1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 auto *BV = dyn_cast<BuildVectorSDNode>(N); 143 if (!BV) 144 return false; 145 146 APInt SplatUndef; 147 unsigned SplatBitSize; 148 bool HasUndefs; 149 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 150 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 151 EltSize) && 152 EltSize == SplatBitSize; 153 } 154 155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 156 // specializations of the more general isConstantSplatVector()? 157 158 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 159 // Look through a bit convert. 160 while (N->getOpcode() == ISD::BITCAST) 161 N = N->getOperand(0).getNode(); 162 163 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 164 165 unsigned i = 0, e = N->getNumOperands(); 166 167 // Skip over all of the undef values. 168 while (i != e && N->getOperand(i).isUndef()) 169 ++i; 170 171 // Do not accept an all-undef vector. 172 if (i == e) return false; 173 174 // Do not accept build_vectors that aren't all constants or which have non-~0 175 // elements. We have to be a bit careful here, as the type of the constant 176 // may not be the same as the type of the vector elements due to type 177 // legalization (the elements are promoted to a legal type for the target and 178 // a vector of a type may be legal when the base element type is not). 179 // We only want to check enough bits to cover the vector elements, because 180 // we care if the resultant vector is all ones, not whether the individual 181 // constants are. 182 SDValue NotZero = N->getOperand(i); 183 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 184 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 185 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 186 return false; 187 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 188 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 189 return false; 190 } else 191 return false; 192 193 // Okay, we have at least one ~0 value, check to see if the rest match or are 194 // undefs. Even with the above element type twiddling, this should be OK, as 195 // the same type legalization should have applied to all the elements. 196 for (++i; i != e; ++i) 197 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 198 return false; 199 return true; 200 } 201 202 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 203 // Look through a bit convert. 204 while (N->getOpcode() == ISD::BITCAST) 205 N = N->getOperand(0).getNode(); 206 207 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 208 209 bool IsAllUndef = true; 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 IsAllUndef = false; 214 // Do not accept build_vectors that aren't all constants or which have non-0 215 // elements. We have to be a bit careful here, as the type of the constant 216 // may not be the same as the type of the vector elements due to type 217 // legalization (the elements are promoted to a legal type for the target 218 // and a vector of a type may be legal when the base element type is not). 219 // We only want to check enough bits to cover the vector elements, because 220 // we care if the resultant vector is all zeros, not whether the individual 221 // constants are. 222 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 223 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 224 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 225 return false; 226 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 227 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 228 return false; 229 } else 230 return false; 231 } 232 233 // Do not accept an all-undef vector. 234 if (IsAllUndef) 235 return false; 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 253 if (N->getOpcode() != ISD::BUILD_VECTOR) 254 return false; 255 256 for (const SDValue &Op : N->op_values()) { 257 if (Op.isUndef()) 258 continue; 259 if (!isa<ConstantFPSDNode>(Op)) 260 return false; 261 } 262 return true; 263 } 264 265 bool ISD::allOperandsUndef(const SDNode *N) { 266 // Return false if the node has no operands. 267 // This is "logically inconsistent" with the definition of "all" but 268 // is probably the desired behavior. 269 if (N->getNumOperands() == 0) 270 return false; 271 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 272 } 273 274 bool ISD::matchUnaryPredicate(SDValue Op, 275 std::function<bool(ConstantSDNode *)> Match, 276 bool AllowUndefs) { 277 // FIXME: Add support for scalar UNDEF cases? 278 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 279 return Match(Cst); 280 281 // FIXME: Add support for vector UNDEF cases? 282 if (ISD::BUILD_VECTOR != Op.getOpcode()) 283 return false; 284 285 EVT SVT = Op.getValueType().getScalarType(); 286 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 287 if (AllowUndefs && Op.getOperand(i).isUndef()) { 288 if (!Match(nullptr)) 289 return false; 290 continue; 291 } 292 293 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 294 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 295 return false; 296 } 297 return true; 298 } 299 300 bool ISD::matchBinaryPredicate( 301 SDValue LHS, SDValue RHS, 302 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 303 bool AllowUndefs, bool AllowTypeMismatch) { 304 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 305 return false; 306 307 // TODO: Add support for scalar UNDEF cases? 308 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 309 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 310 return Match(LHSCst, RHSCst); 311 312 // TODO: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 314 ISD::BUILD_VECTOR != RHS.getOpcode()) 315 return false; 316 317 EVT SVT = LHS.getValueType().getScalarType(); 318 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 319 SDValue LHSOp = LHS.getOperand(i); 320 SDValue RHSOp = RHS.getOperand(i); 321 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 322 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 323 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 324 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 325 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 326 return false; 327 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 328 LHSOp.getValueType() != RHSOp.getValueType())) 329 return false; 330 if (!Match(LHSCst, RHSCst)) 331 return false; 332 } 333 return true; 334 } 335 336 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 337 switch (VecReduceOpcode) { 338 default: 339 llvm_unreachable("Expected VECREDUCE opcode"); 340 case ISD::VECREDUCE_FADD: 341 case ISD::VECREDUCE_SEQ_FADD: 342 return ISD::FADD; 343 case ISD::VECREDUCE_FMUL: 344 case ISD::VECREDUCE_SEQ_FMUL: 345 return ISD::FMUL; 346 case ISD::VECREDUCE_ADD: 347 return ISD::ADD; 348 case ISD::VECREDUCE_MUL: 349 return ISD::MUL; 350 case ISD::VECREDUCE_AND: 351 return ISD::AND; 352 case ISD::VECREDUCE_OR: 353 return ISD::OR; 354 case ISD::VECREDUCE_XOR: 355 return ISD::XOR; 356 case ISD::VECREDUCE_SMAX: 357 return ISD::SMAX; 358 case ISD::VECREDUCE_SMIN: 359 return ISD::SMIN; 360 case ISD::VECREDUCE_UMAX: 361 return ISD::UMAX; 362 case ISD::VECREDUCE_UMIN: 363 return ISD::UMIN; 364 case ISD::VECREDUCE_FMAX: 365 return ISD::FMAXNUM; 366 case ISD::VECREDUCE_FMIN: 367 return ISD::FMINNUM; 368 } 369 } 370 371 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 372 switch (ExtType) { 373 case ISD::EXTLOAD: 374 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 375 case ISD::SEXTLOAD: 376 return ISD::SIGN_EXTEND; 377 case ISD::ZEXTLOAD: 378 return ISD::ZERO_EXTEND; 379 default: 380 break; 381 } 382 383 llvm_unreachable("Invalid LoadExtType"); 384 } 385 386 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 387 // To perform this operation, we just need to swap the L and G bits of the 388 // operation. 389 unsigned OldL = (Operation >> 2) & 1; 390 unsigned OldG = (Operation >> 1) & 1; 391 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 392 (OldL << 1) | // New G bit 393 (OldG << 2)); // New L bit. 394 } 395 396 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 397 unsigned Operation = Op; 398 if (isIntegerLike) 399 Operation ^= 7; // Flip L, G, E bits, but not U. 400 else 401 Operation ^= 15; // Flip all of the condition bits. 402 403 if (Operation > ISD::SETTRUE2) 404 Operation &= ~8; // Don't let N and U bits get set. 405 406 return ISD::CondCode(Operation); 407 } 408 409 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 410 return getSetCCInverseImpl(Op, Type.isInteger()); 411 } 412 413 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 414 bool isIntegerLike) { 415 return getSetCCInverseImpl(Op, isIntegerLike); 416 } 417 418 /// For an integer comparison, return 1 if the comparison is a signed operation 419 /// and 2 if the result is an unsigned comparison. Return zero if the operation 420 /// does not depend on the sign of the input (setne and seteq). 421 static int isSignedOp(ISD::CondCode Opcode) { 422 switch (Opcode) { 423 default: llvm_unreachable("Illegal integer setcc operation!"); 424 case ISD::SETEQ: 425 case ISD::SETNE: return 0; 426 case ISD::SETLT: 427 case ISD::SETLE: 428 case ISD::SETGT: 429 case ISD::SETGE: return 1; 430 case ISD::SETULT: 431 case ISD::SETULE: 432 case ISD::SETUGT: 433 case ISD::SETUGE: return 2; 434 } 435 } 436 437 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 438 EVT Type) { 439 bool IsInteger = Type.isInteger(); 440 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 441 // Cannot fold a signed integer setcc with an unsigned integer setcc. 442 return ISD::SETCC_INVALID; 443 444 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 445 446 // If the N and U bits get set, then the resultant comparison DOES suddenly 447 // care about orderedness, and it is true when ordered. 448 if (Op > ISD::SETTRUE2) 449 Op &= ~16; // Clear the U bit if the N bit is set. 450 451 // Canonicalize illegal integer setcc's. 452 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 453 Op = ISD::SETNE; 454 455 return ISD::CondCode(Op); 456 } 457 458 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 459 EVT Type) { 460 bool IsInteger = Type.isInteger(); 461 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 462 // Cannot fold a signed setcc with an unsigned setcc. 463 return ISD::SETCC_INVALID; 464 465 // Combine all of the condition bits. 466 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 467 468 // Canonicalize illegal integer setcc's. 469 if (IsInteger) { 470 switch (Result) { 471 default: break; 472 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 473 case ISD::SETOEQ: // SETEQ & SETU[LG]E 474 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 475 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 476 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 477 } 478 } 479 480 return Result; 481 } 482 483 //===----------------------------------------------------------------------===// 484 // SDNode Profile Support 485 //===----------------------------------------------------------------------===// 486 487 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 488 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 489 ID.AddInteger(OpC); 490 } 491 492 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 493 /// solely with their pointer. 494 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 495 ID.AddPointer(VTList.VTs); 496 } 497 498 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 499 static void AddNodeIDOperands(FoldingSetNodeID &ID, 500 ArrayRef<SDValue> Ops) { 501 for (auto& Op : Ops) { 502 ID.AddPointer(Op.getNode()); 503 ID.AddInteger(Op.getResNo()); 504 } 505 } 506 507 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 508 static void AddNodeIDOperands(FoldingSetNodeID &ID, 509 ArrayRef<SDUse> Ops) { 510 for (auto& Op : Ops) { 511 ID.AddPointer(Op.getNode()); 512 ID.AddInteger(Op.getResNo()); 513 } 514 } 515 516 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 517 SDVTList VTList, ArrayRef<SDValue> OpList) { 518 AddNodeIDOpcode(ID, OpC); 519 AddNodeIDValueTypes(ID, VTList); 520 AddNodeIDOperands(ID, OpList); 521 } 522 523 /// If this is an SDNode with special info, add this info to the NodeID data. 524 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 525 switch (N->getOpcode()) { 526 case ISD::TargetExternalSymbol: 527 case ISD::ExternalSymbol: 528 case ISD::MCSymbol: 529 llvm_unreachable("Should only be used on nodes with operands"); 530 default: break; // Normal nodes don't need extra info. 531 case ISD::TargetConstant: 532 case ISD::Constant: { 533 const ConstantSDNode *C = cast<ConstantSDNode>(N); 534 ID.AddPointer(C->getConstantIntValue()); 535 ID.AddBoolean(C->isOpaque()); 536 break; 537 } 538 case ISD::TargetConstantFP: 539 case ISD::ConstantFP: 540 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 541 break; 542 case ISD::TargetGlobalAddress: 543 case ISD::GlobalAddress: 544 case ISD::TargetGlobalTLSAddress: 545 case ISD::GlobalTLSAddress: { 546 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 547 ID.AddPointer(GA->getGlobal()); 548 ID.AddInteger(GA->getOffset()); 549 ID.AddInteger(GA->getTargetFlags()); 550 break; 551 } 552 case ISD::BasicBlock: 553 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 554 break; 555 case ISD::Register: 556 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 557 break; 558 case ISD::RegisterMask: 559 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 560 break; 561 case ISD::SRCVALUE: 562 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 563 break; 564 case ISD::FrameIndex: 565 case ISD::TargetFrameIndex: 566 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 567 break; 568 case ISD::LIFETIME_START: 569 case ISD::LIFETIME_END: 570 if (cast<LifetimeSDNode>(N)->hasOffset()) { 571 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 572 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 573 } 574 break; 575 case ISD::JumpTable: 576 case ISD::TargetJumpTable: 577 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 578 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 579 break; 580 case ISD::ConstantPool: 581 case ISD::TargetConstantPool: { 582 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 583 ID.AddInteger(CP->getAlign().value()); 584 ID.AddInteger(CP->getOffset()); 585 if (CP->isMachineConstantPoolEntry()) 586 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 587 else 588 ID.AddPointer(CP->getConstVal()); 589 ID.AddInteger(CP->getTargetFlags()); 590 break; 591 } 592 case ISD::TargetIndex: { 593 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 594 ID.AddInteger(TI->getIndex()); 595 ID.AddInteger(TI->getOffset()); 596 ID.AddInteger(TI->getTargetFlags()); 597 break; 598 } 599 case ISD::LOAD: { 600 const LoadSDNode *LD = cast<LoadSDNode>(N); 601 ID.AddInteger(LD->getMemoryVT().getRawBits()); 602 ID.AddInteger(LD->getRawSubclassData()); 603 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 604 break; 605 } 606 case ISD::STORE: { 607 const StoreSDNode *ST = cast<StoreSDNode>(N); 608 ID.AddInteger(ST->getMemoryVT().getRawBits()); 609 ID.AddInteger(ST->getRawSubclassData()); 610 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 611 break; 612 } 613 case ISD::MLOAD: { 614 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 615 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 616 ID.AddInteger(MLD->getRawSubclassData()); 617 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 618 break; 619 } 620 case ISD::MSTORE: { 621 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 622 ID.AddInteger(MST->getMemoryVT().getRawBits()); 623 ID.AddInteger(MST->getRawSubclassData()); 624 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 625 break; 626 } 627 case ISD::MGATHER: { 628 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 629 ID.AddInteger(MG->getMemoryVT().getRawBits()); 630 ID.AddInteger(MG->getRawSubclassData()); 631 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 632 break; 633 } 634 case ISD::MSCATTER: { 635 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 636 ID.AddInteger(MS->getMemoryVT().getRawBits()); 637 ID.AddInteger(MS->getRawSubclassData()); 638 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 639 break; 640 } 641 case ISD::ATOMIC_CMP_SWAP: 642 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 643 case ISD::ATOMIC_SWAP: 644 case ISD::ATOMIC_LOAD_ADD: 645 case ISD::ATOMIC_LOAD_SUB: 646 case ISD::ATOMIC_LOAD_AND: 647 case ISD::ATOMIC_LOAD_CLR: 648 case ISD::ATOMIC_LOAD_OR: 649 case ISD::ATOMIC_LOAD_XOR: 650 case ISD::ATOMIC_LOAD_NAND: 651 case ISD::ATOMIC_LOAD_MIN: 652 case ISD::ATOMIC_LOAD_MAX: 653 case ISD::ATOMIC_LOAD_UMIN: 654 case ISD::ATOMIC_LOAD_UMAX: 655 case ISD::ATOMIC_LOAD: 656 case ISD::ATOMIC_STORE: { 657 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 658 ID.AddInteger(AT->getMemoryVT().getRawBits()); 659 ID.AddInteger(AT->getRawSubclassData()); 660 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 661 break; 662 } 663 case ISD::PREFETCH: { 664 const MemSDNode *PF = cast<MemSDNode>(N); 665 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 666 break; 667 } 668 case ISD::VECTOR_SHUFFLE: { 669 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 670 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 671 i != e; ++i) 672 ID.AddInteger(SVN->getMaskElt(i)); 673 break; 674 } 675 case ISD::TargetBlockAddress: 676 case ISD::BlockAddress: { 677 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 678 ID.AddPointer(BA->getBlockAddress()); 679 ID.AddInteger(BA->getOffset()); 680 ID.AddInteger(BA->getTargetFlags()); 681 break; 682 } 683 } // end switch (N->getOpcode()) 684 685 // Target specific memory nodes could also have address spaces to check. 686 if (N->isTargetMemoryOpcode()) 687 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 688 } 689 690 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 691 /// data. 692 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 693 AddNodeIDOpcode(ID, N->getOpcode()); 694 // Add the return value info. 695 AddNodeIDValueTypes(ID, N->getVTList()); 696 // Add the operand info. 697 AddNodeIDOperands(ID, N->ops()); 698 699 // Handle SDNode leafs with special info. 700 AddNodeIDCustom(ID, N); 701 } 702 703 //===----------------------------------------------------------------------===// 704 // SelectionDAG Class 705 //===----------------------------------------------------------------------===// 706 707 /// doNotCSE - Return true if CSE should not be performed for this node. 708 static bool doNotCSE(SDNode *N) { 709 if (N->getValueType(0) == MVT::Glue) 710 return true; // Never CSE anything that produces a flag. 711 712 switch (N->getOpcode()) { 713 default: break; 714 case ISD::HANDLENODE: 715 case ISD::EH_LABEL: 716 return true; // Never CSE these nodes. 717 } 718 719 // Check that remaining values produced are not flags. 720 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 721 if (N->getValueType(i) == MVT::Glue) 722 return true; // Never CSE anything that produces a flag. 723 724 return false; 725 } 726 727 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 728 /// SelectionDAG. 729 void SelectionDAG::RemoveDeadNodes() { 730 // Create a dummy node (which is not added to allnodes), that adds a reference 731 // to the root node, preventing it from being deleted. 732 HandleSDNode Dummy(getRoot()); 733 734 SmallVector<SDNode*, 128> DeadNodes; 735 736 // Add all obviously-dead nodes to the DeadNodes worklist. 737 for (SDNode &Node : allnodes()) 738 if (Node.use_empty()) 739 DeadNodes.push_back(&Node); 740 741 RemoveDeadNodes(DeadNodes); 742 743 // If the root changed (e.g. it was a dead load, update the root). 744 setRoot(Dummy.getValue()); 745 } 746 747 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 748 /// given list, and any nodes that become unreachable as a result. 749 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 750 751 // Process the worklist, deleting the nodes and adding their uses to the 752 // worklist. 753 while (!DeadNodes.empty()) { 754 SDNode *N = DeadNodes.pop_back_val(); 755 // Skip to next node if we've already managed to delete the node. This could 756 // happen if replacing a node causes a node previously added to the node to 757 // be deleted. 758 if (N->getOpcode() == ISD::DELETED_NODE) 759 continue; 760 761 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 762 DUL->NodeDeleted(N, nullptr); 763 764 // Take the node out of the appropriate CSE map. 765 RemoveNodeFromCSEMaps(N); 766 767 // Next, brutally remove the operand list. This is safe to do, as there are 768 // no cycles in the graph. 769 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 770 SDUse &Use = *I++; 771 SDNode *Operand = Use.getNode(); 772 Use.set(SDValue()); 773 774 // Now that we removed this operand, see if there are no uses of it left. 775 if (Operand->use_empty()) 776 DeadNodes.push_back(Operand); 777 } 778 779 DeallocateNode(N); 780 } 781 } 782 783 void SelectionDAG::RemoveDeadNode(SDNode *N){ 784 SmallVector<SDNode*, 16> DeadNodes(1, N); 785 786 // Create a dummy node that adds a reference to the root node, preventing 787 // it from being deleted. (This matters if the root is an operand of the 788 // dead node.) 789 HandleSDNode Dummy(getRoot()); 790 791 RemoveDeadNodes(DeadNodes); 792 } 793 794 void SelectionDAG::DeleteNode(SDNode *N) { 795 // First take this out of the appropriate CSE map. 796 RemoveNodeFromCSEMaps(N); 797 798 // Finally, remove uses due to operands of this node, remove from the 799 // AllNodes list, and delete the node. 800 DeleteNodeNotInCSEMaps(N); 801 } 802 803 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 804 assert(N->getIterator() != AllNodes.begin() && 805 "Cannot delete the entry node!"); 806 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 807 808 // Drop all of the operands and decrement used node's use counts. 809 N->DropOperands(); 810 811 DeallocateNode(N); 812 } 813 814 void SDDbgInfo::erase(const SDNode *Node) { 815 DbgValMapType::iterator I = DbgValMap.find(Node); 816 if (I == DbgValMap.end()) 817 return; 818 for (auto &Val: I->second) 819 Val->setIsInvalidated(); 820 DbgValMap.erase(I); 821 } 822 823 void SelectionDAG::DeallocateNode(SDNode *N) { 824 // If we have operands, deallocate them. 825 removeOperands(N); 826 827 NodeAllocator.Deallocate(AllNodes.remove(N)); 828 829 // Set the opcode to DELETED_NODE to help catch bugs when node 830 // memory is reallocated. 831 // FIXME: There are places in SDag that have grown a dependency on the opcode 832 // value in the released node. 833 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 834 N->NodeType = ISD::DELETED_NODE; 835 836 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 837 // them and forget about that node. 838 DbgInfo->erase(N); 839 } 840 841 #ifndef NDEBUG 842 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 843 static void VerifySDNode(SDNode *N) { 844 switch (N->getOpcode()) { 845 default: 846 break; 847 case ISD::BUILD_PAIR: { 848 EVT VT = N->getValueType(0); 849 assert(N->getNumValues() == 1 && "Too many results!"); 850 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 851 "Wrong return type!"); 852 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 853 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 854 "Mismatched operand types!"); 855 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 856 "Wrong operand type!"); 857 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 858 "Wrong return type size"); 859 break; 860 } 861 case ISD::BUILD_VECTOR: { 862 assert(N->getNumValues() == 1 && "Too many results!"); 863 assert(N->getValueType(0).isVector() && "Wrong return type!"); 864 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 865 "Wrong number of operands!"); 866 EVT EltVT = N->getValueType(0).getVectorElementType(); 867 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 868 assert((I->getValueType() == EltVT || 869 (EltVT.isInteger() && I->getValueType().isInteger() && 870 EltVT.bitsLE(I->getValueType()))) && 871 "Wrong operand type!"); 872 assert(I->getValueType() == N->getOperand(0).getValueType() && 873 "Operands must all have the same type"); 874 } 875 break; 876 } 877 } 878 } 879 #endif // NDEBUG 880 881 /// Insert a newly allocated node into the DAG. 882 /// 883 /// Handles insertion into the all nodes list and CSE map, as well as 884 /// verification and other common operations when a new node is allocated. 885 void SelectionDAG::InsertNode(SDNode *N) { 886 AllNodes.push_back(N); 887 #ifndef NDEBUG 888 N->PersistentId = NextPersistentId++; 889 VerifySDNode(N); 890 #endif 891 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 892 DUL->NodeInserted(N); 893 } 894 895 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 896 /// correspond to it. This is useful when we're about to delete or repurpose 897 /// the node. We don't want future request for structurally identical nodes 898 /// to return N anymore. 899 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 900 bool Erased = false; 901 switch (N->getOpcode()) { 902 case ISD::HANDLENODE: return false; // noop. 903 case ISD::CONDCODE: 904 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 905 "Cond code doesn't exist!"); 906 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 907 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 908 break; 909 case ISD::ExternalSymbol: 910 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 911 break; 912 case ISD::TargetExternalSymbol: { 913 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 914 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 915 ESN->getSymbol(), ESN->getTargetFlags())); 916 break; 917 } 918 case ISD::MCSymbol: { 919 auto *MCSN = cast<MCSymbolSDNode>(N); 920 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 921 break; 922 } 923 case ISD::VALUETYPE: { 924 EVT VT = cast<VTSDNode>(N)->getVT(); 925 if (VT.isExtended()) { 926 Erased = ExtendedValueTypeNodes.erase(VT); 927 } else { 928 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 929 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 930 } 931 break; 932 } 933 default: 934 // Remove it from the CSE Map. 935 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 936 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 937 Erased = CSEMap.RemoveNode(N); 938 break; 939 } 940 #ifndef NDEBUG 941 // Verify that the node was actually in one of the CSE maps, unless it has a 942 // flag result (which cannot be CSE'd) or is one of the special cases that are 943 // not subject to CSE. 944 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 945 !N->isMachineOpcode() && !doNotCSE(N)) { 946 N->dump(this); 947 dbgs() << "\n"; 948 llvm_unreachable("Node is not in map!"); 949 } 950 #endif 951 return Erased; 952 } 953 954 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 955 /// maps and modified in place. Add it back to the CSE maps, unless an identical 956 /// node already exists, in which case transfer all its users to the existing 957 /// node. This transfer can potentially trigger recursive merging. 958 void 959 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 960 // For node types that aren't CSE'd, just act as if no identical node 961 // already exists. 962 if (!doNotCSE(N)) { 963 SDNode *Existing = CSEMap.GetOrInsertNode(N); 964 if (Existing != N) { 965 // If there was already an existing matching node, use ReplaceAllUsesWith 966 // to replace the dead one with the existing one. This can cause 967 // recursive merging of other unrelated nodes down the line. 968 ReplaceAllUsesWith(N, Existing); 969 970 // N is now dead. Inform the listeners and delete it. 971 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 972 DUL->NodeDeleted(N, Existing); 973 DeleteNodeNotInCSEMaps(N); 974 return; 975 } 976 } 977 978 // If the node doesn't already exist, we updated it. Inform listeners. 979 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 980 DUL->NodeUpdated(N); 981 } 982 983 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 984 /// were replaced with those specified. If this node is never memoized, 985 /// return null, otherwise return a pointer to the slot it would take. If a 986 /// node already exists with these operands, the slot will be non-null. 987 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 988 void *&InsertPos) { 989 if (doNotCSE(N)) 990 return nullptr; 991 992 SDValue Ops[] = { Op }; 993 FoldingSetNodeID ID; 994 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 995 AddNodeIDCustom(ID, N); 996 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 997 if (Node) 998 Node->intersectFlagsWith(N->getFlags()); 999 return Node; 1000 } 1001 1002 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1003 /// were replaced with those specified. If this node is never memoized, 1004 /// return null, otherwise return a pointer to the slot it would take. If a 1005 /// node already exists with these operands, the slot will be non-null. 1006 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1007 SDValue Op1, SDValue Op2, 1008 void *&InsertPos) { 1009 if (doNotCSE(N)) 1010 return nullptr; 1011 1012 SDValue Ops[] = { Op1, Op2 }; 1013 FoldingSetNodeID ID; 1014 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1015 AddNodeIDCustom(ID, N); 1016 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1017 if (Node) 1018 Node->intersectFlagsWith(N->getFlags()); 1019 return Node; 1020 } 1021 1022 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1023 /// were replaced with those specified. If this node is never memoized, 1024 /// return null, otherwise return a pointer to the slot it would take. If a 1025 /// node already exists with these operands, the slot will be non-null. 1026 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1027 void *&InsertPos) { 1028 if (doNotCSE(N)) 1029 return nullptr; 1030 1031 FoldingSetNodeID ID; 1032 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1033 AddNodeIDCustom(ID, N); 1034 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1035 if (Node) 1036 Node->intersectFlagsWith(N->getFlags()); 1037 return Node; 1038 } 1039 1040 Align SelectionDAG::getEVTAlign(EVT VT) const { 1041 Type *Ty = VT == MVT::iPTR ? 1042 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1043 VT.getTypeForEVT(*getContext()); 1044 1045 return getDataLayout().getABITypeAlign(Ty); 1046 } 1047 1048 // EntryNode could meaningfully have debug info if we can find it... 1049 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1050 : TM(tm), OptLevel(OL), 1051 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1052 Root(getEntryNode()) { 1053 InsertNode(&EntryNode); 1054 DbgInfo = new SDDbgInfo(); 1055 } 1056 1057 void SelectionDAG::init(MachineFunction &NewMF, 1058 OptimizationRemarkEmitter &NewORE, 1059 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1060 LegacyDivergenceAnalysis * Divergence, 1061 ProfileSummaryInfo *PSIin, 1062 BlockFrequencyInfo *BFIin) { 1063 MF = &NewMF; 1064 SDAGISelPass = PassPtr; 1065 ORE = &NewORE; 1066 TLI = getSubtarget().getTargetLowering(); 1067 TSI = getSubtarget().getSelectionDAGInfo(); 1068 LibInfo = LibraryInfo; 1069 Context = &MF->getFunction().getContext(); 1070 DA = Divergence; 1071 PSI = PSIin; 1072 BFI = BFIin; 1073 } 1074 1075 SelectionDAG::~SelectionDAG() { 1076 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1077 allnodes_clear(); 1078 OperandRecycler.clear(OperandAllocator); 1079 delete DbgInfo; 1080 } 1081 1082 bool SelectionDAG::shouldOptForSize() const { 1083 return MF->getFunction().hasOptSize() || 1084 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1085 } 1086 1087 void SelectionDAG::allnodes_clear() { 1088 assert(&*AllNodes.begin() == &EntryNode); 1089 AllNodes.remove(AllNodes.begin()); 1090 while (!AllNodes.empty()) 1091 DeallocateNode(&AllNodes.front()); 1092 #ifndef NDEBUG 1093 NextPersistentId = 0; 1094 #endif 1095 } 1096 1097 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1098 void *&InsertPos) { 1099 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1100 if (N) { 1101 switch (N->getOpcode()) { 1102 default: break; 1103 case ISD::Constant: 1104 case ISD::ConstantFP: 1105 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1106 "debug location. Use another overload."); 1107 } 1108 } 1109 return N; 1110 } 1111 1112 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1113 const SDLoc &DL, void *&InsertPos) { 1114 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1115 if (N) { 1116 switch (N->getOpcode()) { 1117 case ISD::Constant: 1118 case ISD::ConstantFP: 1119 // Erase debug location from the node if the node is used at several 1120 // different places. Do not propagate one location to all uses as it 1121 // will cause a worse single stepping debugging experience. 1122 if (N->getDebugLoc() != DL.getDebugLoc()) 1123 N->setDebugLoc(DebugLoc()); 1124 break; 1125 default: 1126 // When the node's point of use is located earlier in the instruction 1127 // sequence than its prior point of use, update its debug info to the 1128 // earlier location. 1129 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1130 N->setDebugLoc(DL.getDebugLoc()); 1131 break; 1132 } 1133 } 1134 return N; 1135 } 1136 1137 void SelectionDAG::clear() { 1138 allnodes_clear(); 1139 OperandRecycler.clear(OperandAllocator); 1140 OperandAllocator.Reset(); 1141 CSEMap.clear(); 1142 1143 ExtendedValueTypeNodes.clear(); 1144 ExternalSymbols.clear(); 1145 TargetExternalSymbols.clear(); 1146 MCSymbols.clear(); 1147 SDCallSiteDbgInfo.clear(); 1148 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1149 static_cast<CondCodeSDNode*>(nullptr)); 1150 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1151 static_cast<SDNode*>(nullptr)); 1152 1153 EntryNode.UseList = nullptr; 1154 InsertNode(&EntryNode); 1155 Root = getEntryNode(); 1156 DbgInfo->clear(); 1157 } 1158 1159 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1160 return VT.bitsGT(Op.getValueType()) 1161 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1162 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1163 } 1164 1165 std::pair<SDValue, SDValue> 1166 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1167 const SDLoc &DL, EVT VT) { 1168 assert(!VT.bitsEq(Op.getValueType()) && 1169 "Strict no-op FP extend/round not allowed."); 1170 SDValue Res = 1171 VT.bitsGT(Op.getValueType()) 1172 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1173 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1174 {Chain, Op, getIntPtrConstant(0, DL)}); 1175 1176 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1177 } 1178 1179 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1180 return VT.bitsGT(Op.getValueType()) ? 1181 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1182 getNode(ISD::TRUNCATE, DL, VT, Op); 1183 } 1184 1185 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1186 return VT.bitsGT(Op.getValueType()) ? 1187 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1188 getNode(ISD::TRUNCATE, DL, VT, Op); 1189 } 1190 1191 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1192 return VT.bitsGT(Op.getValueType()) ? 1193 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1194 getNode(ISD::TRUNCATE, DL, VT, Op); 1195 } 1196 1197 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1198 EVT OpVT) { 1199 if (VT.bitsLE(Op.getValueType())) 1200 return getNode(ISD::TRUNCATE, SL, VT, Op); 1201 1202 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1203 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1204 } 1205 1206 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1207 EVT OpVT = Op.getValueType(); 1208 assert(VT.isInteger() && OpVT.isInteger() && 1209 "Cannot getZeroExtendInReg FP types"); 1210 assert(VT.isVector() == OpVT.isVector() && 1211 "getZeroExtendInReg type should be vector iff the operand " 1212 "type is vector!"); 1213 assert((!VT.isVector() || 1214 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1215 "Vector element counts must match in getZeroExtendInReg"); 1216 assert(VT.bitsLE(OpVT) && "Not extending!"); 1217 if (OpVT == VT) 1218 return Op; 1219 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1220 VT.getScalarSizeInBits()); 1221 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1222 } 1223 1224 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1225 // Only unsigned pointer semantics are supported right now. In the future this 1226 // might delegate to TLI to check pointer signedness. 1227 return getZExtOrTrunc(Op, DL, VT); 1228 } 1229 1230 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1231 // Only unsigned pointer semantics are supported right now. In the future this 1232 // might delegate to TLI to check pointer signedness. 1233 return getZeroExtendInReg(Op, DL, VT); 1234 } 1235 1236 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1237 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1238 EVT EltVT = VT.getScalarType(); 1239 SDValue NegOne = 1240 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1241 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1242 } 1243 1244 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1245 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1246 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1247 } 1248 1249 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1250 EVT OpVT) { 1251 if (!V) 1252 return getConstant(0, DL, VT); 1253 1254 switch (TLI->getBooleanContents(OpVT)) { 1255 case TargetLowering::ZeroOrOneBooleanContent: 1256 case TargetLowering::UndefinedBooleanContent: 1257 return getConstant(1, DL, VT); 1258 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1259 return getAllOnesConstant(DL, VT); 1260 } 1261 llvm_unreachable("Unexpected boolean content enum!"); 1262 } 1263 1264 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1265 bool isT, bool isO) { 1266 EVT EltVT = VT.getScalarType(); 1267 assert((EltVT.getSizeInBits() >= 64 || 1268 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1269 "getConstant with a uint64_t value that doesn't fit in the type!"); 1270 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1271 } 1272 1273 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1274 bool isT, bool isO) { 1275 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1276 } 1277 1278 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1279 EVT VT, bool isT, bool isO) { 1280 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1281 1282 EVT EltVT = VT.getScalarType(); 1283 const ConstantInt *Elt = &Val; 1284 1285 // In some cases the vector type is legal but the element type is illegal and 1286 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1287 // inserted value (the type does not need to match the vector element type). 1288 // Any extra bits introduced will be truncated away. 1289 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1290 TargetLowering::TypePromoteInteger) { 1291 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1292 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1293 Elt = ConstantInt::get(*getContext(), NewVal); 1294 } 1295 // In other cases the element type is illegal and needs to be expanded, for 1296 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1297 // the value into n parts and use a vector type with n-times the elements. 1298 // Then bitcast to the type requested. 1299 // Legalizing constants too early makes the DAGCombiner's job harder so we 1300 // only legalize if the DAG tells us we must produce legal types. 1301 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1302 TLI->getTypeAction(*getContext(), EltVT) == 1303 TargetLowering::TypeExpandInteger) { 1304 const APInt &NewVal = Elt->getValue(); 1305 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1306 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1307 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1308 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1309 1310 // Check the temporary vector is the correct size. If this fails then 1311 // getTypeToTransformTo() probably returned a type whose size (in bits) 1312 // isn't a power-of-2 factor of the requested type size. 1313 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1314 1315 SmallVector<SDValue, 2> EltParts; 1316 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1317 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1318 .zextOrTrunc(ViaEltSizeInBits), DL, 1319 ViaEltVT, isT, isO)); 1320 } 1321 1322 // EltParts is currently in little endian order. If we actually want 1323 // big-endian order then reverse it now. 1324 if (getDataLayout().isBigEndian()) 1325 std::reverse(EltParts.begin(), EltParts.end()); 1326 1327 // The elements must be reversed when the element order is different 1328 // to the endianness of the elements (because the BITCAST is itself a 1329 // vector shuffle in this situation). However, we do not need any code to 1330 // perform this reversal because getConstant() is producing a vector 1331 // splat. 1332 // This situation occurs in MIPS MSA. 1333 1334 SmallVector<SDValue, 8> Ops; 1335 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1336 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1337 1338 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1339 return V; 1340 } 1341 1342 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1343 "APInt size does not match type size!"); 1344 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1345 FoldingSetNodeID ID; 1346 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1347 ID.AddPointer(Elt); 1348 ID.AddBoolean(isO); 1349 void *IP = nullptr; 1350 SDNode *N = nullptr; 1351 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1352 if (!VT.isVector()) 1353 return SDValue(N, 0); 1354 1355 if (!N) { 1356 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1357 CSEMap.InsertNode(N, IP); 1358 InsertNode(N); 1359 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1360 } 1361 1362 SDValue Result(N, 0); 1363 if (VT.isScalableVector()) 1364 Result = getSplatVector(VT, DL, Result); 1365 else if (VT.isVector()) 1366 Result = getSplatBuildVector(VT, DL, Result); 1367 1368 return Result; 1369 } 1370 1371 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1372 bool isTarget) { 1373 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1374 } 1375 1376 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1377 const SDLoc &DL, bool LegalTypes) { 1378 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1379 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1380 return getConstant(Val, DL, ShiftVT); 1381 } 1382 1383 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1384 bool isTarget) { 1385 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1386 } 1387 1388 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1389 bool isTarget) { 1390 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1391 } 1392 1393 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1394 EVT VT, bool isTarget) { 1395 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1396 1397 EVT EltVT = VT.getScalarType(); 1398 1399 // Do the map lookup using the actual bit pattern for the floating point 1400 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1401 // we don't have issues with SNANs. 1402 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1403 FoldingSetNodeID ID; 1404 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1405 ID.AddPointer(&V); 1406 void *IP = nullptr; 1407 SDNode *N = nullptr; 1408 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1409 if (!VT.isVector()) 1410 return SDValue(N, 0); 1411 1412 if (!N) { 1413 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1414 CSEMap.InsertNode(N, IP); 1415 InsertNode(N); 1416 } 1417 1418 SDValue Result(N, 0); 1419 if (VT.isScalableVector()) 1420 Result = getSplatVector(VT, DL, Result); 1421 else if (VT.isVector()) 1422 Result = getSplatBuildVector(VT, DL, Result); 1423 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1424 return Result; 1425 } 1426 1427 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1428 bool isTarget) { 1429 EVT EltVT = VT.getScalarType(); 1430 if (EltVT == MVT::f32) 1431 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1432 else if (EltVT == MVT::f64) 1433 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1434 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1435 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1436 bool Ignored; 1437 APFloat APF = APFloat(Val); 1438 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1439 &Ignored); 1440 return getConstantFP(APF, DL, VT, isTarget); 1441 } else 1442 llvm_unreachable("Unsupported type in getConstantFP"); 1443 } 1444 1445 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1446 EVT VT, int64_t Offset, bool isTargetGA, 1447 unsigned TargetFlags) { 1448 assert((TargetFlags == 0 || isTargetGA) && 1449 "Cannot set target flags on target-independent globals"); 1450 1451 // Truncate (with sign-extension) the offset value to the pointer size. 1452 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1453 if (BitWidth < 64) 1454 Offset = SignExtend64(Offset, BitWidth); 1455 1456 unsigned Opc; 1457 if (GV->isThreadLocal()) 1458 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1459 else 1460 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1461 1462 FoldingSetNodeID ID; 1463 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1464 ID.AddPointer(GV); 1465 ID.AddInteger(Offset); 1466 ID.AddInteger(TargetFlags); 1467 void *IP = nullptr; 1468 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1469 return SDValue(E, 0); 1470 1471 auto *N = newSDNode<GlobalAddressSDNode>( 1472 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1473 CSEMap.InsertNode(N, IP); 1474 InsertNode(N); 1475 return SDValue(N, 0); 1476 } 1477 1478 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1479 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1480 FoldingSetNodeID ID; 1481 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1482 ID.AddInteger(FI); 1483 void *IP = nullptr; 1484 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1485 return SDValue(E, 0); 1486 1487 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1488 CSEMap.InsertNode(N, IP); 1489 InsertNode(N); 1490 return SDValue(N, 0); 1491 } 1492 1493 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1494 unsigned TargetFlags) { 1495 assert((TargetFlags == 0 || isTarget) && 1496 "Cannot set target flags on target-independent jump tables"); 1497 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1498 FoldingSetNodeID ID; 1499 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1500 ID.AddInteger(JTI); 1501 ID.AddInteger(TargetFlags); 1502 void *IP = nullptr; 1503 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1504 return SDValue(E, 0); 1505 1506 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1507 CSEMap.InsertNode(N, IP); 1508 InsertNode(N); 1509 return SDValue(N, 0); 1510 } 1511 1512 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1513 MaybeAlign Alignment, int Offset, 1514 bool isTarget, unsigned TargetFlags) { 1515 assert((TargetFlags == 0 || isTarget) && 1516 "Cannot set target flags on target-independent globals"); 1517 if (!Alignment) 1518 Alignment = shouldOptForSize() 1519 ? getDataLayout().getABITypeAlign(C->getType()) 1520 : getDataLayout().getPrefTypeAlign(C->getType()); 1521 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1522 FoldingSetNodeID ID; 1523 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1524 ID.AddInteger(Alignment->value()); 1525 ID.AddInteger(Offset); 1526 ID.AddPointer(C); 1527 ID.AddInteger(TargetFlags); 1528 void *IP = nullptr; 1529 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1530 return SDValue(E, 0); 1531 1532 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1533 TargetFlags); 1534 CSEMap.InsertNode(N, IP); 1535 InsertNode(N); 1536 SDValue V = SDValue(N, 0); 1537 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1538 return V; 1539 } 1540 1541 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1542 MaybeAlign Alignment, int Offset, 1543 bool isTarget, unsigned TargetFlags) { 1544 assert((TargetFlags == 0 || isTarget) && 1545 "Cannot set target flags on target-independent globals"); 1546 if (!Alignment) 1547 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1548 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1549 FoldingSetNodeID ID; 1550 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1551 ID.AddInteger(Alignment->value()); 1552 ID.AddInteger(Offset); 1553 C->addSelectionDAGCSEId(ID); 1554 ID.AddInteger(TargetFlags); 1555 void *IP = nullptr; 1556 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1557 return SDValue(E, 0); 1558 1559 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1560 TargetFlags); 1561 CSEMap.InsertNode(N, IP); 1562 InsertNode(N); 1563 return SDValue(N, 0); 1564 } 1565 1566 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1567 unsigned TargetFlags) { 1568 FoldingSetNodeID ID; 1569 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1570 ID.AddInteger(Index); 1571 ID.AddInteger(Offset); 1572 ID.AddInteger(TargetFlags); 1573 void *IP = nullptr; 1574 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1575 return SDValue(E, 0); 1576 1577 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1578 CSEMap.InsertNode(N, IP); 1579 InsertNode(N); 1580 return SDValue(N, 0); 1581 } 1582 1583 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1584 FoldingSetNodeID ID; 1585 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1586 ID.AddPointer(MBB); 1587 void *IP = nullptr; 1588 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1589 return SDValue(E, 0); 1590 1591 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1592 CSEMap.InsertNode(N, IP); 1593 InsertNode(N); 1594 return SDValue(N, 0); 1595 } 1596 1597 SDValue SelectionDAG::getValueType(EVT VT) { 1598 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1599 ValueTypeNodes.size()) 1600 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1601 1602 SDNode *&N = VT.isExtended() ? 1603 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1604 1605 if (N) return SDValue(N, 0); 1606 N = newSDNode<VTSDNode>(VT); 1607 InsertNode(N); 1608 return SDValue(N, 0); 1609 } 1610 1611 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1612 SDNode *&N = ExternalSymbols[Sym]; 1613 if (N) return SDValue(N, 0); 1614 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1615 InsertNode(N); 1616 return SDValue(N, 0); 1617 } 1618 1619 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1620 SDNode *&N = MCSymbols[Sym]; 1621 if (N) 1622 return SDValue(N, 0); 1623 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1624 InsertNode(N); 1625 return SDValue(N, 0); 1626 } 1627 1628 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1629 unsigned TargetFlags) { 1630 SDNode *&N = 1631 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1632 if (N) return SDValue(N, 0); 1633 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1634 InsertNode(N); 1635 return SDValue(N, 0); 1636 } 1637 1638 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1639 if ((unsigned)Cond >= CondCodeNodes.size()) 1640 CondCodeNodes.resize(Cond+1); 1641 1642 if (!CondCodeNodes[Cond]) { 1643 auto *N = newSDNode<CondCodeSDNode>(Cond); 1644 CondCodeNodes[Cond] = N; 1645 InsertNode(N); 1646 } 1647 1648 return SDValue(CondCodeNodes[Cond], 0); 1649 } 1650 1651 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1652 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1653 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1654 std::swap(N1, N2); 1655 ShuffleVectorSDNode::commuteMask(M); 1656 } 1657 1658 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1659 SDValue N2, ArrayRef<int> Mask) { 1660 assert(VT.getVectorNumElements() == Mask.size() && 1661 "Must have the same number of vector elements as mask elements!"); 1662 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1663 "Invalid VECTOR_SHUFFLE"); 1664 1665 // Canonicalize shuffle undef, undef -> undef 1666 if (N1.isUndef() && N2.isUndef()) 1667 return getUNDEF(VT); 1668 1669 // Validate that all indices in Mask are within the range of the elements 1670 // input to the shuffle. 1671 int NElts = Mask.size(); 1672 assert(llvm::all_of(Mask, 1673 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1674 "Index out of range"); 1675 1676 // Copy the mask so we can do any needed cleanup. 1677 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1678 1679 // Canonicalize shuffle v, v -> v, undef 1680 if (N1 == N2) { 1681 N2 = getUNDEF(VT); 1682 for (int i = 0; i != NElts; ++i) 1683 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1684 } 1685 1686 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1687 if (N1.isUndef()) 1688 commuteShuffle(N1, N2, MaskVec); 1689 1690 if (TLI->hasVectorBlend()) { 1691 // If shuffling a splat, try to blend the splat instead. We do this here so 1692 // that even when this arises during lowering we don't have to re-handle it. 1693 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1694 BitVector UndefElements; 1695 SDValue Splat = BV->getSplatValue(&UndefElements); 1696 if (!Splat) 1697 return; 1698 1699 for (int i = 0; i < NElts; ++i) { 1700 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1701 continue; 1702 1703 // If this input comes from undef, mark it as such. 1704 if (UndefElements[MaskVec[i] - Offset]) { 1705 MaskVec[i] = -1; 1706 continue; 1707 } 1708 1709 // If we can blend a non-undef lane, use that instead. 1710 if (!UndefElements[i]) 1711 MaskVec[i] = i + Offset; 1712 } 1713 }; 1714 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1715 BlendSplat(N1BV, 0); 1716 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1717 BlendSplat(N2BV, NElts); 1718 } 1719 1720 // Canonicalize all index into lhs, -> shuffle lhs, undef 1721 // Canonicalize all index into rhs, -> shuffle rhs, undef 1722 bool AllLHS = true, AllRHS = true; 1723 bool N2Undef = N2.isUndef(); 1724 for (int i = 0; i != NElts; ++i) { 1725 if (MaskVec[i] >= NElts) { 1726 if (N2Undef) 1727 MaskVec[i] = -1; 1728 else 1729 AllLHS = false; 1730 } else if (MaskVec[i] >= 0) { 1731 AllRHS = false; 1732 } 1733 } 1734 if (AllLHS && AllRHS) 1735 return getUNDEF(VT); 1736 if (AllLHS && !N2Undef) 1737 N2 = getUNDEF(VT); 1738 if (AllRHS) { 1739 N1 = getUNDEF(VT); 1740 commuteShuffle(N1, N2, MaskVec); 1741 } 1742 // Reset our undef status after accounting for the mask. 1743 N2Undef = N2.isUndef(); 1744 // Re-check whether both sides ended up undef. 1745 if (N1.isUndef() && N2Undef) 1746 return getUNDEF(VT); 1747 1748 // If Identity shuffle return that node. 1749 bool Identity = true, AllSame = true; 1750 for (int i = 0; i != NElts; ++i) { 1751 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1752 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1753 } 1754 if (Identity && NElts) 1755 return N1; 1756 1757 // Shuffling a constant splat doesn't change the result. 1758 if (N2Undef) { 1759 SDValue V = N1; 1760 1761 // Look through any bitcasts. We check that these don't change the number 1762 // (and size) of elements and just changes their types. 1763 while (V.getOpcode() == ISD::BITCAST) 1764 V = V->getOperand(0); 1765 1766 // A splat should always show up as a build vector node. 1767 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1768 BitVector UndefElements; 1769 SDValue Splat = BV->getSplatValue(&UndefElements); 1770 // If this is a splat of an undef, shuffling it is also undef. 1771 if (Splat && Splat.isUndef()) 1772 return getUNDEF(VT); 1773 1774 bool SameNumElts = 1775 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1776 1777 // We only have a splat which can skip shuffles if there is a splatted 1778 // value and no undef lanes rearranged by the shuffle. 1779 if (Splat && UndefElements.none()) { 1780 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1781 // number of elements match or the value splatted is a zero constant. 1782 if (SameNumElts) 1783 return N1; 1784 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1785 if (C->isNullValue()) 1786 return N1; 1787 } 1788 1789 // If the shuffle itself creates a splat, build the vector directly. 1790 if (AllSame && SameNumElts) { 1791 EVT BuildVT = BV->getValueType(0); 1792 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1793 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1794 1795 // We may have jumped through bitcasts, so the type of the 1796 // BUILD_VECTOR may not match the type of the shuffle. 1797 if (BuildVT != VT) 1798 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1799 return NewBV; 1800 } 1801 } 1802 } 1803 1804 FoldingSetNodeID ID; 1805 SDValue Ops[2] = { N1, N2 }; 1806 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1807 for (int i = 0; i != NElts; ++i) 1808 ID.AddInteger(MaskVec[i]); 1809 1810 void* IP = nullptr; 1811 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1812 return SDValue(E, 0); 1813 1814 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1815 // SDNode doesn't have access to it. This memory will be "leaked" when 1816 // the node is deallocated, but recovered when the NodeAllocator is released. 1817 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1818 llvm::copy(MaskVec, MaskAlloc); 1819 1820 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1821 dl.getDebugLoc(), MaskAlloc); 1822 createOperands(N, Ops); 1823 1824 CSEMap.InsertNode(N, IP); 1825 InsertNode(N); 1826 SDValue V = SDValue(N, 0); 1827 NewSDValueDbgMsg(V, "Creating new node: ", this); 1828 return V; 1829 } 1830 1831 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1832 EVT VT = SV.getValueType(0); 1833 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1834 ShuffleVectorSDNode::commuteMask(MaskVec); 1835 1836 SDValue Op0 = SV.getOperand(0); 1837 SDValue Op1 = SV.getOperand(1); 1838 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1839 } 1840 1841 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1842 FoldingSetNodeID ID; 1843 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1844 ID.AddInteger(RegNo); 1845 void *IP = nullptr; 1846 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1847 return SDValue(E, 0); 1848 1849 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1850 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1851 CSEMap.InsertNode(N, IP); 1852 InsertNode(N); 1853 return SDValue(N, 0); 1854 } 1855 1856 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1857 FoldingSetNodeID ID; 1858 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1859 ID.AddPointer(RegMask); 1860 void *IP = nullptr; 1861 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1862 return SDValue(E, 0); 1863 1864 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1865 CSEMap.InsertNode(N, IP); 1866 InsertNode(N); 1867 return SDValue(N, 0); 1868 } 1869 1870 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1871 MCSymbol *Label) { 1872 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1873 } 1874 1875 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1876 SDValue Root, MCSymbol *Label) { 1877 FoldingSetNodeID ID; 1878 SDValue Ops[] = { Root }; 1879 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1880 ID.AddPointer(Label); 1881 void *IP = nullptr; 1882 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1883 return SDValue(E, 0); 1884 1885 auto *N = 1886 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1887 createOperands(N, Ops); 1888 1889 CSEMap.InsertNode(N, IP); 1890 InsertNode(N); 1891 return SDValue(N, 0); 1892 } 1893 1894 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1895 int64_t Offset, bool isTarget, 1896 unsigned TargetFlags) { 1897 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1898 1899 FoldingSetNodeID ID; 1900 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1901 ID.AddPointer(BA); 1902 ID.AddInteger(Offset); 1903 ID.AddInteger(TargetFlags); 1904 void *IP = nullptr; 1905 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1906 return SDValue(E, 0); 1907 1908 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1909 CSEMap.InsertNode(N, IP); 1910 InsertNode(N); 1911 return SDValue(N, 0); 1912 } 1913 1914 SDValue SelectionDAG::getSrcValue(const Value *V) { 1915 FoldingSetNodeID ID; 1916 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1917 ID.AddPointer(V); 1918 1919 void *IP = nullptr; 1920 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1921 return SDValue(E, 0); 1922 1923 auto *N = newSDNode<SrcValueSDNode>(V); 1924 CSEMap.InsertNode(N, IP); 1925 InsertNode(N); 1926 return SDValue(N, 0); 1927 } 1928 1929 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1930 FoldingSetNodeID ID; 1931 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1932 ID.AddPointer(MD); 1933 1934 void *IP = nullptr; 1935 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1936 return SDValue(E, 0); 1937 1938 auto *N = newSDNode<MDNodeSDNode>(MD); 1939 CSEMap.InsertNode(N, IP); 1940 InsertNode(N); 1941 return SDValue(N, 0); 1942 } 1943 1944 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1945 if (VT == V.getValueType()) 1946 return V; 1947 1948 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1949 } 1950 1951 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1952 unsigned SrcAS, unsigned DestAS) { 1953 SDValue Ops[] = {Ptr}; 1954 FoldingSetNodeID ID; 1955 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1956 ID.AddInteger(SrcAS); 1957 ID.AddInteger(DestAS); 1958 1959 void *IP = nullptr; 1960 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1961 return SDValue(E, 0); 1962 1963 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1964 VT, SrcAS, DestAS); 1965 createOperands(N, Ops); 1966 1967 CSEMap.InsertNode(N, IP); 1968 InsertNode(N); 1969 return SDValue(N, 0); 1970 } 1971 1972 SDValue SelectionDAG::getFreeze(SDValue V) { 1973 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1974 } 1975 1976 /// getShiftAmountOperand - Return the specified value casted to 1977 /// the target's desired shift amount type. 1978 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1979 EVT OpTy = Op.getValueType(); 1980 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1981 if (OpTy == ShTy || OpTy.isVector()) return Op; 1982 1983 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1984 } 1985 1986 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1987 SDLoc dl(Node); 1988 const TargetLowering &TLI = getTargetLoweringInfo(); 1989 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1990 EVT VT = Node->getValueType(0); 1991 SDValue Tmp1 = Node->getOperand(0); 1992 SDValue Tmp2 = Node->getOperand(1); 1993 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1994 1995 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1996 Tmp2, MachinePointerInfo(V)); 1997 SDValue VAList = VAListLoad; 1998 1999 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2000 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2001 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2002 2003 VAList = 2004 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2005 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2006 } 2007 2008 // Increment the pointer, VAList, to the next vaarg 2009 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2010 getConstant(getDataLayout().getTypeAllocSize( 2011 VT.getTypeForEVT(*getContext())), 2012 dl, VAList.getValueType())); 2013 // Store the incremented VAList to the legalized pointer 2014 Tmp1 = 2015 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2016 // Load the actual argument out of the pointer VAList 2017 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2018 } 2019 2020 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2021 SDLoc dl(Node); 2022 const TargetLowering &TLI = getTargetLoweringInfo(); 2023 // This defaults to loading a pointer from the input and storing it to the 2024 // output, returning the chain. 2025 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2026 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2027 SDValue Tmp1 = 2028 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2029 Node->getOperand(2), MachinePointerInfo(VS)); 2030 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2031 MachinePointerInfo(VD)); 2032 } 2033 2034 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2035 const DataLayout &DL = getDataLayout(); 2036 Type *Ty = VT.getTypeForEVT(*getContext()); 2037 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2038 2039 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2040 return RedAlign; 2041 2042 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2043 const Align StackAlign = TFI->getStackAlign(); 2044 2045 // See if we can choose a smaller ABI alignment in cases where it's an 2046 // illegal vector type that will get broken down. 2047 if (RedAlign > StackAlign) { 2048 EVT IntermediateVT; 2049 MVT RegisterVT; 2050 unsigned NumIntermediates; 2051 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2052 NumIntermediates, RegisterVT); 2053 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2054 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2055 if (RedAlign2 < RedAlign) 2056 RedAlign = RedAlign2; 2057 } 2058 2059 return RedAlign; 2060 } 2061 2062 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2063 MachineFrameInfo &MFI = MF->getFrameInfo(); 2064 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2065 int StackID = 0; 2066 if (Bytes.isScalable()) 2067 StackID = TFI->getStackIDForScalableVectors(); 2068 // The stack id gives an indication of whether the object is scalable or 2069 // not, so it's safe to pass in the minimum size here. 2070 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2071 false, nullptr, StackID); 2072 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2073 } 2074 2075 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2076 Type *Ty = VT.getTypeForEVT(*getContext()); 2077 Align StackAlign = 2078 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2079 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2080 } 2081 2082 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2083 TypeSize VT1Size = VT1.getStoreSize(); 2084 TypeSize VT2Size = VT2.getStoreSize(); 2085 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2086 "Don't know how to choose the maximum size when creating a stack " 2087 "temporary"); 2088 TypeSize Bytes = 2089 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2090 2091 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2092 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2093 const DataLayout &DL = getDataLayout(); 2094 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2095 return CreateStackTemporary(Bytes, Align); 2096 } 2097 2098 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2099 ISD::CondCode Cond, const SDLoc &dl) { 2100 EVT OpVT = N1.getValueType(); 2101 2102 // These setcc operations always fold. 2103 switch (Cond) { 2104 default: break; 2105 case ISD::SETFALSE: 2106 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2107 case ISD::SETTRUE: 2108 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2109 2110 case ISD::SETOEQ: 2111 case ISD::SETOGT: 2112 case ISD::SETOGE: 2113 case ISD::SETOLT: 2114 case ISD::SETOLE: 2115 case ISD::SETONE: 2116 case ISD::SETO: 2117 case ISD::SETUO: 2118 case ISD::SETUEQ: 2119 case ISD::SETUNE: 2120 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2121 break; 2122 } 2123 2124 if (OpVT.isInteger()) { 2125 // For EQ and NE, we can always pick a value for the undef to make the 2126 // predicate pass or fail, so we can return undef. 2127 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2128 // icmp eq/ne X, undef -> undef. 2129 if ((N1.isUndef() || N2.isUndef()) && 2130 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2131 return getUNDEF(VT); 2132 2133 // If both operands are undef, we can return undef for int comparison. 2134 // icmp undef, undef -> undef. 2135 if (N1.isUndef() && N2.isUndef()) 2136 return getUNDEF(VT); 2137 2138 // icmp X, X -> true/false 2139 // icmp X, undef -> true/false because undef could be X. 2140 if (N1 == N2) 2141 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2142 } 2143 2144 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2145 const APInt &C2 = N2C->getAPIntValue(); 2146 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2147 const APInt &C1 = N1C->getAPIntValue(); 2148 2149 switch (Cond) { 2150 default: llvm_unreachable("Unknown integer setcc!"); 2151 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2152 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2153 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2154 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2155 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2156 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2157 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2158 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2159 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2160 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2161 } 2162 } 2163 } 2164 2165 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2166 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2167 2168 if (N1CFP && N2CFP) { 2169 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2170 switch (Cond) { 2171 default: break; 2172 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2173 return getUNDEF(VT); 2174 LLVM_FALLTHROUGH; 2175 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2176 OpVT); 2177 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2178 return getUNDEF(VT); 2179 LLVM_FALLTHROUGH; 2180 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2181 R==APFloat::cmpLessThan, dl, VT, 2182 OpVT); 2183 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2184 return getUNDEF(VT); 2185 LLVM_FALLTHROUGH; 2186 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2187 OpVT); 2188 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2189 return getUNDEF(VT); 2190 LLVM_FALLTHROUGH; 2191 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2192 VT, OpVT); 2193 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2194 return getUNDEF(VT); 2195 LLVM_FALLTHROUGH; 2196 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2197 R==APFloat::cmpEqual, dl, VT, 2198 OpVT); 2199 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2200 return getUNDEF(VT); 2201 LLVM_FALLTHROUGH; 2202 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2203 R==APFloat::cmpEqual, dl, VT, OpVT); 2204 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2205 OpVT); 2206 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2207 OpVT); 2208 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2209 R==APFloat::cmpEqual, dl, VT, 2210 OpVT); 2211 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2212 OpVT); 2213 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2214 R==APFloat::cmpLessThan, dl, VT, 2215 OpVT); 2216 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2217 R==APFloat::cmpUnordered, dl, VT, 2218 OpVT); 2219 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2220 VT, OpVT); 2221 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2222 OpVT); 2223 } 2224 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2225 // Ensure that the constant occurs on the RHS. 2226 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2227 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2228 return SDValue(); 2229 return getSetCC(dl, VT, N2, N1, SwappedCond); 2230 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2231 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2232 // If an operand is known to be a nan (or undef that could be a nan), we can 2233 // fold it. 2234 // Choosing NaN for the undef will always make unordered comparison succeed 2235 // and ordered comparison fails. 2236 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2237 switch (ISD::getUnorderedFlavor(Cond)) { 2238 default: 2239 llvm_unreachable("Unknown flavor!"); 2240 case 0: // Known false. 2241 return getBoolConstant(false, dl, VT, OpVT); 2242 case 1: // Known true. 2243 return getBoolConstant(true, dl, VT, OpVT); 2244 case 2: // Undefined. 2245 return getUNDEF(VT); 2246 } 2247 } 2248 2249 // Could not fold it. 2250 return SDValue(); 2251 } 2252 2253 /// See if the specified operand can be simplified with the knowledge that only 2254 /// the bits specified by DemandedBits are used. 2255 /// TODO: really we should be making this into the DAG equivalent of 2256 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2257 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2258 EVT VT = V.getValueType(); 2259 2260 if (VT.isScalableVector()) 2261 return SDValue(); 2262 2263 APInt DemandedElts = VT.isVector() 2264 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2265 : APInt(1, 1); 2266 return GetDemandedBits(V, DemandedBits, DemandedElts); 2267 } 2268 2269 /// See if the specified operand can be simplified with the knowledge that only 2270 /// the bits specified by DemandedBits are used in the elements specified by 2271 /// DemandedElts. 2272 /// TODO: really we should be making this into the DAG equivalent of 2273 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2274 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2275 const APInt &DemandedElts) { 2276 switch (V.getOpcode()) { 2277 default: 2278 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2279 *this, 0); 2280 case ISD::Constant: { 2281 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2282 APInt NewVal = CVal & DemandedBits; 2283 if (NewVal != CVal) 2284 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2285 break; 2286 } 2287 case ISD::SRL: 2288 // Only look at single-use SRLs. 2289 if (!V.getNode()->hasOneUse()) 2290 break; 2291 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2292 // See if we can recursively simplify the LHS. 2293 unsigned Amt = RHSC->getZExtValue(); 2294 2295 // Watch out for shift count overflow though. 2296 if (Amt >= DemandedBits.getBitWidth()) 2297 break; 2298 APInt SrcDemandedBits = DemandedBits << Amt; 2299 if (SDValue SimplifyLHS = 2300 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2301 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2302 V.getOperand(1)); 2303 } 2304 break; 2305 } 2306 return SDValue(); 2307 } 2308 2309 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2310 /// use this predicate to simplify operations downstream. 2311 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2312 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2313 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2314 } 2315 2316 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2317 /// this predicate to simplify operations downstream. Mask is known to be zero 2318 /// for bits that V cannot have. 2319 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2320 unsigned Depth) const { 2321 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2322 } 2323 2324 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2325 /// DemandedElts. We use this predicate to simplify operations downstream. 2326 /// Mask is known to be zero for bits that V cannot have. 2327 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2328 const APInt &DemandedElts, 2329 unsigned Depth) const { 2330 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2331 } 2332 2333 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2334 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2335 unsigned Depth) const { 2336 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2337 } 2338 2339 /// isSplatValue - Return true if the vector V has the same value 2340 /// across all DemandedElts. For scalable vectors it does not make 2341 /// sense to specify which elements are demanded or undefined, therefore 2342 /// they are simply ignored. 2343 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2344 APInt &UndefElts) { 2345 EVT VT = V.getValueType(); 2346 assert(VT.isVector() && "Vector type expected"); 2347 2348 if (!VT.isScalableVector() && !DemandedElts) 2349 return false; // No demanded elts, better to assume we don't know anything. 2350 2351 // Deal with some common cases here that work for both fixed and scalable 2352 // vector types. 2353 switch (V.getOpcode()) { 2354 case ISD::SPLAT_VECTOR: 2355 UndefElts = V.getOperand(0).isUndef() 2356 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2357 : APInt(DemandedElts.getBitWidth(), 0); 2358 return true; 2359 case ISD::ADD: 2360 case ISD::SUB: 2361 case ISD::AND: { 2362 APInt UndefLHS, UndefRHS; 2363 SDValue LHS = V.getOperand(0); 2364 SDValue RHS = V.getOperand(1); 2365 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2366 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2367 UndefElts = UndefLHS | UndefRHS; 2368 return true; 2369 } 2370 break; 2371 } 2372 case ISD::TRUNCATE: 2373 case ISD::SIGN_EXTEND: 2374 case ISD::ZERO_EXTEND: 2375 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts); 2376 } 2377 2378 // We don't support other cases than those above for scalable vectors at 2379 // the moment. 2380 if (VT.isScalableVector()) 2381 return false; 2382 2383 unsigned NumElts = VT.getVectorNumElements(); 2384 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2385 UndefElts = APInt::getNullValue(NumElts); 2386 2387 switch (V.getOpcode()) { 2388 case ISD::BUILD_VECTOR: { 2389 SDValue Scl; 2390 for (unsigned i = 0; i != NumElts; ++i) { 2391 SDValue Op = V.getOperand(i); 2392 if (Op.isUndef()) { 2393 UndefElts.setBit(i); 2394 continue; 2395 } 2396 if (!DemandedElts[i]) 2397 continue; 2398 if (Scl && Scl != Op) 2399 return false; 2400 Scl = Op; 2401 } 2402 return true; 2403 } 2404 case ISD::VECTOR_SHUFFLE: { 2405 // Check if this is a shuffle node doing a splat. 2406 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2407 int SplatIndex = -1; 2408 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2409 for (int i = 0; i != (int)NumElts; ++i) { 2410 int M = Mask[i]; 2411 if (M < 0) { 2412 UndefElts.setBit(i); 2413 continue; 2414 } 2415 if (!DemandedElts[i]) 2416 continue; 2417 if (0 <= SplatIndex && SplatIndex != M) 2418 return false; 2419 SplatIndex = M; 2420 } 2421 return true; 2422 } 2423 case ISD::EXTRACT_SUBVECTOR: { 2424 // Offset the demanded elts by the subvector index. 2425 SDValue Src = V.getOperand(0); 2426 uint64_t Idx = V.getConstantOperandVal(1); 2427 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2428 APInt UndefSrcElts; 2429 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2430 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2431 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2432 return true; 2433 } 2434 break; 2435 } 2436 } 2437 2438 return false; 2439 } 2440 2441 /// Helper wrapper to main isSplatValue function. 2442 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2443 EVT VT = V.getValueType(); 2444 assert(VT.isVector() && "Vector type expected"); 2445 2446 APInt UndefElts; 2447 APInt DemandedElts; 2448 2449 // For now we don't support this with scalable vectors. 2450 if (!VT.isScalableVector()) 2451 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2452 return isSplatValue(V, DemandedElts, UndefElts) && 2453 (AllowUndefs || !UndefElts); 2454 } 2455 2456 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2457 V = peekThroughExtractSubvectors(V); 2458 2459 EVT VT = V.getValueType(); 2460 unsigned Opcode = V.getOpcode(); 2461 switch (Opcode) { 2462 default: { 2463 APInt UndefElts; 2464 APInt DemandedElts; 2465 2466 if (!VT.isScalableVector()) 2467 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2468 2469 if (isSplatValue(V, DemandedElts, UndefElts)) { 2470 if (VT.isScalableVector()) { 2471 // DemandedElts and UndefElts are ignored for scalable vectors, since 2472 // the only supported cases are SPLAT_VECTOR nodes. 2473 SplatIdx = 0; 2474 } else { 2475 // Handle case where all demanded elements are UNDEF. 2476 if (DemandedElts.isSubsetOf(UndefElts)) { 2477 SplatIdx = 0; 2478 return getUNDEF(VT); 2479 } 2480 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2481 } 2482 return V; 2483 } 2484 break; 2485 } 2486 case ISD::SPLAT_VECTOR: 2487 SplatIdx = 0; 2488 return V; 2489 case ISD::VECTOR_SHUFFLE: { 2490 if (VT.isScalableVector()) 2491 return SDValue(); 2492 2493 // Check if this is a shuffle node doing a splat. 2494 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2495 // getTargetVShiftNode currently struggles without the splat source. 2496 auto *SVN = cast<ShuffleVectorSDNode>(V); 2497 if (!SVN->isSplat()) 2498 break; 2499 int Idx = SVN->getSplatIndex(); 2500 int NumElts = V.getValueType().getVectorNumElements(); 2501 SplatIdx = Idx % NumElts; 2502 return V.getOperand(Idx / NumElts); 2503 } 2504 } 2505 2506 return SDValue(); 2507 } 2508 2509 SDValue SelectionDAG::getSplatValue(SDValue V) { 2510 int SplatIdx; 2511 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2512 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2513 SrcVector.getValueType().getScalarType(), SrcVector, 2514 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2515 return SDValue(); 2516 } 2517 2518 const APInt * 2519 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2520 const APInt &DemandedElts) const { 2521 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2522 V.getOpcode() == ISD::SRA) && 2523 "Unknown shift node"); 2524 unsigned BitWidth = V.getScalarValueSizeInBits(); 2525 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2526 // Shifting more than the bitwidth is not valid. 2527 const APInt &ShAmt = SA->getAPIntValue(); 2528 if (ShAmt.ult(BitWidth)) 2529 return &ShAmt; 2530 } 2531 return nullptr; 2532 } 2533 2534 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2535 SDValue V, const APInt &DemandedElts) const { 2536 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2537 V.getOpcode() == ISD::SRA) && 2538 "Unknown shift node"); 2539 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2540 return ValidAmt; 2541 unsigned BitWidth = V.getScalarValueSizeInBits(); 2542 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2543 if (!BV) 2544 return nullptr; 2545 const APInt *MinShAmt = nullptr; 2546 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2547 if (!DemandedElts[i]) 2548 continue; 2549 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2550 if (!SA) 2551 return nullptr; 2552 // Shifting more than the bitwidth is not valid. 2553 const APInt &ShAmt = SA->getAPIntValue(); 2554 if (ShAmt.uge(BitWidth)) 2555 return nullptr; 2556 if (MinShAmt && MinShAmt->ule(ShAmt)) 2557 continue; 2558 MinShAmt = &ShAmt; 2559 } 2560 return MinShAmt; 2561 } 2562 2563 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2564 SDValue V, const APInt &DemandedElts) const { 2565 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2566 V.getOpcode() == ISD::SRA) && 2567 "Unknown shift node"); 2568 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2569 return ValidAmt; 2570 unsigned BitWidth = V.getScalarValueSizeInBits(); 2571 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2572 if (!BV) 2573 return nullptr; 2574 const APInt *MaxShAmt = nullptr; 2575 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2576 if (!DemandedElts[i]) 2577 continue; 2578 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2579 if (!SA) 2580 return nullptr; 2581 // Shifting more than the bitwidth is not valid. 2582 const APInt &ShAmt = SA->getAPIntValue(); 2583 if (ShAmt.uge(BitWidth)) 2584 return nullptr; 2585 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2586 continue; 2587 MaxShAmt = &ShAmt; 2588 } 2589 return MaxShAmt; 2590 } 2591 2592 /// Determine which bits of Op are known to be either zero or one and return 2593 /// them in Known. For vectors, the known bits are those that are shared by 2594 /// every vector element. 2595 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2596 EVT VT = Op.getValueType(); 2597 2598 // TOOD: Until we have a plan for how to represent demanded elements for 2599 // scalable vectors, we can just bail out for now. 2600 if (Op.getValueType().isScalableVector()) { 2601 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2602 return KnownBits(BitWidth); 2603 } 2604 2605 APInt DemandedElts = VT.isVector() 2606 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2607 : APInt(1, 1); 2608 return computeKnownBits(Op, DemandedElts, Depth); 2609 } 2610 2611 /// Determine which bits of Op are known to be either zero or one and return 2612 /// them in Known. The DemandedElts argument allows us to only collect the known 2613 /// bits that are shared by the requested vector elements. 2614 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2615 unsigned Depth) const { 2616 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2617 2618 KnownBits Known(BitWidth); // Don't know anything. 2619 2620 // TOOD: Until we have a plan for how to represent demanded elements for 2621 // scalable vectors, we can just bail out for now. 2622 if (Op.getValueType().isScalableVector()) 2623 return Known; 2624 2625 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2626 // We know all of the bits for a constant! 2627 Known.One = C->getAPIntValue(); 2628 Known.Zero = ~Known.One; 2629 return Known; 2630 } 2631 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2632 // We know all of the bits for a constant fp! 2633 Known.One = C->getValueAPF().bitcastToAPInt(); 2634 Known.Zero = ~Known.One; 2635 return Known; 2636 } 2637 2638 if (Depth >= MaxRecursionDepth) 2639 return Known; // Limit search depth. 2640 2641 KnownBits Known2; 2642 unsigned NumElts = DemandedElts.getBitWidth(); 2643 assert((!Op.getValueType().isVector() || 2644 NumElts == Op.getValueType().getVectorNumElements()) && 2645 "Unexpected vector size"); 2646 2647 if (!DemandedElts) 2648 return Known; // No demanded elts, better to assume we don't know anything. 2649 2650 unsigned Opcode = Op.getOpcode(); 2651 switch (Opcode) { 2652 case ISD::BUILD_VECTOR: 2653 // Collect the known bits that are shared by every demanded vector element. 2654 Known.Zero.setAllBits(); Known.One.setAllBits(); 2655 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2656 if (!DemandedElts[i]) 2657 continue; 2658 2659 SDValue SrcOp = Op.getOperand(i); 2660 Known2 = computeKnownBits(SrcOp, Depth + 1); 2661 2662 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2663 if (SrcOp.getValueSizeInBits() != BitWidth) { 2664 assert(SrcOp.getValueSizeInBits() > BitWidth && 2665 "Expected BUILD_VECTOR implicit truncation"); 2666 Known2 = Known2.trunc(BitWidth); 2667 } 2668 2669 // Known bits are the values that are shared by every demanded element. 2670 Known.One &= Known2.One; 2671 Known.Zero &= Known2.Zero; 2672 2673 // If we don't know any bits, early out. 2674 if (Known.isUnknown()) 2675 break; 2676 } 2677 break; 2678 case ISD::VECTOR_SHUFFLE: { 2679 // Collect the known bits that are shared by every vector element referenced 2680 // by the shuffle. 2681 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2682 Known.Zero.setAllBits(); Known.One.setAllBits(); 2683 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2684 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2685 for (unsigned i = 0; i != NumElts; ++i) { 2686 if (!DemandedElts[i]) 2687 continue; 2688 2689 int M = SVN->getMaskElt(i); 2690 if (M < 0) { 2691 // For UNDEF elements, we don't know anything about the common state of 2692 // the shuffle result. 2693 Known.resetAll(); 2694 DemandedLHS.clearAllBits(); 2695 DemandedRHS.clearAllBits(); 2696 break; 2697 } 2698 2699 if ((unsigned)M < NumElts) 2700 DemandedLHS.setBit((unsigned)M % NumElts); 2701 else 2702 DemandedRHS.setBit((unsigned)M % NumElts); 2703 } 2704 // Known bits are the values that are shared by every demanded element. 2705 if (!!DemandedLHS) { 2706 SDValue LHS = Op.getOperand(0); 2707 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2708 Known.One &= Known2.One; 2709 Known.Zero &= Known2.Zero; 2710 } 2711 // If we don't know any bits, early out. 2712 if (Known.isUnknown()) 2713 break; 2714 if (!!DemandedRHS) { 2715 SDValue RHS = Op.getOperand(1); 2716 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2717 Known.One &= Known2.One; 2718 Known.Zero &= Known2.Zero; 2719 } 2720 break; 2721 } 2722 case ISD::CONCAT_VECTORS: { 2723 // Split DemandedElts and test each of the demanded subvectors. 2724 Known.Zero.setAllBits(); Known.One.setAllBits(); 2725 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2726 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2727 unsigned NumSubVectors = Op.getNumOperands(); 2728 for (unsigned i = 0; i != NumSubVectors; ++i) { 2729 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2730 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2731 if (!!DemandedSub) { 2732 SDValue Sub = Op.getOperand(i); 2733 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2734 Known.One &= Known2.One; 2735 Known.Zero &= Known2.Zero; 2736 } 2737 // If we don't know any bits, early out. 2738 if (Known.isUnknown()) 2739 break; 2740 } 2741 break; 2742 } 2743 case ISD::INSERT_SUBVECTOR: { 2744 // Demand any elements from the subvector and the remainder from the src its 2745 // inserted into. 2746 SDValue Src = Op.getOperand(0); 2747 SDValue Sub = Op.getOperand(1); 2748 uint64_t Idx = Op.getConstantOperandVal(2); 2749 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2750 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2751 APInt DemandedSrcElts = DemandedElts; 2752 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2753 2754 Known.One.setAllBits(); 2755 Known.Zero.setAllBits(); 2756 if (!!DemandedSubElts) { 2757 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2758 if (Known.isUnknown()) 2759 break; // early-out. 2760 } 2761 if (!!DemandedSrcElts) { 2762 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2763 Known.One &= Known2.One; 2764 Known.Zero &= Known2.Zero; 2765 } 2766 break; 2767 } 2768 case ISD::EXTRACT_SUBVECTOR: { 2769 // Offset the demanded elts by the subvector index. 2770 SDValue Src = Op.getOperand(0); 2771 // Bail until we can represent demanded elements for scalable vectors. 2772 if (Src.getValueType().isScalableVector()) 2773 break; 2774 uint64_t Idx = Op.getConstantOperandVal(1); 2775 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2776 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2777 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2778 break; 2779 } 2780 case ISD::SCALAR_TO_VECTOR: { 2781 // We know about scalar_to_vector as much as we know about it source, 2782 // which becomes the first element of otherwise unknown vector. 2783 if (DemandedElts != 1) 2784 break; 2785 2786 SDValue N0 = Op.getOperand(0); 2787 Known = computeKnownBits(N0, Depth + 1); 2788 if (N0.getValueSizeInBits() != BitWidth) 2789 Known = Known.trunc(BitWidth); 2790 2791 break; 2792 } 2793 case ISD::BITCAST: { 2794 SDValue N0 = Op.getOperand(0); 2795 EVT SubVT = N0.getValueType(); 2796 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2797 2798 // Ignore bitcasts from unsupported types. 2799 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2800 break; 2801 2802 // Fast handling of 'identity' bitcasts. 2803 if (BitWidth == SubBitWidth) { 2804 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2805 break; 2806 } 2807 2808 bool IsLE = getDataLayout().isLittleEndian(); 2809 2810 // Bitcast 'small element' vector to 'large element' scalar/vector. 2811 if ((BitWidth % SubBitWidth) == 0) { 2812 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2813 2814 // Collect known bits for the (larger) output by collecting the known 2815 // bits from each set of sub elements and shift these into place. 2816 // We need to separately call computeKnownBits for each set of 2817 // sub elements as the knownbits for each is likely to be different. 2818 unsigned SubScale = BitWidth / SubBitWidth; 2819 APInt SubDemandedElts(NumElts * SubScale, 0); 2820 for (unsigned i = 0; i != NumElts; ++i) 2821 if (DemandedElts[i]) 2822 SubDemandedElts.setBit(i * SubScale); 2823 2824 for (unsigned i = 0; i != SubScale; ++i) { 2825 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2826 Depth + 1); 2827 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2828 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2829 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2830 } 2831 } 2832 2833 // Bitcast 'large element' scalar/vector to 'small element' vector. 2834 if ((SubBitWidth % BitWidth) == 0) { 2835 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2836 2837 // Collect known bits for the (smaller) output by collecting the known 2838 // bits from the overlapping larger input elements and extracting the 2839 // sub sections we actually care about. 2840 unsigned SubScale = SubBitWidth / BitWidth; 2841 APInt SubDemandedElts(NumElts / SubScale, 0); 2842 for (unsigned i = 0; i != NumElts; ++i) 2843 if (DemandedElts[i]) 2844 SubDemandedElts.setBit(i / SubScale); 2845 2846 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2847 2848 Known.Zero.setAllBits(); Known.One.setAllBits(); 2849 for (unsigned i = 0; i != NumElts; ++i) 2850 if (DemandedElts[i]) { 2851 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2852 unsigned Offset = (Shifts % SubScale) * BitWidth; 2853 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2854 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2855 // If we don't know any bits, early out. 2856 if (Known.isUnknown()) 2857 break; 2858 } 2859 } 2860 break; 2861 } 2862 case ISD::AND: 2863 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2864 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2865 2866 Known &= Known2; 2867 break; 2868 case ISD::OR: 2869 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2870 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2871 2872 Known |= Known2; 2873 break; 2874 case ISD::XOR: 2875 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2876 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2877 2878 Known ^= Known2; 2879 break; 2880 case ISD::MUL: { 2881 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2882 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2883 Known = KnownBits::computeForMul(Known, Known2); 2884 break; 2885 } 2886 case ISD::UDIV: { 2887 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2888 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2889 Known = KnownBits::udiv(Known, Known2); 2890 break; 2891 } 2892 case ISD::SELECT: 2893 case ISD::VSELECT: 2894 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2895 // If we don't know any bits, early out. 2896 if (Known.isUnknown()) 2897 break; 2898 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2899 2900 // Only known if known in both the LHS and RHS. 2901 Known.One &= Known2.One; 2902 Known.Zero &= Known2.Zero; 2903 break; 2904 case ISD::SELECT_CC: 2905 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2906 // If we don't know any bits, early out. 2907 if (Known.isUnknown()) 2908 break; 2909 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2910 2911 // Only known if known in both the LHS and RHS. 2912 Known.One &= Known2.One; 2913 Known.Zero &= Known2.Zero; 2914 break; 2915 case ISD::SMULO: 2916 case ISD::UMULO: 2917 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2918 if (Op.getResNo() != 1) 2919 break; 2920 // The boolean result conforms to getBooleanContents. 2921 // If we know the result of a setcc has the top bits zero, use this info. 2922 // We know that we have an integer-based boolean since these operations 2923 // are only available for integer. 2924 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2925 TargetLowering::ZeroOrOneBooleanContent && 2926 BitWidth > 1) 2927 Known.Zero.setBitsFrom(1); 2928 break; 2929 case ISD::SETCC: 2930 case ISD::STRICT_FSETCC: 2931 case ISD::STRICT_FSETCCS: { 2932 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2933 // If we know the result of a setcc has the top bits zero, use this info. 2934 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2935 TargetLowering::ZeroOrOneBooleanContent && 2936 BitWidth > 1) 2937 Known.Zero.setBitsFrom(1); 2938 break; 2939 } 2940 case ISD::SHL: 2941 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2942 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2943 Known = KnownBits::shl(Known, Known2); 2944 2945 // Minimum shift low bits are known zero. 2946 if (const APInt *ShMinAmt = 2947 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2948 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2949 break; 2950 case ISD::SRL: 2951 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2952 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2953 Known = KnownBits::lshr(Known, Known2); 2954 2955 // Minimum shift high bits are known zero. 2956 if (const APInt *ShMinAmt = 2957 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2958 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2959 break; 2960 case ISD::SRA: 2961 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2962 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2963 Known = KnownBits::ashr(Known, Known2); 2964 // TODO: Add minimum shift high known sign bits. 2965 break; 2966 case ISD::FSHL: 2967 case ISD::FSHR: 2968 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2969 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2970 2971 // For fshl, 0-shift returns the 1st arg. 2972 // For fshr, 0-shift returns the 2nd arg. 2973 if (Amt == 0) { 2974 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2975 DemandedElts, Depth + 1); 2976 break; 2977 } 2978 2979 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2980 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2981 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2982 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2983 if (Opcode == ISD::FSHL) { 2984 Known.One <<= Amt; 2985 Known.Zero <<= Amt; 2986 Known2.One.lshrInPlace(BitWidth - Amt); 2987 Known2.Zero.lshrInPlace(BitWidth - Amt); 2988 } else { 2989 Known.One <<= BitWidth - Amt; 2990 Known.Zero <<= BitWidth - Amt; 2991 Known2.One.lshrInPlace(Amt); 2992 Known2.Zero.lshrInPlace(Amt); 2993 } 2994 Known.One |= Known2.One; 2995 Known.Zero |= Known2.Zero; 2996 } 2997 break; 2998 case ISD::SIGN_EXTEND_INREG: { 2999 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3000 unsigned EBits = EVT.getScalarSizeInBits(); 3001 3002 // Sign extension. Compute the demanded bits in the result that are not 3003 // present in the input. 3004 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 3005 3006 APInt InSignMask = APInt::getSignMask(EBits); 3007 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3008 3009 // If the sign extended bits are demanded, we know that the sign 3010 // bit is demanded. 3011 InSignMask = InSignMask.zext(BitWidth); 3012 if (NewBits.getBoolValue()) 3013 InputDemandedBits |= InSignMask; 3014 3015 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3016 Known.One &= InputDemandedBits; 3017 Known.Zero &= InputDemandedBits; 3018 3019 // If the sign bit of the input is known set or clear, then we know the 3020 // top bits of the result. 3021 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3022 Known.Zero |= NewBits; 3023 Known.One &= ~NewBits; 3024 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3025 Known.One |= NewBits; 3026 Known.Zero &= ~NewBits; 3027 } else { // Input sign bit unknown 3028 Known.Zero &= ~NewBits; 3029 Known.One &= ~NewBits; 3030 } 3031 break; 3032 } 3033 case ISD::CTTZ: 3034 case ISD::CTTZ_ZERO_UNDEF: { 3035 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3036 // If we have a known 1, its position is our upper bound. 3037 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3038 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3039 Known.Zero.setBitsFrom(LowBits); 3040 break; 3041 } 3042 case ISD::CTLZ: 3043 case ISD::CTLZ_ZERO_UNDEF: { 3044 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3045 // If we have a known 1, its position is our upper bound. 3046 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3047 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3048 Known.Zero.setBitsFrom(LowBits); 3049 break; 3050 } 3051 case ISD::CTPOP: { 3052 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3053 // If we know some of the bits are zero, they can't be one. 3054 unsigned PossibleOnes = Known2.countMaxPopulation(); 3055 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3056 break; 3057 } 3058 case ISD::PARITY: { 3059 // Parity returns 0 everywhere but the LSB. 3060 Known.Zero.setBitsFrom(1); 3061 break; 3062 } 3063 case ISD::LOAD: { 3064 LoadSDNode *LD = cast<LoadSDNode>(Op); 3065 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3066 if (ISD::isNON_EXTLoad(LD) && Cst) { 3067 // Determine any common known bits from the loaded constant pool value. 3068 Type *CstTy = Cst->getType(); 3069 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3070 // If its a vector splat, then we can (quickly) reuse the scalar path. 3071 // NOTE: We assume all elements match and none are UNDEF. 3072 if (CstTy->isVectorTy()) { 3073 if (const Constant *Splat = Cst->getSplatValue()) { 3074 Cst = Splat; 3075 CstTy = Cst->getType(); 3076 } 3077 } 3078 // TODO - do we need to handle different bitwidths? 3079 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3080 // Iterate across all vector elements finding common known bits. 3081 Known.One.setAllBits(); 3082 Known.Zero.setAllBits(); 3083 for (unsigned i = 0; i != NumElts; ++i) { 3084 if (!DemandedElts[i]) 3085 continue; 3086 if (Constant *Elt = Cst->getAggregateElement(i)) { 3087 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3088 const APInt &Value = CInt->getValue(); 3089 Known.One &= Value; 3090 Known.Zero &= ~Value; 3091 continue; 3092 } 3093 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3094 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3095 Known.One &= Value; 3096 Known.Zero &= ~Value; 3097 continue; 3098 } 3099 } 3100 Known.One.clearAllBits(); 3101 Known.Zero.clearAllBits(); 3102 break; 3103 } 3104 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3105 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3106 const APInt &Value = CInt->getValue(); 3107 Known.One = Value; 3108 Known.Zero = ~Value; 3109 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3110 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3111 Known.One = Value; 3112 Known.Zero = ~Value; 3113 } 3114 } 3115 } 3116 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3117 // If this is a ZEXTLoad and we are looking at the loaded value. 3118 EVT VT = LD->getMemoryVT(); 3119 unsigned MemBits = VT.getScalarSizeInBits(); 3120 Known.Zero.setBitsFrom(MemBits); 3121 } else if (const MDNode *Ranges = LD->getRanges()) { 3122 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3123 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3124 } 3125 break; 3126 } 3127 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3128 EVT InVT = Op.getOperand(0).getValueType(); 3129 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3130 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3131 Known = Known.zext(BitWidth); 3132 break; 3133 } 3134 case ISD::ZERO_EXTEND: { 3135 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3136 Known = Known.zext(BitWidth); 3137 break; 3138 } 3139 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3140 EVT InVT = Op.getOperand(0).getValueType(); 3141 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3142 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3143 // If the sign bit is known to be zero or one, then sext will extend 3144 // it to the top bits, else it will just zext. 3145 Known = Known.sext(BitWidth); 3146 break; 3147 } 3148 case ISD::SIGN_EXTEND: { 3149 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3150 // If the sign bit is known to be zero or one, then sext will extend 3151 // it to the top bits, else it will just zext. 3152 Known = Known.sext(BitWidth); 3153 break; 3154 } 3155 case ISD::ANY_EXTEND_VECTOR_INREG: { 3156 EVT InVT = Op.getOperand(0).getValueType(); 3157 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3158 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3159 Known = Known.anyext(BitWidth); 3160 break; 3161 } 3162 case ISD::ANY_EXTEND: { 3163 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3164 Known = Known.anyext(BitWidth); 3165 break; 3166 } 3167 case ISD::TRUNCATE: { 3168 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3169 Known = Known.trunc(BitWidth); 3170 break; 3171 } 3172 case ISD::AssertZext: { 3173 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3174 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3175 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3176 Known.Zero |= (~InMask); 3177 Known.One &= (~Known.Zero); 3178 break; 3179 } 3180 case ISD::AssertAlign: { 3181 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3182 assert(LogOfAlign != 0); 3183 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3184 // well as clearing one bits. 3185 Known.Zero.setLowBits(LogOfAlign); 3186 Known.One.clearLowBits(LogOfAlign); 3187 break; 3188 } 3189 case ISD::FGETSIGN: 3190 // All bits are zero except the low bit. 3191 Known.Zero.setBitsFrom(1); 3192 break; 3193 case ISD::USUBO: 3194 case ISD::SSUBO: 3195 if (Op.getResNo() == 1) { 3196 // If we know the result of a setcc has the top bits zero, use this info. 3197 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3198 TargetLowering::ZeroOrOneBooleanContent && 3199 BitWidth > 1) 3200 Known.Zero.setBitsFrom(1); 3201 break; 3202 } 3203 LLVM_FALLTHROUGH; 3204 case ISD::SUB: 3205 case ISD::SUBC: { 3206 assert(Op.getResNo() == 0 && 3207 "We only compute knownbits for the difference here."); 3208 3209 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3210 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3211 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3212 Known, Known2); 3213 break; 3214 } 3215 case ISD::UADDO: 3216 case ISD::SADDO: 3217 case ISD::ADDCARRY: 3218 if (Op.getResNo() == 1) { 3219 // If we know the result of a setcc has the top bits zero, use this info. 3220 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3221 TargetLowering::ZeroOrOneBooleanContent && 3222 BitWidth > 1) 3223 Known.Zero.setBitsFrom(1); 3224 break; 3225 } 3226 LLVM_FALLTHROUGH; 3227 case ISD::ADD: 3228 case ISD::ADDC: 3229 case ISD::ADDE: { 3230 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3231 3232 // With ADDE and ADDCARRY, a carry bit may be added in. 3233 KnownBits Carry(1); 3234 if (Opcode == ISD::ADDE) 3235 // Can't track carry from glue, set carry to unknown. 3236 Carry.resetAll(); 3237 else if (Opcode == ISD::ADDCARRY) 3238 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3239 // the trouble (how often will we find a known carry bit). And I haven't 3240 // tested this very much yet, but something like this might work: 3241 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3242 // Carry = Carry.zextOrTrunc(1, false); 3243 Carry.resetAll(); 3244 else 3245 Carry.setAllZero(); 3246 3247 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3248 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3249 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3250 break; 3251 } 3252 case ISD::SREM: { 3253 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3254 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3255 Known = KnownBits::srem(Known, Known2); 3256 break; 3257 } 3258 case ISD::UREM: { 3259 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3260 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3261 Known = KnownBits::urem(Known, Known2); 3262 break; 3263 } 3264 case ISD::EXTRACT_ELEMENT: { 3265 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3266 const unsigned Index = Op.getConstantOperandVal(1); 3267 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3268 3269 // Remove low part of known bits mask 3270 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3271 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3272 3273 // Remove high part of known bit mask 3274 Known = Known.trunc(EltBitWidth); 3275 break; 3276 } 3277 case ISD::EXTRACT_VECTOR_ELT: { 3278 SDValue InVec = Op.getOperand(0); 3279 SDValue EltNo = Op.getOperand(1); 3280 EVT VecVT = InVec.getValueType(); 3281 // computeKnownBits not yet implemented for scalable vectors. 3282 if (VecVT.isScalableVector()) 3283 break; 3284 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3285 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3286 3287 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3288 // anything about the extended bits. 3289 if (BitWidth > EltBitWidth) 3290 Known = Known.trunc(EltBitWidth); 3291 3292 // If we know the element index, just demand that vector element, else for 3293 // an unknown element index, ignore DemandedElts and demand them all. 3294 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3295 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3296 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3297 DemandedSrcElts = 3298 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3299 3300 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3301 if (BitWidth > EltBitWidth) 3302 Known = Known.anyext(BitWidth); 3303 break; 3304 } 3305 case ISD::INSERT_VECTOR_ELT: { 3306 // If we know the element index, split the demand between the 3307 // source vector and the inserted element, otherwise assume we need 3308 // the original demanded vector elements and the value. 3309 SDValue InVec = Op.getOperand(0); 3310 SDValue InVal = Op.getOperand(1); 3311 SDValue EltNo = Op.getOperand(2); 3312 bool DemandedVal = true; 3313 APInt DemandedVecElts = DemandedElts; 3314 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3315 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3316 unsigned EltIdx = CEltNo->getZExtValue(); 3317 DemandedVal = !!DemandedElts[EltIdx]; 3318 DemandedVecElts.clearBit(EltIdx); 3319 } 3320 Known.One.setAllBits(); 3321 Known.Zero.setAllBits(); 3322 if (DemandedVal) { 3323 Known2 = computeKnownBits(InVal, Depth + 1); 3324 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3325 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3326 } 3327 if (!!DemandedVecElts) { 3328 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3329 Known.One &= Known2.One; 3330 Known.Zero &= Known2.Zero; 3331 } 3332 break; 3333 } 3334 case ISD::BITREVERSE: { 3335 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3336 Known = Known2.reverseBits(); 3337 break; 3338 } 3339 case ISD::BSWAP: { 3340 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3341 Known = Known2.byteSwap(); 3342 break; 3343 } 3344 case ISD::ABS: { 3345 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3346 Known = Known2.abs(); 3347 break; 3348 } 3349 case ISD::UMIN: { 3350 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3352 Known = KnownBits::umin(Known, Known2); 3353 break; 3354 } 3355 case ISD::UMAX: { 3356 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3357 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3358 Known = KnownBits::umax(Known, Known2); 3359 break; 3360 } 3361 case ISD::SMIN: 3362 case ISD::SMAX: { 3363 // If we have a clamp pattern, we know that the number of sign bits will be 3364 // the minimum of the clamp min/max range. 3365 bool IsMax = (Opcode == ISD::SMAX); 3366 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3367 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3368 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3369 CstHigh = 3370 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3371 if (CstLow && CstHigh) { 3372 if (!IsMax) 3373 std::swap(CstLow, CstHigh); 3374 3375 const APInt &ValueLow = CstLow->getAPIntValue(); 3376 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3377 if (ValueLow.sle(ValueHigh)) { 3378 unsigned LowSignBits = ValueLow.getNumSignBits(); 3379 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3380 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3381 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3382 Known.One.setHighBits(MinSignBits); 3383 break; 3384 } 3385 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3386 Known.Zero.setHighBits(MinSignBits); 3387 break; 3388 } 3389 } 3390 } 3391 3392 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3393 if (Known.isUnknown()) break; // Early-out 3394 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3395 if (IsMax) 3396 Known = KnownBits::smax(Known, Known2); 3397 else 3398 Known = KnownBits::smin(Known, Known2); 3399 break; 3400 } 3401 case ISD::FrameIndex: 3402 case ISD::TargetFrameIndex: 3403 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3404 Known, getMachineFunction()); 3405 break; 3406 3407 default: 3408 if (Opcode < ISD::BUILTIN_OP_END) 3409 break; 3410 LLVM_FALLTHROUGH; 3411 case ISD::INTRINSIC_WO_CHAIN: 3412 case ISD::INTRINSIC_W_CHAIN: 3413 case ISD::INTRINSIC_VOID: 3414 // Allow the target to implement this method for its nodes. 3415 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3416 break; 3417 } 3418 3419 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3420 return Known; 3421 } 3422 3423 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3424 SDValue N1) const { 3425 // X + 0 never overflow 3426 if (isNullConstant(N1)) 3427 return OFK_Never; 3428 3429 KnownBits N1Known = computeKnownBits(N1); 3430 if (N1Known.Zero.getBoolValue()) { 3431 KnownBits N0Known = computeKnownBits(N0); 3432 3433 bool overflow; 3434 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3435 if (!overflow) 3436 return OFK_Never; 3437 } 3438 3439 // mulhi + 1 never overflow 3440 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3441 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3442 return OFK_Never; 3443 3444 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3445 KnownBits N0Known = computeKnownBits(N0); 3446 3447 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3448 return OFK_Never; 3449 } 3450 3451 return OFK_Sometime; 3452 } 3453 3454 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3455 EVT OpVT = Val.getValueType(); 3456 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3457 3458 // Is the constant a known power of 2? 3459 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3460 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3461 3462 // A left-shift of a constant one will have exactly one bit set because 3463 // shifting the bit off the end is undefined. 3464 if (Val.getOpcode() == ISD::SHL) { 3465 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3466 if (C && C->getAPIntValue() == 1) 3467 return true; 3468 } 3469 3470 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3471 // one bit set. 3472 if (Val.getOpcode() == ISD::SRL) { 3473 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3474 if (C && C->getAPIntValue().isSignMask()) 3475 return true; 3476 } 3477 3478 // Are all operands of a build vector constant powers of two? 3479 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3480 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3481 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3482 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3483 return false; 3484 })) 3485 return true; 3486 3487 // More could be done here, though the above checks are enough 3488 // to handle some common cases. 3489 3490 // Fall back to computeKnownBits to catch other known cases. 3491 KnownBits Known = computeKnownBits(Val); 3492 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3493 } 3494 3495 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3496 EVT VT = Op.getValueType(); 3497 3498 // TODO: Assume we don't know anything for now. 3499 if (VT.isScalableVector()) 3500 return 1; 3501 3502 APInt DemandedElts = VT.isVector() 3503 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3504 : APInt(1, 1); 3505 return ComputeNumSignBits(Op, DemandedElts, Depth); 3506 } 3507 3508 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3509 unsigned Depth) const { 3510 EVT VT = Op.getValueType(); 3511 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3512 unsigned VTBits = VT.getScalarSizeInBits(); 3513 unsigned NumElts = DemandedElts.getBitWidth(); 3514 unsigned Tmp, Tmp2; 3515 unsigned FirstAnswer = 1; 3516 3517 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3518 const APInt &Val = C->getAPIntValue(); 3519 return Val.getNumSignBits(); 3520 } 3521 3522 if (Depth >= MaxRecursionDepth) 3523 return 1; // Limit search depth. 3524 3525 if (!DemandedElts || VT.isScalableVector()) 3526 return 1; // No demanded elts, better to assume we don't know anything. 3527 3528 unsigned Opcode = Op.getOpcode(); 3529 switch (Opcode) { 3530 default: break; 3531 case ISD::AssertSext: 3532 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3533 return VTBits-Tmp+1; 3534 case ISD::AssertZext: 3535 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3536 return VTBits-Tmp; 3537 3538 case ISD::BUILD_VECTOR: 3539 Tmp = VTBits; 3540 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3541 if (!DemandedElts[i]) 3542 continue; 3543 3544 SDValue SrcOp = Op.getOperand(i); 3545 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3546 3547 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3548 if (SrcOp.getValueSizeInBits() != VTBits) { 3549 assert(SrcOp.getValueSizeInBits() > VTBits && 3550 "Expected BUILD_VECTOR implicit truncation"); 3551 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3552 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3553 } 3554 Tmp = std::min(Tmp, Tmp2); 3555 } 3556 return Tmp; 3557 3558 case ISD::VECTOR_SHUFFLE: { 3559 // Collect the minimum number of sign bits that are shared by every vector 3560 // element referenced by the shuffle. 3561 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3562 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3563 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3564 for (unsigned i = 0; i != NumElts; ++i) { 3565 int M = SVN->getMaskElt(i); 3566 if (!DemandedElts[i]) 3567 continue; 3568 // For UNDEF elements, we don't know anything about the common state of 3569 // the shuffle result. 3570 if (M < 0) 3571 return 1; 3572 if ((unsigned)M < NumElts) 3573 DemandedLHS.setBit((unsigned)M % NumElts); 3574 else 3575 DemandedRHS.setBit((unsigned)M % NumElts); 3576 } 3577 Tmp = std::numeric_limits<unsigned>::max(); 3578 if (!!DemandedLHS) 3579 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3580 if (!!DemandedRHS) { 3581 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3582 Tmp = std::min(Tmp, Tmp2); 3583 } 3584 // If we don't know anything, early out and try computeKnownBits fall-back. 3585 if (Tmp == 1) 3586 break; 3587 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3588 return Tmp; 3589 } 3590 3591 case ISD::BITCAST: { 3592 SDValue N0 = Op.getOperand(0); 3593 EVT SrcVT = N0.getValueType(); 3594 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3595 3596 // Ignore bitcasts from unsupported types.. 3597 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3598 break; 3599 3600 // Fast handling of 'identity' bitcasts. 3601 if (VTBits == SrcBits) 3602 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3603 3604 bool IsLE = getDataLayout().isLittleEndian(); 3605 3606 // Bitcast 'large element' scalar/vector to 'small element' vector. 3607 if ((SrcBits % VTBits) == 0) { 3608 assert(VT.isVector() && "Expected bitcast to vector"); 3609 3610 unsigned Scale = SrcBits / VTBits; 3611 APInt SrcDemandedElts(NumElts / Scale, 0); 3612 for (unsigned i = 0; i != NumElts; ++i) 3613 if (DemandedElts[i]) 3614 SrcDemandedElts.setBit(i / Scale); 3615 3616 // Fast case - sign splat can be simply split across the small elements. 3617 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3618 if (Tmp == SrcBits) 3619 return VTBits; 3620 3621 // Slow case - determine how far the sign extends into each sub-element. 3622 Tmp2 = VTBits; 3623 for (unsigned i = 0; i != NumElts; ++i) 3624 if (DemandedElts[i]) { 3625 unsigned SubOffset = i % Scale; 3626 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3627 SubOffset = SubOffset * VTBits; 3628 if (Tmp <= SubOffset) 3629 return 1; 3630 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3631 } 3632 return Tmp2; 3633 } 3634 break; 3635 } 3636 3637 case ISD::SIGN_EXTEND: 3638 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3639 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3640 case ISD::SIGN_EXTEND_INREG: 3641 // Max of the input and what this extends. 3642 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3643 Tmp = VTBits-Tmp+1; 3644 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3645 return std::max(Tmp, Tmp2); 3646 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3647 SDValue Src = Op.getOperand(0); 3648 EVT SrcVT = Src.getValueType(); 3649 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3650 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3651 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3652 } 3653 case ISD::SRA: 3654 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3655 // SRA X, C -> adds C sign bits. 3656 if (const APInt *ShAmt = 3657 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3658 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3659 return Tmp; 3660 case ISD::SHL: 3661 if (const APInt *ShAmt = 3662 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3663 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3664 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3665 if (ShAmt->ult(Tmp)) 3666 return Tmp - ShAmt->getZExtValue(); 3667 } 3668 break; 3669 case ISD::AND: 3670 case ISD::OR: 3671 case ISD::XOR: // NOT is handled here. 3672 // Logical binary ops preserve the number of sign bits at the worst. 3673 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3674 if (Tmp != 1) { 3675 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3676 FirstAnswer = std::min(Tmp, Tmp2); 3677 // We computed what we know about the sign bits as our first 3678 // answer. Now proceed to the generic code that uses 3679 // computeKnownBits, and pick whichever answer is better. 3680 } 3681 break; 3682 3683 case ISD::SELECT: 3684 case ISD::VSELECT: 3685 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3686 if (Tmp == 1) return 1; // Early out. 3687 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3688 return std::min(Tmp, Tmp2); 3689 case ISD::SELECT_CC: 3690 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3691 if (Tmp == 1) return 1; // Early out. 3692 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3693 return std::min(Tmp, Tmp2); 3694 3695 case ISD::SMIN: 3696 case ISD::SMAX: { 3697 // If we have a clamp pattern, we know that the number of sign bits will be 3698 // the minimum of the clamp min/max range. 3699 bool IsMax = (Opcode == ISD::SMAX); 3700 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3701 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3702 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3703 CstHigh = 3704 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3705 if (CstLow && CstHigh) { 3706 if (!IsMax) 3707 std::swap(CstLow, CstHigh); 3708 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3709 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3710 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3711 return std::min(Tmp, Tmp2); 3712 } 3713 } 3714 3715 // Fallback - just get the minimum number of sign bits of the operands. 3716 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3717 if (Tmp == 1) 3718 return 1; // Early out. 3719 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3720 return std::min(Tmp, Tmp2); 3721 } 3722 case ISD::UMIN: 3723 case ISD::UMAX: 3724 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3725 if (Tmp == 1) 3726 return 1; // Early out. 3727 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3728 return std::min(Tmp, Tmp2); 3729 case ISD::SADDO: 3730 case ISD::UADDO: 3731 case ISD::SSUBO: 3732 case ISD::USUBO: 3733 case ISD::SMULO: 3734 case ISD::UMULO: 3735 if (Op.getResNo() != 1) 3736 break; 3737 // The boolean result conforms to getBooleanContents. Fall through. 3738 // If setcc returns 0/-1, all bits are sign bits. 3739 // We know that we have an integer-based boolean since these operations 3740 // are only available for integer. 3741 if (TLI->getBooleanContents(VT.isVector(), false) == 3742 TargetLowering::ZeroOrNegativeOneBooleanContent) 3743 return VTBits; 3744 break; 3745 case ISD::SETCC: 3746 case ISD::STRICT_FSETCC: 3747 case ISD::STRICT_FSETCCS: { 3748 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3749 // If setcc returns 0/-1, all bits are sign bits. 3750 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3751 TargetLowering::ZeroOrNegativeOneBooleanContent) 3752 return VTBits; 3753 break; 3754 } 3755 case ISD::ROTL: 3756 case ISD::ROTR: 3757 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3758 3759 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3760 if (Tmp == VTBits) 3761 return VTBits; 3762 3763 if (ConstantSDNode *C = 3764 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3765 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3766 3767 // Handle rotate right by N like a rotate left by 32-N. 3768 if (Opcode == ISD::ROTR) 3769 RotAmt = (VTBits - RotAmt) % VTBits; 3770 3771 // If we aren't rotating out all of the known-in sign bits, return the 3772 // number that are left. This handles rotl(sext(x), 1) for example. 3773 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3774 } 3775 break; 3776 case ISD::ADD: 3777 case ISD::ADDC: 3778 // Add can have at most one carry bit. Thus we know that the output 3779 // is, at worst, one more bit than the inputs. 3780 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3781 if (Tmp == 1) return 1; // Early out. 3782 3783 // Special case decrementing a value (ADD X, -1): 3784 if (ConstantSDNode *CRHS = 3785 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3786 if (CRHS->isAllOnesValue()) { 3787 KnownBits Known = 3788 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3789 3790 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3791 // sign bits set. 3792 if ((Known.Zero | 1).isAllOnesValue()) 3793 return VTBits; 3794 3795 // If we are subtracting one from a positive number, there is no carry 3796 // out of the result. 3797 if (Known.isNonNegative()) 3798 return Tmp; 3799 } 3800 3801 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3802 if (Tmp2 == 1) return 1; // Early out. 3803 return std::min(Tmp, Tmp2) - 1; 3804 case ISD::SUB: 3805 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3806 if (Tmp2 == 1) return 1; // Early out. 3807 3808 // Handle NEG. 3809 if (ConstantSDNode *CLHS = 3810 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3811 if (CLHS->isNullValue()) { 3812 KnownBits Known = 3813 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3814 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3815 // sign bits set. 3816 if ((Known.Zero | 1).isAllOnesValue()) 3817 return VTBits; 3818 3819 // If the input is known to be positive (the sign bit is known clear), 3820 // the output of the NEG has the same number of sign bits as the input. 3821 if (Known.isNonNegative()) 3822 return Tmp2; 3823 3824 // Otherwise, we treat this like a SUB. 3825 } 3826 3827 // Sub can have at most one carry bit. Thus we know that the output 3828 // is, at worst, one more bit than the inputs. 3829 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3830 if (Tmp == 1) return 1; // Early out. 3831 return std::min(Tmp, Tmp2) - 1; 3832 case ISD::MUL: { 3833 // The output of the Mul can be at most twice the valid bits in the inputs. 3834 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3835 if (SignBitsOp0 == 1) 3836 break; 3837 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3838 if (SignBitsOp1 == 1) 3839 break; 3840 unsigned OutValidBits = 3841 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3842 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3843 } 3844 case ISD::TRUNCATE: { 3845 // Check if the sign bits of source go down as far as the truncated value. 3846 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3847 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3848 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3849 return NumSrcSignBits - (NumSrcBits - VTBits); 3850 break; 3851 } 3852 case ISD::EXTRACT_ELEMENT: { 3853 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3854 const int BitWidth = Op.getValueSizeInBits(); 3855 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3856 3857 // Get reverse index (starting from 1), Op1 value indexes elements from 3858 // little end. Sign starts at big end. 3859 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3860 3861 // If the sign portion ends in our element the subtraction gives correct 3862 // result. Otherwise it gives either negative or > bitwidth result 3863 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3864 } 3865 case ISD::INSERT_VECTOR_ELT: { 3866 // If we know the element index, split the demand between the 3867 // source vector and the inserted element, otherwise assume we need 3868 // the original demanded vector elements and the value. 3869 SDValue InVec = Op.getOperand(0); 3870 SDValue InVal = Op.getOperand(1); 3871 SDValue EltNo = Op.getOperand(2); 3872 bool DemandedVal = true; 3873 APInt DemandedVecElts = DemandedElts; 3874 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3875 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3876 unsigned EltIdx = CEltNo->getZExtValue(); 3877 DemandedVal = !!DemandedElts[EltIdx]; 3878 DemandedVecElts.clearBit(EltIdx); 3879 } 3880 Tmp = std::numeric_limits<unsigned>::max(); 3881 if (DemandedVal) { 3882 // TODO - handle implicit truncation of inserted elements. 3883 if (InVal.getScalarValueSizeInBits() != VTBits) 3884 break; 3885 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3886 Tmp = std::min(Tmp, Tmp2); 3887 } 3888 if (!!DemandedVecElts) { 3889 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3890 Tmp = std::min(Tmp, Tmp2); 3891 } 3892 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3893 return Tmp; 3894 } 3895 case ISD::EXTRACT_VECTOR_ELT: { 3896 SDValue InVec = Op.getOperand(0); 3897 SDValue EltNo = Op.getOperand(1); 3898 EVT VecVT = InVec.getValueType(); 3899 const unsigned BitWidth = Op.getValueSizeInBits(); 3900 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3901 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3902 3903 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3904 // anything about sign bits. But if the sizes match we can derive knowledge 3905 // about sign bits from the vector operand. 3906 if (BitWidth != EltBitWidth) 3907 break; 3908 3909 // If we know the element index, just demand that vector element, else for 3910 // an unknown element index, ignore DemandedElts and demand them all. 3911 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3912 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3913 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3914 DemandedSrcElts = 3915 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3916 3917 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3918 } 3919 case ISD::EXTRACT_SUBVECTOR: { 3920 // Offset the demanded elts by the subvector index. 3921 SDValue Src = Op.getOperand(0); 3922 // Bail until we can represent demanded elements for scalable vectors. 3923 if (Src.getValueType().isScalableVector()) 3924 break; 3925 uint64_t Idx = Op.getConstantOperandVal(1); 3926 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3927 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3928 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3929 } 3930 case ISD::CONCAT_VECTORS: { 3931 // Determine the minimum number of sign bits across all demanded 3932 // elts of the input vectors. Early out if the result is already 1. 3933 Tmp = std::numeric_limits<unsigned>::max(); 3934 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3935 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3936 unsigned NumSubVectors = Op.getNumOperands(); 3937 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3938 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3939 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3940 if (!DemandedSub) 3941 continue; 3942 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3943 Tmp = std::min(Tmp, Tmp2); 3944 } 3945 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3946 return Tmp; 3947 } 3948 case ISD::INSERT_SUBVECTOR: { 3949 // Demand any elements from the subvector and the remainder from the src its 3950 // inserted into. 3951 SDValue Src = Op.getOperand(0); 3952 SDValue Sub = Op.getOperand(1); 3953 uint64_t Idx = Op.getConstantOperandVal(2); 3954 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3955 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3956 APInt DemandedSrcElts = DemandedElts; 3957 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3958 3959 Tmp = std::numeric_limits<unsigned>::max(); 3960 if (!!DemandedSubElts) { 3961 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3962 if (Tmp == 1) 3963 return 1; // early-out 3964 } 3965 if (!!DemandedSrcElts) { 3966 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3967 Tmp = std::min(Tmp, Tmp2); 3968 } 3969 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3970 return Tmp; 3971 } 3972 } 3973 3974 // If we are looking at the loaded value of the SDNode. 3975 if (Op.getResNo() == 0) { 3976 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3977 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3978 unsigned ExtType = LD->getExtensionType(); 3979 switch (ExtType) { 3980 default: break; 3981 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3982 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3983 return VTBits - Tmp + 1; 3984 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3985 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3986 return VTBits - Tmp; 3987 case ISD::NON_EXTLOAD: 3988 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3989 // We only need to handle vectors - computeKnownBits should handle 3990 // scalar cases. 3991 Type *CstTy = Cst->getType(); 3992 if (CstTy->isVectorTy() && 3993 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3994 Tmp = VTBits; 3995 for (unsigned i = 0; i != NumElts; ++i) { 3996 if (!DemandedElts[i]) 3997 continue; 3998 if (Constant *Elt = Cst->getAggregateElement(i)) { 3999 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4000 const APInt &Value = CInt->getValue(); 4001 Tmp = std::min(Tmp, Value.getNumSignBits()); 4002 continue; 4003 } 4004 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4005 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4006 Tmp = std::min(Tmp, Value.getNumSignBits()); 4007 continue; 4008 } 4009 } 4010 // Unknown type. Conservatively assume no bits match sign bit. 4011 return 1; 4012 } 4013 return Tmp; 4014 } 4015 } 4016 break; 4017 } 4018 } 4019 } 4020 4021 // Allow the target to implement this method for its nodes. 4022 if (Opcode >= ISD::BUILTIN_OP_END || 4023 Opcode == ISD::INTRINSIC_WO_CHAIN || 4024 Opcode == ISD::INTRINSIC_W_CHAIN || 4025 Opcode == ISD::INTRINSIC_VOID) { 4026 unsigned NumBits = 4027 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4028 if (NumBits > 1) 4029 FirstAnswer = std::max(FirstAnswer, NumBits); 4030 } 4031 4032 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4033 // use this information. 4034 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4035 4036 APInt Mask; 4037 if (Known.isNonNegative()) { // sign bit is 0 4038 Mask = Known.Zero; 4039 } else if (Known.isNegative()) { // sign bit is 1; 4040 Mask = Known.One; 4041 } else { 4042 // Nothing known. 4043 return FirstAnswer; 4044 } 4045 4046 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4047 // the number of identical bits in the top of the input value. 4048 Mask <<= Mask.getBitWidth()-VTBits; 4049 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4050 } 4051 4052 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4053 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4054 !isa<ConstantSDNode>(Op.getOperand(1))) 4055 return false; 4056 4057 if (Op.getOpcode() == ISD::OR && 4058 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4059 return false; 4060 4061 return true; 4062 } 4063 4064 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4065 // If we're told that NaNs won't happen, assume they won't. 4066 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4067 return true; 4068 4069 if (Depth >= MaxRecursionDepth) 4070 return false; // Limit search depth. 4071 4072 // TODO: Handle vectors. 4073 // If the value is a constant, we can obviously see if it is a NaN or not. 4074 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4075 return !C->getValueAPF().isNaN() || 4076 (SNaN && !C->getValueAPF().isSignaling()); 4077 } 4078 4079 unsigned Opcode = Op.getOpcode(); 4080 switch (Opcode) { 4081 case ISD::FADD: 4082 case ISD::FSUB: 4083 case ISD::FMUL: 4084 case ISD::FDIV: 4085 case ISD::FREM: 4086 case ISD::FSIN: 4087 case ISD::FCOS: { 4088 if (SNaN) 4089 return true; 4090 // TODO: Need isKnownNeverInfinity 4091 return false; 4092 } 4093 case ISD::FCANONICALIZE: 4094 case ISD::FEXP: 4095 case ISD::FEXP2: 4096 case ISD::FTRUNC: 4097 case ISD::FFLOOR: 4098 case ISD::FCEIL: 4099 case ISD::FROUND: 4100 case ISD::FROUNDEVEN: 4101 case ISD::FRINT: 4102 case ISD::FNEARBYINT: { 4103 if (SNaN) 4104 return true; 4105 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4106 } 4107 case ISD::FABS: 4108 case ISD::FNEG: 4109 case ISD::FCOPYSIGN: { 4110 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4111 } 4112 case ISD::SELECT: 4113 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4114 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4115 case ISD::FP_EXTEND: 4116 case ISD::FP_ROUND: { 4117 if (SNaN) 4118 return true; 4119 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4120 } 4121 case ISD::SINT_TO_FP: 4122 case ISD::UINT_TO_FP: 4123 return true; 4124 case ISD::FMA: 4125 case ISD::FMAD: { 4126 if (SNaN) 4127 return true; 4128 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4129 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4130 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4131 } 4132 case ISD::FSQRT: // Need is known positive 4133 case ISD::FLOG: 4134 case ISD::FLOG2: 4135 case ISD::FLOG10: 4136 case ISD::FPOWI: 4137 case ISD::FPOW: { 4138 if (SNaN) 4139 return true; 4140 // TODO: Refine on operand 4141 return false; 4142 } 4143 case ISD::FMINNUM: 4144 case ISD::FMAXNUM: { 4145 // Only one needs to be known not-nan, since it will be returned if the 4146 // other ends up being one. 4147 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4148 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4149 } 4150 case ISD::FMINNUM_IEEE: 4151 case ISD::FMAXNUM_IEEE: { 4152 if (SNaN) 4153 return true; 4154 // This can return a NaN if either operand is an sNaN, or if both operands 4155 // are NaN. 4156 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4157 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4158 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4159 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4160 } 4161 case ISD::FMINIMUM: 4162 case ISD::FMAXIMUM: { 4163 // TODO: Does this quiet or return the origina NaN as-is? 4164 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4165 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4166 } 4167 case ISD::EXTRACT_VECTOR_ELT: { 4168 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4169 } 4170 default: 4171 if (Opcode >= ISD::BUILTIN_OP_END || 4172 Opcode == ISD::INTRINSIC_WO_CHAIN || 4173 Opcode == ISD::INTRINSIC_W_CHAIN || 4174 Opcode == ISD::INTRINSIC_VOID) { 4175 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4176 } 4177 4178 return false; 4179 } 4180 } 4181 4182 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4183 assert(Op.getValueType().isFloatingPoint() && 4184 "Floating point type expected"); 4185 4186 // If the value is a constant, we can obviously see if it is a zero or not. 4187 // TODO: Add BuildVector support. 4188 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4189 return !C->isZero(); 4190 return false; 4191 } 4192 4193 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4194 assert(!Op.getValueType().isFloatingPoint() && 4195 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4196 4197 // If the value is a constant, we can obviously see if it is a zero or not. 4198 if (ISD::matchUnaryPredicate( 4199 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4200 return true; 4201 4202 // TODO: Recognize more cases here. 4203 switch (Op.getOpcode()) { 4204 default: break; 4205 case ISD::OR: 4206 if (isKnownNeverZero(Op.getOperand(1)) || 4207 isKnownNeverZero(Op.getOperand(0))) 4208 return true; 4209 break; 4210 } 4211 4212 return false; 4213 } 4214 4215 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4216 // Check the obvious case. 4217 if (A == B) return true; 4218 4219 // For for negative and positive zero. 4220 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4221 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4222 if (CA->isZero() && CB->isZero()) return true; 4223 4224 // Otherwise they may not be equal. 4225 return false; 4226 } 4227 4228 // FIXME: unify with llvm::haveNoCommonBitsSet. 4229 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4230 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4231 assert(A.getValueType() == B.getValueType() && 4232 "Values must have the same type"); 4233 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4234 } 4235 4236 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4237 ArrayRef<SDValue> Ops, 4238 SelectionDAG &DAG) { 4239 int NumOps = Ops.size(); 4240 assert(NumOps != 0 && "Can't build an empty vector!"); 4241 assert(!VT.isScalableVector() && 4242 "BUILD_VECTOR cannot be used with scalable types"); 4243 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4244 "Incorrect element count in BUILD_VECTOR!"); 4245 4246 // BUILD_VECTOR of UNDEFs is UNDEF. 4247 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4248 return DAG.getUNDEF(VT); 4249 4250 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4251 SDValue IdentitySrc; 4252 bool IsIdentity = true; 4253 for (int i = 0; i != NumOps; ++i) { 4254 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4255 Ops[i].getOperand(0).getValueType() != VT || 4256 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4257 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4258 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4259 IsIdentity = false; 4260 break; 4261 } 4262 IdentitySrc = Ops[i].getOperand(0); 4263 } 4264 if (IsIdentity) 4265 return IdentitySrc; 4266 4267 return SDValue(); 4268 } 4269 4270 /// Try to simplify vector concatenation to an input value, undef, or build 4271 /// vector. 4272 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4273 ArrayRef<SDValue> Ops, 4274 SelectionDAG &DAG) { 4275 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4276 assert(llvm::all_of(Ops, 4277 [Ops](SDValue Op) { 4278 return Ops[0].getValueType() == Op.getValueType(); 4279 }) && 4280 "Concatenation of vectors with inconsistent value types!"); 4281 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4282 VT.getVectorElementCount() && 4283 "Incorrect element count in vector concatenation!"); 4284 4285 if (Ops.size() == 1) 4286 return Ops[0]; 4287 4288 // Concat of UNDEFs is UNDEF. 4289 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4290 return DAG.getUNDEF(VT); 4291 4292 // Scan the operands and look for extract operations from a single source 4293 // that correspond to insertion at the same location via this concatenation: 4294 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4295 SDValue IdentitySrc; 4296 bool IsIdentity = true; 4297 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4298 SDValue Op = Ops[i]; 4299 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4300 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4301 Op.getOperand(0).getValueType() != VT || 4302 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4303 Op.getConstantOperandVal(1) != IdentityIndex) { 4304 IsIdentity = false; 4305 break; 4306 } 4307 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4308 "Unexpected identity source vector for concat of extracts"); 4309 IdentitySrc = Op.getOperand(0); 4310 } 4311 if (IsIdentity) { 4312 assert(IdentitySrc && "Failed to set source vector of extracts"); 4313 return IdentitySrc; 4314 } 4315 4316 // The code below this point is only designed to work for fixed width 4317 // vectors, so we bail out for now. 4318 if (VT.isScalableVector()) 4319 return SDValue(); 4320 4321 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4322 // simplified to one big BUILD_VECTOR. 4323 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4324 EVT SVT = VT.getScalarType(); 4325 SmallVector<SDValue, 16> Elts; 4326 for (SDValue Op : Ops) { 4327 EVT OpVT = Op.getValueType(); 4328 if (Op.isUndef()) 4329 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4330 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4331 Elts.append(Op->op_begin(), Op->op_end()); 4332 else 4333 return SDValue(); 4334 } 4335 4336 // BUILD_VECTOR requires all inputs to be of the same type, find the 4337 // maximum type and extend them all. 4338 for (SDValue Op : Elts) 4339 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4340 4341 if (SVT.bitsGT(VT.getScalarType())) { 4342 for (SDValue &Op : Elts) { 4343 if (Op.isUndef()) 4344 Op = DAG.getUNDEF(SVT); 4345 else 4346 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4347 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4348 : DAG.getSExtOrTrunc(Op, DL, SVT); 4349 } 4350 } 4351 4352 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4353 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4354 return V; 4355 } 4356 4357 /// Gets or creates the specified node. 4358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4359 FoldingSetNodeID ID; 4360 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4361 void *IP = nullptr; 4362 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4363 return SDValue(E, 0); 4364 4365 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4366 getVTList(VT)); 4367 CSEMap.InsertNode(N, IP); 4368 4369 InsertNode(N); 4370 SDValue V = SDValue(N, 0); 4371 NewSDValueDbgMsg(V, "Creating new node: ", this); 4372 return V; 4373 } 4374 4375 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4376 SDValue Operand) { 4377 SDNodeFlags Flags; 4378 if (Inserter) 4379 Flags = Inserter->getFlags(); 4380 return getNode(Opcode, DL, VT, Operand, Flags); 4381 } 4382 4383 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4384 SDValue Operand, const SDNodeFlags Flags) { 4385 // Constant fold unary operations with an integer constant operand. Even 4386 // opaque constant will be folded, because the folding of unary operations 4387 // doesn't create new constants with different values. Nevertheless, the 4388 // opaque flag is preserved during folding to prevent future folding with 4389 // other constants. 4390 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4391 const APInt &Val = C->getAPIntValue(); 4392 switch (Opcode) { 4393 default: break; 4394 case ISD::SIGN_EXTEND: 4395 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4396 C->isTargetOpcode(), C->isOpaque()); 4397 case ISD::TRUNCATE: 4398 if (C->isOpaque()) 4399 break; 4400 LLVM_FALLTHROUGH; 4401 case ISD::ANY_EXTEND: 4402 case ISD::ZERO_EXTEND: 4403 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4404 C->isTargetOpcode(), C->isOpaque()); 4405 case ISD::UINT_TO_FP: 4406 case ISD::SINT_TO_FP: { 4407 APFloat apf(EVTToAPFloatSemantics(VT), 4408 APInt::getNullValue(VT.getSizeInBits())); 4409 (void)apf.convertFromAPInt(Val, 4410 Opcode==ISD::SINT_TO_FP, 4411 APFloat::rmNearestTiesToEven); 4412 return getConstantFP(apf, DL, VT); 4413 } 4414 case ISD::BITCAST: 4415 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4416 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4417 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4418 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4419 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4420 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4421 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4422 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4423 break; 4424 case ISD::ABS: 4425 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4426 C->isOpaque()); 4427 case ISD::BITREVERSE: 4428 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4429 C->isOpaque()); 4430 case ISD::BSWAP: 4431 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4432 C->isOpaque()); 4433 case ISD::CTPOP: 4434 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4435 C->isOpaque()); 4436 case ISD::CTLZ: 4437 case ISD::CTLZ_ZERO_UNDEF: 4438 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4439 C->isOpaque()); 4440 case ISD::CTTZ: 4441 case ISD::CTTZ_ZERO_UNDEF: 4442 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4443 C->isOpaque()); 4444 case ISD::FP16_TO_FP: { 4445 bool Ignored; 4446 APFloat FPV(APFloat::IEEEhalf(), 4447 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4448 4449 // This can return overflow, underflow, or inexact; we don't care. 4450 // FIXME need to be more flexible about rounding mode. 4451 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4452 APFloat::rmNearestTiesToEven, &Ignored); 4453 return getConstantFP(FPV, DL, VT); 4454 } 4455 } 4456 } 4457 4458 // Constant fold unary operations with a floating point constant operand. 4459 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4460 APFloat V = C->getValueAPF(); // make copy 4461 switch (Opcode) { 4462 case ISD::FNEG: 4463 V.changeSign(); 4464 return getConstantFP(V, DL, VT); 4465 case ISD::FABS: 4466 V.clearSign(); 4467 return getConstantFP(V, DL, VT); 4468 case ISD::FCEIL: { 4469 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4470 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4471 return getConstantFP(V, DL, VT); 4472 break; 4473 } 4474 case ISD::FTRUNC: { 4475 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4476 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4477 return getConstantFP(V, DL, VT); 4478 break; 4479 } 4480 case ISD::FFLOOR: { 4481 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4482 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4483 return getConstantFP(V, DL, VT); 4484 break; 4485 } 4486 case ISD::FP_EXTEND: { 4487 bool ignored; 4488 // This can return overflow, underflow, or inexact; we don't care. 4489 // FIXME need to be more flexible about rounding mode. 4490 (void)V.convert(EVTToAPFloatSemantics(VT), 4491 APFloat::rmNearestTiesToEven, &ignored); 4492 return getConstantFP(V, DL, VT); 4493 } 4494 case ISD::FP_TO_SINT: 4495 case ISD::FP_TO_UINT: { 4496 bool ignored; 4497 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4498 // FIXME need to be more flexible about rounding mode. 4499 APFloat::opStatus s = 4500 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4501 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4502 break; 4503 return getConstant(IntVal, DL, VT); 4504 } 4505 case ISD::BITCAST: 4506 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4507 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4508 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4509 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4510 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4511 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4512 break; 4513 case ISD::FP_TO_FP16: { 4514 bool Ignored; 4515 // This can return overflow, underflow, or inexact; we don't care. 4516 // FIXME need to be more flexible about rounding mode. 4517 (void)V.convert(APFloat::IEEEhalf(), 4518 APFloat::rmNearestTiesToEven, &Ignored); 4519 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4520 } 4521 } 4522 } 4523 4524 // Constant fold unary operations with a vector integer or float operand. 4525 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4526 if (BV->isConstant()) { 4527 switch (Opcode) { 4528 default: 4529 // FIXME: Entirely reasonable to perform folding of other unary 4530 // operations here as the need arises. 4531 break; 4532 case ISD::FNEG: 4533 case ISD::FABS: 4534 case ISD::FCEIL: 4535 case ISD::FTRUNC: 4536 case ISD::FFLOOR: 4537 case ISD::FP_EXTEND: 4538 case ISD::FP_TO_SINT: 4539 case ISD::FP_TO_UINT: 4540 case ISD::TRUNCATE: 4541 case ISD::ANY_EXTEND: 4542 case ISD::ZERO_EXTEND: 4543 case ISD::SIGN_EXTEND: 4544 case ISD::UINT_TO_FP: 4545 case ISD::SINT_TO_FP: 4546 case ISD::ABS: 4547 case ISD::BITREVERSE: 4548 case ISD::BSWAP: 4549 case ISD::CTLZ: 4550 case ISD::CTLZ_ZERO_UNDEF: 4551 case ISD::CTTZ: 4552 case ISD::CTTZ_ZERO_UNDEF: 4553 case ISD::CTPOP: { 4554 SDValue Ops = { Operand }; 4555 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4556 return Fold; 4557 } 4558 } 4559 } 4560 } 4561 4562 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4563 switch (Opcode) { 4564 case ISD::FREEZE: 4565 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4566 break; 4567 case ISD::TokenFactor: 4568 case ISD::MERGE_VALUES: 4569 case ISD::CONCAT_VECTORS: 4570 return Operand; // Factor, merge or concat of one node? No need. 4571 case ISD::BUILD_VECTOR: { 4572 // Attempt to simplify BUILD_VECTOR. 4573 SDValue Ops[] = {Operand}; 4574 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4575 return V; 4576 break; 4577 } 4578 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4579 case ISD::FP_EXTEND: 4580 assert(VT.isFloatingPoint() && 4581 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4582 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4583 assert((!VT.isVector() || 4584 VT.getVectorElementCount() == 4585 Operand.getValueType().getVectorElementCount()) && 4586 "Vector element count mismatch!"); 4587 assert(Operand.getValueType().bitsLT(VT) && 4588 "Invalid fpext node, dst < src!"); 4589 if (Operand.isUndef()) 4590 return getUNDEF(VT); 4591 break; 4592 case ISD::FP_TO_SINT: 4593 case ISD::FP_TO_UINT: 4594 if (Operand.isUndef()) 4595 return getUNDEF(VT); 4596 break; 4597 case ISD::SINT_TO_FP: 4598 case ISD::UINT_TO_FP: 4599 // [us]itofp(undef) = 0, because the result value is bounded. 4600 if (Operand.isUndef()) 4601 return getConstantFP(0.0, DL, VT); 4602 break; 4603 case ISD::SIGN_EXTEND: 4604 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4605 "Invalid SIGN_EXTEND!"); 4606 assert(VT.isVector() == Operand.getValueType().isVector() && 4607 "SIGN_EXTEND result type type should be vector iff the operand " 4608 "type is vector!"); 4609 if (Operand.getValueType() == VT) return Operand; // noop extension 4610 assert((!VT.isVector() || 4611 VT.getVectorElementCount() == 4612 Operand.getValueType().getVectorElementCount()) && 4613 "Vector element count mismatch!"); 4614 assert(Operand.getValueType().bitsLT(VT) && 4615 "Invalid sext node, dst < src!"); 4616 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4617 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4618 else if (OpOpcode == ISD::UNDEF) 4619 // sext(undef) = 0, because the top bits will all be the same. 4620 return getConstant(0, DL, VT); 4621 break; 4622 case ISD::ZERO_EXTEND: 4623 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4624 "Invalid ZERO_EXTEND!"); 4625 assert(VT.isVector() == Operand.getValueType().isVector() && 4626 "ZERO_EXTEND result type type should be vector iff the operand " 4627 "type is vector!"); 4628 if (Operand.getValueType() == VT) return Operand; // noop extension 4629 assert((!VT.isVector() || 4630 VT.getVectorElementCount() == 4631 Operand.getValueType().getVectorElementCount()) && 4632 "Vector element count mismatch!"); 4633 assert(Operand.getValueType().bitsLT(VT) && 4634 "Invalid zext node, dst < src!"); 4635 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4636 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4637 else if (OpOpcode == ISD::UNDEF) 4638 // zext(undef) = 0, because the top bits will be zero. 4639 return getConstant(0, DL, VT); 4640 break; 4641 case ISD::ANY_EXTEND: 4642 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4643 "Invalid ANY_EXTEND!"); 4644 assert(VT.isVector() == Operand.getValueType().isVector() && 4645 "ANY_EXTEND result type type should be vector iff the operand " 4646 "type is vector!"); 4647 if (Operand.getValueType() == VT) return Operand; // noop extension 4648 assert((!VT.isVector() || 4649 VT.getVectorElementCount() == 4650 Operand.getValueType().getVectorElementCount()) && 4651 "Vector element count mismatch!"); 4652 assert(Operand.getValueType().bitsLT(VT) && 4653 "Invalid anyext node, dst < src!"); 4654 4655 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4656 OpOpcode == ISD::ANY_EXTEND) 4657 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4658 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4659 else if (OpOpcode == ISD::UNDEF) 4660 return getUNDEF(VT); 4661 4662 // (ext (trunc x)) -> x 4663 if (OpOpcode == ISD::TRUNCATE) { 4664 SDValue OpOp = Operand.getOperand(0); 4665 if (OpOp.getValueType() == VT) { 4666 transferDbgValues(Operand, OpOp); 4667 return OpOp; 4668 } 4669 } 4670 break; 4671 case ISD::TRUNCATE: 4672 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4673 "Invalid TRUNCATE!"); 4674 assert(VT.isVector() == Operand.getValueType().isVector() && 4675 "TRUNCATE result type type should be vector iff the operand " 4676 "type is vector!"); 4677 if (Operand.getValueType() == VT) return Operand; // noop truncate 4678 assert((!VT.isVector() || 4679 VT.getVectorElementCount() == 4680 Operand.getValueType().getVectorElementCount()) && 4681 "Vector element count mismatch!"); 4682 assert(Operand.getValueType().bitsGT(VT) && 4683 "Invalid truncate node, src < dst!"); 4684 if (OpOpcode == ISD::TRUNCATE) 4685 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4686 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4687 OpOpcode == ISD::ANY_EXTEND) { 4688 // If the source is smaller than the dest, we still need an extend. 4689 if (Operand.getOperand(0).getValueType().getScalarType() 4690 .bitsLT(VT.getScalarType())) 4691 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4692 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4693 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4694 return Operand.getOperand(0); 4695 } 4696 if (OpOpcode == ISD::UNDEF) 4697 return getUNDEF(VT); 4698 break; 4699 case ISD::ANY_EXTEND_VECTOR_INREG: 4700 case ISD::ZERO_EXTEND_VECTOR_INREG: 4701 case ISD::SIGN_EXTEND_VECTOR_INREG: 4702 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4703 assert(Operand.getValueType().bitsLE(VT) && 4704 "The input must be the same size or smaller than the result."); 4705 assert(VT.getVectorNumElements() < 4706 Operand.getValueType().getVectorNumElements() && 4707 "The destination vector type must have fewer lanes than the input."); 4708 break; 4709 case ISD::ABS: 4710 assert(VT.isInteger() && VT == Operand.getValueType() && 4711 "Invalid ABS!"); 4712 if (OpOpcode == ISD::UNDEF) 4713 return getUNDEF(VT); 4714 break; 4715 case ISD::BSWAP: 4716 assert(VT.isInteger() && VT == Operand.getValueType() && 4717 "Invalid BSWAP!"); 4718 assert((VT.getScalarSizeInBits() % 16 == 0) && 4719 "BSWAP types must be a multiple of 16 bits!"); 4720 if (OpOpcode == ISD::UNDEF) 4721 return getUNDEF(VT); 4722 break; 4723 case ISD::BITREVERSE: 4724 assert(VT.isInteger() && VT == Operand.getValueType() && 4725 "Invalid BITREVERSE!"); 4726 if (OpOpcode == ISD::UNDEF) 4727 return getUNDEF(VT); 4728 break; 4729 case ISD::BITCAST: 4730 // Basic sanity checking. 4731 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4732 "Cannot BITCAST between types of different sizes!"); 4733 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4734 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4735 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4736 if (OpOpcode == ISD::UNDEF) 4737 return getUNDEF(VT); 4738 break; 4739 case ISD::SCALAR_TO_VECTOR: 4740 assert(VT.isVector() && !Operand.getValueType().isVector() && 4741 (VT.getVectorElementType() == Operand.getValueType() || 4742 (VT.getVectorElementType().isInteger() && 4743 Operand.getValueType().isInteger() && 4744 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4745 "Illegal SCALAR_TO_VECTOR node!"); 4746 if (OpOpcode == ISD::UNDEF) 4747 return getUNDEF(VT); 4748 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4749 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4750 isa<ConstantSDNode>(Operand.getOperand(1)) && 4751 Operand.getConstantOperandVal(1) == 0 && 4752 Operand.getOperand(0).getValueType() == VT) 4753 return Operand.getOperand(0); 4754 break; 4755 case ISD::FNEG: 4756 // Negation of an unknown bag of bits is still completely undefined. 4757 if (OpOpcode == ISD::UNDEF) 4758 return getUNDEF(VT); 4759 4760 if (OpOpcode == ISD::FNEG) // --X -> X 4761 return Operand.getOperand(0); 4762 break; 4763 case ISD::FABS: 4764 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4765 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4766 break; 4767 case ISD::VSCALE: 4768 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4769 break; 4770 case ISD::VECREDUCE_SMIN: 4771 case ISD::VECREDUCE_UMAX: 4772 if (Operand.getValueType().getScalarType() == MVT::i1) 4773 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4774 break; 4775 case ISD::VECREDUCE_SMAX: 4776 case ISD::VECREDUCE_UMIN: 4777 if (Operand.getValueType().getScalarType() == MVT::i1) 4778 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4779 break; 4780 } 4781 4782 SDNode *N; 4783 SDVTList VTs = getVTList(VT); 4784 SDValue Ops[] = {Operand}; 4785 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4786 FoldingSetNodeID ID; 4787 AddNodeIDNode(ID, Opcode, VTs, Ops); 4788 void *IP = nullptr; 4789 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4790 E->intersectFlagsWith(Flags); 4791 return SDValue(E, 0); 4792 } 4793 4794 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4795 N->setFlags(Flags); 4796 createOperands(N, Ops); 4797 CSEMap.InsertNode(N, IP); 4798 } else { 4799 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4800 createOperands(N, Ops); 4801 } 4802 4803 InsertNode(N); 4804 SDValue V = SDValue(N, 0); 4805 NewSDValueDbgMsg(V, "Creating new node: ", this); 4806 return V; 4807 } 4808 4809 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4810 const APInt &C2) { 4811 switch (Opcode) { 4812 case ISD::ADD: return C1 + C2; 4813 case ISD::SUB: return C1 - C2; 4814 case ISD::MUL: return C1 * C2; 4815 case ISD::AND: return C1 & C2; 4816 case ISD::OR: return C1 | C2; 4817 case ISD::XOR: return C1 ^ C2; 4818 case ISD::SHL: return C1 << C2; 4819 case ISD::SRL: return C1.lshr(C2); 4820 case ISD::SRA: return C1.ashr(C2); 4821 case ISD::ROTL: return C1.rotl(C2); 4822 case ISD::ROTR: return C1.rotr(C2); 4823 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4824 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4825 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4826 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4827 case ISD::SADDSAT: return C1.sadd_sat(C2); 4828 case ISD::UADDSAT: return C1.uadd_sat(C2); 4829 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4830 case ISD::USUBSAT: return C1.usub_sat(C2); 4831 case ISD::UDIV: 4832 if (!C2.getBoolValue()) 4833 break; 4834 return C1.udiv(C2); 4835 case ISD::UREM: 4836 if (!C2.getBoolValue()) 4837 break; 4838 return C1.urem(C2); 4839 case ISD::SDIV: 4840 if (!C2.getBoolValue()) 4841 break; 4842 return C1.sdiv(C2); 4843 case ISD::SREM: 4844 if (!C2.getBoolValue()) 4845 break; 4846 return C1.srem(C2); 4847 } 4848 return llvm::None; 4849 } 4850 4851 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4852 const GlobalAddressSDNode *GA, 4853 const SDNode *N2) { 4854 if (GA->getOpcode() != ISD::GlobalAddress) 4855 return SDValue(); 4856 if (!TLI->isOffsetFoldingLegal(GA)) 4857 return SDValue(); 4858 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4859 if (!C2) 4860 return SDValue(); 4861 int64_t Offset = C2->getSExtValue(); 4862 switch (Opcode) { 4863 case ISD::ADD: break; 4864 case ISD::SUB: Offset = -uint64_t(Offset); break; 4865 default: return SDValue(); 4866 } 4867 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4868 GA->getOffset() + uint64_t(Offset)); 4869 } 4870 4871 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4872 switch (Opcode) { 4873 case ISD::SDIV: 4874 case ISD::UDIV: 4875 case ISD::SREM: 4876 case ISD::UREM: { 4877 // If a divisor is zero/undef or any element of a divisor vector is 4878 // zero/undef, the whole op is undef. 4879 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4880 SDValue Divisor = Ops[1]; 4881 if (Divisor.isUndef() || isNullConstant(Divisor)) 4882 return true; 4883 4884 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4885 llvm::any_of(Divisor->op_values(), 4886 [](SDValue V) { return V.isUndef() || 4887 isNullConstant(V); }); 4888 // TODO: Handle signed overflow. 4889 } 4890 // TODO: Handle oversized shifts. 4891 default: 4892 return false; 4893 } 4894 } 4895 4896 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4897 EVT VT, ArrayRef<SDValue> Ops) { 4898 // If the opcode is a target-specific ISD node, there's nothing we can 4899 // do here and the operand rules may not line up with the below, so 4900 // bail early. 4901 if (Opcode >= ISD::BUILTIN_OP_END) 4902 return SDValue(); 4903 4904 // For now, the array Ops should only contain two values. 4905 // This enforcement will be removed once this function is merged with 4906 // FoldConstantVectorArithmetic 4907 if (Ops.size() != 2) 4908 return SDValue(); 4909 4910 if (isUndef(Opcode, Ops)) 4911 return getUNDEF(VT); 4912 4913 SDNode *N1 = Ops[0].getNode(); 4914 SDNode *N2 = Ops[1].getNode(); 4915 4916 // Handle the case of two scalars. 4917 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4918 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4919 if (C1->isOpaque() || C2->isOpaque()) 4920 return SDValue(); 4921 4922 Optional<APInt> FoldAttempt = 4923 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4924 if (!FoldAttempt) 4925 return SDValue(); 4926 4927 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4928 assert((!Folded || !VT.isVector()) && 4929 "Can't fold vectors ops with scalar operands"); 4930 return Folded; 4931 } 4932 } 4933 4934 // fold (add Sym, c) -> Sym+c 4935 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4936 return FoldSymbolOffset(Opcode, VT, GA, N2); 4937 if (TLI->isCommutativeBinOp(Opcode)) 4938 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4939 return FoldSymbolOffset(Opcode, VT, GA, N1); 4940 4941 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4942 // vector width, however we should be able to do constant folds involving 4943 // splat vector nodes too. 4944 if (VT.isScalableVector()) 4945 return SDValue(); 4946 4947 // For fixed width vectors, extract each constant element and fold them 4948 // individually. Either input may be an undef value. 4949 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4950 if (!BV1 && !N1->isUndef()) 4951 return SDValue(); 4952 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4953 if (!BV2 && !N2->isUndef()) 4954 return SDValue(); 4955 // If both operands are undef, that's handled the same way as scalars. 4956 if (!BV1 && !BV2) 4957 return SDValue(); 4958 4959 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4960 "Vector binop with different number of elements in operands?"); 4961 4962 EVT SVT = VT.getScalarType(); 4963 EVT LegalSVT = SVT; 4964 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4965 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4966 if (LegalSVT.bitsLT(SVT)) 4967 return SDValue(); 4968 } 4969 SmallVector<SDValue, 4> Outputs; 4970 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4971 for (unsigned I = 0; I != NumOps; ++I) { 4972 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4973 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4974 if (SVT.isInteger()) { 4975 if (V1->getValueType(0).bitsGT(SVT)) 4976 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4977 if (V2->getValueType(0).bitsGT(SVT)) 4978 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4979 } 4980 4981 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4982 return SDValue(); 4983 4984 // Fold one vector element. 4985 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4986 if (LegalSVT != SVT) 4987 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4988 4989 // Scalar folding only succeeded if the result is a constant or UNDEF. 4990 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4991 ScalarResult.getOpcode() != ISD::ConstantFP) 4992 return SDValue(); 4993 Outputs.push_back(ScalarResult); 4994 } 4995 4996 assert(VT.getVectorNumElements() == Outputs.size() && 4997 "Vector size mismatch!"); 4998 4999 // We may have a vector type but a scalar result. Create a splat. 5000 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5001 5002 // Build a big vector out of the scalar elements we generated. 5003 return getBuildVector(VT, SDLoc(), Outputs); 5004 } 5005 5006 // TODO: Merge with FoldConstantArithmetic 5007 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5008 const SDLoc &DL, EVT VT, 5009 ArrayRef<SDValue> Ops, 5010 const SDNodeFlags Flags) { 5011 // If the opcode is a target-specific ISD node, there's nothing we can 5012 // do here and the operand rules may not line up with the below, so 5013 // bail early. 5014 if (Opcode >= ISD::BUILTIN_OP_END) 5015 return SDValue(); 5016 5017 if (isUndef(Opcode, Ops)) 5018 return getUNDEF(VT); 5019 5020 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5021 if (!VT.isVector()) 5022 return SDValue(); 5023 5024 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5025 // vector width, however we should be able to do constant folds involving 5026 // splat vector nodes too. 5027 if (VT.isScalableVector()) 5028 return SDValue(); 5029 5030 // From this point onwards all vectors are assumed to be fixed width. 5031 unsigned NumElts = VT.getVectorNumElements(); 5032 5033 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5034 return !Op.getValueType().isVector() || 5035 Op.getValueType().getVectorNumElements() == NumElts; 5036 }; 5037 5038 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5039 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5040 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5041 (BV && BV->isConstant()); 5042 }; 5043 5044 // All operands must be vector types with the same number of elements as 5045 // the result type and must be either UNDEF or a build vector of constant 5046 // or UNDEF scalars. 5047 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5048 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5049 return SDValue(); 5050 5051 // If we are comparing vectors, then the result needs to be a i1 boolean 5052 // that is then sign-extended back to the legal result type. 5053 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5054 5055 // Find legal integer scalar type for constant promotion and 5056 // ensure that its scalar size is at least as large as source. 5057 EVT LegalSVT = VT.getScalarType(); 5058 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5059 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5060 if (LegalSVT.bitsLT(VT.getScalarType())) 5061 return SDValue(); 5062 } 5063 5064 // Constant fold each scalar lane separately. 5065 SmallVector<SDValue, 4> ScalarResults; 5066 for (unsigned i = 0; i != NumElts; i++) { 5067 SmallVector<SDValue, 4> ScalarOps; 5068 for (SDValue Op : Ops) { 5069 EVT InSVT = Op.getValueType().getScalarType(); 5070 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5071 if (!InBV) { 5072 // We've checked that this is UNDEF or a constant of some kind. 5073 if (Op.isUndef()) 5074 ScalarOps.push_back(getUNDEF(InSVT)); 5075 else 5076 ScalarOps.push_back(Op); 5077 continue; 5078 } 5079 5080 SDValue ScalarOp = InBV->getOperand(i); 5081 EVT ScalarVT = ScalarOp.getValueType(); 5082 5083 // Build vector (integer) scalar operands may need implicit 5084 // truncation - do this before constant folding. 5085 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5086 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5087 5088 ScalarOps.push_back(ScalarOp); 5089 } 5090 5091 // Constant fold the scalar operands. 5092 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5093 5094 // Legalize the (integer) scalar constant if necessary. 5095 if (LegalSVT != SVT) 5096 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5097 5098 // Scalar folding only succeeded if the result is a constant or UNDEF. 5099 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5100 ScalarResult.getOpcode() != ISD::ConstantFP) 5101 return SDValue(); 5102 ScalarResults.push_back(ScalarResult); 5103 } 5104 5105 SDValue V = getBuildVector(VT, DL, ScalarResults); 5106 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5107 return V; 5108 } 5109 5110 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5111 EVT VT, SDValue N1, SDValue N2) { 5112 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5113 // should. That will require dealing with a potentially non-default 5114 // rounding mode, checking the "opStatus" return value from the APFloat 5115 // math calculations, and possibly other variations. 5116 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5117 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5118 if (N1CFP && N2CFP) { 5119 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5120 switch (Opcode) { 5121 case ISD::FADD: 5122 C1.add(C2, APFloat::rmNearestTiesToEven); 5123 return getConstantFP(C1, DL, VT); 5124 case ISD::FSUB: 5125 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5126 return getConstantFP(C1, DL, VT); 5127 case ISD::FMUL: 5128 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5129 return getConstantFP(C1, DL, VT); 5130 case ISD::FDIV: 5131 C1.divide(C2, APFloat::rmNearestTiesToEven); 5132 return getConstantFP(C1, DL, VT); 5133 case ISD::FREM: 5134 C1.mod(C2); 5135 return getConstantFP(C1, DL, VT); 5136 case ISD::FCOPYSIGN: 5137 C1.copySign(C2); 5138 return getConstantFP(C1, DL, VT); 5139 default: break; 5140 } 5141 } 5142 if (N1CFP && Opcode == ISD::FP_ROUND) { 5143 APFloat C1 = N1CFP->getValueAPF(); // make copy 5144 bool Unused; 5145 // This can return overflow, underflow, or inexact; we don't care. 5146 // FIXME need to be more flexible about rounding mode. 5147 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5148 &Unused); 5149 return getConstantFP(C1, DL, VT); 5150 } 5151 5152 switch (Opcode) { 5153 case ISD::FSUB: 5154 // -0.0 - undef --> undef (consistent with "fneg undef") 5155 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5156 return getUNDEF(VT); 5157 LLVM_FALLTHROUGH; 5158 5159 case ISD::FADD: 5160 case ISD::FMUL: 5161 case ISD::FDIV: 5162 case ISD::FREM: 5163 // If both operands are undef, the result is undef. If 1 operand is undef, 5164 // the result is NaN. This should match the behavior of the IR optimizer. 5165 if (N1.isUndef() && N2.isUndef()) 5166 return getUNDEF(VT); 5167 if (N1.isUndef() || N2.isUndef()) 5168 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5169 } 5170 return SDValue(); 5171 } 5172 5173 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5174 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5175 5176 // There's no need to assert on a byte-aligned pointer. All pointers are at 5177 // least byte aligned. 5178 if (A == Align(1)) 5179 return Val; 5180 5181 FoldingSetNodeID ID; 5182 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5183 ID.AddInteger(A.value()); 5184 5185 void *IP = nullptr; 5186 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5187 return SDValue(E, 0); 5188 5189 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5190 Val.getValueType(), A); 5191 createOperands(N, {Val}); 5192 5193 CSEMap.InsertNode(N, IP); 5194 InsertNode(N); 5195 5196 SDValue V(N, 0); 5197 NewSDValueDbgMsg(V, "Creating new node: ", this); 5198 return V; 5199 } 5200 5201 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5202 SDValue N1, SDValue N2) { 5203 SDNodeFlags Flags; 5204 if (Inserter) 5205 Flags = Inserter->getFlags(); 5206 return getNode(Opcode, DL, VT, N1, N2, Flags); 5207 } 5208 5209 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5210 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5211 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5212 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5213 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5214 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5215 5216 // Canonicalize constant to RHS if commutative. 5217 if (TLI->isCommutativeBinOp(Opcode)) { 5218 if (N1C && !N2C) { 5219 std::swap(N1C, N2C); 5220 std::swap(N1, N2); 5221 } else if (N1CFP && !N2CFP) { 5222 std::swap(N1CFP, N2CFP); 5223 std::swap(N1, N2); 5224 } 5225 } 5226 5227 switch (Opcode) { 5228 default: break; 5229 case ISD::TokenFactor: 5230 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5231 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5232 // Fold trivial token factors. 5233 if (N1.getOpcode() == ISD::EntryToken) return N2; 5234 if (N2.getOpcode() == ISD::EntryToken) return N1; 5235 if (N1 == N2) return N1; 5236 break; 5237 case ISD::BUILD_VECTOR: { 5238 // Attempt to simplify BUILD_VECTOR. 5239 SDValue Ops[] = {N1, N2}; 5240 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5241 return V; 5242 break; 5243 } 5244 case ISD::CONCAT_VECTORS: { 5245 SDValue Ops[] = {N1, N2}; 5246 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5247 return V; 5248 break; 5249 } 5250 case ISD::AND: 5251 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5252 assert(N1.getValueType() == N2.getValueType() && 5253 N1.getValueType() == VT && "Binary operator types must match!"); 5254 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5255 // worth handling here. 5256 if (N2C && N2C->isNullValue()) 5257 return N2; 5258 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5259 return N1; 5260 break; 5261 case ISD::OR: 5262 case ISD::XOR: 5263 case ISD::ADD: 5264 case ISD::SUB: 5265 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5266 assert(N1.getValueType() == N2.getValueType() && 5267 N1.getValueType() == VT && "Binary operator types must match!"); 5268 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5269 // it's worth handling here. 5270 if (N2C && N2C->isNullValue()) 5271 return N1; 5272 break; 5273 case ISD::MUL: 5274 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5275 assert(N1.getValueType() == N2.getValueType() && 5276 N1.getValueType() == VT && "Binary operator types must match!"); 5277 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5278 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5279 APInt N2CImm = N2C->getAPIntValue(); 5280 return getVScale(DL, VT, MulImm * N2CImm); 5281 } 5282 break; 5283 case ISD::UDIV: 5284 case ISD::UREM: 5285 case ISD::MULHU: 5286 case ISD::MULHS: 5287 case ISD::SDIV: 5288 case ISD::SREM: 5289 case ISD::SADDSAT: 5290 case ISD::SSUBSAT: 5291 case ISD::UADDSAT: 5292 case ISD::USUBSAT: 5293 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5294 assert(N1.getValueType() == N2.getValueType() && 5295 N1.getValueType() == VT && "Binary operator types must match!"); 5296 break; 5297 case ISD::SMIN: 5298 case ISD::UMAX: 5299 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5300 assert(N1.getValueType() == N2.getValueType() && 5301 N1.getValueType() == VT && "Binary operator types must match!"); 5302 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5303 return getNode(ISD::OR, DL, VT, N1, N2); 5304 break; 5305 case ISD::SMAX: 5306 case ISD::UMIN: 5307 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5308 assert(N1.getValueType() == N2.getValueType() && 5309 N1.getValueType() == VT && "Binary operator types must match!"); 5310 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5311 return getNode(ISD::AND, DL, VT, N1, N2); 5312 break; 5313 case ISD::FADD: 5314 case ISD::FSUB: 5315 case ISD::FMUL: 5316 case ISD::FDIV: 5317 case ISD::FREM: 5318 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5319 assert(N1.getValueType() == N2.getValueType() && 5320 N1.getValueType() == VT && "Binary operator types must match!"); 5321 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5322 return V; 5323 break; 5324 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5325 assert(N1.getValueType() == VT && 5326 N1.getValueType().isFloatingPoint() && 5327 N2.getValueType().isFloatingPoint() && 5328 "Invalid FCOPYSIGN!"); 5329 break; 5330 case ISD::SHL: 5331 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5332 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5333 APInt ShiftImm = N2C->getAPIntValue(); 5334 return getVScale(DL, VT, MulImm << ShiftImm); 5335 } 5336 LLVM_FALLTHROUGH; 5337 case ISD::SRA: 5338 case ISD::SRL: 5339 if (SDValue V = simplifyShift(N1, N2)) 5340 return V; 5341 LLVM_FALLTHROUGH; 5342 case ISD::ROTL: 5343 case ISD::ROTR: 5344 assert(VT == N1.getValueType() && 5345 "Shift operators return type must be the same as their first arg"); 5346 assert(VT.isInteger() && N2.getValueType().isInteger() && 5347 "Shifts only work on integers"); 5348 assert((!VT.isVector() || VT == N2.getValueType()) && 5349 "Vector shift amounts must be in the same as their first arg"); 5350 // Verify that the shift amount VT is big enough to hold valid shift 5351 // amounts. This catches things like trying to shift an i1024 value by an 5352 // i8, which is easy to fall into in generic code that uses 5353 // TLI.getShiftAmount(). 5354 assert(N2.getValueType().getScalarSizeInBits() >= 5355 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5356 "Invalid use of small shift amount with oversized value!"); 5357 5358 // Always fold shifts of i1 values so the code generator doesn't need to 5359 // handle them. Since we know the size of the shift has to be less than the 5360 // size of the value, the shift/rotate count is guaranteed to be zero. 5361 if (VT == MVT::i1) 5362 return N1; 5363 if (N2C && N2C->isNullValue()) 5364 return N1; 5365 break; 5366 case ISD::FP_ROUND: 5367 assert(VT.isFloatingPoint() && 5368 N1.getValueType().isFloatingPoint() && 5369 VT.bitsLE(N1.getValueType()) && 5370 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5371 "Invalid FP_ROUND!"); 5372 if (N1.getValueType() == VT) return N1; // noop conversion. 5373 break; 5374 case ISD::AssertSext: 5375 case ISD::AssertZext: { 5376 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5377 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5378 assert(VT.isInteger() && EVT.isInteger() && 5379 "Cannot *_EXTEND_INREG FP types"); 5380 assert(!EVT.isVector() && 5381 "AssertSExt/AssertZExt type should be the vector element type " 5382 "rather than the vector type!"); 5383 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5384 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5385 break; 5386 } 5387 case ISD::SIGN_EXTEND_INREG: { 5388 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5389 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5390 assert(VT.isInteger() && EVT.isInteger() && 5391 "Cannot *_EXTEND_INREG FP types"); 5392 assert(EVT.isVector() == VT.isVector() && 5393 "SIGN_EXTEND_INREG type should be vector iff the operand " 5394 "type is vector!"); 5395 assert((!EVT.isVector() || 5396 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5397 "Vector element counts must match in SIGN_EXTEND_INREG"); 5398 assert(EVT.bitsLE(VT) && "Not extending!"); 5399 if (EVT == VT) return N1; // Not actually extending 5400 5401 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5402 unsigned FromBits = EVT.getScalarSizeInBits(); 5403 Val <<= Val.getBitWidth() - FromBits; 5404 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5405 return getConstant(Val, DL, ConstantVT); 5406 }; 5407 5408 if (N1C) { 5409 const APInt &Val = N1C->getAPIntValue(); 5410 return SignExtendInReg(Val, VT); 5411 } 5412 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5413 SmallVector<SDValue, 8> Ops; 5414 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5415 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5416 SDValue Op = N1.getOperand(i); 5417 if (Op.isUndef()) { 5418 Ops.push_back(getUNDEF(OpVT)); 5419 continue; 5420 } 5421 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5422 APInt Val = C->getAPIntValue(); 5423 Ops.push_back(SignExtendInReg(Val, OpVT)); 5424 } 5425 return getBuildVector(VT, DL, Ops); 5426 } 5427 break; 5428 } 5429 case ISD::EXTRACT_VECTOR_ELT: 5430 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5431 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5432 element type of the vector."); 5433 5434 // Extract from an undefined value or using an undefined index is undefined. 5435 if (N1.isUndef() || N2.isUndef()) 5436 return getUNDEF(VT); 5437 5438 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5439 // vectors. For scalable vectors we will provide appropriate support for 5440 // dealing with arbitrary indices. 5441 if (N2C && N1.getValueType().isFixedLengthVector() && 5442 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5443 return getUNDEF(VT); 5444 5445 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5446 // expanding copies of large vectors from registers. This only works for 5447 // fixed length vectors, since we need to know the exact number of 5448 // elements. 5449 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5450 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5451 unsigned Factor = 5452 N1.getOperand(0).getValueType().getVectorNumElements(); 5453 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5454 N1.getOperand(N2C->getZExtValue() / Factor), 5455 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5456 } 5457 5458 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5459 // lowering is expanding large vector constants. 5460 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5461 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5462 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5463 N1.getValueType().isFixedLengthVector()) && 5464 "BUILD_VECTOR used for scalable vectors"); 5465 unsigned Index = 5466 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5467 SDValue Elt = N1.getOperand(Index); 5468 5469 if (VT != Elt.getValueType()) 5470 // If the vector element type is not legal, the BUILD_VECTOR operands 5471 // are promoted and implicitly truncated, and the result implicitly 5472 // extended. Make that explicit here. 5473 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5474 5475 return Elt; 5476 } 5477 5478 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5479 // operations are lowered to scalars. 5480 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5481 // If the indices are the same, return the inserted element else 5482 // if the indices are known different, extract the element from 5483 // the original vector. 5484 SDValue N1Op2 = N1.getOperand(2); 5485 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5486 5487 if (N1Op2C && N2C) { 5488 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5489 if (VT == N1.getOperand(1).getValueType()) 5490 return N1.getOperand(1); 5491 else 5492 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5493 } 5494 5495 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5496 } 5497 } 5498 5499 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5500 // when vector types are scalarized and v1iX is legal. 5501 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5502 // Here we are completely ignoring the extract element index (N2), 5503 // which is fine for fixed width vectors, since any index other than 0 5504 // is undefined anyway. However, this cannot be ignored for scalable 5505 // vectors - in theory we could support this, but we don't want to do this 5506 // without a profitability check. 5507 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5508 N1.getValueType().isFixedLengthVector() && 5509 N1.getValueType().getVectorNumElements() == 1) { 5510 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5511 N1.getOperand(1)); 5512 } 5513 break; 5514 case ISD::EXTRACT_ELEMENT: 5515 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5516 assert(!N1.getValueType().isVector() && !VT.isVector() && 5517 (N1.getValueType().isInteger() == VT.isInteger()) && 5518 N1.getValueType() != VT && 5519 "Wrong types for EXTRACT_ELEMENT!"); 5520 5521 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5522 // 64-bit integers into 32-bit parts. Instead of building the extract of 5523 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5524 if (N1.getOpcode() == ISD::BUILD_PAIR) 5525 return N1.getOperand(N2C->getZExtValue()); 5526 5527 // EXTRACT_ELEMENT of a constant int is also very common. 5528 if (N1C) { 5529 unsigned ElementSize = VT.getSizeInBits(); 5530 unsigned Shift = ElementSize * N2C->getZExtValue(); 5531 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5532 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5533 } 5534 break; 5535 case ISD::EXTRACT_SUBVECTOR: 5536 EVT N1VT = N1.getValueType(); 5537 assert(VT.isVector() && N1VT.isVector() && 5538 "Extract subvector VTs must be vectors!"); 5539 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5540 "Extract subvector VTs must have the same element type!"); 5541 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5542 "Cannot extract a scalable vector from a fixed length vector!"); 5543 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5544 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5545 "Extract subvector must be from larger vector to smaller vector!"); 5546 assert(N2C && "Extract subvector index must be a constant"); 5547 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5548 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5549 N1VT.getVectorMinNumElements()) && 5550 "Extract subvector overflow!"); 5551 assert(N2C->getAPIntValue().getBitWidth() == 5552 TLI->getVectorIdxTy(getDataLayout()) 5553 .getSizeInBits() 5554 .getFixedSize() && 5555 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5556 5557 // Trivial extraction. 5558 if (VT == N1VT) 5559 return N1; 5560 5561 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5562 if (N1.isUndef()) 5563 return getUNDEF(VT); 5564 5565 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5566 // the concat have the same type as the extract. 5567 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5568 VT == N1.getOperand(0).getValueType()) { 5569 unsigned Factor = VT.getVectorMinNumElements(); 5570 return N1.getOperand(N2C->getZExtValue() / Factor); 5571 } 5572 5573 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5574 // during shuffle legalization. 5575 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5576 VT == N1.getOperand(1).getValueType()) 5577 return N1.getOperand(1); 5578 break; 5579 } 5580 5581 // Perform trivial constant folding. 5582 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5583 return SV; 5584 5585 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5586 return V; 5587 5588 // Canonicalize an UNDEF to the RHS, even over a constant. 5589 if (N1.isUndef()) { 5590 if (TLI->isCommutativeBinOp(Opcode)) { 5591 std::swap(N1, N2); 5592 } else { 5593 switch (Opcode) { 5594 case ISD::SIGN_EXTEND_INREG: 5595 case ISD::SUB: 5596 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5597 case ISD::UDIV: 5598 case ISD::SDIV: 5599 case ISD::UREM: 5600 case ISD::SREM: 5601 case ISD::SSUBSAT: 5602 case ISD::USUBSAT: 5603 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5604 } 5605 } 5606 } 5607 5608 // Fold a bunch of operators when the RHS is undef. 5609 if (N2.isUndef()) { 5610 switch (Opcode) { 5611 case ISD::XOR: 5612 if (N1.isUndef()) 5613 // Handle undef ^ undef -> 0 special case. This is a common 5614 // idiom (misuse). 5615 return getConstant(0, DL, VT); 5616 LLVM_FALLTHROUGH; 5617 case ISD::ADD: 5618 case ISD::SUB: 5619 case ISD::UDIV: 5620 case ISD::SDIV: 5621 case ISD::UREM: 5622 case ISD::SREM: 5623 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5624 case ISD::MUL: 5625 case ISD::AND: 5626 case ISD::SSUBSAT: 5627 case ISD::USUBSAT: 5628 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5629 case ISD::OR: 5630 case ISD::SADDSAT: 5631 case ISD::UADDSAT: 5632 return getAllOnesConstant(DL, VT); 5633 } 5634 } 5635 5636 // Memoize this node if possible. 5637 SDNode *N; 5638 SDVTList VTs = getVTList(VT); 5639 SDValue Ops[] = {N1, N2}; 5640 if (VT != MVT::Glue) { 5641 FoldingSetNodeID ID; 5642 AddNodeIDNode(ID, Opcode, VTs, Ops); 5643 void *IP = nullptr; 5644 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5645 E->intersectFlagsWith(Flags); 5646 return SDValue(E, 0); 5647 } 5648 5649 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5650 N->setFlags(Flags); 5651 createOperands(N, Ops); 5652 CSEMap.InsertNode(N, IP); 5653 } else { 5654 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5655 createOperands(N, Ops); 5656 } 5657 5658 InsertNode(N); 5659 SDValue V = SDValue(N, 0); 5660 NewSDValueDbgMsg(V, "Creating new node: ", this); 5661 return V; 5662 } 5663 5664 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5665 SDValue N1, SDValue N2, SDValue N3) { 5666 SDNodeFlags Flags; 5667 if (Inserter) 5668 Flags = Inserter->getFlags(); 5669 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5670 } 5671 5672 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5673 SDValue N1, SDValue N2, SDValue N3, 5674 const SDNodeFlags Flags) { 5675 // Perform various simplifications. 5676 switch (Opcode) { 5677 case ISD::FMA: { 5678 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5679 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5680 N3.getValueType() == VT && "FMA types must match!"); 5681 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5682 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5683 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5684 if (N1CFP && N2CFP && N3CFP) { 5685 APFloat V1 = N1CFP->getValueAPF(); 5686 const APFloat &V2 = N2CFP->getValueAPF(); 5687 const APFloat &V3 = N3CFP->getValueAPF(); 5688 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5689 return getConstantFP(V1, DL, VT); 5690 } 5691 break; 5692 } 5693 case ISD::BUILD_VECTOR: { 5694 // Attempt to simplify BUILD_VECTOR. 5695 SDValue Ops[] = {N1, N2, N3}; 5696 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5697 return V; 5698 break; 5699 } 5700 case ISD::CONCAT_VECTORS: { 5701 SDValue Ops[] = {N1, N2, N3}; 5702 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5703 return V; 5704 break; 5705 } 5706 case ISD::SETCC: { 5707 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5708 assert(N1.getValueType() == N2.getValueType() && 5709 "SETCC operands must have the same type!"); 5710 assert(VT.isVector() == N1.getValueType().isVector() && 5711 "SETCC type should be vector iff the operand type is vector!"); 5712 assert((!VT.isVector() || VT.getVectorElementCount() == 5713 N1.getValueType().getVectorElementCount()) && 5714 "SETCC vector element counts must match!"); 5715 // Use FoldSetCC to simplify SETCC's. 5716 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5717 return V; 5718 // Vector constant folding. 5719 SDValue Ops[] = {N1, N2, N3}; 5720 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5721 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5722 return V; 5723 } 5724 break; 5725 } 5726 case ISD::SELECT: 5727 case ISD::VSELECT: 5728 if (SDValue V = simplifySelect(N1, N2, N3)) 5729 return V; 5730 break; 5731 case ISD::VECTOR_SHUFFLE: 5732 llvm_unreachable("should use getVectorShuffle constructor!"); 5733 case ISD::INSERT_VECTOR_ELT: { 5734 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5735 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5736 // for scalable vectors where we will generate appropriate code to 5737 // deal with out-of-bounds cases correctly. 5738 if (N3C && N1.getValueType().isFixedLengthVector() && 5739 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5740 return getUNDEF(VT); 5741 5742 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5743 if (N3.isUndef()) 5744 return getUNDEF(VT); 5745 5746 // If the inserted element is an UNDEF, just use the input vector. 5747 if (N2.isUndef()) 5748 return N1; 5749 5750 break; 5751 } 5752 case ISD::INSERT_SUBVECTOR: { 5753 // Inserting undef into undef is still undef. 5754 if (N1.isUndef() && N2.isUndef()) 5755 return getUNDEF(VT); 5756 5757 EVT N2VT = N2.getValueType(); 5758 assert(VT == N1.getValueType() && 5759 "Dest and insert subvector source types must match!"); 5760 assert(VT.isVector() && N2VT.isVector() && 5761 "Insert subvector VTs must be vectors!"); 5762 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5763 "Cannot insert a scalable vector into a fixed length vector!"); 5764 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5765 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5766 "Insert subvector must be from smaller vector to larger vector!"); 5767 assert(isa<ConstantSDNode>(N3) && 5768 "Insert subvector index must be constant"); 5769 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5770 (N2VT.getVectorMinNumElements() + 5771 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5772 VT.getVectorMinNumElements()) && 5773 "Insert subvector overflow!"); 5774 5775 // Trivial insertion. 5776 if (VT == N2VT) 5777 return N2; 5778 5779 // If this is an insert of an extracted vector into an undef vector, we 5780 // can just use the input to the extract. 5781 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5782 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5783 return N2.getOperand(0); 5784 break; 5785 } 5786 case ISD::BITCAST: 5787 // Fold bit_convert nodes from a type to themselves. 5788 if (N1.getValueType() == VT) 5789 return N1; 5790 break; 5791 } 5792 5793 // Memoize node if it doesn't produce a flag. 5794 SDNode *N; 5795 SDVTList VTs = getVTList(VT); 5796 SDValue Ops[] = {N1, N2, N3}; 5797 if (VT != MVT::Glue) { 5798 FoldingSetNodeID ID; 5799 AddNodeIDNode(ID, Opcode, VTs, Ops); 5800 void *IP = nullptr; 5801 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5802 E->intersectFlagsWith(Flags); 5803 return SDValue(E, 0); 5804 } 5805 5806 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5807 N->setFlags(Flags); 5808 createOperands(N, Ops); 5809 CSEMap.InsertNode(N, IP); 5810 } else { 5811 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5812 createOperands(N, Ops); 5813 } 5814 5815 InsertNode(N); 5816 SDValue V = SDValue(N, 0); 5817 NewSDValueDbgMsg(V, "Creating new node: ", this); 5818 return V; 5819 } 5820 5821 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5822 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5823 SDValue Ops[] = { N1, N2, N3, N4 }; 5824 return getNode(Opcode, DL, VT, Ops); 5825 } 5826 5827 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5828 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5829 SDValue N5) { 5830 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5831 return getNode(Opcode, DL, VT, Ops); 5832 } 5833 5834 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5835 /// the incoming stack arguments to be loaded from the stack. 5836 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5837 SmallVector<SDValue, 8> ArgChains; 5838 5839 // Include the original chain at the beginning of the list. When this is 5840 // used by target LowerCall hooks, this helps legalize find the 5841 // CALLSEQ_BEGIN node. 5842 ArgChains.push_back(Chain); 5843 5844 // Add a chain value for each stack argument. 5845 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5846 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5847 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5848 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5849 if (FI->getIndex() < 0) 5850 ArgChains.push_back(SDValue(L, 1)); 5851 5852 // Build a tokenfactor for all the chains. 5853 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5854 } 5855 5856 /// getMemsetValue - Vectorized representation of the memset value 5857 /// operand. 5858 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5859 const SDLoc &dl) { 5860 assert(!Value.isUndef()); 5861 5862 unsigned NumBits = VT.getScalarSizeInBits(); 5863 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5864 assert(C->getAPIntValue().getBitWidth() == 8); 5865 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5866 if (VT.isInteger()) { 5867 bool IsOpaque = VT.getSizeInBits() > 64 || 5868 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5869 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5870 } 5871 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5872 VT); 5873 } 5874 5875 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5876 EVT IntVT = VT.getScalarType(); 5877 if (!IntVT.isInteger()) 5878 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5879 5880 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5881 if (NumBits > 8) { 5882 // Use a multiplication with 0x010101... to extend the input to the 5883 // required length. 5884 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5885 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5886 DAG.getConstant(Magic, dl, IntVT)); 5887 } 5888 5889 if (VT != Value.getValueType() && !VT.isInteger()) 5890 Value = DAG.getBitcast(VT.getScalarType(), Value); 5891 if (VT != Value.getValueType()) 5892 Value = DAG.getSplatBuildVector(VT, dl, Value); 5893 5894 return Value; 5895 } 5896 5897 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5898 /// used when a memcpy is turned into a memset when the source is a constant 5899 /// string ptr. 5900 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5901 const TargetLowering &TLI, 5902 const ConstantDataArraySlice &Slice) { 5903 // Handle vector with all elements zero. 5904 if (Slice.Array == nullptr) { 5905 if (VT.isInteger()) 5906 return DAG.getConstant(0, dl, VT); 5907 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5908 return DAG.getConstantFP(0.0, dl, VT); 5909 else if (VT.isVector()) { 5910 unsigned NumElts = VT.getVectorNumElements(); 5911 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5912 return DAG.getNode(ISD::BITCAST, dl, VT, 5913 DAG.getConstant(0, dl, 5914 EVT::getVectorVT(*DAG.getContext(), 5915 EltVT, NumElts))); 5916 } else 5917 llvm_unreachable("Expected type!"); 5918 } 5919 5920 assert(!VT.isVector() && "Can't handle vector type here!"); 5921 unsigned NumVTBits = VT.getSizeInBits(); 5922 unsigned NumVTBytes = NumVTBits / 8; 5923 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5924 5925 APInt Val(NumVTBits, 0); 5926 if (DAG.getDataLayout().isLittleEndian()) { 5927 for (unsigned i = 0; i != NumBytes; ++i) 5928 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5929 } else { 5930 for (unsigned i = 0; i != NumBytes; ++i) 5931 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5932 } 5933 5934 // If the "cost" of materializing the integer immediate is less than the cost 5935 // of a load, then it is cost effective to turn the load into the immediate. 5936 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5937 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5938 return DAG.getConstant(Val, dl, VT); 5939 return SDValue(nullptr, 0); 5940 } 5941 5942 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5943 const SDLoc &DL, 5944 const SDNodeFlags Flags) { 5945 EVT VT = Base.getValueType(); 5946 SDValue Index; 5947 5948 if (Offset.isScalable()) 5949 Index = getVScale(DL, Base.getValueType(), 5950 APInt(Base.getValueSizeInBits().getFixedSize(), 5951 Offset.getKnownMinSize())); 5952 else 5953 Index = getConstant(Offset.getFixedSize(), DL, VT); 5954 5955 return getMemBasePlusOffset(Base, Index, DL, Flags); 5956 } 5957 5958 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5959 const SDLoc &DL, 5960 const SDNodeFlags Flags) { 5961 assert(Offset.getValueType().isInteger()); 5962 EVT BasePtrVT = Ptr.getValueType(); 5963 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5964 } 5965 5966 /// Returns true if memcpy source is constant data. 5967 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5968 uint64_t SrcDelta = 0; 5969 GlobalAddressSDNode *G = nullptr; 5970 if (Src.getOpcode() == ISD::GlobalAddress) 5971 G = cast<GlobalAddressSDNode>(Src); 5972 else if (Src.getOpcode() == ISD::ADD && 5973 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5974 Src.getOperand(1).getOpcode() == ISD::Constant) { 5975 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5976 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5977 } 5978 if (!G) 5979 return false; 5980 5981 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5982 SrcDelta + G->getOffset()); 5983 } 5984 5985 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5986 SelectionDAG &DAG) { 5987 // On Darwin, -Os means optimize for size without hurting performance, so 5988 // only really optimize for size when -Oz (MinSize) is used. 5989 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5990 return MF.getFunction().hasMinSize(); 5991 return DAG.shouldOptForSize(); 5992 } 5993 5994 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5995 SmallVector<SDValue, 32> &OutChains, unsigned From, 5996 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5997 SmallVector<SDValue, 16> &OutStoreChains) { 5998 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5999 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6000 SmallVector<SDValue, 16> GluedLoadChains; 6001 for (unsigned i = From; i < To; ++i) { 6002 OutChains.push_back(OutLoadChains[i]); 6003 GluedLoadChains.push_back(OutLoadChains[i]); 6004 } 6005 6006 // Chain for all loads. 6007 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6008 GluedLoadChains); 6009 6010 for (unsigned i = From; i < To; ++i) { 6011 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6012 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6013 ST->getBasePtr(), ST->getMemoryVT(), 6014 ST->getMemOperand()); 6015 OutChains.push_back(NewStore); 6016 } 6017 } 6018 6019 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6020 SDValue Chain, SDValue Dst, SDValue Src, 6021 uint64_t Size, Align Alignment, 6022 bool isVol, bool AlwaysInline, 6023 MachinePointerInfo DstPtrInfo, 6024 MachinePointerInfo SrcPtrInfo) { 6025 // Turn a memcpy of undef to nop. 6026 // FIXME: We need to honor volatile even is Src is undef. 6027 if (Src.isUndef()) 6028 return Chain; 6029 6030 // Expand memcpy to a series of load and store ops if the size operand falls 6031 // below a certain threshold. 6032 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6033 // rather than maybe a humongous number of loads and stores. 6034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6035 const DataLayout &DL = DAG.getDataLayout(); 6036 LLVMContext &C = *DAG.getContext(); 6037 std::vector<EVT> MemOps; 6038 bool DstAlignCanChange = false; 6039 MachineFunction &MF = DAG.getMachineFunction(); 6040 MachineFrameInfo &MFI = MF.getFrameInfo(); 6041 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6042 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6043 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6044 DstAlignCanChange = true; 6045 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6046 if (!SrcAlign || Alignment > *SrcAlign) 6047 SrcAlign = Alignment; 6048 assert(SrcAlign && "SrcAlign must be set"); 6049 ConstantDataArraySlice Slice; 6050 // If marked as volatile, perform a copy even when marked as constant. 6051 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6052 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6053 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6054 const MemOp Op = isZeroConstant 6055 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6056 /*IsZeroMemset*/ true, isVol) 6057 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6058 *SrcAlign, isVol, CopyFromConstant); 6059 if (!TLI.findOptimalMemOpLowering( 6060 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6061 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6062 return SDValue(); 6063 6064 if (DstAlignCanChange) { 6065 Type *Ty = MemOps[0].getTypeForEVT(C); 6066 Align NewAlign = DL.getABITypeAlign(Ty); 6067 6068 // Don't promote to an alignment that would require dynamic stack 6069 // realignment. 6070 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6071 if (!TRI->needsStackRealignment(MF)) 6072 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6073 NewAlign = NewAlign / 2; 6074 6075 if (NewAlign > Alignment) { 6076 // Give the stack frame object a larger alignment if needed. 6077 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6078 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6079 Alignment = NewAlign; 6080 } 6081 } 6082 6083 MachineMemOperand::Flags MMOFlags = 6084 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6085 SmallVector<SDValue, 16> OutLoadChains; 6086 SmallVector<SDValue, 16> OutStoreChains; 6087 SmallVector<SDValue, 32> OutChains; 6088 unsigned NumMemOps = MemOps.size(); 6089 uint64_t SrcOff = 0, DstOff = 0; 6090 for (unsigned i = 0; i != NumMemOps; ++i) { 6091 EVT VT = MemOps[i]; 6092 unsigned VTSize = VT.getSizeInBits() / 8; 6093 SDValue Value, Store; 6094 6095 if (VTSize > Size) { 6096 // Issuing an unaligned load / store pair that overlaps with the previous 6097 // pair. Adjust the offset accordingly. 6098 assert(i == NumMemOps-1 && i != 0); 6099 SrcOff -= VTSize - Size; 6100 DstOff -= VTSize - Size; 6101 } 6102 6103 if (CopyFromConstant && 6104 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6105 // It's unlikely a store of a vector immediate can be done in a single 6106 // instruction. It would require a load from a constantpool first. 6107 // We only handle zero vectors here. 6108 // FIXME: Handle other cases where store of vector immediate is done in 6109 // a single instruction. 6110 ConstantDataArraySlice SubSlice; 6111 if (SrcOff < Slice.Length) { 6112 SubSlice = Slice; 6113 SubSlice.move(SrcOff); 6114 } else { 6115 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6116 SubSlice.Array = nullptr; 6117 SubSlice.Offset = 0; 6118 SubSlice.Length = VTSize; 6119 } 6120 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6121 if (Value.getNode()) { 6122 Store = DAG.getStore( 6123 Chain, dl, Value, 6124 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6125 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6126 OutChains.push_back(Store); 6127 } 6128 } 6129 6130 if (!Store.getNode()) { 6131 // The type might not be legal for the target. This should only happen 6132 // if the type is smaller than a legal type, as on PPC, so the right 6133 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6134 // to Load/Store if NVT==VT. 6135 // FIXME does the case above also need this? 6136 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6137 assert(NVT.bitsGE(VT)); 6138 6139 bool isDereferenceable = 6140 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6141 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6142 if (isDereferenceable) 6143 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6144 6145 Value = DAG.getExtLoad( 6146 ISD::EXTLOAD, dl, NVT, Chain, 6147 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6148 SrcPtrInfo.getWithOffset(SrcOff), VT, 6149 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6150 OutLoadChains.push_back(Value.getValue(1)); 6151 6152 Store = DAG.getTruncStore( 6153 Chain, dl, Value, 6154 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6155 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6156 OutStoreChains.push_back(Store); 6157 } 6158 SrcOff += VTSize; 6159 DstOff += VTSize; 6160 Size -= VTSize; 6161 } 6162 6163 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6164 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6165 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6166 6167 if (NumLdStInMemcpy) { 6168 // It may be that memcpy might be converted to memset if it's memcpy 6169 // of constants. In such a case, we won't have loads and stores, but 6170 // just stores. In the absence of loads, there is nothing to gang up. 6171 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6172 // If target does not care, just leave as it. 6173 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6174 OutChains.push_back(OutLoadChains[i]); 6175 OutChains.push_back(OutStoreChains[i]); 6176 } 6177 } else { 6178 // Ld/St less than/equal limit set by target. 6179 if (NumLdStInMemcpy <= GluedLdStLimit) { 6180 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6181 NumLdStInMemcpy, OutLoadChains, 6182 OutStoreChains); 6183 } else { 6184 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6185 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6186 unsigned GlueIter = 0; 6187 6188 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6189 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6190 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6191 6192 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6193 OutLoadChains, OutStoreChains); 6194 GlueIter += GluedLdStLimit; 6195 } 6196 6197 // Residual ld/st. 6198 if (RemainingLdStInMemcpy) { 6199 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6200 RemainingLdStInMemcpy, OutLoadChains, 6201 OutStoreChains); 6202 } 6203 } 6204 } 6205 } 6206 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6207 } 6208 6209 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6210 SDValue Chain, SDValue Dst, SDValue Src, 6211 uint64_t Size, Align Alignment, 6212 bool isVol, bool AlwaysInline, 6213 MachinePointerInfo DstPtrInfo, 6214 MachinePointerInfo SrcPtrInfo) { 6215 // Turn a memmove of undef to nop. 6216 // FIXME: We need to honor volatile even is Src is undef. 6217 if (Src.isUndef()) 6218 return Chain; 6219 6220 // Expand memmove to a series of load and store ops if the size operand falls 6221 // below a certain threshold. 6222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6223 const DataLayout &DL = DAG.getDataLayout(); 6224 LLVMContext &C = *DAG.getContext(); 6225 std::vector<EVT> MemOps; 6226 bool DstAlignCanChange = false; 6227 MachineFunction &MF = DAG.getMachineFunction(); 6228 MachineFrameInfo &MFI = MF.getFrameInfo(); 6229 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6230 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6231 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6232 DstAlignCanChange = true; 6233 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6234 if (!SrcAlign || Alignment > *SrcAlign) 6235 SrcAlign = Alignment; 6236 assert(SrcAlign && "SrcAlign must be set"); 6237 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6238 if (!TLI.findOptimalMemOpLowering( 6239 MemOps, Limit, 6240 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6241 /*IsVolatile*/ true), 6242 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6243 MF.getFunction().getAttributes())) 6244 return SDValue(); 6245 6246 if (DstAlignCanChange) { 6247 Type *Ty = MemOps[0].getTypeForEVT(C); 6248 Align NewAlign = DL.getABITypeAlign(Ty); 6249 if (NewAlign > Alignment) { 6250 // Give the stack frame object a larger alignment if needed. 6251 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6252 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6253 Alignment = NewAlign; 6254 } 6255 } 6256 6257 MachineMemOperand::Flags MMOFlags = 6258 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6259 uint64_t SrcOff = 0, DstOff = 0; 6260 SmallVector<SDValue, 8> LoadValues; 6261 SmallVector<SDValue, 8> LoadChains; 6262 SmallVector<SDValue, 8> OutChains; 6263 unsigned NumMemOps = MemOps.size(); 6264 for (unsigned i = 0; i < NumMemOps; i++) { 6265 EVT VT = MemOps[i]; 6266 unsigned VTSize = VT.getSizeInBits() / 8; 6267 SDValue Value; 6268 6269 bool isDereferenceable = 6270 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6271 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6272 if (isDereferenceable) 6273 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6274 6275 Value = 6276 DAG.getLoad(VT, dl, Chain, 6277 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6278 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6279 LoadValues.push_back(Value); 6280 LoadChains.push_back(Value.getValue(1)); 6281 SrcOff += VTSize; 6282 } 6283 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6284 OutChains.clear(); 6285 for (unsigned i = 0; i < NumMemOps; i++) { 6286 EVT VT = MemOps[i]; 6287 unsigned VTSize = VT.getSizeInBits() / 8; 6288 SDValue Store; 6289 6290 Store = 6291 DAG.getStore(Chain, dl, LoadValues[i], 6292 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6293 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6294 OutChains.push_back(Store); 6295 DstOff += VTSize; 6296 } 6297 6298 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6299 } 6300 6301 /// Lower the call to 'memset' intrinsic function into a series of store 6302 /// operations. 6303 /// 6304 /// \param DAG Selection DAG where lowered code is placed. 6305 /// \param dl Link to corresponding IR location. 6306 /// \param Chain Control flow dependency. 6307 /// \param Dst Pointer to destination memory location. 6308 /// \param Src Value of byte to write into the memory. 6309 /// \param Size Number of bytes to write. 6310 /// \param Alignment Alignment of the destination in bytes. 6311 /// \param isVol True if destination is volatile. 6312 /// \param DstPtrInfo IR information on the memory pointer. 6313 /// \returns New head in the control flow, if lowering was successful, empty 6314 /// SDValue otherwise. 6315 /// 6316 /// The function tries to replace 'llvm.memset' intrinsic with several store 6317 /// operations and value calculation code. This is usually profitable for small 6318 /// memory size. 6319 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6320 SDValue Chain, SDValue Dst, SDValue Src, 6321 uint64_t Size, Align Alignment, bool isVol, 6322 MachinePointerInfo DstPtrInfo) { 6323 // Turn a memset of undef to nop. 6324 // FIXME: We need to honor volatile even is Src is undef. 6325 if (Src.isUndef()) 6326 return Chain; 6327 6328 // Expand memset to a series of load/store ops if the size operand 6329 // falls below a certain threshold. 6330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6331 std::vector<EVT> MemOps; 6332 bool DstAlignCanChange = false; 6333 MachineFunction &MF = DAG.getMachineFunction(); 6334 MachineFrameInfo &MFI = MF.getFrameInfo(); 6335 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6336 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6337 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6338 DstAlignCanChange = true; 6339 bool IsZeroVal = 6340 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6341 if (!TLI.findOptimalMemOpLowering( 6342 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6343 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6344 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6345 return SDValue(); 6346 6347 if (DstAlignCanChange) { 6348 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6349 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6350 if (NewAlign > Alignment) { 6351 // Give the stack frame object a larger alignment if needed. 6352 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6353 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6354 Alignment = NewAlign; 6355 } 6356 } 6357 6358 SmallVector<SDValue, 8> OutChains; 6359 uint64_t DstOff = 0; 6360 unsigned NumMemOps = MemOps.size(); 6361 6362 // Find the largest store and generate the bit pattern for it. 6363 EVT LargestVT = MemOps[0]; 6364 for (unsigned i = 1; i < NumMemOps; i++) 6365 if (MemOps[i].bitsGT(LargestVT)) 6366 LargestVT = MemOps[i]; 6367 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6368 6369 for (unsigned i = 0; i < NumMemOps; i++) { 6370 EVT VT = MemOps[i]; 6371 unsigned VTSize = VT.getSizeInBits() / 8; 6372 if (VTSize > Size) { 6373 // Issuing an unaligned load / store pair that overlaps with the previous 6374 // pair. Adjust the offset accordingly. 6375 assert(i == NumMemOps-1 && i != 0); 6376 DstOff -= VTSize - Size; 6377 } 6378 6379 // If this store is smaller than the largest store see whether we can get 6380 // the smaller value for free with a truncate. 6381 SDValue Value = MemSetValue; 6382 if (VT.bitsLT(LargestVT)) { 6383 if (!LargestVT.isVector() && !VT.isVector() && 6384 TLI.isTruncateFree(LargestVT, VT)) 6385 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6386 else 6387 Value = getMemsetValue(Src, VT, DAG, dl); 6388 } 6389 assert(Value.getValueType() == VT && "Value with wrong type."); 6390 SDValue Store = DAG.getStore( 6391 Chain, dl, Value, 6392 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6393 DstPtrInfo.getWithOffset(DstOff), Alignment, 6394 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6395 OutChains.push_back(Store); 6396 DstOff += VT.getSizeInBits() / 8; 6397 Size -= VTSize; 6398 } 6399 6400 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6401 } 6402 6403 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6404 unsigned AS) { 6405 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6406 // pointer operands can be losslessly bitcasted to pointers of address space 0 6407 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6408 report_fatal_error("cannot lower memory intrinsic in address space " + 6409 Twine(AS)); 6410 } 6411 } 6412 6413 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6414 SDValue Src, SDValue Size, Align Alignment, 6415 bool isVol, bool AlwaysInline, bool isTailCall, 6416 MachinePointerInfo DstPtrInfo, 6417 MachinePointerInfo SrcPtrInfo) { 6418 // Check to see if we should lower the memcpy to loads and stores first. 6419 // For cases within the target-specified limits, this is the best choice. 6420 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6421 if (ConstantSize) { 6422 // Memcpy with size zero? Just return the original chain. 6423 if (ConstantSize->isNullValue()) 6424 return Chain; 6425 6426 SDValue Result = getMemcpyLoadsAndStores( 6427 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6428 isVol, false, DstPtrInfo, SrcPtrInfo); 6429 if (Result.getNode()) 6430 return Result; 6431 } 6432 6433 // Then check to see if we should lower the memcpy with target-specific 6434 // code. If the target chooses to do this, this is the next best. 6435 if (TSI) { 6436 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6437 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6438 DstPtrInfo, SrcPtrInfo); 6439 if (Result.getNode()) 6440 return Result; 6441 } 6442 6443 // If we really need inline code and the target declined to provide it, 6444 // use a (potentially long) sequence of loads and stores. 6445 if (AlwaysInline) { 6446 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6447 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6448 ConstantSize->getZExtValue(), Alignment, 6449 isVol, true, DstPtrInfo, SrcPtrInfo); 6450 } 6451 6452 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6453 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6454 6455 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6456 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6457 // respect volatile, so they may do things like read or write memory 6458 // beyond the given memory regions. But fixing this isn't easy, and most 6459 // people don't care. 6460 6461 // Emit a library call. 6462 TargetLowering::ArgListTy Args; 6463 TargetLowering::ArgListEntry Entry; 6464 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6465 Entry.Node = Dst; Args.push_back(Entry); 6466 Entry.Node = Src; Args.push_back(Entry); 6467 6468 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6469 Entry.Node = Size; Args.push_back(Entry); 6470 // FIXME: pass in SDLoc 6471 TargetLowering::CallLoweringInfo CLI(*this); 6472 CLI.setDebugLoc(dl) 6473 .setChain(Chain) 6474 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6475 Dst.getValueType().getTypeForEVT(*getContext()), 6476 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6477 TLI->getPointerTy(getDataLayout())), 6478 std::move(Args)) 6479 .setDiscardResult() 6480 .setTailCall(isTailCall); 6481 6482 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6483 return CallResult.second; 6484 } 6485 6486 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6487 SDValue Dst, unsigned DstAlign, 6488 SDValue Src, unsigned SrcAlign, 6489 SDValue Size, Type *SizeTy, 6490 unsigned ElemSz, bool isTailCall, 6491 MachinePointerInfo DstPtrInfo, 6492 MachinePointerInfo SrcPtrInfo) { 6493 // Emit a library call. 6494 TargetLowering::ArgListTy Args; 6495 TargetLowering::ArgListEntry Entry; 6496 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6497 Entry.Node = Dst; 6498 Args.push_back(Entry); 6499 6500 Entry.Node = Src; 6501 Args.push_back(Entry); 6502 6503 Entry.Ty = SizeTy; 6504 Entry.Node = Size; 6505 Args.push_back(Entry); 6506 6507 RTLIB::Libcall LibraryCall = 6508 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6509 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6510 report_fatal_error("Unsupported element size"); 6511 6512 TargetLowering::CallLoweringInfo CLI(*this); 6513 CLI.setDebugLoc(dl) 6514 .setChain(Chain) 6515 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6516 Type::getVoidTy(*getContext()), 6517 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6518 TLI->getPointerTy(getDataLayout())), 6519 std::move(Args)) 6520 .setDiscardResult() 6521 .setTailCall(isTailCall); 6522 6523 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6524 return CallResult.second; 6525 } 6526 6527 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6528 SDValue Src, SDValue Size, Align Alignment, 6529 bool isVol, bool isTailCall, 6530 MachinePointerInfo DstPtrInfo, 6531 MachinePointerInfo SrcPtrInfo) { 6532 // Check to see if we should lower the memmove to loads and stores first. 6533 // For cases within the target-specified limits, this is the best choice. 6534 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6535 if (ConstantSize) { 6536 // Memmove with size zero? Just return the original chain. 6537 if (ConstantSize->isNullValue()) 6538 return Chain; 6539 6540 SDValue Result = getMemmoveLoadsAndStores( 6541 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6542 isVol, false, DstPtrInfo, SrcPtrInfo); 6543 if (Result.getNode()) 6544 return Result; 6545 } 6546 6547 // Then check to see if we should lower the memmove with target-specific 6548 // code. If the target chooses to do this, this is the next best. 6549 if (TSI) { 6550 SDValue Result = 6551 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6552 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6553 if (Result.getNode()) 6554 return Result; 6555 } 6556 6557 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6558 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6559 6560 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6561 // not be safe. See memcpy above for more details. 6562 6563 // Emit a library call. 6564 TargetLowering::ArgListTy Args; 6565 TargetLowering::ArgListEntry Entry; 6566 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6567 Entry.Node = Dst; Args.push_back(Entry); 6568 Entry.Node = Src; Args.push_back(Entry); 6569 6570 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6571 Entry.Node = Size; Args.push_back(Entry); 6572 // FIXME: pass in SDLoc 6573 TargetLowering::CallLoweringInfo CLI(*this); 6574 CLI.setDebugLoc(dl) 6575 .setChain(Chain) 6576 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6577 Dst.getValueType().getTypeForEVT(*getContext()), 6578 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6579 TLI->getPointerTy(getDataLayout())), 6580 std::move(Args)) 6581 .setDiscardResult() 6582 .setTailCall(isTailCall); 6583 6584 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6585 return CallResult.second; 6586 } 6587 6588 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6589 SDValue Dst, unsigned DstAlign, 6590 SDValue Src, unsigned SrcAlign, 6591 SDValue Size, Type *SizeTy, 6592 unsigned ElemSz, bool isTailCall, 6593 MachinePointerInfo DstPtrInfo, 6594 MachinePointerInfo SrcPtrInfo) { 6595 // Emit a library call. 6596 TargetLowering::ArgListTy Args; 6597 TargetLowering::ArgListEntry Entry; 6598 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6599 Entry.Node = Dst; 6600 Args.push_back(Entry); 6601 6602 Entry.Node = Src; 6603 Args.push_back(Entry); 6604 6605 Entry.Ty = SizeTy; 6606 Entry.Node = Size; 6607 Args.push_back(Entry); 6608 6609 RTLIB::Libcall LibraryCall = 6610 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6611 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6612 report_fatal_error("Unsupported element size"); 6613 6614 TargetLowering::CallLoweringInfo CLI(*this); 6615 CLI.setDebugLoc(dl) 6616 .setChain(Chain) 6617 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6618 Type::getVoidTy(*getContext()), 6619 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6620 TLI->getPointerTy(getDataLayout())), 6621 std::move(Args)) 6622 .setDiscardResult() 6623 .setTailCall(isTailCall); 6624 6625 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6626 return CallResult.second; 6627 } 6628 6629 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6630 SDValue Src, SDValue Size, Align Alignment, 6631 bool isVol, bool isTailCall, 6632 MachinePointerInfo DstPtrInfo) { 6633 // Check to see if we should lower the memset to stores first. 6634 // For cases within the target-specified limits, this is the best choice. 6635 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6636 if (ConstantSize) { 6637 // Memset with size zero? Just return the original chain. 6638 if (ConstantSize->isNullValue()) 6639 return Chain; 6640 6641 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6642 ConstantSize->getZExtValue(), Alignment, 6643 isVol, DstPtrInfo); 6644 6645 if (Result.getNode()) 6646 return Result; 6647 } 6648 6649 // Then check to see if we should lower the memset with target-specific 6650 // code. If the target chooses to do this, this is the next best. 6651 if (TSI) { 6652 SDValue Result = TSI->EmitTargetCodeForMemset( 6653 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6654 if (Result.getNode()) 6655 return Result; 6656 } 6657 6658 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6659 6660 // Emit a library call. 6661 TargetLowering::ArgListTy Args; 6662 TargetLowering::ArgListEntry Entry; 6663 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6664 Args.push_back(Entry); 6665 Entry.Node = Src; 6666 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6667 Args.push_back(Entry); 6668 Entry.Node = Size; 6669 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6670 Args.push_back(Entry); 6671 6672 // FIXME: pass in SDLoc 6673 TargetLowering::CallLoweringInfo CLI(*this); 6674 CLI.setDebugLoc(dl) 6675 .setChain(Chain) 6676 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6677 Dst.getValueType().getTypeForEVT(*getContext()), 6678 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6679 TLI->getPointerTy(getDataLayout())), 6680 std::move(Args)) 6681 .setDiscardResult() 6682 .setTailCall(isTailCall); 6683 6684 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6685 return CallResult.second; 6686 } 6687 6688 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6689 SDValue Dst, unsigned DstAlign, 6690 SDValue Value, SDValue Size, Type *SizeTy, 6691 unsigned ElemSz, bool isTailCall, 6692 MachinePointerInfo DstPtrInfo) { 6693 // Emit a library call. 6694 TargetLowering::ArgListTy Args; 6695 TargetLowering::ArgListEntry Entry; 6696 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6697 Entry.Node = Dst; 6698 Args.push_back(Entry); 6699 6700 Entry.Ty = Type::getInt8Ty(*getContext()); 6701 Entry.Node = Value; 6702 Args.push_back(Entry); 6703 6704 Entry.Ty = SizeTy; 6705 Entry.Node = Size; 6706 Args.push_back(Entry); 6707 6708 RTLIB::Libcall LibraryCall = 6709 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6710 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6711 report_fatal_error("Unsupported element size"); 6712 6713 TargetLowering::CallLoweringInfo CLI(*this); 6714 CLI.setDebugLoc(dl) 6715 .setChain(Chain) 6716 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6717 Type::getVoidTy(*getContext()), 6718 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6719 TLI->getPointerTy(getDataLayout())), 6720 std::move(Args)) 6721 .setDiscardResult() 6722 .setTailCall(isTailCall); 6723 6724 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6725 return CallResult.second; 6726 } 6727 6728 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6729 SDVTList VTList, ArrayRef<SDValue> Ops, 6730 MachineMemOperand *MMO) { 6731 FoldingSetNodeID ID; 6732 ID.AddInteger(MemVT.getRawBits()); 6733 AddNodeIDNode(ID, Opcode, VTList, Ops); 6734 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6735 void* IP = nullptr; 6736 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6737 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6738 return SDValue(E, 0); 6739 } 6740 6741 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6742 VTList, MemVT, MMO); 6743 createOperands(N, Ops); 6744 6745 CSEMap.InsertNode(N, IP); 6746 InsertNode(N); 6747 return SDValue(N, 0); 6748 } 6749 6750 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6751 EVT MemVT, SDVTList VTs, SDValue Chain, 6752 SDValue Ptr, SDValue Cmp, SDValue Swp, 6753 MachineMemOperand *MMO) { 6754 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6755 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6756 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6757 6758 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6759 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6760 } 6761 6762 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6763 SDValue Chain, SDValue Ptr, SDValue Val, 6764 MachineMemOperand *MMO) { 6765 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6766 Opcode == ISD::ATOMIC_LOAD_SUB || 6767 Opcode == ISD::ATOMIC_LOAD_AND || 6768 Opcode == ISD::ATOMIC_LOAD_CLR || 6769 Opcode == ISD::ATOMIC_LOAD_OR || 6770 Opcode == ISD::ATOMIC_LOAD_XOR || 6771 Opcode == ISD::ATOMIC_LOAD_NAND || 6772 Opcode == ISD::ATOMIC_LOAD_MIN || 6773 Opcode == ISD::ATOMIC_LOAD_MAX || 6774 Opcode == ISD::ATOMIC_LOAD_UMIN || 6775 Opcode == ISD::ATOMIC_LOAD_UMAX || 6776 Opcode == ISD::ATOMIC_LOAD_FADD || 6777 Opcode == ISD::ATOMIC_LOAD_FSUB || 6778 Opcode == ISD::ATOMIC_SWAP || 6779 Opcode == ISD::ATOMIC_STORE) && 6780 "Invalid Atomic Op"); 6781 6782 EVT VT = Val.getValueType(); 6783 6784 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6785 getVTList(VT, MVT::Other); 6786 SDValue Ops[] = {Chain, Ptr, Val}; 6787 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6788 } 6789 6790 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6791 EVT VT, SDValue Chain, SDValue Ptr, 6792 MachineMemOperand *MMO) { 6793 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6794 6795 SDVTList VTs = getVTList(VT, MVT::Other); 6796 SDValue Ops[] = {Chain, Ptr}; 6797 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6798 } 6799 6800 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6801 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6802 if (Ops.size() == 1) 6803 return Ops[0]; 6804 6805 SmallVector<EVT, 4> VTs; 6806 VTs.reserve(Ops.size()); 6807 for (unsigned i = 0; i < Ops.size(); ++i) 6808 VTs.push_back(Ops[i].getValueType()); 6809 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6810 } 6811 6812 SDValue SelectionDAG::getMemIntrinsicNode( 6813 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6814 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6815 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6816 if (!Size && MemVT.isScalableVector()) 6817 Size = MemoryLocation::UnknownSize; 6818 else if (!Size) 6819 Size = MemVT.getStoreSize(); 6820 6821 MachineFunction &MF = getMachineFunction(); 6822 MachineMemOperand *MMO = 6823 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6824 6825 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6826 } 6827 6828 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6829 SDVTList VTList, 6830 ArrayRef<SDValue> Ops, EVT MemVT, 6831 MachineMemOperand *MMO) { 6832 assert((Opcode == ISD::INTRINSIC_VOID || 6833 Opcode == ISD::INTRINSIC_W_CHAIN || 6834 Opcode == ISD::PREFETCH || 6835 ((int)Opcode <= std::numeric_limits<int>::max() && 6836 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6837 "Opcode is not a memory-accessing opcode!"); 6838 6839 // Memoize the node unless it returns a flag. 6840 MemIntrinsicSDNode *N; 6841 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6842 FoldingSetNodeID ID; 6843 AddNodeIDNode(ID, Opcode, VTList, Ops); 6844 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6845 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6846 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6847 void *IP = nullptr; 6848 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6849 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6850 return SDValue(E, 0); 6851 } 6852 6853 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6854 VTList, MemVT, MMO); 6855 createOperands(N, Ops); 6856 6857 CSEMap.InsertNode(N, IP); 6858 } else { 6859 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6860 VTList, MemVT, MMO); 6861 createOperands(N, Ops); 6862 } 6863 InsertNode(N); 6864 SDValue V(N, 0); 6865 NewSDValueDbgMsg(V, "Creating new node: ", this); 6866 return V; 6867 } 6868 6869 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6870 SDValue Chain, int FrameIndex, 6871 int64_t Size, int64_t Offset) { 6872 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6873 const auto VTs = getVTList(MVT::Other); 6874 SDValue Ops[2] = { 6875 Chain, 6876 getFrameIndex(FrameIndex, 6877 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6878 true)}; 6879 6880 FoldingSetNodeID ID; 6881 AddNodeIDNode(ID, Opcode, VTs, Ops); 6882 ID.AddInteger(FrameIndex); 6883 ID.AddInteger(Size); 6884 ID.AddInteger(Offset); 6885 void *IP = nullptr; 6886 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6887 return SDValue(E, 0); 6888 6889 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6890 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6891 createOperands(N, Ops); 6892 CSEMap.InsertNode(N, IP); 6893 InsertNode(N); 6894 SDValue V(N, 0); 6895 NewSDValueDbgMsg(V, "Creating new node: ", this); 6896 return V; 6897 } 6898 6899 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6900 /// MachinePointerInfo record from it. This is particularly useful because the 6901 /// code generator has many cases where it doesn't bother passing in a 6902 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6903 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6904 SelectionDAG &DAG, SDValue Ptr, 6905 int64_t Offset = 0) { 6906 // If this is FI+Offset, we can model it. 6907 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6908 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6909 FI->getIndex(), Offset); 6910 6911 // If this is (FI+Offset1)+Offset2, we can model it. 6912 if (Ptr.getOpcode() != ISD::ADD || 6913 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6914 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6915 return Info; 6916 6917 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6918 return MachinePointerInfo::getFixedStack( 6919 DAG.getMachineFunction(), FI, 6920 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6921 } 6922 6923 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6924 /// MachinePointerInfo record from it. This is particularly useful because the 6925 /// code generator has many cases where it doesn't bother passing in a 6926 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6927 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6928 SelectionDAG &DAG, SDValue Ptr, 6929 SDValue OffsetOp) { 6930 // If the 'Offset' value isn't a constant, we can't handle this. 6931 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6932 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6933 if (OffsetOp.isUndef()) 6934 return InferPointerInfo(Info, DAG, Ptr); 6935 return Info; 6936 } 6937 6938 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6939 EVT VT, const SDLoc &dl, SDValue Chain, 6940 SDValue Ptr, SDValue Offset, 6941 MachinePointerInfo PtrInfo, EVT MemVT, 6942 Align Alignment, 6943 MachineMemOperand::Flags MMOFlags, 6944 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6945 assert(Chain.getValueType() == MVT::Other && 6946 "Invalid chain type"); 6947 6948 MMOFlags |= MachineMemOperand::MOLoad; 6949 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6950 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6951 // clients. 6952 if (PtrInfo.V.isNull()) 6953 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6954 6955 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6956 MachineFunction &MF = getMachineFunction(); 6957 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6958 Alignment, AAInfo, Ranges); 6959 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6960 } 6961 6962 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6963 EVT VT, const SDLoc &dl, SDValue Chain, 6964 SDValue Ptr, SDValue Offset, EVT MemVT, 6965 MachineMemOperand *MMO) { 6966 if (VT == MemVT) { 6967 ExtType = ISD::NON_EXTLOAD; 6968 } else if (ExtType == ISD::NON_EXTLOAD) { 6969 assert(VT == MemVT && "Non-extending load from different memory type!"); 6970 } else { 6971 // Extending load. 6972 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6973 "Should only be an extending load, not truncating!"); 6974 assert(VT.isInteger() == MemVT.isInteger() && 6975 "Cannot convert from FP to Int or Int -> FP!"); 6976 assert(VT.isVector() == MemVT.isVector() && 6977 "Cannot use an ext load to convert to or from a vector!"); 6978 assert((!VT.isVector() || 6979 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 6980 "Cannot use an ext load to change the number of vector elements!"); 6981 } 6982 6983 bool Indexed = AM != ISD::UNINDEXED; 6984 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6985 6986 SDVTList VTs = Indexed ? 6987 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6988 SDValue Ops[] = { Chain, Ptr, Offset }; 6989 FoldingSetNodeID ID; 6990 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6991 ID.AddInteger(MemVT.getRawBits()); 6992 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6993 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6994 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6995 void *IP = nullptr; 6996 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6997 cast<LoadSDNode>(E)->refineAlignment(MMO); 6998 return SDValue(E, 0); 6999 } 7000 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7001 ExtType, MemVT, MMO); 7002 createOperands(N, Ops); 7003 7004 CSEMap.InsertNode(N, IP); 7005 InsertNode(N); 7006 SDValue V(N, 0); 7007 NewSDValueDbgMsg(V, "Creating new node: ", this); 7008 return V; 7009 } 7010 7011 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7012 SDValue Ptr, MachinePointerInfo PtrInfo, 7013 MaybeAlign Alignment, 7014 MachineMemOperand::Flags MMOFlags, 7015 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7016 SDValue Undef = getUNDEF(Ptr.getValueType()); 7017 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7018 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7019 } 7020 7021 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7022 SDValue Ptr, MachineMemOperand *MMO) { 7023 SDValue Undef = getUNDEF(Ptr.getValueType()); 7024 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7025 VT, MMO); 7026 } 7027 7028 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7029 EVT VT, SDValue Chain, SDValue Ptr, 7030 MachinePointerInfo PtrInfo, EVT MemVT, 7031 MaybeAlign Alignment, 7032 MachineMemOperand::Flags MMOFlags, 7033 const AAMDNodes &AAInfo) { 7034 SDValue Undef = getUNDEF(Ptr.getValueType()); 7035 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7036 MemVT, Alignment, MMOFlags, AAInfo); 7037 } 7038 7039 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7040 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7041 MachineMemOperand *MMO) { 7042 SDValue Undef = getUNDEF(Ptr.getValueType()); 7043 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7044 MemVT, MMO); 7045 } 7046 7047 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7048 SDValue Base, SDValue Offset, 7049 ISD::MemIndexedMode AM) { 7050 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7051 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7052 // Don't propagate the invariant or dereferenceable flags. 7053 auto MMOFlags = 7054 LD->getMemOperand()->getFlags() & 7055 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7056 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7057 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7058 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7059 } 7060 7061 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7062 SDValue Ptr, MachinePointerInfo PtrInfo, 7063 Align Alignment, 7064 MachineMemOperand::Flags MMOFlags, 7065 const AAMDNodes &AAInfo) { 7066 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7067 7068 MMOFlags |= MachineMemOperand::MOStore; 7069 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7070 7071 if (PtrInfo.V.isNull()) 7072 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7073 7074 MachineFunction &MF = getMachineFunction(); 7075 uint64_t Size = 7076 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7077 MachineMemOperand *MMO = 7078 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7079 return getStore(Chain, dl, Val, Ptr, MMO); 7080 } 7081 7082 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7083 SDValue Ptr, MachineMemOperand *MMO) { 7084 assert(Chain.getValueType() == MVT::Other && 7085 "Invalid chain type"); 7086 EVT VT = Val.getValueType(); 7087 SDVTList VTs = getVTList(MVT::Other); 7088 SDValue Undef = getUNDEF(Ptr.getValueType()); 7089 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7090 FoldingSetNodeID ID; 7091 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7092 ID.AddInteger(VT.getRawBits()); 7093 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7094 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7095 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7096 void *IP = nullptr; 7097 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7098 cast<StoreSDNode>(E)->refineAlignment(MMO); 7099 return SDValue(E, 0); 7100 } 7101 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7102 ISD::UNINDEXED, false, VT, MMO); 7103 createOperands(N, Ops); 7104 7105 CSEMap.InsertNode(N, IP); 7106 InsertNode(N); 7107 SDValue V(N, 0); 7108 NewSDValueDbgMsg(V, "Creating new node: ", this); 7109 return V; 7110 } 7111 7112 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7113 SDValue Ptr, MachinePointerInfo PtrInfo, 7114 EVT SVT, Align Alignment, 7115 MachineMemOperand::Flags MMOFlags, 7116 const AAMDNodes &AAInfo) { 7117 assert(Chain.getValueType() == MVT::Other && 7118 "Invalid chain type"); 7119 7120 MMOFlags |= MachineMemOperand::MOStore; 7121 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7122 7123 if (PtrInfo.V.isNull()) 7124 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7125 7126 MachineFunction &MF = getMachineFunction(); 7127 MachineMemOperand *MMO = MF.getMachineMemOperand( 7128 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7129 Alignment, AAInfo); 7130 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7131 } 7132 7133 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7134 SDValue Ptr, EVT SVT, 7135 MachineMemOperand *MMO) { 7136 EVT VT = Val.getValueType(); 7137 7138 assert(Chain.getValueType() == MVT::Other && 7139 "Invalid chain type"); 7140 if (VT == SVT) 7141 return getStore(Chain, dl, Val, Ptr, MMO); 7142 7143 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7144 "Should only be a truncating store, not extending!"); 7145 assert(VT.isInteger() == SVT.isInteger() && 7146 "Can't do FP-INT conversion!"); 7147 assert(VT.isVector() == SVT.isVector() && 7148 "Cannot use trunc store to convert to or from a vector!"); 7149 assert((!VT.isVector() || 7150 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7151 "Cannot use trunc store to change the number of vector elements!"); 7152 7153 SDVTList VTs = getVTList(MVT::Other); 7154 SDValue Undef = getUNDEF(Ptr.getValueType()); 7155 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7156 FoldingSetNodeID ID; 7157 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7158 ID.AddInteger(SVT.getRawBits()); 7159 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7160 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7161 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7162 void *IP = nullptr; 7163 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7164 cast<StoreSDNode>(E)->refineAlignment(MMO); 7165 return SDValue(E, 0); 7166 } 7167 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7168 ISD::UNINDEXED, true, SVT, MMO); 7169 createOperands(N, Ops); 7170 7171 CSEMap.InsertNode(N, IP); 7172 InsertNode(N); 7173 SDValue V(N, 0); 7174 NewSDValueDbgMsg(V, "Creating new node: ", this); 7175 return V; 7176 } 7177 7178 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7179 SDValue Base, SDValue Offset, 7180 ISD::MemIndexedMode AM) { 7181 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7182 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7183 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7184 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7185 FoldingSetNodeID ID; 7186 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7187 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7188 ID.AddInteger(ST->getRawSubclassData()); 7189 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7190 void *IP = nullptr; 7191 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7192 return SDValue(E, 0); 7193 7194 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7195 ST->isTruncatingStore(), ST->getMemoryVT(), 7196 ST->getMemOperand()); 7197 createOperands(N, Ops); 7198 7199 CSEMap.InsertNode(N, IP); 7200 InsertNode(N); 7201 SDValue V(N, 0); 7202 NewSDValueDbgMsg(V, "Creating new node: ", this); 7203 return V; 7204 } 7205 7206 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7207 SDValue Base, SDValue Offset, SDValue Mask, 7208 SDValue PassThru, EVT MemVT, 7209 MachineMemOperand *MMO, 7210 ISD::MemIndexedMode AM, 7211 ISD::LoadExtType ExtTy, bool isExpanding) { 7212 bool Indexed = AM != ISD::UNINDEXED; 7213 assert((Indexed || Offset.isUndef()) && 7214 "Unindexed masked load with an offset!"); 7215 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7216 : getVTList(VT, MVT::Other); 7217 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7218 FoldingSetNodeID ID; 7219 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7220 ID.AddInteger(MemVT.getRawBits()); 7221 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7222 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7223 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7224 void *IP = nullptr; 7225 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7226 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7227 return SDValue(E, 0); 7228 } 7229 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7230 AM, ExtTy, isExpanding, MemVT, MMO); 7231 createOperands(N, Ops); 7232 7233 CSEMap.InsertNode(N, IP); 7234 InsertNode(N); 7235 SDValue V(N, 0); 7236 NewSDValueDbgMsg(V, "Creating new node: ", this); 7237 return V; 7238 } 7239 7240 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7241 SDValue Base, SDValue Offset, 7242 ISD::MemIndexedMode AM) { 7243 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7244 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7245 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7246 Offset, LD->getMask(), LD->getPassThru(), 7247 LD->getMemoryVT(), LD->getMemOperand(), AM, 7248 LD->getExtensionType(), LD->isExpandingLoad()); 7249 } 7250 7251 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7252 SDValue Val, SDValue Base, SDValue Offset, 7253 SDValue Mask, EVT MemVT, 7254 MachineMemOperand *MMO, 7255 ISD::MemIndexedMode AM, bool IsTruncating, 7256 bool IsCompressing) { 7257 assert(Chain.getValueType() == MVT::Other && 7258 "Invalid chain type"); 7259 bool Indexed = AM != ISD::UNINDEXED; 7260 assert((Indexed || Offset.isUndef()) && 7261 "Unindexed masked store with an offset!"); 7262 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7263 : getVTList(MVT::Other); 7264 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7265 FoldingSetNodeID ID; 7266 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7267 ID.AddInteger(MemVT.getRawBits()); 7268 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7269 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7270 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7271 void *IP = nullptr; 7272 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7273 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7274 return SDValue(E, 0); 7275 } 7276 auto *N = 7277 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7278 IsTruncating, IsCompressing, MemVT, MMO); 7279 createOperands(N, Ops); 7280 7281 CSEMap.InsertNode(N, IP); 7282 InsertNode(N); 7283 SDValue V(N, 0); 7284 NewSDValueDbgMsg(V, "Creating new node: ", this); 7285 return V; 7286 } 7287 7288 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7289 SDValue Base, SDValue Offset, 7290 ISD::MemIndexedMode AM) { 7291 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7292 assert(ST->getOffset().isUndef() && 7293 "Masked store is already a indexed store!"); 7294 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7295 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7296 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7297 } 7298 7299 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7300 ArrayRef<SDValue> Ops, 7301 MachineMemOperand *MMO, 7302 ISD::MemIndexType IndexType) { 7303 assert(Ops.size() == 6 && "Incompatible number of operands"); 7304 7305 FoldingSetNodeID ID; 7306 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7307 ID.AddInteger(VT.getRawBits()); 7308 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7309 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7310 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7311 void *IP = nullptr; 7312 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7313 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7314 return SDValue(E, 0); 7315 } 7316 7317 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7318 VTs, VT, MMO, IndexType); 7319 createOperands(N, Ops); 7320 7321 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7322 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7323 assert(N->getMask().getValueType().getVectorNumElements() == 7324 N->getValueType(0).getVectorNumElements() && 7325 "Vector width mismatch between mask and data"); 7326 assert(N->getIndex().getValueType().getVectorNumElements() >= 7327 N->getValueType(0).getVectorNumElements() && 7328 "Vector width mismatch between index and data"); 7329 assert(isa<ConstantSDNode>(N->getScale()) && 7330 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7331 "Scale should be a constant power of 2"); 7332 7333 CSEMap.InsertNode(N, IP); 7334 InsertNode(N); 7335 SDValue V(N, 0); 7336 NewSDValueDbgMsg(V, "Creating new node: ", this); 7337 return V; 7338 } 7339 7340 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7341 ArrayRef<SDValue> Ops, 7342 MachineMemOperand *MMO, 7343 ISD::MemIndexType IndexType) { 7344 assert(Ops.size() == 6 && "Incompatible number of operands"); 7345 7346 FoldingSetNodeID ID; 7347 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7348 ID.AddInteger(VT.getRawBits()); 7349 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7350 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7351 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7352 void *IP = nullptr; 7353 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7354 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7355 return SDValue(E, 0); 7356 } 7357 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7358 VTs, VT, MMO, IndexType); 7359 createOperands(N, Ops); 7360 7361 assert(N->getMask().getValueType().getVectorNumElements() == 7362 N->getValue().getValueType().getVectorNumElements() && 7363 "Vector width mismatch between mask and data"); 7364 assert(N->getIndex().getValueType().getVectorNumElements() >= 7365 N->getValue().getValueType().getVectorNumElements() && 7366 "Vector width mismatch between index and data"); 7367 assert(isa<ConstantSDNode>(N->getScale()) && 7368 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7369 "Scale should be a constant power of 2"); 7370 7371 CSEMap.InsertNode(N, IP); 7372 InsertNode(N); 7373 SDValue V(N, 0); 7374 NewSDValueDbgMsg(V, "Creating new node: ", this); 7375 return V; 7376 } 7377 7378 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7379 // select undef, T, F --> T (if T is a constant), otherwise F 7380 // select, ?, undef, F --> F 7381 // select, ?, T, undef --> T 7382 if (Cond.isUndef()) 7383 return isConstantValueOfAnyType(T) ? T : F; 7384 if (T.isUndef()) 7385 return F; 7386 if (F.isUndef()) 7387 return T; 7388 7389 // select true, T, F --> T 7390 // select false, T, F --> F 7391 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7392 return CondC->isNullValue() ? F : T; 7393 7394 // TODO: This should simplify VSELECT with constant condition using something 7395 // like this (but check boolean contents to be complete?): 7396 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7397 // return T; 7398 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7399 // return F; 7400 7401 // select ?, T, T --> T 7402 if (T == F) 7403 return T; 7404 7405 return SDValue(); 7406 } 7407 7408 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7409 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7410 if (X.isUndef()) 7411 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7412 // shift X, undef --> undef (because it may shift by the bitwidth) 7413 if (Y.isUndef()) 7414 return getUNDEF(X.getValueType()); 7415 7416 // shift 0, Y --> 0 7417 // shift X, 0 --> X 7418 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7419 return X; 7420 7421 // shift X, C >= bitwidth(X) --> undef 7422 // All vector elements must be too big (or undef) to avoid partial undefs. 7423 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7424 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7425 }; 7426 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7427 return getUNDEF(X.getValueType()); 7428 7429 return SDValue(); 7430 } 7431 7432 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7433 SDNodeFlags Flags) { 7434 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7435 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7436 // operation is poison. That result can be relaxed to undef. 7437 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7438 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7439 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7440 (YC && YC->getValueAPF().isNaN()); 7441 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7442 (YC && YC->getValueAPF().isInfinity()); 7443 7444 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7445 return getUNDEF(X.getValueType()); 7446 7447 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7448 return getUNDEF(X.getValueType()); 7449 7450 if (!YC) 7451 return SDValue(); 7452 7453 // X + -0.0 --> X 7454 if (Opcode == ISD::FADD) 7455 if (YC->getValueAPF().isNegZero()) 7456 return X; 7457 7458 // X - +0.0 --> X 7459 if (Opcode == ISD::FSUB) 7460 if (YC->getValueAPF().isPosZero()) 7461 return X; 7462 7463 // X * 1.0 --> X 7464 // X / 1.0 --> X 7465 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7466 if (YC->getValueAPF().isExactlyValue(1.0)) 7467 return X; 7468 7469 // X * 0.0 --> 0.0 7470 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7471 if (YC->getValueAPF().isZero()) 7472 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7473 7474 return SDValue(); 7475 } 7476 7477 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7478 SDValue Ptr, SDValue SV, unsigned Align) { 7479 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7480 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7481 } 7482 7483 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7484 ArrayRef<SDUse> Ops) { 7485 switch (Ops.size()) { 7486 case 0: return getNode(Opcode, DL, VT); 7487 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7488 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7489 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7490 default: break; 7491 } 7492 7493 // Copy from an SDUse array into an SDValue array for use with 7494 // the regular getNode logic. 7495 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7496 return getNode(Opcode, DL, VT, NewOps); 7497 } 7498 7499 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7500 ArrayRef<SDValue> Ops) { 7501 SDNodeFlags Flags; 7502 if (Inserter) 7503 Flags = Inserter->getFlags(); 7504 return getNode(Opcode, DL, VT, Ops, Flags); 7505 } 7506 7507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7508 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7509 unsigned NumOps = Ops.size(); 7510 switch (NumOps) { 7511 case 0: return getNode(Opcode, DL, VT); 7512 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7513 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7514 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7515 default: break; 7516 } 7517 7518 switch (Opcode) { 7519 default: break; 7520 case ISD::BUILD_VECTOR: 7521 // Attempt to simplify BUILD_VECTOR. 7522 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7523 return V; 7524 break; 7525 case ISD::CONCAT_VECTORS: 7526 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7527 return V; 7528 break; 7529 case ISD::SELECT_CC: 7530 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7531 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7532 "LHS and RHS of condition must have same type!"); 7533 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7534 "True and False arms of SelectCC must have same type!"); 7535 assert(Ops[2].getValueType() == VT && 7536 "select_cc node must be of same type as true and false value!"); 7537 break; 7538 case ISD::BR_CC: 7539 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7540 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7541 "LHS/RHS of comparison should match types!"); 7542 break; 7543 } 7544 7545 // Memoize nodes. 7546 SDNode *N; 7547 SDVTList VTs = getVTList(VT); 7548 7549 if (VT != MVT::Glue) { 7550 FoldingSetNodeID ID; 7551 AddNodeIDNode(ID, Opcode, VTs, Ops); 7552 void *IP = nullptr; 7553 7554 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7555 return SDValue(E, 0); 7556 7557 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7558 createOperands(N, Ops); 7559 7560 CSEMap.InsertNode(N, IP); 7561 } else { 7562 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7563 createOperands(N, Ops); 7564 } 7565 7566 N->setFlags(Flags); 7567 InsertNode(N); 7568 SDValue V(N, 0); 7569 NewSDValueDbgMsg(V, "Creating new node: ", this); 7570 return V; 7571 } 7572 7573 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7574 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7575 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7576 } 7577 7578 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7579 ArrayRef<SDValue> Ops) { 7580 SDNodeFlags Flags; 7581 if (Inserter) 7582 Flags = Inserter->getFlags(); 7583 return getNode(Opcode, DL, VTList, Ops, Flags); 7584 } 7585 7586 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7587 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7588 if (VTList.NumVTs == 1) 7589 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7590 7591 switch (Opcode) { 7592 case ISD::STRICT_FP_EXTEND: 7593 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7594 "Invalid STRICT_FP_EXTEND!"); 7595 assert(VTList.VTs[0].isFloatingPoint() && 7596 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7597 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7598 "STRICT_FP_EXTEND result type should be vector iff the operand " 7599 "type is vector!"); 7600 assert((!VTList.VTs[0].isVector() || 7601 VTList.VTs[0].getVectorNumElements() == 7602 Ops[1].getValueType().getVectorNumElements()) && 7603 "Vector element count mismatch!"); 7604 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7605 "Invalid fpext node, dst <= src!"); 7606 break; 7607 case ISD::STRICT_FP_ROUND: 7608 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7609 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7610 "STRICT_FP_ROUND result type should be vector iff the operand " 7611 "type is vector!"); 7612 assert((!VTList.VTs[0].isVector() || 7613 VTList.VTs[0].getVectorNumElements() == 7614 Ops[1].getValueType().getVectorNumElements()) && 7615 "Vector element count mismatch!"); 7616 assert(VTList.VTs[0].isFloatingPoint() && 7617 Ops[1].getValueType().isFloatingPoint() && 7618 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7619 isa<ConstantSDNode>(Ops[2]) && 7620 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7621 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7622 "Invalid STRICT_FP_ROUND!"); 7623 break; 7624 #if 0 7625 // FIXME: figure out how to safely handle things like 7626 // int foo(int x) { return 1 << (x & 255); } 7627 // int bar() { return foo(256); } 7628 case ISD::SRA_PARTS: 7629 case ISD::SRL_PARTS: 7630 case ISD::SHL_PARTS: 7631 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7632 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7633 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7634 else if (N3.getOpcode() == ISD::AND) 7635 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7636 // If the and is only masking out bits that cannot effect the shift, 7637 // eliminate the and. 7638 unsigned NumBits = VT.getScalarSizeInBits()*2; 7639 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7640 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7641 } 7642 break; 7643 #endif 7644 } 7645 7646 // Memoize the node unless it returns a flag. 7647 SDNode *N; 7648 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7649 FoldingSetNodeID ID; 7650 AddNodeIDNode(ID, Opcode, VTList, Ops); 7651 void *IP = nullptr; 7652 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7653 return SDValue(E, 0); 7654 7655 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7656 createOperands(N, Ops); 7657 CSEMap.InsertNode(N, IP); 7658 } else { 7659 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7660 createOperands(N, Ops); 7661 } 7662 7663 N->setFlags(Flags); 7664 InsertNode(N); 7665 SDValue V(N, 0); 7666 NewSDValueDbgMsg(V, "Creating new node: ", this); 7667 return V; 7668 } 7669 7670 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7671 SDVTList VTList) { 7672 return getNode(Opcode, DL, VTList, None); 7673 } 7674 7675 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7676 SDValue N1) { 7677 SDValue Ops[] = { N1 }; 7678 return getNode(Opcode, DL, VTList, Ops); 7679 } 7680 7681 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7682 SDValue N1, SDValue N2) { 7683 SDValue Ops[] = { N1, N2 }; 7684 return getNode(Opcode, DL, VTList, Ops); 7685 } 7686 7687 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7688 SDValue N1, SDValue N2, SDValue N3) { 7689 SDValue Ops[] = { N1, N2, N3 }; 7690 return getNode(Opcode, DL, VTList, Ops); 7691 } 7692 7693 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7694 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7695 SDValue Ops[] = { N1, N2, N3, N4 }; 7696 return getNode(Opcode, DL, VTList, Ops); 7697 } 7698 7699 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7700 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7701 SDValue N5) { 7702 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7703 return getNode(Opcode, DL, VTList, Ops); 7704 } 7705 7706 SDVTList SelectionDAG::getVTList(EVT VT) { 7707 return makeVTList(SDNode::getValueTypeList(VT), 1); 7708 } 7709 7710 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7711 FoldingSetNodeID ID; 7712 ID.AddInteger(2U); 7713 ID.AddInteger(VT1.getRawBits()); 7714 ID.AddInteger(VT2.getRawBits()); 7715 7716 void *IP = nullptr; 7717 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7718 if (!Result) { 7719 EVT *Array = Allocator.Allocate<EVT>(2); 7720 Array[0] = VT1; 7721 Array[1] = VT2; 7722 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7723 VTListMap.InsertNode(Result, IP); 7724 } 7725 return Result->getSDVTList(); 7726 } 7727 7728 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7729 FoldingSetNodeID ID; 7730 ID.AddInteger(3U); 7731 ID.AddInteger(VT1.getRawBits()); 7732 ID.AddInteger(VT2.getRawBits()); 7733 ID.AddInteger(VT3.getRawBits()); 7734 7735 void *IP = nullptr; 7736 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7737 if (!Result) { 7738 EVT *Array = Allocator.Allocate<EVT>(3); 7739 Array[0] = VT1; 7740 Array[1] = VT2; 7741 Array[2] = VT3; 7742 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7743 VTListMap.InsertNode(Result, IP); 7744 } 7745 return Result->getSDVTList(); 7746 } 7747 7748 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7749 FoldingSetNodeID ID; 7750 ID.AddInteger(4U); 7751 ID.AddInteger(VT1.getRawBits()); 7752 ID.AddInteger(VT2.getRawBits()); 7753 ID.AddInteger(VT3.getRawBits()); 7754 ID.AddInteger(VT4.getRawBits()); 7755 7756 void *IP = nullptr; 7757 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7758 if (!Result) { 7759 EVT *Array = Allocator.Allocate<EVT>(4); 7760 Array[0] = VT1; 7761 Array[1] = VT2; 7762 Array[2] = VT3; 7763 Array[3] = VT4; 7764 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7765 VTListMap.InsertNode(Result, IP); 7766 } 7767 return Result->getSDVTList(); 7768 } 7769 7770 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7771 unsigned NumVTs = VTs.size(); 7772 FoldingSetNodeID ID; 7773 ID.AddInteger(NumVTs); 7774 for (unsigned index = 0; index < NumVTs; index++) { 7775 ID.AddInteger(VTs[index].getRawBits()); 7776 } 7777 7778 void *IP = nullptr; 7779 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7780 if (!Result) { 7781 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7782 llvm::copy(VTs, Array); 7783 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7784 VTListMap.InsertNode(Result, IP); 7785 } 7786 return Result->getSDVTList(); 7787 } 7788 7789 7790 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7791 /// specified operands. If the resultant node already exists in the DAG, 7792 /// this does not modify the specified node, instead it returns the node that 7793 /// already exists. If the resultant node does not exist in the DAG, the 7794 /// input node is returned. As a degenerate case, if you specify the same 7795 /// input operands as the node already has, the input node is returned. 7796 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7797 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7798 7799 // Check to see if there is no change. 7800 if (Op == N->getOperand(0)) return N; 7801 7802 // See if the modified node already exists. 7803 void *InsertPos = nullptr; 7804 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7805 return Existing; 7806 7807 // Nope it doesn't. Remove the node from its current place in the maps. 7808 if (InsertPos) 7809 if (!RemoveNodeFromCSEMaps(N)) 7810 InsertPos = nullptr; 7811 7812 // Now we update the operands. 7813 N->OperandList[0].set(Op); 7814 7815 updateDivergence(N); 7816 // If this gets put into a CSE map, add it. 7817 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7818 return N; 7819 } 7820 7821 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7822 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7823 7824 // Check to see if there is no change. 7825 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7826 return N; // No operands changed, just return the input node. 7827 7828 // See if the modified node already exists. 7829 void *InsertPos = nullptr; 7830 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7831 return Existing; 7832 7833 // Nope it doesn't. Remove the node from its current place in the maps. 7834 if (InsertPos) 7835 if (!RemoveNodeFromCSEMaps(N)) 7836 InsertPos = nullptr; 7837 7838 // Now we update the operands. 7839 if (N->OperandList[0] != Op1) 7840 N->OperandList[0].set(Op1); 7841 if (N->OperandList[1] != Op2) 7842 N->OperandList[1].set(Op2); 7843 7844 updateDivergence(N); 7845 // If this gets put into a CSE map, add it. 7846 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7847 return N; 7848 } 7849 7850 SDNode *SelectionDAG:: 7851 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7852 SDValue Ops[] = { Op1, Op2, Op3 }; 7853 return UpdateNodeOperands(N, Ops); 7854 } 7855 7856 SDNode *SelectionDAG:: 7857 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7858 SDValue Op3, SDValue Op4) { 7859 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7860 return UpdateNodeOperands(N, Ops); 7861 } 7862 7863 SDNode *SelectionDAG:: 7864 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7865 SDValue Op3, SDValue Op4, SDValue Op5) { 7866 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7867 return UpdateNodeOperands(N, Ops); 7868 } 7869 7870 SDNode *SelectionDAG:: 7871 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7872 unsigned NumOps = Ops.size(); 7873 assert(N->getNumOperands() == NumOps && 7874 "Update with wrong number of operands"); 7875 7876 // If no operands changed just return the input node. 7877 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7878 return N; 7879 7880 // See if the modified node already exists. 7881 void *InsertPos = nullptr; 7882 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7883 return Existing; 7884 7885 // Nope it doesn't. Remove the node from its current place in the maps. 7886 if (InsertPos) 7887 if (!RemoveNodeFromCSEMaps(N)) 7888 InsertPos = nullptr; 7889 7890 // Now we update the operands. 7891 for (unsigned i = 0; i != NumOps; ++i) 7892 if (N->OperandList[i] != Ops[i]) 7893 N->OperandList[i].set(Ops[i]); 7894 7895 updateDivergence(N); 7896 // If this gets put into a CSE map, add it. 7897 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7898 return N; 7899 } 7900 7901 /// DropOperands - Release the operands and set this node to have 7902 /// zero operands. 7903 void SDNode::DropOperands() { 7904 // Unlike the code in MorphNodeTo that does this, we don't need to 7905 // watch for dead nodes here. 7906 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7907 SDUse &Use = *I++; 7908 Use.set(SDValue()); 7909 } 7910 } 7911 7912 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7913 ArrayRef<MachineMemOperand *> NewMemRefs) { 7914 if (NewMemRefs.empty()) { 7915 N->clearMemRefs(); 7916 return; 7917 } 7918 7919 // Check if we can avoid allocating by storing a single reference directly. 7920 if (NewMemRefs.size() == 1) { 7921 N->MemRefs = NewMemRefs[0]; 7922 N->NumMemRefs = 1; 7923 return; 7924 } 7925 7926 MachineMemOperand **MemRefsBuffer = 7927 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7928 llvm::copy(NewMemRefs, MemRefsBuffer); 7929 N->MemRefs = MemRefsBuffer; 7930 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7931 } 7932 7933 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7934 /// machine opcode. 7935 /// 7936 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7937 EVT VT) { 7938 SDVTList VTs = getVTList(VT); 7939 return SelectNodeTo(N, MachineOpc, VTs, None); 7940 } 7941 7942 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7943 EVT VT, SDValue Op1) { 7944 SDVTList VTs = getVTList(VT); 7945 SDValue Ops[] = { Op1 }; 7946 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7947 } 7948 7949 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7950 EVT VT, SDValue Op1, 7951 SDValue Op2) { 7952 SDVTList VTs = getVTList(VT); 7953 SDValue Ops[] = { Op1, Op2 }; 7954 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7955 } 7956 7957 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7958 EVT VT, SDValue Op1, 7959 SDValue Op2, SDValue Op3) { 7960 SDVTList VTs = getVTList(VT); 7961 SDValue Ops[] = { Op1, Op2, Op3 }; 7962 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7963 } 7964 7965 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7966 EVT VT, ArrayRef<SDValue> Ops) { 7967 SDVTList VTs = getVTList(VT); 7968 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7969 } 7970 7971 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7972 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7973 SDVTList VTs = getVTList(VT1, VT2); 7974 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7975 } 7976 7977 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7978 EVT VT1, EVT VT2) { 7979 SDVTList VTs = getVTList(VT1, VT2); 7980 return SelectNodeTo(N, MachineOpc, VTs, None); 7981 } 7982 7983 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7984 EVT VT1, EVT VT2, EVT VT3, 7985 ArrayRef<SDValue> Ops) { 7986 SDVTList VTs = getVTList(VT1, VT2, VT3); 7987 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7988 } 7989 7990 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7991 EVT VT1, EVT VT2, 7992 SDValue Op1, SDValue Op2) { 7993 SDVTList VTs = getVTList(VT1, VT2); 7994 SDValue Ops[] = { Op1, Op2 }; 7995 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7996 } 7997 7998 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7999 SDVTList VTs,ArrayRef<SDValue> Ops) { 8000 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8001 // Reset the NodeID to -1. 8002 New->setNodeId(-1); 8003 if (New != N) { 8004 ReplaceAllUsesWith(N, New); 8005 RemoveDeadNode(N); 8006 } 8007 return New; 8008 } 8009 8010 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8011 /// the line number information on the merged node since it is not possible to 8012 /// preserve the information that operation is associated with multiple lines. 8013 /// This will make the debugger working better at -O0, were there is a higher 8014 /// probability having other instructions associated with that line. 8015 /// 8016 /// For IROrder, we keep the smaller of the two 8017 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8018 DebugLoc NLoc = N->getDebugLoc(); 8019 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8020 N->setDebugLoc(DebugLoc()); 8021 } 8022 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8023 N->setIROrder(Order); 8024 return N; 8025 } 8026 8027 /// MorphNodeTo - This *mutates* the specified node to have the specified 8028 /// return type, opcode, and operands. 8029 /// 8030 /// Note that MorphNodeTo returns the resultant node. If there is already a 8031 /// node of the specified opcode and operands, it returns that node instead of 8032 /// the current one. Note that the SDLoc need not be the same. 8033 /// 8034 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8035 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8036 /// node, and because it doesn't require CSE recalculation for any of 8037 /// the node's users. 8038 /// 8039 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8040 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8041 /// the legalizer which maintain worklists that would need to be updated when 8042 /// deleting things. 8043 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8044 SDVTList VTs, ArrayRef<SDValue> Ops) { 8045 // If an identical node already exists, use it. 8046 void *IP = nullptr; 8047 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8048 FoldingSetNodeID ID; 8049 AddNodeIDNode(ID, Opc, VTs, Ops); 8050 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8051 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8052 } 8053 8054 if (!RemoveNodeFromCSEMaps(N)) 8055 IP = nullptr; 8056 8057 // Start the morphing. 8058 N->NodeType = Opc; 8059 N->ValueList = VTs.VTs; 8060 N->NumValues = VTs.NumVTs; 8061 8062 // Clear the operands list, updating used nodes to remove this from their 8063 // use list. Keep track of any operands that become dead as a result. 8064 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8065 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8066 SDUse &Use = *I++; 8067 SDNode *Used = Use.getNode(); 8068 Use.set(SDValue()); 8069 if (Used->use_empty()) 8070 DeadNodeSet.insert(Used); 8071 } 8072 8073 // For MachineNode, initialize the memory references information. 8074 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8075 MN->clearMemRefs(); 8076 8077 // Swap for an appropriately sized array from the recycler. 8078 removeOperands(N); 8079 createOperands(N, Ops); 8080 8081 // Delete any nodes that are still dead after adding the uses for the 8082 // new operands. 8083 if (!DeadNodeSet.empty()) { 8084 SmallVector<SDNode *, 16> DeadNodes; 8085 for (SDNode *N : DeadNodeSet) 8086 if (N->use_empty()) 8087 DeadNodes.push_back(N); 8088 RemoveDeadNodes(DeadNodes); 8089 } 8090 8091 if (IP) 8092 CSEMap.InsertNode(N, IP); // Memoize the new node. 8093 return N; 8094 } 8095 8096 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8097 unsigned OrigOpc = Node->getOpcode(); 8098 unsigned NewOpc; 8099 switch (OrigOpc) { 8100 default: 8101 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8102 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8103 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8104 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8105 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8106 #include "llvm/IR/ConstrainedOps.def" 8107 } 8108 8109 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8110 8111 // We're taking this node out of the chain, so we need to re-link things. 8112 SDValue InputChain = Node->getOperand(0); 8113 SDValue OutputChain = SDValue(Node, 1); 8114 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8115 8116 SmallVector<SDValue, 3> Ops; 8117 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8118 Ops.push_back(Node->getOperand(i)); 8119 8120 SDVTList VTs = getVTList(Node->getValueType(0)); 8121 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8122 8123 // MorphNodeTo can operate in two ways: if an existing node with the 8124 // specified operands exists, it can just return it. Otherwise, it 8125 // updates the node in place to have the requested operands. 8126 if (Res == Node) { 8127 // If we updated the node in place, reset the node ID. To the isel, 8128 // this should be just like a newly allocated machine node. 8129 Res->setNodeId(-1); 8130 } else { 8131 ReplaceAllUsesWith(Node, Res); 8132 RemoveDeadNode(Node); 8133 } 8134 8135 return Res; 8136 } 8137 8138 /// getMachineNode - These are used for target selectors to create a new node 8139 /// with specified return type(s), MachineInstr opcode, and operands. 8140 /// 8141 /// Note that getMachineNode returns the resultant node. If there is already a 8142 /// node of the specified opcode and operands, it returns that node instead of 8143 /// the current one. 8144 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8145 EVT VT) { 8146 SDVTList VTs = getVTList(VT); 8147 return getMachineNode(Opcode, dl, VTs, None); 8148 } 8149 8150 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8151 EVT VT, SDValue Op1) { 8152 SDVTList VTs = getVTList(VT); 8153 SDValue Ops[] = { Op1 }; 8154 return getMachineNode(Opcode, dl, VTs, Ops); 8155 } 8156 8157 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8158 EVT VT, SDValue Op1, SDValue Op2) { 8159 SDVTList VTs = getVTList(VT); 8160 SDValue Ops[] = { Op1, Op2 }; 8161 return getMachineNode(Opcode, dl, VTs, Ops); 8162 } 8163 8164 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8165 EVT VT, SDValue Op1, SDValue Op2, 8166 SDValue Op3) { 8167 SDVTList VTs = getVTList(VT); 8168 SDValue Ops[] = { Op1, Op2, Op3 }; 8169 return getMachineNode(Opcode, dl, VTs, Ops); 8170 } 8171 8172 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8173 EVT VT, ArrayRef<SDValue> Ops) { 8174 SDVTList VTs = getVTList(VT); 8175 return getMachineNode(Opcode, dl, VTs, Ops); 8176 } 8177 8178 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8179 EVT VT1, EVT VT2, SDValue Op1, 8180 SDValue Op2) { 8181 SDVTList VTs = getVTList(VT1, VT2); 8182 SDValue Ops[] = { Op1, Op2 }; 8183 return getMachineNode(Opcode, dl, VTs, Ops); 8184 } 8185 8186 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8187 EVT VT1, EVT VT2, SDValue Op1, 8188 SDValue Op2, SDValue Op3) { 8189 SDVTList VTs = getVTList(VT1, VT2); 8190 SDValue Ops[] = { Op1, Op2, Op3 }; 8191 return getMachineNode(Opcode, dl, VTs, Ops); 8192 } 8193 8194 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8195 EVT VT1, EVT VT2, 8196 ArrayRef<SDValue> Ops) { 8197 SDVTList VTs = getVTList(VT1, VT2); 8198 return getMachineNode(Opcode, dl, VTs, Ops); 8199 } 8200 8201 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8202 EVT VT1, EVT VT2, EVT VT3, 8203 SDValue Op1, SDValue Op2) { 8204 SDVTList VTs = getVTList(VT1, VT2, VT3); 8205 SDValue Ops[] = { Op1, Op2 }; 8206 return getMachineNode(Opcode, dl, VTs, Ops); 8207 } 8208 8209 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8210 EVT VT1, EVT VT2, EVT VT3, 8211 SDValue Op1, SDValue Op2, 8212 SDValue Op3) { 8213 SDVTList VTs = getVTList(VT1, VT2, VT3); 8214 SDValue Ops[] = { Op1, Op2, Op3 }; 8215 return getMachineNode(Opcode, dl, VTs, Ops); 8216 } 8217 8218 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8219 EVT VT1, EVT VT2, EVT VT3, 8220 ArrayRef<SDValue> Ops) { 8221 SDVTList VTs = getVTList(VT1, VT2, VT3); 8222 return getMachineNode(Opcode, dl, VTs, Ops); 8223 } 8224 8225 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8226 ArrayRef<EVT> ResultTys, 8227 ArrayRef<SDValue> Ops) { 8228 SDVTList VTs = getVTList(ResultTys); 8229 return getMachineNode(Opcode, dl, VTs, Ops); 8230 } 8231 8232 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8233 SDVTList VTs, 8234 ArrayRef<SDValue> Ops) { 8235 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8236 MachineSDNode *N; 8237 void *IP = nullptr; 8238 8239 if (DoCSE) { 8240 FoldingSetNodeID ID; 8241 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8242 IP = nullptr; 8243 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8244 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8245 } 8246 } 8247 8248 // Allocate a new MachineSDNode. 8249 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8250 createOperands(N, Ops); 8251 8252 if (DoCSE) 8253 CSEMap.InsertNode(N, IP); 8254 8255 InsertNode(N); 8256 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8257 return N; 8258 } 8259 8260 /// getTargetExtractSubreg - A convenience function for creating 8261 /// TargetOpcode::EXTRACT_SUBREG nodes. 8262 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8263 SDValue Operand) { 8264 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8265 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8266 VT, Operand, SRIdxVal); 8267 return SDValue(Subreg, 0); 8268 } 8269 8270 /// getTargetInsertSubreg - A convenience function for creating 8271 /// TargetOpcode::INSERT_SUBREG nodes. 8272 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8273 SDValue Operand, SDValue Subreg) { 8274 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8275 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8276 VT, Operand, Subreg, SRIdxVal); 8277 return SDValue(Result, 0); 8278 } 8279 8280 /// getNodeIfExists - Get the specified node if it's already available, or 8281 /// else return NULL. 8282 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8283 ArrayRef<SDValue> Ops) { 8284 SDNodeFlags Flags; 8285 if (Inserter) 8286 Flags = Inserter->getFlags(); 8287 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8288 } 8289 8290 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8291 ArrayRef<SDValue> Ops, 8292 const SDNodeFlags Flags) { 8293 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8294 FoldingSetNodeID ID; 8295 AddNodeIDNode(ID, Opcode, VTList, Ops); 8296 void *IP = nullptr; 8297 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8298 E->intersectFlagsWith(Flags); 8299 return E; 8300 } 8301 } 8302 return nullptr; 8303 } 8304 8305 /// getDbgValue - Creates a SDDbgValue node. 8306 /// 8307 /// SDNode 8308 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8309 SDNode *N, unsigned R, bool IsIndirect, 8310 const DebugLoc &DL, unsigned O) { 8311 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8312 "Expected inlined-at fields to agree"); 8313 return new (DbgInfo->getAlloc()) 8314 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8315 } 8316 8317 /// Constant 8318 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8319 DIExpression *Expr, 8320 const Value *C, 8321 const DebugLoc &DL, unsigned O) { 8322 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8323 "Expected inlined-at fields to agree"); 8324 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8325 } 8326 8327 /// FrameIndex 8328 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8329 DIExpression *Expr, unsigned FI, 8330 bool IsIndirect, 8331 const DebugLoc &DL, 8332 unsigned O) { 8333 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8334 "Expected inlined-at fields to agree"); 8335 return new (DbgInfo->getAlloc()) 8336 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8337 } 8338 8339 /// VReg 8340 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8341 DIExpression *Expr, 8342 unsigned VReg, bool IsIndirect, 8343 const DebugLoc &DL, unsigned O) { 8344 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8345 "Expected inlined-at fields to agree"); 8346 return new (DbgInfo->getAlloc()) 8347 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8348 } 8349 8350 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8351 unsigned OffsetInBits, unsigned SizeInBits, 8352 bool InvalidateDbg) { 8353 SDNode *FromNode = From.getNode(); 8354 SDNode *ToNode = To.getNode(); 8355 assert(FromNode && ToNode && "Can't modify dbg values"); 8356 8357 // PR35338 8358 // TODO: assert(From != To && "Redundant dbg value transfer"); 8359 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8360 if (From == To || FromNode == ToNode) 8361 return; 8362 8363 if (!FromNode->getHasDebugValue()) 8364 return; 8365 8366 SmallVector<SDDbgValue *, 2> ClonedDVs; 8367 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8368 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8369 continue; 8370 8371 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8372 8373 // Just transfer the dbg value attached to From. 8374 if (Dbg->getResNo() != From.getResNo()) 8375 continue; 8376 8377 DIVariable *Var = Dbg->getVariable(); 8378 auto *Expr = Dbg->getExpression(); 8379 // If a fragment is requested, update the expression. 8380 if (SizeInBits) { 8381 // When splitting a larger (e.g., sign-extended) value whose 8382 // lower bits are described with an SDDbgValue, do not attempt 8383 // to transfer the SDDbgValue to the upper bits. 8384 if (auto FI = Expr->getFragmentInfo()) 8385 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8386 continue; 8387 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8388 SizeInBits); 8389 if (!Fragment) 8390 continue; 8391 Expr = *Fragment; 8392 } 8393 // Clone the SDDbgValue and move it to To. 8394 SDDbgValue *Clone = getDbgValue( 8395 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8396 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8397 ClonedDVs.push_back(Clone); 8398 8399 if (InvalidateDbg) { 8400 // Invalidate value and indicate the SDDbgValue should not be emitted. 8401 Dbg->setIsInvalidated(); 8402 Dbg->setIsEmitted(); 8403 } 8404 } 8405 8406 for (SDDbgValue *Dbg : ClonedDVs) 8407 AddDbgValue(Dbg, ToNode, false); 8408 } 8409 8410 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8411 if (!N.getHasDebugValue()) 8412 return; 8413 8414 SmallVector<SDDbgValue *, 2> ClonedDVs; 8415 for (auto DV : GetDbgValues(&N)) { 8416 if (DV->isInvalidated()) 8417 continue; 8418 switch (N.getOpcode()) { 8419 default: 8420 break; 8421 case ISD::ADD: 8422 SDValue N0 = N.getOperand(0); 8423 SDValue N1 = N.getOperand(1); 8424 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8425 isConstantIntBuildVectorOrConstantInt(N1)) { 8426 uint64_t Offset = N.getConstantOperandVal(1); 8427 // Rewrite an ADD constant node into a DIExpression. Since we are 8428 // performing arithmetic to compute the variable's *value* in the 8429 // DIExpression, we need to mark the expression with a 8430 // DW_OP_stack_value. 8431 auto *DIExpr = DV->getExpression(); 8432 DIExpr = 8433 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8434 SDDbgValue *Clone = 8435 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8436 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8437 ClonedDVs.push_back(Clone); 8438 DV->setIsInvalidated(); 8439 DV->setIsEmitted(); 8440 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8441 N0.getNode()->dumprFull(this); 8442 dbgs() << " into " << *DIExpr << '\n'); 8443 } 8444 } 8445 } 8446 8447 for (SDDbgValue *Dbg : ClonedDVs) 8448 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8449 } 8450 8451 /// Creates a SDDbgLabel node. 8452 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8453 const DebugLoc &DL, unsigned O) { 8454 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8455 "Expected inlined-at fields to agree"); 8456 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8457 } 8458 8459 namespace { 8460 8461 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8462 /// pointed to by a use iterator is deleted, increment the use iterator 8463 /// so that it doesn't dangle. 8464 /// 8465 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8466 SDNode::use_iterator &UI; 8467 SDNode::use_iterator &UE; 8468 8469 void NodeDeleted(SDNode *N, SDNode *E) override { 8470 // Increment the iterator as needed. 8471 while (UI != UE && N == *UI) 8472 ++UI; 8473 } 8474 8475 public: 8476 RAUWUpdateListener(SelectionDAG &d, 8477 SDNode::use_iterator &ui, 8478 SDNode::use_iterator &ue) 8479 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8480 }; 8481 8482 } // end anonymous namespace 8483 8484 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8485 /// This can cause recursive merging of nodes in the DAG. 8486 /// 8487 /// This version assumes From has a single result value. 8488 /// 8489 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8490 SDNode *From = FromN.getNode(); 8491 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8492 "Cannot replace with this method!"); 8493 assert(From != To.getNode() && "Cannot replace uses of with self"); 8494 8495 // Preserve Debug Values 8496 transferDbgValues(FromN, To); 8497 8498 // Iterate over all the existing uses of From. New uses will be added 8499 // to the beginning of the use list, which we avoid visiting. 8500 // This specifically avoids visiting uses of From that arise while the 8501 // replacement is happening, because any such uses would be the result 8502 // of CSE: If an existing node looks like From after one of its operands 8503 // is replaced by To, we don't want to replace of all its users with To 8504 // too. See PR3018 for more info. 8505 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8506 RAUWUpdateListener Listener(*this, UI, UE); 8507 while (UI != UE) { 8508 SDNode *User = *UI; 8509 8510 // This node is about to morph, remove its old self from the CSE maps. 8511 RemoveNodeFromCSEMaps(User); 8512 8513 // A user can appear in a use list multiple times, and when this 8514 // happens the uses are usually next to each other in the list. 8515 // To help reduce the number of CSE recomputations, process all 8516 // the uses of this user that we can find this way. 8517 do { 8518 SDUse &Use = UI.getUse(); 8519 ++UI; 8520 Use.set(To); 8521 if (To->isDivergent() != From->isDivergent()) 8522 updateDivergence(User); 8523 } while (UI != UE && *UI == User); 8524 // Now that we have modified User, add it back to the CSE maps. If it 8525 // already exists there, recursively merge the results together. 8526 AddModifiedNodeToCSEMaps(User); 8527 } 8528 8529 // If we just RAUW'd the root, take note. 8530 if (FromN == getRoot()) 8531 setRoot(To); 8532 } 8533 8534 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8535 /// This can cause recursive merging of nodes in the DAG. 8536 /// 8537 /// This version assumes that for each value of From, there is a 8538 /// corresponding value in To in the same position with the same type. 8539 /// 8540 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8541 #ifndef NDEBUG 8542 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8543 assert((!From->hasAnyUseOfValue(i) || 8544 From->getValueType(i) == To->getValueType(i)) && 8545 "Cannot use this version of ReplaceAllUsesWith!"); 8546 #endif 8547 8548 // Handle the trivial case. 8549 if (From == To) 8550 return; 8551 8552 // Preserve Debug Info. Only do this if there's a use. 8553 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8554 if (From->hasAnyUseOfValue(i)) { 8555 assert((i < To->getNumValues()) && "Invalid To location"); 8556 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8557 } 8558 8559 // Iterate over just the existing users of From. See the comments in 8560 // the ReplaceAllUsesWith above. 8561 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8562 RAUWUpdateListener Listener(*this, UI, UE); 8563 while (UI != UE) { 8564 SDNode *User = *UI; 8565 8566 // This node is about to morph, remove its old self from the CSE maps. 8567 RemoveNodeFromCSEMaps(User); 8568 8569 // A user can appear in a use list multiple times, and when this 8570 // happens the uses are usually next to each other in the list. 8571 // To help reduce the number of CSE recomputations, process all 8572 // the uses of this user that we can find this way. 8573 do { 8574 SDUse &Use = UI.getUse(); 8575 ++UI; 8576 Use.setNode(To); 8577 if (To->isDivergent() != From->isDivergent()) 8578 updateDivergence(User); 8579 } while (UI != UE && *UI == User); 8580 8581 // Now that we have modified User, add it back to the CSE maps. If it 8582 // already exists there, recursively merge the results together. 8583 AddModifiedNodeToCSEMaps(User); 8584 } 8585 8586 // If we just RAUW'd the root, take note. 8587 if (From == getRoot().getNode()) 8588 setRoot(SDValue(To, getRoot().getResNo())); 8589 } 8590 8591 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8592 /// This can cause recursive merging of nodes in the DAG. 8593 /// 8594 /// This version can replace From with any result values. To must match the 8595 /// number and types of values returned by From. 8596 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8597 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8598 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8599 8600 // Preserve Debug Info. 8601 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8602 transferDbgValues(SDValue(From, i), To[i]); 8603 8604 // Iterate over just the existing users of From. See the comments in 8605 // the ReplaceAllUsesWith above. 8606 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8607 RAUWUpdateListener Listener(*this, UI, UE); 8608 while (UI != UE) { 8609 SDNode *User = *UI; 8610 8611 // This node is about to morph, remove its old self from the CSE maps. 8612 RemoveNodeFromCSEMaps(User); 8613 8614 // A user can appear in a use list multiple times, and when this happens the 8615 // uses are usually next to each other in the list. To help reduce the 8616 // number of CSE and divergence recomputations, process all the uses of this 8617 // user that we can find this way. 8618 bool To_IsDivergent = false; 8619 do { 8620 SDUse &Use = UI.getUse(); 8621 const SDValue &ToOp = To[Use.getResNo()]; 8622 ++UI; 8623 Use.set(ToOp); 8624 To_IsDivergent |= ToOp->isDivergent(); 8625 } while (UI != UE && *UI == User); 8626 8627 if (To_IsDivergent != From->isDivergent()) 8628 updateDivergence(User); 8629 8630 // Now that we have modified User, add it back to the CSE maps. If it 8631 // already exists there, recursively merge the results together. 8632 AddModifiedNodeToCSEMaps(User); 8633 } 8634 8635 // If we just RAUW'd the root, take note. 8636 if (From == getRoot().getNode()) 8637 setRoot(SDValue(To[getRoot().getResNo()])); 8638 } 8639 8640 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8641 /// uses of other values produced by From.getNode() alone. The Deleted 8642 /// vector is handled the same way as for ReplaceAllUsesWith. 8643 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8644 // Handle the really simple, really trivial case efficiently. 8645 if (From == To) return; 8646 8647 // Handle the simple, trivial, case efficiently. 8648 if (From.getNode()->getNumValues() == 1) { 8649 ReplaceAllUsesWith(From, To); 8650 return; 8651 } 8652 8653 // Preserve Debug Info. 8654 transferDbgValues(From, To); 8655 8656 // Iterate over just the existing users of From. See the comments in 8657 // the ReplaceAllUsesWith above. 8658 SDNode::use_iterator UI = From.getNode()->use_begin(), 8659 UE = From.getNode()->use_end(); 8660 RAUWUpdateListener Listener(*this, UI, UE); 8661 while (UI != UE) { 8662 SDNode *User = *UI; 8663 bool UserRemovedFromCSEMaps = false; 8664 8665 // A user can appear in a use list multiple times, and when this 8666 // happens the uses are usually next to each other in the list. 8667 // To help reduce the number of CSE recomputations, process all 8668 // the uses of this user that we can find this way. 8669 do { 8670 SDUse &Use = UI.getUse(); 8671 8672 // Skip uses of different values from the same node. 8673 if (Use.getResNo() != From.getResNo()) { 8674 ++UI; 8675 continue; 8676 } 8677 8678 // If this node hasn't been modified yet, it's still in the CSE maps, 8679 // so remove its old self from the CSE maps. 8680 if (!UserRemovedFromCSEMaps) { 8681 RemoveNodeFromCSEMaps(User); 8682 UserRemovedFromCSEMaps = true; 8683 } 8684 8685 ++UI; 8686 Use.set(To); 8687 if (To->isDivergent() != From->isDivergent()) 8688 updateDivergence(User); 8689 } while (UI != UE && *UI == User); 8690 // We are iterating over all uses of the From node, so if a use 8691 // doesn't use the specific value, no changes are made. 8692 if (!UserRemovedFromCSEMaps) 8693 continue; 8694 8695 // Now that we have modified User, add it back to the CSE maps. If it 8696 // already exists there, recursively merge the results together. 8697 AddModifiedNodeToCSEMaps(User); 8698 } 8699 8700 // If we just RAUW'd the root, take note. 8701 if (From == getRoot()) 8702 setRoot(To); 8703 } 8704 8705 namespace { 8706 8707 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8708 /// to record information about a use. 8709 struct UseMemo { 8710 SDNode *User; 8711 unsigned Index; 8712 SDUse *Use; 8713 }; 8714 8715 /// operator< - Sort Memos by User. 8716 bool operator<(const UseMemo &L, const UseMemo &R) { 8717 return (intptr_t)L.User < (intptr_t)R.User; 8718 } 8719 8720 } // end anonymous namespace 8721 8722 bool SelectionDAG::calculateDivergence(SDNode *N) { 8723 if (TLI->isSDNodeAlwaysUniform(N)) { 8724 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8725 "Conflicting divergence information!"); 8726 return false; 8727 } 8728 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8729 return true; 8730 for (auto &Op : N->ops()) { 8731 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8732 return true; 8733 } 8734 return false; 8735 } 8736 8737 void SelectionDAG::updateDivergence(SDNode *N) { 8738 SmallVector<SDNode *, 16> Worklist(1, N); 8739 do { 8740 N = Worklist.pop_back_val(); 8741 bool IsDivergent = calculateDivergence(N); 8742 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8743 N->SDNodeBits.IsDivergent = IsDivergent; 8744 Worklist.insert(Worklist.end(), N->use_begin(), N->use_end()); 8745 } 8746 } while (!Worklist.empty()); 8747 } 8748 8749 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8750 DenseMap<SDNode *, unsigned> Degree; 8751 Order.reserve(AllNodes.size()); 8752 for (auto &N : allnodes()) { 8753 unsigned NOps = N.getNumOperands(); 8754 Degree[&N] = NOps; 8755 if (0 == NOps) 8756 Order.push_back(&N); 8757 } 8758 for (size_t I = 0; I != Order.size(); ++I) { 8759 SDNode *N = Order[I]; 8760 for (auto U : N->uses()) { 8761 unsigned &UnsortedOps = Degree[U]; 8762 if (0 == --UnsortedOps) 8763 Order.push_back(U); 8764 } 8765 } 8766 } 8767 8768 #ifndef NDEBUG 8769 void SelectionDAG::VerifyDAGDiverence() { 8770 std::vector<SDNode *> TopoOrder; 8771 CreateTopologicalOrder(TopoOrder); 8772 for (auto *N : TopoOrder) { 8773 assert(calculateDivergence(N) == N->isDivergent() && 8774 "Divergence bit inconsistency detected"); 8775 } 8776 } 8777 #endif 8778 8779 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8780 /// uses of other values produced by From.getNode() alone. The same value 8781 /// may appear in both the From and To list. The Deleted vector is 8782 /// handled the same way as for ReplaceAllUsesWith. 8783 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8784 const SDValue *To, 8785 unsigned Num){ 8786 // Handle the simple, trivial case efficiently. 8787 if (Num == 1) 8788 return ReplaceAllUsesOfValueWith(*From, *To); 8789 8790 transferDbgValues(*From, *To); 8791 8792 // Read up all the uses and make records of them. This helps 8793 // processing new uses that are introduced during the 8794 // replacement process. 8795 SmallVector<UseMemo, 4> Uses; 8796 for (unsigned i = 0; i != Num; ++i) { 8797 unsigned FromResNo = From[i].getResNo(); 8798 SDNode *FromNode = From[i].getNode(); 8799 for (SDNode::use_iterator UI = FromNode->use_begin(), 8800 E = FromNode->use_end(); UI != E; ++UI) { 8801 SDUse &Use = UI.getUse(); 8802 if (Use.getResNo() == FromResNo) { 8803 UseMemo Memo = { *UI, i, &Use }; 8804 Uses.push_back(Memo); 8805 } 8806 } 8807 } 8808 8809 // Sort the uses, so that all the uses from a given User are together. 8810 llvm::sort(Uses); 8811 8812 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8813 UseIndex != UseIndexEnd; ) { 8814 // We know that this user uses some value of From. If it is the right 8815 // value, update it. 8816 SDNode *User = Uses[UseIndex].User; 8817 8818 // This node is about to morph, remove its old self from the CSE maps. 8819 RemoveNodeFromCSEMaps(User); 8820 8821 // The Uses array is sorted, so all the uses for a given User 8822 // are next to each other in the list. 8823 // To help reduce the number of CSE recomputations, process all 8824 // the uses of this user that we can find this way. 8825 do { 8826 unsigned i = Uses[UseIndex].Index; 8827 SDUse &Use = *Uses[UseIndex].Use; 8828 ++UseIndex; 8829 8830 Use.set(To[i]); 8831 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8832 8833 // Now that we have modified User, add it back to the CSE maps. If it 8834 // already exists there, recursively merge the results together. 8835 AddModifiedNodeToCSEMaps(User); 8836 } 8837 } 8838 8839 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8840 /// based on their topological order. It returns the maximum id and a vector 8841 /// of the SDNodes* in assigned order by reference. 8842 unsigned SelectionDAG::AssignTopologicalOrder() { 8843 unsigned DAGSize = 0; 8844 8845 // SortedPos tracks the progress of the algorithm. Nodes before it are 8846 // sorted, nodes after it are unsorted. When the algorithm completes 8847 // it is at the end of the list. 8848 allnodes_iterator SortedPos = allnodes_begin(); 8849 8850 // Visit all the nodes. Move nodes with no operands to the front of 8851 // the list immediately. Annotate nodes that do have operands with their 8852 // operand count. Before we do this, the Node Id fields of the nodes 8853 // may contain arbitrary values. After, the Node Id fields for nodes 8854 // before SortedPos will contain the topological sort index, and the 8855 // Node Id fields for nodes At SortedPos and after will contain the 8856 // count of outstanding operands. 8857 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8858 SDNode *N = &*I++; 8859 checkForCycles(N, this); 8860 unsigned Degree = N->getNumOperands(); 8861 if (Degree == 0) { 8862 // A node with no uses, add it to the result array immediately. 8863 N->setNodeId(DAGSize++); 8864 allnodes_iterator Q(N); 8865 if (Q != SortedPos) 8866 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8867 assert(SortedPos != AllNodes.end() && "Overran node list"); 8868 ++SortedPos; 8869 } else { 8870 // Temporarily use the Node Id as scratch space for the degree count. 8871 N->setNodeId(Degree); 8872 } 8873 } 8874 8875 // Visit all the nodes. As we iterate, move nodes into sorted order, 8876 // such that by the time the end is reached all nodes will be sorted. 8877 for (SDNode &Node : allnodes()) { 8878 SDNode *N = &Node; 8879 checkForCycles(N, this); 8880 // N is in sorted position, so all its uses have one less operand 8881 // that needs to be sorted. 8882 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8883 UI != UE; ++UI) { 8884 SDNode *P = *UI; 8885 unsigned Degree = P->getNodeId(); 8886 assert(Degree != 0 && "Invalid node degree"); 8887 --Degree; 8888 if (Degree == 0) { 8889 // All of P's operands are sorted, so P may sorted now. 8890 P->setNodeId(DAGSize++); 8891 if (P->getIterator() != SortedPos) 8892 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8893 assert(SortedPos != AllNodes.end() && "Overran node list"); 8894 ++SortedPos; 8895 } else { 8896 // Update P's outstanding operand count. 8897 P->setNodeId(Degree); 8898 } 8899 } 8900 if (Node.getIterator() == SortedPos) { 8901 #ifndef NDEBUG 8902 allnodes_iterator I(N); 8903 SDNode *S = &*++I; 8904 dbgs() << "Overran sorted position:\n"; 8905 S->dumprFull(this); dbgs() << "\n"; 8906 dbgs() << "Checking if this is due to cycles\n"; 8907 checkForCycles(this, true); 8908 #endif 8909 llvm_unreachable(nullptr); 8910 } 8911 } 8912 8913 assert(SortedPos == AllNodes.end() && 8914 "Topological sort incomplete!"); 8915 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8916 "First node in topological sort is not the entry token!"); 8917 assert(AllNodes.front().getNodeId() == 0 && 8918 "First node in topological sort has non-zero id!"); 8919 assert(AllNodes.front().getNumOperands() == 0 && 8920 "First node in topological sort has operands!"); 8921 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8922 "Last node in topologic sort has unexpected id!"); 8923 assert(AllNodes.back().use_empty() && 8924 "Last node in topologic sort has users!"); 8925 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8926 return DAGSize; 8927 } 8928 8929 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8930 /// value is produced by SD. 8931 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8932 if (SD) { 8933 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8934 SD->setHasDebugValue(true); 8935 } 8936 DbgInfo->add(DB, SD, isParameter); 8937 } 8938 8939 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8940 DbgInfo->add(DB); 8941 } 8942 8943 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8944 SDValue NewMemOp) { 8945 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8946 // The new memory operation must have the same position as the old load in 8947 // terms of memory dependency. Create a TokenFactor for the old load and new 8948 // memory operation and update uses of the old load's output chain to use that 8949 // TokenFactor. 8950 SDValue OldChain = SDValue(OldLoad, 1); 8951 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8952 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8953 return NewChain; 8954 8955 SDValue TokenFactor = 8956 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8957 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8958 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8959 return TokenFactor; 8960 } 8961 8962 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8963 Function **OutFunction) { 8964 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8965 8966 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8967 auto *Module = MF->getFunction().getParent(); 8968 auto *Function = Module->getFunction(Symbol); 8969 8970 if (OutFunction != nullptr) 8971 *OutFunction = Function; 8972 8973 if (Function != nullptr) { 8974 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8975 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8976 } 8977 8978 std::string ErrorStr; 8979 raw_string_ostream ErrorFormatter(ErrorStr); 8980 8981 ErrorFormatter << "Undefined external symbol "; 8982 ErrorFormatter << '"' << Symbol << '"'; 8983 ErrorFormatter.flush(); 8984 8985 report_fatal_error(ErrorStr); 8986 } 8987 8988 //===----------------------------------------------------------------------===// 8989 // SDNode Class 8990 //===----------------------------------------------------------------------===// 8991 8992 bool llvm::isNullConstant(SDValue V) { 8993 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8994 return Const != nullptr && Const->isNullValue(); 8995 } 8996 8997 bool llvm::isNullFPConstant(SDValue V) { 8998 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8999 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9000 } 9001 9002 bool llvm::isAllOnesConstant(SDValue V) { 9003 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9004 return Const != nullptr && Const->isAllOnesValue(); 9005 } 9006 9007 bool llvm::isOneConstant(SDValue V) { 9008 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9009 return Const != nullptr && Const->isOne(); 9010 } 9011 9012 SDValue llvm::peekThroughBitcasts(SDValue V) { 9013 while (V.getOpcode() == ISD::BITCAST) 9014 V = V.getOperand(0); 9015 return V; 9016 } 9017 9018 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9019 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9020 V = V.getOperand(0); 9021 return V; 9022 } 9023 9024 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9025 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9026 V = V.getOperand(0); 9027 return V; 9028 } 9029 9030 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9031 if (V.getOpcode() != ISD::XOR) 9032 return false; 9033 V = peekThroughBitcasts(V.getOperand(1)); 9034 unsigned NumBits = V.getScalarValueSizeInBits(); 9035 ConstantSDNode *C = 9036 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9037 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9038 } 9039 9040 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9041 bool AllowTruncation) { 9042 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9043 return CN; 9044 9045 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9046 BitVector UndefElements; 9047 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9048 9049 // BuildVectors can truncate their operands. Ignore that case here unless 9050 // AllowTruncation is set. 9051 if (CN && (UndefElements.none() || AllowUndefs)) { 9052 EVT CVT = CN->getValueType(0); 9053 EVT NSVT = N.getValueType().getScalarType(); 9054 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9055 if (AllowTruncation || (CVT == NSVT)) 9056 return CN; 9057 } 9058 } 9059 9060 return nullptr; 9061 } 9062 9063 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9064 bool AllowUndefs, 9065 bool AllowTruncation) { 9066 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9067 return CN; 9068 9069 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9070 BitVector UndefElements; 9071 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9072 9073 // BuildVectors can truncate their operands. Ignore that case here unless 9074 // AllowTruncation is set. 9075 if (CN && (UndefElements.none() || AllowUndefs)) { 9076 EVT CVT = CN->getValueType(0); 9077 EVT NSVT = N.getValueType().getScalarType(); 9078 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9079 if (AllowTruncation || (CVT == NSVT)) 9080 return CN; 9081 } 9082 } 9083 9084 return nullptr; 9085 } 9086 9087 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9088 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9089 return CN; 9090 9091 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9092 BitVector UndefElements; 9093 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9094 if (CN && (UndefElements.none() || AllowUndefs)) 9095 return CN; 9096 } 9097 9098 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9099 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9100 return CN; 9101 9102 return nullptr; 9103 } 9104 9105 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9106 const APInt &DemandedElts, 9107 bool AllowUndefs) { 9108 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9109 return CN; 9110 9111 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9112 BitVector UndefElements; 9113 ConstantFPSDNode *CN = 9114 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9115 if (CN && (UndefElements.none() || AllowUndefs)) 9116 return CN; 9117 } 9118 9119 return nullptr; 9120 } 9121 9122 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9123 // TODO: may want to use peekThroughBitcast() here. 9124 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9125 return C && C->isNullValue(); 9126 } 9127 9128 bool llvm::isOneOrOneSplat(SDValue N) { 9129 // TODO: may want to use peekThroughBitcast() here. 9130 unsigned BitWidth = N.getScalarValueSizeInBits(); 9131 ConstantSDNode *C = isConstOrConstSplat(N); 9132 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9133 } 9134 9135 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9136 N = peekThroughBitcasts(N); 9137 unsigned BitWidth = N.getScalarValueSizeInBits(); 9138 ConstantSDNode *C = isConstOrConstSplat(N); 9139 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9140 } 9141 9142 HandleSDNode::~HandleSDNode() { 9143 DropOperands(); 9144 } 9145 9146 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9147 const DebugLoc &DL, 9148 const GlobalValue *GA, EVT VT, 9149 int64_t o, unsigned TF) 9150 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9151 TheGlobal = GA; 9152 } 9153 9154 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9155 EVT VT, unsigned SrcAS, 9156 unsigned DestAS) 9157 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9158 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9159 9160 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9161 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9162 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9163 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9164 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9165 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9166 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9167 9168 // We check here that the size of the memory operand fits within the size of 9169 // the MMO. This is because the MMO might indicate only a possible address 9170 // range instead of specifying the affected memory addresses precisely. 9171 // TODO: Make MachineMemOperands aware of scalable vectors. 9172 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9173 "Size mismatch!"); 9174 } 9175 9176 /// Profile - Gather unique data for the node. 9177 /// 9178 void SDNode::Profile(FoldingSetNodeID &ID) const { 9179 AddNodeIDNode(ID, this); 9180 } 9181 9182 namespace { 9183 9184 struct EVTArray { 9185 std::vector<EVT> VTs; 9186 9187 EVTArray() { 9188 VTs.reserve(MVT::LAST_VALUETYPE); 9189 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9190 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9191 } 9192 }; 9193 9194 } // end anonymous namespace 9195 9196 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9197 static ManagedStatic<EVTArray> SimpleVTArray; 9198 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9199 9200 /// getValueTypeList - Return a pointer to the specified value type. 9201 /// 9202 const EVT *SDNode::getValueTypeList(EVT VT) { 9203 if (VT.isExtended()) { 9204 sys::SmartScopedLock<true> Lock(*VTMutex); 9205 return &(*EVTs->insert(VT).first); 9206 } else { 9207 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9208 "Value type out of range!"); 9209 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9210 } 9211 } 9212 9213 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9214 /// indicated value. This method ignores uses of other values defined by this 9215 /// operation. 9216 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9217 assert(Value < getNumValues() && "Bad value!"); 9218 9219 // TODO: Only iterate over uses of a given value of the node 9220 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9221 if (UI.getUse().getResNo() == Value) { 9222 if (NUses == 0) 9223 return false; 9224 --NUses; 9225 } 9226 } 9227 9228 // Found exactly the right number of uses? 9229 return NUses == 0; 9230 } 9231 9232 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9233 /// value. This method ignores uses of other values defined by this operation. 9234 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9235 assert(Value < getNumValues() && "Bad value!"); 9236 9237 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9238 if (UI.getUse().getResNo() == Value) 9239 return true; 9240 9241 return false; 9242 } 9243 9244 /// isOnlyUserOf - Return true if this node is the only use of N. 9245 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9246 bool Seen = false; 9247 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9248 SDNode *User = *I; 9249 if (User == this) 9250 Seen = true; 9251 else 9252 return false; 9253 } 9254 9255 return Seen; 9256 } 9257 9258 /// Return true if the only users of N are contained in Nodes. 9259 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9260 bool Seen = false; 9261 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9262 SDNode *User = *I; 9263 if (llvm::any_of(Nodes, 9264 [&User](const SDNode *Node) { return User == Node; })) 9265 Seen = true; 9266 else 9267 return false; 9268 } 9269 9270 return Seen; 9271 } 9272 9273 /// isOperand - Return true if this node is an operand of N. 9274 bool SDValue::isOperandOf(const SDNode *N) const { 9275 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9276 } 9277 9278 bool SDNode::isOperandOf(const SDNode *N) const { 9279 return any_of(N->op_values(), 9280 [this](SDValue Op) { return this == Op.getNode(); }); 9281 } 9282 9283 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9284 /// be a chain) reaches the specified operand without crossing any 9285 /// side-effecting instructions on any chain path. In practice, this looks 9286 /// through token factors and non-volatile loads. In order to remain efficient, 9287 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9288 /// 9289 /// Note that we only need to examine chains when we're searching for 9290 /// side-effects; SelectionDAG requires that all side-effects are represented 9291 /// by chains, even if another operand would force a specific ordering. This 9292 /// constraint is necessary to allow transformations like splitting loads. 9293 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9294 unsigned Depth) const { 9295 if (*this == Dest) return true; 9296 9297 // Don't search too deeply, we just want to be able to see through 9298 // TokenFactor's etc. 9299 if (Depth == 0) return false; 9300 9301 // If this is a token factor, all inputs to the TF happen in parallel. 9302 if (getOpcode() == ISD::TokenFactor) { 9303 // First, try a shallow search. 9304 if (is_contained((*this)->ops(), Dest)) { 9305 // We found the chain we want as an operand of this TokenFactor. 9306 // Essentially, we reach the chain without side-effects if we could 9307 // serialize the TokenFactor into a simple chain of operations with 9308 // Dest as the last operation. This is automatically true if the 9309 // chain has one use: there are no other ordering constraints. 9310 // If the chain has more than one use, we give up: some other 9311 // use of Dest might force a side-effect between Dest and the current 9312 // node. 9313 if (Dest.hasOneUse()) 9314 return true; 9315 } 9316 // Next, try a deep search: check whether every operand of the TokenFactor 9317 // reaches Dest. 9318 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9319 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9320 }); 9321 } 9322 9323 // Loads don't have side effects, look through them. 9324 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9325 if (Ld->isUnordered()) 9326 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9327 } 9328 return false; 9329 } 9330 9331 bool SDNode::hasPredecessor(const SDNode *N) const { 9332 SmallPtrSet<const SDNode *, 32> Visited; 9333 SmallVector<const SDNode *, 16> Worklist; 9334 Worklist.push_back(this); 9335 return hasPredecessorHelper(N, Visited, Worklist); 9336 } 9337 9338 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9339 this->Flags.intersectWith(Flags); 9340 } 9341 9342 SDValue 9343 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9344 ArrayRef<ISD::NodeType> CandidateBinOps, 9345 bool AllowPartials) { 9346 // The pattern must end in an extract from index 0. 9347 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9348 !isNullConstant(Extract->getOperand(1))) 9349 return SDValue(); 9350 9351 // Match against one of the candidate binary ops. 9352 SDValue Op = Extract->getOperand(0); 9353 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9354 return Op.getOpcode() == unsigned(BinOp); 9355 })) 9356 return SDValue(); 9357 9358 // Floating-point reductions may require relaxed constraints on the final step 9359 // of the reduction because they may reorder intermediate operations. 9360 unsigned CandidateBinOp = Op.getOpcode(); 9361 if (Op.getValueType().isFloatingPoint()) { 9362 SDNodeFlags Flags = Op->getFlags(); 9363 switch (CandidateBinOp) { 9364 case ISD::FADD: 9365 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9366 return SDValue(); 9367 break; 9368 default: 9369 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9370 } 9371 } 9372 9373 // Matching failed - attempt to see if we did enough stages that a partial 9374 // reduction from a subvector is possible. 9375 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9376 if (!AllowPartials || !Op) 9377 return SDValue(); 9378 EVT OpVT = Op.getValueType(); 9379 EVT OpSVT = OpVT.getScalarType(); 9380 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9381 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9382 return SDValue(); 9383 BinOp = (ISD::NodeType)CandidateBinOp; 9384 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9385 getVectorIdxConstant(0, SDLoc(Op))); 9386 }; 9387 9388 // At each stage, we're looking for something that looks like: 9389 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9390 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9391 // i32 undef, i32 undef, i32 undef, i32 undef> 9392 // %a = binop <8 x i32> %op, %s 9393 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9394 // we expect something like: 9395 // <4,5,6,7,u,u,u,u> 9396 // <2,3,u,u,u,u,u,u> 9397 // <1,u,u,u,u,u,u,u> 9398 // While a partial reduction match would be: 9399 // <2,3,u,u,u,u,u,u> 9400 // <1,u,u,u,u,u,u,u> 9401 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9402 SDValue PrevOp; 9403 for (unsigned i = 0; i < Stages; ++i) { 9404 unsigned MaskEnd = (1 << i); 9405 9406 if (Op.getOpcode() != CandidateBinOp) 9407 return PartialReduction(PrevOp, MaskEnd); 9408 9409 SDValue Op0 = Op.getOperand(0); 9410 SDValue Op1 = Op.getOperand(1); 9411 9412 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9413 if (Shuffle) { 9414 Op = Op1; 9415 } else { 9416 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9417 Op = Op0; 9418 } 9419 9420 // The first operand of the shuffle should be the same as the other operand 9421 // of the binop. 9422 if (!Shuffle || Shuffle->getOperand(0) != Op) 9423 return PartialReduction(PrevOp, MaskEnd); 9424 9425 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9426 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9427 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9428 return PartialReduction(PrevOp, MaskEnd); 9429 9430 PrevOp = Op; 9431 } 9432 9433 // Handle subvector reductions, which tend to appear after the shuffle 9434 // reduction stages. 9435 while (Op.getOpcode() == CandidateBinOp) { 9436 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9437 SDValue Op0 = Op.getOperand(0); 9438 SDValue Op1 = Op.getOperand(1); 9439 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9440 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9441 Op0.getOperand(0) != Op1.getOperand(0)) 9442 break; 9443 SDValue Src = Op0.getOperand(0); 9444 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9445 if (NumSrcElts != (2 * NumElts)) 9446 break; 9447 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9448 Op1.getConstantOperandAPInt(1) == NumElts) && 9449 !(Op1.getConstantOperandAPInt(1) == 0 && 9450 Op0.getConstantOperandAPInt(1) == NumElts)) 9451 break; 9452 Op = Src; 9453 } 9454 9455 BinOp = (ISD::NodeType)CandidateBinOp; 9456 return Op; 9457 } 9458 9459 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9460 assert(N->getNumValues() == 1 && 9461 "Can't unroll a vector with multiple results!"); 9462 9463 EVT VT = N->getValueType(0); 9464 unsigned NE = VT.getVectorNumElements(); 9465 EVT EltVT = VT.getVectorElementType(); 9466 SDLoc dl(N); 9467 9468 SmallVector<SDValue, 8> Scalars; 9469 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9470 9471 // If ResNE is 0, fully unroll the vector op. 9472 if (ResNE == 0) 9473 ResNE = NE; 9474 else if (NE > ResNE) 9475 NE = ResNE; 9476 9477 unsigned i; 9478 for (i= 0; i != NE; ++i) { 9479 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9480 SDValue Operand = N->getOperand(j); 9481 EVT OperandVT = Operand.getValueType(); 9482 if (OperandVT.isVector()) { 9483 // A vector operand; extract a single element. 9484 EVT OperandEltVT = OperandVT.getVectorElementType(); 9485 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9486 Operand, getVectorIdxConstant(i, dl)); 9487 } else { 9488 // A scalar operand; just use it as is. 9489 Operands[j] = Operand; 9490 } 9491 } 9492 9493 switch (N->getOpcode()) { 9494 default: { 9495 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9496 N->getFlags())); 9497 break; 9498 } 9499 case ISD::VSELECT: 9500 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9501 break; 9502 case ISD::SHL: 9503 case ISD::SRA: 9504 case ISD::SRL: 9505 case ISD::ROTL: 9506 case ISD::ROTR: 9507 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9508 getShiftAmountOperand(Operands[0].getValueType(), 9509 Operands[1]))); 9510 break; 9511 case ISD::SIGN_EXTEND_INREG: { 9512 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9513 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9514 Operands[0], 9515 getValueType(ExtVT))); 9516 } 9517 } 9518 } 9519 9520 for (; i < ResNE; ++i) 9521 Scalars.push_back(getUNDEF(EltVT)); 9522 9523 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9524 return getBuildVector(VecVT, dl, Scalars); 9525 } 9526 9527 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9528 SDNode *N, unsigned ResNE) { 9529 unsigned Opcode = N->getOpcode(); 9530 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9531 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9532 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9533 "Expected an overflow opcode"); 9534 9535 EVT ResVT = N->getValueType(0); 9536 EVT OvVT = N->getValueType(1); 9537 EVT ResEltVT = ResVT.getVectorElementType(); 9538 EVT OvEltVT = OvVT.getVectorElementType(); 9539 SDLoc dl(N); 9540 9541 // If ResNE is 0, fully unroll the vector op. 9542 unsigned NE = ResVT.getVectorNumElements(); 9543 if (ResNE == 0) 9544 ResNE = NE; 9545 else if (NE > ResNE) 9546 NE = ResNE; 9547 9548 SmallVector<SDValue, 8> LHSScalars; 9549 SmallVector<SDValue, 8> RHSScalars; 9550 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9551 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9552 9553 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9554 SDVTList VTs = getVTList(ResEltVT, SVT); 9555 SmallVector<SDValue, 8> ResScalars; 9556 SmallVector<SDValue, 8> OvScalars; 9557 for (unsigned i = 0; i < NE; ++i) { 9558 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9559 SDValue Ov = 9560 getSelect(dl, OvEltVT, Res.getValue(1), 9561 getBoolConstant(true, dl, OvEltVT, ResVT), 9562 getConstant(0, dl, OvEltVT)); 9563 9564 ResScalars.push_back(Res); 9565 OvScalars.push_back(Ov); 9566 } 9567 9568 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9569 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9570 9571 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9572 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9573 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9574 getBuildVector(NewOvVT, dl, OvScalars)); 9575 } 9576 9577 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9578 LoadSDNode *Base, 9579 unsigned Bytes, 9580 int Dist) const { 9581 if (LD->isVolatile() || Base->isVolatile()) 9582 return false; 9583 // TODO: probably too restrictive for atomics, revisit 9584 if (!LD->isSimple()) 9585 return false; 9586 if (LD->isIndexed() || Base->isIndexed()) 9587 return false; 9588 if (LD->getChain() != Base->getChain()) 9589 return false; 9590 EVT VT = LD->getValueType(0); 9591 if (VT.getSizeInBits() / 8 != Bytes) 9592 return false; 9593 9594 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9595 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9596 9597 int64_t Offset = 0; 9598 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9599 return (Dist * Bytes == Offset); 9600 return false; 9601 } 9602 9603 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9604 /// if it cannot be inferred. 9605 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9606 // If this is a GlobalAddress + cst, return the alignment. 9607 const GlobalValue *GV = nullptr; 9608 int64_t GVOffset = 0; 9609 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9610 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9611 KnownBits Known(PtrWidth); 9612 llvm::computeKnownBits(GV, Known, getDataLayout()); 9613 unsigned AlignBits = Known.countMinTrailingZeros(); 9614 if (AlignBits) 9615 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9616 } 9617 9618 // If this is a direct reference to a stack slot, use information about the 9619 // stack slot's alignment. 9620 int FrameIdx = INT_MIN; 9621 int64_t FrameOffset = 0; 9622 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9623 FrameIdx = FI->getIndex(); 9624 } else if (isBaseWithConstantOffset(Ptr) && 9625 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9626 // Handle FI+Cst 9627 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9628 FrameOffset = Ptr.getConstantOperandVal(1); 9629 } 9630 9631 if (FrameIdx != INT_MIN) { 9632 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9633 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9634 } 9635 9636 return None; 9637 } 9638 9639 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9640 /// which is split (or expanded) into two not necessarily identical pieces. 9641 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9642 // Currently all types are split in half. 9643 EVT LoVT, HiVT; 9644 if (!VT.isVector()) 9645 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9646 else 9647 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9648 9649 return std::make_pair(LoVT, HiVT); 9650 } 9651 9652 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9653 /// type, dependent on an enveloping VT that has been split into two identical 9654 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9655 std::pair<EVT, EVT> 9656 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9657 bool *HiIsEmpty) const { 9658 EVT EltTp = VT.getVectorElementType(); 9659 // Examples: 9660 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9661 // custom VL=9 with enveloping VL=8/8 yields 8/1 9662 // custom VL=10 with enveloping VL=8/8 yields 8/2 9663 // etc. 9664 ElementCount VTNumElts = VT.getVectorElementCount(); 9665 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9666 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9667 "Mixing fixed width and scalable vectors when enveloping a type"); 9668 EVT LoVT, HiVT; 9669 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9670 LoVT = EnvVT; 9671 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9672 *HiIsEmpty = false; 9673 } else { 9674 // Flag that hi type has zero storage size, but return split envelop type 9675 // (this would be easier if vector types with zero elements were allowed). 9676 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9677 HiVT = EnvVT; 9678 *HiIsEmpty = true; 9679 } 9680 return std::make_pair(LoVT, HiVT); 9681 } 9682 9683 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9684 /// low/high part. 9685 std::pair<SDValue, SDValue> 9686 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9687 const EVT &HiVT) { 9688 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9689 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9690 "Splitting vector with an invalid mixture of fixed and scalable " 9691 "vector types"); 9692 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9693 N.getValueType().getVectorMinNumElements() && 9694 "More vector elements requested than available!"); 9695 SDValue Lo, Hi; 9696 Lo = 9697 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9698 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9699 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9700 // IDX with the runtime scaling factor of the result vector type. For 9701 // fixed-width result vectors, that runtime scaling factor is 1. 9702 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9703 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9704 return std::make_pair(Lo, Hi); 9705 } 9706 9707 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9708 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9709 EVT VT = N.getValueType(); 9710 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9711 NextPowerOf2(VT.getVectorNumElements())); 9712 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9713 getVectorIdxConstant(0, DL)); 9714 } 9715 9716 void SelectionDAG::ExtractVectorElements(SDValue Op, 9717 SmallVectorImpl<SDValue> &Args, 9718 unsigned Start, unsigned Count, 9719 EVT EltVT) { 9720 EVT VT = Op.getValueType(); 9721 if (Count == 0) 9722 Count = VT.getVectorNumElements(); 9723 if (EltVT == EVT()) 9724 EltVT = VT.getVectorElementType(); 9725 SDLoc SL(Op); 9726 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9727 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9728 getVectorIdxConstant(i, SL))); 9729 } 9730 } 9731 9732 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9733 unsigned GlobalAddressSDNode::getAddressSpace() const { 9734 return getGlobal()->getType()->getAddressSpace(); 9735 } 9736 9737 Type *ConstantPoolSDNode::getType() const { 9738 if (isMachineConstantPoolEntry()) 9739 return Val.MachineCPVal->getType(); 9740 return Val.ConstVal->getType(); 9741 } 9742 9743 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9744 unsigned &SplatBitSize, 9745 bool &HasAnyUndefs, 9746 unsigned MinSplatBits, 9747 bool IsBigEndian) const { 9748 EVT VT = getValueType(0); 9749 assert(VT.isVector() && "Expected a vector type"); 9750 unsigned VecWidth = VT.getSizeInBits(); 9751 if (MinSplatBits > VecWidth) 9752 return false; 9753 9754 // FIXME: The widths are based on this node's type, but build vectors can 9755 // truncate their operands. 9756 SplatValue = APInt(VecWidth, 0); 9757 SplatUndef = APInt(VecWidth, 0); 9758 9759 // Get the bits. Bits with undefined values (when the corresponding element 9760 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9761 // in SplatValue. If any of the values are not constant, give up and return 9762 // false. 9763 unsigned int NumOps = getNumOperands(); 9764 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9765 unsigned EltWidth = VT.getScalarSizeInBits(); 9766 9767 for (unsigned j = 0; j < NumOps; ++j) { 9768 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9769 SDValue OpVal = getOperand(i); 9770 unsigned BitPos = j * EltWidth; 9771 9772 if (OpVal.isUndef()) 9773 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9774 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9775 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9776 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9777 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9778 else 9779 return false; 9780 } 9781 9782 // The build_vector is all constants or undefs. Find the smallest element 9783 // size that splats the vector. 9784 HasAnyUndefs = (SplatUndef != 0); 9785 9786 // FIXME: This does not work for vectors with elements less than 8 bits. 9787 while (VecWidth > 8) { 9788 unsigned HalfSize = VecWidth / 2; 9789 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9790 APInt LowValue = SplatValue.trunc(HalfSize); 9791 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9792 APInt LowUndef = SplatUndef.trunc(HalfSize); 9793 9794 // If the two halves do not match (ignoring undef bits), stop here. 9795 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9796 MinSplatBits > HalfSize) 9797 break; 9798 9799 SplatValue = HighValue | LowValue; 9800 SplatUndef = HighUndef & LowUndef; 9801 9802 VecWidth = HalfSize; 9803 } 9804 9805 SplatBitSize = VecWidth; 9806 return true; 9807 } 9808 9809 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9810 BitVector *UndefElements) const { 9811 unsigned NumOps = getNumOperands(); 9812 if (UndefElements) { 9813 UndefElements->clear(); 9814 UndefElements->resize(NumOps); 9815 } 9816 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9817 if (!DemandedElts) 9818 return SDValue(); 9819 SDValue Splatted; 9820 for (unsigned i = 0; i != NumOps; ++i) { 9821 if (!DemandedElts[i]) 9822 continue; 9823 SDValue Op = getOperand(i); 9824 if (Op.isUndef()) { 9825 if (UndefElements) 9826 (*UndefElements)[i] = true; 9827 } else if (!Splatted) { 9828 Splatted = Op; 9829 } else if (Splatted != Op) { 9830 return SDValue(); 9831 } 9832 } 9833 9834 if (!Splatted) { 9835 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9836 assert(getOperand(FirstDemandedIdx).isUndef() && 9837 "Can only have a splat without a constant for all undefs."); 9838 return getOperand(FirstDemandedIdx); 9839 } 9840 9841 return Splatted; 9842 } 9843 9844 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9845 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9846 return getSplatValue(DemandedElts, UndefElements); 9847 } 9848 9849 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 9850 SmallVectorImpl<SDValue> &Sequence, 9851 BitVector *UndefElements) const { 9852 unsigned NumOps = getNumOperands(); 9853 Sequence.clear(); 9854 if (UndefElements) { 9855 UndefElements->clear(); 9856 UndefElements->resize(NumOps); 9857 } 9858 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9859 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 9860 return false; 9861 9862 // Set the undefs even if we don't find a sequence (like getSplatValue). 9863 if (UndefElements) 9864 for (unsigned I = 0; I != NumOps; ++I) 9865 if (DemandedElts[I] && getOperand(I).isUndef()) 9866 (*UndefElements)[I] = true; 9867 9868 // Iteratively widen the sequence length looking for repetitions. 9869 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 9870 Sequence.append(SeqLen, SDValue()); 9871 for (unsigned I = 0; I != NumOps; ++I) { 9872 if (!DemandedElts[I]) 9873 continue; 9874 SDValue &SeqOp = Sequence[I % SeqLen]; 9875 SDValue Op = getOperand(I); 9876 if (Op.isUndef()) { 9877 if (!SeqOp) 9878 SeqOp = Op; 9879 continue; 9880 } 9881 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 9882 Sequence.clear(); 9883 break; 9884 } 9885 SeqOp = Op; 9886 } 9887 if (!Sequence.empty()) 9888 return true; 9889 } 9890 9891 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 9892 return false; 9893 } 9894 9895 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 9896 BitVector *UndefElements) const { 9897 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9898 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 9899 } 9900 9901 ConstantSDNode * 9902 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9903 BitVector *UndefElements) const { 9904 return dyn_cast_or_null<ConstantSDNode>( 9905 getSplatValue(DemandedElts, UndefElements)); 9906 } 9907 9908 ConstantSDNode * 9909 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9910 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9911 } 9912 9913 ConstantFPSDNode * 9914 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9915 BitVector *UndefElements) const { 9916 return dyn_cast_or_null<ConstantFPSDNode>( 9917 getSplatValue(DemandedElts, UndefElements)); 9918 } 9919 9920 ConstantFPSDNode * 9921 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9922 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9923 } 9924 9925 int32_t 9926 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9927 uint32_t BitWidth) const { 9928 if (ConstantFPSDNode *CN = 9929 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9930 bool IsExact; 9931 APSInt IntVal(BitWidth); 9932 const APFloat &APF = CN->getValueAPF(); 9933 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9934 APFloat::opOK || 9935 !IsExact) 9936 return -1; 9937 9938 return IntVal.exactLogBase2(); 9939 } 9940 return -1; 9941 } 9942 9943 bool BuildVectorSDNode::isConstant() const { 9944 for (const SDValue &Op : op_values()) { 9945 unsigned Opc = Op.getOpcode(); 9946 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9947 return false; 9948 } 9949 return true; 9950 } 9951 9952 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9953 // Find the first non-undef value in the shuffle mask. 9954 unsigned i, e; 9955 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9956 /* search */; 9957 9958 // If all elements are undefined, this shuffle can be considered a splat 9959 // (although it should eventually get simplified away completely). 9960 if (i == e) 9961 return true; 9962 9963 // Make sure all remaining elements are either undef or the same as the first 9964 // non-undef value. 9965 for (int Idx = Mask[i]; i != e; ++i) 9966 if (Mask[i] >= 0 && Mask[i] != Idx) 9967 return false; 9968 return true; 9969 } 9970 9971 // Returns the SDNode if it is a constant integer BuildVector 9972 // or constant integer. 9973 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9974 if (isa<ConstantSDNode>(N)) 9975 return N.getNode(); 9976 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9977 return N.getNode(); 9978 // Treat a GlobalAddress supporting constant offset folding as a 9979 // constant integer. 9980 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9981 if (GA->getOpcode() == ISD::GlobalAddress && 9982 TLI->isOffsetFoldingLegal(GA)) 9983 return GA; 9984 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 9985 isa<ConstantSDNode>(N.getOperand(0))) 9986 return N.getNode(); 9987 return nullptr; 9988 } 9989 9990 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9991 if (isa<ConstantFPSDNode>(N)) 9992 return N.getNode(); 9993 9994 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9995 return N.getNode(); 9996 9997 return nullptr; 9998 } 9999 10000 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10001 assert(!Node->OperandList && "Node already has operands"); 10002 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10003 "too many operands to fit into SDNode"); 10004 SDUse *Ops = OperandRecycler.allocate( 10005 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10006 10007 bool IsDivergent = false; 10008 for (unsigned I = 0; I != Vals.size(); ++I) { 10009 Ops[I].setUser(Node); 10010 Ops[I].setInitial(Vals[I]); 10011 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10012 IsDivergent |= Ops[I].getNode()->isDivergent(); 10013 } 10014 Node->NumOperands = Vals.size(); 10015 Node->OperandList = Ops; 10016 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10017 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10018 Node->SDNodeBits.IsDivergent = IsDivergent; 10019 } 10020 checkForCycles(Node); 10021 } 10022 10023 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10024 SmallVectorImpl<SDValue> &Vals) { 10025 size_t Limit = SDNode::getMaxNumOperands(); 10026 while (Vals.size() > Limit) { 10027 unsigned SliceIdx = Vals.size() - Limit; 10028 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10029 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10030 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10031 Vals.emplace_back(NewTF); 10032 } 10033 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10034 } 10035 10036 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10037 EVT VT, SDNodeFlags Flags) { 10038 switch (Opcode) { 10039 default: 10040 return SDValue(); 10041 case ISD::ADD: 10042 case ISD::OR: 10043 case ISD::XOR: 10044 case ISD::UMAX: 10045 return getConstant(0, DL, VT); 10046 case ISD::MUL: 10047 return getConstant(1, DL, VT); 10048 case ISD::AND: 10049 case ISD::UMIN: 10050 return getAllOnesConstant(DL, VT); 10051 case ISD::SMAX: 10052 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10053 case ISD::SMIN: 10054 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10055 case ISD::FADD: 10056 return getConstantFP(-0.0, DL, VT); 10057 case ISD::FMUL: 10058 return getConstantFP(1.0, DL, VT); 10059 case ISD::FMINNUM: 10060 case ISD::FMAXNUM: { 10061 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10062 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10063 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10064 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10065 APFloat::getLargest(Semantics); 10066 if (Opcode == ISD::FMAXNUM) 10067 NeutralAF.changeSign(); 10068 10069 return getConstantFP(NeutralAF, DL, VT); 10070 } 10071 } 10072 } 10073 10074 #ifndef NDEBUG 10075 static void checkForCyclesHelper(const SDNode *N, 10076 SmallPtrSetImpl<const SDNode*> &Visited, 10077 SmallPtrSetImpl<const SDNode*> &Checked, 10078 const llvm::SelectionDAG *DAG) { 10079 // If this node has already been checked, don't check it again. 10080 if (Checked.count(N)) 10081 return; 10082 10083 // If a node has already been visited on this depth-first walk, reject it as 10084 // a cycle. 10085 if (!Visited.insert(N).second) { 10086 errs() << "Detected cycle in SelectionDAG\n"; 10087 dbgs() << "Offending node:\n"; 10088 N->dumprFull(DAG); dbgs() << "\n"; 10089 abort(); 10090 } 10091 10092 for (const SDValue &Op : N->op_values()) 10093 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10094 10095 Checked.insert(N); 10096 Visited.erase(N); 10097 } 10098 #endif 10099 10100 void llvm::checkForCycles(const llvm::SDNode *N, 10101 const llvm::SelectionDAG *DAG, 10102 bool force) { 10103 #ifndef NDEBUG 10104 bool check = force; 10105 #ifdef EXPENSIVE_CHECKS 10106 check = true; 10107 #endif // EXPENSIVE_CHECKS 10108 if (check) { 10109 assert(N && "Checking nonexistent SDNode"); 10110 SmallPtrSet<const SDNode*, 32> visited; 10111 SmallPtrSet<const SDNode*, 32> checked; 10112 checkForCyclesHelper(N, visited, checked, DAG); 10113 } 10114 #endif // !NDEBUG 10115 } 10116 10117 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10118 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10119 } 10120