to represent demanded elements for
2835   // scalable vectors, we can just bail out for now.
2836   if (Op.getValueType().isScalableVector())
2837     return Known;
2838 
2839   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2840     // We know all of the bits for a constant!
2841     return KnownBits::makeConstant(C->getAPIntValue());
2842   }
2843   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2844     // We know all of the bits for a constant fp!
2845     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2846   }
2847 
2848   if (Depth >= MaxRecursionDepth)
2849     return Known;  // Limit search depth.
2850 
2851   KnownBits Known2;
2852   unsigned NumElts = DemandedElts.getBitWidth();
2853   assert((!Op.getValueType().isVector() ||
2854           NumElts == Op.getValueType().getVectorNumElements()) &&
2855          "Unexpected vector size");
2856 
2857   if (!DemandedElts)
2858     return Known;  // No demanded elts, better to assume we don't know anything.
2859 
2860   unsigned Opcode = Op.getOpcode();
2861   switch (Opcode) {
2862   case ISD::BUILD_VECTOR:
2863     // Collect the known bits that are shared by every demanded vector element.
2864     Known.Zero.setAllBits(); Known.One.setAllBits();
2865     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2866       if (!DemandedElts[i])
2867         continue;
2868 
2869       SDValue SrcOp = Op.getOperand(i);
2870       Known2 = computeKnownBits(SrcOp, Depth + 1);
2871 
2872       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2873       if (SrcOp.getValueSizeInBits() != BitWidth) {
2874         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2875                "Expected BUILD_VECTOR implicit truncation");
2876         Known2 = Known2.trunc(BitWidth);
2877       }
2878 
2879       // Known bits are the values that are shared by every demanded element.
2880       Known = KnownBits::commonBits(Known, Known2);
2881 
2882       // If we don't know any bits, early out.
2883       if (Known.isUnknown())
2884         break;
2885     }
2886     break;
2887   case ISD::VECTOR_SHUFFLE: {
2888     // Collect the known bits that are shared by every vector element referenced
2889     // by the shuffle.
2890     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2891     Known.Zero.setAllBits(); Known.One.setAllBits();
2892     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2893     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2894     for (unsigned i = 0; i != NumElts; ++i) {
2895       if (!DemandedElts[i])
2896         continue;
2897 
2898       int M = SVN->getMaskElt(i);
2899       if (M < 0) {
2900         // For UNDEF elements, we don't know anything about the common state of
2901         // the shuffle result.
2902         Known.resetAll();
2903         DemandedLHS.clearAllBits();
2904         DemandedRHS.clearAllBits();
2905         break;
2906       }
2907 
2908       if ((unsigned)M < NumElts)
2909         DemandedLHS.setBit((unsigned)M % NumElts);
2910       else
2911         DemandedRHS.setBit((unsigned)M % NumElts);
2912     }
2913     // Known bits are the values that are shared by every demanded element.
2914     if (!!DemandedLHS) {
2915       SDValue LHS = Op.getOperand(0);
2916       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2917       Known = KnownBits::commonBits(Known, Known2);
2918     }
2919     // If we don't know any bits, early out.
2920     if (Known.isUnknown())
2921       break;
2922     if (!!DemandedRHS) {
2923       SDValue RHS = Op.getOperand(1);
2924       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2925       Known = KnownBits::commonBits(Known, Known2);
2926     }
2927     break;
2928   }
2929   case ISD::CONCAT_VECTORS: {
2930     // Split DemandedElts and test each of the demanded subvectors.
2931     Known.Zero.setAllBits(); Known.One.setAllBits();
2932     EVT SubVectorVT = Op.getOperand(0).getValueType();
2933     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2934     unsigned NumSubVectors = Op.getNumOperands();
2935     for (unsigned i = 0; i != NumSubVectors; ++i) {
2936       APInt DemandedSub =
2937           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2938       if (!!DemandedSub) {
2939         SDValue Sub = Op.getOperand(i);
2940         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2941         Known = KnownBits::commonBits(Known, Known2);
2942       }
2943       // If we don't know any bits, early out.
2944       if (Known.isUnknown())
2945         break;
2946     }
2947     break;
2948   }
2949   case ISD::INSERT_SUBVECTOR: {
2950     // Demand any elements from the subvector and the remainder from the src its
2951     // inserted into.
2952     SDValue Src = Op.getOperand(0);
2953     SDValue Sub = Op.getOperand(1);
2954     uint64_t Idx = Op.getConstantOperandVal(2);
2955     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2956     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2957     APInt DemandedSrcElts = DemandedElts;
2958     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2959 
2960     Known.One.setAllBits();
2961     Known.Zero.setAllBits();
2962     if (!!DemandedSubElts) {
2963       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2964       if (Known.isUnknown())
2965         break; // early-out.
2966     }
2967     if (!!DemandedSrcElts) {
2968       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2969       Known = KnownBits::commonBits(Known, Known2);
2970     }
2971     break;
2972   }
2973   case ISD::EXTRACT_SUBVECTOR: {
2974     // Offset the demanded elts by the subvector index.
2975     SDValue Src = Op.getOperand(0);
2976     // Bail until we can represent demanded elements for scalable vectors.
2977     if (Src.getValueType().isScalableVector())
2978       break;
2979     uint64_t Idx = Op.getConstantOperandVal(1);
2980     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2981     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2982     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2983     break;
2984   }
2985   case ISD::SCALAR_TO_VECTOR: {
2986     // We know about scalar_to_vector as much as we know about it source,
2987     // which becomes the first element of otherwise unknown vector.
2988     if (DemandedElts != 1)
2989       break;
2990 
2991     SDValue N0 = Op.getOperand(0);
2992     Known = computeKnownBits(N0, Depth + 1);
2993     if (N0.getValueSizeInBits() != BitWidth)
2994       Known = Known.trunc(BitWidth);
2995 
2996     break;
2997   }
2998   case ISD::BITCAST: {
2999     SDValue N0 = Op.getOperand(0);
3000     EVT SubVT = N0.getValueType();
3001     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3002 
3003     // Ignore bitcasts from unsupported types.
3004     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3005       break;
3006 
3007     // Fast handling of 'identity' bitcasts.
3008     if (BitWidth == SubBitWidth) {
3009       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3010       break;
3011     }
3012 
3013     bool IsLE = getDataLayout().isLittleEndian();
3014 
3015     // Bitcast 'small element' vector to 'large element' scalar/vector.
3016     if ((BitWidth % SubBitWidth) == 0) {
3017       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3018 
3019       // Collect known bits for the (larger) output by collecting the known
3020       // bits from each set of sub elements and shift these into place.
3021       // We need to separately call computeKnownBits for each set of
3022       // sub elements as the knownbits for each is likely to be different.
3023       unsigned SubScale = BitWidth / SubBitWidth;
3024       APInt SubDemandedElts(NumElts * SubScale, 0);
3025       for (unsigned i = 0; i != NumElts; ++i)
3026         if (DemandedElts[i])
3027           SubDemandedElts.setBit(i * SubScale);
3028 
3029       for (unsigned i = 0; i != SubScale; ++i) {
3030         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3031                          Depth + 1);
3032         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3033         Known.insertBits(Known2, SubBitWidth * Shifts);
3034       }
3035     }
3036 
3037     // Bitcast 'large element' scalar/vector to 'small element' vector.
3038     if ((SubBitWidth % BitWidth) == 0) {
3039       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3040 
3041       // Collect known bits for the (smaller) output by collecting the known
3042       // bits from the overlapping larger input elements and extracting the
3043       // sub sections we actually care about.
3044       unsigned SubScale = SubBitWidth / BitWidth;
3045       APInt SubDemandedElts =
3046           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3047       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3048 
3049       Known.Zero.setAllBits(); Known.One.setAllBits();
3050       for (unsigned i = 0; i != NumElts; ++i)
3051         if (DemandedElts[i]) {
3052           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3053           unsigned Offset = (Shifts % SubScale) * BitWidth;
3054           Known = KnownBits::commonBits(Known,
3055                                         Known2.extractBits(BitWidth, Offset));
3056           // If we don't know any bits, early out.
3057           if (Known.isUnknown())
3058             break;
3059         }
3060     }
3061     break;
3062   }
3063   case ISD::AND:
3064     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3065     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3066 
3067     Known &= Known2;
3068     break;
3069   case ISD::OR:
3070     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3071     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3072 
3073     Known |= Known2;
3074     break;
3075   case ISD::XOR:
3076     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3077     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3078 
3079     Known ^= Known2;
3080     break;
3081   case ISD::MUL: {
3082     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3083     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3084     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3085     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3086     break;
3087   }
3088   case ISD::MULHU: {
3089     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3090     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3091     Known = KnownBits::mulhu(Known, Known2);
3092     break;
3093   }
3094   case ISD::MULHS: {
3095     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3096     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3097     Known = KnownBits::mulhs(Known, Known2);
3098     break;
3099   }
3100   case ISD::UMUL_LOHI: {
3101     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3102     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3103     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3104     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3105     if (Op.getResNo() == 0)
3106       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3107     else
3108       Known = KnownBits::mulhu(Known, Known2);
3109     break;
3110   }
3111   case ISD::SMUL_LOHI: {
3112     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3113     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3114     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3115     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3116     if (Op.getResNo() == 0)
3117       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3118     else
3119       Known = KnownBits::mulhs(Known, Known2);
3120     break;
3121   }
3122   case ISD::UDIV: {
3123     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3124     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3125     Known = KnownBits::udiv(Known, Known2);
3126     break;
3127   }
3128   case ISD::SELECT:
3129   case ISD::VSELECT:
3130     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3131     // If we don't know any bits, early out.
3132     if (Known.isUnknown())
3133       break;
3134     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3135 
3136     // Only known if known in both the LHS and RHS.
3137     Known = KnownBits::commonBits(Known, Known2);
3138     break;
3139   case ISD::SELECT_CC:
3140     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3141     // If we don't know any bits, early out.
3142     if (Known.isUnknown())
3143       break;
3144     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3145 
3146     // Only known if known in both the LHS and RHS.
3147     Known = KnownBits::commonBits(Known, Known2);
3148     break;
3149   case ISD::SMULO:
3150   case ISD::UMULO:
3151     if (Op.getResNo() != 1)
3152       break;
3153     // The boolean result conforms to getBooleanContents.
3154     // If we know the result of a setcc has the top bits zero, use this info.
3155     // We know that we have an integer-based boolean since these operations
3156     // are only available for integer.
3157     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3158             TargetLowering::ZeroOrOneBooleanContent &&
3159         BitWidth > 1)
3160       Known.Zero.setBitsFrom(1);
3161     break;
3162   case ISD::SETCC:
3163   case ISD::STRICT_FSETCC:
3164   case ISD::STRICT_FSETCCS: {
3165     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3166     // If we know the result of a setcc has the top bits zero, use this info.
3167     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3168             TargetLowering::ZeroOrOneBooleanContent &&
3169         BitWidth > 1)
3170       Known.Zero.setBitsFrom(1);
3171     break;
3172   }
3173   case ISD::SHL:
3174     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3175     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3176     Known = KnownBits::shl(Known, Known2);
3177 
3178     // Minimum shift low bits are known zero.
3179     if (const APInt *ShMinAmt =
3180             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3181       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3182     break;
3183   case ISD::SRL:
3184     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3185     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3186     Known = KnownBits::lshr(Known, Known2);
3187 
3188     // Minimum shift high bits are known zero.
3189     if (const APInt *ShMinAmt =
3190             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3191       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3192     break;
3193   case ISD::SRA:
3194     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3195     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3196     Known = KnownBits::ashr(Known, Known2);
3197     // TODO: Add minimum shift high known sign bits.
3198     break;
3199   case ISD::FSHL:
3200   case ISD::FSHR:
3201     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3202       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3203 
3204       // For fshl, 0-shift returns the 1st arg.
3205       // For fshr, 0-shift returns the 2nd arg.
3206       if (Amt == 0) {
3207         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3208                                  DemandedElts, Depth + 1);
3209         break;
3210       }
3211 
3212       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3213       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3214       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3215       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3216       if (Opcode == ISD::FSHL) {
3217         Known.One <<= Amt;
3218         Known.Zero <<= Amt;
3219         Known2.One.lshrInPlace(BitWidth - Amt);
3220         Known2.Zero.lshrInPlace(BitWidth - Amt);
3221       } else {
3222         Known.One <<= BitWidth - Amt;
3223         Known.Zero <<= BitWidth - Amt;
3224         Known2.One.lshrInPlace(Amt);
3225         Known2.Zero.lshrInPlace(Amt);
3226       }
3227       Known.One |= Known2.One;
3228       Known.Zero |= Known2.Zero;
3229     }
3230     break;
3231   case ISD::SIGN_EXTEND_INREG: {
3232     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3233     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3234     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3235     break;
3236   }
3237   case ISD::CTTZ:
3238   case ISD::CTTZ_ZERO_UNDEF: {
3239     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3240     // If we have a known 1, its position is our upper bound.
3241     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3242     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3243     Known.Zero.setBitsFrom(LowBits);
3244     break;
3245   }
3246   case ISD::CTLZ:
3247   case ISD::CTLZ_ZERO_UNDEF: {
3248     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3249     // If we have a known 1, its position is our upper bound.
3250     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3251     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3252     Known.Zero.setBitsFrom(LowBits);
3253     break;
3254   }
3255   case ISD::CTPOP: {
3256     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3257     // If we know some of the bits are zero, they can't be one.
3258     unsigned PossibleOnes = Known2.countMaxPopulation();
3259     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3260     break;
3261   }
3262   case ISD::PARITY: {
3263     // Parity returns 0 everywhere but the LSB.
3264     Known.Zero.setBitsFrom(1);
3265     break;
3266   }
3267   case ISD::LOAD: {
3268     LoadSDNode *LD = cast<LoadSDNode>(Op);
3269     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3270     if (ISD::isNON_EXTLoad(LD) && Cst) {
3271       // Determine any common known bits from the loaded constant pool value.
3272       Type *CstTy = Cst->getType();
3273       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3274         // If its a vector splat, then we can (quickly) reuse the scalar path.
3275         // NOTE: We assume all elements match and none are UNDEF.
3276         if (CstTy->isVectorTy()) {
3277           if (const Constant *Splat = Cst->getSplatValue()) {
3278             Cst = Splat;
3279             CstTy = Cst->getType();
3280           }
3281         }
3282         // TODO - do we need to handle different bitwidths?
3283         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3284           // Iterate across all vector elements finding common known bits.
3285           Known.One.setAllBits();
3286           Known.Zero.setAllBits();
3287           for (unsigned i = 0; i != NumElts; ++i) {
3288             if (!DemandedElts[i])
3289               continue;
3290             if (Constant *Elt = Cst->getAggregateElement(i)) {
3291               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3292                 const APInt &Value = CInt->getValue();
3293                 Known.One &= Value;
3294                 Known.Zero &= ~Value;
3295                 continue;
3296               }
3297               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3298                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3299                 Known.One &= Value;
3300                 Known.Zero &= ~Value;
3301                 continue;
3302               }
3303             }
3304             Known.One.clearAllBits();
3305             Known.Zero.clearAllBits();
3306             break;
3307           }
3308         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3309           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3310             Known = KnownBits::makeConstant(CInt->getValue());
3311           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3312             Known =
3313                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3314           }
3315         }
3316       }
3317     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3318       // If this is a ZEXTLoad and we are looking at the loaded value.
3319       EVT VT = LD->getMemoryVT();
3320       unsigned MemBits = VT.getScalarSizeInBits();
3321       Known.Zero.setBitsFrom(MemBits);
3322     } else if (const MDNode *Ranges = LD->getRanges()) {
3323       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3324         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3325     }
3326     break;
3327   }
3328   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3329     EVT InVT = Op.getOperand(0).getValueType();
3330     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3331     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3332     Known = Known.zext(BitWidth);
3333     break;
3334   }
3335   case ISD::ZERO_EXTEND: {
3336     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3337     Known = Known.zext(BitWidth);
3338     break;
3339   }
3340   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3341     EVT InVT = Op.getOperand(0).getValueType();
3342     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3343     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3344     // If the sign bit is known to be zero or one, then sext will extend
3345     // it to the top bits, else it will just zext.
3346     Known = Known.sext(BitWidth);
3347     break;
3348   }
3349   case ISD::SIGN_EXTEND: {
3350     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3351     // If the sign bit is known to be zero or one, then sext will extend
3352     // it to the top bits, else it will just zext.
3353     Known = Known.sext(BitWidth);
3354     break;
3355   }
3356   case ISD::ANY_EXTEND_VECTOR_INREG: {
3357     EVT InVT = Op.getOperand(0).getValueType();
3358     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3359     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3360     Known = Known.anyext(BitWidth);
3361     break;
3362   }
3363   case ISD::ANY_EXTEND: {
3364     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3365     Known = Known.anyext(BitWidth);
3366     break;
3367   }
3368   case ISD::TRUNCATE: {
3369     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3370     Known = Known.trunc(BitWidth);
3371     break;
3372   }
3373   case ISD::AssertZext: {
3374     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3375     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3376     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3377     Known.Zero |= (~InMask);
3378     Known.One  &= (~Known.Zero);
3379     break;
3380   }
3381   case ISD::AssertAlign: {
3382     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3383     assert(LogOfAlign != 0);
3384 
3385     // TODO: Should use maximum with source
3386     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3387     // well as clearing one bits.
3388     Known.Zero.setLowBits(LogOfAlign);
3389     Known.One.clearLowBits(LogOfAlign);
3390     break;
3391   }
3392   case ISD::FGETSIGN:
3393     // All bits are zero except the low bit.
3394     Known.Zero.setBitsFrom(1);
3395     break;
3396   case ISD::USUBO:
3397   case ISD::SSUBO:
3398     if (Op.getResNo() == 1) {
3399       // If we know the result of a setcc has the top bits zero, use this info.
3400       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3401               TargetLowering::ZeroOrOneBooleanContent &&
3402           BitWidth > 1)
3403         Known.Zero.setBitsFrom(1);
3404       break;
3405     }
3406     LLVM_FALLTHROUGH;
3407   case ISD::SUB:
3408   case ISD::SUBC: {
3409     assert(Op.getResNo() == 0 &&
3410            "We only compute knownbits for the difference here.");
3411 
3412     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3413     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3414     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3415                                         Known, Known2);
3416     break;
3417   }
3418   case ISD::UADDO:
3419   case ISD::SADDO:
3420   case ISD::ADDCARRY:
3421     if (Op.getResNo() == 1) {
3422       // If we know the result of a setcc has the top bits zero, use this info.
3423       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3424               TargetLowering::ZeroOrOneBooleanContent &&
3425           BitWidth > 1)
3426         Known.Zero.setBitsFrom(1);
3427       break;
3428     }
3429     LLVM_FALLTHROUGH;
3430   case ISD::ADD:
3431   case ISD::ADDC:
3432   case ISD::ADDE: {
3433     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3434 
3435     // With ADDE and ADDCARRY, a carry bit may be added in.
3436     KnownBits Carry(1);
3437     if (Opcode == ISD::ADDE)
3438       // Can't track carry from glue, set carry to unknown.
3439       Carry.resetAll();
3440     else if (Opcode == ISD::ADDCARRY)
3441       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3442       // the trouble (how often will we find a known carry bit). And I haven't
3443       // tested this very much yet, but something like this might work:
3444       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3445       //   Carry = Carry.zextOrTrunc(1, false);
3446       Carry.resetAll();
3447     else
3448       Carry.setAllZero();
3449 
3450     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3451     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3452     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3453     break;
3454   }
3455   case ISD::SREM: {
3456     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3457     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3458     Known = KnownBits::srem(Known, Known2);
3459     break;
3460   }
3461   case ISD::UREM: {
3462     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3463     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3464     Known = KnownBits::urem(Known, Known2);
3465     break;
3466   }
3467   case ISD::EXTRACT_ELEMENT: {
3468     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3469     const unsigned Index = Op.getConstantOperandVal(1);
3470     const unsigned EltBitWidth = Op.getValueSizeInBits();
3471 
3472     // Remove low part of known bits mask
3473     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3474     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3475 
3476     // Remove high part of known bit mask
3477     Known = Known.trunc(EltBitWidth);
3478     break;
3479   }
3480   case ISD::EXTRACT_VECTOR_ELT: {
3481     SDValue InVec = Op.getOperand(0);
3482     SDValue EltNo = Op.getOperand(1);
3483     EVT VecVT = InVec.getValueType();
3484     // computeKnownBits not yet implemented for scalable vectors.
3485     if (VecVT.isScalableVector())
3486       break;
3487     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3488     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3489 
3490     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3491     // anything about the extended bits.
3492     if (BitWidth > EltBitWidth)
3493       Known = Known.trunc(EltBitWidth);
3494 
3495     // If we know the element index, just demand that vector element, else for
3496     // an unknown element index, ignore DemandedElts and demand them all.
3497     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3498     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3499     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3500       DemandedSrcElts =
3501           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3502 
3503     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3504     if (BitWidth > EltBitWidth)
3505       Known = Known.anyext(BitWidth);
3506     break;
3507   }
3508   case ISD::INSERT_VECTOR_ELT: {
3509     // If we know the element index, split the demand between the
3510     // source vector and the inserted element, otherwise assume we need
3511     // the original demanded vector elements and the value.
3512     SDValue InVec = Op.getOperand(0);
3513     SDValue InVal = Op.getOperand(1);
3514     SDValue EltNo = Op.getOperand(2);
3515     bool DemandedVal = true;
3516     APInt DemandedVecElts = DemandedElts;
3517     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3518     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3519       unsigned EltIdx = CEltNo->getZExtValue();
3520       DemandedVal = !!DemandedElts[EltIdx];
3521       DemandedVecElts.clearBit(EltIdx);
3522     }
3523     Known.One.setAllBits();
3524     Known.Zero.setAllBits();
3525     if (DemandedVal) {
3526       Known2 = computeKnownBits(InVal, Depth + 1);
3527       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3528     }
3529     if (!!DemandedVecElts) {
3530       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3531       Known = KnownBits::commonBits(Known, Known2);
3532     }
3533     break;
3534   }
3535   case ISD::BITREVERSE: {
3536     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3537     Known = Known2.reverseBits();
3538     break;
3539   }
3540   case ISD::BSWAP: {
3541     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3542     Known = Known2.byteSwap();
3543     break;
3544   }
3545   case ISD::ABS: {
3546     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3547     Known = Known2.abs();
3548     break;
3549   }
3550   case ISD::USUBSAT: {
3551     // The result of usubsat will never be larger than the LHS.
3552     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3553     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3554     break;
3555   }
3556   case ISD::UMIN: {
3557     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3558     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3559     Known = KnownBits::umin(Known, Known2);
3560     break;
3561   }
3562   case ISD::UMAX: {
3563     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3564     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3565     Known = KnownBits::umax(Known, Known2);
3566     break;
3567   }
3568   case ISD::SMIN:
3569   case ISD::SMAX: {
3570     // If we have a clamp pattern, we know that the number of sign bits will be
3571     // the minimum of the clamp min/max range.
3572     bool IsMax = (Opcode == ISD::SMAX);
3573     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3574     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3575       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3576         CstHigh =
3577             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3578     if (CstLow && CstHigh) {
3579       if (!IsMax)
3580         std::swap(CstLow, CstHigh);
3581 
3582       const APInt &ValueLow = CstLow->getAPIntValue();
3583       const APInt &ValueHigh = CstHigh->getAPIntValue();
3584       if (ValueLow.sle(ValueHigh)) {
3585         unsigned LowSignBits = ValueLow.getNumSignBits();
3586         unsigned HighSignBits = ValueHigh.getNumSignBits();
3587         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3588         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3589           Known.One.setHighBits(MinSignBits);
3590           break;
3591         }
3592         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3593           Known.Zero.setHighBits(MinSignBits);
3594           break;
3595         }
3596       }
3597     }
3598 
3599     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3600     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3601     if (IsMax)
3602       Known = KnownBits::smax(Known, Known2);
3603     else
3604       Known = KnownBits::smin(Known, Known2);
3605     break;
3606   }
3607   case ISD::FP_TO_UINT_SAT: {
3608     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3609     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3610     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3611     break;
3612   }
3613   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3614     if (Op.getResNo() == 1) {
3615       // The boolean result conforms to getBooleanContents.
3616       // If we know the result of a setcc has the top bits zero, use this info.
3617       // We know that we have an integer-based boolean since these operations
3618       // are only available for integer.
3619       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3620               TargetLowering::ZeroOrOneBooleanContent &&
3621           BitWidth > 1)
3622         Known.Zero.setBitsFrom(1);
3623       break;
3624     }
3625     LLVM_FALLTHROUGH;
3626   case ISD::ATOMIC_CMP_SWAP:
3627   case ISD::ATOMIC_SWAP:
3628   case ISD::ATOMIC_LOAD_ADD:
3629   case ISD::ATOMIC_LOAD_SUB:
3630   case ISD::ATOMIC_LOAD_AND:
3631   case ISD::ATOMIC_LOAD_CLR:
3632   case ISD::ATOMIC_LOAD_OR:
3633   case ISD::ATOMIC_LOAD_XOR:
3634   case ISD::ATOMIC_LOAD_NAND:
3635   case ISD::ATOMIC_LOAD_MIN:
3636   case ISD::ATOMIC_LOAD_MAX:
3637   case ISD::ATOMIC_LOAD_UMIN:
3638   case ISD::ATOMIC_LOAD_UMAX:
3639   case ISD::ATOMIC_LOAD: {
3640     unsigned MemBits =
3641         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3642     // If we are looking at the loaded value.
3643     if (Op.getResNo() == 0) {
3644       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3645         Known.Zero.setBitsFrom(MemBits);
3646     }
3647     break;
3648   }
3649   case ISD::FrameIndex:
3650   case ISD::TargetFrameIndex:
3651     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3652                                        Known, getMachineFunction());
3653     break;
3654 
3655   default:
3656     if (Opcode < ISD::BUILTIN_OP_END)
3657       break;
3658     LLVM_FALLTHROUGH;
3659   case ISD::INTRINSIC_WO_CHAIN:
3660   case ISD::INTRINSIC_W_CHAIN:
3661   case ISD::INTRINSIC_VOID:
3662     // Allow the target to implement this method for its nodes.
3663     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3664     break;
3665   }
3666 
3667   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3668   return Known;
3669 }
3670 
3671 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3672                                                              SDValue N1) const {
3673   // X + 0 never overflow
3674   if (isNullConstant(N1))
3675     return OFK_Never;
3676 
3677   KnownBits N1Known = computeKnownBits(N1);
3678   if (N1Known.Zero.getBoolValue()) {
3679     KnownBits N0Known = computeKnownBits(N0);
3680 
3681     bool overflow;
3682     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3683     if (!overflow)
3684       return OFK_Never;
3685   }
3686 
3687   // mulhi + 1 never overflow
3688   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3689       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3690     return OFK_Never;
3691 
3692   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3693     KnownBits N0Known = computeKnownBits(N0);
3694 
3695     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3696       return OFK_Never;
3697   }
3698 
3699   return OFK_Sometime;
3700 }
3701 
3702 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3703   EVT OpVT = Val.getValueType();
3704   unsigned BitWidth = OpVT.getScalarSizeInBits();
3705 
3706   // Is the constant a known power of 2?
3707   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3708     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3709 
3710   // A left-shift of a constant one will have exactly one bit set because
3711   // shifting the bit off the end is undefined.
3712   if (Val.getOpcode() == ISD::SHL) {
3713     auto *C = isConstOrConstSplat(Val.getOperand(0));
3714     if (C && C->getAPIntValue() == 1)
3715       return true;
3716   }
3717 
3718   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3719   // one bit set.
3720   if (Val.getOpcode() == ISD::SRL) {
3721     auto *C = isConstOrConstSplat(Val.getOperand(0));
3722     if (C && C->getAPIntValue().isSignMask())
3723       return true;
3724   }
3725 
3726   // Are all operands of a build vector constant powers of two?
3727   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3728     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3729           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3730             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3731           return false;
3732         }))
3733       return true;
3734 
3735   // Is the operand of a splat vector a constant power of two?
3736   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3737     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3738       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3739         return true;
3740 
3741   // More could be done here, though the above checks are enough
3742   // to handle some common cases.
3743 
3744   // Fall back to computeKnownBits to catch other known cases.
3745   KnownBits Known = computeKnownBits(Val);
3746   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3747 }
3748 
3749 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3750   EVT VT = Op.getValueType();
3751 
3752   // TODO: Assume we don't know anything for now.
3753   if (VT.isScalableVector())
3754     return 1;
3755 
3756   APInt DemandedElts = VT.isVector()
3757                            ? APInt::getAllOnes(VT.getVectorNumElements())
3758                            : APInt(1, 1);
3759   return ComputeNumSignBits(Op, DemandedElts, Depth);
3760 }
3761 
3762 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3763                                           unsigned Depth) const {
3764   EVT VT = Op.getValueType();
3765   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3766   unsigned VTBits = VT.getScalarSizeInBits();
3767   unsigned NumElts = DemandedElts.getBitWidth();
3768   unsigned Tmp, Tmp2;
3769   unsigned FirstAnswer = 1;
3770 
3771   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3772     const APInt &Val = C->getAPIntValue();
3773     return Val.getNumSignBits();
3774   }
3775 
3776   if (Depth >= MaxRecursionDepth)
3777     return 1;  // Limit search depth.
3778 
3779   if (!DemandedElts || VT.isScalableVector())
3780     return 1;  // No demanded elts, better to assume we don't know anything.
3781 
3782   unsigned Opcode = Op.getOpcode();
3783   switch (Opcode) {
3784   default: break;
3785   case ISD::AssertSext:
3786     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3787     return VTBits-Tmp+1;
3788   case ISD::AssertZext:
3789     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3790     return VTBits-Tmp;
3791 
3792   case ISD::BUILD_VECTOR:
3793     Tmp = VTBits;
3794     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3795       if (!DemandedElts[i])
3796         continue;
3797 
3798       SDValue SrcOp = Op.getOperand(i);
3799       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3800 
3801       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3802       if (SrcOp.getValueSizeInBits() != VTBits) {
3803         assert(SrcOp.getValueSizeInBits() > VTBits &&
3804                "Expected BUILD_VECTOR implicit truncation");
3805         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3806         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3807       }
3808       Tmp = std::min(Tmp, Tmp2);
3809     }
3810     return Tmp;
3811 
3812   case ISD::VECTOR_SHUFFLE: {
3813     // Collect the minimum number of sign bits that are shared by every vector
3814     // element referenced by the shuffle.
3815     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3816     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3817     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3818     for (unsigned i = 0; i != NumElts; ++i) {
3819       int M = SVN->getMaskElt(i);
3820       if (!DemandedElts[i])
3821         continue;
3822       // For UNDEF elements, we don't know anything about the common state of
3823       // the shuffle result.
3824       if (M < 0)
3825         return 1;
3826       if ((unsigned)M < NumElts)
3827         DemandedLHS.setBit((unsigned)M % NumElts);
3828       else
3829         DemandedRHS.setBit((unsigned)M % NumElts);
3830     }
3831     Tmp = std::numeric_limits<unsigned>::max();
3832     if (!!DemandedLHS)
3833       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3834     if (!!DemandedRHS) {
3835       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3836       Tmp = std::min(Tmp, Tmp2);
3837     }
3838     // If we don't know anything, early out and try computeKnownBits fall-back.
3839     if (Tmp == 1)
3840       break;
3841     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3842     return Tmp;
3843   }
3844 
3845   case ISD::BITCAST: {
3846     SDValue N0 = Op.getOperand(0);
3847     EVT SrcVT = N0.getValueType();
3848     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3849 
3850     // Ignore bitcasts from unsupported types..
3851     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3852       break;
3853 
3854     // Fast handling of 'identity' bitcasts.
3855     if (VTBits == SrcBits)
3856       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3857 
3858     bool IsLE = getDataLayout().isLittleEndian();
3859 
3860     // Bitcast 'large element' scalar/vector to 'small element' vector.
3861     if ((SrcBits % VTBits) == 0) {
3862       assert(VT.isVector() && "Expected bitcast to vector");
3863 
3864       unsigned Scale = SrcBits / VTBits;
3865       APInt SrcDemandedElts =
3866           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3867 
3868       // Fast case - sign splat can be simply split across the small elements.
3869       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3870       if (Tmp == SrcBits)
3871         return VTBits;
3872 
3873       // Slow case - determine how far the sign extends into each sub-element.
3874       Tmp2 = VTBits;
3875       for (unsigned i = 0; i != NumElts; ++i)
3876         if (DemandedElts[i]) {
3877           unsigned SubOffset = i % Scale;
3878           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3879           SubOffset = SubOffset * VTBits;
3880           if (Tmp <= SubOffset)
3881             return 1;
3882           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3883         }
3884       return Tmp2;
3885     }
3886     break;
3887   }
3888 
3889   case ISD::FP_TO_SINT_SAT:
3890     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3891     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3892     return VTBits - Tmp + 1;
3893   case ISD::SIGN_EXTEND:
3894     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3895     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3896   case ISD::SIGN_EXTEND_INREG:
3897     // Max of the input and what this extends.
3898     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3899     Tmp = VTBits-Tmp+1;
3900     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3901     return std::max(Tmp, Tmp2);
3902   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3903     SDValue Src = Op.getOperand(0);
3904     EVT SrcVT = Src.getValueType();
3905     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3906     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3907     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3908   }
3909   case ISD::SRA:
3910     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3911     // SRA X, C -> adds C sign bits.
3912     if (const APInt *ShAmt =
3913             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3914       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3915     return Tmp;
3916   case ISD::SHL:
3917     if (const APInt *ShAmt =
3918             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3919       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3920       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3921       if (ShAmt->ult(Tmp))
3922         return Tmp - ShAmt->getZExtValue();
3923     }
3924     break;
3925   case ISD::AND:
3926   case ISD::OR:
3927   case ISD::XOR:    // NOT is handled here.
3928     // Logical binary ops preserve the number of sign bits at the worst.
3929     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3930     if (Tmp != 1) {
3931       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3932       FirstAnswer = std::min(Tmp, Tmp2);
3933       // We computed what we know about the sign bits as our first
3934       // answer. Now proceed to the generic code that uses
3935       // computeKnownBits, and pick whichever answer is better.
3936     }
3937     break;
3938 
3939   case ISD::SELECT:
3940   case ISD::VSELECT:
3941     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3942     if (Tmp == 1) return 1;  // Early out.
3943     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3944     return std::min(Tmp, Tmp2);
3945   case ISD::SELECT_CC:
3946     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3947     if (Tmp == 1) return 1;  // Early out.
3948     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3949     return std::min(Tmp, Tmp2);
3950 
3951   case ISD::SMIN:
3952   case ISD::SMAX: {
3953     // If we have a clamp pattern, we know that the number of sign bits will be
3954     // the minimum of the clamp min/max range.
3955     bool IsMax = (Opcode == ISD::SMAX);
3956     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3957     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3958       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3959         CstHigh =
3960             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3961     if (CstLow && CstHigh) {
3962       if (!IsMax)
3963         std::swap(CstLow, CstHigh);
3964       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3965         Tmp = CstLow->getAPIntValue().getNumSignBits();
3966         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3967         return std::min(Tmp, Tmp2);
3968       }
3969     }
3970 
3971     // Fallback - just get the minimum number of sign bits of the operands.
3972     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3973     if (Tmp == 1)
3974       return 1;  // Early out.
3975     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3976     return std::min(Tmp, Tmp2);
3977   }
3978   case ISD::UMIN:
3979   case ISD::UMAX:
3980     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3981     if (Tmp == 1)
3982       return 1;  // Early out.
3983     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3984     return std::min(Tmp, Tmp2);
3985   case ISD::SADDO:
3986   case ISD::UADDO:
3987   case ISD::SSUBO:
3988   case ISD::USUBO:
3989   case ISD::SMULO:
3990   case ISD::UMULO:
3991     if (Op.getResNo() != 1)
3992       break;
3993     // The boolean result conforms to getBooleanContents.  Fall through.
3994     // If setcc returns 0/-1, all bits are sign bits.
3995     // We know that we have an integer-based boolean since these operations
3996     // are only available for integer.
3997     if (TLI->getBooleanContents(VT.isVector(), false) ==
3998         TargetLowering::ZeroOrNegativeOneBooleanContent)
3999       return VTBits;
4000     break;
4001   case ISD::SETCC:
4002   case ISD::STRICT_FSETCC:
4003   case ISD::STRICT_FSETCCS: {
4004     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4005     // If setcc returns 0/-1, all bits are sign bits.
4006     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4007         TargetLowering::ZeroOrNegativeOneBooleanContent)
4008       return VTBits;
4009     break;
4010   }
4011   case ISD::ROTL:
4012   case ISD::ROTR:
4013     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4014 
4015     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4016     if (Tmp == VTBits)
4017       return VTBits;
4018 
4019     if (ConstantSDNode *C =
4020             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4021       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4022 
4023       // Handle rotate right by N like a rotate left by 32-N.
4024       if (Opcode == ISD::ROTR)
4025         RotAmt = (VTBits - RotAmt) % VTBits;
4026 
4027       // If we aren't rotating out all of the known-in sign bits, return the
4028       // number that are left.  This handles rotl(sext(x), 1) for example.
4029       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4030     }
4031     break;
4032   case ISD::ADD:
4033   case ISD::ADDC:
4034     // Add can have at most one carry bit.  Thus we know that the output
4035     // is, at worst, one more bit than the inputs.
4036     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4037     if (Tmp == 1) return 1; // Early out.
4038 
4039     // Special case decrementing a value (ADD X, -1):
4040     if (ConstantSDNode *CRHS =
4041             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4042       if (CRHS->isAllOnes()) {
4043         KnownBits Known =
4044             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4045 
4046         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4047         // sign bits set.
4048         if ((Known.Zero | 1).isAllOnes())
4049           return VTBits;
4050 
4051         // If we are subtracting one from a positive number, there is no carry
4052         // out of the result.
4053         if (Known.isNonNegative())
4054           return Tmp;
4055       }
4056 
4057     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4058     if (Tmp2 == 1) return 1; // Early out.
4059     return std::min(Tmp, Tmp2) - 1;
4060   case ISD::SUB:
4061     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4062     if (Tmp2 == 1) return 1; // Early out.
4063 
4064     // Handle NEG.
4065     if (ConstantSDNode *CLHS =
4066             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4067       if (CLHS->isZero()) {
4068         KnownBits Known =
4069             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4070         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4071         // sign bits set.
4072         if ((Known.Zero | 1).isAllOnes())
4073           return VTBits;
4074 
4075         // If the input is known to be positive (the sign bit is known clear),
4076         // the output of the NEG has the same number of sign bits as the input.
4077         if (Known.isNonNegative())
4078           return Tmp2;
4079 
4080         // Otherwise, we treat this like a SUB.
4081       }
4082 
4083     // Sub can have at most one carry bit.  Thus we know that the output
4084     // is, at worst, one more bit than the inputs.
4085     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4086     if (Tmp == 1) return 1; // Early out.
4087     return std::min(Tmp, Tmp2) - 1;
4088   case ISD::MUL: {
4089     // The output of the Mul can be at most twice the valid bits in the inputs.
4090     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4091     if (SignBitsOp0 == 1)
4092       break;
4093     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4094     if (SignBitsOp1 == 1)
4095       break;
4096     unsigned OutValidBits =
4097         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4098     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4099   }
4100   case ISD::SREM:
4101     // The sign bit is the LHS's sign bit, except when the result of the
4102     // remainder is zero. The magnitude of the result should be less than or
4103     // equal to the magnitude of the LHS. Therefore, the result should have
4104     // at least as many sign bits as the left hand side.
4105     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4106   case ISD::TRUNCATE: {
4107     // Check if the sign bits of source go down as far as the truncated value.
4108     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4109     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4110     if (NumSrcSignBits > (NumSrcBits - VTBits))
4111       return NumSrcSignBits - (NumSrcBits - VTBits);
4112     break;
4113   }
4114   case ISD::EXTRACT_ELEMENT: {
4115     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4116     const int BitWidth = Op.getValueSizeInBits();
4117     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4118 
4119     // Get reverse index (starting from 1), Op1 value indexes elements from
4120     // little end. Sign starts at big end.
4121     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4122 
4123     // If the sign portion ends in our element the subtraction gives correct
4124     // result. Otherwise it gives either negative or > bitwidth result
4125     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4126   }
4127   case ISD::INSERT_VECTOR_ELT: {
4128     // If we know the element index, split the demand between the
4129     // source vector and the inserted element, otherwise assume we need
4130     // the original demanded vector elements and the value.
4131     SDValue InVec = Op.getOperand(0);
4132     SDValue InVal = Op.getOperand(1);
4133     SDValue EltNo = Op.getOperand(2);
4134     bool DemandedVal = true;
4135     APInt DemandedVecElts = DemandedElts;
4136     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4137     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4138       unsigned EltIdx = CEltNo->getZExtValue();
4139       DemandedVal = !!DemandedElts[EltIdx];
4140       DemandedVecElts.clearBit(EltIdx);
4141     }
4142     Tmp = std::numeric_limits<unsigned>::max();
4143     if (DemandedVal) {
4144       // TODO - handle implicit truncation of inserted elements.
4145       if (InVal.getScalarValueSizeInBits() != VTBits)
4146         break;
4147       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4148       Tmp = std::min(Tmp, Tmp2);
4149     }
4150     if (!!DemandedVecElts) {
4151       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4152       Tmp = std::min(Tmp, Tmp2);
4153     }
4154     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4155     return Tmp;
4156   }
4157   case ISD::EXTRACT_VECTOR_ELT: {
4158     SDValue InVec = Op.getOperand(0);
4159     SDValue EltNo = Op.getOperand(1);
4160     EVT VecVT = InVec.getValueType();
4161     // ComputeNumSignBits not yet implemented for scalable vectors.
4162     if (VecVT.isScalableVector())
4163       break;
4164     const unsigned BitWidth = Op.getValueSizeInBits();
4165     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4166     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4167 
4168     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4169     // anything about sign bits. But if the sizes match we can derive knowledge
4170     // about sign bits from the vector operand.
4171     if (BitWidth != EltBitWidth)
4172       break;
4173 
4174     // If we know the element index, just demand that vector element, else for
4175     // an unknown element index, ignore DemandedElts and demand them all.
4176     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4177     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4178     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4179       DemandedSrcElts =
4180           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4181 
4182     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4183   }
4184   case ISD::EXTRACT_SUBVECTOR: {
4185     // Offset the demanded elts by the subvector index.
4186     SDValue Src = Op.getOperand(0);
4187     // Bail until we can represent demanded elements for scalable vectors.
4188     if (Src.getValueType().isScalableVector())
4189       break;
4190     uint64_t Idx = Op.getConstantOperandVal(1);
4191     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4192     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4193     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4194   }
4195   case ISD::CONCAT_VECTORS: {
4196     // Determine the minimum number of sign bits across all demanded
4197     // elts of the input vectors. Early out if the result is already 1.
4198     Tmp = std::numeric_limits<unsigned>::max();
4199     EVT SubVectorVT = Op.getOperand(0).getValueType();
4200     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4201     unsigned NumSubVectors = Op.getNumOperands();
4202     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4203       APInt DemandedSub =
4204           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4205       if (!DemandedSub)
4206         continue;
4207       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4208       Tmp = std::min(Tmp, Tmp2);
4209     }
4210     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4211     return Tmp;
4212   }
4213   case ISD::INSERT_SUBVECTOR: {
4214     // Demand any elements from the subvector and the remainder from the src its
4215     // inserted into.
4216     SDValue Src = Op.getOperand(0);
4217     SDValue Sub = Op.getOperand(1);
4218     uint64_t Idx = Op.getConstantOperandVal(2);
4219     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4220     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4221     APInt DemandedSrcElts = DemandedElts;
4222     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4223 
4224     Tmp = std::numeric_limits<unsigned>::max();
4225     if (!!DemandedSubElts) {
4226       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4227       if (Tmp == 1)
4228         return 1; // early-out
4229     }
4230     if (!!DemandedSrcElts) {
4231       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4232       Tmp = std::min(Tmp, Tmp2);
4233     }
4234     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4235     return Tmp;
4236   }
4237   case ISD::ATOMIC_CMP_SWAP:
4238   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4239   case ISD::ATOMIC_SWAP:
4240   case ISD::ATOMIC_LOAD_ADD:
4241   case ISD::ATOMIC_LOAD_SUB:
4242   case ISD::ATOMIC_LOAD_AND:
4243   case ISD::ATOMIC_LOAD_CLR:
4244   case ISD::ATOMIC_LOAD_OR:
4245   case ISD::ATOMIC_LOAD_XOR:
4246   case ISD::ATOMIC_LOAD_NAND:
4247   case ISD::ATOMIC_LOAD_MIN:
4248   case ISD::ATOMIC_LOAD_MAX:
4249   case ISD::ATOMIC_LOAD_UMIN:
4250   case ISD::ATOMIC_LOAD_UMAX:
4251   case ISD::ATOMIC_LOAD: {
4252     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4253     // If we are looking at the loaded value.
4254     if (Op.getResNo() == 0) {
4255       if (Tmp == VTBits)
4256         return 1; // early-out
4257       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4258         return VTBits - Tmp + 1;
4259       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4260         return VTBits - Tmp;
4261     }
4262     break;
4263   }
4264   }
4265 
4266   // If we are looking at the loaded value of the SDNode.
4267   if (Op.getResNo() == 0) {
4268     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4269     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4270       unsigned ExtType = LD->getExtensionType();
4271       switch (ExtType) {
4272       default: break;
4273       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4274         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4275         return VTBits - Tmp + 1;
4276       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4277         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4278         return VTBits - Tmp;
4279       case ISD::NON_EXTLOAD:
4280         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4281           // We only need to handle vectors - computeKnownBits should handle
4282           // scalar cases.
4283           Type *CstTy = Cst->getType();
4284           if (CstTy->isVectorTy() &&
4285               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4286               VTBits == CstTy->getScalarSizeInBits()) {
4287             Tmp = VTBits;
4288             for (unsigned i = 0; i != NumElts; ++i) {
4289               if (!DemandedElts[i])
4290                 continue;
4291               if (Constant *Elt = Cst->getAggregateElement(i)) {
4292                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4293                   const APInt &Value = CInt->getValue();
4294                   Tmp = std::min(Tmp, Value.getNumSignBits());
4295                   continue;
4296                 }
4297                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4298                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4299                   Tmp = std::min(Tmp, Value.getNumSignBits());
4300                   continue;
4301                 }
4302               }
4303               // Unknown type. Conservatively assume no bits match sign bit.
4304               return 1;
4305             }
4306             return Tmp;
4307           }
4308         }
4309         break;
4310       }
4311     }
4312   }
4313 
4314   // Allow the target to implement this method for its nodes.
4315   if (Opcode >= ISD::BUILTIN_OP_END ||
4316       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4317       Opcode == ISD::INTRINSIC_W_CHAIN ||
4318       Opcode == ISD::INTRINSIC_VOID) {
4319     unsigned NumBits =
4320         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4321     if (NumBits > 1)
4322       FirstAnswer = std::max(FirstAnswer, NumBits);
4323   }
4324 
4325   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4326   // use this information.
4327   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4328   return std::max(FirstAnswer, Known.countMinSignBits());
4329 }
4330 
4331 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4332                                                  unsigned Depth) const {
4333   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4334   return Op.getScalarValueSizeInBits() - SignBits + 1;
4335 }
4336 
4337 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4338                                                  const APInt &DemandedElts,
4339                                                  unsigned Depth) const {
4340   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4341   return Op.getScalarValueSizeInBits() - SignBits + 1;
4342 }
4343 
4344 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4345                                                     unsigned Depth) const {
4346   // Early out for FREEZE.
4347   if (Op.getOpcode() == ISD::FREEZE)
4348     return true;
4349 
4350   // TODO: Assume we don't know anything for now.
4351   EVT VT = Op.getValueType();
4352   if (VT.isScalableVector())
4353     return false;
4354 
4355   APInt DemandedElts = VT.isVector()
4356                            ? APInt::getAllOnes(VT.getVectorNumElements())
4357                            : APInt(1, 1);
4358   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4359 }
4360 
4361 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4362                                                     const APInt &DemandedElts,
4363                                                     bool PoisonOnly,
4364                                                     unsigned Depth) const {
4365   unsigned Opcode = Op.getOpcode();
4366 
4367   // Early out for FREEZE.
4368   if (Opcode == ISD::FREEZE)
4369     return true;
4370 
4371   if (Depth >= MaxRecursionDepth)
4372     return false; // Limit search depth.
4373 
4374   if (isIntOrFPConstant(Op))
4375     return true;
4376 
4377   switch (Opcode) {
4378   case ISD::UNDEF:
4379     return PoisonOnly;
4380 
4381   case ISD::BUILD_VECTOR:
4382     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4383     // this shouldn't affect the result.
4384     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4385       if (!DemandedElts[i])
4386         continue;
4387       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4388                                             Depth + 1))
4389         return false;
4390     }
4391     return true;
4392 
4393   // TODO: Search for noundef attributes from library functions.
4394 
4395   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4396 
4397   default:
4398     // Allow the target to implement this method for its nodes.
4399     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4400         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4401       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4402           Op, DemandedElts, *this, PoisonOnly, Depth);
4403     break;
4404   }
4405 
4406   return false;
4407 }
4408 
4409 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4410   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4411       !isa<ConstantSDNode>(Op.getOperand(1)))
4412     return false;
4413 
4414   if (Op.getOpcode() == ISD::OR &&
4415       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4416     return false;
4417 
4418   return true;
4419 }
4420 
4421 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4422   // If we're told that NaNs won't happen, assume they won't.
4423   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4424     return true;
4425 
4426   if (Depth >= MaxRecursionDepth)
4427     return false; // Limit search depth.
4428 
4429   // TODO: Handle vectors.
4430   // If the value is a constant, we can obviously see if it is a NaN or not.
4431   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4432     return !C->getValueAPF().isNaN() ||
4433            (SNaN && !C->getValueAPF().isSignaling());
4434   }
4435 
4436   unsigned Opcode = Op.getOpcode();
4437   switch (Opcode) {
4438   case ISD::FADD:
4439   case ISD::FSUB:
4440   case ISD::FMUL:
4441   case ISD::FDIV:
4442   case ISD::FREM:
4443   case ISD::FSIN:
4444   case ISD::FCOS: {
4445     if (SNaN)
4446       return true;
4447     // TODO: Need isKnownNeverInfinity
4448     return false;
4449   }
4450   case ISD::FCANONICALIZE:
4451   case ISD::FEXP:
4452   case ISD::FEXP2:
4453   case ISD::FTRUNC:
4454   case ISD::FFLOOR:
4455   case ISD::FCEIL:
4456   case ISD::FROUND:
4457   case ISD::FROUNDEVEN:
4458   case ISD::FRINT:
4459   case ISD::FNEARBYINT: {
4460     if (SNaN)
4461       return true;
4462     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4463   }
4464   case ISD::FABS:
4465   case ISD::FNEG:
4466   case ISD::FCOPYSIGN: {
4467     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4468   }
4469   case ISD::SELECT:
4470     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4471            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4472   case ISD::FP_EXTEND:
4473   case ISD::FP_ROUND: {
4474     if (SNaN)
4475       return true;
4476     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4477   }
4478   case ISD::SINT_TO_FP:
4479   case ISD::UINT_TO_FP:
4480     return true;
4481   case ISD::FMA:
4482   case ISD::FMAD: {
4483     if (SNaN)
4484       return true;
4485     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4486            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4487            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4488   }
4489   case ISD::FSQRT: // Need is known positive
4490   case ISD::FLOG:
4491   case ISD::FLOG2:
4492   case ISD::FLOG10:
4493   case ISD::FPOWI:
4494   case ISD::FPOW: {
4495     if (SNaN)
4496       return true;
4497     // TODO: Refine on operand
4498     return false;
4499   }
4500   case ISD::FMINNUM:
4501   case ISD::FMAXNUM: {
4502     // Only one needs to be known not-nan, since it will be returned if the
4503     // other ends up being one.
4504     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4505            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4506   }
4507   case ISD::FMINNUM_IEEE:
4508   case ISD::FMAXNUM_IEEE: {
4509     if (SNaN)
4510       return true;
4511     // This can return a NaN if either operand is an sNaN, or if both operands
4512     // are NaN.
4513     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4514             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4515            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4516             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4517   }
4518   case ISD::FMINIMUM:
4519   case ISD::FMAXIMUM: {
4520     // TODO: Does this quiet or return the origina NaN as-is?
4521     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4522            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4523   }
4524   case ISD::EXTRACT_VECTOR_ELT: {
4525     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4526   }
4527   default:
4528     if (Opcode >= ISD::BUILTIN_OP_END ||
4529         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4530         Opcode == ISD::INTRINSIC_W_CHAIN ||
4531         Opcode == ISD::INTRINSIC_VOID) {
4532       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4533     }
4534 
4535     return false;
4536   }
4537 }
4538 
4539 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4540   assert(Op.getValueType().isFloatingPoint() &&
4541          "Floating point type expected");
4542 
4543   // If the value is a constant, we can obviously see if it is a zero or not.
4544   // TODO: Add BuildVector support.
4545   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4546     return !C->isZero();
4547   return false;
4548 }
4549 
4550 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4551   assert(!Op.getValueType().isFloatingPoint() &&
4552          "Floating point types unsupported - use isKnownNeverZeroFloat");
4553 
4554   // If the value is a constant, we can obviously see if it is a zero or not.
4555   if (ISD::matchUnaryPredicate(Op,
4556                                [](ConstantSDNode *C) { return !C->isZero(); }))
4557     return true;
4558 
4559   // TODO: Recognize more cases here.
4560   switch (Op.getOpcode()) {
4561   default: break;
4562   case ISD::OR:
4563     if (isKnownNeverZero(Op.getOperand(1)) ||
4564         isKnownNeverZero(Op.getOperand(0)))
4565       return true;
4566     break;
4567   }
4568 
4569   return false;
4570 }
4571 
4572 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4573   // Check the obvious case.
4574   if (A == B) return true;
4575 
4576   // For for negative and positive zero.
4577   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4578     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4579       if (CA->isZero() && CB->isZero()) return true;
4580 
4581   // Otherwise they may not be equal.
4582   return false;
4583 }
4584 
4585 // FIXME: unify with llvm::haveNoCommonBitsSet.
4586 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4587   assert(A.getValueType() == B.getValueType() &&
4588          "Values must have the same type");
4589   // Match masked merge pattern (X & ~M) op (Y & M)
4590   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4591     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4592       if (isBitwiseNot(NotM, true)) {
4593         SDValue NotOperand = NotM->getOperand(0);
4594         return NotOperand == And->getOperand(0) ||
4595                NotOperand == And->getOperand(1);
4596       }
4597       return false;
4598     };
4599     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4600         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4601         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4602         MatchNoCommonBitsPattern(B->getOperand(1), A))
4603       return true;
4604   }
4605   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4606                                         computeKnownBits(B));
4607 }
4608 
4609 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4610                                SelectionDAG &DAG) {
4611   if (cast<ConstantSDNode>(Step)->isZero())
4612     return DAG.getConstant(0, DL, VT);
4613 
4614   return SDValue();
4615 }
4616 
4617 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4618                                 ArrayRef<SDValue> Ops,
4619                                 SelectionDAG &DAG) {
4620   int NumOps = Ops.size();
4621   assert(NumOps != 0 && "Can't build an empty vector!");
4622   assert(!VT.isScalableVector() &&
4623          "BUILD_VECTOR cannot be used with scalable types");
4624   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4625          "Incorrect element count in BUILD_VECTOR!");
4626 
4627   // BUILD_VECTOR of UNDEFs is UNDEF.
4628   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4629     return DAG.getUNDEF(VT);
4630 
4631   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4632   SDValue IdentitySrc;
4633   bool IsIdentity = true;
4634   for (int i = 0; i != NumOps; ++i) {
4635     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4636         Ops[i].getOperand(0).getValueType() != VT ||
4637         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4638         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4639         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4640       IsIdentity = false;
4641       break;
4642     }
4643     IdentitySrc = Ops[i].getOperand(0);
4644   }
4645   if (IsIdentity)
4646     return IdentitySrc;
4647 
4648   return SDValue();
4649 }
4650 
4651 /// Try to simplify vector concatenation to an input value, undef, or build
4652 /// vector.
4653 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4654                                   ArrayRef<SDValue> Ops,
4655                                   SelectionDAG &DAG) {
4656   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4657   assert(llvm::all_of(Ops,
4658                       [Ops](SDValue Op) {
4659                         return Ops[0].getValueType() == Op.getValueType();
4660                       }) &&
4661          "Concatenation of vectors with inconsistent value types!");
4662   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4663              VT.getVectorElementCount() &&
4664          "Incorrect element count in vector concatenation!");
4665 
4666   if (Ops.size() == 1)
4667     return Ops[0];
4668 
4669   // Concat of UNDEFs is UNDEF.
4670   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4671     return DAG.getUNDEF(VT);
4672 
4673   // Scan the operands and look for extract operations from a single source
4674   // that correspond to insertion at the same location via this concatenation:
4675   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4676   SDValue IdentitySrc;
4677   bool IsIdentity = true;
4678   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4679     SDValue Op = Ops[i];
4680     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4681     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4682         Op.getOperand(0).getValueType() != VT ||
4683         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4684         Op.getConstantOperandVal(1) != IdentityIndex) {
4685       IsIdentity = false;
4686       break;
4687     }
4688     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4689            "Unexpected identity source vector for concat of extracts");
4690     IdentitySrc = Op.getOperand(0);
4691   }
4692   if (IsIdentity) {
4693     assert(IdentitySrc && "Failed to set source vector of extracts");
4694     return IdentitySrc;
4695   }
4696 
4697   // The code below this point is only designed to work for fixed width
4698   // vectors, so we bail out for now.
4699   if (VT.isScalableVector())
4700     return SDValue();
4701 
4702   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4703   // simplified to one big BUILD_VECTOR.
4704   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4705   EVT SVT = VT.getScalarType();
4706   SmallVector<SDValue, 16> Elts;
4707   for (SDValue Op : Ops) {
4708     EVT OpVT = Op.getValueType();
4709     if (Op.isUndef())
4710       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4711     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4712       Elts.append(Op->op_begin(), Op->op_end());
4713     else
4714       return SDValue();
4715   }
4716 
4717   // BUILD_VECTOR requires all inputs to be of the same type, find the
4718   // maximum type and extend them all.
4719   for (SDValue Op : Elts)
4720     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4721 
4722   if (SVT.bitsGT(VT.getScalarType())) {
4723     for (SDValue &Op : Elts) {
4724       if (Op.isUndef())
4725         Op = DAG.getUNDEF(SVT);
4726       else
4727         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4728                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4729                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4730     }
4731   }
4732 
4733   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4734   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4735   return V;
4736 }
4737 
4738 /// Gets or creates the specified node.
4739 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4740   FoldingSetNodeID ID;
4741   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4742   void *IP = nullptr;
4743   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4744     return SDValue(E, 0);
4745 
4746   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4747                               getVTList(VT));
4748   CSEMap.InsertNode(N, IP);
4749 
4750   InsertNode(N);
4751   SDValue V = SDValue(N, 0);
4752   NewSDValueDbgMsg(V, "Creating new node: ", this);
4753   return V;
4754 }
4755 
4756 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4757                               SDValue Operand) {
4758   SDNodeFlags Flags;
4759   if (Inserter)
4760     Flags = Inserter->getFlags();
4761   return getNode(Opcode, DL, VT, Operand, Flags);
4762 }
4763 
4764 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4765                               SDValue Operand, const SDNodeFlags Flags) {
4766   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4767          "Operand is DELETED_NODE!");
4768   // Constant fold unary operations with an integer constant operand. Even
4769   // opaque constant will be folded, because the folding of unary operations
4770   // doesn't create new constants with different values. Nevertheless, the
4771   // opaque flag is preserved during folding to prevent future folding with
4772   // other constants.
4773   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4774     const APInt &Val = C->getAPIntValue();
4775     switch (Opcode) {
4776     default: break;
4777     case ISD::SIGN_EXTEND:
4778       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4779                          C->isTargetOpcode(), C->isOpaque());
4780     case ISD::TRUNCATE:
4781       if (C->isOpaque())
4782         break;
4783       LLVM_FALLTHROUGH;
4784     case ISD::ZERO_EXTEND:
4785       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4786                          C->isTargetOpcode(), C->isOpaque());
4787     case ISD::ANY_EXTEND:
4788       // Some targets like RISCV prefer to sign extend some types.
4789       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4790         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4791                            C->isTargetOpcode(), C->isOpaque());
4792       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4793                          C->isTargetOpcode(), C->isOpaque());
4794     case ISD::UINT_TO_FP:
4795     case ISD::SINT_TO_FP: {
4796       APFloat apf(EVTToAPFloatSemantics(VT),
4797                   APInt::getZero(VT.getSizeInBits()));
4798       (void)apf.convertFromAPInt(Val,
4799                                  Opcode==ISD::SINT_TO_FP,
4800                                  APFloat::rmNearestTiesToEven);
4801       return getConstantFP(apf, DL, VT);
4802     }
4803     case ISD::BITCAST:
4804       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4805         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4806       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4807         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4808       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4809         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4810       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4811         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4812       break;
4813     case ISD::ABS:
4814       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4815                          C->isOpaque());
4816     case ISD::BITREVERSE:
4817       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4818                          C->isOpaque());
4819     case ISD::BSWAP:
4820       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4821                          C->isOpaque());
4822     case ISD::CTPOP:
4823       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4824                          C->isOpaque());
4825     case ISD::CTLZ:
4826     case ISD::CTLZ_ZERO_UNDEF:
4827       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4828                          C->isOpaque());
4829     case ISD::CTTZ:
4830     case ISD::CTTZ_ZERO_UNDEF:
4831       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4832                          C->isOpaque());
4833     case ISD::FP16_TO_FP: {
4834       bool Ignored;
4835       APFloat FPV(APFloat::IEEEhalf(),
4836                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4837 
4838       // This can return overflow, underflow, or inexact; we don't care.
4839       // FIXME need to be more flexible about rounding mode.
4840       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4841                         APFloat::rmNearestTiesToEven, &Ignored);
4842       return getConstantFP(FPV, DL, VT);
4843     }
4844     case ISD::STEP_VECTOR: {
4845       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4846         return V;
4847       break;
4848     }
4849     }
4850   }
4851 
4852   // Constant fold unary operations with a floating point constant operand.
4853   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4854     APFloat V = C->getValueAPF();    // make copy
4855     switch (Opcode) {
4856     case ISD::FNEG:
4857       V.changeSign();
4858       return getConstantFP(V, DL, VT);
4859     case ISD::FABS:
4860       V.clearSign();
4861       return getConstantFP(V, DL, VT);
4862     case ISD::FCEIL: {
4863       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4864       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4865         return getConstantFP(V, DL, VT);
4866       break;
4867     }
4868     case ISD::FTRUNC: {
4869       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4870       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4871         return getConstantFP(V, DL, VT);
4872       break;
4873     }
4874     case ISD::FFLOOR: {
4875       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4876       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4877         return getConstantFP(V, DL, VT);
4878       break;
4879     }
4880     case ISD::FP_EXTEND: {
4881       bool ignored;
4882       // This can return overflow, underflow, or inexact; we don't care.
4883       // FIXME need to be more flexible about rounding mode.
4884       (void)V.convert(EVTToAPFloatSemantics(VT),
4885                       APFloat::rmNearestTiesToEven, &ignored);
4886       return getConstantFP(V, DL, VT);
4887     }
4888     case ISD::FP_TO_SINT:
4889     case ISD::FP_TO_UINT: {
4890       bool ignored;
4891       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4892       // FIXME need to be more flexible about rounding mode.
4893       APFloat::opStatus s =
4894           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4895       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4896         break;
4897       return getConstant(IntVal, DL, VT);
4898     }
4899     case ISD::BITCAST:
4900       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4901         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4902       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4903         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4904       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4905         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4906       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4907         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4908       break;
4909     case ISD::FP_TO_FP16: {
4910       bool Ignored;
4911       // This can return overflow, underflow, or inexact; we don't care.
4912       // FIXME need to be more flexible about rounding mode.
4913       (void)V.convert(APFloat::IEEEhalf(),
4914                       APFloat::rmNearestTiesToEven, &Ignored);
4915       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4916     }
4917     }
4918   }
4919 
4920   // Constant fold unary operations with a vector integer or float operand.
4921   switch (Opcode) {
4922   default:
4923     // FIXME: Entirely reasonable to perform folding of other unary
4924     // operations here as the need arises.
4925     break;
4926   case ISD::FNEG:
4927   case ISD::FABS:
4928   case ISD::FCEIL:
4929   case ISD::FTRUNC:
4930   case ISD::FFLOOR:
4931   case ISD::FP_EXTEND:
4932   case ISD::FP_TO_SINT:
4933   case ISD::FP_TO_UINT:
4934   case ISD::TRUNCATE:
4935   case ISD::ANY_EXTEND:
4936   case ISD::ZERO_EXTEND:
4937   case ISD::SIGN_EXTEND:
4938   case ISD::UINT_TO_FP:
4939   case ISD::SINT_TO_FP:
4940   case ISD::ABS:
4941   case ISD::BITREVERSE:
4942   case ISD::BSWAP:
4943   case ISD::CTLZ:
4944   case ISD::CTLZ_ZERO_UNDEF:
4945   case ISD::CTTZ:
4946   case ISD::CTTZ_ZERO_UNDEF:
4947   case ISD::CTPOP: {
4948     SDValue Ops = {Operand};
4949     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
4950       return Fold;
4951   }
4952   }
4953 
4954   unsigned OpOpcode = Operand.getNode()->getOpcode();
4955   switch (Opcode) {
4956   case ISD::STEP_VECTOR:
4957     assert(VT.isScalableVector() &&
4958            "STEP_VECTOR can only be used with scalable types");
4959     assert(OpOpcode == ISD::TargetConstant &&
4960            VT.getVectorElementType() == Operand.getValueType() &&
4961            "Unexpected step operand");
4962     break;
4963   case ISD::FREEZE:
4964     assert(VT == Operand.getValueType() && "Unexpected VT!");
4965     break;
4966   case ISD::TokenFactor:
4967   case ISD::MERGE_VALUES:
4968   case ISD::CONCAT_VECTORS:
4969     return Operand;         // Factor, merge or concat of one node?  No need.
4970   case ISD::BUILD_VECTOR: {
4971     // Attempt to simplify BUILD_VECTOR.
4972     SDValue Ops[] = {Operand};
4973     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4974       return V;
4975     break;
4976   }
4977   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4978   case ISD::FP_EXTEND:
4979     assert(VT.isFloatingPoint() &&
4980            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4981     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4982     assert((!VT.isVector() ||
4983             VT.getVectorElementCount() ==
4984             Operand.getValueType().getVectorElementCount()) &&
4985            "Vector element count mismatch!");
4986     assert(Operand.getValueType().bitsLT(VT) &&
4987            "Invalid fpext node, dst < src!");
4988     if (Operand.isUndef())
4989       return getUNDEF(VT);
4990     break;
4991   case ISD::FP_TO_SINT:
4992   case ISD::FP_TO_UINT:
4993     if (Operand.isUndef())
4994       return getUNDEF(VT);
4995     break;
4996   case ISD::SINT_TO_FP:
4997   case ISD::UINT_TO_FP:
4998     // [us]itofp(undef) = 0, because the result value is bounded.
4999     if (Operand.isUndef())
5000       return getConstantFP(0.0, DL, VT);
5001     break;
5002   case ISD::SIGN_EXTEND:
5003     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5004            "Invalid SIGN_EXTEND!");
5005     assert(VT.isVector() == Operand.getValueType().isVector() &&
5006            "SIGN_EXTEND result type type should be vector iff the operand "
5007            "type is vector!");
5008     if (Operand.getValueType() == VT) return Operand;   // noop extension
5009     assert((!VT.isVector() ||
5010             VT.getVectorElementCount() ==
5011                 Operand.getValueType().getVectorElementCount()) &&
5012            "Vector element count mismatch!");
5013     assert(Operand.getValueType().bitsLT(VT) &&
5014            "Invalid sext node, dst < src!");
5015     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5016       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5017     if (OpOpcode == ISD::UNDEF)
5018       // sext(undef) = 0, because the top bits will all be the same.
5019       return getConstant(0, DL, VT);
5020     break;
5021   case ISD::ZERO_EXTEND:
5022     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5023            "Invalid ZERO_EXTEND!");
5024     assert(VT.isVector() == Operand.getValueType().isVector() &&
5025            "ZERO_EXTEND result type type should be vector iff the operand "
5026            "type is vector!");
5027     if (Operand.getValueType() == VT) return Operand;   // noop extension
5028     assert((!VT.isVector() ||
5029             VT.getVectorElementCount() ==
5030                 Operand.getValueType().getVectorElementCount()) &&
5031            "Vector element count mismatch!");
5032     assert(Operand.getValueType().bitsLT(VT) &&
5033            "Invalid zext node, dst < src!");
5034     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5035       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5036     if (OpOpcode == ISD::UNDEF)
5037       // zext(undef) = 0, because the top bits will be zero.
5038       return getConstant(0, DL, VT);
5039     break;
5040   case ISD::ANY_EXTEND:
5041     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5042            "Invalid ANY_EXTEND!");
5043     assert(VT.isVector() == Operand.getValueType().isVector() &&
5044            "ANY_EXTEND result type type should be vector iff the operand "
5045            "type is vector!");
5046     if (Operand.getValueType() == VT) return Operand;   // noop extension
5047     assert((!VT.isVector() ||
5048             VT.getVectorElementCount() ==
5049                 Operand.getValueType().getVectorElementCount()) &&
5050            "Vector element count mismatch!");
5051     assert(Operand.getValueType().bitsLT(VT) &&
5052            "Invalid anyext node, dst < src!");
5053 
5054     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5055         OpOpcode == ISD::ANY_EXTEND)
5056       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5057       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5058     if (OpOpcode == ISD::UNDEF)
5059       return getUNDEF(VT);
5060 
5061     // (ext (trunc x)) -> x
5062     if (OpOpcode == ISD::TRUNCATE) {
5063       SDValue OpOp = Operand.getOperand(0);
5064       if (OpOp.getValueType() == VT) {
5065         transferDbgValues(Operand, OpOp);
5066         return OpOp;
5067       }
5068     }
5069     break;
5070   case ISD::TRUNCATE:
5071     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5072            "Invalid TRUNCATE!");
5073     assert(VT.isVector() == Operand.getValueType().isVector() &&
5074            "TRUNCATE result type type should be vector iff the operand "
5075            "type is vector!");
5076     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5077     assert((!VT.isVector() ||
5078             VT.getVectorElementCount() ==
5079                 Operand.getValueType().getVectorElementCount()) &&
5080            "Vector element count mismatch!");
5081     assert(Operand.getValueType().bitsGT(VT) &&
5082            "Invalid truncate node, src < dst!");
5083     if (OpOpcode == ISD::TRUNCATE)
5084       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5085     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5086         OpOpcode == ISD::ANY_EXTEND) {
5087       // If the source is smaller than the dest, we still need an extend.
5088       if (Operand.getOperand(0).getValueType().getScalarType()
5089             .bitsLT(VT.getScalarType()))
5090         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5091       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5092         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5093       return Operand.getOperand(0);
5094     }
5095     if (OpOpcode == ISD::UNDEF)
5096       return getUNDEF(VT);
5097     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5098       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5099     break;
5100   case ISD::ANY_EXTEND_VECTOR_INREG:
5101   case ISD::ZERO_EXTEND_VECTOR_INREG:
5102   case ISD::SIGN_EXTEND_VECTOR_INREG:
5103     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5104     assert(Operand.getValueType().bitsLE(VT) &&
5105            "The input must be the same size or smaller than the result.");
5106     assert(VT.getVectorMinNumElements() <
5107                Operand.getValueType().getVectorMinNumElements() &&
5108            "The destination vector type must have fewer lanes than the input.");
5109     break;
5110   case ISD::ABS:
5111     assert(VT.isInteger() && VT == Operand.getValueType() &&
5112            "Invalid ABS!");
5113     if (OpOpcode == ISD::UNDEF)
5114       return getUNDEF(VT);
5115     break;
5116   case ISD::BSWAP:
5117     assert(VT.isInteger() && VT == Operand.getValueType() &&
5118            "Invalid BSWAP!");
5119     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5120            "BSWAP types must be a multiple of 16 bits!");
5121     if (OpOpcode == ISD::UNDEF)
5122       return getUNDEF(VT);
5123     // bswap(bswap(X)) -> X.
5124     if (OpOpcode == ISD::BSWAP)
5125       return Operand.getOperand(0);
5126     break;
5127   case ISD::BITREVERSE:
5128     assert(VT.isInteger() && VT == Operand.getValueType() &&
5129            "Invalid BITREVERSE!");
5130     if (OpOpcode == ISD::UNDEF)
5131       return getUNDEF(VT);
5132     break;
5133   case ISD::BITCAST:
5134     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5135            "Cannot BITCAST between types of different sizes!");
5136     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5137     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5138       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5139     if (OpOpcode == ISD::UNDEF)
5140       return getUNDEF(VT);
5141     break;
5142   case ISD::SCALAR_TO_VECTOR:
5143     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5144            (VT.getVectorElementType() == Operand.getValueType() ||
5145             (VT.getVectorElementType().isInteger() &&
5146              Operand.getValueType().isInteger() &&
5147              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5148            "Illegal SCALAR_TO_VECTOR node!");
5149     if (OpOpcode == ISD::UNDEF)
5150       return getUNDEF(VT);
5151     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5152     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5153         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5154         Operand.getConstantOperandVal(1) == 0 &&
5155         Operand.getOperand(0).getValueType() == VT)
5156       return Operand.getOperand(0);
5157     break;
5158   case ISD::FNEG:
5159     // Negation of an unknown bag of bits is still completely undefined.
5160     if (OpOpcode == ISD::UNDEF)
5161       return getUNDEF(VT);
5162 
5163     if (OpOpcode == ISD::FNEG)  // --X -> X
5164       return Operand.getOperand(0);
5165     break;
5166   case ISD::FABS:
5167     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5168       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5169     break;
5170   case ISD::VSCALE:
5171     assert(VT == Operand.getValueType() && "Unexpected VT!");
5172     break;
5173   case ISD::CTPOP:
5174     if (Operand.getValueType().getScalarType() == MVT::i1)
5175       return Operand;
5176     break;
5177   case ISD::CTLZ:
5178   case ISD::CTTZ:
5179     if (Operand.getValueType().getScalarType() == MVT::i1)
5180       return getNOT(DL, Operand, Operand.getValueType());
5181     break;
5182   case ISD::VECREDUCE_SMIN:
5183   case ISD::VECREDUCE_UMAX:
5184     if (Operand.getValueType().getScalarType() == MVT::i1)
5185       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5186     break;
5187   case ISD::VECREDUCE_SMAX:
5188   case ISD::VECREDUCE_UMIN:
5189     if (Operand.getValueType().getScalarType() == MVT::i1)
5190       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5191     break;
5192   }
5193 
5194   SDNode *N;
5195   SDVTList VTs = getVTList(VT);
5196   SDValue Ops[] = {Operand};
5197   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5198     FoldingSetNodeID ID;
5199     AddNodeIDNode(ID, Opcode, VTs, Ops);
5200     void *IP = nullptr;
5201     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5202       E->intersectFlagsWith(Flags);
5203       return SDValue(E, 0);
5204     }
5205 
5206     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5207     N->setFlags(Flags);
5208     createOperands(N, Ops);
5209     CSEMap.InsertNode(N, IP);
5210   } else {
5211     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5212     createOperands(N, Ops);
5213   }
5214 
5215   InsertNode(N);
5216   SDValue V = SDValue(N, 0);
5217   NewSDValueDbgMsg(V, "Creating new node: ", this);
5218   return V;
5219 }
5220 
5221 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5222                                        const APInt &C2) {
5223   switch (Opcode) {
5224   case ISD::ADD:  return C1 + C2;
5225   case ISD::SUB:  return C1 - C2;
5226   case ISD::MUL:  return C1 * C2;
5227   case ISD::AND:  return C1 & C2;
5228   case ISD::OR:   return C1 | C2;
5229   case ISD::XOR:  return C1 ^ C2;
5230   case ISD::SHL:  return C1 << C2;
5231   case ISD::SRL:  return C1.lshr(C2);
5232   case ISD::SRA:  return C1.ashr(C2);
5233   case ISD::ROTL: return C1.rotl(C2);
5234   case ISD::ROTR: return C1.rotr(C2);
5235   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5236   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5237   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5238   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5239   case ISD::SADDSAT: return C1.sadd_sat(C2);
5240   case ISD::UADDSAT: return C1.uadd_sat(C2);
5241   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5242   case ISD::USUBSAT: return C1.usub_sat(C2);
5243   case ISD::UDIV:
5244     if (!C2.getBoolValue())
5245       break;
5246     return C1.udiv(C2);
5247   case ISD::UREM:
5248     if (!C2.getBoolValue())
5249       break;
5250     return C1.urem(C2);
5251   case ISD::SDIV:
5252     if (!C2.getBoolValue())
5253       break;
5254     return C1.sdiv(C2);
5255   case ISD::SREM:
5256     if (!C2.getBoolValue())
5257       break;
5258     return C1.srem(C2);
5259   case ISD::MULHS: {
5260     unsigned FullWidth = C1.getBitWidth() * 2;
5261     APInt C1Ext = C1.sext(FullWidth);
5262     APInt C2Ext = C2.sext(FullWidth);
5263     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5264   }
5265   case ISD::MULHU: {
5266     unsigned FullWidth = C1.getBitWidth() * 2;
5267     APInt C1Ext = C1.zext(FullWidth);
5268     APInt C2Ext = C2.zext(FullWidth);
5269     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5270   }
5271   }
5272   return llvm::None;
5273 }
5274 
5275 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5276                                        const GlobalAddressSDNode *GA,
5277                                        const SDNode *N2) {
5278   if (GA->getOpcode() != ISD::GlobalAddress)
5279     return SDValue();
5280   if (!TLI->isOffsetFoldingLegal(GA))
5281     return SDValue();
5282   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5283   if (!C2)
5284     return SDValue();
5285   int64_t Offset = C2->getSExtValue();
5286   switch (Opcode) {
5287   case ISD::ADD: break;
5288   case ISD::SUB: Offset = -uint64_t(Offset); break;
5289   default: return SDValue();
5290   }
5291   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5292                           GA->getOffset() + uint64_t(Offset));
5293 }
5294 
5295 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5296   switch (Opcode) {
5297   case ISD::SDIV:
5298   case ISD::UDIV:
5299   case ISD::SREM:
5300   case ISD::UREM: {
5301     // If a divisor is zero/undef or any element of a divisor vector is
5302     // zero/undef, the whole op is undef.
5303     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5304     SDValue Divisor = Ops[1];
5305     if (Divisor.isUndef() || isNullConstant(Divisor))
5306       return true;
5307 
5308     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5309            llvm::any_of(Divisor->op_values(),
5310                         [](SDValue V) { return V.isUndef() ||
5311                                         isNullConstant(V); });
5312     // TODO: Handle signed overflow.
5313   }
5314   // TODO: Handle oversized shifts.
5315   default:
5316     return false;
5317   }
5318 }
5319 
5320 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5321                                              EVT VT, ArrayRef<SDValue> Ops) {
5322   // If the opcode is a target-specific ISD node, there's nothing we can
5323   // do here and the operand rules may not line up with the below, so
5324   // bail early.
5325   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5326   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5327   // foldCONCAT_VECTORS in getNode before this is called.
5328   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5329     return SDValue();
5330 
5331   unsigned NumOps = Ops.size();
5332   if (NumOps == 0)
5333     return SDValue();
5334 
5335   if (isUndef(Opcode, Ops))
5336     return getUNDEF(VT);
5337 
5338   // Handle binops special cases.
5339   if (NumOps == 2) {
5340     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5341       return CFP;
5342 
5343     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5344       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5345         if (C1->isOpaque() || C2->isOpaque())
5346           return SDValue();
5347 
5348         Optional<APInt> FoldAttempt =
5349             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5350         if (!FoldAttempt)
5351           return SDValue();
5352 
5353         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5354         assert((!Folded || !VT.isVector()) &&
5355                "Can't fold vectors ops with scalar operands");
5356         return Folded;
5357       }
5358     }
5359 
5360     // fold (add Sym, c) -> Sym+c
5361     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5362       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5363     if (TLI->isCommutativeBinOp(Opcode))
5364       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5365         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5366   }
5367 
5368   // This is for vector folding only from here on.
5369   if (!VT.isVector())
5370     return SDValue();
5371 
5372   ElementCount NumElts = VT.getVectorElementCount();
5373 
5374   // See if we can fold through bitcasted integer ops.
5375   // TODO: Can we handle undef elements?
5376   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5377       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5378       Ops[0].getOpcode() == ISD::BITCAST &&
5379       Ops[1].getOpcode() == ISD::BITCAST) {
5380     SDValue N1 = peekThroughBitcasts(Ops[0]);
5381     SDValue N2 = peekThroughBitcasts(Ops[1]);
5382     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5383     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5384     EVT BVVT = N1.getValueType();
5385     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5386       bool IsLE = getDataLayout().isLittleEndian();
5387       unsigned EltBits = VT.getScalarSizeInBits();
5388       SmallVector<APInt> RawBits1, RawBits2;
5389       BitVector UndefElts1, UndefElts2;
5390       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5391           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5392           UndefElts1.none() && UndefElts2.none()) {
5393         SmallVector<APInt> RawBits;
5394         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5395           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5396           if (!Fold)
5397             break;
5398           RawBits.push_back(Fold.getValue());
5399         }
5400         if (RawBits.size() == NumElts.getFixedValue()) {
5401           // We have constant folded, but we need to cast this again back to
5402           // the original (possibly legalized) type.
5403           SmallVector<APInt> DstBits;
5404           BitVector DstUndefs;
5405           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5406                                            DstBits, RawBits, DstUndefs,
5407                                            BitVector(RawBits.size(), false));
5408           EVT BVEltVT = BV1->getOperand(0).getValueType();
5409           unsigned BVEltBits = BVEltVT.getSizeInBits();
5410           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5411           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5412             if (DstUndefs[I])
5413               continue;
5414             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5415           }
5416           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5417         }
5418       }
5419     }
5420   }
5421 
5422   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5423   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5424   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5425       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5426     APInt RHSVal;
5427     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5428       APInt NewStep = Opcode == ISD::MUL
5429                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5430                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5431       return getStepVector(DL, VT, NewStep);
5432     }
5433   }
5434 
5435   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5436     return !Op.getValueType().isVector() ||
5437            Op.getValueType().getVectorElementCount() == NumElts;
5438   };
5439 
5440   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5441     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5442            Op.getOpcode() == ISD::BUILD_VECTOR ||
5443            Op.getOpcode() == ISD::SPLAT_VECTOR;
5444   };
5445 
5446   // All operands must be vector types with the same number of elements as
5447   // the result type and must be either UNDEF or a build/splat vector
5448   // or UNDEF scalars.
5449   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5450       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5451     return SDValue();
5452 
5453   // If we are comparing vectors, then the result needs to be a i1 boolean
5454   // that is then sign-extended back to the legal result type.
5455   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5456 
5457   // Find legal integer scalar type for constant promotion and
5458   // ensure that its scalar size is at least as large as source.
5459   EVT LegalSVT = VT.getScalarType();
5460   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5461     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5462     if (LegalSVT.bitsLT(VT.getScalarType()))
5463       return SDValue();
5464   }
5465 
5466   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5467   // only have one operand to check. For fixed-length vector types we may have
5468   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5469   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5470 
5471   // Constant fold each scalar lane separately.
5472   SmallVector<SDValue, 4> ScalarResults;
5473   for (unsigned I = 0; I != NumVectorElts; I++) {
5474     SmallVector<SDValue, 4> ScalarOps;
5475     for (SDValue Op : Ops) {
5476       EVT InSVT = Op.getValueType().getScalarType();
5477       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5478           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5479         if (Op.isUndef())
5480           ScalarOps.push_back(getUNDEF(InSVT));
5481         else
5482           ScalarOps.push_back(Op);
5483         continue;
5484       }
5485 
5486       SDValue ScalarOp =
5487           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5488       EVT ScalarVT = ScalarOp.getValueType();
5489 
5490       // Build vector (integer) scalar operands may need implicit
5491       // truncation - do this before constant folding.
5492       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5493         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5494 
5495       ScalarOps.push_back(ScalarOp);
5496     }
5497 
5498     // Constant fold the scalar operands.
5499     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5500 
5501     // Legalize the (integer) scalar constant if necessary.
5502     if (LegalSVT != SVT)
5503       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5504 
5505     // Scalar folding only succeeded if the result is a constant or UNDEF.
5506     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5507         ScalarResult.getOpcode() != ISD::ConstantFP)
5508       return SDValue();
5509     ScalarResults.push_back(ScalarResult);
5510   }
5511 
5512   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5513                                    : getBuildVector(VT, DL, ScalarResults);
5514   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5515   return V;
5516 }
5517 
5518 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5519                                          EVT VT, SDValue N1, SDValue N2) {
5520   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5521   //       should. That will require dealing with a potentially non-default
5522   //       rounding mode, checking the "opStatus" return value from the APFloat
5523   //       math calculations, and possibly other variations.
5524   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5525   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5526   if (N1CFP && N2CFP) {
5527     APFloat C1 = N1CFP->getValueAPF(); // make copy
5528     const APFloat &C2 = N2CFP->getValueAPF();
5529     switch (Opcode) {
5530     case ISD::FADD:
5531       C1.add(C2, APFloat::rmNearestTiesToEven);
5532       return getConstantFP(C1, DL, VT);
5533     case ISD::FSUB:
5534       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5535       return getConstantFP(C1, DL, VT);
5536     case ISD::FMUL:
5537       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5538       return getConstantFP(C1, DL, VT);
5539     case ISD::FDIV:
5540       C1.divide(C2, APFloat::rmNearestTiesToEven);
5541       return getConstantFP(C1, DL, VT);
5542     case ISD::FREM:
5543       C1.mod(C2);
5544       return getConstantFP(C1, DL, VT);
5545     case ISD::FCOPYSIGN:
5546       C1.copySign(C2);
5547       return getConstantFP(C1, DL, VT);
5548     case ISD::FMINNUM:
5549       return getConstantFP(minnum(C1, C2), DL, VT);
5550     case ISD::FMAXNUM:
5551       return getConstantFP(maxnum(C1, C2), DL, VT);
5552     case ISD::FMINIMUM:
5553       return getConstantFP(minimum(C1, C2), DL, VT);
5554     case ISD::FMAXIMUM:
5555       return getConstantFP(maximum(C1, C2), DL, VT);
5556     default: break;
5557     }
5558   }
5559   if (N1CFP && Opcode == ISD::FP_ROUND) {
5560     APFloat C1 = N1CFP->getValueAPF();    // make copy
5561     bool Unused;
5562     // This can return overflow, underflow, or inexact; we don't care.
5563     // FIXME need to be more flexible about rounding mode.
5564     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5565                       &Unused);
5566     return getConstantFP(C1, DL, VT);
5567   }
5568 
5569   switch (Opcode) {
5570   case ISD::FSUB:
5571     // -0.0 - undef --> undef (consistent with "fneg undef")
5572     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5573       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5574         return getUNDEF(VT);
5575     LLVM_FALLTHROUGH;
5576 
5577   case ISD::FADD:
5578   case ISD::FMUL:
5579   case ISD::FDIV:
5580   case ISD::FREM:
5581     // If both operands are undef, the result is undef. If 1 operand is undef,
5582     // the result is NaN. This should match the behavior of the IR optimizer.
5583     if (N1.isUndef() && N2.isUndef())
5584       return getUNDEF(VT);
5585     if (N1.isUndef() || N2.isUndef())
5586       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5587   }
5588   return SDValue();
5589 }
5590 
5591 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5592   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5593 
5594   // There's no need to assert on a byte-aligned pointer. All pointers are at
5595   // least byte aligned.
5596   if (A == Align(1))
5597     return Val;
5598 
5599   FoldingSetNodeID ID;
5600   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5601   ID.AddInteger(A.value());
5602 
5603   void *IP = nullptr;
5604   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5605     return SDValue(E, 0);
5606 
5607   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5608                                          Val.getValueType(), A);
5609   createOperands(N, {Val});
5610 
5611   CSEMap.InsertNode(N, IP);
5612   InsertNode(N);
5613 
5614   SDValue V(N, 0);
5615   NewSDValueDbgMsg(V, "Creating new node: ", this);
5616   return V;
5617 }
5618 
5619 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5620                               SDValue N1, SDValue N2) {
5621   SDNodeFlags Flags;
5622   if (Inserter)
5623     Flags = Inserter->getFlags();
5624   return getNode(Opcode, DL, VT, N1, N2, Flags);
5625 }
5626 
5627 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5628                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5629   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5630          N2.getOpcode() != ISD::DELETED_NODE &&
5631          "Operand is DELETED_NODE!");
5632   // Canonicalize constant to RHS if commutative.
5633   if (TLI->isCommutativeBinOp(Opcode)) {
5634     bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5635     bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5636     bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5637     bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5638     if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5639       std::swap(N1, N2);
5640   }
5641 
5642   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5643   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5644 
5645   switch (Opcode) {
5646   default: break;
5647   case ISD::TokenFactor:
5648     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5649            N2.getValueType() == MVT::Other && "Invalid token factor!");
5650     // Fold trivial token factors.
5651     if (N1.getOpcode() == ISD::EntryToken) return N2;
5652     if (N2.getOpcode() == ISD::EntryToken) return N1;
5653     if (N1 == N2) return N1;
5654     break;
5655   case ISD::BUILD_VECTOR: {
5656     // Attempt to simplify BUILD_VECTOR.
5657     SDValue Ops[] = {N1, N2};
5658     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5659       return V;
5660     break;
5661   }
5662   case ISD::CONCAT_VECTORS: {
5663     SDValue Ops[] = {N1, N2};
5664     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5665       return V;
5666     break;
5667   }
5668   case ISD::AND:
5669     assert(VT.isInteger() && "This operator does not apply to FP types!");
5670     assert(N1.getValueType() == N2.getValueType() &&
5671            N1.getValueType() == VT && "Binary operator types must match!");
5672     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5673     // worth handling here.
5674     if (N2C && N2C->isZero())
5675       return N2;
5676     if (N2C && N2C->isAllOnes()) // X & -1 -> X
5677       return N1;
5678     break;
5679   case ISD::OR:
5680   case ISD::XOR:
5681   case ISD::ADD:
5682   case ISD::SUB:
5683     assert(VT.isInteger() && "This operator does not apply to FP types!");
5684     assert(N1.getValueType() == N2.getValueType() &&
5685            N1.getValueType() == VT && "Binary operator types must match!");
5686     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5687     // it's worth handling here.
5688     if (N2C && N2C->isZero())
5689       return N1;
5690     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5691         VT.getVectorElementType() == MVT::i1)
5692       return getNode(ISD::XOR, DL, VT, N1, N2);
5693     break;
5694   case ISD::MUL:
5695     assert(VT.isInteger() && "This operator does not apply to FP types!");
5696     assert(N1.getValueType() == N2.getValueType() &&
5697            N1.getValueType() == VT && "Binary operator types must match!");
5698     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5699       return getNode(ISD::AND, DL, VT, N1, N2);
5700     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5701       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5702       const APInt &N2CImm = N2C->getAPIntValue();
5703       return getVScale(DL, VT, MulImm * N2CImm);
5704     }
5705     break;
5706   case ISD::UDIV:
5707   case ISD::UREM:
5708   case ISD::MULHU:
5709   case ISD::MULHS:
5710   case ISD::SDIV:
5711   case ISD::SREM:
5712   case ISD::SADDSAT:
5713   case ISD::SSUBSAT:
5714   case ISD::UADDSAT:
5715   case ISD::USUBSAT:
5716     assert(VT.isInteger() && "This operator does not apply to FP types!");
5717     assert(N1.getValueType() == N2.getValueType() &&
5718            N1.getValueType() == VT && "Binary operator types must match!");
5719     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5720       // fold (add_sat x, y) -> (or x, y) for bool types.
5721       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5722         return getNode(ISD::OR, DL, VT, N1, N2);
5723       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5724       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5725         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5726     }
5727     break;
5728   case ISD::SMIN:
5729   case ISD::UMAX:
5730     assert(VT.isInteger() && "This operator does not apply to FP types!");
5731     assert(N1.getValueType() == N2.getValueType() &&
5732            N1.getValueType() == VT && "Binary operator types must match!");
5733     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5734       return getNode(ISD::OR, DL, VT, N1, N2);
5735     break;
5736   case ISD::SMAX:
5737   case ISD::UMIN:
5738     assert(VT.isInteger() && "This operator does not apply to FP types!");
5739     assert(N1.getValueType() == N2.getValueType() &&
5740            N1.getValueType() == VT && "Binary operator types must match!");
5741     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5742       return getNode(ISD::AND, DL, VT, N1, N2);
5743     break;
5744   case ISD::FADD:
5745   case ISD::FSUB:
5746   case ISD::FMUL:
5747   case ISD::FDIV:
5748   case ISD::FREM:
5749     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5750     assert(N1.getValueType() == N2.getValueType() &&
5751            N1.getValueType() == VT && "Binary operator types must match!");
5752     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5753       return V;
5754     break;
5755   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5756     assert(N1.getValueType() == VT &&
5757            N1.getValueType().isFloatingPoint() &&
5758            N2.getValueType().isFloatingPoint() &&
5759            "Invalid FCOPYSIGN!");
5760     break;
5761   case ISD::SHL:
5762     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5763       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5764       const APInt &ShiftImm = N2C->getAPIntValue();
5765       return getVScale(DL, VT, MulImm << ShiftImm);
5766     }
5767     LLVM_FALLTHROUGH;
5768   case ISD::SRA:
5769   case ISD::SRL:
5770     if (SDValue V = simplifyShift(N1, N2))
5771       return V;
5772     LLVM_FALLTHROUGH;
5773   case ISD::ROTL:
5774   case ISD::ROTR:
5775     assert(VT == N1.getValueType() &&
5776            "Shift operators return type must be the same as their first arg");
5777     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5778            "Shifts only work on integers");
5779     assert((!VT.isVector() || VT == N2.getValueType()) &&
5780            "Vector shift amounts must be in the same as their first arg");
5781     // Verify that the shift amount VT is big enough to hold valid shift
5782     // amounts.  This catches things like trying to shift an i1024 value by an
5783     // i8, which is easy to fall into in generic code that uses
5784     // TLI.getShiftAmount().
5785     assert(N2.getValueType().getScalarSizeInBits() >=
5786                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5787            "Invalid use of small shift amount with oversized value!");
5788 
5789     // Always fold shifts of i1 values so the code generator doesn't need to
5790     // handle them.  Since we know the size of the shift has to be less than the
5791     // size of the value, the shift/rotate count is guaranteed to be zero.
5792     if (VT == MVT::i1)
5793       return N1;
5794     if (N2C && N2C->isZero())
5795       return N1;
5796     break;
5797   case ISD::FP_ROUND:
5798     assert(VT.isFloatingPoint() &&
5799            N1.getValueType().isFloatingPoint() &&
5800            VT.bitsLE(N1.getValueType()) &&
5801            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5802            "Invalid FP_ROUND!");
5803     if (N1.getValueType() == VT) return N1;  // noop conversion.
5804     break;
5805   case ISD::AssertSext:
5806   case ISD::AssertZext: {
5807     EVT EVT = cast<VTSDNode>(N2)->getVT();
5808     assert(VT == N1.getValueType() && "Not an inreg extend!");
5809     assert(VT.isInteger() && EVT.isInteger() &&
5810            "Cannot *_EXTEND_INREG FP types");
5811     assert(!EVT.isVector() &&
5812            "AssertSExt/AssertZExt type should be the vector element type "
5813            "rather than the vector type!");
5814     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5815     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5816     break;
5817   }
5818   case ISD::SIGN_EXTEND_INREG: {
5819     EVT EVT = cast<VTSDNode>(N2)->getVT();
5820     assert(VT == N1.getValueType() && "Not an inreg extend!");
5821     assert(VT.isInteger() && EVT.isInteger() &&
5822            "Cannot *_EXTEND_INREG FP types");
5823     assert(EVT.isVector() == VT.isVector() &&
5824            "SIGN_EXTEND_INREG type should be vector iff the operand "
5825            "type is vector!");
5826     assert((!EVT.isVector() ||
5827             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5828            "Vector element counts must match in SIGN_EXTEND_INREG");
5829     assert(EVT.bitsLE(VT) && "Not extending!");
5830     if (EVT == VT) return N1;  // Not actually extending
5831 
5832     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5833       unsigned FromBits = EVT.getScalarSizeInBits();
5834       Val <<= Val.getBitWidth() - FromBits;
5835       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5836       return getConstant(Val, DL, ConstantVT);
5837     };
5838 
5839     if (N1C) {
5840       const APInt &Val = N1C->getAPIntValue();
5841       return SignExtendInReg(Val, VT);
5842     }
5843 
5844     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5845       SmallVector<SDValue, 8> Ops;
5846       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5847       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5848         SDValue Op = N1.getOperand(i);
5849         if (Op.isUndef()) {
5850           Ops.push_back(getUNDEF(OpVT));
5851           continue;
5852         }
5853         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5854         APInt Val = C->getAPIntValue();
5855         Ops.push_back(SignExtendInReg(Val, OpVT));
5856       }
5857       return getBuildVector(VT, DL, Ops);
5858     }
5859     break;
5860   }
5861   case ISD::FP_TO_SINT_SAT:
5862   case ISD::FP_TO_UINT_SAT: {
5863     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5864            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5865     assert(N1.getValueType().isVector() == VT.isVector() &&
5866            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5867            "vector!");
5868     assert((!VT.isVector() || VT.getVectorNumElements() ==
5869                                   N1.getValueType().getVectorNumElements()) &&
5870            "Vector element counts must match in FP_TO_*INT_SAT");
5871     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5872            "Type to saturate to must be a scalar.");
5873     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5874            "Not extending!");
5875     break;
5876   }
5877   case ISD::EXTRACT_VECTOR_ELT:
5878     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5879            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5880              element type of the vector.");
5881 
5882     // Extract from an undefined value or using an undefined index is undefined.
5883     if (N1.isUndef() || N2.isUndef())
5884       return getUNDEF(VT);
5885 
5886     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5887     // vectors. For scalable vectors we will provide appropriate support for
5888     // dealing with arbitrary indices.
5889     if (N2C && N1.getValueType().isFixedLengthVector() &&
5890         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5891       return getUNDEF(VT);
5892 
5893     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5894     // expanding copies of large vectors from registers. This only works for
5895     // fixed length vectors, since we need to know the exact number of
5896     // elements.
5897     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5898         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5899       unsigned Factor =
5900         N1.getOperand(0).getValueType().getVectorNumElements();
5901       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5902                      N1.getOperand(N2C->getZExtValue() / Factor),
5903                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5904     }
5905 
5906     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5907     // lowering is expanding large vector constants.
5908     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5909                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5910       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5911               N1.getValueType().isFixedLengthVector()) &&
5912              "BUILD_VECTOR used for scalable vectors");
5913       unsigned Index =
5914           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5915       SDValue Elt = N1.getOperand(Index);
5916 
5917       if (VT != Elt.getValueType())
5918         // If the vector element type is not legal, the BUILD_VECTOR operands
5919         // are promoted and implicitly truncated, and the result implicitly
5920         // extended. Make that explicit here.
5921         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5922 
5923       return Elt;
5924     }
5925 
5926     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5927     // operations are lowered to scalars.
5928     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5929       // If the indices are the same, return the inserted element else
5930       // if the indices are known different, extract the element from
5931       // the original vector.
5932       SDValue N1Op2 = N1.getOperand(2);
5933       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5934 
5935       if (N1Op2C && N2C) {
5936         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5937           if (VT == N1.getOperand(1).getValueType())
5938             return N1.getOperand(1);
5939           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5940         }
5941         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5942       }
5943     }
5944 
5945     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5946     // when vector types are scalarized and v1iX is legal.
5947     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5948     // Here we are completely ignoring the extract element index (N2),
5949     // which is fine for fixed width vectors, since any index other than 0
5950     // is undefined anyway. However, this cannot be ignored for scalable
5951     // vectors - in theory we could support this, but we don't want to do this
5952     // without a profitability check.
5953     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5954         N1.getValueType().isFixedLengthVector() &&
5955         N1.getValueType().getVectorNumElements() == 1) {
5956       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5957                      N1.getOperand(1));
5958     }
5959     break;
5960   case ISD::EXTRACT_ELEMENT:
5961     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5962     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5963            (N1.getValueType().isInteger() == VT.isInteger()) &&
5964            N1.getValueType() != VT &&
5965            "Wrong types for EXTRACT_ELEMENT!");
5966 
5967     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5968     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5969     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5970     if (N1.getOpcode() == ISD::BUILD_PAIR)
5971       return N1.getOperand(N2C->getZExtValue());
5972 
5973     // EXTRACT_ELEMENT of a constant int is also very common.
5974     if (N1C) {
5975       unsigned ElementSize = VT.getSizeInBits();
5976       unsigned Shift = ElementSize * N2C->getZExtValue();
5977       const APInt &Val = N1C->getAPIntValue();
5978       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5979     }
5980     break;
5981   case ISD::EXTRACT_SUBVECTOR: {
5982     EVT N1VT = N1.getValueType();
5983     assert(VT.isVector() && N1VT.isVector() &&
5984            "Extract subvector VTs must be vectors!");
5985     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5986            "Extract subvector VTs must have the same element type!");
5987     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5988            "Cannot extract a scalable vector from a fixed length vector!");
5989     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5990             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5991            "Extract subvector must be from larger vector to smaller vector!");
5992     assert(N2C && "Extract subvector index must be a constant");
5993     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5994             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5995                 N1VT.getVectorMinNumElements()) &&
5996            "Extract subvector overflow!");
5997     assert(N2C->getAPIntValue().getBitWidth() ==
5998                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5999            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6000 
6001     // Trivial extraction.
6002     if (VT == N1VT)
6003       return N1;
6004 
6005     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6006     if (N1.isUndef())
6007       return getUNDEF(VT);
6008 
6009     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6010     // the concat have the same type as the extract.
6011     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6012         VT == N1.getOperand(0).getValueType()) {
6013       unsigned Factor = VT.getVectorMinNumElements();
6014       return N1.getOperand(N2C->getZExtValue() / Factor);
6015     }
6016 
6017     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6018     // during shuffle legalization.
6019     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6020         VT == N1.getOperand(1).getValueType())
6021       return N1.getOperand(1);
6022     break;
6023   }
6024   }
6025 
6026   // Perform trivial constant folding.
6027   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6028     return SV;
6029 
6030   // Canonicalize an UNDEF to the RHS, even over a constant.
6031   if (N1.isUndef()) {
6032     if (TLI->isCommutativeBinOp(Opcode)) {
6033       std::swap(N1, N2);
6034     } else {
6035       switch (Opcode) {
6036       case ISD::SIGN_EXTEND_INREG:
6037       case ISD::SUB:
6038         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6039       case ISD::UDIV:
6040       case ISD::SDIV:
6041       case ISD::UREM:
6042       case ISD::SREM:
6043       case ISD::SSUBSAT:
6044       case ISD::USUBSAT:
6045         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6046       }
6047     }
6048   }
6049 
6050   // Fold a bunch of operators when the RHS is undef.
6051   if (N2.isUndef()) {
6052     switch (Opcode) {
6053     case ISD::XOR:
6054       if (N1.isUndef())
6055         // Handle undef ^ undef -> 0 special case. This is a common
6056         // idiom (misuse).
6057         return getConstant(0, DL, VT);
6058       LLVM_FALLTHROUGH;
6059     case ISD::ADD:
6060     case ISD::SUB:
6061     case ISD::UDIV:
6062     case ISD::SDIV:
6063     case ISD::UREM:
6064     case ISD::SREM:
6065       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6066     case ISD::MUL:
6067     case ISD::AND:
6068     case ISD::SSUBSAT:
6069     case ISD::USUBSAT:
6070       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6071     case ISD::OR:
6072     case ISD::SADDSAT:
6073     case ISD::UADDSAT:
6074       return getAllOnesConstant(DL, VT);
6075     }
6076   }
6077 
6078   // Memoize this node if possible.
6079   SDNode *N;
6080   SDVTList VTs = getVTList(VT);
6081   SDValue Ops[] = {N1, N2};
6082   if (VT != MVT::Glue) {
6083     FoldingSetNodeID ID;
6084     AddNodeIDNode(ID, Opcode, VTs, Ops);
6085     void *IP = nullptr;
6086     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6087       E->intersectFlagsWith(Flags);
6088       return SDValue(E, 0);
6089     }
6090 
6091     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6092     N->setFlags(Flags);
6093     createOperands(N, Ops);
6094     CSEMap.InsertNode(N, IP);
6095   } else {
6096     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6097     createOperands(N, Ops);
6098   }
6099 
6100   InsertNode(N);
6101   SDValue V = SDValue(N, 0);
6102   NewSDValueDbgMsg(V, "Creating new node: ", this);
6103   return V;
6104 }
6105 
6106 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6107                               SDValue N1, SDValue N2, SDValue N3) {
6108   SDNodeFlags Flags;
6109   if (Inserter)
6110     Flags = Inserter->getFlags();
6111   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6112 }
6113 
6114 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6115                               SDValue N1, SDValue N2, SDValue N3,
6116                               const SDNodeFlags Flags) {
6117   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6118          N2.getOpcode() != ISD::DELETED_NODE &&
6119          N3.getOpcode() != ISD::DELETED_NODE &&
6120          "Operand is DELETED_NODE!");
6121   // Perform various simplifications.
6122   switch (Opcode) {
6123   case ISD::FMA: {
6124     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6125     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6126            N3.getValueType() == VT && "FMA types must match!");
6127     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6128     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6129     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6130     if (N1CFP && N2CFP && N3CFP) {
6131       APFloat  V1 = N1CFP->getValueAPF();
6132       const APFloat &V2 = N2CFP->getValueAPF();
6133       const APFloat &V3 = N3CFP->getValueAPF();
6134       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6135       return getConstantFP(V1, DL, VT);
6136     }
6137     break;
6138   }
6139   case ISD::BUILD_VECTOR: {
6140     // Attempt to simplify BUILD_VECTOR.
6141     SDValue Ops[] = {N1, N2, N3};
6142     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6143       return V;
6144     break;
6145   }
6146   case ISD::CONCAT_VECTORS: {
6147     SDValue Ops[] = {N1, N2, N3};
6148     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6149       return V;
6150     break;
6151   }
6152   case ISD::SETCC: {
6153     assert(VT.isInteger() && "SETCC result type must be an integer!");
6154     assert(N1.getValueType() == N2.getValueType() &&
6155            "SETCC operands must have the same type!");
6156     assert(VT.isVector() == N1.getValueType().isVector() &&
6157            "SETCC type should be vector iff the operand type is vector!");
6158     assert((!VT.isVector() || VT.getVectorElementCount() ==
6159                                   N1.getValueType().getVectorElementCount()) &&
6160            "SETCC vector element counts must match!");
6161     // Use FoldSetCC to simplify SETCC's.
6162     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6163       return V;
6164     // Vector constant folding.
6165     SDValue Ops[] = {N1, N2, N3};
6166     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6167       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6168       return V;
6169     }
6170     break;
6171   }
6172   case ISD::SELECT:
6173   case ISD::VSELECT:
6174     if (SDValue V = simplifySelect(N1, N2, N3))
6175       return V;
6176     break;
6177   case ISD::VECTOR_SHUFFLE:
6178     llvm_unreachable("should use getVectorShuffle constructor!");
6179   case ISD::VECTOR_SPLICE: {
6180     if (cast<ConstantSDNode>(N3)->isNullValue())
6181       return N1;
6182     break;
6183   }
6184   case ISD::INSERT_VECTOR_ELT: {
6185     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6186     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6187     // for scalable vectors where we will generate appropriate code to
6188     // deal with out-of-bounds cases correctly.
6189     if (N3C && N1.getValueType().isFixedLengthVector() &&
6190         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6191       return getUNDEF(VT);
6192 
6193     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6194     if (N3.isUndef())
6195       return getUNDEF(VT);
6196 
6197     // If the inserted element is an UNDEF, just use the input vector.
6198     if (N2.isUndef())
6199       return N1;
6200 
6201     break;
6202   }
6203   case ISD::INSERT_SUBVECTOR: {
6204     // Inserting undef into undef is still undef.
6205     if (N1.isUndef() && N2.isUndef())
6206       return getUNDEF(VT);
6207 
6208     EVT N2VT = N2.getValueType();
6209     assert(VT == N1.getValueType() &&
6210            "Dest and insert subvector source types must match!");
6211     assert(VT.isVector() && N2VT.isVector() &&
6212            "Insert subvector VTs must be vectors!");
6213     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6214            "Cannot insert a scalable vector into a fixed length vector!");
6215     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6216             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6217            "Insert subvector must be from smaller vector to larger vector!");
6218     assert(isa<ConstantSDNode>(N3) &&
6219            "Insert subvector index must be constant");
6220     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6221             (N2VT.getVectorMinNumElements() +
6222              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6223                 VT.getVectorMinNumElements()) &&
6224            "Insert subvector overflow!");
6225     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6226                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6227            "Constant index for INSERT_SUBVECTOR has an invalid size");
6228 
6229     // Trivial insertion.
6230     if (VT == N2VT)
6231       return N2;
6232 
6233     // If this is an insert of an extracted vector into an undef vector, we
6234     // can just use the input to the extract.
6235     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6236         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6237       return N2.getOperand(0);
6238     break;
6239   }
6240   case ISD::BITCAST:
6241     // Fold bit_convert nodes from a type to themselves.
6242     if (N1.getValueType() == VT)
6243       return N1;
6244     break;
6245   }
6246 
6247   // Memoize node if it doesn't produce a flag.
6248   SDNode *N;
6249   SDVTList VTs = getVTList(VT);
6250   SDValue Ops[] = {N1, N2, N3};
6251   if (VT != MVT::Glue) {
6252     FoldingSetNodeID ID;
6253     AddNodeIDNode(ID, Opcode, VTs, Ops);
6254     void *IP = nullptr;
6255     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6256       E->intersectFlagsWith(Flags);
6257       return SDValue(E, 0);
6258     }
6259 
6260     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6261     N->setFlags(Flags);
6262     createOperands(N, Ops);
6263     CSEMap.InsertNode(N, IP);
6264   } else {
6265     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6266     createOperands(N, Ops);
6267   }
6268 
6269   InsertNode(N);
6270   SDValue V = SDValue(N, 0);
6271   NewSDValueDbgMsg(V, "Creating new node: ", this);
6272   return V;
6273 }
6274 
6275 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6276                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6277   SDValue Ops[] = { N1, N2, N3, N4 };
6278   return getNode(Opcode, DL, VT, Ops);
6279 }
6280 
6281 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6282                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6283                               SDValue N5) {
6284   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6285   return getNode(Opcode, DL, VT, Ops);
6286 }
6287 
6288 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6289 /// the incoming stack arguments to be loaded from the stack.
6290 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6291   SmallVector<SDValue, 8> ArgChains;
6292 
6293   // Include the original chain at the beginning of the list. When this is
6294   // used by target LowerCall hooks, this helps legalize find the
6295   // CALLSEQ_BEGIN node.
6296   ArgChains.push_back(Chain);
6297 
6298   // Add a chain value for each stack argument.
6299   for (SDNode *U : getEntryNode().getNode()->uses())
6300     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6301       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6302         if (FI->getIndex() < 0)
6303           ArgChains.push_back(SDValue(L, 1));
6304 
6305   // Build a tokenfactor for all the chains.
6306   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6307 }
6308 
6309 /// getMemsetValue - Vectorized representation of the memset value
6310 /// operand.
6311 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6312                               const SDLoc &dl) {
6313   assert(!Value.isUndef());
6314 
6315   unsigned NumBits = VT.getScalarSizeInBits();
6316   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6317     assert(C->getAPIntValue().getBitWidth() == 8);
6318     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6319     if (VT.isInteger()) {
6320       bool IsOpaque = VT.getSizeInBits() > 64 ||
6321           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6322       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6323     }
6324     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6325                              VT);
6326   }
6327 
6328   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6329   EVT IntVT = VT.getScalarType();
6330   if (!IntVT.isInteger())
6331     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6332 
6333   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6334   if (NumBits > 8) {
6335     // Use a multiplication with 0x010101... to extend the input to the
6336     // required length.
6337     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6338     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6339                         DAG.getConstant(Magic, dl, IntVT));
6340   }
6341 
6342   if (VT != Value.getValueType() && !VT.isInteger())
6343     Value = DAG.getBitcast(VT.getScalarType(), Value);
6344   if (VT != Value.getValueType())
6345     Value = DAG.getSplatBuildVector(VT, dl, Value);
6346 
6347   return Value;
6348 }
6349 
6350 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6351 /// used when a memcpy is turned into a memset when the source is a constant
6352 /// string ptr.
6353 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6354                                   const TargetLowering &TLI,
6355                                   const ConstantDataArraySlice &Slice) {
6356   // Handle vector with all elements zero.
6357   if (Slice.Array == nullptr) {
6358     if (VT.isInteger())
6359       return DAG.getConstant(0, dl, VT);
6360     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6361       return DAG.getConstantFP(0.0, dl, VT);
6362     if (VT.isVector()) {
6363       unsigned NumElts = VT.getVectorNumElements();
6364       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6365       return DAG.getNode(ISD::BITCAST, dl, VT,
6366                          DAG.getConstant(0, dl,
6367                                          EVT::getVectorVT(*DAG.getContext(),
6368                                                           EltVT, NumElts)));
6369     }
6370     llvm_unreachable("Expected type!");
6371   }
6372 
6373   assert(!VT.isVector() && "Can't handle vector type here!");
6374   unsigned NumVTBits = VT.getSizeInBits();
6375   unsigned NumVTBytes = NumVTBits / 8;
6376   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6377 
6378   APInt Val(NumVTBits, 0);
6379   if (DAG.getDataLayout().isLittleEndian()) {
6380     for (unsigned i = 0; i != NumBytes; ++i)
6381       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6382   } else {
6383     for (unsigned i = 0; i != NumBytes; ++i)
6384       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6385   }
6386 
6387   // If the "cost" of materializing the integer immediate is less than the cost
6388   // of a load, then it is cost effective to turn the load into the immediate.
6389   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6390   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6391     return DAG.getConstant(Val, dl, VT);
6392   return SDValue();
6393 }
6394 
6395 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6396                                            const SDLoc &DL,
6397                                            const SDNodeFlags Flags) {
6398   EVT VT = Base.getValueType();
6399   SDValue Index;
6400 
6401   if (Offset.isScalable())
6402     Index = getVScale(DL, Base.getValueType(),
6403                       APInt(Base.getValueSizeInBits().getFixedSize(),
6404                             Offset.getKnownMinSize()));
6405   else
6406     Index = getConstant(Offset.getFixedSize(), DL, VT);
6407 
6408   return getMemBasePlusOffset(Base, Index, DL, Flags);
6409 }
6410 
6411 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6412                                            const SDLoc &DL,
6413                                            const SDNodeFlags Flags) {
6414   assert(Offset.getValueType().isInteger());
6415   EVT BasePtrVT = Ptr.getValueType();
6416   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6417 }
6418 
6419 /// Returns true if memcpy source is constant data.
6420 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6421   uint64_t SrcDelta = 0;
6422   GlobalAddressSDNode *G = nullptr;
6423   if (Src.getOpcode() == ISD::GlobalAddress)
6424     G = cast<GlobalAddressSDNode>(Src);
6425   else if (Src.getOpcode() == ISD::ADD &&
6426            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6427            Src.getOperand(1).getOpcode() == ISD::Constant) {
6428     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6429     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6430   }
6431   if (!G)
6432     return false;
6433 
6434   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6435                                   SrcDelta + G->getOffset());
6436 }
6437 
6438 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6439                                       SelectionDAG &DAG) {
6440   // On Darwin, -Os means optimize for size without hurting performance, so
6441   // only really optimize for size when -Oz (MinSize) is used.
6442   if (MF.getTarget().getTargetTriple().isOSDarwin())
6443     return MF.getFunction().hasMinSize();
6444   return DAG.shouldOptForSize();
6445 }
6446 
6447 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6448                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6449                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6450                           SmallVector<SDValue, 16> &OutStoreChains) {
6451   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6452   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6453   SmallVector<SDValue, 16> GluedLoadChains;
6454   for (unsigned i = From; i < To; ++i) {
6455     OutChains.push_back(OutLoadChains[i]);
6456     GluedLoadChains.push_back(OutLoadChains[i]);
6457   }
6458 
6459   // Chain for all loads.
6460   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6461                                   GluedLoadChains);
6462 
6463   for (unsigned i = From; i < To; ++i) {
6464     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6465     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6466                                   ST->getBasePtr(), ST->getMemoryVT(),
6467                                   ST->getMemOperand());
6468     OutChains.push_back(NewStore);
6469   }
6470 }
6471 
6472 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6473                                        SDValue Chain, SDValue Dst, SDValue Src,
6474                                        uint64_t Size, Align Alignment,
6475                                        bool isVol, bool AlwaysInline,
6476                                        MachinePointerInfo DstPtrInfo,
6477                                        MachinePointerInfo SrcPtrInfo,
6478                                        const AAMDNodes &AAInfo) {
6479   // Turn a memcpy of undef to nop.
6480   // FIXME: We need to honor volatile even is Src is undef.
6481   if (Src.isUndef())
6482     return Chain;
6483 
6484   // Expand memcpy to a series of load and store ops if the size operand falls
6485   // below a certain threshold.
6486   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6487   // rather than maybe a humongous number of loads and stores.
6488   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6489   const DataLayout &DL = DAG.getDataLayout();
6490   LLVMContext &C = *DAG.getContext();
6491   std::vector<EVT> MemOps;
6492   bool DstAlignCanChange = false;
6493   MachineFunction &MF = DAG.getMachineFunction();
6494   MachineFrameInfo &MFI = MF.getFrameInfo();
6495   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6496   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6497   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6498     DstAlignCanChange = true;
6499   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6500   if (!SrcAlign || Alignment > *SrcAlign)
6501     SrcAlign = Alignment;
6502   assert(SrcAlign && "SrcAlign must be set");
6503   ConstantDataArraySlice Slice;
6504   // If marked as volatile, perform a copy even when marked as constant.
6505   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6506   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6507   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6508   const MemOp Op = isZeroConstant
6509                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6510                                     /*IsZeroMemset*/ true, isVol)
6511                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6512                                      *SrcAlign, isVol, CopyFromConstant);
6513   if (!TLI.findOptimalMemOpLowering(
6514           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6515           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6516     return SDValue();
6517 
6518   if (DstAlignCanChange) {
6519     Type *Ty = MemOps[0].getTypeForEVT(C);
6520     Align NewAlign = DL.getABITypeAlign(Ty);
6521 
6522     // Don't promote to an alignment that would require dynamic stack
6523     // realignment.
6524     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6525     if (!TRI->hasStackRealignment(MF))
6526       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6527         NewAlign = NewAlign / 2;
6528 
6529     if (NewAlign > Alignment) {
6530       // Give the stack frame object a larger alignment if needed.
6531       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6532         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6533       Alignment = NewAlign;
6534     }
6535   }
6536 
6537   // Prepare AAInfo for loads/stores after lowering this memcpy.
6538   AAMDNodes NewAAInfo = AAInfo;
6539   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6540 
6541   MachineMemOperand::Flags MMOFlags =
6542       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6543   SmallVector<SDValue, 16> OutLoadChains;
6544   SmallVector<SDValue, 16> OutStoreChains;
6545   SmallVector<SDValue, 32> OutChains;
6546   unsigned NumMemOps = MemOps.size();
6547   uint64_t SrcOff = 0, DstOff = 0;
6548   for (unsigned i = 0; i != NumMemOps; ++i) {
6549     EVT VT = MemOps[i];
6550     unsigned VTSize = VT.getSizeInBits() / 8;
6551     SDValue Value, Store;
6552 
6553     if (VTSize > Size) {
6554       // Issuing an unaligned load / store pair  that overlaps with the previous
6555       // pair. Adjust the offset accordingly.
6556       assert(i == NumMemOps-1 && i != 0);
6557       SrcOff -= VTSize - Size;
6558       DstOff -= VTSize - Size;
6559     }
6560 
6561     if (CopyFromConstant &&
6562         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6563       // It's unlikely a store of a vector immediate can be done in a single
6564       // instruction. It would require a load from a constantpool first.
6565       // We only handle zero vectors here.
6566       // FIXME: Handle other cases where store of vector immediate is done in
6567       // a single instruction.
6568       ConstantDataArraySlice SubSlice;
6569       if (SrcOff < Slice.Length) {
6570         SubSlice = Slice;
6571         SubSlice.move(SrcOff);
6572       } else {
6573         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6574         SubSlice.Array = nullptr;
6575         SubSlice.Offset = 0;
6576         SubSlice.Length = VTSize;
6577       }
6578       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6579       if (Value.getNode()) {
6580         Store = DAG.getStore(
6581             Chain, dl, Value,
6582             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6583             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6584         OutChains.push_back(Store);
6585       }
6586     }
6587 
6588     if (!Store.getNode()) {
6589       // The type might not be legal for the target.  This should only happen
6590       // if the type is smaller than a legal type, as on PPC, so the right
6591       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6592       // to Load/Store if NVT==VT.
6593       // FIXME does the case above also need this?
6594       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6595       assert(NVT.bitsGE(VT));
6596 
6597       bool isDereferenceable =
6598         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6599       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6600       if (isDereferenceable)
6601         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6602 
6603       Value = DAG.getExtLoad(
6604           ISD::EXTLOAD, dl, NVT, Chain,
6605           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6606           SrcPtrInfo.getWithOffset(SrcOff), VT,
6607           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6608       OutLoadChains.push_back(Value.getValue(1));
6609 
6610       Store = DAG.getTruncStore(
6611           Chain, dl, Value,
6612           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6613           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6614       OutStoreChains.push_back(Store);
6615     }
6616     SrcOff += VTSize;
6617     DstOff += VTSize;
6618     Size -= VTSize;
6619   }
6620 
6621   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6622                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6623   unsigned NumLdStInMemcpy = OutStoreChains.size();
6624 
6625   if (NumLdStInMemcpy) {
6626     // It may be that memcpy might be converted to memset if it's memcpy
6627     // of constants. In such a case, we won't have loads and stores, but
6628     // just stores. In the absence of loads, there is nothing to gang up.
6629     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6630       // If target does not care, just leave as it.
6631       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6632         OutChains.push_back(OutLoadChains[i]);
6633         OutChains.push_back(OutStoreChains[i]);
6634       }
6635     } else {
6636       // Ld/St less than/equal limit set by target.
6637       if (NumLdStInMemcpy <= GluedLdStLimit) {
6638           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6639                                         NumLdStInMemcpy, OutLoadChains,
6640                                         OutStoreChains);
6641       } else {
6642         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6643         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6644         unsigned GlueIter = 0;
6645 
6646         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6647           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6648           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6649 
6650           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6651                                        OutLoadChains, OutStoreChains);
6652           GlueIter += GluedLdStLimit;
6653         }
6654 
6655         // Residual ld/st.
6656         if (RemainingLdStInMemcpy) {
6657           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6658                                         RemainingLdStInMemcpy, OutLoadChains,
6659                                         OutStoreChains);
6660         }
6661       }
6662     }
6663   }
6664   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6665 }
6666 
6667 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6668                                         SDValue Chain, SDValue Dst, SDValue Src,
6669                                         uint64_t Size, Align Alignment,
6670                                         bool isVol, bool AlwaysInline,
6671                                         MachinePointerInfo DstPtrInfo,
6672                                         MachinePointerInfo SrcPtrInfo,
6673                                         const AAMDNodes &AAInfo) {
6674   // Turn a memmove of undef to nop.
6675   // FIXME: We need to honor volatile even is Src is undef.
6676   if (Src.isUndef())
6677     return Chain;
6678 
6679   // Expand memmove to a series of load and store ops if the size operand falls
6680   // below a certain threshold.
6681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6682   const DataLayout &DL = DAG.getDataLayout();
6683   LLVMContext &C = *DAG.getContext();
6684   std::vector<EVT> MemOps;
6685   bool DstAlignCanChange = false;
6686   MachineFunction &MF = DAG.getMachineFunction();
6687   MachineFrameInfo &MFI = MF.getFrameInfo();
6688   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6689   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6690   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6691     DstAlignCanChange = true;
6692   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6693   if (!SrcAlign || Alignment > *SrcAlign)
6694     SrcAlign = Alignment;
6695   assert(SrcAlign && "SrcAlign must be set");
6696   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6697   if (!TLI.findOptimalMemOpLowering(
6698           MemOps, Limit,
6699           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6700                       /*IsVolatile*/ true),
6701           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6702           MF.getFunction().getAttributes()))
6703     return SDValue();
6704 
6705   if (DstAlignCanChange) {
6706     Type *Ty = MemOps[0].getTypeForEVT(C);
6707     Align NewAlign = DL.getABITypeAlign(Ty);
6708     if (NewAlign > Alignment) {
6709       // Give the stack frame object a larger alignment if needed.
6710       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6711         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6712       Alignment = NewAlign;
6713     }
6714   }
6715 
6716   // Prepare AAInfo for loads/stores after lowering this memmove.
6717   AAMDNodes NewAAInfo = AAInfo;
6718   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6719 
6720   MachineMemOperand::Flags MMOFlags =
6721       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6722   uint64_t SrcOff = 0, DstOff = 0;
6723   SmallVector<SDValue, 8> LoadValues;
6724   SmallVector<SDValue, 8> LoadChains;
6725   SmallVector<SDValue, 8> OutChains;
6726   unsigned NumMemOps = MemOps.size();
6727   for (unsigned i = 0; i < NumMemOps; i++) {
6728     EVT VT = MemOps[i];
6729     unsigned VTSize = VT.getSizeInBits() / 8;
6730     SDValue Value;
6731 
6732     bool isDereferenceable =
6733       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6734     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6735     if (isDereferenceable)
6736       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6737 
6738     Value = DAG.getLoad(
6739         VT, dl, Chain,
6740         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6741         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6742     LoadValues.push_back(Value);
6743     LoadChains.push_back(Value.getValue(1));
6744     SrcOff += VTSize;
6745   }
6746   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6747   OutChains.clear();
6748   for (unsigned i = 0; i < NumMemOps; i++) {
6749     EVT VT = MemOps[i];
6750     unsigned VTSize = VT.getSizeInBits() / 8;
6751     SDValue Store;
6752 
6753     Store = DAG.getStore(
6754         Chain, dl, LoadValues[i],
6755         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6756         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6757     OutChains.push_back(Store);
6758     DstOff += VTSize;
6759   }
6760 
6761   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6762 }
6763 
6764 /// Lower the call to 'memset' intrinsic function into a series of store
6765 /// operations.
6766 ///
6767 /// \param DAG Selection DAG where lowered code is placed.
6768 /// \param dl Link to corresponding IR location.
6769 /// \param Chain Control flow dependency.
6770 /// \param Dst Pointer to destination memory location.
6771 /// \param Src Value of byte to write into the memory.
6772 /// \param Size Number of bytes to write.
6773 /// \param Alignment Alignment of the destination in bytes.
6774 /// \param isVol True if destination is volatile.
6775 /// \param DstPtrInfo IR information on the memory pointer.
6776 /// \returns New head in the control flow, if lowering was successful, empty
6777 /// SDValue otherwise.
6778 ///
6779 /// The function tries to replace 'llvm.memset' intrinsic with several store
6780 /// operations and value calculation code. This is usually profitable for small
6781 /// memory size.
6782 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6783                                SDValue Chain, SDValue Dst, SDValue Src,
6784                                uint64_t Size, Align Alignment, bool isVol,
6785                                MachinePointerInfo DstPtrInfo,
6786                                const AAMDNodes &AAInfo) {
6787   // Turn a memset of undef to nop.
6788   // FIXME: We need to honor volatile even is Src is undef.
6789   if (Src.isUndef())
6790     return Chain;
6791 
6792   // Expand memset to a series of load/store ops if the size operand
6793   // falls below a certain threshold.
6794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6795   std::vector<EVT> MemOps;
6796   bool DstAlignCanChange = false;
6797   MachineFunction &MF = DAG.getMachineFunction();
6798   MachineFrameInfo &MFI = MF.getFrameInfo();
6799   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6800   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6801   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6802     DstAlignCanChange = true;
6803   bool IsZeroVal =
6804       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6805   if (!TLI.findOptimalMemOpLowering(
6806           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6807           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6808           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6809     return SDValue();
6810 
6811   if (DstAlignCanChange) {
6812     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6813     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6814     if (NewAlign > Alignment) {
6815       // Give the stack frame object a larger alignment if needed.
6816       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6817         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6818       Alignment = NewAlign;
6819     }
6820   }
6821 
6822   SmallVector<SDValue, 8> OutChains;
6823   uint64_t DstOff = 0;
6824   unsigned NumMemOps = MemOps.size();
6825 
6826   // Find the largest store and generate the bit pattern for it.
6827   EVT LargestVT = MemOps[0];
6828   for (unsigned i = 1; i < NumMemOps; i++)
6829     if (MemOps[i].bitsGT(LargestVT))
6830       LargestVT = MemOps[i];
6831   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6832 
6833   // Prepare AAInfo for loads/stores after lowering this memset.
6834   AAMDNodes NewAAInfo = AAInfo;
6835   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6836 
6837   for (unsigned i = 0; i < NumMemOps; i++) {
6838     EVT VT = MemOps[i];
6839     unsigned VTSize = VT.getSizeInBits() / 8;
6840     if (VTSize > Size) {
6841       // Issuing an unaligned load / store pair  that overlaps with the previous
6842       // pair. Adjust the offset accordingly.
6843       assert(i == NumMemOps-1 && i != 0);
6844       DstOff -= VTSize - Size;
6845     }
6846 
6847     // If this store is smaller than the largest store see whether we can get
6848     // the smaller value for free with a truncate.
6849     SDValue Value = MemSetValue;
6850     if (VT.bitsLT(LargestVT)) {
6851       if (!LargestVT.isVector() && !VT.isVector() &&
6852           TLI.isTruncateFree(LargestVT, VT))
6853         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6854       else
6855         Value = getMemsetValue(Src, VT, DAG, dl);
6856     }
6857     assert(Value.getValueType() == VT && "Value with wrong type.");
6858     SDValue Store = DAG.getStore(
6859         Chain, dl, Value,
6860         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6861         DstPtrInfo.getWithOffset(DstOff), Alignment,
6862         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6863         NewAAInfo);
6864     OutChains.push_back(Store);
6865     DstOff += VT.getSizeInBits() / 8;
6866     Size -= VTSize;
6867   }
6868 
6869   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6870 }
6871 
6872 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6873                                             unsigned AS) {
6874   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6875   // pointer operands can be losslessly bitcasted to pointers of address space 0
6876   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6877     report_fatal_error("cannot lower memory intrinsic in address space " +
6878                        Twine(AS));
6879   }
6880 }
6881 
6882 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6883                                 SDValue Src, SDValue Size, Align Alignment,
6884                                 bool isVol, bool AlwaysInline, bool isTailCall,
6885                                 MachinePointerInfo DstPtrInfo,
6886                                 MachinePointerInfo SrcPtrInfo,
6887                                 const AAMDNodes &AAInfo) {
6888   // Check to see if we should lower the memcpy to loads and stores first.
6889   // For cases within the target-specified limits, this is the best choice.
6890   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6891   if (ConstantSize) {
6892     // Memcpy with size zero? Just return the original chain.
6893     if (ConstantSize->isZero())
6894       return Chain;
6895 
6896     SDValue Result = getMemcpyLoadsAndStores(
6897         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6898         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6899     if (Result.getNode())
6900       return Result;
6901   }
6902 
6903   // Then check to see if we should lower the memcpy with target-specific
6904   // code. If the target chooses to do this, this is the next best.
6905   if (TSI) {
6906     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6907         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6908         DstPtrInfo, SrcPtrInfo);
6909     if (Result.getNode())
6910       return Result;
6911   }
6912 
6913   // If we really need inline code and the target declined to provide it,
6914   // use a (potentially long) sequence of loads and stores.
6915   if (AlwaysInline) {
6916     assert(ConstantSize && "AlwaysInline requires a constant size!");
6917     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6918                                    ConstantSize->getZExtValue(), Alignment,
6919                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6920   }
6921 
6922   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6923   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6924 
6925   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6926   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6927   // respect volatile, so they may do things like read or write memory
6928   // beyond the given memory regions. But fixing this isn't easy, and most
6929   // people don't care.
6930 
6931   // Emit a library call.
6932   TargetLowering::ArgListTy Args;
6933   TargetLowering::ArgListEntry Entry;
6934   Entry.Ty = Type::getInt8PtrTy(*getContext());
6935   Entry.Node = Dst; Args.push_back(Entry);
6936   Entry.Node = Src; Args.push_back(Entry);
6937 
6938   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6939   Entry.Node = Size; Args.push_back(Entry);
6940   // FIXME: pass in SDLoc
6941   TargetLowering::CallLoweringInfo CLI(*this);
6942   CLI.setDebugLoc(dl)
6943       .setChain(Chain)
6944       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6945                     Dst.getValueType().getTypeForEVT(*getContext()),
6946                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6947                                       TLI->getPointerTy(getDataLayout())),
6948                     std::move(Args))
6949       .setDiscardResult()
6950       .setTailCall(isTailCall);
6951 
6952   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6953   return CallResult.second;
6954 }
6955 
6956 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6957                                       SDValue Dst, unsigned DstAlign,
6958                                       SDValue Src, unsigned SrcAlign,
6959                                       SDValue Size, Type *SizeTy,
6960                                       unsigned ElemSz, bool isTailCall,
6961                                       MachinePointerInfo DstPtrInfo,
6962                                       MachinePointerInfo SrcPtrInfo) {
6963   // Emit a library call.
6964   TargetLowering::ArgListTy Args;
6965   TargetLowering::ArgListEntry Entry;
6966   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6967   Entry.Node = Dst;
6968   Args.push_back(Entry);
6969 
6970   Entry.Node = Src;
6971   Args.push_back(Entry);
6972 
6973   Entry.Ty = SizeTy;
6974   Entry.Node = Size;
6975   Args.push_back(Entry);
6976 
6977   RTLIB::Libcall LibraryCall =
6978       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6979   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6980     report_fatal_error("Unsupported element size");
6981 
6982   TargetLowering::CallLoweringInfo CLI(*this);
6983   CLI.setDebugLoc(dl)
6984       .setChain(Chain)
6985       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6986                     Type::getVoidTy(*getContext()),
6987                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6988                                       TLI->getPointerTy(getDataLayout())),
6989                     std::move(Args))
6990       .setDiscardResult()
6991       .setTailCall(isTailCall);
6992 
6993   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6994   return CallResult.second;
6995 }
6996 
6997 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6998                                  SDValue Src, SDValue Size, Align Alignment,
6999                                  bool isVol, bool isTailCall,
7000                                  MachinePointerInfo DstPtrInfo,
7001                                  MachinePointerInfo SrcPtrInfo,
7002                                  const AAMDNodes &AAInfo) {
7003   // Check to see if we should lower the memmove to loads and stores first.
7004   // For cases within the target-specified limits, this is the best choice.
7005   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7006   if (ConstantSize) {
7007     // Memmove with size zero? Just return the original chain.
7008     if (ConstantSize->isZero())
7009       return Chain;
7010 
7011     SDValue Result = getMemmoveLoadsAndStores(
7012         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7013         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7014     if (Result.getNode())
7015       return Result;
7016   }
7017 
7018   // Then check to see if we should lower the memmove with target-specific
7019   // code. If the target chooses to do this, this is the next best.
7020   if (TSI) {
7021     SDValue Result =
7022         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7023                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7024     if (Result.getNode())
7025       return Result;
7026   }
7027 
7028   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7029   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7030 
7031   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7032   // not be safe.  See memcpy above for more details.
7033 
7034   // Emit a library call.
7035   TargetLowering::ArgListTy Args;
7036   TargetLowering::ArgListEntry Entry;
7037   Entry.Ty = Type::getInt8PtrTy(*getContext());
7038   Entry.Node = Dst; Args.push_back(Entry);
7039   Entry.Node = Src; Args.push_back(Entry);
7040 
7041   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7042   Entry.Node = Size; Args.push_back(Entry);
7043   // FIXME:  pass in SDLoc
7044   TargetLowering::CallLoweringInfo CLI(*this);
7045   CLI.setDebugLoc(dl)
7046       .setChain(Chain)
7047       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7048                     Dst.getValueType().getTypeForEVT(*getContext()),
7049                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7050                                       TLI->getPointerTy(getDataLayout())),
7051                     std::move(Args))
7052       .setDiscardResult()
7053       .setTailCall(isTailCall);
7054 
7055   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7056   return CallResult.second;
7057 }
7058 
7059 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7060                                        SDValue Dst, unsigned DstAlign,
7061                                        SDValue Src, unsigned SrcAlign,
7062                                        SDValue Size, Type *SizeTy,
7063                                        unsigned ElemSz, bool isTailCall,
7064                                        MachinePointerInfo DstPtrInfo,
7065                                        MachinePointerInfo SrcPtrInfo) {
7066   // Emit a library call.
7067   TargetLowering::ArgListTy Args;
7068   TargetLowering::ArgListEntry Entry;
7069   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7070   Entry.Node = Dst;
7071   Args.push_back(Entry);
7072 
7073   Entry.Node = Src;
7074   Args.push_back(Entry);
7075 
7076   Entry.Ty = SizeTy;
7077   Entry.Node = Size;
7078   Args.push_back(Entry);
7079 
7080   RTLIB::Libcall LibraryCall =
7081       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7082   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7083     report_fatal_error("Unsupported element size");
7084 
7085   TargetLowering::CallLoweringInfo CLI(*this);
7086   CLI.setDebugLoc(dl)
7087       .setChain(Chain)
7088       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7089                     Type::getVoidTy(*getContext()),
7090                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7091                                       TLI->getPointerTy(getDataLayout())),
7092                     std::move(Args))
7093       .setDiscardResult()
7094       .setTailCall(isTailCall);
7095 
7096   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7097   return CallResult.second;
7098 }
7099 
7100 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7101                                 SDValue Src, SDValue Size, Align Alignment,
7102                                 bool isVol, bool isTailCall,
7103                                 MachinePointerInfo DstPtrInfo,
7104                                 const AAMDNodes &AAInfo) {
7105   // Check to see if we should lower the memset to stores first.
7106   // For cases within the target-specified limits, this is the best choice.
7107   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7108   if (ConstantSize) {
7109     // Memset with size zero? Just return the original chain.
7110     if (ConstantSize->isZero())
7111       return Chain;
7112 
7113     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7114                                      ConstantSize->getZExtValue(), Alignment,
7115                                      isVol, DstPtrInfo, AAInfo);
7116 
7117     if (Result.getNode())
7118       return Result;
7119   }
7120 
7121   // Then check to see if we should lower the memset with target-specific
7122   // code. If the target chooses to do this, this is the next best.
7123   if (TSI) {
7124     SDValue Result = TSI->EmitTargetCodeForMemset(
7125         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7126     if (Result.getNode())
7127       return Result;
7128   }
7129 
7130   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7131 
7132   // Emit a library call.
7133   TargetLowering::ArgListTy Args;
7134   TargetLowering::ArgListEntry Entry;
7135   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7136   Args.push_back(Entry);
7137   Entry.Node = Src;
7138   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7139   Args.push_back(Entry);
7140   Entry.Node = Size;
7141   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7142   Args.push_back(Entry);
7143 
7144   // FIXME: pass in SDLoc
7145   TargetLowering::CallLoweringInfo CLI(*this);
7146   CLI.setDebugLoc(dl)
7147       .setChain(Chain)
7148       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7149                     Dst.getValueType().getTypeForEVT(*getContext()),
7150                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7151                                       TLI->getPointerTy(getDataLayout())),
7152                     std::move(Args))
7153       .setDiscardResult()
7154       .setTailCall(isTailCall);
7155 
7156   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7157   return CallResult.second;
7158 }
7159 
7160 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7161                                       SDValue Dst, unsigned DstAlign,
7162                                       SDValue Value, SDValue Size, Type *SizeTy,
7163                                       unsigned ElemSz, bool isTailCall,
7164                                       MachinePointerInfo DstPtrInfo) {
7165   // Emit a library call.
7166   TargetLowering::ArgListTy Args;
7167   TargetLowering::ArgListEntry Entry;
7168   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7169   Entry.Node = Dst;
7170   Args.push_back(Entry);
7171 
7172   Entry.Ty = Type::getInt8Ty(*getContext());
7173   Entry.Node = Value;
7174   Args.push_back(Entry);
7175 
7176   Entry.Ty = SizeTy;
7177   Entry.Node = Size;
7178   Args.push_back(Entry);
7179 
7180   RTLIB::Libcall LibraryCall =
7181       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7182   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7183     report_fatal_error("Unsupported element size");
7184 
7185   TargetLowering::CallLoweringInfo CLI(*this);
7186   CLI.setDebugLoc(dl)
7187       .setChain(Chain)
7188       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7189                     Type::getVoidTy(*getContext()),
7190                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7191                                       TLI->getPointerTy(getDataLayout())),
7192                     std::move(Args))
7193       .setDiscardResult()
7194       .setTailCall(isTailCall);
7195 
7196   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7197   return CallResult.second;
7198 }
7199 
7200 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7201                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7202                                 MachineMemOperand *MMO) {
7203   FoldingSetNodeID ID;
7204   ID.AddInteger(MemVT.getRawBits());
7205   AddNodeIDNode(ID, Opcode, VTList, Ops);
7206   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7207   void* IP = nullptr;
7208   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7209     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7210     return SDValue(E, 0);
7211   }
7212 
7213   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7214                                     VTList, MemVT, MMO);
7215   createOperands(N, Ops);
7216 
7217   CSEMap.InsertNode(N, IP);
7218   InsertNode(N);
7219   return SDValue(N, 0);
7220 }
7221 
7222 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7223                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7224                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7225                                        MachineMemOperand *MMO) {
7226   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7227          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7228   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7229 
7230   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7231   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7232 }
7233 
7234 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7235                                 SDValue Chain, SDValue Ptr, SDValue Val,
7236                                 MachineMemOperand *MMO) {
7237   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7238           Opcode == ISD::ATOMIC_LOAD_SUB ||
7239           Opcode == ISD::ATOMIC_LOAD_AND ||
7240           Opcode == ISD::ATOMIC_LOAD_CLR ||
7241           Opcode == ISD::ATOMIC_LOAD_OR ||
7242           Opcode == ISD::ATOMIC_LOAD_XOR ||
7243           Opcode == ISD::ATOMIC_LOAD_NAND ||
7244           Opcode == ISD::ATOMIC_LOAD_MIN ||
7245           Opcode == ISD::ATOMIC_LOAD_MAX ||
7246           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7247           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7248           Opcode == ISD::ATOMIC_LOAD_FADD ||
7249           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7250           Opcode == ISD::ATOMIC_SWAP ||
7251           Opcode == ISD::ATOMIC_STORE) &&
7252          "Invalid Atomic Op");
7253 
7254   EVT VT = Val.getValueType();
7255 
7256   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7257                                                getVTList(VT, MVT::Other);
7258   SDValue Ops[] = {Chain, Ptr, Val};
7259   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7260 }
7261 
7262 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7263                                 EVT VT, SDValue Chain, SDValue Ptr,
7264                                 MachineMemOperand *MMO) {
7265   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7266 
7267   SDVTList VTs = getVTList(VT, MVT::Other);
7268   SDValue Ops[] = {Chain, Ptr};
7269   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7270 }
7271 
7272 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7273 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7274   if (Ops.size() == 1)
7275     return Ops[0];
7276 
7277   SmallVector<EVT, 4> VTs;
7278   VTs.reserve(Ops.size());
7279   for (const SDValue &Op : Ops)
7280     VTs.push_back(Op.getValueType());
7281   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7282 }
7283 
7284 SDValue SelectionDAG::getMemIntrinsicNode(
7285     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7286     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7287     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7288   if (!Size && MemVT.isScalableVector())
7289     Size = MemoryLocation::UnknownSize;
7290   else if (!Size)
7291     Size = MemVT.getStoreSize();
7292 
7293   MachineFunction &MF = getMachineFunction();
7294   MachineMemOperand *MMO =
7295       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7296 
7297   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7298 }
7299 
7300 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7301                                           SDVTList VTList,
7302                                           ArrayRef<SDValue> Ops, EVT MemVT,
7303                                           MachineMemOperand *MMO) {
7304   assert((Opcode == ISD::INTRINSIC_VOID ||
7305           Opcode == ISD::INTRINSIC_W_CHAIN ||
7306           Opcode == ISD::PREFETCH ||
7307           ((int)Opcode <= std::numeric_limits<int>::max() &&
7308            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7309          "Opcode is not a memory-accessing opcode!");
7310 
7311   // Memoize the node unless it returns a flag.
7312   MemIntrinsicSDNode *N;
7313   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7314     FoldingSetNodeID ID;
7315     AddNodeIDNode(ID, Opcode, VTList, Ops);
7316     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7317         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7318     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7319     void *IP = nullptr;
7320     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7321       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7322       return SDValue(E, 0);
7323     }
7324 
7325     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7326                                       VTList, MemVT, MMO);
7327     createOperands(N, Ops);
7328 
7329   CSEMap.InsertNode(N, IP);
7330   } else {
7331     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7332                                       VTList, MemVT, MMO);
7333     createOperands(N, Ops);
7334   }
7335   InsertNode(N);
7336   SDValue V(N, 0);
7337   NewSDValueDbgMsg(V, "Creating new node: ", this);
7338   return V;
7339 }
7340 
7341 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7342                                       SDValue Chain, int FrameIndex,
7343                                       int64_t Size, int64_t Offset) {
7344   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7345   const auto VTs = getVTList(MVT::Other);
7346   SDValue Ops[2] = {
7347       Chain,
7348       getFrameIndex(FrameIndex,
7349                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7350                     true)};
7351 
7352   FoldingSetNodeID ID;
7353   AddNodeIDNode(ID, Opcode, VTs, Ops);
7354   ID.AddInteger(FrameIndex);
7355   ID.AddInteger(Size);
7356   ID.AddInteger(Offset);
7357   void *IP = nullptr;
7358   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7359     return SDValue(E, 0);
7360 
7361   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7362       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7363   createOperands(N, Ops);
7364   CSEMap.InsertNode(N, IP);
7365   InsertNode(N);
7366   SDValue V(N, 0);
7367   NewSDValueDbgMsg(V, "Creating new node: ", this);
7368   return V;
7369 }
7370 
7371 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7372                                          uint64_t Guid, uint64_t Index,
7373                                          uint32_t Attr) {
7374   const unsigned Opcode = ISD::PSEUDO_PROBE;
7375   const auto VTs = getVTList(MVT::Other);
7376   SDValue Ops[] = {Chain};
7377   FoldingSetNodeID ID;
7378   AddNodeIDNode(ID, Opcode, VTs, Ops);
7379   ID.AddInteger(Guid);
7380   ID.AddInteger(Index);
7381   void *IP = nullptr;
7382   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7383     return SDValue(E, 0);
7384 
7385   auto *N = newSDNode<PseudoProbeSDNode>(
7386       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7387   createOperands(N, Ops);
7388   CSEMap.InsertNode(N, IP);
7389   InsertNode(N);
7390   SDValue V(N, 0);
7391   NewSDValueDbgMsg(V, "Creating new node: ", this);
7392   return V;
7393 }
7394 
7395 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7396 /// MachinePointerInfo record from it.  This is particularly useful because the
7397 /// code generator has many cases where it doesn't bother passing in a
7398 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7399 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7400                                            SelectionDAG &DAG, SDValue Ptr,
7401                                            int64_t Offset = 0) {
7402   // If this is FI+Offset, we can model it.
7403   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7404     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7405                                              FI->getIndex(), Offset);
7406 
7407   // If this is (FI+Offset1)+Offset2, we can model it.
7408   if (Ptr.getOpcode() != ISD::ADD ||
7409       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7410       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7411     return Info;
7412 
7413   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7414   return MachinePointerInfo::getFixedStack(
7415       DAG.getMachineFunction(), FI,
7416       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7417 }
7418 
7419 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7420 /// MachinePointerInfo record from it.  This is particularly useful because the
7421 /// code generator has many cases where it doesn't bother passing in a
7422 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7423 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7424                                            SelectionDAG &DAG, SDValue Ptr,
7425                                            SDValue OffsetOp) {
7426   // If the 'Offset' value isn't a constant, we can't handle this.
7427   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7428     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7429   if (OffsetOp.isUndef())
7430     return InferPointerInfo(Info, DAG, Ptr);
7431   return Info;
7432 }
7433 
7434 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7435                               EVT VT, const SDLoc &dl, SDValue Chain,
7436                               SDValue Ptr, SDValue Offset,
7437                               MachinePointerInfo PtrInfo, EVT MemVT,
7438                               Align Alignment,
7439                               MachineMemOperand::Flags MMOFlags,
7440                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7441   assert(Chain.getValueType() == MVT::Other &&
7442         "Invalid chain type");
7443 
7444   MMOFlags |= MachineMemOperand::MOLoad;
7445   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7446   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7447   // clients.
7448   if (PtrInfo.V.isNull())
7449     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7450 
7451   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7452   MachineFunction &MF = getMachineFunction();
7453   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7454                                                    Alignment, AAInfo, Ranges);
7455   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7456 }
7457 
7458 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7459                               EVT VT, const SDLoc &dl, SDValue Chain,
7460                               SDValue Ptr, SDValue Offset, EVT MemVT,
7461                               MachineMemOperand *MMO) {
7462   if (VT == MemVT) {
7463     ExtType = ISD::NON_EXTLOAD;
7464   } else if (ExtType == ISD::NON_EXTLOAD) {
7465     assert(VT == MemVT && "Non-extending load from different memory type!");
7466   } else {
7467     // Extending load.
7468     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7469            "Should only be an extending load, not truncating!");
7470     assert(VT.isInteger() == MemVT.isInteger() &&
7471            "Cannot convert from FP to Int or Int -> FP!");
7472     assert(VT.isVector() == MemVT.isVector() &&
7473            "Cannot use an ext load to convert to or from a vector!");
7474     assert((!VT.isVector() ||
7475             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7476            "Cannot use an ext load to change the number of vector elements!");
7477   }
7478 
7479   bool Indexed = AM != ISD::UNINDEXED;
7480   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7481 
7482   SDVTList VTs = Indexed ?
7483     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7484   SDValue Ops[] = { Chain, Ptr, Offset };
7485   FoldingSetNodeID ID;
7486   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7487   ID.AddInteger(MemVT.getRawBits());
7488   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7489       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7490   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7491   void *IP = nullptr;
7492   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7493     cast<LoadSDNode>(E)->refineAlignment(MMO);
7494     return SDValue(E, 0);
7495   }
7496   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7497                                   ExtType, MemVT, MMO);
7498   createOperands(N, Ops);
7499 
7500   CSEMap.InsertNode(N, IP);
7501   InsertNode(N);
7502   SDValue V(N, 0);
7503   NewSDValueDbgMsg(V, "Creating new node: ", this);
7504   return V;
7505 }
7506 
7507 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7508                               SDValue Ptr, MachinePointerInfo PtrInfo,
7509                               MaybeAlign Alignment,
7510                               MachineMemOperand::Flags MMOFlags,
7511                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7512   SDValue Undef = getUNDEF(Ptr.getValueType());
7513   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7514                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7515 }
7516 
7517 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7518                               SDValue Ptr, MachineMemOperand *MMO) {
7519   SDValue Undef = getUNDEF(Ptr.getValueType());
7520   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7521                  VT, MMO);
7522 }
7523 
7524 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7525                                  EVT VT, SDValue Chain, SDValue Ptr,
7526                                  MachinePointerInfo PtrInfo, EVT MemVT,
7527                                  MaybeAlign Alignment,
7528                                  MachineMemOperand::Flags MMOFlags,
7529                                  const AAMDNodes &AAInfo) {
7530   SDValue Undef = getUNDEF(Ptr.getValueType());
7531   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7532                  MemVT, Alignment, MMOFlags, AAInfo);
7533 }
7534 
7535 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7536                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7537                                  MachineMemOperand *MMO) {
7538   SDValue Undef = getUNDEF(Ptr.getValueType());
7539   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7540                  MemVT, MMO);
7541 }
7542 
7543 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7544                                      SDValue Base, SDValue Offset,
7545                                      ISD::MemIndexedMode AM) {
7546   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7547   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7548   // Don't propagate the invariant or dereferenceable flags.
7549   auto MMOFlags =
7550       LD->getMemOperand()->getFlags() &
7551       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7552   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7553                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7554                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7555 }
7556 
7557 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7558                                SDValue Ptr, MachinePointerInfo PtrInfo,
7559                                Align Alignment,
7560                                MachineMemOperand::Flags MMOFlags,
7561                                const AAMDNodes &AAInfo) {
7562   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7563 
7564   MMOFlags |= MachineMemOperand::MOStore;
7565   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7566 
7567   if (PtrInfo.V.isNull())
7568     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7569 
7570   MachineFunction &MF = getMachineFunction();
7571   uint64_t Size =
7572       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7573   MachineMemOperand *MMO =
7574       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7575   return getStore(Chain, dl, Val, Ptr, MMO);
7576 }
7577 
7578 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7579                                SDValue Ptr, MachineMemOperand *MMO) {
7580   assert(Chain.getValueType() == MVT::Other &&
7581         "Invalid chain type");
7582   EVT VT = Val.getValueType();
7583   SDVTList VTs = getVTList(MVT::Other);
7584   SDValue Undef = getUNDEF(Ptr.getValueType());
7585   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7586   FoldingSetNodeID ID;
7587   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7588   ID.AddInteger(VT.getRawBits());
7589   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7590       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7591   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7592   void *IP = nullptr;
7593   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7594     cast<StoreSDNode>(E)->refineAlignment(MMO);
7595     return SDValue(E, 0);
7596   }
7597   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7598                                    ISD::UNINDEXED, false, VT, MMO);
7599   createOperands(N, Ops);
7600 
7601   CSEMap.InsertNode(N, IP);
7602   InsertNode(N);
7603   SDValue V(N, 0);
7604   NewSDValueDbgMsg(V, "Creating new node: ", this);
7605   return V;
7606 }
7607 
7608 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7609                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7610                                     EVT SVT, Align Alignment,
7611                                     MachineMemOperand::Flags MMOFlags,
7612                                     const AAMDNodes &AAInfo) {
7613   assert(Chain.getValueType() == MVT::Other &&
7614         "Invalid chain type");
7615 
7616   MMOFlags |= MachineMemOperand::MOStore;
7617   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7618 
7619   if (PtrInfo.V.isNull())
7620     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7621 
7622   MachineFunction &MF = getMachineFunction();
7623   MachineMemOperand *MMO = MF.getMachineMemOperand(
7624       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7625       Alignment, AAInfo);
7626   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7627 }
7628 
7629 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7630                                     SDValue Ptr, EVT SVT,
7631                                     MachineMemOperand *MMO) {
7632   EVT VT = Val.getValueType();
7633 
7634   assert(Chain.getValueType() == MVT::Other &&
7635         "Invalid chain type");
7636   if (VT == SVT)
7637     return getStore(Chain, dl, Val, Ptr, MMO);
7638 
7639   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7640          "Should only be a truncating store, not extending!");
7641   assert(VT.isInteger() == SVT.isInteger() &&
7642          "Can't do FP-INT conversion!");
7643   assert(VT.isVector() == SVT.isVector() &&
7644          "Cannot use trunc store to convert to or from a vector!");
7645   assert((!VT.isVector() ||
7646           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7647          "Cannot use trunc store to change the number of vector elements!");
7648 
7649   SDVTList VTs = getVTList(MVT::Other);
7650   SDValue Undef = getUNDEF(Ptr.getValueType());
7651   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7652   FoldingSetNodeID ID;
7653   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7654   ID.AddInteger(SVT.getRawBits());
7655   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7656       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7657   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7658   void *IP = nullptr;
7659   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7660     cast<StoreSDNode>(E)->refineAlignment(MMO);
7661     return SDValue(E, 0);
7662   }
7663   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7664                                    ISD::UNINDEXED, true, SVT, MMO);
7665   createOperands(N, Ops);
7666 
7667   CSEMap.InsertNode(N, IP);
7668   InsertNode(N);
7669   SDValue V(N, 0);
7670   NewSDValueDbgMsg(V, "Creating new node: ", this);
7671   return V;
7672 }
7673 
7674 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7675                                       SDValue Base, SDValue Offset,
7676                                       ISD::MemIndexedMode AM) {
7677   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7678   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7679   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7680   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7681   FoldingSetNodeID ID;
7682   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7683   ID.AddInteger(ST->getMemoryVT().getRawBits());
7684   ID.AddInteger(ST->getRawSubclassData());
7685   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7686   void *IP = nullptr;
7687   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7688     return SDValue(E, 0);
7689 
7690   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7691                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7692                                    ST->getMemOperand());
7693   createOperands(N, Ops);
7694 
7695   CSEMap.InsertNode(N, IP);
7696   InsertNode(N);
7697   SDValue V(N, 0);
7698   NewSDValueDbgMsg(V, "Creating new node: ", this);
7699   return V;
7700 }
7701 
7702 SDValue SelectionDAG::getLoadVP(
7703     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7704     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7705     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7706     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7707     const MDNode *Ranges, bool IsExpanding) {
7708   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7709 
7710   MMOFlags |= MachineMemOperand::MOLoad;
7711   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7712   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7713   // clients.
7714   if (PtrInfo.V.isNull())
7715     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7716 
7717   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7718   MachineFunction &MF = getMachineFunction();
7719   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7720                                                    Alignment, AAInfo, Ranges);
7721   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7722                    MMO, IsExpanding);
7723 }
7724 
7725 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7726                                 ISD::LoadExtType ExtType, EVT VT,
7727                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7728                                 SDValue Offset, SDValue Mask, SDValue EVL,
7729                                 EVT MemVT, MachineMemOperand *MMO,
7730                                 bool IsExpanding) {
7731   bool Indexed = AM != ISD::UNINDEXED;
7732   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7733 
7734   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7735                          : getVTList(VT, MVT::Other);
7736   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7737   FoldingSetNodeID ID;
7738   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7739   ID.AddInteger(VT.getRawBits());
7740   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7741       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7742   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7743   void *IP = nullptr;
7744   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7745     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7746     return SDValue(E, 0);
7747   }
7748   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7749                                     ExtType, IsExpanding, MemVT, MMO);
7750   createOperands(N, Ops);
7751 
7752   CSEMap.InsertNode(N, IP);
7753   InsertNode(N);
7754   SDValue V(N, 0);
7755   NewSDValueDbgMsg(V, "Creating new node: ", this);
7756   return V;
7757 }
7758 
7759 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7760                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7761                                 MachinePointerInfo PtrInfo,
7762                                 MaybeAlign Alignment,
7763                                 MachineMemOperand::Flags MMOFlags,
7764                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7765                                 bool IsExpanding) {
7766   SDValue Undef = getUNDEF(Ptr.getValueType());
7767   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7768                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7769                    IsExpanding);
7770 }
7771 
7772 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7773                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7774                                 MachineMemOperand *MMO, bool IsExpanding) {
7775   SDValue Undef = getUNDEF(Ptr.getValueType());
7776   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7777                    Mask, EVL, VT, MMO, IsExpanding);
7778 }
7779 
7780 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7781                                    EVT VT, SDValue Chain, SDValue Ptr,
7782                                    SDValue Mask, SDValue EVL,
7783                                    MachinePointerInfo PtrInfo, EVT MemVT,
7784                                    MaybeAlign Alignment,
7785                                    MachineMemOperand::Flags MMOFlags,
7786                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7787   SDValue Undef = getUNDEF(Ptr.getValueType());
7788   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7789                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7790                    IsExpanding);
7791 }
7792 
7793 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7794                                    EVT VT, SDValue Chain, SDValue Ptr,
7795                                    SDValue Mask, SDValue EVL, EVT MemVT,
7796                                    MachineMemOperand *MMO, bool IsExpanding) {
7797   SDValue Undef = getUNDEF(Ptr.getValueType());
7798   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7799                    EVL, MemVT, MMO, IsExpanding);
7800 }
7801 
7802 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7803                                        SDValue Base, SDValue Offset,
7804                                        ISD::MemIndexedMode AM) {
7805   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7806   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7807   // Don't propagate the invariant or dereferenceable flags.
7808   auto MMOFlags =
7809       LD->getMemOperand()->getFlags() &
7810       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7811   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7812                    LD->getChain(), Base, Offset, LD->getMask(),
7813                    LD->getVectorLength(), LD->getPointerInfo(),
7814                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7815                    nullptr, LD->isExpandingLoad());
7816 }
7817 
7818 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7819                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7820                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7821                                  ISD::MemIndexedMode AM, bool IsTruncating,
7822                                  bool IsCompressing) {
7823   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7824   bool Indexed = AM != ISD::UNINDEXED;
7825   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7826   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7827                          : getVTList(MVT::Other);
7828   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
7829   FoldingSetNodeID ID;
7830   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7831   ID.AddInteger(MemVT.getRawBits());
7832   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7833       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7834   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7835   void *IP = nullptr;
7836   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7837     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7838     return SDValue(E, 0);
7839   }
7840   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7841                                      IsTruncating, IsCompressing, MemVT, MMO);
7842   createOperands(N, Ops);
7843 
7844   CSEMap.InsertNode(N, IP);
7845   InsertNode(N);
7846   SDValue V(N, 0);
7847   NewSDValueDbgMsg(V, "Creating new node: ", this);
7848   return V;
7849 }
7850 
7851 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7852                                       SDValue Val, SDValue Ptr, SDValue Mask,
7853                                       SDValue EVL, MachinePointerInfo PtrInfo,
7854                                       EVT SVT, Align Alignment,
7855                                       MachineMemOperand::Flags MMOFlags,
7856                                       const AAMDNodes &AAInfo,
7857                                       bool IsCompressing) {
7858   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7859 
7860   MMOFlags |= MachineMemOperand::MOStore;
7861   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7862 
7863   if (PtrInfo.V.isNull())
7864     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7865 
7866   MachineFunction &MF = getMachineFunction();
7867   MachineMemOperand *MMO = MF.getMachineMemOperand(
7868       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7869       Alignment, AAInfo);
7870   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7871                          IsCompressing);
7872 }
7873 
7874 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7875                                       SDValue Val, SDValue Ptr, SDValue Mask,
7876                                       SDValue EVL, EVT SVT,
7877                                       MachineMemOperand *MMO,
7878                                       bool IsCompressing) {
7879   EVT VT = Val.getValueType();
7880 
7881   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7882   if (VT == SVT)
7883     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
7884                       EVL, VT, MMO, ISD::UNINDEXED,
7885                       /*IsTruncating*/ false, IsCompressing);
7886 
7887   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7888          "Should only be a truncating store, not extending!");
7889   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7890   assert(VT.isVector() == SVT.isVector() &&
7891          "Cannot use trunc store to convert to or from a vector!");
7892   assert((!VT.isVector() ||
7893           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7894          "Cannot use trunc store to change the number of vector elements!");
7895 
7896   SDVTList VTs = getVTList(MVT::Other);
7897   SDValue Undef = getUNDEF(Ptr.getValueType());
7898   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7899   FoldingSetNodeID ID;
7900   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7901   ID.AddInteger(SVT.getRawBits());
7902   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7903       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7904   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7905   void *IP = nullptr;
7906   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7907     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7908     return SDValue(E, 0);
7909   }
7910   auto *N =
7911       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7912                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7913   createOperands(N, Ops);
7914 
7915   CSEMap.InsertNode(N, IP);
7916   InsertNode(N);
7917   SDValue V(N, 0);
7918   NewSDValueDbgMsg(V, "Creating new node: ", this);
7919   return V;
7920 }
7921 
7922 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7923                                         SDValue Base, SDValue Offset,
7924                                         ISD::MemIndexedMode AM) {
7925   auto *ST = cast<VPStoreSDNode>(OrigStore);
7926   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7927   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7928   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7929                    Offset,         ST->getMask(),  ST->getVectorLength()};
7930   FoldingSetNodeID ID;
7931   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7932   ID.AddInteger(ST->getMemoryVT().getRawBits());
7933   ID.AddInteger(ST->getRawSubclassData());
7934   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7935   void *IP = nullptr;
7936   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7937     return SDValue(E, 0);
7938 
7939   auto *N = newSDNode<VPStoreSDNode>(
7940       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7941       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7942   createOperands(N, Ops);
7943 
7944   CSEMap.InsertNode(N, IP);
7945   InsertNode(N);
7946   SDValue V(N, 0);
7947   NewSDValueDbgMsg(V, "Creating new node: ", this);
7948   return V;
7949 }
7950 
7951 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7952                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7953                                   ISD::MemIndexType IndexType) {
7954   assert(Ops.size() == 6 && "Incompatible number of operands");
7955 
7956   FoldingSetNodeID ID;
7957   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7958   ID.AddInteger(VT.getRawBits());
7959   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7960       dl.getIROrder(), VTs, VT, MMO, IndexType));
7961   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7962   void *IP = nullptr;
7963   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7964     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7965     return SDValue(E, 0);
7966   }
7967 
7968   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7969                                       VT, MMO, IndexType);
7970   createOperands(N, Ops);
7971 
7972   assert(N->getMask().getValueType().getVectorElementCount() ==
7973              N->getValueType(0).getVectorElementCount() &&
7974          "Vector width mismatch between mask and data");
7975   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7976              N->getValueType(0).getVectorElementCount().isScalable() &&
7977          "Scalable flags of index and data do not match");
7978   assert(ElementCount::isKnownGE(
7979              N->getIndex().getValueType().getVectorElementCount(),
7980              N->getValueType(0).getVectorElementCount()) &&
7981          "Vector width mismatch between index and data");
7982   assert(isa<ConstantSDNode>(N->getScale()) &&
7983          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7984          "Scale should be a constant power of 2");
7985 
7986   CSEMap.InsertNode(N, IP);
7987   InsertNode(N);
7988   SDValue V(N, 0);
7989   NewSDValueDbgMsg(V, "Creating new node: ", this);
7990   return V;
7991 }
7992 
7993 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7994                                    ArrayRef<SDValue> Ops,
7995                                    MachineMemOperand *MMO,
7996                                    ISD::MemIndexType IndexType) {
7997   assert(Ops.size() == 7 && "Incompatible number of operands");
7998 
7999   FoldingSetNodeID ID;
8000   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8001   ID.AddInteger(VT.getRawBits());
8002   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8003       dl.getIROrder(), VTs, VT, MMO, IndexType));
8004   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8005   void *IP = nullptr;
8006   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8007     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8008     return SDValue(E, 0);
8009   }
8010   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8011                                        VT, MMO, IndexType);
8012   createOperands(N, Ops);
8013 
8014   assert(N->getMask().getValueType().getVectorElementCount() ==
8015              N->getValue().getValueType().getVectorElementCount() &&
8016          "Vector width mismatch between mask and data");
8017   assert(
8018       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8019           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8020       "Scalable flags of index and data do not match");
8021   assert(ElementCount::isKnownGE(
8022              N->getIndex().getValueType().getVectorElementCount(),
8023              N->getValue().getValueType().getVectorElementCount()) &&
8024          "Vector width mismatch between index and data");
8025   assert(isa<ConstantSDNode>(N->getScale()) &&
8026          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8027          "Scale should be a constant power of 2");
8028 
8029   CSEMap.InsertNode(N, IP);
8030   InsertNode(N);
8031   SDValue V(N, 0);
8032   NewSDValueDbgMsg(V, "Creating new node: ", this);
8033   return V;
8034 }
8035 
8036 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8037                                     SDValue Base, SDValue Offset, SDValue Mask,
8038                                     SDValue PassThru, EVT MemVT,
8039                                     MachineMemOperand *MMO,
8040                                     ISD::MemIndexedMode AM,
8041                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8042   bool Indexed = AM != ISD::UNINDEXED;
8043   assert((Indexed || Offset.isUndef()) &&
8044          "Unindexed masked load with an offset!");
8045   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8046                          : getVTList(VT, MVT::Other);
8047   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8048   FoldingSetNodeID ID;
8049   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8050   ID.AddInteger(MemVT.getRawBits());
8051   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8052       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8053   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8054   void *IP = nullptr;
8055   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8056     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8057     return SDValue(E, 0);
8058   }
8059   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8060                                         AM, ExtTy, isExpanding, MemVT, MMO);
8061   createOperands(N, Ops);
8062 
8063   CSEMap.InsertNode(N, IP);
8064   InsertNode(N);
8065   SDValue V(N, 0);
8066   NewSDValueDbgMsg(V, "Creating new node: ", this);
8067   return V;
8068 }
8069 
8070 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8071                                            SDValue Base, SDValue Offset,
8072                                            ISD::MemIndexedMode AM) {
8073   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8074   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8075   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8076                        Offset, LD->getMask(), LD->getPassThru(),
8077                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8078                        LD->getExtensionType(), LD->isExpandingLoad());
8079 }
8080 
8081 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8082                                      SDValue Val, SDValue Base, SDValue Offset,
8083                                      SDValue Mask, EVT MemVT,
8084                                      MachineMemOperand *MMO,
8085                                      ISD::MemIndexedMode AM, bool IsTruncating,
8086                                      bool IsCompressing) {
8087   assert(Chain.getValueType() == MVT::Other &&
8088         "Invalid chain type");
8089   bool Indexed = AM != ISD::UNINDEXED;
8090   assert((Indexed || Offset.isUndef()) &&
8091          "Unindexed masked store with an offset!");
8092   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8093                          : getVTList(MVT::Other);
8094   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8095   FoldingSetNodeID ID;
8096   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8097   ID.AddInteger(MemVT.getRawBits());
8098   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8099       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8100   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8101   void *IP = nullptr;
8102   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8103     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8104     return SDValue(E, 0);
8105   }
8106   auto *N =
8107       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8108                                    IsTruncating, IsCompressing, MemVT, MMO);
8109   createOperands(N, Ops);
8110 
8111   CSEMap.InsertNode(N, IP);
8112   InsertNode(N);
8113   SDValue V(N, 0);
8114   NewSDValueDbgMsg(V, "Creating new node: ", this);
8115   return V;
8116 }
8117 
8118 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8119                                             SDValue Base, SDValue Offset,
8120                                             ISD::MemIndexedMode AM) {
8121   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8122   assert(ST->getOffset().isUndef() &&
8123          "Masked store is already a indexed store!");
8124   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8125                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8126                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8127 }
8128 
8129 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8130                                       ArrayRef<SDValue> Ops,
8131                                       MachineMemOperand *MMO,
8132                                       ISD::MemIndexType IndexType,
8133                                       ISD::LoadExtType ExtTy) {
8134   assert(Ops.size() == 6 && "Incompatible number of operands");
8135 
8136   FoldingSetNodeID ID;
8137   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8138   ID.AddInteger(MemVT.getRawBits());
8139   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8140       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8141   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8142   void *IP = nullptr;
8143   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8144     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8145     return SDValue(E, 0);
8146   }
8147 
8148   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8149   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8150                                           VTs, MemVT, MMO, IndexType, ExtTy);
8151   createOperands(N, Ops);
8152 
8153   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8154          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8155   assert(N->getMask().getValueType().getVectorElementCount() ==
8156              N->getValueType(0).getVectorElementCount() &&
8157          "Vector width mismatch between mask and data");
8158   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8159              N->getValueType(0).getVectorElementCount().isScalable() &&
8160          "Scalable flags of index and data do not match");
8161   assert(ElementCount::isKnownGE(
8162              N->getIndex().getValueType().getVectorElementCount(),
8163              N->getValueType(0).getVectorElementCount()) &&
8164          "Vector width mismatch between index and data");
8165   assert(isa<ConstantSDNode>(N->getScale()) &&
8166          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8167          "Scale should be a constant power of 2");
8168 
8169   CSEMap.InsertNode(N, IP);
8170   InsertNode(N);
8171   SDValue V(N, 0);
8172   NewSDValueDbgMsg(V, "Creating new node: ", this);
8173   return V;
8174 }
8175 
8176 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8177                                        ArrayRef<SDValue> Ops,
8178                                        MachineMemOperand *MMO,
8179                                        ISD::MemIndexType IndexType,
8180                                        bool IsTrunc) {
8181   assert(Ops.size() == 6 && "Incompatible number of operands");
8182 
8183   FoldingSetNodeID ID;
8184   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8185   ID.AddInteger(MemVT.getRawBits());
8186   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8187       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8188   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8189   void *IP = nullptr;
8190   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8191     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8192     return SDValue(E, 0);
8193   }
8194 
8195   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8196   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8197                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8198   createOperands(N, Ops);
8199 
8200   assert(N->getMask().getValueType().getVectorElementCount() ==
8201              N->getValue().getValueType().getVectorElementCount() &&
8202          "Vector width mismatch between mask and data");
8203   assert(
8204       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8205           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8206       "Scalable flags of index and data do not match");
8207   assert(ElementCount::isKnownGE(
8208              N->getIndex().getValueType().getVectorElementCount(),
8209              N->getValue().getValueType().getVectorElementCount()) &&
8210          "Vector width mismatch between index and data");
8211   assert(isa<ConstantSDNode>(N->getScale()) &&
8212          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8213          "Scale should be a constant power of 2");
8214 
8215   CSEMap.InsertNode(N, IP);
8216   InsertNode(N);
8217   SDValue V(N, 0);
8218   NewSDValueDbgMsg(V, "Creating new node: ", this);
8219   return V;
8220 }
8221 
8222 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8223   // select undef, T, F --> T (if T is a constant), otherwise F
8224   // select, ?, undef, F --> F
8225   // select, ?, T, undef --> T
8226   if (Cond.isUndef())
8227     return isConstantValueOfAnyType(T) ? T : F;
8228   if (T.isUndef())
8229     return F;
8230   if (F.isUndef())
8231     return T;
8232 
8233   // select true, T, F --> T
8234   // select false, T, F --> F
8235   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8236     return CondC->isZero() ? F : T;
8237 
8238   // TODO: This should simplify VSELECT with constant condition using something
8239   // like this (but check boolean contents to be complete?):
8240   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8241   //    return T;
8242   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8243   //    return F;
8244 
8245   // select ?, T, T --> T
8246   if (T == F)
8247     return T;
8248 
8249   return SDValue();
8250 }
8251 
8252 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8253   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8254   if (X.isUndef())
8255     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8256   // shift X, undef --> undef (because it may shift by the bitwidth)
8257   if (Y.isUndef())
8258     return getUNDEF(X.getValueType());
8259 
8260   // shift 0, Y --> 0
8261   // shift X, 0 --> X
8262   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8263     return X;
8264 
8265   // shift X, C >= bitwidth(X) --> undef
8266   // All vector elements must be too big (or undef) to avoid partial undefs.
8267   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8268     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8269   };
8270   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8271     return getUNDEF(X.getValueType());
8272 
8273   return SDValue();
8274 }
8275 
8276 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8277                                       SDNodeFlags Flags) {
8278   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8279   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8280   // operation is poison. That result can be relaxed to undef.
8281   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8282   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8283   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8284                 (YC && YC->getValueAPF().isNaN());
8285   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8286                 (YC && YC->getValueAPF().isInfinity());
8287 
8288   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8289     return getUNDEF(X.getValueType());
8290 
8291   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8292     return getUNDEF(X.getValueType());
8293 
8294   if (!YC)
8295     return SDValue();
8296 
8297   // X + -0.0 --> X
8298   if (Opcode == ISD::FADD)
8299     if (YC->getValueAPF().isNegZero())
8300       return X;
8301 
8302   // X - +0.0 --> X
8303   if (Opcode == ISD::FSUB)
8304     if (YC->getValueAPF().isPosZero())
8305       return X;
8306 
8307   // X * 1.0 --> X
8308   // X / 1.0 --> X
8309   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8310     if (YC->getValueAPF().isExactlyValue(1.0))
8311       return X;
8312 
8313   // X * 0.0 --> 0.0
8314   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8315     if (YC->getValueAPF().isZero())
8316       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8317 
8318   return SDValue();
8319 }
8320 
8321 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8322                                SDValue Ptr, SDValue SV, unsigned Align) {
8323   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8324   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8325 }
8326 
8327 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8328                               ArrayRef<SDUse> Ops) {
8329   switch (Ops.size()) {
8330   case 0: return getNode(Opcode, DL, VT);
8331   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8332   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8333   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8334   default: break;
8335   }
8336 
8337   // Copy from an SDUse array into an SDValue array for use with
8338   // the regular getNode logic.
8339   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8340   return getNode(Opcode, DL, VT, NewOps);
8341 }
8342 
8343 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8344                               ArrayRef<SDValue> Ops) {
8345   SDNodeFlags Flags;
8346   if (Inserter)
8347     Flags = Inserter->getFlags();
8348   return getNode(Opcode, DL, VT, Ops, Flags);
8349 }
8350 
8351 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8352                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8353   unsigned NumOps = Ops.size();
8354   switch (NumOps) {
8355   case 0: return getNode(Opcode, DL, VT);
8356   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8357   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8358   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8359   default: break;
8360   }
8361 
8362 #ifndef NDEBUG
8363   for (auto &Op : Ops)
8364     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8365            "Operand is DELETED_NODE!");
8366 #endif
8367 
8368   switch (Opcode) {
8369   default: break;
8370   case ISD::BUILD_VECTOR:
8371     // Attempt to simplify BUILD_VECTOR.
8372     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8373       return V;
8374     break;
8375   case ISD::CONCAT_VECTORS:
8376     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8377       return V;
8378     break;
8379   case ISD::SELECT_CC:
8380     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8381     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8382            "LHS and RHS of condition must have same type!");
8383     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8384            "True and False arms of SelectCC must have same type!");
8385     assert(Ops[2].getValueType() == VT &&
8386            "select_cc node must be of same type as true and false value!");
8387     break;
8388   case ISD::BR_CC:
8389     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8390     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8391            "LHS/RHS of comparison should match types!");
8392     break;
8393   }
8394 
8395   // Memoize nodes.
8396   SDNode *N;
8397   SDVTList VTs = getVTList(VT);
8398 
8399   if (VT != MVT::Glue) {
8400     FoldingSetNodeID ID;
8401     AddNodeIDNode(ID, Opcode, VTs, Ops);
8402     void *IP = nullptr;
8403 
8404     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8405       return SDValue(E, 0);
8406 
8407     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8408     createOperands(N, Ops);
8409 
8410     CSEMap.InsertNode(N, IP);
8411   } else {
8412     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8413     createOperands(N, Ops);
8414   }
8415 
8416   N->setFlags(Flags);
8417   InsertNode(N);
8418   SDValue V(N, 0);
8419   NewSDValueDbgMsg(V, "Creating new node: ", this);
8420   return V;
8421 }
8422 
8423 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8424                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8425   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8426 }
8427 
8428 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8429                               ArrayRef<SDValue> Ops) {
8430   SDNodeFlags Flags;
8431   if (Inserter)
8432     Flags = Inserter->getFlags();
8433   return getNode(Opcode, DL, VTList, Ops, Flags);
8434 }
8435 
8436 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8437                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8438   if (VTList.NumVTs == 1)
8439     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8440 
8441 #ifndef NDEBUG
8442   for (auto &Op : Ops)
8443     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8444            "Operand is DELETED_NODE!");
8445 #endif
8446 
8447   switch (Opcode) {
8448   case ISD::STRICT_FP_EXTEND:
8449     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8450            "Invalid STRICT_FP_EXTEND!");
8451     assert(VTList.VTs[0].isFloatingPoint() &&
8452            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8453     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8454            "STRICT_FP_EXTEND result type should be vector iff the operand "
8455            "type is vector!");
8456     assert((!VTList.VTs[0].isVector() ||
8457             VTList.VTs[0].getVectorNumElements() ==
8458             Ops[1].getValueType().getVectorNumElements()) &&
8459            "Vector element count mismatch!");
8460     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8461            "Invalid fpext node, dst <= src!");
8462     break;
8463   case ISD::STRICT_FP_ROUND:
8464     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8465     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8466            "STRICT_FP_ROUND result type should be vector iff the operand "
8467            "type is vector!");
8468     assert((!VTList.VTs[0].isVector() ||
8469             VTList.VTs[0].getVectorNumElements() ==
8470             Ops[1].getValueType().getVectorNumElements()) &&
8471            "Vector element count mismatch!");
8472     assert(VTList.VTs[0].isFloatingPoint() &&
8473            Ops[1].getValueType().isFloatingPoint() &&
8474            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8475            isa<ConstantSDNode>(Ops[2]) &&
8476            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8477             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8478            "Invalid STRICT_FP_ROUND!");
8479     break;
8480 #if 0
8481   // FIXME: figure out how to safely handle things like
8482   // int foo(int x) { return 1 << (x & 255); }
8483   // int bar() { return foo(256); }
8484   case ISD::SRA_PARTS:
8485   case ISD::SRL_PARTS:
8486   case ISD::SHL_PARTS:
8487     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8488         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8489       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8490     else if (N3.getOpcode() == ISD::AND)
8491       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8492         // If the and is only masking out bits that cannot effect the shift,
8493         // eliminate the and.
8494         unsigned NumBits = VT.getScalarSizeInBits()*2;
8495         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8496           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8497       }
8498     break;
8499 #endif
8500   }
8501 
8502   // Memoize the node unless it returns a flag.
8503   SDNode *N;
8504   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8505     FoldingSetNodeID ID;
8506     AddNodeIDNode(ID, Opcode, VTList, Ops);
8507     void *IP = nullptr;
8508     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8509       return SDValue(E, 0);
8510 
8511     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8512     createOperands(N, Ops);
8513     CSEMap.InsertNode(N, IP);
8514   } else {
8515     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8516     createOperands(N, Ops);
8517   }
8518 
8519   N->setFlags(Flags);
8520   InsertNode(N);
8521   SDValue V(N, 0);
8522   NewSDValueDbgMsg(V, "Creating new node: ", this);
8523   return V;
8524 }
8525 
8526 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8527                               SDVTList VTList) {
8528   return getNode(Opcode, DL, VTList, None);
8529 }
8530 
8531 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8532                               SDValue N1) {
8533   SDValue Ops[] = { N1 };
8534   return getNode(Opcode, DL, VTList, Ops);
8535 }
8536 
8537 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8538                               SDValue N1, SDValue N2) {
8539   SDValue Ops[] = { N1, N2 };
8540   return getNode(Opcode, DL, VTList, Ops);
8541 }
8542 
8543 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8544                               SDValue N1, SDValue N2, SDValue N3) {
8545   SDValue Ops[] = { N1, N2, N3 };
8546   return getNode(Opcode, DL, VTList, Ops);
8547 }
8548 
8549 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8550                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8551   SDValue Ops[] = { N1, N2, N3, N4 };
8552   return getNode(Opcode, DL, VTList, Ops);
8553 }
8554 
8555 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8556                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8557                               SDValue N5) {
8558   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8559   return getNode(Opcode, DL, VTList, Ops);
8560 }
8561 
8562 SDVTList SelectionDAG::getVTList(EVT VT) {
8563   return makeVTList(SDNode::getValueTypeList(VT), 1);
8564 }
8565 
8566 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8567   FoldingSetNodeID ID;
8568   ID.AddInteger(2U);
8569   ID.AddInteger(VT1.getRawBits());
8570   ID.AddInteger(VT2.getRawBits());
8571 
8572   void *IP = nullptr;
8573   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8574   if (!Result) {
8575     EVT *Array = Allocator.Allocate<EVT>(2);
8576     Array[0] = VT1;
8577     Array[1] = VT2;
8578     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8579     VTListMap.InsertNode(Result, IP);
8580   }
8581   return Result->getSDVTList();
8582 }
8583 
8584 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8585   FoldingSetNodeID ID;
8586   ID.AddInteger(3U);
8587   ID.AddInteger(VT1.getRawBits());
8588   ID.AddInteger(VT2.getRawBits());
8589   ID.AddInteger(VT3.getRawBits());
8590 
8591   void *IP = nullptr;
8592   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8593   if (!Result) {
8594     EVT *Array = Allocator.Allocate<EVT>(3);
8595     Array[0] = VT1;
8596     Array[1] = VT2;
8597     Array[2] = VT3;
8598     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8599     VTListMap.InsertNode(Result, IP);
8600   }
8601   return Result->getSDVTList();
8602 }
8603 
8604 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8605   FoldingSetNodeID ID;
8606   ID.AddInteger(4U);
8607   ID.AddInteger(VT1.getRawBits());
8608   ID.AddInteger(VT2.getRawBits());
8609   ID.AddInteger(VT3.getRawBits());
8610   ID.AddInteger(VT4.getRawBits());
8611 
8612   void *IP = nullptr;
8613   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8614   if (!Result) {
8615     EVT *Array = Allocator.Allocate<EVT>(4);
8616     Array[0] = VT1;
8617     Array[1] = VT2;
8618     Array[2] = VT3;
8619     Array[3] = VT4;
8620     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8621     VTListMap.InsertNode(Result, IP);
8622   }
8623   return Result->getSDVTList();
8624 }
8625 
8626 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8627   unsigned NumVTs = VTs.size();
8628   FoldingSetNodeID ID;
8629   ID.AddInteger(NumVTs);
8630   for (unsigned index = 0; index < NumVTs; index++) {
8631     ID.AddInteger(VTs[index].getRawBits());
8632   }
8633 
8634   void *IP = nullptr;
8635   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8636   if (!Result) {
8637     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8638     llvm::copy(VTs, Array);
8639     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8640     VTListMap.InsertNode(Result, IP);
8641   }
8642   return Result->getSDVTList();
8643 }
8644 
8645 
8646 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8647 /// specified operands.  If the resultant node already exists in the DAG,
8648 /// this does not modify the specified node, instead it returns the node that
8649 /// already exists.  If the resultant node does not exist in the DAG, the
8650 /// input node is returned.  As a degenerate case, if you specify the same
8651 /// input operands as the node already has, the input node is returned.
8652 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8653   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8654 
8655   // Check to see if there is no change.
8656   if (Op == N->getOperand(0)) return N;
8657 
8658   // See if the modified node already exists.
8659   void *InsertPos = nullptr;
8660   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8661     return Existing;
8662 
8663   // Nope it doesn't.  Remove the node from its current place in the maps.
8664   if (InsertPos)
8665     if (!RemoveNodeFromCSEMaps(N))
8666       InsertPos = nullptr;
8667 
8668   // Now we update the operands.
8669   N->OperandList[0].set(Op);
8670 
8671   updateDivergence(N);
8672   // If this gets put into a CSE map, add it.
8673   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8674   return N;
8675 }
8676 
8677 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8678   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8679 
8680   // Check to see if there is no change.
8681   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8682     return N;   // No operands changed, just return the input node.
8683 
8684   // See if the modified node already exists.
8685   void *InsertPos = nullptr;
8686   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8687     return Existing;
8688 
8689   // Nope it doesn't.  Remove the node from its current place in the maps.
8690   if (InsertPos)
8691     if (!RemoveNodeFromCSEMaps(N))
8692       InsertPos = nullptr;
8693 
8694   // Now we update the operands.
8695   if (N->OperandList[0] != Op1)
8696     N->OperandList[0].set(Op1);
8697   if (N->OperandList[1] != Op2)
8698     N->OperandList[1].set(Op2);
8699 
8700   updateDivergence(N);
8701   // If this gets put into a CSE map, add it.
8702   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8703   return N;
8704 }
8705 
8706 SDNode *SelectionDAG::
8707 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8708   SDValue Ops[] = { Op1, Op2, Op3 };
8709   return UpdateNodeOperands(N, Ops);
8710 }
8711 
8712 SDNode *SelectionDAG::
8713 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8714                    SDValue Op3, SDValue Op4) {
8715   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8716   return UpdateNodeOperands(N, Ops);
8717 }
8718 
8719 SDNode *SelectionDAG::
8720 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8721                    SDValue Op3, SDValue Op4, SDValue Op5) {
8722   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8723   return UpdateNodeOperands(N, Ops);
8724 }
8725 
8726 SDNode *SelectionDAG::
8727 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8728   unsigned NumOps = Ops.size();
8729   assert(N->getNumOperands() == NumOps &&
8730          "Update with wrong number of operands");
8731 
8732   // If no operands changed just return the input node.
8733   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8734     return N;
8735 
8736   // See if the modified node already exists.
8737   void *InsertPos = nullptr;
8738   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8739     return Existing;
8740 
8741   // Nope it doesn't.  Remove the node from its current place in the maps.
8742   if (InsertPos)
8743     if (!RemoveNodeFromCSEMaps(N))
8744       InsertPos = nullptr;
8745 
8746   // Now we update the operands.
8747   for (unsigned i = 0; i != NumOps; ++i)
8748     if (N->OperandList[i] != Ops[i])
8749       N->OperandList[i].set(Ops[i]);
8750 
8751   updateDivergence(N);
8752   // If this gets put into a CSE map, add it.
8753   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8754   return N;
8755 }
8756 
8757 /// DropOperands - Release the operands and set this node to have
8758 /// zero operands.
8759 void SDNode::DropOperands() {
8760   // Unlike the code in MorphNodeTo that does this, we don't need to
8761   // watch for dead nodes here.
8762   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8763     SDUse &Use = *I++;
8764     Use.set(SDValue());
8765   }
8766 }
8767 
8768 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8769                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8770   if (NewMemRefs.empty()) {
8771     N->clearMemRefs();
8772     return;
8773   }
8774 
8775   // Check if we can avoid allocating by storing a single reference directly.
8776   if (NewMemRefs.size() == 1) {
8777     N->MemRefs = NewMemRefs[0];
8778     N->NumMemRefs = 1;
8779     return;
8780   }
8781 
8782   MachineMemOperand **MemRefsBuffer =
8783       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8784   llvm::copy(NewMemRefs, MemRefsBuffer);
8785   N->MemRefs = MemRefsBuffer;
8786   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8787 }
8788 
8789 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8790 /// machine opcode.
8791 ///
8792 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8793                                    EVT VT) {
8794   SDVTList VTs = getVTList(VT);
8795   return SelectNodeTo(N, MachineOpc, VTs, None);
8796 }
8797 
8798 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8799                                    EVT VT, SDValue Op1) {
8800   SDVTList VTs = getVTList(VT);
8801   SDValue Ops[] = { Op1 };
8802   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8803 }
8804 
8805 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8806                                    EVT VT, SDValue Op1,
8807                                    SDValue Op2) {
8808   SDVTList VTs = getVTList(VT);
8809   SDValue Ops[] = { Op1, Op2 };
8810   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8811 }
8812 
8813 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8814                                    EVT VT, SDValue Op1,
8815                                    SDValue Op2, SDValue Op3) {
8816   SDVTList VTs = getVTList(VT);
8817   SDValue Ops[] = { Op1, Op2, Op3 };
8818   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8819 }
8820 
8821 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8822                                    EVT VT, ArrayRef<SDValue> Ops) {
8823   SDVTList VTs = getVTList(VT);
8824   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8825 }
8826 
8827 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8828                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8829   SDVTList VTs = getVTList(VT1, VT2);
8830   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8831 }
8832 
8833 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8834                                    EVT VT1, EVT VT2) {
8835   SDVTList VTs = getVTList(VT1, VT2);
8836   return SelectNodeTo(N, MachineOpc, VTs, None);
8837 }
8838 
8839 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8840                                    EVT VT1, EVT VT2, EVT VT3,
8841                                    ArrayRef<SDValue> Ops) {
8842   SDVTList VTs = getVTList(VT1, VT2, VT3);
8843   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8844 }
8845 
8846 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8847                                    EVT VT1, EVT VT2,
8848                                    SDValue Op1, SDValue Op2) {
8849   SDVTList VTs = getVTList(VT1, VT2);
8850   SDValue Ops[] = { Op1, Op2 };
8851   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8852 }
8853 
8854 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8855                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8856   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8857   // Reset the NodeID to -1.
8858   New->setNodeId(-1);
8859   if (New != N) {
8860     ReplaceAllUsesWith(N, New);
8861     RemoveDeadNode(N);
8862   }
8863   return New;
8864 }
8865 
8866 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8867 /// the line number information on the merged node since it is not possible to
8868 /// preserve the information that operation is associated with multiple lines.
8869 /// This will make the debugger working better at -O0, were there is a higher
8870 /// probability having other instructions associated with that line.
8871 ///
8872 /// For IROrder, we keep the smaller of the two
8873 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8874   DebugLoc NLoc = N->getDebugLoc();
8875   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8876     N->setDebugLoc(DebugLoc());
8877   }
8878   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8879   N->setIROrder(Order);
8880   return N;
8881 }
8882 
8883 /// MorphNodeTo - This *mutates* the specified node to have the specified
8884 /// return type, opcode, and operands.
8885 ///
8886 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8887 /// node of the specified opcode and operands, it returns that node instead of
8888 /// the current one.  Note that the SDLoc need not be the same.
8889 ///
8890 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8891 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8892 /// node, and because it doesn't require CSE recalculation for any of
8893 /// the node's users.
8894 ///
8895 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8896 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8897 /// the legalizer which maintain worklists that would need to be updated when
8898 /// deleting things.
8899 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8900                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8901   // If an identical node already exists, use it.
8902   void *IP = nullptr;
8903   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8904     FoldingSetNodeID ID;
8905     AddNodeIDNode(ID, Opc, VTs, Ops);
8906     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8907       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8908   }
8909 
8910   if (!RemoveNodeFromCSEMaps(N))
8911     IP = nullptr;
8912 
8913   // Start the morphing.
8914   N->NodeType = Opc;
8915   N->ValueList = VTs.VTs;
8916   N->NumValues = VTs.NumVTs;
8917 
8918   // Clear the operands list, updating used nodes to remove this from their
8919   // use list.  Keep track of any operands that become dead as a result.
8920   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8921   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8922     SDUse &Use = *I++;
8923     SDNode *Used = Use.getNode();
8924     Use.set(SDValue());
8925     if (Used->use_empty())
8926       DeadNodeSet.insert(Used);
8927   }
8928 
8929   // For MachineNode, initialize the memory references information.
8930   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8931     MN->clearMemRefs();
8932 
8933   // Swap for an appropriately sized array from the recycler.
8934   removeOperands(N);
8935   createOperands(N, Ops);
8936 
8937   // Delete any nodes that are still dead after adding the uses for the
8938   // new operands.
8939   if (!DeadNodeSet.empty()) {
8940     SmallVector<SDNode *, 16> DeadNodes;
8941     for (SDNode *N : DeadNodeSet)
8942       if (N->use_empty())
8943         DeadNodes.push_back(N);
8944     RemoveDeadNodes(DeadNodes);
8945   }
8946 
8947   if (IP)
8948     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8949   return N;
8950 }
8951 
8952 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8953   unsigned OrigOpc = Node->getOpcode();
8954   unsigned NewOpc;
8955   switch (OrigOpc) {
8956   default:
8957     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8958 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8959   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8960 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8961   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8962 #include "llvm/IR/ConstrainedOps.def"
8963   }
8964 
8965   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8966 
8967   // We're taking this node out of the chain, so we need to re-link things.
8968   SDValue InputChain = Node->getOperand(0);
8969   SDValue OutputChain = SDValue(Node, 1);
8970   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8971 
8972   SmallVector<SDValue, 3> Ops;
8973   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8974     Ops.push_back(Node->getOperand(i));
8975 
8976   SDVTList VTs = getVTList(Node->getValueType(0));
8977   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8978 
8979   // MorphNodeTo can operate in two ways: if an existing node with the
8980   // specified operands exists, it can just return it.  Otherwise, it
8981   // updates the node in place to have the requested operands.
8982   if (Res == Node) {
8983     // If we updated the node in place, reset the node ID.  To the isel,
8984     // this should be just like a newly allocated machine node.
8985     Res->setNodeId(-1);
8986   } else {
8987     ReplaceAllUsesWith(Node, Res);
8988     RemoveDeadNode(Node);
8989   }
8990 
8991   return Res;
8992 }
8993 
8994 /// getMachineNode - These are used for target selectors to create a new node
8995 /// with specified return type(s), MachineInstr opcode, and operands.
8996 ///
8997 /// Note that getMachineNode returns the resultant node.  If there is already a
8998 /// node of the specified opcode and operands, it returns that node instead of
8999 /// the current one.
9000 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9001                                             EVT VT) {
9002   SDVTList VTs = getVTList(VT);
9003   return getMachineNode(Opcode, dl, VTs, None);
9004 }
9005 
9006 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9007                                             EVT VT, SDValue Op1) {
9008   SDVTList VTs = getVTList(VT);
9009   SDValue Ops[] = { Op1 };
9010   return getMachineNode(Opcode, dl, VTs, Ops);
9011 }
9012 
9013 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9014                                             EVT VT, SDValue Op1, SDValue Op2) {
9015   SDVTList VTs = getVTList(VT);
9016   SDValue Ops[] = { Op1, Op2 };
9017   return getMachineNode(Opcode, dl, VTs, Ops);
9018 }
9019 
9020 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9021                                             EVT VT, SDValue Op1, SDValue Op2,
9022                                             SDValue Op3) {
9023   SDVTList VTs = getVTList(VT);
9024   SDValue Ops[] = { Op1, Op2, Op3 };
9025   return getMachineNode(Opcode, dl, VTs, Ops);
9026 }
9027 
9028 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9029                                             EVT VT, ArrayRef<SDValue> Ops) {
9030   SDVTList VTs = getVTList(VT);
9031   return getMachineNode(Opcode, dl, VTs, Ops);
9032 }
9033 
9034 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9035                                             EVT VT1, EVT VT2, SDValue Op1,
9036                                             SDValue Op2) {
9037   SDVTList VTs = getVTList(VT1, VT2);
9038   SDValue Ops[] = { Op1, Op2 };
9039   return getMachineNode(Opcode, dl, VTs, Ops);
9040 }
9041 
9042 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9043                                             EVT VT1, EVT VT2, SDValue Op1,
9044                                             SDValue Op2, SDValue Op3) {
9045   SDVTList VTs = getVTList(VT1, VT2);
9046   SDValue Ops[] = { Op1, Op2, Op3 };
9047   return getMachineNode(Opcode, dl, VTs, Ops);
9048 }
9049 
9050 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9051                                             EVT VT1, EVT VT2,
9052                                             ArrayRef<SDValue> Ops) {
9053   SDVTList VTs = getVTList(VT1, VT2);
9054   return getMachineNode(Opcode, dl, VTs, Ops);
9055 }
9056 
9057 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9058                                             EVT VT1, EVT VT2, EVT VT3,
9059                                             SDValue Op1, SDValue Op2) {
9060   SDVTList VTs = getVTList(VT1, VT2, VT3);
9061   SDValue Ops[] = { Op1, Op2 };
9062   return getMachineNode(Opcode, dl, VTs, Ops);
9063 }
9064 
9065 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9066                                             EVT VT1, EVT VT2, EVT VT3,
9067                                             SDValue Op1, SDValue Op2,
9068                                             SDValue Op3) {
9069   SDVTList VTs = getVTList(VT1, VT2, VT3);
9070   SDValue Ops[] = { Op1, Op2, Op3 };
9071   return getMachineNode(Opcode, dl, VTs, Ops);
9072 }
9073 
9074 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9075                                             EVT VT1, EVT VT2, EVT VT3,
9076                                             ArrayRef<SDValue> Ops) {
9077   SDVTList VTs = getVTList(VT1, VT2, VT3);
9078   return getMachineNode(Opcode, dl, VTs, Ops);
9079 }
9080 
9081 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9082                                             ArrayRef<EVT> ResultTys,
9083                                             ArrayRef<SDValue> Ops) {
9084   SDVTList VTs = getVTList(ResultTys);
9085   return getMachineNode(Opcode, dl, VTs, Ops);
9086 }
9087 
9088 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9089                                             SDVTList VTs,
9090                                             ArrayRef<SDValue> Ops) {
9091   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9092   MachineSDNode *N;
9093   void *IP = nullptr;
9094 
9095   if (DoCSE) {
9096     FoldingSetNodeID ID;
9097     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9098     IP = nullptr;
9099     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9100       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9101     }
9102   }
9103 
9104   // Allocate a new MachineSDNode.
9105   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9106   createOperands(N, Ops);
9107 
9108   if (DoCSE)
9109     CSEMap.InsertNode(N, IP);
9110 
9111   InsertNode(N);
9112   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9113   return N;
9114 }
9115 
9116 /// getTargetExtractSubreg - A convenience function for creating
9117 /// TargetOpcode::EXTRACT_SUBREG nodes.
9118 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9119                                              SDValue Operand) {
9120   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9121   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9122                                   VT, Operand, SRIdxVal);
9123   return SDValue(Subreg, 0);
9124 }
9125 
9126 /// getTargetInsertSubreg - A convenience function for creating
9127 /// TargetOpcode::INSERT_SUBREG nodes.
9128 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9129                                             SDValue Operand, SDValue Subreg) {
9130   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9131   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9132                                   VT, Operand, Subreg, SRIdxVal);
9133   return SDValue(Result, 0);
9134 }
9135 
9136 /// getNodeIfExists - Get the specified node if it's already available, or
9137 /// else return NULL.
9138 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9139                                       ArrayRef<SDValue> Ops) {
9140   SDNodeFlags Flags;
9141   if (Inserter)
9142     Flags = Inserter->getFlags();
9143   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9144 }
9145 
9146 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9147                                       ArrayRef<SDValue> Ops,
9148                                       const SDNodeFlags Flags) {
9149   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9150     FoldingSetNodeID ID;
9151     AddNodeIDNode(ID, Opcode, VTList, Ops);
9152     void *IP = nullptr;
9153     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9154       E->intersectFlagsWith(Flags);
9155       return E;
9156     }
9157   }
9158   return nullptr;
9159 }
9160 
9161 /// doesNodeExist - Check if a node exists without modifying its flags.
9162 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9163                                  ArrayRef<SDValue> Ops) {
9164   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9165     FoldingSetNodeID ID;
9166     AddNodeIDNode(ID, Opcode, VTList, Ops);
9167     void *IP = nullptr;
9168     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9169       return true;
9170   }
9171   return false;
9172 }
9173 
9174 /// getDbgValue - Creates a SDDbgValue node.
9175 ///
9176 /// SDNode
9177 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9178                                       SDNode *N, unsigned R, bool IsIndirect,
9179                                       const DebugLoc &DL, unsigned O) {
9180   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9181          "Expected inlined-at fields to agree");
9182   return new (DbgInfo->getAlloc())
9183       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9184                  {}, IsIndirect, DL, O,
9185                  /*IsVariadic=*/false);
9186 }
9187 
9188 /// Constant
9189 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9190                                               DIExpression *Expr,
9191                                               const Value *C,
9192                                               const DebugLoc &DL, unsigned O) {
9193   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9194          "Expected inlined-at fields to agree");
9195   return new (DbgInfo->getAlloc())
9196       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9197                  /*IsIndirect=*/false, DL, O,
9198                  /*IsVariadic=*/false);
9199 }
9200 
9201 /// FrameIndex
9202 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9203                                                 DIExpression *Expr, unsigned FI,
9204                                                 bool IsIndirect,
9205                                                 const DebugLoc &DL,
9206                                                 unsigned O) {
9207   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9208          "Expected inlined-at fields to agree");
9209   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9210 }
9211 
9212 /// FrameIndex with dependencies
9213 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9214                                                 DIExpression *Expr, unsigned FI,
9215                                                 ArrayRef<SDNode *> Dependencies,
9216                                                 bool IsIndirect,
9217                                                 const DebugLoc &DL,
9218                                                 unsigned O) {
9219   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9220          "Expected inlined-at fields to agree");
9221   return new (DbgInfo->getAlloc())
9222       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9223                  Dependencies, IsIndirect, DL, O,
9224                  /*IsVariadic=*/false);
9225 }
9226 
9227 /// VReg
9228 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9229                                           unsigned VReg, bool IsIndirect,
9230                                           const DebugLoc &DL, unsigned O) {
9231   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9232          "Expected inlined-at fields to agree");
9233   return new (DbgInfo->getAlloc())
9234       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9235                  {}, IsIndirect, DL, O,
9236                  /*IsVariadic=*/false);
9237 }
9238 
9239 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9240                                           ArrayRef<SDDbgOperand> Locs,
9241                                           ArrayRef<SDNode *> Dependencies,
9242                                           bool IsIndirect, const DebugLoc &DL,
9243                                           unsigned O, bool IsVariadic) {
9244   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9245          "Expected inlined-at fields to agree");
9246   return new (DbgInfo->getAlloc())
9247       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9248                  DL, O, IsVariadic);
9249 }
9250 
9251 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9252                                      unsigned OffsetInBits, unsigned SizeInBits,
9253                                      bool InvalidateDbg) {
9254   SDNode *FromNode = From.getNode();
9255   SDNode *ToNode = To.getNode();
9256   assert(FromNode && ToNode && "Can't modify dbg values");
9257 
9258   // PR35338
9259   // TODO: assert(From != To && "Redundant dbg value transfer");
9260   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9261   if (From == To || FromNode == ToNode)
9262     return;
9263 
9264   if (!FromNode->getHasDebugValue())
9265     return;
9266 
9267   SDDbgOperand FromLocOp =
9268       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9269   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9270 
9271   SmallVector<SDDbgValue *, 2> ClonedDVs;
9272   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9273     if (Dbg->isInvalidated())
9274       continue;
9275 
9276     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9277 
9278     // Create a new location ops vector that is equal to the old vector, but
9279     // with each instance of FromLocOp replaced with ToLocOp.
9280     bool Changed = false;
9281     auto NewLocOps = Dbg->copyLocationOps();
9282     std::replace_if(
9283         NewLocOps.begin(), NewLocOps.end(),
9284         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9285           bool Match = Op == FromLocOp;
9286           Changed |= Match;
9287           return Match;
9288         },
9289         ToLocOp);
9290     // Ignore this SDDbgValue if we didn't find a matching location.
9291     if (!Changed)
9292       continue;
9293 
9294     DIVariable *Var = Dbg->getVariable();
9295     auto *Expr = Dbg->getExpression();
9296     // If a fragment is requested, update the expression.
9297     if (SizeInBits) {
9298       // When splitting a larger (e.g., sign-extended) value whose
9299       // lower bits are described with an SDDbgValue, do not attempt
9300       // to transfer the SDDbgValue to the upper bits.
9301       if (auto FI = Expr->getFragmentInfo())
9302         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9303           continue;
9304       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9305                                                              SizeInBits);
9306       if (!Fragment)
9307         continue;
9308       Expr = *Fragment;
9309     }
9310 
9311     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9312     // Clone the SDDbgValue and move it to To.
9313     SDDbgValue *Clone = getDbgValueList(
9314         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9315         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9316         Dbg->isVariadic());
9317     ClonedDVs.push_back(Clone);
9318 
9319     if (InvalidateDbg) {
9320       // Invalidate value and indicate the SDDbgValue should not be emitted.
9321       Dbg->setIsInvalidated();
9322       Dbg->setIsEmitted();
9323     }
9324   }
9325 
9326   for (SDDbgValue *Dbg : ClonedDVs) {
9327     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9328            "Transferred DbgValues should depend on the new SDNode");
9329     AddDbgValue(Dbg, false);
9330   }
9331 }
9332 
9333 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9334   if (!N.getHasDebugValue())
9335     return;
9336 
9337   SmallVector<SDDbgValue *, 2> ClonedDVs;
9338   for (auto DV : GetDbgValues(&N)) {
9339     if (DV->isInvalidated())
9340       continue;
9341     switch (N.getOpcode()) {
9342     default:
9343       break;
9344     case ISD::ADD:
9345       SDValue N0 = N.getOperand(0);
9346       SDValue N1 = N.getOperand(1);
9347       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9348           isConstantIntBuildVectorOrConstantInt(N1)) {
9349         uint64_t Offset = N.getConstantOperandVal(1);
9350 
9351         // Rewrite an ADD constant node into a DIExpression. Since we are
9352         // performing arithmetic to compute the variable's *value* in the
9353         // DIExpression, we need to mark the expression with a
9354         // DW_OP_stack_value.
9355         auto *DIExpr = DV->getExpression();
9356         auto NewLocOps = DV->copyLocationOps();
9357         bool Changed = false;
9358         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9359           // We're not given a ResNo to compare against because the whole
9360           // node is going away. We know that any ISD::ADD only has one
9361           // result, so we can assume any node match is using the result.
9362           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9363               NewLocOps[i].getSDNode() != &N)
9364             continue;
9365           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9366           SmallVector<uint64_t, 3> ExprOps;
9367           DIExpression::appendOffset(ExprOps, Offset);
9368           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9369           Changed = true;
9370         }
9371         (void)Changed;
9372         assert(Changed && "Salvage target doesn't use N");
9373 
9374         auto AdditionalDependencies = DV->getAdditionalDependencies();
9375         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9376                                             NewLocOps, AdditionalDependencies,
9377                                             DV->isIndirect(), DV->getDebugLoc(),
9378                                             DV->getOrder(), DV->isVariadic());
9379         ClonedDVs.push_back(Clone);
9380         DV->setIsInvalidated();
9381         DV->setIsEmitted();
9382         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9383                    N0.getNode()->dumprFull(this);
9384                    dbgs() << " into " << *DIExpr << '\n');
9385       }
9386     }
9387   }
9388 
9389   for (SDDbgValue *Dbg : ClonedDVs) {
9390     assert(!Dbg->getSDNodes().empty() &&
9391            "Salvaged DbgValue should depend on a new SDNode");
9392     AddDbgValue(Dbg, false);
9393   }
9394 }
9395 
9396 /// Creates a SDDbgLabel node.
9397 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9398                                       const DebugLoc &DL, unsigned O) {
9399   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9400          "Expected inlined-at fields to agree");
9401   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9402 }
9403 
9404 namespace {
9405 
9406 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9407 /// pointed to by a use iterator is deleted, increment the use iterator
9408 /// so that it doesn't dangle.
9409 ///
9410 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9411   SDNode::use_iterator &UI;
9412   SDNode::use_iterator &UE;
9413 
9414   void NodeDeleted(SDNode *N, SDNode *E) override {
9415     // Increment the iterator as needed.
9416     while (UI != UE && N == *UI)
9417       ++UI;
9418   }
9419 
9420 public:
9421   RAUWUpdateListener(SelectionDAG &d,
9422                      SDNode::use_iterator &ui,
9423                      SDNode::use_iterator &ue)
9424     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9425 };
9426 
9427 } // end anonymous namespace
9428 
9429 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9430 /// This can cause recursive merging of nodes in the DAG.
9431 ///
9432 /// This version assumes From has a single result value.
9433 ///
9434 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9435   SDNode *From = FromN.getNode();
9436   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9437          "Cannot replace with this method!");
9438   assert(From != To.getNode() && "Cannot replace uses of with self");
9439 
9440   // Preserve Debug Values
9441   transferDbgValues(FromN, To);
9442 
9443   // Iterate over all the existing uses of From. New uses will be added
9444   // to the beginning of the use list, which we avoid visiting.
9445   // This specifically avoids visiting uses of From that arise while the
9446   // replacement is happening, because any such uses would be the result
9447   // of CSE: If an existing node looks like From after one of its operands
9448   // is replaced by To, we don't want to replace of all its users with To
9449   // too. See PR3018 for more info.
9450   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9451   RAUWUpdateListener Listener(*this, UI, UE);
9452   while (UI != UE) {
9453     SDNode *User = *UI;
9454 
9455     // This node is about to morph, remove its old self from the CSE maps.
9456     RemoveNodeFromCSEMaps(User);
9457 
9458     // A user can appear in a use list multiple times, and when this
9459     // happens the uses are usually next to each other in the list.
9460     // To help reduce the number of CSE recomputations, process all
9461     // the uses of this user that we can find this way.
9462     do {
9463       SDUse &Use = UI.getUse();
9464       ++UI;
9465       Use.set(To);
9466       if (To->isDivergent() != From->isDivergent())
9467         updateDivergence(User);
9468     } while (UI != UE && *UI == User);
9469     // Now that we have modified User, add it back to the CSE maps.  If it
9470     // already exists there, recursively merge the results together.
9471     AddModifiedNodeToCSEMaps(User);
9472   }
9473 
9474   // If we just RAUW'd the root, take note.
9475   if (FromN == getRoot())
9476     setRoot(To);
9477 }
9478 
9479 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9480 /// This can cause recursive merging of nodes in the DAG.
9481 ///
9482 /// This version assumes that for each value of From, there is a
9483 /// corresponding value in To in the same position with the same type.
9484 ///
9485 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9486 #ifndef NDEBUG
9487   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9488     assert((!From->hasAnyUseOfValue(i) ||
9489             From->getValueType(i) == To->getValueType(i)) &&
9490            "Cannot use this version of ReplaceAllUsesWith!");
9491 #endif
9492 
9493   // Handle the trivial case.
9494   if (From == To)
9495     return;
9496 
9497   // Preserve Debug Info. Only do this if there's a use.
9498   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9499     if (From->hasAnyUseOfValue(i)) {
9500       assert((i < To->getNumValues()) && "Invalid To location");
9501       transferDbgValues(SDValue(From, i), SDValue(To, i));
9502     }
9503 
9504   // Iterate over just the existing users of From. See the comments in
9505   // the ReplaceAllUsesWith above.
9506   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9507   RAUWUpdateListener Listener(*this, UI, UE);
9508   while (UI != UE) {
9509     SDNode *User = *UI;
9510 
9511     // This node is about to morph, remove its old self from the CSE maps.
9512     RemoveNodeFromCSEMaps(User);
9513 
9514     // A user can appear in a use list multiple times, and when this
9515     // happens the uses are usually next to each other in the list.
9516     // To help reduce the number of CSE recomputations, process all
9517     // the uses of this user that we can find this way.
9518     do {
9519       SDUse &Use = UI.getUse();
9520       ++UI;
9521       Use.setNode(To);
9522       if (To->isDivergent() != From->isDivergent())
9523         updateDivergence(User);
9524     } while (UI != UE && *UI == User);
9525 
9526     // Now that we have modified User, add it back to the CSE maps.  If it
9527     // already exists there, recursively merge the results together.
9528     AddModifiedNodeToCSEMaps(User);
9529   }
9530 
9531   // If we just RAUW'd the root, take note.
9532   if (From == getRoot().getNode())
9533     setRoot(SDValue(To, getRoot().getResNo()));
9534 }
9535 
9536 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9537 /// This can cause recursive merging of nodes in the DAG.
9538 ///
9539 /// This version can replace From with any result values.  To must match the
9540 /// number and types of values returned by From.
9541 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9542   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9543     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9544 
9545   // Preserve Debug Info.
9546   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9547     transferDbgValues(SDValue(From, i), To[i]);
9548 
9549   // Iterate over just the existing users of From. See the comments in
9550   // the ReplaceAllUsesWith above.
9551   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9552   RAUWUpdateListener Listener(*this, UI, UE);
9553   while (UI != UE) {
9554     SDNode *User = *UI;
9555 
9556     // This node is about to morph, remove its old self from the CSE maps.
9557     RemoveNodeFromCSEMaps(User);
9558 
9559     // A user can appear in a use list multiple times, and when this happens the
9560     // uses are usually next to each other in the list.  To help reduce the
9561     // number of CSE and divergence recomputations, process all the uses of this
9562     // user that we can find this way.
9563     bool To_IsDivergent = false;
9564     do {
9565       SDUse &Use = UI.getUse();
9566       const SDValue &ToOp = To[Use.getResNo()];
9567       ++UI;
9568       Use.set(ToOp);
9569       To_IsDivergent |= ToOp->isDivergent();
9570     } while (UI != UE && *UI == User);
9571 
9572     if (To_IsDivergent != From->isDivergent())
9573       updateDivergence(User);
9574 
9575     // Now that we have modified User, add it back to the CSE maps.  If it
9576     // already exists there, recursively merge the results together.
9577     AddModifiedNodeToCSEMaps(User);
9578   }
9579 
9580   // If we just RAUW'd the root, take note.
9581   if (From == getRoot().getNode())
9582     setRoot(SDValue(To[getRoot().getResNo()]));
9583 }
9584 
9585 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9586 /// uses of other values produced by From.getNode() alone.  The Deleted
9587 /// vector is handled the same way as for ReplaceAllUsesWith.
9588 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9589   // Handle the really simple, really trivial case efficiently.
9590   if (From == To) return;
9591 
9592   // Handle the simple, trivial, case efficiently.
9593   if (From.getNode()->getNumValues() == 1) {
9594     ReplaceAllUsesWith(From, To);
9595     return;
9596   }
9597 
9598   // Preserve Debug Info.
9599   transferDbgValues(From, To);
9600 
9601   // Iterate over just the existing users of From. See the comments in
9602   // the ReplaceAllUsesWith above.
9603   SDNode::use_iterator UI = From.getNode()->use_begin(),
9604                        UE = From.getNode()->use_end();
9605   RAUWUpdateListener Listener(*this, UI, UE);
9606   while (UI != UE) {
9607     SDNode *User = *UI;
9608     bool UserRemovedFromCSEMaps = false;
9609 
9610     // A user can appear in a use list multiple times, and when this
9611     // happens the uses are usually next to each other in the list.
9612     // To help reduce the number of CSE recomputations, process all
9613     // the uses of this user that we can find this way.
9614     do {
9615       SDUse &Use = UI.getUse();
9616 
9617       // Skip uses of different values from the same node.
9618       if (Use.getResNo() != From.getResNo()) {
9619         ++UI;
9620         continue;
9621       }
9622 
9623       // If this node hasn't been modified yet, it's still in the CSE maps,
9624       // so remove its old self from the CSE maps.
9625       if (!UserRemovedFromCSEMaps) {
9626         RemoveNodeFromCSEMaps(User);
9627         UserRemovedFromCSEMaps = true;
9628       }
9629 
9630       ++UI;
9631       Use.set(To);
9632       if (To->isDivergent() != From->isDivergent())
9633         updateDivergence(User);
9634     } while (UI != UE && *UI == User);
9635     // We are iterating over all uses of the From node, so if a use
9636     // doesn't use the specific value, no changes are made.
9637     if (!UserRemovedFromCSEMaps)
9638       continue;
9639 
9640     // Now that we have modified User, add it back to the CSE maps.  If it
9641     // already exists there, recursively merge the results together.
9642     AddModifiedNodeToCSEMaps(User);
9643   }
9644 
9645   // If we just RAUW'd the root, take note.
9646   if (From == getRoot())
9647     setRoot(To);
9648 }
9649 
9650 namespace {
9651 
9652   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9653   /// to record information about a use.
9654   struct UseMemo {
9655     SDNode *User;
9656     unsigned Index;
9657     SDUse *Use;
9658   };
9659 
9660   /// operator< - Sort Memos by User.
9661   bool operator<(const UseMemo &L, const UseMemo &R) {
9662     return (intptr_t)L.User < (intptr_t)R.User;
9663   }
9664 
9665 } // end anonymous namespace
9666 
9667 bool SelectionDAG::calculateDivergence(SDNode *N) {
9668   if (TLI->isSDNodeAlwaysUniform(N)) {
9669     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9670            "Conflicting divergence information!");
9671     return false;
9672   }
9673   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9674     return true;
9675   for (auto &Op : N->ops()) {
9676     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9677       return true;
9678   }
9679   return false;
9680 }
9681 
9682 void SelectionDAG::updateDivergence(SDNode *N) {
9683   SmallVector<SDNode *, 16> Worklist(1, N);
9684   do {
9685     N = Worklist.pop_back_val();
9686     bool IsDivergent = calculateDivergence(N);
9687     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9688       N->SDNodeBits.IsDivergent = IsDivergent;
9689       llvm::append_range(Worklist, N->uses());
9690     }
9691   } while (!Worklist.empty());
9692 }
9693 
9694 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9695   DenseMap<SDNode *, unsigned> Degree;
9696   Order.reserve(AllNodes.size());
9697   for (auto &N : allnodes()) {
9698     unsigned NOps = N.getNumOperands();
9699     Degree[&N] = NOps;
9700     if (0 == NOps)
9701       Order.push_back(&N);
9702   }
9703   for (size_t I = 0; I != Order.size(); ++I) {
9704     SDNode *N = Order[I];
9705     for (auto U : N->uses()) {
9706       unsigned &UnsortedOps = Degree[U];
9707       if (0 == --UnsortedOps)
9708         Order.push_back(U);
9709     }
9710   }
9711 }
9712 
9713 #ifndef NDEBUG
9714 void SelectionDAG::VerifyDAGDivergence() {
9715   std::vector<SDNode *> TopoOrder;
9716   CreateTopologicalOrder(TopoOrder);
9717   for (auto *N : TopoOrder) {
9718     assert(calculateDivergence(N) == N->isDivergent() &&
9719            "Divergence bit inconsistency detected");
9720   }
9721 }
9722 #endif
9723 
9724 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9725 /// uses of other values produced by From.getNode() alone.  The same value
9726 /// may appear in both the From and To list.  The Deleted vector is
9727 /// handled the same way as for ReplaceAllUsesWith.
9728 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9729                                               const SDValue *To,
9730                                               unsigned Num){
9731   // Handle the simple, trivial case efficiently.
9732   if (Num == 1)
9733     return ReplaceAllUsesOfValueWith(*From, *To);
9734 
9735   transferDbgValues(*From, *To);
9736 
9737   // Read up all the uses and make records of them. This helps
9738   // processing new uses that are introduced during the
9739   // replacement process.
9740   SmallVector<UseMemo, 4> Uses;
9741   for (unsigned i = 0; i != Num; ++i) {
9742     unsigned FromResNo = From[i].getResNo();
9743     SDNode *FromNode = From[i].getNode();
9744     for (SDNode::use_iterator UI = FromNode->use_begin(),
9745          E = FromNode->use_end(); UI != E; ++UI) {
9746       SDUse &Use = UI.getUse();
9747       if (Use.getResNo() == FromResNo) {
9748         UseMemo Memo = { *UI, i, &Use };
9749         Uses.push_back(Memo);
9750       }
9751     }
9752   }
9753 
9754   // Sort the uses, so that all the uses from a given User are together.
9755   llvm::sort(Uses);
9756 
9757   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9758        UseIndex != UseIndexEnd; ) {
9759     // We know that this user uses some value of From.  If it is the right
9760     // value, update it.
9761     SDNode *User = Uses[UseIndex].User;
9762 
9763     // This node is about to morph, remove its old self from the CSE maps.
9764     RemoveNodeFromCSEMaps(User);
9765 
9766     // The Uses array is sorted, so all the uses for a given User
9767     // are next to each other in the list.
9768     // To help reduce the number of CSE recomputations, process all
9769     // the uses of this user that we can find this way.
9770     do {
9771       unsigned i = Uses[UseIndex].Index;
9772       SDUse &Use = *Uses[UseIndex].Use;
9773       ++UseIndex;
9774 
9775       Use.set(To[i]);
9776     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9777 
9778     // Now that we have modified User, add it back to the CSE maps.  If it
9779     // already exists there, recursively merge the results together.
9780     AddModifiedNodeToCSEMaps(User);
9781   }
9782 }
9783 
9784 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9785 /// based on their topological order. It returns the maximum id and a vector
9786 /// of the SDNodes* in assigned order by reference.
9787 unsigned SelectionDAG::AssignTopologicalOrder() {
9788   unsigned DAGSize = 0;
9789 
9790   // SortedPos tracks the progress of the algorithm. Nodes before it are
9791   // sorted, nodes after it are unsorted. When the algorithm completes
9792   // it is at the end of the list.
9793   allnodes_iterator SortedPos = allnodes_begin();
9794 
9795   // Visit all the nodes. Move nodes with no operands to the front of
9796   // the list immediately. Annotate nodes that do have operands with their
9797   // operand count. Before we do this, the Node Id fields of the nodes
9798   // may contain arbitrary values. After, the Node Id fields for nodes
9799   // before SortedPos will contain the topological sort index, and the
9800   // Node Id fields for nodes At SortedPos and after will contain the
9801   // count of outstanding operands.
9802   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
9803     checkForCycles(&N, this);
9804     unsigned Degree = N.getNumOperands();
9805     if (Degree == 0) {
9806       // A node with no uses, add it to the result array immediately.
9807       N.setNodeId(DAGSize++);
9808       allnodes_iterator Q(&N);
9809       if (Q != SortedPos)
9810         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9811       assert(SortedPos != AllNodes.end() && "Overran node list");
9812       ++SortedPos;
9813     } else {
9814       // Temporarily use the Node Id as scratch space for the degree count.
9815       N.setNodeId(Degree);
9816     }
9817   }
9818 
9819   // Visit all the nodes. As we iterate, move nodes into sorted order,
9820   // such that by the time the end is reached all nodes will be sorted.
9821   for (SDNode &Node : allnodes()) {
9822     SDNode *N = &Node;
9823     checkForCycles(N, this);
9824     // N is in sorted position, so all its uses have one less operand
9825     // that needs to be sorted.
9826     for (SDNode *P : N->uses()) {
9827       unsigned Degree = P->getNodeId();
9828       assert(Degree != 0 && "Invalid node degree");
9829       --Degree;
9830       if (Degree == 0) {
9831         // All of P's operands are sorted, so P may sorted now.
9832         P->setNodeId(DAGSize++);
9833         if (P->getIterator() != SortedPos)
9834           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9835         assert(SortedPos != AllNodes.end() && "Overran node list");
9836         ++SortedPos;
9837       } else {
9838         // Update P's outstanding operand count.
9839         P->setNodeId(Degree);
9840       }
9841     }
9842     if (Node.getIterator() == SortedPos) {
9843 #ifndef NDEBUG
9844       allnodes_iterator I(N);
9845       SDNode *S = &*++I;
9846       dbgs() << "Overran sorted position:\n";
9847       S->dumprFull(this); dbgs() << "\n";
9848       dbgs() << "Checking if this is due to cycles\n";
9849       checkForCycles(this, true);
9850 #endif
9851       llvm_unreachable(nullptr);
9852     }
9853   }
9854 
9855   assert(SortedPos == AllNodes.end() &&
9856          "Topological sort incomplete!");
9857   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9858          "First node in topological sort is not the entry token!");
9859   assert(AllNodes.front().getNodeId() == 0 &&
9860          "First node in topological sort has non-zero id!");
9861   assert(AllNodes.front().getNumOperands() == 0 &&
9862          "First node in topological sort has operands!");
9863   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9864          "Last node in topologic sort has unexpected id!");
9865   assert(AllNodes.back().use_empty() &&
9866          "Last node in topologic sort has users!");
9867   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9868   return DAGSize;
9869 }
9870 
9871 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9872 /// value is produced by SD.
9873 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9874   for (SDNode *SD : DB->getSDNodes()) {
9875     if (!SD)
9876       continue;
9877     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9878     SD->setHasDebugValue(true);
9879   }
9880   DbgInfo->add(DB, isParameter);
9881 }
9882 
9883 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9884 
9885 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9886                                                    SDValue NewMemOpChain) {
9887   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9888   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9889   // The new memory operation must have the same position as the old load in
9890   // terms of memory dependency. Create a TokenFactor for the old load and new
9891   // memory operation and update uses of the old load's output chain to use that
9892   // TokenFactor.
9893   if (OldChain == NewMemOpChain || OldChain.use_empty())
9894     return NewMemOpChain;
9895 
9896   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9897                                 OldChain, NewMemOpChain);
9898   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9899   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9900   return TokenFactor;
9901 }
9902 
9903 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9904                                                    SDValue NewMemOp) {
9905   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9906   SDValue OldChain = SDValue(OldLoad, 1);
9907   SDValue NewMemOpChain = NewMemOp.getValue(1);
9908   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9909 }
9910 
9911 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9912                                                      Function **OutFunction) {
9913   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9914 
9915   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9916   auto *Module = MF->getFunction().getParent();
9917   auto *Function = Module->getFunction(Symbol);
9918 
9919   if (OutFunction != nullptr)
9920       *OutFunction = Function;
9921 
9922   if (Function != nullptr) {
9923     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9924     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9925   }
9926 
9927   std::string ErrorStr;
9928   raw_string_ostream ErrorFormatter(ErrorStr);
9929   ErrorFormatter << "Undefined external symbol ";
9930   ErrorFormatter << '"' << Symbol << '"';
9931   report_fatal_error(Twine(ErrorFormatter.str()));
9932 }
9933 
9934 //===----------------------------------------------------------------------===//
9935 //                              SDNode Class
9936 //===----------------------------------------------------------------------===//
9937 
9938 bool llvm::isNullConstant(SDValue V) {
9939   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9940   return Const != nullptr && Const->isZero();
9941 }
9942 
9943 bool llvm::isNullFPConstant(SDValue V) {
9944   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9945   return Const != nullptr && Const->isZero() && !Const->isNegative();
9946 }
9947 
9948 bool llvm::isAllOnesConstant(SDValue V) {
9949   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9950   return Const != nullptr && Const->isAllOnes();
9951 }
9952 
9953 bool llvm::isOneConstant(SDValue V) {
9954   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9955   return Const != nullptr && Const->isOne();
9956 }
9957 
9958 SDValue llvm::peekThroughBitcasts(SDValue V) {
9959   while (V.getOpcode() == ISD::BITCAST)
9960     V = V.getOperand(0);
9961   return V;
9962 }
9963 
9964 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9965   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9966     V = V.getOperand(0);
9967   return V;
9968 }
9969 
9970 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9971   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9972     V = V.getOperand(0);
9973   return V;
9974 }
9975 
9976 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9977   if (V.getOpcode() != ISD::XOR)
9978     return false;
9979   V = peekThroughBitcasts(V.getOperand(1));
9980   unsigned NumBits = V.getScalarValueSizeInBits();
9981   ConstantSDNode *C =
9982       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9983   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9984 }
9985 
9986 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9987                                           bool AllowTruncation) {
9988   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9989     return CN;
9990 
9991   // SplatVectors can truncate their operands. Ignore that case here unless
9992   // AllowTruncation is set.
9993   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9994     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9995     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9996       EVT CVT = CN->getValueType(0);
9997       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9998       if (AllowTruncation || CVT == VecEltVT)
9999         return CN;
10000     }
10001   }
10002 
10003   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10004     BitVector UndefElements;
10005     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10006 
10007     // BuildVectors can truncate their operands. Ignore that case here unless
10008     // AllowTruncation is set.
10009     if (CN && (UndefElements.none() || AllowUndefs)) {
10010       EVT CVT = CN->getValueType(0);
10011       EVT NSVT = N.getValueType().getScalarType();
10012       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10013       if (AllowTruncation || (CVT == NSVT))
10014         return CN;
10015     }
10016   }
10017 
10018   return nullptr;
10019 }
10020 
10021 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10022                                           bool AllowUndefs,
10023                                           bool AllowTruncation) {
10024   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10025     return CN;
10026 
10027   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10028     BitVector UndefElements;
10029     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10030 
10031     // BuildVectors can truncate their operands. Ignore that case here unless
10032     // AllowTruncation is set.
10033     if (CN && (UndefElements.none() || AllowUndefs)) {
10034       EVT CVT = CN->getValueType(0);
10035       EVT NSVT = N.getValueType().getScalarType();
10036       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10037       if (AllowTruncation || (CVT == NSVT))
10038         return CN;
10039     }
10040   }
10041 
10042   return nullptr;
10043 }
10044 
10045 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10046   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10047     return CN;
10048 
10049   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10050     BitVector UndefElements;
10051     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10052     if (CN && (UndefElements.none() || AllowUndefs))
10053       return CN;
10054   }
10055 
10056   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10057     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10058       return CN;
10059 
10060   return nullptr;
10061 }
10062 
10063 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10064                                               const APInt &DemandedElts,
10065                                               bool AllowUndefs) {
10066   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10067     return CN;
10068 
10069   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10070     BitVector UndefElements;
10071     ConstantFPSDNode *CN =
10072         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10073     if (CN && (UndefElements.none() || AllowUndefs))
10074       return CN;
10075   }
10076 
10077   return nullptr;
10078 }
10079 
10080 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10081   // TODO: may want to use peekThroughBitcast() here.
10082   ConstantSDNode *C =
10083       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10084   return C && C->isZero();
10085 }
10086 
10087 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10088   // TODO: may want to use peekThroughBitcast() here.
10089   unsigned BitWidth = N.getScalarValueSizeInBits();
10090   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10091   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10092 }
10093 
10094 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10095   N = peekThroughBitcasts(N);
10096   unsigned BitWidth = N.getScalarValueSizeInBits();
10097   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10098   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10099 }
10100 
10101 HandleSDNode::~HandleSDNode() {
10102   DropOperands();
10103 }
10104 
10105 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10106                                          const DebugLoc &DL,
10107                                          const GlobalValue *GA, EVT VT,
10108                                          int64_t o, unsigned TF)
10109     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10110   TheGlobal = GA;
10111 }
10112 
10113 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10114                                          EVT VT, unsigned SrcAS,
10115                                          unsigned DestAS)
10116     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10117       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10118 
10119 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10120                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10121     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10122   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10123   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10124   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10125   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10126 
10127   // We check here that the size of the memory operand fits within the size of
10128   // the MMO. This is because the MMO might indicate only a possible address
10129   // range instead of specifying the affected memory addresses precisely.
10130   // TODO: Make MachineMemOperands aware of scalable vectors.
10131   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10132          "Size mismatch!");
10133 }
10134 
10135 /// Profile - Gather unique data for the node.
10136 ///
10137 void SDNode::Profile(FoldingSetNodeID &ID) const {
10138   AddNodeIDNode(ID, this);
10139 }
10140 
10141 namespace {
10142 
10143   struct EVTArray {
10144     std::vector<EVT> VTs;
10145 
10146     EVTArray() {
10147       VTs.reserve(MVT::VALUETYPE_SIZE);
10148       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10149         VTs.push_back(MVT((MVT::SimpleValueType)i));
10150     }
10151   };
10152 
10153 } // end anonymous namespace
10154 
10155 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10156 static ManagedStatic<EVTArray> SimpleVTArray;
10157 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10158 
10159 /// getValueTypeList - Return a pointer to the specified value type.
10160 ///
10161 const EVT *SDNode::getValueTypeList(EVT VT) {
10162   if (VT.isExtended()) {
10163     sys::SmartScopedLock<true> Lock(*VTMutex);
10164     return &(*EVTs->insert(VT).first);
10165   }
10166   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10167   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10168 }
10169 
10170 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10171 /// indicated value.  This method ignores uses of other values defined by this
10172 /// operation.
10173 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10174   assert(Value < getNumValues() && "Bad value!");
10175 
10176   // TODO: Only iterate over uses of a given value of the node
10177   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10178     if (UI.getUse().getResNo() == Value) {
10179       if (NUses == 0)
10180         return false;
10181       --NUses;
10182     }
10183   }
10184 
10185   // Found exactly the right number of uses?
10186   return NUses == 0;
10187 }
10188 
10189 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10190 /// value. This method ignores uses of other values defined by this operation.
10191 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10192   assert(Value < getNumValues() && "Bad value!");
10193 
10194   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10195     if (UI.getUse().getResNo() == Value)
10196       return true;
10197 
10198   return false;
10199 }
10200 
10201 /// isOnlyUserOf - Return true if this node is the only use of N.
10202 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10203   bool Seen = false;
10204   for (const SDNode *User : N->uses()) {
10205     if (User == this)
10206       Seen = true;
10207     else
10208       return false;
10209   }
10210 
10211   return Seen;
10212 }
10213 
10214 /// Return true if the only users of N are contained in Nodes.
10215 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10216   bool Seen = false;
10217   for (const SDNode *User : N->uses()) {
10218     if (llvm::is_contained(Nodes, User))
10219       Seen = true;
10220     else
10221       return false;
10222   }
10223 
10224   return Seen;
10225 }
10226 
10227 /// isOperand - Return true if this node is an operand of N.
10228 bool SDValue::isOperandOf(const SDNode *N) const {
10229   return is_contained(N->op_values(), *this);
10230 }
10231 
10232 bool SDNode::isOperandOf(const SDNode *N) const {
10233   return any_of(N->op_values(),
10234                 [this](SDValue Op) { return this == Op.getNode(); });
10235 }
10236 
10237 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10238 /// be a chain) reaches the specified operand without crossing any
10239 /// side-effecting instructions on any chain path.  In practice, this looks
10240 /// through token factors and non-volatile loads.  In order to remain efficient,
10241 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10242 ///
10243 /// Note that we only need to examine chains when we're searching for
10244 /// side-effects; SelectionDAG requires that all side-effects are represented
10245 /// by chains, even if another operand would force a specific ordering. This
10246 /// constraint is necessary to allow transformations like splitting loads.
10247 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10248                                              unsigned Depth) const {
10249   if (*this == Dest) return true;
10250 
10251   // Don't search too deeply, we just want to be able to see through
10252   // TokenFactor's etc.
10253   if (Depth == 0) return false;
10254 
10255   // If this is a token factor, all inputs to the TF happen in parallel.
10256   if (getOpcode() == ISD::TokenFactor) {
10257     // First, try a shallow search.
10258     if (is_contained((*this)->ops(), Dest)) {
10259       // We found the chain we want as an operand of this TokenFactor.
10260       // Essentially, we reach the chain without side-effects if we could
10261       // serialize the TokenFactor into a simple chain of operations with
10262       // Dest as the last operation. This is automatically true if the
10263       // chain has one use: there are no other ordering constraints.
10264       // If the chain has more than one use, we give up: some other
10265       // use of Dest might force a side-effect between Dest and the current
10266       // node.
10267       if (Dest.hasOneUse())
10268         return true;
10269     }
10270     // Next, try a deep search: check whether every operand of the TokenFactor
10271     // reaches Dest.
10272     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10273       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10274     });
10275   }
10276 
10277   // Loads don't have side effects, look through them.
10278   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10279     if (Ld->isUnordered())
10280       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10281   }
10282   return false;
10283 }
10284 
10285 bool SDNode::hasPredecessor(const SDNode *N) const {
10286   SmallPtrSet<const SDNode *, 32> Visited;
10287   SmallVector<const SDNode *, 16> Worklist;
10288   Worklist.push_back(this);
10289   return hasPredecessorHelper(N, Visited, Worklist);
10290 }
10291 
10292 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10293   this->Flags.intersectWith(Flags);
10294 }
10295 
10296 SDValue
10297 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10298                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10299                                   bool AllowPartials) {
10300   // The pattern must end in an extract from index 0.
10301   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10302       !isNullConstant(Extract->getOperand(1)))
10303     return SDValue();
10304 
10305   // Match against one of the candidate binary ops.
10306   SDValue Op = Extract->getOperand(0);
10307   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10308         return Op.getOpcode() == unsigned(BinOp);
10309       }))
10310     return SDValue();
10311 
10312   // Floating-point reductions may require relaxed constraints on the final step
10313   // of the reduction because they may reorder intermediate operations.
10314   unsigned CandidateBinOp = Op.getOpcode();
10315   if (Op.getValueType().isFloatingPoint()) {
10316     SDNodeFlags Flags = Op->getFlags();
10317     switch (CandidateBinOp) {
10318     case ISD::FADD:
10319       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10320         return SDValue();
10321       break;
10322     default:
10323       llvm_unreachable("Unhandled FP opcode for binop reduction");
10324     }
10325   }
10326 
10327   // Matching failed - attempt to see if we did enough stages that a partial
10328   // reduction from a subvector is possible.
10329   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10330     if (!AllowPartials || !Op)
10331       return SDValue();
10332     EVT OpVT = Op.getValueType();
10333     EVT OpSVT = OpVT.getScalarType();
10334     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10335     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10336       return SDValue();
10337     BinOp = (ISD::NodeType)CandidateBinOp;
10338     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10339                    getVectorIdxConstant(0, SDLoc(Op)));
10340   };
10341 
10342   // At each stage, we're looking for something that looks like:
10343   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10344   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10345   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10346   // %a = binop <8 x i32> %op, %s
10347   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10348   // we expect something like:
10349   // <4,5,6,7,u,u,u,u>
10350   // <2,3,u,u,u,u,u,u>
10351   // <1,u,u,u,u,u,u,u>
10352   // While a partial reduction match would be:
10353   // <2,3,u,u,u,u,u,u>
10354   // <1,u,u,u,u,u,u,u>
10355   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10356   SDValue PrevOp;
10357   for (unsigned i = 0; i < Stages; ++i) {
10358     unsigned MaskEnd = (1 << i);
10359 
10360     if (Op.getOpcode() != CandidateBinOp)
10361       return PartialReduction(PrevOp, MaskEnd);
10362 
10363     SDValue Op0 = Op.getOperand(0);
10364     SDValue Op1 = Op.getOperand(1);
10365 
10366     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10367     if (Shuffle) {
10368       Op = Op1;
10369     } else {
10370       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10371       Op = Op0;
10372     }
10373 
10374     // The first operand of the shuffle should be the same as the other operand
10375     // of the binop.
10376     if (!Shuffle || Shuffle->getOperand(0) != Op)
10377       return PartialReduction(PrevOp, MaskEnd);
10378 
10379     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10380     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10381       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10382         return PartialReduction(PrevOp, MaskEnd);
10383 
10384     PrevOp = Op;
10385   }
10386 
10387   // Handle subvector reductions, which tend to appear after the shuffle
10388   // reduction stages.
10389   while (Op.getOpcode() == CandidateBinOp) {
10390     unsigned NumElts = Op.getValueType().getVectorNumElements();
10391     SDValue Op0 = Op.getOperand(0);
10392     SDValue Op1 = Op.getOperand(1);
10393     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10394         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10395         Op0.getOperand(0) != Op1.getOperand(0))
10396       break;
10397     SDValue Src = Op0.getOperand(0);
10398     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10399     if (NumSrcElts != (2 * NumElts))
10400       break;
10401     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10402           Op1.getConstantOperandAPInt(1) == NumElts) &&
10403         !(Op1.getConstantOperandAPInt(1) == 0 &&
10404           Op0.getConstantOperandAPInt(1) == NumElts))
10405       break;
10406     Op = Src;
10407   }
10408 
10409   BinOp = (ISD::NodeType)CandidateBinOp;
10410   return Op;
10411 }
10412 
10413 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10414   assert(N->getNumValues() == 1 &&
10415          "Can't unroll a vector with multiple results!");
10416 
10417   EVT VT = N->getValueType(0);
10418   unsigned NE = VT.getVectorNumElements();
10419   EVT EltVT = VT.getVectorElementType();
10420   SDLoc dl(N);
10421 
10422   SmallVector<SDValue, 8> Scalars;
10423   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10424 
10425   // If ResNE is 0, fully unroll the vector op.
10426   if (ResNE == 0)
10427     ResNE = NE;
10428   else if (NE > ResNE)
10429     NE = ResNE;
10430 
10431   unsigned i;
10432   for (i= 0; i != NE; ++i) {
10433     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10434       SDValue Operand = N->getOperand(j);
10435       EVT OperandVT = Operand.getValueType();
10436       if (OperandVT.isVector()) {
10437         // A vector operand; extract a single element.
10438         EVT OperandEltVT = OperandVT.getVectorElementType();
10439         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10440                               Operand, getVectorIdxConstant(i, dl));
10441       } else {
10442         // A scalar operand; just use it as is.
10443         Operands[j] = Operand;
10444       }
10445     }
10446 
10447     switch (N->getOpcode()) {
10448     default: {
10449       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10450                                 N->getFlags()));
10451       break;
10452     }
10453     case ISD::VSELECT:
10454       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10455       break;
10456     case ISD::SHL:
10457     case ISD::SRA:
10458     case ISD::SRL:
10459     case ISD::ROTL:
10460     case ISD::ROTR:
10461       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10462                                getShiftAmountOperand(Operands[0].getValueType(),
10463                                                      Operands[1])));
10464       break;
10465     case ISD::SIGN_EXTEND_INREG: {
10466       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10467       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10468                                 Operands[0],
10469                                 getValueType(ExtVT)));
10470     }
10471     }
10472   }
10473 
10474   for (; i < ResNE; ++i)
10475     Scalars.push_back(getUNDEF(EltVT));
10476 
10477   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10478   return getBuildVector(VecVT, dl, Scalars);
10479 }
10480 
10481 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10482     SDNode *N, unsigned ResNE) {
10483   unsigned Opcode = N->getOpcode();
10484   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10485           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10486           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10487          "Expected an overflow opcode");
10488 
10489   EVT ResVT = N->getValueType(0);
10490   EVT OvVT = N->getValueType(1);
10491   EVT ResEltVT = ResVT.getVectorElementType();
10492   EVT OvEltVT = OvVT.getVectorElementType();
10493   SDLoc dl(N);
10494 
10495   // If ResNE is 0, fully unroll the vector op.
10496   unsigned NE = ResVT.getVectorNumElements();
10497   if (ResNE == 0)
10498     ResNE = NE;
10499   else if (NE > ResNE)
10500     NE = ResNE;
10501 
10502   SmallVector<SDValue, 8> LHSScalars;
10503   SmallVector<SDValue, 8> RHSScalars;
10504   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10505   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10506 
10507   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10508   SDVTList VTs = getVTList(ResEltVT, SVT);
10509   SmallVector<SDValue, 8> ResScalars;
10510   SmallVector<SDValue, 8> OvScalars;
10511   for (unsigned i = 0; i < NE; ++i) {
10512     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10513     SDValue Ov =
10514         getSelect(dl, OvEltVT, Res.getValue(1),
10515                   getBoolConstant(true, dl, OvEltVT, ResVT),
10516                   getConstant(0, dl, OvEltVT));
10517 
10518     ResScalars.push_back(Res);
10519     OvScalars.push_back(Ov);
10520   }
10521 
10522   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10523   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10524 
10525   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10526   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10527   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10528                         getBuildVector(NewOvVT, dl, OvScalars));
10529 }
10530 
10531 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10532                                                   LoadSDNode *Base,
10533                                                   unsigned Bytes,
10534                                                   int Dist) const {
10535   if (LD->isVolatile() || Base->isVolatile())
10536     return false;
10537   // TODO: probably too restrictive for atomics, revisit
10538   if (!LD->isSimple())
10539     return false;
10540   if (LD->isIndexed() || Base->isIndexed())
10541     return false;
10542   if (LD->getChain() != Base->getChain())
10543     return false;
10544   EVT VT = LD->getValueType(0);
10545   if (VT.getSizeInBits() / 8 != Bytes)
10546     return false;
10547 
10548   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10549   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10550 
10551   int64_t Offset = 0;
10552   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10553     return (Dist * Bytes == Offset);
10554   return false;
10555 }
10556 
10557 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10558 /// if it cannot be inferred.
10559 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10560   // If this is a GlobalAddress + cst, return the alignment.
10561   const GlobalValue *GV = nullptr;
10562   int64_t GVOffset = 0;
10563   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10564     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10565     KnownBits Known(PtrWidth);
10566     llvm::computeKnownBits(GV, Known, getDataLayout());
10567     unsigned AlignBits = Known.countMinTrailingZeros();
10568     if (AlignBits)
10569       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10570   }
10571 
10572   // If this is a direct reference to a stack slot, use information about the
10573   // stack slot's alignment.
10574   int FrameIdx = INT_MIN;
10575   int64_t FrameOffset = 0;
10576   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10577     FrameIdx = FI->getIndex();
10578   } else if (isBaseWithConstantOffset(Ptr) &&
10579              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10580     // Handle FI+Cst
10581     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10582     FrameOffset = Ptr.getConstantOperandVal(1);
10583   }
10584 
10585   if (FrameIdx != INT_MIN) {
10586     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10587     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10588   }
10589 
10590   return None;
10591 }
10592 
10593 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10594 /// which is split (or expanded) into two not necessarily identical pieces.
10595 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10596   // Currently all types are split in half.
10597   EVT LoVT, HiVT;
10598   if (!VT.isVector())
10599     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10600   else
10601     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10602 
10603   return std::make_pair(LoVT, HiVT);
10604 }
10605 
10606 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10607 /// type, dependent on an enveloping VT that has been split into two identical
10608 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10609 std::pair<EVT, EVT>
10610 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10611                                        bool *HiIsEmpty) const {
10612   EVT EltTp = VT.getVectorElementType();
10613   // Examples:
10614   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10615   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10616   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10617   //   etc.
10618   ElementCount VTNumElts = VT.getVectorElementCount();
10619   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10620   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10621          "Mixing fixed width and scalable vectors when enveloping a type");
10622   EVT LoVT, HiVT;
10623   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10624     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10625     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10626     *HiIsEmpty = false;
10627   } else {
10628     // Flag that hi type has zero storage size, but return split envelop type
10629     // (this would be easier if vector types with zero elements were allowed).
10630     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10631     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10632     *HiIsEmpty = true;
10633   }
10634   return std::make_pair(LoVT, HiVT);
10635 }
10636 
10637 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10638 /// low/high part.
10639 std::pair<SDValue, SDValue>
10640 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10641                           const EVT &HiVT) {
10642   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10643          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10644          "Splitting vector with an invalid mixture of fixed and scalable "
10645          "vector types");
10646   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10647              N.getValueType().getVectorMinNumElements() &&
10648          "More vector elements requested than available!");
10649   SDValue Lo, Hi;
10650   Lo =
10651       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10652   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10653   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10654   // IDX with the runtime scaling factor of the result vector type. For
10655   // fixed-width result vectors, that runtime scaling factor is 1.
10656   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10657                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10658   return std::make_pair(Lo, Hi);
10659 }
10660 
10661 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
10662                                                    const SDLoc &DL) {
10663   // Split the vector length parameter.
10664   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
10665   EVT VT = N.getValueType();
10666   assert(VecVT.getVectorElementCount().isKnownEven() &&
10667          "Expecting the mask to be an evenly-sized vector");
10668   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
10669   SDValue HalfNumElts =
10670       VecVT.isFixedLengthVector()
10671           ? getConstant(HalfMinNumElts, DL, VT)
10672           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
10673   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
10674   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
10675   return std::make_pair(Lo, Hi);
10676 }
10677 
10678 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10679 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10680   EVT VT = N.getValueType();
10681   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10682                                 NextPowerOf2(VT.getVectorNumElements()));
10683   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10684                  getVectorIdxConstant(0, DL));
10685 }
10686 
10687 void SelectionDAG::ExtractVectorElements(SDValue Op,
10688                                          SmallVectorImpl<SDValue> &Args,
10689                                          unsigned Start, unsigned Count,
10690                                          EVT EltVT) {
10691   EVT VT = Op.getValueType();
10692   if (Count == 0)
10693     Count = VT.getVectorNumElements();
10694   if (EltVT == EVT())
10695     EltVT = VT.getVectorElementType();
10696   SDLoc SL(Op);
10697   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10698     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10699                            getVectorIdxConstant(i, SL)));
10700   }
10701 }
10702 
10703 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10704 unsigned GlobalAddressSDNode::getAddressSpace() const {
10705   return getGlobal()->getType()->getAddressSpace();
10706 }
10707 
10708 Type *ConstantPoolSDNode::getType() const {
10709   if (isMachineConstantPoolEntry())
10710     return Val.MachineCPVal->getType();
10711   return Val.ConstVal->getType();
10712 }
10713 
10714 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10715                                         unsigned &SplatBitSize,
10716                                         bool &HasAnyUndefs,
10717                                         unsigned MinSplatBits,
10718                                         bool IsBigEndian) const {
10719   EVT VT = getValueType(0);
10720   assert(VT.isVector() && "Expected a vector type");
10721   unsigned VecWidth = VT.getSizeInBits();
10722   if (MinSplatBits > VecWidth)
10723     return false;
10724 
10725   // FIXME: The widths are based on this node's type, but build vectors can
10726   // truncate their operands.
10727   SplatValue = APInt(VecWidth, 0);
10728   SplatUndef = APInt(VecWidth, 0);
10729 
10730   // Get the bits. Bits with undefined values (when the corresponding element
10731   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10732   // in SplatValue. If any of the values are not constant, give up and return
10733   // false.
10734   unsigned int NumOps = getNumOperands();
10735   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10736   unsigned EltWidth = VT.getScalarSizeInBits();
10737 
10738   for (unsigned j = 0; j < NumOps; ++j) {
10739     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10740     SDValue OpVal = getOperand(i);
10741     unsigned BitPos = j * EltWidth;
10742 
10743     if (OpVal.isUndef())
10744       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10745     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10746       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10747     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10748       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10749     else
10750       return false;
10751   }
10752 
10753   // The build_vector is all constants or undefs. Find the smallest element
10754   // size that splats the vector.
10755   HasAnyUndefs = (SplatUndef != 0);
10756 
10757   // FIXME: This does not work for vectors with elements less than 8 bits.
10758   while (VecWidth > 8) {
10759     unsigned HalfSize = VecWidth / 2;
10760     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10761     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10762     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10763     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10764 
10765     // If the two halves do not match (ignoring undef bits), stop here.
10766     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10767         MinSplatBits > HalfSize)
10768       break;
10769 
10770     SplatValue = HighValue | LowValue;
10771     SplatUndef = HighUndef & LowUndef;
10772 
10773     VecWidth = HalfSize;
10774   }
10775 
10776   SplatBitSize = VecWidth;
10777   return true;
10778 }
10779 
10780 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10781                                          BitVector *UndefElements) const {
10782   unsigned NumOps = getNumOperands();
10783   if (UndefElements) {
10784     UndefElements->clear();
10785     UndefElements->resize(NumOps);
10786   }
10787   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10788   if (!DemandedElts)
10789     return SDValue();
10790   SDValue Splatted;
10791   for (unsigned i = 0; i != NumOps; ++i) {
10792     if (!DemandedElts[i])
10793       continue;
10794     SDValue Op = getOperand(i);
10795     if (Op.isUndef()) {
10796       if (UndefElements)
10797         (*UndefElements)[i] = true;
10798     } else if (!Splatted) {
10799       Splatted = Op;
10800     } else if (Splatted != Op) {
10801       return SDValue();
10802     }
10803   }
10804 
10805   if (!Splatted) {
10806     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10807     assert(getOperand(FirstDemandedIdx).isUndef() &&
10808            "Can only have a splat without a constant for all undefs.");
10809     return getOperand(FirstDemandedIdx);
10810   }
10811 
10812   return Splatted;
10813 }
10814 
10815 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10816   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10817   return getSplatValue(DemandedElts, UndefElements);
10818 }
10819 
10820 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10821                                             SmallVectorImpl<SDValue> &Sequence,
10822                                             BitVector *UndefElements) const {
10823   unsigned NumOps = getNumOperands();
10824   Sequence.clear();
10825   if (UndefElements) {
10826     UndefElements->clear();
10827     UndefElements->resize(NumOps);
10828   }
10829   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10830   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10831     return false;
10832 
10833   // Set the undefs even if we don't find a sequence (like getSplatValue).
10834   if (UndefElements)
10835     for (unsigned I = 0; I != NumOps; ++I)
10836       if (DemandedElts[I] && getOperand(I).isUndef())
10837         (*UndefElements)[I] = true;
10838 
10839   // Iteratively widen the sequence length looking for repetitions.
10840   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10841     Sequence.append(SeqLen, SDValue());
10842     for (unsigned I = 0; I != NumOps; ++I) {
10843       if (!DemandedElts[I])
10844         continue;
10845       SDValue &SeqOp = Sequence[I % SeqLen];
10846       SDValue Op = getOperand(I);
10847       if (Op.isUndef()) {
10848         if (!SeqOp)
10849           SeqOp = Op;
10850         continue;
10851       }
10852       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10853         Sequence.clear();
10854         break;
10855       }
10856       SeqOp = Op;
10857     }
10858     if (!Sequence.empty())
10859       return true;
10860   }
10861 
10862   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10863   return false;
10864 }
10865 
10866 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10867                                             BitVector *UndefElements) const {
10868   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10869   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10870 }
10871 
10872 ConstantSDNode *
10873 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10874                                         BitVector *UndefElements) const {
10875   return dyn_cast_or_null<ConstantSDNode>(
10876       getSplatValue(DemandedElts, UndefElements));
10877 }
10878 
10879 ConstantSDNode *
10880 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10881   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10882 }
10883 
10884 ConstantFPSDNode *
10885 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10886                                           BitVector *UndefElements) const {
10887   return dyn_cast_or_null<ConstantFPSDNode>(
10888       getSplatValue(DemandedElts, UndefElements));
10889 }
10890 
10891 ConstantFPSDNode *
10892 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10893   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10894 }
10895 
10896 int32_t
10897 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10898                                                    uint32_t BitWidth) const {
10899   if (ConstantFPSDNode *CN =
10900           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10901     bool IsExact;
10902     APSInt IntVal(BitWidth);
10903     const APFloat &APF = CN->getValueAPF();
10904     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10905             APFloat::opOK ||
10906         !IsExact)
10907       return -1;
10908 
10909     return IntVal.exactLogBase2();
10910   }
10911   return -1;
10912 }
10913 
10914 bool BuildVectorSDNode::getConstantRawBits(
10915     bool IsLittleEndian, unsigned DstEltSizeInBits,
10916     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
10917   // Early-out if this contains anything but Undef/Constant/ConstantFP.
10918   if (!isConstant())
10919     return false;
10920 
10921   unsigned NumSrcOps = getNumOperands();
10922   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
10923   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10924          "Invalid bitcast scale");
10925 
10926   // Extract raw src bits.
10927   SmallVector<APInt> SrcBitElements(NumSrcOps,
10928                                     APInt::getNullValue(SrcEltSizeInBits));
10929   BitVector SrcUndeElements(NumSrcOps, false);
10930 
10931   for (unsigned I = 0; I != NumSrcOps; ++I) {
10932     SDValue Op = getOperand(I);
10933     if (Op.isUndef()) {
10934       SrcUndeElements.set(I);
10935       continue;
10936     }
10937     auto *CInt = dyn_cast<ConstantSDNode>(Op);
10938     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
10939     assert((CInt || CFP) && "Unknown constant");
10940     SrcBitElements[I] =
10941         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
10942              : CFP->getValueAPF().bitcastToAPInt();
10943   }
10944 
10945   // Recast to dst width.
10946   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
10947                 SrcBitElements, UndefElements, SrcUndeElements);
10948   return true;
10949 }
10950 
10951 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
10952                                       unsigned DstEltSizeInBits,
10953                                       SmallVectorImpl<APInt> &DstBitElements,
10954                                       ArrayRef<APInt> SrcBitElements,
10955                                       BitVector &DstUndefElements,
10956                                       const BitVector &SrcUndefElements) {
10957   unsigned NumSrcOps = SrcBitElements.size();
10958   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
10959   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10960          "Invalid bitcast scale");
10961   assert(NumSrcOps == SrcUndefElements.size() &&
10962          "Vector size mismatch");
10963 
10964   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
10965   DstUndefElements.clear();
10966   DstUndefElements.resize(NumDstOps, false);
10967   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
10968 
10969   // Concatenate src elements constant bits together into dst element.
10970   if (SrcEltSizeInBits <= DstEltSizeInBits) {
10971     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
10972     for (unsigned I = 0; I != NumDstOps; ++I) {
10973       DstUndefElements.set(I);
10974       APInt &DstBits = DstBitElements[I];
10975       for (unsigned J = 0; J != Scale; ++J) {
10976         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
10977         if (SrcUndefElements[Idx])
10978           continue;
10979         DstUndefElements.reset(I);
10980         const APInt &SrcBits = SrcBitElements[Idx];
10981         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
10982                "Illegal constant bitwidths");
10983         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
10984       }
10985     }
10986     return;
10987   }
10988 
10989   // Split src element constant bits into dst elements.
10990   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
10991   for (unsigned I = 0; I != NumSrcOps; ++I) {
10992     if (SrcUndefElements[I]) {
10993       DstUndefElements.set(I * Scale, (I + 1) * Scale);
10994       continue;
10995     }
10996     const APInt &SrcBits = SrcBitElements[I];
10997     for (unsigned J = 0; J != Scale; ++J) {
10998       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
10999       APInt &DstBits = DstBitElements[Idx];
11000       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11001     }
11002   }
11003 }
11004 
11005 bool BuildVectorSDNode::isConstant() const {
11006   for (const SDValue &Op : op_values()) {
11007     unsigned Opc = Op.getOpcode();
11008     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11009       return false;
11010   }
11011   return true;
11012 }
11013 
11014 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11015   // Find the first non-undef value in the shuffle mask.
11016   unsigned i, e;
11017   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11018     /* search */;
11019 
11020   // If all elements are undefined, this shuffle can be considered a splat
11021   // (although it should eventually get simplified away completely).
11022   if (i == e)
11023     return true;
11024 
11025   // Make sure all remaining elements are either undef or the same as the first
11026   // non-undef value.
11027   for (int Idx = Mask[i]; i != e; ++i)
11028     if (Mask[i] >= 0 && Mask[i] != Idx)
11029       return false;
11030   return true;
11031 }
11032 
11033 // Returns the SDNode if it is a constant integer BuildVector
11034 // or constant integer.
11035 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11036   if (isa<ConstantSDNode>(N))
11037     return N.getNode();
11038   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11039     return N.getNode();
11040   // Treat a GlobalAddress supporting constant offset folding as a
11041   // constant integer.
11042   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11043     if (GA->getOpcode() == ISD::GlobalAddress &&
11044         TLI->isOffsetFoldingLegal(GA))
11045       return GA;
11046   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11047       isa<ConstantSDNode>(N.getOperand(0)))
11048     return N.getNode();
11049   return nullptr;
11050 }
11051 
11052 // Returns the SDNode if it is a constant float BuildVector
11053 // or constant float.
11054 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11055   if (isa<ConstantFPSDNode>(N))
11056     return N.getNode();
11057 
11058   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11059     return N.getNode();
11060 
11061   return nullptr;
11062 }
11063 
11064 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11065   assert(!Node->OperandList && "Node already has operands");
11066   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11067          "too many operands to fit into SDNode");
11068   SDUse *Ops = OperandRecycler.allocate(
11069       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11070 
11071   bool IsDivergent = false;
11072   for (unsigned I = 0; I != Vals.size(); ++I) {
11073     Ops[I].setUser(Node);
11074     Ops[I].setInitial(Vals[I]);
11075     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11076       IsDivergent |= Ops[I].getNode()->isDivergent();
11077   }
11078   Node->NumOperands = Vals.size();
11079   Node->OperandList = Ops;
11080   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11081     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11082     Node->SDNodeBits.IsDivergent = IsDivergent;
11083   }
11084   checkForCycles(Node);
11085 }
11086 
11087 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11088                                      SmallVectorImpl<SDValue> &Vals) {
11089   size_t Limit = SDNode::getMaxNumOperands();
11090   while (Vals.size() > Limit) {
11091     unsigned SliceIdx = Vals.size() - Limit;
11092     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11093     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11094     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11095     Vals.emplace_back(NewTF);
11096   }
11097   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11098 }
11099 
11100 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11101                                         EVT VT, SDNodeFlags Flags) {
11102   switch (Opcode) {
11103   default:
11104     return SDValue();
11105   case ISD::ADD:
11106   case ISD::OR:
11107   case ISD::XOR:
11108   case ISD::UMAX:
11109     return getConstant(0, DL, VT);
11110   case ISD::MUL:
11111     return getConstant(1, DL, VT);
11112   case ISD::AND:
11113   case ISD::UMIN:
11114     return getAllOnesConstant(DL, VT);
11115   case ISD::SMAX:
11116     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11117   case ISD::SMIN:
11118     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11119   case ISD::FADD:
11120     return getConstantFP(-0.0, DL, VT);
11121   case ISD::FMUL:
11122     return getConstantFP(1.0, DL, VT);
11123   case ISD::FMINNUM:
11124   case ISD::FMAXNUM: {
11125     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11126     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11127     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11128                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11129                         APFloat::getLargest(Semantics);
11130     if (Opcode == ISD::FMAXNUM)
11131       NeutralAF.changeSign();
11132 
11133     return getConstantFP(NeutralAF, DL, VT);
11134   }
11135   }
11136 }
11137 
11138 #ifndef NDEBUG
11139 static void checkForCyclesHelper(const SDNode *N,
11140                                  SmallPtrSetImpl<const SDNode*> &Visited,
11141                                  SmallPtrSetImpl<const SDNode*> &Checked,
11142                                  const llvm::SelectionDAG *DAG) {
11143   // If this node has already been checked, don't check it again.
11144   if (Checked.count(N))
11145     return;
11146 
11147   // If a node has already been visited on this depth-first walk, reject it as
11148   // a cycle.
11149   if (!Visited.insert(N).second) {
11150     errs() << "Detected cycle in SelectionDAG\n";
11151     dbgs() << "Offending node:\n";
11152     N->dumprFull(DAG); dbgs() << "\n";
11153     abort();
11154   }
11155 
11156   for (const SDValue &Op : N->op_values())
11157     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11158 
11159   Checked.insert(N);
11160   Visited.erase(N);
11161 }
11162 #endif
11163 
11164 void llvm::checkForCycles(const llvm::SDNode *N,
11165                           const llvm::SelectionDAG *DAG,
11166                           bool force) {
11167 #ifndef NDEBUG
11168   bool check = force;
11169 #ifdef EXPENSIVE_CHECKS
11170   check = true;
11171 #endif  // EXPENSIVE_CHECKS
11172   if (check) {
11173     assert(N && "Checking nonexistent SDNode");
11174     SmallPtrSet<const SDNode*, 32> visited;
11175     SmallPtrSet<const SDNode*, 32> checked;
11176     checkForCyclesHelper(N, visited, checked, DAG);
11177   }
11178 #endif  // !NDEBUG
11179 }
11180 
11181 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11182   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11183 }
11184