1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MachineValueType.h"
66 #include "llvm/Support/ManagedStatic.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/Mutex.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOptions.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <set>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
88   SDVTList Res = {VTs, NumVTs};
89   return Res;
90 }
91 
92 // Default null implementations of the callbacks.
93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
96 
97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
98 
99 #define DEBUG_TYPE "selectiondag"
100 
101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102        cl::Hidden, cl::init(true),
103        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
104 
105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
106        cl::desc("Number limit for gluing ld/st of memcpy."),
107        cl::Hidden, cl::init(0));
108 
109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
110   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
111 }
112 
113 //===----------------------------------------------------------------------===//
114 //                              ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
116 
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
122   return getValueAPF().bitwiseIsEqual(V);
123 }
124 
125 bool ConstantFPSDNode::isValueValidForType(EVT VT,
126                                            const APFloat& Val) {
127   assert(VT.isFloatingPoint() && "Can only convert between FP types");
128 
129   // convert modifies in place, so make a copy.
130   APFloat Val2 = APFloat(Val);
131   bool losesInfo;
132   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
133                       APFloat::rmNearestTiesToEven,
134                       &losesInfo);
135   return !losesInfo;
136 }
137 
138 //===----------------------------------------------------------------------===//
139 //                              ISD Namespace
140 //===----------------------------------------------------------------------===//
141 
142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
143   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
144     unsigned EltSize =
145         N->getValueType(0).getVectorElementType().getSizeInBits();
146     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
147       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
148       return true;
149     }
150     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
151       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
152       return true;
153     }
154   }
155 
156   auto *BV = dyn_cast<BuildVectorSDNode>(N);
157   if (!BV)
158     return false;
159 
160   APInt SplatUndef;
161   unsigned SplatBitSize;
162   bool HasUndefs;
163   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
164   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
165                              EltSize) &&
166          EltSize == SplatBitSize;
167 }
168 
169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
170 // specializations of the more general isConstantSplatVector()?
171 
172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
173   // Look through a bit convert.
174   while (N->getOpcode() == ISD::BITCAST)
175     N = N->getOperand(0).getNode();
176 
177   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
178     APInt SplatVal;
179     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
180   }
181 
182   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
183 
184   unsigned i = 0, e = N->getNumOperands();
185 
186   // Skip over all of the undef values.
187   while (i != e && N->getOperand(i).isUndef())
188     ++i;
189 
190   // Do not accept an all-undef vector.
191   if (i == e) return false;
192 
193   // Do not accept build_vectors that aren't all constants or which have non-~0
194   // elements. We have to be a bit careful here, as the type of the constant
195   // may not be the same as the type of the vector elements due to type
196   // legalization (the elements are promoted to a legal type for the target and
197   // a vector of a type may be legal when the base element type is not).
198   // We only want to check enough bits to cover the vector elements, because
199   // we care if the resultant vector is all ones, not whether the individual
200   // constants are.
201   SDValue NotZero = N->getOperand(i);
202   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
203   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
204     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
205       return false;
206   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
207     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
208       return false;
209   } else
210     return false;
211 
212   // Okay, we have at least one ~0 value, check to see if the rest match or are
213   // undefs. Even with the above element type twiddling, this should be OK, as
214   // the same type legalization should have applied to all the elements.
215   for (++i; i != e; ++i)
216     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
217       return false;
218   return true;
219 }
220 
221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
222   // Look through a bit convert.
223   while (N->getOpcode() == ISD::BITCAST)
224     N = N->getOperand(0).getNode();
225 
226   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
227     APInt SplatVal;
228     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
229   }
230 
231   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
232 
233   bool IsAllUndef = true;
234   for (const SDValue &Op : N->op_values()) {
235     if (Op.isUndef())
236       continue;
237     IsAllUndef = false;
238     // Do not accept build_vectors that aren't all constants or which have non-0
239     // elements. We have to be a bit careful here, as the type of the constant
240     // may not be the same as the type of the vector elements due to type
241     // legalization (the elements are promoted to a legal type for the target
242     // and a vector of a type may be legal when the base element type is not).
243     // We only want to check enough bits to cover the vector elements, because
244     // we care if the resultant vector is all zeros, not whether the individual
245     // constants are.
246     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
247     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
248       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
249         return false;
250     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
251       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
252         return false;
253     } else
254       return false;
255   }
256 
257   // Do not accept an all-undef vector.
258   if (IsAllUndef)
259     return false;
260   return true;
261 }
262 
263 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
264   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
265 }
266 
267 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
268   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
269 }
270 
271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
272   if (N->getOpcode() != ISD::BUILD_VECTOR)
273     return false;
274 
275   for (const SDValue &Op : N->op_values()) {
276     if (Op.isUndef())
277       continue;
278     if (!isa<ConstantSDNode>(Op))
279       return false;
280   }
281   return true;
282 }
283 
284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
285   if (N->getOpcode() != ISD::BUILD_VECTOR)
286     return false;
287 
288   for (const SDValue &Op : N->op_values()) {
289     if (Op.isUndef())
290       continue;
291     if (!isa<ConstantFPSDNode>(Op))
292       return false;
293   }
294   return true;
295 }
296 
297 bool ISD::allOperandsUndef(const SDNode *N) {
298   // Return false if the node has no operands.
299   // This is "logically inconsistent" with the definition of "all" but
300   // is probably the desired behavior.
301   if (N->getNumOperands() == 0)
302     return false;
303   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
304 }
305 
306 bool ISD::matchUnaryPredicate(SDValue Op,
307                               std::function<bool(ConstantSDNode *)> Match,
308                               bool AllowUndefs) {
309   // FIXME: Add support for scalar UNDEF cases?
310   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
311     return Match(Cst);
312 
313   // FIXME: Add support for vector UNDEF cases?
314   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
315       ISD::SPLAT_VECTOR != Op.getOpcode())
316     return false;
317 
318   EVT SVT = Op.getValueType().getScalarType();
319   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
320     if (AllowUndefs && Op.getOperand(i).isUndef()) {
321       if (!Match(nullptr))
322         return false;
323       continue;
324     }
325 
326     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
327     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
328       return false;
329   }
330   return true;
331 }
332 
333 bool ISD::matchBinaryPredicate(
334     SDValue LHS, SDValue RHS,
335     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
336     bool AllowUndefs, bool AllowTypeMismatch) {
337   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
338     return false;
339 
340   // TODO: Add support for scalar UNDEF cases?
341   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
342     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
343       return Match(LHSCst, RHSCst);
344 
345   // TODO: Add support for vector UNDEF cases?
346   if (LHS.getOpcode() != RHS.getOpcode() ||
347       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
348        LHS.getOpcode() != ISD::SPLAT_VECTOR))
349     return false;
350 
351   EVT SVT = LHS.getValueType().getScalarType();
352   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
353     SDValue LHSOp = LHS.getOperand(i);
354     SDValue RHSOp = RHS.getOperand(i);
355     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
356     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
357     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
358     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
359     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
360       return false;
361     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
362                                LHSOp.getValueType() != RHSOp.getValueType()))
363       return false;
364     if (!Match(LHSCst, RHSCst))
365       return false;
366   }
367   return true;
368 }
369 
370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
371   switch (VecReduceOpcode) {
372   default:
373     llvm_unreachable("Expected VECREDUCE opcode");
374   case ISD::VECREDUCE_FADD:
375   case ISD::VECREDUCE_SEQ_FADD:
376   case ISD::VP_REDUCE_FADD:
377   case ISD::VP_REDUCE_SEQ_FADD:
378     return ISD::FADD;
379   case ISD::VECREDUCE_FMUL:
380   case ISD::VECREDUCE_SEQ_FMUL:
381   case ISD::VP_REDUCE_FMUL:
382   case ISD::VP_REDUCE_SEQ_FMUL:
383     return ISD::FMUL;
384   case ISD::VECREDUCE_ADD:
385   case ISD::VP_REDUCE_ADD:
386     return ISD::ADD;
387   case ISD::VECREDUCE_MUL:
388   case ISD::VP_REDUCE_MUL:
389     return ISD::MUL;
390   case ISD::VECREDUCE_AND:
391   case ISD::VP_REDUCE_AND:
392     return ISD::AND;
393   case ISD::VECREDUCE_OR:
394   case ISD::VP_REDUCE_OR:
395     return ISD::OR;
396   case ISD::VECREDUCE_XOR:
397   case ISD::VP_REDUCE_XOR:
398     return ISD::XOR;
399   case ISD::VECREDUCE_SMAX:
400   case ISD::VP_REDUCE_SMAX:
401     return ISD::SMAX;
402   case ISD::VECREDUCE_SMIN:
403   case ISD::VP_REDUCE_SMIN:
404     return ISD::SMIN;
405   case ISD::VECREDUCE_UMAX:
406   case ISD::VP_REDUCE_UMAX:
407     return ISD::UMAX;
408   case ISD::VECREDUCE_UMIN:
409   case ISD::VP_REDUCE_UMIN:
410     return ISD::UMIN;
411   case ISD::VECREDUCE_FMAX:
412   case ISD::VP_REDUCE_FMAX:
413     return ISD::FMAXNUM;
414   case ISD::VECREDUCE_FMIN:
415   case ISD::VP_REDUCE_FMIN:
416     return ISD::FMINNUM;
417   }
418 }
419 
420 bool ISD::isVPOpcode(unsigned Opcode) {
421   switch (Opcode) {
422   default:
423     return false;
424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
425   case ISD::VPSD:                                                              \
426     return true;
427 #include "llvm/IR/VPIntrinsics.def"
428   }
429 }
430 
431 bool ISD::isVPBinaryOp(unsigned Opcode) {
432   switch (Opcode) {
433   default:
434     break;
435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
436 #define VP_PROPERTY_BINARYOP return true;
437 #define END_REGISTER_VP_SDNODE(VPSD) break;
438 #include "llvm/IR/VPIntrinsics.def"
439   }
440   return false;
441 }
442 
443 bool ISD::isVPReduction(unsigned Opcode) {
444   switch (Opcode) {
445   default:
446     break;
447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
449 #define END_REGISTER_VP_SDNODE(VPSD) break;
450 #include "llvm/IR/VPIntrinsics.def"
451   }
452   return false;
453 }
454 
455 /// The operand position of the vector mask.
456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
457   switch (Opcode) {
458   default:
459     return None;
460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
461   case ISD::VPSD:                                                              \
462     return MASKPOS;
463 #include "llvm/IR/VPIntrinsics.def"
464   }
465 }
466 
467 /// The operand position of the explicit vector length parameter.
468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
469   switch (Opcode) {
470   default:
471     return None;
472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
473   case ISD::VPSD:                                                              \
474     return EVLPOS;
475 #include "llvm/IR/VPIntrinsics.def"
476   }
477 }
478 
479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
480   switch (ExtType) {
481   case ISD::EXTLOAD:
482     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
483   case ISD::SEXTLOAD:
484     return ISD::SIGN_EXTEND;
485   case ISD::ZEXTLOAD:
486     return ISD::ZERO_EXTEND;
487   default:
488     break;
489   }
490 
491   llvm_unreachable("Invalid LoadExtType");
492 }
493 
494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
495   // To perform this operation, we just need to swap the L and G bits of the
496   // operation.
497   unsigned OldL = (Operation >> 2) & 1;
498   unsigned OldG = (Operation >> 1) & 1;
499   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
500                        (OldL << 1) |       // New G bit
501                        (OldG << 2));       // New L bit.
502 }
503 
504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
505   unsigned Operation = Op;
506   if (isIntegerLike)
507     Operation ^= 7;   // Flip L, G, E bits, but not U.
508   else
509     Operation ^= 15;  // Flip all of the condition bits.
510 
511   if (Operation > ISD::SETTRUE2)
512     Operation &= ~8;  // Don't let N and U bits get set.
513 
514   return ISD::CondCode(Operation);
515 }
516 
517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
518   return getSetCCInverseImpl(Op, Type.isInteger());
519 }
520 
521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
522                                                bool isIntegerLike) {
523   return getSetCCInverseImpl(Op, isIntegerLike);
524 }
525 
526 /// For an integer comparison, return 1 if the comparison is a signed operation
527 /// and 2 if the result is an unsigned comparison. Return zero if the operation
528 /// does not depend on the sign of the input (setne and seteq).
529 static int isSignedOp(ISD::CondCode Opcode) {
530   switch (Opcode) {
531   default: llvm_unreachable("Illegal integer setcc operation!");
532   case ISD::SETEQ:
533   case ISD::SETNE: return 0;
534   case ISD::SETLT:
535   case ISD::SETLE:
536   case ISD::SETGT:
537   case ISD::SETGE: return 1;
538   case ISD::SETULT:
539   case ISD::SETULE:
540   case ISD::SETUGT:
541   case ISD::SETUGE: return 2;
542   }
543 }
544 
545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
546                                        EVT Type) {
547   bool IsInteger = Type.isInteger();
548   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
549     // Cannot fold a signed integer setcc with an unsigned integer setcc.
550     return ISD::SETCC_INVALID;
551 
552   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
553 
554   // If the N and U bits get set, then the resultant comparison DOES suddenly
555   // care about orderedness, and it is true when ordered.
556   if (Op > ISD::SETTRUE2)
557     Op &= ~16;     // Clear the U bit if the N bit is set.
558 
559   // Canonicalize illegal integer setcc's.
560   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
561     Op = ISD::SETNE;
562 
563   return ISD::CondCode(Op);
564 }
565 
566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
567                                         EVT Type) {
568   bool IsInteger = Type.isInteger();
569   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
570     // Cannot fold a signed setcc with an unsigned setcc.
571     return ISD::SETCC_INVALID;
572 
573   // Combine all of the condition bits.
574   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
575 
576   // Canonicalize illegal integer setcc's.
577   if (IsInteger) {
578     switch (Result) {
579     default: break;
580     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
581     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
582     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
583     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
584     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
585     }
586   }
587 
588   return Result;
589 }
590 
591 //===----------------------------------------------------------------------===//
592 //                           SDNode Profile Support
593 //===----------------------------------------------------------------------===//
594 
595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
597   ID.AddInteger(OpC);
598 }
599 
600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
601 /// solely with their pointer.
602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
603   ID.AddPointer(VTList.VTs);
604 }
605 
606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
607 static void AddNodeIDOperands(FoldingSetNodeID &ID,
608                               ArrayRef<SDValue> Ops) {
609   for (auto& Op : Ops) {
610     ID.AddPointer(Op.getNode());
611     ID.AddInteger(Op.getResNo());
612   }
613 }
614 
615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
616 static void AddNodeIDOperands(FoldingSetNodeID &ID,
617                               ArrayRef<SDUse> Ops) {
618   for (auto& Op : Ops) {
619     ID.AddPointer(Op.getNode());
620     ID.AddInteger(Op.getResNo());
621   }
622 }
623 
624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
625                           SDVTList VTList, ArrayRef<SDValue> OpList) {
626   AddNodeIDOpcode(ID, OpC);
627   AddNodeIDValueTypes(ID, VTList);
628   AddNodeIDOperands(ID, OpList);
629 }
630 
631 /// If this is an SDNode with special info, add this info to the NodeID data.
632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
633   switch (N->getOpcode()) {
634   case ISD::TargetExternalSymbol:
635   case ISD::ExternalSymbol:
636   case ISD::MCSymbol:
637     llvm_unreachable("Should only be used on nodes with operands");
638   default: break;  // Normal nodes don't need extra info.
639   case ISD::TargetConstant:
640   case ISD::Constant: {
641     const ConstantSDNode *C = cast<ConstantSDNode>(N);
642     ID.AddPointer(C->getConstantIntValue());
643     ID.AddBoolean(C->isOpaque());
644     break;
645   }
646   case ISD::TargetConstantFP:
647   case ISD::ConstantFP:
648     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
649     break;
650   case ISD::TargetGlobalAddress:
651   case ISD::GlobalAddress:
652   case ISD::TargetGlobalTLSAddress:
653   case ISD::GlobalTLSAddress: {
654     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
655     ID.AddPointer(GA->getGlobal());
656     ID.AddInteger(GA->getOffset());
657     ID.AddInteger(GA->getTargetFlags());
658     break;
659   }
660   case ISD::BasicBlock:
661     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
662     break;
663   case ISD::Register:
664     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
665     break;
666   case ISD::RegisterMask:
667     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
668     break;
669   case ISD::SRCVALUE:
670     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
671     break;
672   case ISD::FrameIndex:
673   case ISD::TargetFrameIndex:
674     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
675     break;
676   case ISD::LIFETIME_START:
677   case ISD::LIFETIME_END:
678     if (cast<LifetimeSDNode>(N)->hasOffset()) {
679       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
680       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
681     }
682     break;
683   case ISD::PSEUDO_PROBE:
684     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
685     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
686     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
687     break;
688   case ISD::JumpTable:
689   case ISD::TargetJumpTable:
690     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
691     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
692     break;
693   case ISD::ConstantPool:
694   case ISD::TargetConstantPool: {
695     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
696     ID.AddInteger(CP->getAlign().value());
697     ID.AddInteger(CP->getOffset());
698     if (CP->isMachineConstantPoolEntry())
699       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
700     else
701       ID.AddPointer(CP->getConstVal());
702     ID.AddInteger(CP->getTargetFlags());
703     break;
704   }
705   case ISD::TargetIndex: {
706     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
707     ID.AddInteger(TI->getIndex());
708     ID.AddInteger(TI->getOffset());
709     ID.AddInteger(TI->getTargetFlags());
710     break;
711   }
712   case ISD::LOAD: {
713     const LoadSDNode *LD = cast<LoadSDNode>(N);
714     ID.AddInteger(LD->getMemoryVT().getRawBits());
715     ID.AddInteger(LD->getRawSubclassData());
716     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
717     break;
718   }
719   case ISD::STORE: {
720     const StoreSDNode *ST = cast<StoreSDNode>(N);
721     ID.AddInteger(ST->getMemoryVT().getRawBits());
722     ID.AddInteger(ST->getRawSubclassData());
723     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
724     break;
725   }
726   case ISD::VP_LOAD: {
727     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
728     ID.AddInteger(ELD->getMemoryVT().getRawBits());
729     ID.AddInteger(ELD->getRawSubclassData());
730     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VP_GATHER: {
741     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
742     ID.AddInteger(EG->getMemoryVT().getRawBits());
743     ID.AddInteger(EG->getRawSubclassData());
744     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
745     break;
746   }
747   case ISD::VP_SCATTER: {
748     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
749     ID.AddInteger(ES->getMemoryVT().getRawBits());
750     ID.AddInteger(ES->getRawSubclassData());
751     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
752     break;
753   }
754   case ISD::MLOAD: {
755     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
756     ID.AddInteger(MLD->getMemoryVT().getRawBits());
757     ID.AddInteger(MLD->getRawSubclassData());
758     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
759     break;
760   }
761   case ISD::MSTORE: {
762     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
763     ID.AddInteger(MST->getMemoryVT().getRawBits());
764     ID.AddInteger(MST->getRawSubclassData());
765     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
766     break;
767   }
768   case ISD::MGATHER: {
769     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
770     ID.AddInteger(MG->getMemoryVT().getRawBits());
771     ID.AddInteger(MG->getRawSubclassData());
772     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
773     break;
774   }
775   case ISD::MSCATTER: {
776     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
777     ID.AddInteger(MS->getMemoryVT().getRawBits());
778     ID.AddInteger(MS->getRawSubclassData());
779     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
780     break;
781   }
782   case ISD::ATOMIC_CMP_SWAP:
783   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
784   case ISD::ATOMIC_SWAP:
785   case ISD::ATOMIC_LOAD_ADD:
786   case ISD::ATOMIC_LOAD_SUB:
787   case ISD::ATOMIC_LOAD_AND:
788   case ISD::ATOMIC_LOAD_CLR:
789   case ISD::ATOMIC_LOAD_OR:
790   case ISD::ATOMIC_LOAD_XOR:
791   case ISD::ATOMIC_LOAD_NAND:
792   case ISD::ATOMIC_LOAD_MIN:
793   case ISD::ATOMIC_LOAD_MAX:
794   case ISD::ATOMIC_LOAD_UMIN:
795   case ISD::ATOMIC_LOAD_UMAX:
796   case ISD::ATOMIC_LOAD:
797   case ISD::ATOMIC_STORE: {
798     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
799     ID.AddInteger(AT->getMemoryVT().getRawBits());
800     ID.AddInteger(AT->getRawSubclassData());
801     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
802     break;
803   }
804   case ISD::PREFETCH: {
805     const MemSDNode *PF = cast<MemSDNode>(N);
806     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
807     break;
808   }
809   case ISD::VECTOR_SHUFFLE: {
810     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
811     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
812          i != e; ++i)
813       ID.AddInteger(SVN->getMaskElt(i));
814     break;
815   }
816   case ISD::TargetBlockAddress:
817   case ISD::BlockAddress: {
818     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
819     ID.AddPointer(BA->getBlockAddress());
820     ID.AddInteger(BA->getOffset());
821     ID.AddInteger(BA->getTargetFlags());
822     break;
823   }
824   } // end switch (N->getOpcode())
825 
826   // Target specific memory nodes could also have address spaces to check.
827   if (N->isTargetMemoryOpcode())
828     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
829 }
830 
831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
832 /// data.
833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
834   AddNodeIDOpcode(ID, N->getOpcode());
835   // Add the return value info.
836   AddNodeIDValueTypes(ID, N->getVTList());
837   // Add the operand info.
838   AddNodeIDOperands(ID, N->ops());
839 
840   // Handle SDNode leafs with special info.
841   AddNodeIDCustom(ID, N);
842 }
843 
844 //===----------------------------------------------------------------------===//
845 //                              SelectionDAG Class
846 //===----------------------------------------------------------------------===//
847 
848 /// doNotCSE - Return true if CSE should not be performed for this node.
849 static bool doNotCSE(SDNode *N) {
850   if (N->getValueType(0) == MVT::Glue)
851     return true; // Never CSE anything that produces a flag.
852 
853   switch (N->getOpcode()) {
854   default: break;
855   case ISD::HANDLENODE:
856   case ISD::EH_LABEL:
857     return true;   // Never CSE these nodes.
858   }
859 
860   // Check that remaining values produced are not flags.
861   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
862     if (N->getValueType(i) == MVT::Glue)
863       return true; // Never CSE anything that produces a flag.
864 
865   return false;
866 }
867 
868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
869 /// SelectionDAG.
870 void SelectionDAG::RemoveDeadNodes() {
871   // Create a dummy node (which is not added to allnodes), that adds a reference
872   // to the root node, preventing it from being deleted.
873   HandleSDNode Dummy(getRoot());
874 
875   SmallVector<SDNode*, 128> DeadNodes;
876 
877   // Add all obviously-dead nodes to the DeadNodes worklist.
878   for (SDNode &Node : allnodes())
879     if (Node.use_empty())
880       DeadNodes.push_back(&Node);
881 
882   RemoveDeadNodes(DeadNodes);
883 
884   // If the root changed (e.g. it was a dead load, update the root).
885   setRoot(Dummy.getValue());
886 }
887 
888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
889 /// given list, and any nodes that become unreachable as a result.
890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
891 
892   // Process the worklist, deleting the nodes and adding their uses to the
893   // worklist.
894   while (!DeadNodes.empty()) {
895     SDNode *N = DeadNodes.pop_back_val();
896     // Skip to next node if we've already managed to delete the node. This could
897     // happen if replacing a node causes a node previously added to the node to
898     // be deleted.
899     if (N->getOpcode() == ISD::DELETED_NODE)
900       continue;
901 
902     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
903       DUL->NodeDeleted(N, nullptr);
904 
905     // Take the node out of the appropriate CSE map.
906     RemoveNodeFromCSEMaps(N);
907 
908     // Next, brutally remove the operand list.  This is safe to do, as there are
909     // no cycles in the graph.
910     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
911       SDUse &Use = *I++;
912       SDNode *Operand = Use.getNode();
913       Use.set(SDValue());
914 
915       // Now that we removed this operand, see if there are no uses of it left.
916       if (Operand->use_empty())
917         DeadNodes.push_back(Operand);
918     }
919 
920     DeallocateNode(N);
921   }
922 }
923 
924 void SelectionDAG::RemoveDeadNode(SDNode *N){
925   SmallVector<SDNode*, 16> DeadNodes(1, N);
926 
927   // Create a dummy node that adds a reference to the root node, preventing
928   // it from being deleted.  (This matters if the root is an operand of the
929   // dead node.)
930   HandleSDNode Dummy(getRoot());
931 
932   RemoveDeadNodes(DeadNodes);
933 }
934 
935 void SelectionDAG::DeleteNode(SDNode *N) {
936   // First take this out of the appropriate CSE map.
937   RemoveNodeFromCSEMaps(N);
938 
939   // Finally, remove uses due to operands of this node, remove from the
940   // AllNodes list, and delete the node.
941   DeleteNodeNotInCSEMaps(N);
942 }
943 
944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
945   assert(N->getIterator() != AllNodes.begin() &&
946          "Cannot delete the entry node!");
947   assert(N->use_empty() && "Cannot delete a node that is not dead!");
948 
949   // Drop all of the operands and decrement used node's use counts.
950   N->DropOperands();
951 
952   DeallocateNode(N);
953 }
954 
955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
956   assert(!(V->isVariadic() && isParameter));
957   if (isParameter)
958     ByvalParmDbgValues.push_back(V);
959   else
960     DbgValues.push_back(V);
961   for (const SDNode *Node : V->getSDNodes())
962     if (Node)
963       DbgValMap[Node].push_back(V);
964 }
965 
966 void SDDbgInfo::erase(const SDNode *Node) {
967   DbgValMapType::iterator I = DbgValMap.find(Node);
968   if (I == DbgValMap.end())
969     return;
970   for (auto &Val: I->second)
971     Val->setIsInvalidated();
972   DbgValMap.erase(I);
973 }
974 
975 void SelectionDAG::DeallocateNode(SDNode *N) {
976   // If we have operands, deallocate them.
977   removeOperands(N);
978 
979   NodeAllocator.Deallocate(AllNodes.remove(N));
980 
981   // Set the opcode to DELETED_NODE to help catch bugs when node
982   // memory is reallocated.
983   // FIXME: There are places in SDag that have grown a dependency on the opcode
984   // value in the released node.
985   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
986   N->NodeType = ISD::DELETED_NODE;
987 
988   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
989   // them and forget about that node.
990   DbgInfo->erase(N);
991 }
992 
993 #ifndef NDEBUG
994 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
995 static void VerifySDNode(SDNode *N) {
996   switch (N->getOpcode()) {
997   default:
998     break;
999   case ISD::BUILD_PAIR: {
1000     EVT VT = N->getValueType(0);
1001     assert(N->getNumValues() == 1 && "Too many results!");
1002     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1003            "Wrong return type!");
1004     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1005     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1006            "Mismatched operand types!");
1007     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1008            "Wrong operand type!");
1009     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1010            "Wrong return type size");
1011     break;
1012   }
1013   case ISD::BUILD_VECTOR: {
1014     assert(N->getNumValues() == 1 && "Too many results!");
1015     assert(N->getValueType(0).isVector() && "Wrong return type!");
1016     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1017            "Wrong number of operands!");
1018     EVT EltVT = N->getValueType(0).getVectorElementType();
1019     for (const SDUse &Op : N->ops()) {
1020       assert((Op.getValueType() == EltVT ||
1021               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1022                EltVT.bitsLE(Op.getValueType()))) &&
1023              "Wrong operand type!");
1024       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1025              "Operands must all have the same type");
1026     }
1027     break;
1028   }
1029   }
1030 }
1031 #endif // NDEBUG
1032 
1033 /// Insert a newly allocated node into the DAG.
1034 ///
1035 /// Handles insertion into the all nodes list and CSE map, as well as
1036 /// verification and other common operations when a new node is allocated.
1037 void SelectionDAG::InsertNode(SDNode *N) {
1038   AllNodes.push_back(N);
1039 #ifndef NDEBUG
1040   N->PersistentId = NextPersistentId++;
1041   VerifySDNode(N);
1042 #endif
1043   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1044     DUL->NodeInserted(N);
1045 }
1046 
1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1048 /// correspond to it.  This is useful when we're about to delete or repurpose
1049 /// the node.  We don't want future request for structurally identical nodes
1050 /// to return N anymore.
1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1052   bool Erased = false;
1053   switch (N->getOpcode()) {
1054   case ISD::HANDLENODE: return false;  // noop.
1055   case ISD::CONDCODE:
1056     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1057            "Cond code doesn't exist!");
1058     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1059     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1060     break;
1061   case ISD::ExternalSymbol:
1062     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1063     break;
1064   case ISD::TargetExternalSymbol: {
1065     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1066     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1067         ESN->getSymbol(), ESN->getTargetFlags()));
1068     break;
1069   }
1070   case ISD::MCSymbol: {
1071     auto *MCSN = cast<MCSymbolSDNode>(N);
1072     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1073     break;
1074   }
1075   case ISD::VALUETYPE: {
1076     EVT VT = cast<VTSDNode>(N)->getVT();
1077     if (VT.isExtended()) {
1078       Erased = ExtendedValueTypeNodes.erase(VT);
1079     } else {
1080       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1081       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1082     }
1083     break;
1084   }
1085   default:
1086     // Remove it from the CSE Map.
1087     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1088     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1089     Erased = CSEMap.RemoveNode(N);
1090     break;
1091   }
1092 #ifndef NDEBUG
1093   // Verify that the node was actually in one of the CSE maps, unless it has a
1094   // flag result (which cannot be CSE'd) or is one of the special cases that are
1095   // not subject to CSE.
1096   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1097       !N->isMachineOpcode() && !doNotCSE(N)) {
1098     N->dump(this);
1099     dbgs() << "\n";
1100     llvm_unreachable("Node is not in map!");
1101   }
1102 #endif
1103   return Erased;
1104 }
1105 
1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1108 /// node already exists, in which case transfer all its users to the existing
1109 /// node. This transfer can potentially trigger recursive merging.
1110 void
1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1112   // For node types that aren't CSE'd, just act as if no identical node
1113   // already exists.
1114   if (!doNotCSE(N)) {
1115     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1116     if (Existing != N) {
1117       // If there was already an existing matching node, use ReplaceAllUsesWith
1118       // to replace the dead one with the existing one.  This can cause
1119       // recursive merging of other unrelated nodes down the line.
1120       ReplaceAllUsesWith(N, Existing);
1121 
1122       // N is now dead. Inform the listeners and delete it.
1123       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1124         DUL->NodeDeleted(N, Existing);
1125       DeleteNodeNotInCSEMaps(N);
1126       return;
1127     }
1128   }
1129 
1130   // If the node doesn't already exist, we updated it.  Inform listeners.
1131   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1132     DUL->NodeUpdated(N);
1133 }
1134 
1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1136 /// were replaced with those specified.  If this node is never memoized,
1137 /// return null, otherwise return a pointer to the slot it would take.  If a
1138 /// node already exists with these operands, the slot will be non-null.
1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1140                                            void *&InsertPos) {
1141   if (doNotCSE(N))
1142     return nullptr;
1143 
1144   SDValue Ops[] = { Op };
1145   FoldingSetNodeID ID;
1146   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1147   AddNodeIDCustom(ID, N);
1148   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1149   if (Node)
1150     Node->intersectFlagsWith(N->getFlags());
1151   return Node;
1152 }
1153 
1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1155 /// were replaced with those specified.  If this node is never memoized,
1156 /// return null, otherwise return a pointer to the slot it would take.  If a
1157 /// node already exists with these operands, the slot will be non-null.
1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1159                                            SDValue Op1, SDValue Op2,
1160                                            void *&InsertPos) {
1161   if (doNotCSE(N))
1162     return nullptr;
1163 
1164   SDValue Ops[] = { Op1, Op2 };
1165   FoldingSetNodeID ID;
1166   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1167   AddNodeIDCustom(ID, N);
1168   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1169   if (Node)
1170     Node->intersectFlagsWith(N->getFlags());
1171   return Node;
1172 }
1173 
1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1175 /// were replaced with those specified.  If this node is never memoized,
1176 /// return null, otherwise return a pointer to the slot it would take.  If a
1177 /// node already exists with these operands, the slot will be non-null.
1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1179                                            void *&InsertPos) {
1180   if (doNotCSE(N))
1181     return nullptr;
1182 
1183   FoldingSetNodeID ID;
1184   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1185   AddNodeIDCustom(ID, N);
1186   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1187   if (Node)
1188     Node->intersectFlagsWith(N->getFlags());
1189   return Node;
1190 }
1191 
1192 Align SelectionDAG::getEVTAlign(EVT VT) const {
1193   Type *Ty = VT == MVT::iPTR ?
1194                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1195                    VT.getTypeForEVT(*getContext());
1196 
1197   return getDataLayout().getABITypeAlign(Ty);
1198 }
1199 
1200 // EntryNode could meaningfully have debug info if we can find it...
1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1202     : TM(tm), OptLevel(OL),
1203       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1204       Root(getEntryNode()) {
1205   InsertNode(&EntryNode);
1206   DbgInfo = new SDDbgInfo();
1207 }
1208 
1209 void SelectionDAG::init(MachineFunction &NewMF,
1210                         OptimizationRemarkEmitter &NewORE,
1211                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1212                         LegacyDivergenceAnalysis * Divergence,
1213                         ProfileSummaryInfo *PSIin,
1214                         BlockFrequencyInfo *BFIin) {
1215   MF = &NewMF;
1216   SDAGISelPass = PassPtr;
1217   ORE = &NewORE;
1218   TLI = getSubtarget().getTargetLowering();
1219   TSI = getSubtarget().getSelectionDAGInfo();
1220   LibInfo = LibraryInfo;
1221   Context = &MF->getFunction().getContext();
1222   DA = Divergence;
1223   PSI = PSIin;
1224   BFI = BFIin;
1225 }
1226 
1227 SelectionDAG::~SelectionDAG() {
1228   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1229   allnodes_clear();
1230   OperandRecycler.clear(OperandAllocator);
1231   delete DbgInfo;
1232 }
1233 
1234 bool SelectionDAG::shouldOptForSize() const {
1235   return MF->getFunction().hasOptSize() ||
1236       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1237 }
1238 
1239 void SelectionDAG::allnodes_clear() {
1240   assert(&*AllNodes.begin() == &EntryNode);
1241   AllNodes.remove(AllNodes.begin());
1242   while (!AllNodes.empty())
1243     DeallocateNode(&AllNodes.front());
1244 #ifndef NDEBUG
1245   NextPersistentId = 0;
1246 #endif
1247 }
1248 
1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1250                                           void *&InsertPos) {
1251   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1252   if (N) {
1253     switch (N->getOpcode()) {
1254     default: break;
1255     case ISD::Constant:
1256     case ISD::ConstantFP:
1257       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1258                        "debug location.  Use another overload.");
1259     }
1260   }
1261   return N;
1262 }
1263 
1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1265                                           const SDLoc &DL, void *&InsertPos) {
1266   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1267   if (N) {
1268     switch (N->getOpcode()) {
1269     case ISD::Constant:
1270     case ISD::ConstantFP:
1271       // Erase debug location from the node if the node is used at several
1272       // different places. Do not propagate one location to all uses as it
1273       // will cause a worse single stepping debugging experience.
1274       if (N->getDebugLoc() != DL.getDebugLoc())
1275         N->setDebugLoc(DebugLoc());
1276       break;
1277     default:
1278       // When the node's point of use is located earlier in the instruction
1279       // sequence than its prior point of use, update its debug info to the
1280       // earlier location.
1281       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1282         N->setDebugLoc(DL.getDebugLoc());
1283       break;
1284     }
1285   }
1286   return N;
1287 }
1288 
1289 void SelectionDAG::clear() {
1290   allnodes_clear();
1291   OperandRecycler.clear(OperandAllocator);
1292   OperandAllocator.Reset();
1293   CSEMap.clear();
1294 
1295   ExtendedValueTypeNodes.clear();
1296   ExternalSymbols.clear();
1297   TargetExternalSymbols.clear();
1298   MCSymbols.clear();
1299   SDCallSiteDbgInfo.clear();
1300   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1301             static_cast<CondCodeSDNode*>(nullptr));
1302   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1303             static_cast<SDNode*>(nullptr));
1304 
1305   EntryNode.UseList = nullptr;
1306   InsertNode(&EntryNode);
1307   Root = getEntryNode();
1308   DbgInfo->clear();
1309 }
1310 
1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1312   return VT.bitsGT(Op.getValueType())
1313              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1314              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1315 }
1316 
1317 std::pair<SDValue, SDValue>
1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1319                                        const SDLoc &DL, EVT VT) {
1320   assert(!VT.bitsEq(Op.getValueType()) &&
1321          "Strict no-op FP extend/round not allowed.");
1322   SDValue Res =
1323       VT.bitsGT(Op.getValueType())
1324           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1325           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1326                     {Chain, Op, getIntPtrConstant(0, DL)});
1327 
1328   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1329 }
1330 
1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1332   return VT.bitsGT(Op.getValueType()) ?
1333     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1334     getNode(ISD::TRUNCATE, DL, VT, Op);
1335 }
1336 
1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1338   return VT.bitsGT(Op.getValueType()) ?
1339     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1340     getNode(ISD::TRUNCATE, DL, VT, Op);
1341 }
1342 
1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1344   return VT.bitsGT(Op.getValueType()) ?
1345     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1346     getNode(ISD::TRUNCATE, DL, VT, Op);
1347 }
1348 
1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1350                                         EVT OpVT) {
1351   if (VT.bitsLE(Op.getValueType()))
1352     return getNode(ISD::TRUNCATE, SL, VT, Op);
1353 
1354   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1355   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1356 }
1357 
1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1359   EVT OpVT = Op.getValueType();
1360   assert(VT.isInteger() && OpVT.isInteger() &&
1361          "Cannot getZeroExtendInReg FP types");
1362   assert(VT.isVector() == OpVT.isVector() &&
1363          "getZeroExtendInReg type should be vector iff the operand "
1364          "type is vector!");
1365   assert((!VT.isVector() ||
1366           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1367          "Vector element counts must match in getZeroExtendInReg");
1368   assert(VT.bitsLE(OpVT) && "Not extending!");
1369   if (OpVT == VT)
1370     return Op;
1371   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1372                                    VT.getScalarSizeInBits());
1373   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1374 }
1375 
1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1377   // Only unsigned pointer semantics are supported right now. In the future this
1378   // might delegate to TLI to check pointer signedness.
1379   return getZExtOrTrunc(Op, DL, VT);
1380 }
1381 
1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1383   // Only unsigned pointer semantics are supported right now. In the future this
1384   // might delegate to TLI to check pointer signedness.
1385   return getZeroExtendInReg(Op, DL, VT);
1386 }
1387 
1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1390   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1391 }
1392 
1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1394   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1395   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1396 }
1397 
1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1399                                       EVT OpVT) {
1400   if (!V)
1401     return getConstant(0, DL, VT);
1402 
1403   switch (TLI->getBooleanContents(OpVT)) {
1404   case TargetLowering::ZeroOrOneBooleanContent:
1405   case TargetLowering::UndefinedBooleanContent:
1406     return getConstant(1, DL, VT);
1407   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1408     return getAllOnesConstant(DL, VT);
1409   }
1410   llvm_unreachable("Unexpected boolean content enum!");
1411 }
1412 
1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1414                                   bool isT, bool isO) {
1415   EVT EltVT = VT.getScalarType();
1416   assert((EltVT.getSizeInBits() >= 64 ||
1417           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1418          "getConstant with a uint64_t value that doesn't fit in the type!");
1419   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1420 }
1421 
1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1423                                   bool isT, bool isO) {
1424   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1425 }
1426 
1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1428                                   EVT VT, bool isT, bool isO) {
1429   assert(VT.isInteger() && "Cannot create FP integer constant!");
1430 
1431   EVT EltVT = VT.getScalarType();
1432   const ConstantInt *Elt = &Val;
1433 
1434   // In some cases the vector type is legal but the element type is illegal and
1435   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1436   // inserted value (the type does not need to match the vector element type).
1437   // Any extra bits introduced will be truncated away.
1438   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1439                            TargetLowering::TypePromoteInteger) {
1440     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1441     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1442     Elt = ConstantInt::get(*getContext(), NewVal);
1443   }
1444   // In other cases the element type is illegal and needs to be expanded, for
1445   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1446   // the value into n parts and use a vector type with n-times the elements.
1447   // Then bitcast to the type requested.
1448   // Legalizing constants too early makes the DAGCombiner's job harder so we
1449   // only legalize if the DAG tells us we must produce legal types.
1450   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1451            TLI->getTypeAction(*getContext(), EltVT) ==
1452                TargetLowering::TypeExpandInteger) {
1453     const APInt &NewVal = Elt->getValue();
1454     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1455     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1456 
1457     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1458     if (VT.isScalableVector()) {
1459       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1460              "Can only handle an even split!");
1461       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1462 
1463       SmallVector<SDValue, 2> ScalarParts;
1464       for (unsigned i = 0; i != Parts; ++i)
1465         ScalarParts.push_back(getConstant(
1466             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1467             ViaEltVT, isT, isO));
1468 
1469       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1470     }
1471 
1472     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1473     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1474 
1475     // Check the temporary vector is the correct size. If this fails then
1476     // getTypeToTransformTo() probably returned a type whose size (in bits)
1477     // isn't a power-of-2 factor of the requested type size.
1478     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1479 
1480     SmallVector<SDValue, 2> EltParts;
1481     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1482       EltParts.push_back(getConstant(
1483           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1484           ViaEltVT, isT, isO));
1485 
1486     // EltParts is currently in little endian order. If we actually want
1487     // big-endian order then reverse it now.
1488     if (getDataLayout().isBigEndian())
1489       std::reverse(EltParts.begin(), EltParts.end());
1490 
1491     // The elements must be reversed when the element order is different
1492     // to the endianness of the elements (because the BITCAST is itself a
1493     // vector shuffle in this situation). However, we do not need any code to
1494     // perform this reversal because getConstant() is producing a vector
1495     // splat.
1496     // This situation occurs in MIPS MSA.
1497 
1498     SmallVector<SDValue, 8> Ops;
1499     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1500       llvm::append_range(Ops, EltParts);
1501 
1502     SDValue V =
1503         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1504     return V;
1505   }
1506 
1507   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1508          "APInt size does not match type size!");
1509   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1510   FoldingSetNodeID ID;
1511   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1512   ID.AddPointer(Elt);
1513   ID.AddBoolean(isO);
1514   void *IP = nullptr;
1515   SDNode *N = nullptr;
1516   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1517     if (!VT.isVector())
1518       return SDValue(N, 0);
1519 
1520   if (!N) {
1521     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1522     CSEMap.InsertNode(N, IP);
1523     InsertNode(N);
1524     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1525   }
1526 
1527   SDValue Result(N, 0);
1528   if (VT.isScalableVector())
1529     Result = getSplatVector(VT, DL, Result);
1530   else if (VT.isVector())
1531     Result = getSplatBuildVector(VT, DL, Result);
1532 
1533   return Result;
1534 }
1535 
1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1537                                         bool isTarget) {
1538   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1539 }
1540 
1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1542                                              const SDLoc &DL, bool LegalTypes) {
1543   assert(VT.isInteger() && "Shift amount is not an integer type!");
1544   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1545   return getConstant(Val, DL, ShiftVT);
1546 }
1547 
1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1549                                            bool isTarget) {
1550   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1551 }
1552 
1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1554                                     bool isTarget) {
1555   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1556 }
1557 
1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1559                                     EVT VT, bool isTarget) {
1560   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1561 
1562   EVT EltVT = VT.getScalarType();
1563 
1564   // Do the map lookup using the actual bit pattern for the floating point
1565   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1566   // we don't have issues with SNANs.
1567   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1568   FoldingSetNodeID ID;
1569   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1570   ID.AddPointer(&V);
1571   void *IP = nullptr;
1572   SDNode *N = nullptr;
1573   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1574     if (!VT.isVector())
1575       return SDValue(N, 0);
1576 
1577   if (!N) {
1578     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1579     CSEMap.InsertNode(N, IP);
1580     InsertNode(N);
1581   }
1582 
1583   SDValue Result(N, 0);
1584   if (VT.isScalableVector())
1585     Result = getSplatVector(VT, DL, Result);
1586   else if (VT.isVector())
1587     Result = getSplatBuildVector(VT, DL, Result);
1588   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1589   return Result;
1590 }
1591 
1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1593                                     bool isTarget) {
1594   EVT EltVT = VT.getScalarType();
1595   if (EltVT == MVT::f32)
1596     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1597   if (EltVT == MVT::f64)
1598     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1599   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1600       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1601     bool Ignored;
1602     APFloat APF = APFloat(Val);
1603     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1604                 &Ignored);
1605     return getConstantFP(APF, DL, VT, isTarget);
1606   }
1607   llvm_unreachable("Unsupported type in getConstantFP");
1608 }
1609 
1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1611                                        EVT VT, int64_t Offset, bool isTargetGA,
1612                                        unsigned TargetFlags) {
1613   assert((TargetFlags == 0 || isTargetGA) &&
1614          "Cannot set target flags on target-independent globals");
1615 
1616   // Truncate (with sign-extension) the offset value to the pointer size.
1617   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1618   if (BitWidth < 64)
1619     Offset = SignExtend64(Offset, BitWidth);
1620 
1621   unsigned Opc;
1622   if (GV->isThreadLocal())
1623     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1624   else
1625     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1626 
1627   FoldingSetNodeID ID;
1628   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1629   ID.AddPointer(GV);
1630   ID.AddInteger(Offset);
1631   ID.AddInteger(TargetFlags);
1632   void *IP = nullptr;
1633   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1634     return SDValue(E, 0);
1635 
1636   auto *N = newSDNode<GlobalAddressSDNode>(
1637       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1638   CSEMap.InsertNode(N, IP);
1639     InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1644   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(FI);
1648   void *IP = nullptr;
1649   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1650     return SDValue(E, 0);
1651 
1652   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1653   CSEMap.InsertNode(N, IP);
1654   InsertNode(N);
1655   return SDValue(N, 0);
1656 }
1657 
1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1659                                    unsigned TargetFlags) {
1660   assert((TargetFlags == 0 || isTarget) &&
1661          "Cannot set target flags on target-independent jump tables");
1662   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddInteger(JTI);
1666   ID.AddInteger(TargetFlags);
1667   void *IP = nullptr;
1668   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1669     return SDValue(E, 0);
1670 
1671   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1672   CSEMap.InsertNode(N, IP);
1673   InsertNode(N);
1674   return SDValue(N, 0);
1675 }
1676 
1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1678                                       MaybeAlign Alignment, int Offset,
1679                                       bool isTarget, unsigned TargetFlags) {
1680   assert((TargetFlags == 0 || isTarget) &&
1681          "Cannot set target flags on target-independent globals");
1682   if (!Alignment)
1683     Alignment = shouldOptForSize()
1684                     ? getDataLayout().getABITypeAlign(C->getType())
1685                     : getDataLayout().getPrefTypeAlign(C->getType());
1686   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1687   FoldingSetNodeID ID;
1688   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1689   ID.AddInteger(Alignment->value());
1690   ID.AddInteger(Offset);
1691   ID.AddPointer(C);
1692   ID.AddInteger(TargetFlags);
1693   void *IP = nullptr;
1694   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1695     return SDValue(E, 0);
1696 
1697   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1698                                           TargetFlags);
1699   CSEMap.InsertNode(N, IP);
1700   InsertNode(N);
1701   SDValue V = SDValue(N, 0);
1702   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1703   return V;
1704 }
1705 
1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1707                                       MaybeAlign Alignment, int Offset,
1708                                       bool isTarget, unsigned TargetFlags) {
1709   assert((TargetFlags == 0 || isTarget) &&
1710          "Cannot set target flags on target-independent globals");
1711   if (!Alignment)
1712     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1713   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1714   FoldingSetNodeID ID;
1715   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1716   ID.AddInteger(Alignment->value());
1717   ID.AddInteger(Offset);
1718   C->addSelectionDAGCSEId(ID);
1719   ID.AddInteger(TargetFlags);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1725                                           TargetFlags);
1726   CSEMap.InsertNode(N, IP);
1727   InsertNode(N);
1728   return SDValue(N, 0);
1729 }
1730 
1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1732                                      unsigned TargetFlags) {
1733   FoldingSetNodeID ID;
1734   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1735   ID.AddInteger(Index);
1736   ID.AddInteger(Offset);
1737   ID.AddInteger(TargetFlags);
1738   void *IP = nullptr;
1739   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1740     return SDValue(E, 0);
1741 
1742   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1743   CSEMap.InsertNode(N, IP);
1744   InsertNode(N);
1745   return SDValue(N, 0);
1746 }
1747 
1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1749   FoldingSetNodeID ID;
1750   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1751   ID.AddPointer(MBB);
1752   void *IP = nullptr;
1753   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1754     return SDValue(E, 0);
1755 
1756   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1757   CSEMap.InsertNode(N, IP);
1758   InsertNode(N);
1759   return SDValue(N, 0);
1760 }
1761 
1762 SDValue SelectionDAG::getValueType(EVT VT) {
1763   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1764       ValueTypeNodes.size())
1765     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1766 
1767   SDNode *&N = VT.isExtended() ?
1768     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1769 
1770   if (N) return SDValue(N, 0);
1771   N = newSDNode<VTSDNode>(VT);
1772   InsertNode(N);
1773   return SDValue(N, 0);
1774 }
1775 
1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1777   SDNode *&N = ExternalSymbols[Sym];
1778   if (N) return SDValue(N, 0);
1779   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1785   SDNode *&N = MCSymbols[Sym];
1786   if (N)
1787     return SDValue(N, 0);
1788   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1789   InsertNode(N);
1790   return SDValue(N, 0);
1791 }
1792 
1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1794                                               unsigned TargetFlags) {
1795   SDNode *&N =
1796       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1797   if (N) return SDValue(N, 0);
1798   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1804   if ((unsigned)Cond >= CondCodeNodes.size())
1805     CondCodeNodes.resize(Cond+1);
1806 
1807   if (!CondCodeNodes[Cond]) {
1808     auto *N = newSDNode<CondCodeSDNode>(Cond);
1809     CondCodeNodes[Cond] = N;
1810     InsertNode(N);
1811   }
1812 
1813   return SDValue(CondCodeNodes[Cond], 0);
1814 }
1815 
1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1817   APInt One(ResVT.getScalarSizeInBits(), 1);
1818   return getStepVector(DL, ResVT, One);
1819 }
1820 
1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1822   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1823   if (ResVT.isScalableVector())
1824     return getNode(
1825         ISD::STEP_VECTOR, DL, ResVT,
1826         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1827 
1828   SmallVector<SDValue, 16> OpsStepConstants;
1829   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1830     OpsStepConstants.push_back(
1831         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1832   return getBuildVector(ResVT, DL, OpsStepConstants);
1833 }
1834 
1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1838   std::swap(N1, N2);
1839   ShuffleVectorSDNode::commuteMask(M);
1840 }
1841 
1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1843                                        SDValue N2, ArrayRef<int> Mask) {
1844   assert(VT.getVectorNumElements() == Mask.size() &&
1845          "Must have the same number of vector elements as mask elements!");
1846   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1847          "Invalid VECTOR_SHUFFLE");
1848 
1849   // Canonicalize shuffle undef, undef -> undef
1850   if (N1.isUndef() && N2.isUndef())
1851     return getUNDEF(VT);
1852 
1853   // Validate that all indices in Mask are within the range of the elements
1854   // input to the shuffle.
1855   int NElts = Mask.size();
1856   assert(llvm::all_of(Mask,
1857                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1858          "Index out of range");
1859 
1860   // Copy the mask so we can do any needed cleanup.
1861   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1862 
1863   // Canonicalize shuffle v, v -> v, undef
1864   if (N1 == N2) {
1865     N2 = getUNDEF(VT);
1866     for (int i = 0; i != NElts; ++i)
1867       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1868   }
1869 
1870   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1871   if (N1.isUndef())
1872     commuteShuffle(N1, N2, MaskVec);
1873 
1874   if (TLI->hasVectorBlend()) {
1875     // If shuffling a splat, try to blend the splat instead. We do this here so
1876     // that even when this arises during lowering we don't have to re-handle it.
1877     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1878       BitVector UndefElements;
1879       SDValue Splat = BV->getSplatValue(&UndefElements);
1880       if (!Splat)
1881         return;
1882 
1883       for (int i = 0; i < NElts; ++i) {
1884         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1885           continue;
1886 
1887         // If this input comes from undef, mark it as such.
1888         if (UndefElements[MaskVec[i] - Offset]) {
1889           MaskVec[i] = -1;
1890           continue;
1891         }
1892 
1893         // If we can blend a non-undef lane, use that instead.
1894         if (!UndefElements[i])
1895           MaskVec[i] = i + Offset;
1896       }
1897     };
1898     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1899       BlendSplat(N1BV, 0);
1900     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1901       BlendSplat(N2BV, NElts);
1902   }
1903 
1904   // Canonicalize all index into lhs, -> shuffle lhs, undef
1905   // Canonicalize all index into rhs, -> shuffle rhs, undef
1906   bool AllLHS = true, AllRHS = true;
1907   bool N2Undef = N2.isUndef();
1908   for (int i = 0; i != NElts; ++i) {
1909     if (MaskVec[i] >= NElts) {
1910       if (N2Undef)
1911         MaskVec[i] = -1;
1912       else
1913         AllLHS = false;
1914     } else if (MaskVec[i] >= 0) {
1915       AllRHS = false;
1916     }
1917   }
1918   if (AllLHS && AllRHS)
1919     return getUNDEF(VT);
1920   if (AllLHS && !N2Undef)
1921     N2 = getUNDEF(VT);
1922   if (AllRHS) {
1923     N1 = getUNDEF(VT);
1924     commuteShuffle(N1, N2, MaskVec);
1925   }
1926   // Reset our undef status after accounting for the mask.
1927   N2Undef = N2.isUndef();
1928   // Re-check whether both sides ended up undef.
1929   if (N1.isUndef() && N2Undef)
1930     return getUNDEF(VT);
1931 
1932   // If Identity shuffle return that node.
1933   bool Identity = true, AllSame = true;
1934   for (int i = 0; i != NElts; ++i) {
1935     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1936     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1937   }
1938   if (Identity && NElts)
1939     return N1;
1940 
1941   // Shuffling a constant splat doesn't change the result.
1942   if (N2Undef) {
1943     SDValue V = N1;
1944 
1945     // Look through any bitcasts. We check that these don't change the number
1946     // (and size) of elements and just changes their types.
1947     while (V.getOpcode() == ISD::BITCAST)
1948       V = V->getOperand(0);
1949 
1950     // A splat should always show up as a build vector node.
1951     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1952       BitVector UndefElements;
1953       SDValue Splat = BV->getSplatValue(&UndefElements);
1954       // If this is a splat of an undef, shuffling it is also undef.
1955       if (Splat && Splat.isUndef())
1956         return getUNDEF(VT);
1957 
1958       bool SameNumElts =
1959           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1960 
1961       // We only have a splat which can skip shuffles if there is a splatted
1962       // value and no undef lanes rearranged by the shuffle.
1963       if (Splat && UndefElements.none()) {
1964         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1965         // number of elements match or the value splatted is a zero constant.
1966         if (SameNumElts)
1967           return N1;
1968         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1969           if (C->isZero())
1970             return N1;
1971       }
1972 
1973       // If the shuffle itself creates a splat, build the vector directly.
1974       if (AllSame && SameNumElts) {
1975         EVT BuildVT = BV->getValueType(0);
1976         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1977         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1978 
1979         // We may have jumped through bitcasts, so the type of the
1980         // BUILD_VECTOR may not match the type of the shuffle.
1981         if (BuildVT != VT)
1982           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1983         return NewBV;
1984       }
1985     }
1986   }
1987 
1988   FoldingSetNodeID ID;
1989   SDValue Ops[2] = { N1, N2 };
1990   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1991   for (int i = 0; i != NElts; ++i)
1992     ID.AddInteger(MaskVec[i]);
1993 
1994   void* IP = nullptr;
1995   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1996     return SDValue(E, 0);
1997 
1998   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1999   // SDNode doesn't have access to it.  This memory will be "leaked" when
2000   // the node is deallocated, but recovered when the NodeAllocator is released.
2001   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2002   llvm::copy(MaskVec, MaskAlloc);
2003 
2004   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2005                                            dl.getDebugLoc(), MaskAlloc);
2006   createOperands(N, Ops);
2007 
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   SDValue V = SDValue(N, 0);
2011   NewSDValueDbgMsg(V, "Creating new node: ", this);
2012   return V;
2013 }
2014 
2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2016   EVT VT = SV.getValueType(0);
2017   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2018   ShuffleVectorSDNode::commuteMask(MaskVec);
2019 
2020   SDValue Op0 = SV.getOperand(0);
2021   SDValue Op1 = SV.getOperand(1);
2022   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2023 }
2024 
2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2028   ID.AddInteger(RegNo);
2029   void *IP = nullptr;
2030   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2031     return SDValue(E, 0);
2032 
2033   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2034   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   return SDValue(N, 0);
2038 }
2039 
2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2041   FoldingSetNodeID ID;
2042   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2043   ID.AddPointer(RegMask);
2044   void *IP = nullptr;
2045   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2046     return SDValue(E, 0);
2047 
2048   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2049   CSEMap.InsertNode(N, IP);
2050   InsertNode(N);
2051   return SDValue(N, 0);
2052 }
2053 
2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2055                                  MCSymbol *Label) {
2056   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2057 }
2058 
2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2060                                    SDValue Root, MCSymbol *Label) {
2061   FoldingSetNodeID ID;
2062   SDValue Ops[] = { Root };
2063   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2064   ID.AddPointer(Label);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N =
2070       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2071   createOperands(N, Ops);
2072 
2073   CSEMap.InsertNode(N, IP);
2074   InsertNode(N);
2075   return SDValue(N, 0);
2076 }
2077 
2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2079                                       int64_t Offset, bool isTarget,
2080                                       unsigned TargetFlags) {
2081   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2082 
2083   FoldingSetNodeID ID;
2084   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2085   ID.AddPointer(BA);
2086   ID.AddInteger(Offset);
2087   ID.AddInteger(TargetFlags);
2088   void *IP = nullptr;
2089   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2090     return SDValue(E, 0);
2091 
2092   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2093   CSEMap.InsertNode(N, IP);
2094   InsertNode(N);
2095   return SDValue(N, 0);
2096 }
2097 
2098 SDValue SelectionDAG::getSrcValue(const Value *V) {
2099   FoldingSetNodeID ID;
2100   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2101   ID.AddPointer(V);
2102 
2103   void *IP = nullptr;
2104   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2105     return SDValue(E, 0);
2106 
2107   auto *N = newSDNode<SrcValueSDNode>(V);
2108   CSEMap.InsertNode(N, IP);
2109   InsertNode(N);
2110   return SDValue(N, 0);
2111 }
2112 
2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2114   FoldingSetNodeID ID;
2115   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2116   ID.AddPointer(MD);
2117 
2118   void *IP = nullptr;
2119   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2120     return SDValue(E, 0);
2121 
2122   auto *N = newSDNode<MDNodeSDNode>(MD);
2123   CSEMap.InsertNode(N, IP);
2124   InsertNode(N);
2125   return SDValue(N, 0);
2126 }
2127 
2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2129   if (VT == V.getValueType())
2130     return V;
2131 
2132   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2133 }
2134 
2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2136                                        unsigned SrcAS, unsigned DestAS) {
2137   SDValue Ops[] = {Ptr};
2138   FoldingSetNodeID ID;
2139   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2140   ID.AddInteger(SrcAS);
2141   ID.AddInteger(DestAS);
2142 
2143   void *IP = nullptr;
2144   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2145     return SDValue(E, 0);
2146 
2147   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2148                                            VT, SrcAS, DestAS);
2149   createOperands(N, Ops);
2150 
2151   CSEMap.InsertNode(N, IP);
2152   InsertNode(N);
2153   return SDValue(N, 0);
2154 }
2155 
2156 SDValue SelectionDAG::getFreeze(SDValue V) {
2157   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2158 }
2159 
2160 /// getShiftAmountOperand - Return the specified value casted to
2161 /// the target's desired shift amount type.
2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2163   EVT OpTy = Op.getValueType();
2164   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2165   if (OpTy == ShTy || OpTy.isVector()) return Op;
2166 
2167   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2168 }
2169 
2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2171   SDLoc dl(Node);
2172   const TargetLowering &TLI = getTargetLoweringInfo();
2173   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2174   EVT VT = Node->getValueType(0);
2175   SDValue Tmp1 = Node->getOperand(0);
2176   SDValue Tmp2 = Node->getOperand(1);
2177   const MaybeAlign MA(Node->getConstantOperandVal(3));
2178 
2179   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2180                                Tmp2, MachinePointerInfo(V));
2181   SDValue VAList = VAListLoad;
2182 
2183   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2184     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2185                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2186 
2187     VAList =
2188         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2189                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2190   }
2191 
2192   // Increment the pointer, VAList, to the next vaarg
2193   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2194                  getConstant(getDataLayout().getTypeAllocSize(
2195                                                VT.getTypeForEVT(*getContext())),
2196                              dl, VAList.getValueType()));
2197   // Store the incremented VAList to the legalized pointer
2198   Tmp1 =
2199       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2200   // Load the actual argument out of the pointer VAList
2201   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2202 }
2203 
2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2205   SDLoc dl(Node);
2206   const TargetLowering &TLI = getTargetLoweringInfo();
2207   // This defaults to loading a pointer from the input and storing it to the
2208   // output, returning the chain.
2209   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2210   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2211   SDValue Tmp1 =
2212       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2213               Node->getOperand(2), MachinePointerInfo(VS));
2214   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2215                   MachinePointerInfo(VD));
2216 }
2217 
2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2219   const DataLayout &DL = getDataLayout();
2220   Type *Ty = VT.getTypeForEVT(*getContext());
2221   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2222 
2223   if (TLI->isTypeLegal(VT) || !VT.isVector())
2224     return RedAlign;
2225 
2226   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2227   const Align StackAlign = TFI->getStackAlign();
2228 
2229   // See if we can choose a smaller ABI alignment in cases where it's an
2230   // illegal vector type that will get broken down.
2231   if (RedAlign > StackAlign) {
2232     EVT IntermediateVT;
2233     MVT RegisterVT;
2234     unsigned NumIntermediates;
2235     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2236                                 NumIntermediates, RegisterVT);
2237     Ty = IntermediateVT.getTypeForEVT(*getContext());
2238     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2239     if (RedAlign2 < RedAlign)
2240       RedAlign = RedAlign2;
2241   }
2242 
2243   return RedAlign;
2244 }
2245 
2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2247   MachineFrameInfo &MFI = MF->getFrameInfo();
2248   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2249   int StackID = 0;
2250   if (Bytes.isScalable())
2251     StackID = TFI->getStackIDForScalableVectors();
2252   // The stack id gives an indication of whether the object is scalable or
2253   // not, so it's safe to pass in the minimum size here.
2254   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2255                                        false, nullptr, StackID);
2256   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2257 }
2258 
2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2260   Type *Ty = VT.getTypeForEVT(*getContext());
2261   Align StackAlign =
2262       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2263   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2264 }
2265 
2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2267   TypeSize VT1Size = VT1.getStoreSize();
2268   TypeSize VT2Size = VT2.getStoreSize();
2269   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2270          "Don't know how to choose the maximum size when creating a stack "
2271          "temporary");
2272   TypeSize Bytes =
2273       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2274 
2275   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2276   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2277   const DataLayout &DL = getDataLayout();
2278   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2279   return CreateStackTemporary(Bytes, Align);
2280 }
2281 
2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2283                                 ISD::CondCode Cond, const SDLoc &dl) {
2284   EVT OpVT = N1.getValueType();
2285 
2286   // These setcc operations always fold.
2287   switch (Cond) {
2288   default: break;
2289   case ISD::SETFALSE:
2290   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2291   case ISD::SETTRUE:
2292   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2293 
2294   case ISD::SETOEQ:
2295   case ISD::SETOGT:
2296   case ISD::SETOGE:
2297   case ISD::SETOLT:
2298   case ISD::SETOLE:
2299   case ISD::SETONE:
2300   case ISD::SETO:
2301   case ISD::SETUO:
2302   case ISD::SETUEQ:
2303   case ISD::SETUNE:
2304     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2305     break;
2306   }
2307 
2308   if (OpVT.isInteger()) {
2309     // For EQ and NE, we can always pick a value for the undef to make the
2310     // predicate pass or fail, so we can return undef.
2311     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2312     // icmp eq/ne X, undef -> undef.
2313     if ((N1.isUndef() || N2.isUndef()) &&
2314         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2315       return getUNDEF(VT);
2316 
2317     // If both operands are undef, we can return undef for int comparison.
2318     // icmp undef, undef -> undef.
2319     if (N1.isUndef() && N2.isUndef())
2320       return getUNDEF(VT);
2321 
2322     // icmp X, X -> true/false
2323     // icmp X, undef -> true/false because undef could be X.
2324     if (N1 == N2)
2325       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2326   }
2327 
2328   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2329     const APInt &C2 = N2C->getAPIntValue();
2330     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2331       const APInt &C1 = N1C->getAPIntValue();
2332 
2333       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2334                              dl, VT, OpVT);
2335     }
2336   }
2337 
2338   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2339   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2340 
2341   if (N1CFP && N2CFP) {
2342     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2343     switch (Cond) {
2344     default: break;
2345     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2346                         return getUNDEF(VT);
2347                       LLVM_FALLTHROUGH;
2348     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2349                                              OpVT);
2350     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2351                         return getUNDEF(VT);
2352                       LLVM_FALLTHROUGH;
2353     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2354                                              R==APFloat::cmpLessThan, dl, VT,
2355                                              OpVT);
2356     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2357                         return getUNDEF(VT);
2358                       LLVM_FALLTHROUGH;
2359     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2360                                              OpVT);
2361     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2362                         return getUNDEF(VT);
2363                       LLVM_FALLTHROUGH;
2364     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2365                                              VT, OpVT);
2366     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2367                         return getUNDEF(VT);
2368                       LLVM_FALLTHROUGH;
2369     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2370                                              R==APFloat::cmpEqual, dl, VT,
2371                                              OpVT);
2372     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2373                         return getUNDEF(VT);
2374                       LLVM_FALLTHROUGH;
2375     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2376                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2377     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2378                                              OpVT);
2379     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2380                                              OpVT);
2381     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2382                                              R==APFloat::cmpEqual, dl, VT,
2383                                              OpVT);
2384     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2387                                              R==APFloat::cmpLessThan, dl, VT,
2388                                              OpVT);
2389     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpUnordered, dl, VT,
2391                                              OpVT);
2392     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2393                                              VT, OpVT);
2394     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2395                                              OpVT);
2396     }
2397   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2398     // Ensure that the constant occurs on the RHS.
2399     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2400     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2401       return SDValue();
2402     return getSetCC(dl, VT, N2, N1, SwappedCond);
2403   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2404              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2405     // If an operand is known to be a nan (or undef that could be a nan), we can
2406     // fold it.
2407     // Choosing NaN for the undef will always make unordered comparison succeed
2408     // and ordered comparison fails.
2409     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2410     switch (ISD::getUnorderedFlavor(Cond)) {
2411     default:
2412       llvm_unreachable("Unknown flavor!");
2413     case 0: // Known false.
2414       return getBoolConstant(false, dl, VT, OpVT);
2415     case 1: // Known true.
2416       return getBoolConstant(true, dl, VT, OpVT);
2417     case 2: // Undefined.
2418       return getUNDEF(VT);
2419     }
2420   }
2421 
2422   // Could not fold it.
2423   return SDValue();
2424 }
2425 
2426 /// See if the specified operand can be simplified with the knowledge that only
2427 /// the bits specified by DemandedBits are used.
2428 /// TODO: really we should be making this into the DAG equivalent of
2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2431   EVT VT = V.getValueType();
2432 
2433   if (VT.isScalableVector())
2434     return SDValue();
2435 
2436   APInt DemandedElts = VT.isVector()
2437                            ? APInt::getAllOnes(VT.getVectorNumElements())
2438                            : APInt(1, 1);
2439   return GetDemandedBits(V, DemandedBits, DemandedElts);
2440 }
2441 
2442 /// See if the specified operand can be simplified with the knowledge that only
2443 /// the bits specified by DemandedBits are used in the elements specified by
2444 /// DemandedElts.
2445 /// TODO: really we should be making this into the DAG equivalent of
2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2448                                       const APInt &DemandedElts) {
2449   switch (V.getOpcode()) {
2450   default:
2451     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2452                                                 *this, 0);
2453   case ISD::Constant: {
2454     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2455     APInt NewVal = CVal & DemandedBits;
2456     if (NewVal != CVal)
2457       return getConstant(NewVal, SDLoc(V), V.getValueType());
2458     break;
2459   }
2460   case ISD::SRL:
2461     // Only look at single-use SRLs.
2462     if (!V.getNode()->hasOneUse())
2463       break;
2464     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2465       // See if we can recursively simplify the LHS.
2466       unsigned Amt = RHSC->getZExtValue();
2467 
2468       // Watch out for shift count overflow though.
2469       if (Amt >= DemandedBits.getBitWidth())
2470         break;
2471       APInt SrcDemandedBits = DemandedBits << Amt;
2472       if (SDValue SimplifyLHS =
2473               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2474         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2475                        V.getOperand(1));
2476     }
2477     break;
2478   }
2479   return SDValue();
2480 }
2481 
2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2483 /// use this predicate to simplify operations downstream.
2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2485   unsigned BitWidth = Op.getScalarValueSizeInBits();
2486   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2487 }
2488 
2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2490 /// this predicate to simplify operations downstream.  Mask is known to be zero
2491 /// for bits that V cannot have.
2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2493                                      unsigned Depth) const {
2494   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2495 }
2496 
2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2498 /// DemandedElts.  We use this predicate to simplify operations downstream.
2499 /// Mask is known to be zero for bits that V cannot have.
2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2501                                      const APInt &DemandedElts,
2502                                      unsigned Depth) const {
2503   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2504 }
2505 
2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2508                                         unsigned Depth) const {
2509   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2510 }
2511 
2512 /// isSplatValue - Return true if the vector V has the same value
2513 /// across all DemandedElts. For scalable vectors it does not make
2514 /// sense to specify which elements are demanded or undefined, therefore
2515 /// they are simply ignored.
2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2517                                 APInt &UndefElts, unsigned Depth) const {
2518   unsigned Opcode = V.getOpcode();
2519   EVT VT = V.getValueType();
2520   assert(VT.isVector() && "Vector type expected");
2521 
2522   if (!VT.isScalableVector() && !DemandedElts)
2523     return false; // No demanded elts, better to assume we don't know anything.
2524 
2525   if (Depth >= MaxRecursionDepth)
2526     return false; // Limit search depth.
2527 
2528   // Deal with some common cases here that work for both fixed and scalable
2529   // vector types.
2530   switch (Opcode) {
2531   case ISD::SPLAT_VECTOR:
2532     UndefElts = V.getOperand(0).isUndef()
2533                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2534                     : APInt(DemandedElts.getBitWidth(), 0);
2535     return true;
2536   case ISD::ADD:
2537   case ISD::SUB:
2538   case ISD::AND:
2539   case ISD::XOR:
2540   case ISD::OR: {
2541     APInt UndefLHS, UndefRHS;
2542     SDValue LHS = V.getOperand(0);
2543     SDValue RHS = V.getOperand(1);
2544     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2545         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2546       UndefElts = UndefLHS | UndefRHS;
2547       return true;
2548     }
2549     return false;
2550   }
2551   case ISD::ABS:
2552   case ISD::TRUNCATE:
2553   case ISD::SIGN_EXTEND:
2554   case ISD::ZERO_EXTEND:
2555     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2556   default:
2557     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2558         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2559       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2560     break;
2561 }
2562 
2563   // We don't support other cases than those above for scalable vectors at
2564   // the moment.
2565   if (VT.isScalableVector())
2566     return false;
2567 
2568   unsigned NumElts = VT.getVectorNumElements();
2569   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2570   UndefElts = APInt::getZero(NumElts);
2571 
2572   switch (Opcode) {
2573   case ISD::BUILD_VECTOR: {
2574     SDValue Scl;
2575     for (unsigned i = 0; i != NumElts; ++i) {
2576       SDValue Op = V.getOperand(i);
2577       if (Op.isUndef()) {
2578         UndefElts.setBit(i);
2579         continue;
2580       }
2581       if (!DemandedElts[i])
2582         continue;
2583       if (Scl && Scl != Op)
2584         return false;
2585       Scl = Op;
2586     }
2587     return true;
2588   }
2589   case ISD::VECTOR_SHUFFLE: {
2590     // Check if this is a shuffle node doing a splat.
2591     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2592     int SplatIndex = -1;
2593     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2594     for (int i = 0; i != (int)NumElts; ++i) {
2595       int M = Mask[i];
2596       if (M < 0) {
2597         UndefElts.setBit(i);
2598         continue;
2599       }
2600       if (!DemandedElts[i])
2601         continue;
2602       if (0 <= SplatIndex && SplatIndex != M)
2603         return false;
2604       SplatIndex = M;
2605     }
2606     return true;
2607   }
2608   case ISD::EXTRACT_SUBVECTOR: {
2609     // Offset the demanded elts by the subvector index.
2610     SDValue Src = V.getOperand(0);
2611     // We don't support scalable vectors at the moment.
2612     if (Src.getValueType().isScalableVector())
2613       return false;
2614     uint64_t Idx = V.getConstantOperandVal(1);
2615     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2616     APInt UndefSrcElts;
2617     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2618     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2619       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2620       return true;
2621     }
2622     break;
2623   }
2624   case ISD::ANY_EXTEND_VECTOR_INREG:
2625   case ISD::SIGN_EXTEND_VECTOR_INREG:
2626   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2627     // Widen the demanded elts by the src element count.
2628     SDValue Src = V.getOperand(0);
2629     // We don't support scalable vectors at the moment.
2630     if (Src.getValueType().isScalableVector())
2631       return false;
2632     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2633     APInt UndefSrcElts;
2634     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2635     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2636       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2637       return true;
2638     }
2639     break;
2640   }
2641   }
2642 
2643   return false;
2644 }
2645 
2646 /// Helper wrapper to main isSplatValue function.
2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2648   EVT VT = V.getValueType();
2649   assert(VT.isVector() && "Vector type expected");
2650 
2651   APInt UndefElts;
2652   APInt DemandedElts;
2653 
2654   // For now we don't support this with scalable vectors.
2655   if (!VT.isScalableVector())
2656     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2657   return isSplatValue(V, DemandedElts, UndefElts) &&
2658          (AllowUndefs || !UndefElts);
2659 }
2660 
2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2662   V = peekThroughExtractSubvectors(V);
2663 
2664   EVT VT = V.getValueType();
2665   unsigned Opcode = V.getOpcode();
2666   switch (Opcode) {
2667   default: {
2668     APInt UndefElts;
2669     APInt DemandedElts;
2670 
2671     if (!VT.isScalableVector())
2672       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2673 
2674     if (isSplatValue(V, DemandedElts, UndefElts)) {
2675       if (VT.isScalableVector()) {
2676         // DemandedElts and UndefElts are ignored for scalable vectors, since
2677         // the only supported cases are SPLAT_VECTOR nodes.
2678         SplatIdx = 0;
2679       } else {
2680         // Handle case where all demanded elements are UNDEF.
2681         if (DemandedElts.isSubsetOf(UndefElts)) {
2682           SplatIdx = 0;
2683           return getUNDEF(VT);
2684         }
2685         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2686       }
2687       return V;
2688     }
2689     break;
2690   }
2691   case ISD::SPLAT_VECTOR:
2692     SplatIdx = 0;
2693     return V;
2694   case ISD::VECTOR_SHUFFLE: {
2695     if (VT.isScalableVector())
2696       return SDValue();
2697 
2698     // Check if this is a shuffle node doing a splat.
2699     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2700     // getTargetVShiftNode currently struggles without the splat source.
2701     auto *SVN = cast<ShuffleVectorSDNode>(V);
2702     if (!SVN->isSplat())
2703       break;
2704     int Idx = SVN->getSplatIndex();
2705     int NumElts = V.getValueType().getVectorNumElements();
2706     SplatIdx = Idx % NumElts;
2707     return V.getOperand(Idx / NumElts);
2708   }
2709   }
2710 
2711   return SDValue();
2712 }
2713 
2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2715   int SplatIdx;
2716   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2717     EVT SVT = SrcVector.getValueType().getScalarType();
2718     EVT LegalSVT = SVT;
2719     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2720       if (!SVT.isInteger())
2721         return SDValue();
2722       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2723       if (LegalSVT.bitsLT(SVT))
2724         return SDValue();
2725     }
2726     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2727                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2728   }
2729   return SDValue();
2730 }
2731 
2732 const APInt *
2733 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2734                                           const APInt &DemandedElts) const {
2735   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2736           V.getOpcode() == ISD::SRA) &&
2737          "Unknown shift node");
2738   unsigned BitWidth = V.getScalarValueSizeInBits();
2739   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2740     // Shifting more than the bitwidth is not valid.
2741     const APInt &ShAmt = SA->getAPIntValue();
2742     if (ShAmt.ult(BitWidth))
2743       return &ShAmt;
2744   }
2745   return nullptr;
2746 }
2747 
2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2749     SDValue V, const APInt &DemandedElts) const {
2750   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2751           V.getOpcode() == ISD::SRA) &&
2752          "Unknown shift node");
2753   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2754     return ValidAmt;
2755   unsigned BitWidth = V.getScalarValueSizeInBits();
2756   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2757   if (!BV)
2758     return nullptr;
2759   const APInt *MinShAmt = nullptr;
2760   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2761     if (!DemandedElts[i])
2762       continue;
2763     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2764     if (!SA)
2765       return nullptr;
2766     // Shifting more than the bitwidth is not valid.
2767     const APInt &ShAmt = SA->getAPIntValue();
2768     if (ShAmt.uge(BitWidth))
2769       return nullptr;
2770     if (MinShAmt && MinShAmt->ule(ShAmt))
2771       continue;
2772     MinShAmt = &ShAmt;
2773   }
2774   return MinShAmt;
2775 }
2776 
2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2778     SDValue V, const APInt &DemandedElts) const {
2779   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2780           V.getOpcode() == ISD::SRA) &&
2781          "Unknown shift node");
2782   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2783     return ValidAmt;
2784   unsigned BitWidth = V.getScalarValueSizeInBits();
2785   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2786   if (!BV)
2787     return nullptr;
2788   const APInt *MaxShAmt = nullptr;
2789   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2790     if (!DemandedElts[i])
2791       continue;
2792     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2793     if (!SA)
2794       return nullptr;
2795     // Shifting more than the bitwidth is not valid.
2796     const APInt &ShAmt = SA->getAPIntValue();
2797     if (ShAmt.uge(BitWidth))
2798       return nullptr;
2799     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2800       continue;
2801     MaxShAmt = &ShAmt;
2802   }
2803   return MaxShAmt;
2804 }
2805 
2806 /// Determine which bits of Op are known to be either zero or one and return
2807 /// them in Known. For vectors, the known bits are those that are shared by
2808 /// every vector element.
2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2810   EVT VT = Op.getValueType();
2811 
2812   // TOOD: Until we have a plan for how to represent demanded elements for
2813   // scalable vectors, we can just bail out for now.
2814   if (Op.getValueType().isScalableVector()) {
2815     unsigned BitWidth = Op.getScalarValueSizeInBits();
2816     return KnownBits(BitWidth);
2817   }
2818 
2819   APInt DemandedElts = VT.isVector()
2820                            ? APInt::getAllOnes(VT.getVectorNumElements())
2821                            : APInt(1, 1);
2822   return computeKnownBits(Op, DemandedElts, Depth);
2823 }
2824 
2825 /// Determine which bits of Op are known to be either zero or one and return
2826 /// them in Known. The DemandedElts argument allows us to only collect the known
2827 /// bits that are shared by the requested vector elements.
2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2829                                          unsigned Depth) const {
2830   unsigned BitWidth = Op.getScalarValueSizeInBits();
2831 
2832   KnownBits Known(BitWidth);   // Don't know anything.
2833 
2834   // TOOD: Until we have a plan for how to represent demanded elements for
2835   // scalable vectors, we can just bail out for now.
2836   if (Op.getValueType().isScalableVector())
2837     return Known;
2838 
2839   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2840     // We know all of the bits for a constant!
2841     return KnownBits::makeConstant(C->getAPIntValue());
2842   }
2843   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2844     // We know all of the bits for a constant fp!
2845     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2846   }
2847 
2848   if (Depth >= MaxRecursionDepth)
2849     return Known;  // Limit search depth.
2850 
2851   KnownBits Known2;
2852   unsigned NumElts = DemandedElts.getBitWidth();
2853   assert((!Op.getValueType().isVector() ||
2854           NumElts == Op.getValueType().getVectorNumElements()) &&
2855          "Unexpected vector size");
2856 
2857   if (!DemandedElts)
2858     return Known;  // No demanded elts, better to assume we don't know anything.
2859 
2860   unsigned Opcode = Op.getOpcode();
2861   switch (Opcode) {
2862   case ISD::BUILD_VECTOR:
2863     // Collect the known bits that are shared by every demanded vector element.
2864     Known.Zero.setAllBits(); Known.One.setAllBits();
2865     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2866       if (!DemandedElts[i])
2867         continue;
2868 
2869       SDValue SrcOp = Op.getOperand(i);
2870       Known2 = computeKnownBits(SrcOp, Depth + 1);
2871 
2872       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2873       if (SrcOp.getValueSizeInBits() != BitWidth) {
2874         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2875                "Expected BUILD_VECTOR implicit truncation");
2876         Known2 = Known2.trunc(BitWidth);
2877       }
2878 
2879       // Known bits are the values that are shared by every demanded element.
2880       Known = KnownBits::commonBits(Known, Known2);
2881 
2882       // If we don't know any bits, early out.
2883       if (Known.isUnknown())
2884         break;
2885     }
2886     break;
2887   case ISD::VECTOR_SHUFFLE: {
2888     // Collect the known bits that are shared by every vector element referenced
2889     // by the shuffle.
2890     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2891     Known.Zero.setAllBits(); Known.One.setAllBits();
2892     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2893     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2894     for (unsigned i = 0; i != NumElts; ++i) {
2895       if (!DemandedElts[i])
2896         continue;
2897 
2898       int M = SVN->getMaskElt(i);
2899       if (M < 0) {
2900         // For UNDEF elements, we don't know anything about the common state of
2901         // the shuffle result.
2902         Known.resetAll();
2903         DemandedLHS.clearAllBits();
2904         DemandedRHS.clearAllBits();
2905         break;
2906       }
2907 
2908       if ((unsigned)M < NumElts)
2909         DemandedLHS.setBit((unsigned)M % NumElts);
2910       else
2911         DemandedRHS.setBit((unsigned)M % NumElts);
2912     }
2913     // Known bits are the values that are shared by every demanded element.
2914     if (!!DemandedLHS) {
2915       SDValue LHS = Op.getOperand(0);
2916       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2917       Known = KnownBits::commonBits(Known, Known2);
2918     }
2919     // If we don't know any bits, early out.
2920     if (Known.isUnknown())
2921       break;
2922     if (!!DemandedRHS) {
2923       SDValue RHS = Op.getOperand(1);
2924       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2925       Known = KnownBits::commonBits(Known, Known2);
2926     }
2927     break;
2928   }
2929   case ISD::CONCAT_VECTORS: {
2930     // Split DemandedElts and test each of the demanded subvectors.
2931     Known.Zero.setAllBits(); Known.One.setAllBits();
2932     EVT SubVectorVT = Op.getOperand(0).getValueType();
2933     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2934     unsigned NumSubVectors = Op.getNumOperands();
2935     for (unsigned i = 0; i != NumSubVectors; ++i) {
2936       APInt DemandedSub =
2937           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2938       if (!!DemandedSub) {
2939         SDValue Sub = Op.getOperand(i);
2940         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2941         Known = KnownBits::commonBits(Known, Known2);
2942       }
2943       // If we don't know any bits, early out.
2944       if (Known.isUnknown())
2945         break;
2946     }
2947     break;
2948   }
2949   case ISD::INSERT_SUBVECTOR: {
2950     // Demand any elements from the subvector and the remainder from the src its
2951     // inserted into.
2952     SDValue Src = Op.getOperand(0);
2953     SDValue Sub = Op.getOperand(1);
2954     uint64_t Idx = Op.getConstantOperandVal(2);
2955     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2956     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2957     APInt DemandedSrcElts = DemandedElts;
2958     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2959 
2960     Known.One.setAllBits();
2961     Known.Zero.setAllBits();
2962     if (!!DemandedSubElts) {
2963       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2964       if (Known.isUnknown())
2965         break; // early-out.
2966     }
2967     if (!!DemandedSrcElts) {
2968       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2969       Known = KnownBits::commonBits(Known, Known2);
2970     }
2971     break;
2972   }
2973   case ISD::EXTRACT_SUBVECTOR: {
2974     // Offset the demanded elts by the subvector index.
2975     SDValue Src = Op.getOperand(0);
2976     // Bail until we can represent demanded elements for scalable vectors.
2977     if (Src.getValueType().isScalableVector())
2978       break;
2979     uint64_t Idx = Op.getConstantOperandVal(1);
2980     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2981     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2982     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2983     break;
2984   }
2985   case ISD::SCALAR_TO_VECTOR: {
2986     // We know about scalar_to_vector as much as we know about it source,
2987     // which becomes the first element of otherwise unknown vector.
2988     if (DemandedElts != 1)
2989       break;
2990 
2991     SDValue N0 = Op.getOperand(0);
2992     Known = computeKnownBits(N0, Depth + 1);
2993     if (N0.getValueSizeInBits() != BitWidth)
2994       Known = Known.trunc(BitWidth);
2995 
2996     break;
2997   }
2998   case ISD::BITCAST: {
2999     SDValue N0 = Op.getOperand(0);
3000     EVT SubVT = N0.getValueType();
3001     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3002 
3003     // Ignore bitcasts from unsupported types.
3004     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3005       break;
3006 
3007     // Fast handling of 'identity' bitcasts.
3008     if (BitWidth == SubBitWidth) {
3009       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3010       break;
3011     }
3012 
3013     bool IsLE = getDataLayout().isLittleEndian();
3014 
3015     // Bitcast 'small element' vector to 'large element' scalar/vector.
3016     if ((BitWidth % SubBitWidth) == 0) {
3017       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3018 
3019       // Collect known bits for the (larger) output by collecting the known
3020       // bits from each set of sub elements and shift these into place.
3021       // We need to separately call computeKnownBits for each set of
3022       // sub elements as the knownbits for each is likely to be different.
3023       unsigned SubScale = BitWidth / SubBitWidth;
3024       APInt SubDemandedElts(NumElts * SubScale, 0);
3025       for (unsigned i = 0; i != NumElts; ++i)
3026         if (DemandedElts[i])
3027           SubDemandedElts.setBit(i * SubScale);
3028 
3029       for (unsigned i = 0; i != SubScale; ++i) {
3030         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3031                          Depth + 1);
3032         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3033         Known.insertBits(Known2, SubBitWidth * Shifts);
3034       }
3035     }
3036 
3037     // Bitcast 'large element' scalar/vector to 'small element' vector.
3038     if ((SubBitWidth % BitWidth) == 0) {
3039       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3040 
3041       // Collect known bits for the (smaller) output by collecting the known
3042       // bits from the overlapping larger input elements and extracting the
3043       // sub sections we actually care about.
3044       unsigned SubScale = SubBitWidth / BitWidth;
3045       APInt SubDemandedElts =
3046           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3047       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3048 
3049       Known.Zero.setAllBits(); Known.One.setAllBits();
3050       for (unsigned i = 0; i != NumElts; ++i)
3051         if (DemandedElts[i]) {
3052           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3053           unsigned Offset = (Shifts % SubScale) * BitWidth;
3054           Known = KnownBits::commonBits(Known,
3055                                         Known2.extractBits(BitWidth, Offset));
3056           // If we don't know any bits, early out.
3057           if (Known.isUnknown())
3058             break;
3059         }
3060     }
3061     break;
3062   }
3063   case ISD::AND:
3064     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3065     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3066 
3067     Known &= Known2;
3068     break;
3069   case ISD::OR:
3070     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3071     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3072 
3073     Known |= Known2;
3074     break;
3075   case ISD::XOR:
3076     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3077     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3078 
3079     Known ^= Known2;
3080     break;
3081   case ISD::MUL: {
3082     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3083     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3084     Known = KnownBits::mul(Known, Known2);
3085     break;
3086   }
3087   case ISD::MULHU: {
3088     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3089     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3090     Known = KnownBits::mulhu(Known, Known2);
3091     break;
3092   }
3093   case ISD::MULHS: {
3094     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3095     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3096     Known = KnownBits::mulhs(Known, Known2);
3097     break;
3098   }
3099   case ISD::UMUL_LOHI: {
3100     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3101     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3102     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3103     if (Op.getResNo() == 0)
3104       Known = KnownBits::mul(Known, Known2);
3105     else
3106       Known = KnownBits::mulhu(Known, Known2);
3107     break;
3108   }
3109   case ISD::SMUL_LOHI: {
3110     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3111     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3112     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3113     if (Op.getResNo() == 0)
3114       Known = KnownBits::mul(Known, Known2);
3115     else
3116       Known = KnownBits::mulhs(Known, Known2);
3117     break;
3118   }
3119   case ISD::UDIV: {
3120     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3121     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3122     Known = KnownBits::udiv(Known, Known2);
3123     break;
3124   }
3125   case ISD::SELECT:
3126   case ISD::VSELECT:
3127     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3128     // If we don't know any bits, early out.
3129     if (Known.isUnknown())
3130       break;
3131     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3132 
3133     // Only known if known in both the LHS and RHS.
3134     Known = KnownBits::commonBits(Known, Known2);
3135     break;
3136   case ISD::SELECT_CC:
3137     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3138     // If we don't know any bits, early out.
3139     if (Known.isUnknown())
3140       break;
3141     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3142 
3143     // Only known if known in both the LHS and RHS.
3144     Known = KnownBits::commonBits(Known, Known2);
3145     break;
3146   case ISD::SMULO:
3147   case ISD::UMULO:
3148     if (Op.getResNo() != 1)
3149       break;
3150     // The boolean result conforms to getBooleanContents.
3151     // If we know the result of a setcc has the top bits zero, use this info.
3152     // We know that we have an integer-based boolean since these operations
3153     // are only available for integer.
3154     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3155             TargetLowering::ZeroOrOneBooleanContent &&
3156         BitWidth > 1)
3157       Known.Zero.setBitsFrom(1);
3158     break;
3159   case ISD::SETCC:
3160   case ISD::STRICT_FSETCC:
3161   case ISD::STRICT_FSETCCS: {
3162     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3163     // If we know the result of a setcc has the top bits zero, use this info.
3164     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3165             TargetLowering::ZeroOrOneBooleanContent &&
3166         BitWidth > 1)
3167       Known.Zero.setBitsFrom(1);
3168     break;
3169   }
3170   case ISD::SHL:
3171     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3172     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3173     Known = KnownBits::shl(Known, Known2);
3174 
3175     // Minimum shift low bits are known zero.
3176     if (const APInt *ShMinAmt =
3177             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3178       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3179     break;
3180   case ISD::SRL:
3181     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3182     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3183     Known = KnownBits::lshr(Known, Known2);
3184 
3185     // Minimum shift high bits are known zero.
3186     if (const APInt *ShMinAmt =
3187             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3188       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3189     break;
3190   case ISD::SRA:
3191     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3192     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3193     Known = KnownBits::ashr(Known, Known2);
3194     // TODO: Add minimum shift high known sign bits.
3195     break;
3196   case ISD::FSHL:
3197   case ISD::FSHR:
3198     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3199       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3200 
3201       // For fshl, 0-shift returns the 1st arg.
3202       // For fshr, 0-shift returns the 2nd arg.
3203       if (Amt == 0) {
3204         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3205                                  DemandedElts, Depth + 1);
3206         break;
3207       }
3208 
3209       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3210       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3211       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3212       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3213       if (Opcode == ISD::FSHL) {
3214         Known.One <<= Amt;
3215         Known.Zero <<= Amt;
3216         Known2.One.lshrInPlace(BitWidth - Amt);
3217         Known2.Zero.lshrInPlace(BitWidth - Amt);
3218       } else {
3219         Known.One <<= BitWidth - Amt;
3220         Known.Zero <<= BitWidth - Amt;
3221         Known2.One.lshrInPlace(Amt);
3222         Known2.Zero.lshrInPlace(Amt);
3223       }
3224       Known.One |= Known2.One;
3225       Known.Zero |= Known2.Zero;
3226     }
3227     break;
3228   case ISD::SIGN_EXTEND_INREG: {
3229     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3230     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3231     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3232     break;
3233   }
3234   case ISD::CTTZ:
3235   case ISD::CTTZ_ZERO_UNDEF: {
3236     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3237     // If we have a known 1, its position is our upper bound.
3238     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3239     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3240     Known.Zero.setBitsFrom(LowBits);
3241     break;
3242   }
3243   case ISD::CTLZ:
3244   case ISD::CTLZ_ZERO_UNDEF: {
3245     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3246     // If we have a known 1, its position is our upper bound.
3247     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3248     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3249     Known.Zero.setBitsFrom(LowBits);
3250     break;
3251   }
3252   case ISD::CTPOP: {
3253     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3254     // If we know some of the bits are zero, they can't be one.
3255     unsigned PossibleOnes = Known2.countMaxPopulation();
3256     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3257     break;
3258   }
3259   case ISD::PARITY: {
3260     // Parity returns 0 everywhere but the LSB.
3261     Known.Zero.setBitsFrom(1);
3262     break;
3263   }
3264   case ISD::LOAD: {
3265     LoadSDNode *LD = cast<LoadSDNode>(Op);
3266     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3267     if (ISD::isNON_EXTLoad(LD) && Cst) {
3268       // Determine any common known bits from the loaded constant pool value.
3269       Type *CstTy = Cst->getType();
3270       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3271         // If its a vector splat, then we can (quickly) reuse the scalar path.
3272         // NOTE: We assume all elements match and none are UNDEF.
3273         if (CstTy->isVectorTy()) {
3274           if (const Constant *Splat = Cst->getSplatValue()) {
3275             Cst = Splat;
3276             CstTy = Cst->getType();
3277           }
3278         }
3279         // TODO - do we need to handle different bitwidths?
3280         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3281           // Iterate across all vector elements finding common known bits.
3282           Known.One.setAllBits();
3283           Known.Zero.setAllBits();
3284           for (unsigned i = 0; i != NumElts; ++i) {
3285             if (!DemandedElts[i])
3286               continue;
3287             if (Constant *Elt = Cst->getAggregateElement(i)) {
3288               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3289                 const APInt &Value = CInt->getValue();
3290                 Known.One &= Value;
3291                 Known.Zero &= ~Value;
3292                 continue;
3293               }
3294               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3295                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3296                 Known.One &= Value;
3297                 Known.Zero &= ~Value;
3298                 continue;
3299               }
3300             }
3301             Known.One.clearAllBits();
3302             Known.Zero.clearAllBits();
3303             break;
3304           }
3305         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3306           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3307             Known = KnownBits::makeConstant(CInt->getValue());
3308           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3309             Known =
3310                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3311           }
3312         }
3313       }
3314     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3315       // If this is a ZEXTLoad and we are looking at the loaded value.
3316       EVT VT = LD->getMemoryVT();
3317       unsigned MemBits = VT.getScalarSizeInBits();
3318       Known.Zero.setBitsFrom(MemBits);
3319     } else if (const MDNode *Ranges = LD->getRanges()) {
3320       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3321         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3322     }
3323     break;
3324   }
3325   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3326     EVT InVT = Op.getOperand(0).getValueType();
3327     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3328     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3329     Known = Known.zext(BitWidth);
3330     break;
3331   }
3332   case ISD::ZERO_EXTEND: {
3333     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3334     Known = Known.zext(BitWidth);
3335     break;
3336   }
3337   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3338     EVT InVT = Op.getOperand(0).getValueType();
3339     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3340     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3341     // If the sign bit is known to be zero or one, then sext will extend
3342     // it to the top bits, else it will just zext.
3343     Known = Known.sext(BitWidth);
3344     break;
3345   }
3346   case ISD::SIGN_EXTEND: {
3347     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3348     // If the sign bit is known to be zero or one, then sext will extend
3349     // it to the top bits, else it will just zext.
3350     Known = Known.sext(BitWidth);
3351     break;
3352   }
3353   case ISD::ANY_EXTEND_VECTOR_INREG: {
3354     EVT InVT = Op.getOperand(0).getValueType();
3355     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3356     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3357     Known = Known.anyext(BitWidth);
3358     break;
3359   }
3360   case ISD::ANY_EXTEND: {
3361     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3362     Known = Known.anyext(BitWidth);
3363     break;
3364   }
3365   case ISD::TRUNCATE: {
3366     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3367     Known = Known.trunc(BitWidth);
3368     break;
3369   }
3370   case ISD::AssertZext: {
3371     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3372     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3373     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3374     Known.Zero |= (~InMask);
3375     Known.One  &= (~Known.Zero);
3376     break;
3377   }
3378   case ISD::AssertAlign: {
3379     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3380     assert(LogOfAlign != 0);
3381     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3382     // well as clearing one bits.
3383     Known.Zero.setLowBits(LogOfAlign);
3384     Known.One.clearLowBits(LogOfAlign);
3385     break;
3386   }
3387   case ISD::FGETSIGN:
3388     // All bits are zero except the low bit.
3389     Known.Zero.setBitsFrom(1);
3390     break;
3391   case ISD::USUBO:
3392   case ISD::SSUBO:
3393     if (Op.getResNo() == 1) {
3394       // If we know the result of a setcc has the top bits zero, use this info.
3395       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3396               TargetLowering::ZeroOrOneBooleanContent &&
3397           BitWidth > 1)
3398         Known.Zero.setBitsFrom(1);
3399       break;
3400     }
3401     LLVM_FALLTHROUGH;
3402   case ISD::SUB:
3403   case ISD::SUBC: {
3404     assert(Op.getResNo() == 0 &&
3405            "We only compute knownbits for the difference here.");
3406 
3407     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3408     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3409     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3410                                         Known, Known2);
3411     break;
3412   }
3413   case ISD::UADDO:
3414   case ISD::SADDO:
3415   case ISD::ADDCARRY:
3416     if (Op.getResNo() == 1) {
3417       // If we know the result of a setcc has the top bits zero, use this info.
3418       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3419               TargetLowering::ZeroOrOneBooleanContent &&
3420           BitWidth > 1)
3421         Known.Zero.setBitsFrom(1);
3422       break;
3423     }
3424     LLVM_FALLTHROUGH;
3425   case ISD::ADD:
3426   case ISD::ADDC:
3427   case ISD::ADDE: {
3428     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3429 
3430     // With ADDE and ADDCARRY, a carry bit may be added in.
3431     KnownBits Carry(1);
3432     if (Opcode == ISD::ADDE)
3433       // Can't track carry from glue, set carry to unknown.
3434       Carry.resetAll();
3435     else if (Opcode == ISD::ADDCARRY)
3436       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3437       // the trouble (how often will we find a known carry bit). And I haven't
3438       // tested this very much yet, but something like this might work:
3439       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3440       //   Carry = Carry.zextOrTrunc(1, false);
3441       Carry.resetAll();
3442     else
3443       Carry.setAllZero();
3444 
3445     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3446     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3447     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3448     break;
3449   }
3450   case ISD::SREM: {
3451     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3452     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3453     Known = KnownBits::srem(Known, Known2);
3454     break;
3455   }
3456   case ISD::UREM: {
3457     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3458     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3459     Known = KnownBits::urem(Known, Known2);
3460     break;
3461   }
3462   case ISD::EXTRACT_ELEMENT: {
3463     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3464     const unsigned Index = Op.getConstantOperandVal(1);
3465     const unsigned EltBitWidth = Op.getValueSizeInBits();
3466 
3467     // Remove low part of known bits mask
3468     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3469     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3470 
3471     // Remove high part of known bit mask
3472     Known = Known.trunc(EltBitWidth);
3473     break;
3474   }
3475   case ISD::EXTRACT_VECTOR_ELT: {
3476     SDValue InVec = Op.getOperand(0);
3477     SDValue EltNo = Op.getOperand(1);
3478     EVT VecVT = InVec.getValueType();
3479     // computeKnownBits not yet implemented for scalable vectors.
3480     if (VecVT.isScalableVector())
3481       break;
3482     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3483     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3484 
3485     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3486     // anything about the extended bits.
3487     if (BitWidth > EltBitWidth)
3488       Known = Known.trunc(EltBitWidth);
3489 
3490     // If we know the element index, just demand that vector element, else for
3491     // an unknown element index, ignore DemandedElts and demand them all.
3492     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3493     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3494     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3495       DemandedSrcElts =
3496           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3497 
3498     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3499     if (BitWidth > EltBitWidth)
3500       Known = Known.anyext(BitWidth);
3501     break;
3502   }
3503   case ISD::INSERT_VECTOR_ELT: {
3504     // If we know the element index, split the demand between the
3505     // source vector and the inserted element, otherwise assume we need
3506     // the original demanded vector elements and the value.
3507     SDValue InVec = Op.getOperand(0);
3508     SDValue InVal = Op.getOperand(1);
3509     SDValue EltNo = Op.getOperand(2);
3510     bool DemandedVal = true;
3511     APInt DemandedVecElts = DemandedElts;
3512     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3513     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3514       unsigned EltIdx = CEltNo->getZExtValue();
3515       DemandedVal = !!DemandedElts[EltIdx];
3516       DemandedVecElts.clearBit(EltIdx);
3517     }
3518     Known.One.setAllBits();
3519     Known.Zero.setAllBits();
3520     if (DemandedVal) {
3521       Known2 = computeKnownBits(InVal, Depth + 1);
3522       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3523     }
3524     if (!!DemandedVecElts) {
3525       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3526       Known = KnownBits::commonBits(Known, Known2);
3527     }
3528     break;
3529   }
3530   case ISD::BITREVERSE: {
3531     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3532     Known = Known2.reverseBits();
3533     break;
3534   }
3535   case ISD::BSWAP: {
3536     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3537     Known = Known2.byteSwap();
3538     break;
3539   }
3540   case ISD::ABS: {
3541     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3542     Known = Known2.abs();
3543     break;
3544   }
3545   case ISD::USUBSAT: {
3546     // The result of usubsat will never be larger than the LHS.
3547     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3548     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3549     break;
3550   }
3551   case ISD::UMIN: {
3552     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3553     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3554     Known = KnownBits::umin(Known, Known2);
3555     break;
3556   }
3557   case ISD::UMAX: {
3558     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3559     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3560     Known = KnownBits::umax(Known, Known2);
3561     break;
3562   }
3563   case ISD::SMIN:
3564   case ISD::SMAX: {
3565     // If we have a clamp pattern, we know that the number of sign bits will be
3566     // the minimum of the clamp min/max range.
3567     bool IsMax = (Opcode == ISD::SMAX);
3568     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3569     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3570       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3571         CstHigh =
3572             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3573     if (CstLow && CstHigh) {
3574       if (!IsMax)
3575         std::swap(CstLow, CstHigh);
3576 
3577       const APInt &ValueLow = CstLow->getAPIntValue();
3578       const APInt &ValueHigh = CstHigh->getAPIntValue();
3579       if (ValueLow.sle(ValueHigh)) {
3580         unsigned LowSignBits = ValueLow.getNumSignBits();
3581         unsigned HighSignBits = ValueHigh.getNumSignBits();
3582         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3583         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3584           Known.One.setHighBits(MinSignBits);
3585           break;
3586         }
3587         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3588           Known.Zero.setHighBits(MinSignBits);
3589           break;
3590         }
3591       }
3592     }
3593 
3594     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3595     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3596     if (IsMax)
3597       Known = KnownBits::smax(Known, Known2);
3598     else
3599       Known = KnownBits::smin(Known, Known2);
3600     break;
3601   }
3602   case ISD::FP_TO_UINT_SAT: {
3603     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3604     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3605     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3606     break;
3607   }
3608   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3609     if (Op.getResNo() == 1) {
3610       // The boolean result conforms to getBooleanContents.
3611       // If we know the result of a setcc has the top bits zero, use this info.
3612       // We know that we have an integer-based boolean since these operations
3613       // are only available for integer.
3614       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3615               TargetLowering::ZeroOrOneBooleanContent &&
3616           BitWidth > 1)
3617         Known.Zero.setBitsFrom(1);
3618       break;
3619     }
3620     LLVM_FALLTHROUGH;
3621   case ISD::ATOMIC_CMP_SWAP:
3622   case ISD::ATOMIC_SWAP:
3623   case ISD::ATOMIC_LOAD_ADD:
3624   case ISD::ATOMIC_LOAD_SUB:
3625   case ISD::ATOMIC_LOAD_AND:
3626   case ISD::ATOMIC_LOAD_CLR:
3627   case ISD::ATOMIC_LOAD_OR:
3628   case ISD::ATOMIC_LOAD_XOR:
3629   case ISD::ATOMIC_LOAD_NAND:
3630   case ISD::ATOMIC_LOAD_MIN:
3631   case ISD::ATOMIC_LOAD_MAX:
3632   case ISD::ATOMIC_LOAD_UMIN:
3633   case ISD::ATOMIC_LOAD_UMAX:
3634   case ISD::ATOMIC_LOAD: {
3635     unsigned MemBits =
3636         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3637     // If we are looking at the loaded value.
3638     if (Op.getResNo() == 0) {
3639       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3640         Known.Zero.setBitsFrom(MemBits);
3641     }
3642     break;
3643   }
3644   case ISD::FrameIndex:
3645   case ISD::TargetFrameIndex:
3646     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3647                                        Known, getMachineFunction());
3648     break;
3649 
3650   default:
3651     if (Opcode < ISD::BUILTIN_OP_END)
3652       break;
3653     LLVM_FALLTHROUGH;
3654   case ISD::INTRINSIC_WO_CHAIN:
3655   case ISD::INTRINSIC_W_CHAIN:
3656   case ISD::INTRINSIC_VOID:
3657     // Allow the target to implement this method for its nodes.
3658     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3659     break;
3660   }
3661 
3662   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3663   return Known;
3664 }
3665 
3666 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3667                                                              SDValue N1) const {
3668   // X + 0 never overflow
3669   if (isNullConstant(N1))
3670     return OFK_Never;
3671 
3672   KnownBits N1Known = computeKnownBits(N1);
3673   if (N1Known.Zero.getBoolValue()) {
3674     KnownBits N0Known = computeKnownBits(N0);
3675 
3676     bool overflow;
3677     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3678     if (!overflow)
3679       return OFK_Never;
3680   }
3681 
3682   // mulhi + 1 never overflow
3683   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3684       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3685     return OFK_Never;
3686 
3687   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3688     KnownBits N0Known = computeKnownBits(N0);
3689 
3690     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3691       return OFK_Never;
3692   }
3693 
3694   return OFK_Sometime;
3695 }
3696 
3697 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3698   EVT OpVT = Val.getValueType();
3699   unsigned BitWidth = OpVT.getScalarSizeInBits();
3700 
3701   // Is the constant a known power of 2?
3702   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3703     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3704 
3705   // A left-shift of a constant one will have exactly one bit set because
3706   // shifting the bit off the end is undefined.
3707   if (Val.getOpcode() == ISD::SHL) {
3708     auto *C = isConstOrConstSplat(Val.getOperand(0));
3709     if (C && C->getAPIntValue() == 1)
3710       return true;
3711   }
3712 
3713   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3714   // one bit set.
3715   if (Val.getOpcode() == ISD::SRL) {
3716     auto *C = isConstOrConstSplat(Val.getOperand(0));
3717     if (C && C->getAPIntValue().isSignMask())
3718       return true;
3719   }
3720 
3721   // Are all operands of a build vector constant powers of two?
3722   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3723     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3724           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3725             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3726           return false;
3727         }))
3728       return true;
3729 
3730   // Is the operand of a splat vector a constant power of two?
3731   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3732     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3733       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3734         return true;
3735 
3736   // More could be done here, though the above checks are enough
3737   // to handle some common cases.
3738 
3739   // Fall back to computeKnownBits to catch other known cases.
3740   KnownBits Known = computeKnownBits(Val);
3741   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3742 }
3743 
3744 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3745   EVT VT = Op.getValueType();
3746 
3747   // TODO: Assume we don't know anything for now.
3748   if (VT.isScalableVector())
3749     return 1;
3750 
3751   APInt DemandedElts = VT.isVector()
3752                            ? APInt::getAllOnes(VT.getVectorNumElements())
3753                            : APInt(1, 1);
3754   return ComputeNumSignBits(Op, DemandedElts, Depth);
3755 }
3756 
3757 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3758                                           unsigned Depth) const {
3759   EVT VT = Op.getValueType();
3760   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3761   unsigned VTBits = VT.getScalarSizeInBits();
3762   unsigned NumElts = DemandedElts.getBitWidth();
3763   unsigned Tmp, Tmp2;
3764   unsigned FirstAnswer = 1;
3765 
3766   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3767     const APInt &Val = C->getAPIntValue();
3768     return Val.getNumSignBits();
3769   }
3770 
3771   if (Depth >= MaxRecursionDepth)
3772     return 1;  // Limit search depth.
3773 
3774   if (!DemandedElts || VT.isScalableVector())
3775     return 1;  // No demanded elts, better to assume we don't know anything.
3776 
3777   unsigned Opcode = Op.getOpcode();
3778   switch (Opcode) {
3779   default: break;
3780   case ISD::AssertSext:
3781     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3782     return VTBits-Tmp+1;
3783   case ISD::AssertZext:
3784     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3785     return VTBits-Tmp;
3786 
3787   case ISD::BUILD_VECTOR:
3788     Tmp = VTBits;
3789     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3790       if (!DemandedElts[i])
3791         continue;
3792 
3793       SDValue SrcOp = Op.getOperand(i);
3794       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3795 
3796       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3797       if (SrcOp.getValueSizeInBits() != VTBits) {
3798         assert(SrcOp.getValueSizeInBits() > VTBits &&
3799                "Expected BUILD_VECTOR implicit truncation");
3800         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3801         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3802       }
3803       Tmp = std::min(Tmp, Tmp2);
3804     }
3805     return Tmp;
3806 
3807   case ISD::VECTOR_SHUFFLE: {
3808     // Collect the minimum number of sign bits that are shared by every vector
3809     // element referenced by the shuffle.
3810     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3811     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3812     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3813     for (unsigned i = 0; i != NumElts; ++i) {
3814       int M = SVN->getMaskElt(i);
3815       if (!DemandedElts[i])
3816         continue;
3817       // For UNDEF elements, we don't know anything about the common state of
3818       // the shuffle result.
3819       if (M < 0)
3820         return 1;
3821       if ((unsigned)M < NumElts)
3822         DemandedLHS.setBit((unsigned)M % NumElts);
3823       else
3824         DemandedRHS.setBit((unsigned)M % NumElts);
3825     }
3826     Tmp = std::numeric_limits<unsigned>::max();
3827     if (!!DemandedLHS)
3828       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3829     if (!!DemandedRHS) {
3830       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3831       Tmp = std::min(Tmp, Tmp2);
3832     }
3833     // If we don't know anything, early out and try computeKnownBits fall-back.
3834     if (Tmp == 1)
3835       break;
3836     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3837     return Tmp;
3838   }
3839 
3840   case ISD::BITCAST: {
3841     SDValue N0 = Op.getOperand(0);
3842     EVT SrcVT = N0.getValueType();
3843     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3844 
3845     // Ignore bitcasts from unsupported types..
3846     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3847       break;
3848 
3849     // Fast handling of 'identity' bitcasts.
3850     if (VTBits == SrcBits)
3851       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3852 
3853     bool IsLE = getDataLayout().isLittleEndian();
3854 
3855     // Bitcast 'large element' scalar/vector to 'small element' vector.
3856     if ((SrcBits % VTBits) == 0) {
3857       assert(VT.isVector() && "Expected bitcast to vector");
3858 
3859       unsigned Scale = SrcBits / VTBits;
3860       APInt SrcDemandedElts =
3861           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3862 
3863       // Fast case - sign splat can be simply split across the small elements.
3864       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3865       if (Tmp == SrcBits)
3866         return VTBits;
3867 
3868       // Slow case - determine how far the sign extends into each sub-element.
3869       Tmp2 = VTBits;
3870       for (unsigned i = 0; i != NumElts; ++i)
3871         if (DemandedElts[i]) {
3872           unsigned SubOffset = i % Scale;
3873           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3874           SubOffset = SubOffset * VTBits;
3875           if (Tmp <= SubOffset)
3876             return 1;
3877           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3878         }
3879       return Tmp2;
3880     }
3881     break;
3882   }
3883 
3884   case ISD::FP_TO_SINT_SAT:
3885     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3886     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3887     return VTBits - Tmp + 1;
3888   case ISD::SIGN_EXTEND:
3889     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3890     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3891   case ISD::SIGN_EXTEND_INREG:
3892     // Max of the input and what this extends.
3893     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3894     Tmp = VTBits-Tmp+1;
3895     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3896     return std::max(Tmp, Tmp2);
3897   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3898     SDValue Src = Op.getOperand(0);
3899     EVT SrcVT = Src.getValueType();
3900     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3901     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3902     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3903   }
3904   case ISD::SRA:
3905     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3906     // SRA X, C -> adds C sign bits.
3907     if (const APInt *ShAmt =
3908             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3909       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3910     return Tmp;
3911   case ISD::SHL:
3912     if (const APInt *ShAmt =
3913             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3914       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3915       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3916       if (ShAmt->ult(Tmp))
3917         return Tmp - ShAmt->getZExtValue();
3918     }
3919     break;
3920   case ISD::AND:
3921   case ISD::OR:
3922   case ISD::XOR:    // NOT is handled here.
3923     // Logical binary ops preserve the number of sign bits at the worst.
3924     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3925     if (Tmp != 1) {
3926       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3927       FirstAnswer = std::min(Tmp, Tmp2);
3928       // We computed what we know about the sign bits as our first
3929       // answer. Now proceed to the generic code that uses
3930       // computeKnownBits, and pick whichever answer is better.
3931     }
3932     break;
3933 
3934   case ISD::SELECT:
3935   case ISD::VSELECT:
3936     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3937     if (Tmp == 1) return 1;  // Early out.
3938     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3939     return std::min(Tmp, Tmp2);
3940   case ISD::SELECT_CC:
3941     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3942     if (Tmp == 1) return 1;  // Early out.
3943     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3944     return std::min(Tmp, Tmp2);
3945 
3946   case ISD::SMIN:
3947   case ISD::SMAX: {
3948     // If we have a clamp pattern, we know that the number of sign bits will be
3949     // the minimum of the clamp min/max range.
3950     bool IsMax = (Opcode == ISD::SMAX);
3951     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3952     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3953       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3954         CstHigh =
3955             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3956     if (CstLow && CstHigh) {
3957       if (!IsMax)
3958         std::swap(CstLow, CstHigh);
3959       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3960         Tmp = CstLow->getAPIntValue().getNumSignBits();
3961         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3962         return std::min(Tmp, Tmp2);
3963       }
3964     }
3965 
3966     // Fallback - just get the minimum number of sign bits of the operands.
3967     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3968     if (Tmp == 1)
3969       return 1;  // Early out.
3970     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3971     return std::min(Tmp, Tmp2);
3972   }
3973   case ISD::UMIN:
3974   case ISD::UMAX:
3975     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3976     if (Tmp == 1)
3977       return 1;  // Early out.
3978     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3979     return std::min(Tmp, Tmp2);
3980   case ISD::SADDO:
3981   case ISD::UADDO:
3982   case ISD::SSUBO:
3983   case ISD::USUBO:
3984   case ISD::SMULO:
3985   case ISD::UMULO:
3986     if (Op.getResNo() != 1)
3987       break;
3988     // The boolean result conforms to getBooleanContents.  Fall through.
3989     // If setcc returns 0/-1, all bits are sign bits.
3990     // We know that we have an integer-based boolean since these operations
3991     // are only available for integer.
3992     if (TLI->getBooleanContents(VT.isVector(), false) ==
3993         TargetLowering::ZeroOrNegativeOneBooleanContent)
3994       return VTBits;
3995     break;
3996   case ISD::SETCC:
3997   case ISD::STRICT_FSETCC:
3998   case ISD::STRICT_FSETCCS: {
3999     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4000     // If setcc returns 0/-1, all bits are sign bits.
4001     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4002         TargetLowering::ZeroOrNegativeOneBooleanContent)
4003       return VTBits;
4004     break;
4005   }
4006   case ISD::ROTL:
4007   case ISD::ROTR:
4008     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4009 
4010     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4011     if (Tmp == VTBits)
4012       return VTBits;
4013 
4014     if (ConstantSDNode *C =
4015             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4016       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4017 
4018       // Handle rotate right by N like a rotate left by 32-N.
4019       if (Opcode == ISD::ROTR)
4020         RotAmt = (VTBits - RotAmt) % VTBits;
4021 
4022       // If we aren't rotating out all of the known-in sign bits, return the
4023       // number that are left.  This handles rotl(sext(x), 1) for example.
4024       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4025     }
4026     break;
4027   case ISD::ADD:
4028   case ISD::ADDC:
4029     // Add can have at most one carry bit.  Thus we know that the output
4030     // is, at worst, one more bit than the inputs.
4031     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4032     if (Tmp == 1) return 1; // Early out.
4033 
4034     // Special case decrementing a value (ADD X, -1):
4035     if (ConstantSDNode *CRHS =
4036             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4037       if (CRHS->isAllOnes()) {
4038         KnownBits Known =
4039             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4040 
4041         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4042         // sign bits set.
4043         if ((Known.Zero | 1).isAllOnes())
4044           return VTBits;
4045 
4046         // If we are subtracting one from a positive number, there is no carry
4047         // out of the result.
4048         if (Known.isNonNegative())
4049           return Tmp;
4050       }
4051 
4052     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4053     if (Tmp2 == 1) return 1; // Early out.
4054     return std::min(Tmp, Tmp2) - 1;
4055   case ISD::SUB:
4056     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4057     if (Tmp2 == 1) return 1; // Early out.
4058 
4059     // Handle NEG.
4060     if (ConstantSDNode *CLHS =
4061             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4062       if (CLHS->isZero()) {
4063         KnownBits Known =
4064             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4065         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4066         // sign bits set.
4067         if ((Known.Zero | 1).isAllOnes())
4068           return VTBits;
4069 
4070         // If the input is known to be positive (the sign bit is known clear),
4071         // the output of the NEG has the same number of sign bits as the input.
4072         if (Known.isNonNegative())
4073           return Tmp2;
4074 
4075         // Otherwise, we treat this like a SUB.
4076       }
4077 
4078     // Sub can have at most one carry bit.  Thus we know that the output
4079     // is, at worst, one more bit than the inputs.
4080     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4081     if (Tmp == 1) return 1; // Early out.
4082     return std::min(Tmp, Tmp2) - 1;
4083   case ISD::MUL: {
4084     // The output of the Mul can be at most twice the valid bits in the inputs.
4085     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4086     if (SignBitsOp0 == 1)
4087       break;
4088     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4089     if (SignBitsOp1 == 1)
4090       break;
4091     unsigned OutValidBits =
4092         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4093     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4094   }
4095   case ISD::SREM:
4096     // The sign bit is the LHS's sign bit, except when the result of the
4097     // remainder is zero. The magnitude of the result should be less than or
4098     // equal to the magnitude of the LHS. Therefore, the result should have
4099     // at least as many sign bits as the left hand side.
4100     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4101   case ISD::TRUNCATE: {
4102     // Check if the sign bits of source go down as far as the truncated value.
4103     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4104     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4105     if (NumSrcSignBits > (NumSrcBits - VTBits))
4106       return NumSrcSignBits - (NumSrcBits - VTBits);
4107     break;
4108   }
4109   case ISD::EXTRACT_ELEMENT: {
4110     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4111     const int BitWidth = Op.getValueSizeInBits();
4112     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4113 
4114     // Get reverse index (starting from 1), Op1 value indexes elements from
4115     // little end. Sign starts at big end.
4116     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4117 
4118     // If the sign portion ends in our element the subtraction gives correct
4119     // result. Otherwise it gives either negative or > bitwidth result
4120     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4121   }
4122   case ISD::INSERT_VECTOR_ELT: {
4123     // If we know the element index, split the demand between the
4124     // source vector and the inserted element, otherwise assume we need
4125     // the original demanded vector elements and the value.
4126     SDValue InVec = Op.getOperand(0);
4127     SDValue InVal = Op.getOperand(1);
4128     SDValue EltNo = Op.getOperand(2);
4129     bool DemandedVal = true;
4130     APInt DemandedVecElts = DemandedElts;
4131     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4132     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4133       unsigned EltIdx = CEltNo->getZExtValue();
4134       DemandedVal = !!DemandedElts[EltIdx];
4135       DemandedVecElts.clearBit(EltIdx);
4136     }
4137     Tmp = std::numeric_limits<unsigned>::max();
4138     if (DemandedVal) {
4139       // TODO - handle implicit truncation of inserted elements.
4140       if (InVal.getScalarValueSizeInBits() != VTBits)
4141         break;
4142       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4143       Tmp = std::min(Tmp, Tmp2);
4144     }
4145     if (!!DemandedVecElts) {
4146       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4147       Tmp = std::min(Tmp, Tmp2);
4148     }
4149     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4150     return Tmp;
4151   }
4152   case ISD::EXTRACT_VECTOR_ELT: {
4153     SDValue InVec = Op.getOperand(0);
4154     SDValue EltNo = Op.getOperand(1);
4155     EVT VecVT = InVec.getValueType();
4156     // ComputeNumSignBits not yet implemented for scalable vectors.
4157     if (VecVT.isScalableVector())
4158       break;
4159     const unsigned BitWidth = Op.getValueSizeInBits();
4160     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4161     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4162 
4163     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4164     // anything about sign bits. But if the sizes match we can derive knowledge
4165     // about sign bits from the vector operand.
4166     if (BitWidth != EltBitWidth)
4167       break;
4168 
4169     // If we know the element index, just demand that vector element, else for
4170     // an unknown element index, ignore DemandedElts and demand them all.
4171     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4172     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4173     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4174       DemandedSrcElts =
4175           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4176 
4177     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4178   }
4179   case ISD::EXTRACT_SUBVECTOR: {
4180     // Offset the demanded elts by the subvector index.
4181     SDValue Src = Op.getOperand(0);
4182     // Bail until we can represent demanded elements for scalable vectors.
4183     if (Src.getValueType().isScalableVector())
4184       break;
4185     uint64_t Idx = Op.getConstantOperandVal(1);
4186     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4187     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4188     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4189   }
4190   case ISD::CONCAT_VECTORS: {
4191     // Determine the minimum number of sign bits across all demanded
4192     // elts of the input vectors. Early out if the result is already 1.
4193     Tmp = std::numeric_limits<unsigned>::max();
4194     EVT SubVectorVT = Op.getOperand(0).getValueType();
4195     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4196     unsigned NumSubVectors = Op.getNumOperands();
4197     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4198       APInt DemandedSub =
4199           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4200       if (!DemandedSub)
4201         continue;
4202       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4203       Tmp = std::min(Tmp, Tmp2);
4204     }
4205     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4206     return Tmp;
4207   }
4208   case ISD::INSERT_SUBVECTOR: {
4209     // Demand any elements from the subvector and the remainder from the src its
4210     // inserted into.
4211     SDValue Src = Op.getOperand(0);
4212     SDValue Sub = Op.getOperand(1);
4213     uint64_t Idx = Op.getConstantOperandVal(2);
4214     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4215     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4216     APInt DemandedSrcElts = DemandedElts;
4217     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4218 
4219     Tmp = std::numeric_limits<unsigned>::max();
4220     if (!!DemandedSubElts) {
4221       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4222       if (Tmp == 1)
4223         return 1; // early-out
4224     }
4225     if (!!DemandedSrcElts) {
4226       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4227       Tmp = std::min(Tmp, Tmp2);
4228     }
4229     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4230     return Tmp;
4231   }
4232   case ISD::ATOMIC_CMP_SWAP:
4233   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4234   case ISD::ATOMIC_SWAP:
4235   case ISD::ATOMIC_LOAD_ADD:
4236   case ISD::ATOMIC_LOAD_SUB:
4237   case ISD::ATOMIC_LOAD_AND:
4238   case ISD::ATOMIC_LOAD_CLR:
4239   case ISD::ATOMIC_LOAD_OR:
4240   case ISD::ATOMIC_LOAD_XOR:
4241   case ISD::ATOMIC_LOAD_NAND:
4242   case ISD::ATOMIC_LOAD_MIN:
4243   case ISD::ATOMIC_LOAD_MAX:
4244   case ISD::ATOMIC_LOAD_UMIN:
4245   case ISD::ATOMIC_LOAD_UMAX:
4246   case ISD::ATOMIC_LOAD: {
4247     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4248     // If we are looking at the loaded value.
4249     if (Op.getResNo() == 0) {
4250       if (Tmp == VTBits)
4251         return 1; // early-out
4252       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4253         return VTBits - Tmp + 1;
4254       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4255         return VTBits - Tmp;
4256     }
4257     break;
4258   }
4259   }
4260 
4261   // If we are looking at the loaded value of the SDNode.
4262   if (Op.getResNo() == 0) {
4263     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4264     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4265       unsigned ExtType = LD->getExtensionType();
4266       switch (ExtType) {
4267       default: break;
4268       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4269         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4270         return VTBits - Tmp + 1;
4271       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4272         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4273         return VTBits - Tmp;
4274       case ISD::NON_EXTLOAD:
4275         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4276           // We only need to handle vectors - computeKnownBits should handle
4277           // scalar cases.
4278           Type *CstTy = Cst->getType();
4279           if (CstTy->isVectorTy() &&
4280               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4281             Tmp = VTBits;
4282             for (unsigned i = 0; i != NumElts; ++i) {
4283               if (!DemandedElts[i])
4284                 continue;
4285               if (Constant *Elt = Cst->getAggregateElement(i)) {
4286                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4287                   const APInt &Value = CInt->getValue();
4288                   Tmp = std::min(Tmp, Value.getNumSignBits());
4289                   continue;
4290                 }
4291                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4292                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4293                   Tmp = std::min(Tmp, Value.getNumSignBits());
4294                   continue;
4295                 }
4296               }
4297               // Unknown type. Conservatively assume no bits match sign bit.
4298               return 1;
4299             }
4300             return Tmp;
4301           }
4302         }
4303         break;
4304       }
4305     }
4306   }
4307 
4308   // Allow the target to implement this method for its nodes.
4309   if (Opcode >= ISD::BUILTIN_OP_END ||
4310       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4311       Opcode == ISD::INTRINSIC_W_CHAIN ||
4312       Opcode == ISD::INTRINSIC_VOID) {
4313     unsigned NumBits =
4314         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4315     if (NumBits > 1)
4316       FirstAnswer = std::max(FirstAnswer, NumBits);
4317   }
4318 
4319   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4320   // use this information.
4321   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4322   return std::max(FirstAnswer, Known.countMinSignBits());
4323 }
4324 
4325 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4326                                                  unsigned Depth) const {
4327   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4328   return Op.getScalarValueSizeInBits() - SignBits + 1;
4329 }
4330 
4331 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4332                                                  const APInt &DemandedElts,
4333                                                  unsigned Depth) const {
4334   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4335   return Op.getScalarValueSizeInBits() - SignBits + 1;
4336 }
4337 
4338 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4339                                                     unsigned Depth) const {
4340   // Early out for FREEZE.
4341   if (Op.getOpcode() == ISD::FREEZE)
4342     return true;
4343 
4344   // TODO: Assume we don't know anything for now.
4345   EVT VT = Op.getValueType();
4346   if (VT.isScalableVector())
4347     return false;
4348 
4349   APInt DemandedElts = VT.isVector()
4350                            ? APInt::getAllOnes(VT.getVectorNumElements())
4351                            : APInt(1, 1);
4352   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4353 }
4354 
4355 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4356                                                     const APInt &DemandedElts,
4357                                                     bool PoisonOnly,
4358                                                     unsigned Depth) const {
4359   unsigned Opcode = Op.getOpcode();
4360 
4361   // Early out for FREEZE.
4362   if (Opcode == ISD::FREEZE)
4363     return true;
4364 
4365   if (Depth >= MaxRecursionDepth)
4366     return false; // Limit search depth.
4367 
4368   if (isIntOrFPConstant(Op))
4369     return true;
4370 
4371   switch (Opcode) {
4372   case ISD::UNDEF:
4373     return PoisonOnly;
4374 
4375   case ISD::BUILD_VECTOR:
4376     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4377     // this shouldn't affect the result.
4378     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4379       if (!DemandedElts[i])
4380         continue;
4381       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4382                                             Depth + 1))
4383         return false;
4384     }
4385     return true;
4386 
4387   // TODO: Search for noundef attributes from library functions.
4388 
4389   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4390 
4391   default:
4392     // Allow the target to implement this method for its nodes.
4393     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4394         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4395       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4396           Op, DemandedElts, *this, PoisonOnly, Depth);
4397     break;
4398   }
4399 
4400   return false;
4401 }
4402 
4403 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4404   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4405       !isa<ConstantSDNode>(Op.getOperand(1)))
4406     return false;
4407 
4408   if (Op.getOpcode() == ISD::OR &&
4409       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4410     return false;
4411 
4412   return true;
4413 }
4414 
4415 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4416   // If we're told that NaNs won't happen, assume they won't.
4417   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4418     return true;
4419 
4420   if (Depth >= MaxRecursionDepth)
4421     return false; // Limit search depth.
4422 
4423   // TODO: Handle vectors.
4424   // If the value is a constant, we can obviously see if it is a NaN or not.
4425   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4426     return !C->getValueAPF().isNaN() ||
4427            (SNaN && !C->getValueAPF().isSignaling());
4428   }
4429 
4430   unsigned Opcode = Op.getOpcode();
4431   switch (Opcode) {
4432   case ISD::FADD:
4433   case ISD::FSUB:
4434   case ISD::FMUL:
4435   case ISD::FDIV:
4436   case ISD::FREM:
4437   case ISD::FSIN:
4438   case ISD::FCOS: {
4439     if (SNaN)
4440       return true;
4441     // TODO: Need isKnownNeverInfinity
4442     return false;
4443   }
4444   case ISD::FCANONICALIZE:
4445   case ISD::FEXP:
4446   case ISD::FEXP2:
4447   case ISD::FTRUNC:
4448   case ISD::FFLOOR:
4449   case ISD::FCEIL:
4450   case ISD::FROUND:
4451   case ISD::FROUNDEVEN:
4452   case ISD::FRINT:
4453   case ISD::FNEARBYINT: {
4454     if (SNaN)
4455       return true;
4456     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4457   }
4458   case ISD::FABS:
4459   case ISD::FNEG:
4460   case ISD::FCOPYSIGN: {
4461     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4462   }
4463   case ISD::SELECT:
4464     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4465            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4466   case ISD::FP_EXTEND:
4467   case ISD::FP_ROUND: {
4468     if (SNaN)
4469       return true;
4470     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4471   }
4472   case ISD::SINT_TO_FP:
4473   case ISD::UINT_TO_FP:
4474     return true;
4475   case ISD::FMA:
4476   case ISD::FMAD: {
4477     if (SNaN)
4478       return true;
4479     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4480            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4481            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4482   }
4483   case ISD::FSQRT: // Need is known positive
4484   case ISD::FLOG:
4485   case ISD::FLOG2:
4486   case ISD::FLOG10:
4487   case ISD::FPOWI:
4488   case ISD::FPOW: {
4489     if (SNaN)
4490       return true;
4491     // TODO: Refine on operand
4492     return false;
4493   }
4494   case ISD::FMINNUM:
4495   case ISD::FMAXNUM: {
4496     // Only one needs to be known not-nan, since it will be returned if the
4497     // other ends up being one.
4498     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4499            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4500   }
4501   case ISD::FMINNUM_IEEE:
4502   case ISD::FMAXNUM_IEEE: {
4503     if (SNaN)
4504       return true;
4505     // This can return a NaN if either operand is an sNaN, or if both operands
4506     // are NaN.
4507     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4508             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4509            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4510             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4511   }
4512   case ISD::FMINIMUM:
4513   case ISD::FMAXIMUM: {
4514     // TODO: Does this quiet or return the origina NaN as-is?
4515     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4516            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4517   }
4518   case ISD::EXTRACT_VECTOR_ELT: {
4519     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4520   }
4521   default:
4522     if (Opcode >= ISD::BUILTIN_OP_END ||
4523         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4524         Opcode == ISD::INTRINSIC_W_CHAIN ||
4525         Opcode == ISD::INTRINSIC_VOID) {
4526       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4527     }
4528 
4529     return false;
4530   }
4531 }
4532 
4533 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4534   assert(Op.getValueType().isFloatingPoint() &&
4535          "Floating point type expected");
4536 
4537   // If the value is a constant, we can obviously see if it is a zero or not.
4538   // TODO: Add BuildVector support.
4539   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4540     return !C->isZero();
4541   return false;
4542 }
4543 
4544 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4545   assert(!Op.getValueType().isFloatingPoint() &&
4546          "Floating point types unsupported - use isKnownNeverZeroFloat");
4547 
4548   // If the value is a constant, we can obviously see if it is a zero or not.
4549   if (ISD::matchUnaryPredicate(Op,
4550                                [](ConstantSDNode *C) { return !C->isZero(); }))
4551     return true;
4552 
4553   // TODO: Recognize more cases here.
4554   switch (Op.getOpcode()) {
4555   default: break;
4556   case ISD::OR:
4557     if (isKnownNeverZero(Op.getOperand(1)) ||
4558         isKnownNeverZero(Op.getOperand(0)))
4559       return true;
4560     break;
4561   }
4562 
4563   return false;
4564 }
4565 
4566 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4567   // Check the obvious case.
4568   if (A == B) return true;
4569 
4570   // For for negative and positive zero.
4571   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4572     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4573       if (CA->isZero() && CB->isZero()) return true;
4574 
4575   // Otherwise they may not be equal.
4576   return false;
4577 }
4578 
4579 // FIXME: unify with llvm::haveNoCommonBitsSet.
4580 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4581   assert(A.getValueType() == B.getValueType() &&
4582          "Values must have the same type");
4583   // Match masked merge pattern (X & ~M) op (Y & M)
4584   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4585     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4586       if (isBitwiseNot(NotM, true)) {
4587         SDValue NotOperand = NotM->getOperand(0);
4588         return NotOperand == And->getOperand(0) ||
4589                NotOperand == And->getOperand(1);
4590       }
4591       return false;
4592     };
4593     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4594         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4595         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4596         MatchNoCommonBitsPattern(B->getOperand(1), A))
4597       return true;
4598   }
4599   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4600                                         computeKnownBits(B));
4601 }
4602 
4603 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4604                                SelectionDAG &DAG) {
4605   if (cast<ConstantSDNode>(Step)->isZero())
4606     return DAG.getConstant(0, DL, VT);
4607 
4608   return SDValue();
4609 }
4610 
4611 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4612                                 ArrayRef<SDValue> Ops,
4613                                 SelectionDAG &DAG) {
4614   int NumOps = Ops.size();
4615   assert(NumOps != 0 && "Can't build an empty vector!");
4616   assert(!VT.isScalableVector() &&
4617          "BUILD_VECTOR cannot be used with scalable types");
4618   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4619          "Incorrect element count in BUILD_VECTOR!");
4620 
4621   // BUILD_VECTOR of UNDEFs is UNDEF.
4622   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4623     return DAG.getUNDEF(VT);
4624 
4625   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4626   SDValue IdentitySrc;
4627   bool IsIdentity = true;
4628   for (int i = 0; i != NumOps; ++i) {
4629     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4630         Ops[i].getOperand(0).getValueType() != VT ||
4631         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4632         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4633         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4634       IsIdentity = false;
4635       break;
4636     }
4637     IdentitySrc = Ops[i].getOperand(0);
4638   }
4639   if (IsIdentity)
4640     return IdentitySrc;
4641 
4642   return SDValue();
4643 }
4644 
4645 /// Try to simplify vector concatenation to an input value, undef, or build
4646 /// vector.
4647 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4648                                   ArrayRef<SDValue> Ops,
4649                                   SelectionDAG &DAG) {
4650   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4651   assert(llvm::all_of(Ops,
4652                       [Ops](SDValue Op) {
4653                         return Ops[0].getValueType() == Op.getValueType();
4654                       }) &&
4655          "Concatenation of vectors with inconsistent value types!");
4656   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4657              VT.getVectorElementCount() &&
4658          "Incorrect element count in vector concatenation!");
4659 
4660   if (Ops.size() == 1)
4661     return Ops[0];
4662 
4663   // Concat of UNDEFs is UNDEF.
4664   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4665     return DAG.getUNDEF(VT);
4666 
4667   // Scan the operands and look for extract operations from a single source
4668   // that correspond to insertion at the same location via this concatenation:
4669   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4670   SDValue IdentitySrc;
4671   bool IsIdentity = true;
4672   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4673     SDValue Op = Ops[i];
4674     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4675     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4676         Op.getOperand(0).getValueType() != VT ||
4677         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4678         Op.getConstantOperandVal(1) != IdentityIndex) {
4679       IsIdentity = false;
4680       break;
4681     }
4682     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4683            "Unexpected identity source vector for concat of extracts");
4684     IdentitySrc = Op.getOperand(0);
4685   }
4686   if (IsIdentity) {
4687     assert(IdentitySrc && "Failed to set source vector of extracts");
4688     return IdentitySrc;
4689   }
4690 
4691   // The code below this point is only designed to work for fixed width
4692   // vectors, so we bail out for now.
4693   if (VT.isScalableVector())
4694     return SDValue();
4695 
4696   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4697   // simplified to one big BUILD_VECTOR.
4698   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4699   EVT SVT = VT.getScalarType();
4700   SmallVector<SDValue, 16> Elts;
4701   for (SDValue Op : Ops) {
4702     EVT OpVT = Op.getValueType();
4703     if (Op.isUndef())
4704       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4705     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4706       Elts.append(Op->op_begin(), Op->op_end());
4707     else
4708       return SDValue();
4709   }
4710 
4711   // BUILD_VECTOR requires all inputs to be of the same type, find the
4712   // maximum type and extend them all.
4713   for (SDValue Op : Elts)
4714     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4715 
4716   if (SVT.bitsGT(VT.getScalarType())) {
4717     for (SDValue &Op : Elts) {
4718       if (Op.isUndef())
4719         Op = DAG.getUNDEF(SVT);
4720       else
4721         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4722                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4723                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4724     }
4725   }
4726 
4727   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4728   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4729   return V;
4730 }
4731 
4732 /// Gets or creates the specified node.
4733 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4734   FoldingSetNodeID ID;
4735   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4736   void *IP = nullptr;
4737   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4738     return SDValue(E, 0);
4739 
4740   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4741                               getVTList(VT));
4742   CSEMap.InsertNode(N, IP);
4743 
4744   InsertNode(N);
4745   SDValue V = SDValue(N, 0);
4746   NewSDValueDbgMsg(V, "Creating new node: ", this);
4747   return V;
4748 }
4749 
4750 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4751                               SDValue Operand) {
4752   SDNodeFlags Flags;
4753   if (Inserter)
4754     Flags = Inserter->getFlags();
4755   return getNode(Opcode, DL, VT, Operand, Flags);
4756 }
4757 
4758 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4759                               SDValue Operand, const SDNodeFlags Flags) {
4760   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4761          "Operand is DELETED_NODE!");
4762   // Constant fold unary operations with an integer constant operand. Even
4763   // opaque constant will be folded, because the folding of unary operations
4764   // doesn't create new constants with different values. Nevertheless, the
4765   // opaque flag is preserved during folding to prevent future folding with
4766   // other constants.
4767   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4768     const APInt &Val = C->getAPIntValue();
4769     switch (Opcode) {
4770     default: break;
4771     case ISD::SIGN_EXTEND:
4772       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4773                          C->isTargetOpcode(), C->isOpaque());
4774     case ISD::TRUNCATE:
4775       if (C->isOpaque())
4776         break;
4777       LLVM_FALLTHROUGH;
4778     case ISD::ZERO_EXTEND:
4779       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4780                          C->isTargetOpcode(), C->isOpaque());
4781     case ISD::ANY_EXTEND:
4782       // Some targets like RISCV prefer to sign extend some types.
4783       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4784         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4785                            C->isTargetOpcode(), C->isOpaque());
4786       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4787                          C->isTargetOpcode(), C->isOpaque());
4788     case ISD::UINT_TO_FP:
4789     case ISD::SINT_TO_FP: {
4790       APFloat apf(EVTToAPFloatSemantics(VT),
4791                   APInt::getZero(VT.getSizeInBits()));
4792       (void)apf.convertFromAPInt(Val,
4793                                  Opcode==ISD::SINT_TO_FP,
4794                                  APFloat::rmNearestTiesToEven);
4795       return getConstantFP(apf, DL, VT);
4796     }
4797     case ISD::BITCAST:
4798       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4799         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4800       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4801         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4802       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4803         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4804       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4805         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4806       break;
4807     case ISD::ABS:
4808       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4809                          C->isOpaque());
4810     case ISD::BITREVERSE:
4811       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4812                          C->isOpaque());
4813     case ISD::BSWAP:
4814       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4815                          C->isOpaque());
4816     case ISD::CTPOP:
4817       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4818                          C->isOpaque());
4819     case ISD::CTLZ:
4820     case ISD::CTLZ_ZERO_UNDEF:
4821       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4822                          C->isOpaque());
4823     case ISD::CTTZ:
4824     case ISD::CTTZ_ZERO_UNDEF:
4825       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4826                          C->isOpaque());
4827     case ISD::FP16_TO_FP: {
4828       bool Ignored;
4829       APFloat FPV(APFloat::IEEEhalf(),
4830                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4831 
4832       // This can return overflow, underflow, or inexact; we don't care.
4833       // FIXME need to be more flexible about rounding mode.
4834       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4835                         APFloat::rmNearestTiesToEven, &Ignored);
4836       return getConstantFP(FPV, DL, VT);
4837     }
4838     case ISD::STEP_VECTOR: {
4839       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4840         return V;
4841       break;
4842     }
4843     }
4844   }
4845 
4846   // Constant fold unary operations with a floating point constant operand.
4847   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4848     APFloat V = C->getValueAPF();    // make copy
4849     switch (Opcode) {
4850     case ISD::FNEG:
4851       V.changeSign();
4852       return getConstantFP(V, DL, VT);
4853     case ISD::FABS:
4854       V.clearSign();
4855       return getConstantFP(V, DL, VT);
4856     case ISD::FCEIL: {
4857       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4858       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4859         return getConstantFP(V, DL, VT);
4860       break;
4861     }
4862     case ISD::FTRUNC: {
4863       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4864       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4865         return getConstantFP(V, DL, VT);
4866       break;
4867     }
4868     case ISD::FFLOOR: {
4869       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4870       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4871         return getConstantFP(V, DL, VT);
4872       break;
4873     }
4874     case ISD::FP_EXTEND: {
4875       bool ignored;
4876       // This can return overflow, underflow, or inexact; we don't care.
4877       // FIXME need to be more flexible about rounding mode.
4878       (void)V.convert(EVTToAPFloatSemantics(VT),
4879                       APFloat::rmNearestTiesToEven, &ignored);
4880       return getConstantFP(V, DL, VT);
4881     }
4882     case ISD::FP_TO_SINT:
4883     case ISD::FP_TO_UINT: {
4884       bool ignored;
4885       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4886       // FIXME need to be more flexible about rounding mode.
4887       APFloat::opStatus s =
4888           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4889       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4890         break;
4891       return getConstant(IntVal, DL, VT);
4892     }
4893     case ISD::BITCAST:
4894       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4895         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4896       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4897         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4898       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4899         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4900       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4901         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4902       break;
4903     case ISD::FP_TO_FP16: {
4904       bool Ignored;
4905       // This can return overflow, underflow, or inexact; we don't care.
4906       // FIXME need to be more flexible about rounding mode.
4907       (void)V.convert(APFloat::IEEEhalf(),
4908                       APFloat::rmNearestTiesToEven, &Ignored);
4909       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4910     }
4911     }
4912   }
4913 
4914   // Constant fold unary operations with a vector integer or float operand.
4915   switch (Opcode) {
4916   default:
4917     // FIXME: Entirely reasonable to perform folding of other unary
4918     // operations here as the need arises.
4919     break;
4920   case ISD::FNEG:
4921   case ISD::FABS:
4922   case ISD::FCEIL:
4923   case ISD::FTRUNC:
4924   case ISD::FFLOOR:
4925   case ISD::FP_EXTEND:
4926   case ISD::FP_TO_SINT:
4927   case ISD::FP_TO_UINT:
4928   case ISD::TRUNCATE:
4929   case ISD::ANY_EXTEND:
4930   case ISD::ZERO_EXTEND:
4931   case ISD::SIGN_EXTEND:
4932   case ISD::UINT_TO_FP:
4933   case ISD::SINT_TO_FP:
4934   case ISD::ABS:
4935   case ISD::BITREVERSE:
4936   case ISD::BSWAP:
4937   case ISD::CTLZ:
4938   case ISD::CTLZ_ZERO_UNDEF:
4939   case ISD::CTTZ:
4940   case ISD::CTTZ_ZERO_UNDEF:
4941   case ISD::CTPOP: {
4942     SDValue Ops = {Operand};
4943     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
4944       return Fold;
4945   }
4946   }
4947 
4948   unsigned OpOpcode = Operand.getNode()->getOpcode();
4949   switch (Opcode) {
4950   case ISD::STEP_VECTOR:
4951     assert(VT.isScalableVector() &&
4952            "STEP_VECTOR can only be used with scalable types");
4953     assert(OpOpcode == ISD::TargetConstant &&
4954            VT.getVectorElementType() == Operand.getValueType() &&
4955            "Unexpected step operand");
4956     break;
4957   case ISD::FREEZE:
4958     assert(VT == Operand.getValueType() && "Unexpected VT!");
4959     break;
4960   case ISD::TokenFactor:
4961   case ISD::MERGE_VALUES:
4962   case ISD::CONCAT_VECTORS:
4963     return Operand;         // Factor, merge or concat of one node?  No need.
4964   case ISD::BUILD_VECTOR: {
4965     // Attempt to simplify BUILD_VECTOR.
4966     SDValue Ops[] = {Operand};
4967     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4968       return V;
4969     break;
4970   }
4971   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4972   case ISD::FP_EXTEND:
4973     assert(VT.isFloatingPoint() &&
4974            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4975     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4976     assert((!VT.isVector() ||
4977             VT.getVectorElementCount() ==
4978             Operand.getValueType().getVectorElementCount()) &&
4979            "Vector element count mismatch!");
4980     assert(Operand.getValueType().bitsLT(VT) &&
4981            "Invalid fpext node, dst < src!");
4982     if (Operand.isUndef())
4983       return getUNDEF(VT);
4984     break;
4985   case ISD::FP_TO_SINT:
4986   case ISD::FP_TO_UINT:
4987     if (Operand.isUndef())
4988       return getUNDEF(VT);
4989     break;
4990   case ISD::SINT_TO_FP:
4991   case ISD::UINT_TO_FP:
4992     // [us]itofp(undef) = 0, because the result value is bounded.
4993     if (Operand.isUndef())
4994       return getConstantFP(0.0, DL, VT);
4995     break;
4996   case ISD::SIGN_EXTEND:
4997     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4998            "Invalid SIGN_EXTEND!");
4999     assert(VT.isVector() == Operand.getValueType().isVector() &&
5000            "SIGN_EXTEND result type type should be vector iff the operand "
5001            "type is vector!");
5002     if (Operand.getValueType() == VT) return Operand;   // noop extension
5003     assert((!VT.isVector() ||
5004             VT.getVectorElementCount() ==
5005                 Operand.getValueType().getVectorElementCount()) &&
5006            "Vector element count mismatch!");
5007     assert(Operand.getValueType().bitsLT(VT) &&
5008            "Invalid sext node, dst < src!");
5009     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5010       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5011     if (OpOpcode == ISD::UNDEF)
5012       // sext(undef) = 0, because the top bits will all be the same.
5013       return getConstant(0, DL, VT);
5014     break;
5015   case ISD::ZERO_EXTEND:
5016     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5017            "Invalid ZERO_EXTEND!");
5018     assert(VT.isVector() == Operand.getValueType().isVector() &&
5019            "ZERO_EXTEND result type type should be vector iff the operand "
5020            "type is vector!");
5021     if (Operand.getValueType() == VT) return Operand;   // noop extension
5022     assert((!VT.isVector() ||
5023             VT.getVectorElementCount() ==
5024                 Operand.getValueType().getVectorElementCount()) &&
5025            "Vector element count mismatch!");
5026     assert(Operand.getValueType().bitsLT(VT) &&
5027            "Invalid zext node, dst < src!");
5028     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5029       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5030     if (OpOpcode == ISD::UNDEF)
5031       // zext(undef) = 0, because the top bits will be zero.
5032       return getConstant(0, DL, VT);
5033     break;
5034   case ISD::ANY_EXTEND:
5035     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5036            "Invalid ANY_EXTEND!");
5037     assert(VT.isVector() == Operand.getValueType().isVector() &&
5038            "ANY_EXTEND result type type should be vector iff the operand "
5039            "type is vector!");
5040     if (Operand.getValueType() == VT) return Operand;   // noop extension
5041     assert((!VT.isVector() ||
5042             VT.getVectorElementCount() ==
5043                 Operand.getValueType().getVectorElementCount()) &&
5044            "Vector element count mismatch!");
5045     assert(Operand.getValueType().bitsLT(VT) &&
5046            "Invalid anyext node, dst < src!");
5047 
5048     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5049         OpOpcode == ISD::ANY_EXTEND)
5050       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5051       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5052     if (OpOpcode == ISD::UNDEF)
5053       return getUNDEF(VT);
5054 
5055     // (ext (trunc x)) -> x
5056     if (OpOpcode == ISD::TRUNCATE) {
5057       SDValue OpOp = Operand.getOperand(0);
5058       if (OpOp.getValueType() == VT) {
5059         transferDbgValues(Operand, OpOp);
5060         return OpOp;
5061       }
5062     }
5063     break;
5064   case ISD::TRUNCATE:
5065     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5066            "Invalid TRUNCATE!");
5067     assert(VT.isVector() == Operand.getValueType().isVector() &&
5068            "TRUNCATE result type type should be vector iff the operand "
5069            "type is vector!");
5070     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5071     assert((!VT.isVector() ||
5072             VT.getVectorElementCount() ==
5073                 Operand.getValueType().getVectorElementCount()) &&
5074            "Vector element count mismatch!");
5075     assert(Operand.getValueType().bitsGT(VT) &&
5076            "Invalid truncate node, src < dst!");
5077     if (OpOpcode == ISD::TRUNCATE)
5078       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5079     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5080         OpOpcode == ISD::ANY_EXTEND) {
5081       // If the source is smaller than the dest, we still need an extend.
5082       if (Operand.getOperand(0).getValueType().getScalarType()
5083             .bitsLT(VT.getScalarType()))
5084         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5085       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5086         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5087       return Operand.getOperand(0);
5088     }
5089     if (OpOpcode == ISD::UNDEF)
5090       return getUNDEF(VT);
5091     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5092       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5093     break;
5094   case ISD::ANY_EXTEND_VECTOR_INREG:
5095   case ISD::ZERO_EXTEND_VECTOR_INREG:
5096   case ISD::SIGN_EXTEND_VECTOR_INREG:
5097     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5098     assert(Operand.getValueType().bitsLE(VT) &&
5099            "The input must be the same size or smaller than the result.");
5100     assert(VT.getVectorMinNumElements() <
5101                Operand.getValueType().getVectorMinNumElements() &&
5102            "The destination vector type must have fewer lanes than the input.");
5103     break;
5104   case ISD::ABS:
5105     assert(VT.isInteger() && VT == Operand.getValueType() &&
5106            "Invalid ABS!");
5107     if (OpOpcode == ISD::UNDEF)
5108       return getUNDEF(VT);
5109     break;
5110   case ISD::BSWAP:
5111     assert(VT.isInteger() && VT == Operand.getValueType() &&
5112            "Invalid BSWAP!");
5113     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5114            "BSWAP types must be a multiple of 16 bits!");
5115     if (OpOpcode == ISD::UNDEF)
5116       return getUNDEF(VT);
5117     break;
5118   case ISD::BITREVERSE:
5119     assert(VT.isInteger() && VT == Operand.getValueType() &&
5120            "Invalid BITREVERSE!");
5121     if (OpOpcode == ISD::UNDEF)
5122       return getUNDEF(VT);
5123     break;
5124   case ISD::BITCAST:
5125     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5126            "Cannot BITCAST between types of different sizes!");
5127     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5128     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5129       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5130     if (OpOpcode == ISD::UNDEF)
5131       return getUNDEF(VT);
5132     break;
5133   case ISD::SCALAR_TO_VECTOR:
5134     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5135            (VT.getVectorElementType() == Operand.getValueType() ||
5136             (VT.getVectorElementType().isInteger() &&
5137              Operand.getValueType().isInteger() &&
5138              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5139            "Illegal SCALAR_TO_VECTOR node!");
5140     if (OpOpcode == ISD::UNDEF)
5141       return getUNDEF(VT);
5142     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5143     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5144         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5145         Operand.getConstantOperandVal(1) == 0 &&
5146         Operand.getOperand(0).getValueType() == VT)
5147       return Operand.getOperand(0);
5148     break;
5149   case ISD::FNEG:
5150     // Negation of an unknown bag of bits is still completely undefined.
5151     if (OpOpcode == ISD::UNDEF)
5152       return getUNDEF(VT);
5153 
5154     if (OpOpcode == ISD::FNEG)  // --X -> X
5155       return Operand.getOperand(0);
5156     break;
5157   case ISD::FABS:
5158     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5159       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5160     break;
5161   case ISD::VSCALE:
5162     assert(VT == Operand.getValueType() && "Unexpected VT!");
5163     break;
5164   case ISD::CTPOP:
5165     if (Operand.getValueType().getScalarType() == MVT::i1)
5166       return Operand;
5167     break;
5168   case ISD::CTLZ:
5169   case ISD::CTTZ:
5170     if (Operand.getValueType().getScalarType() == MVT::i1)
5171       return getNOT(DL, Operand, Operand.getValueType());
5172     break;
5173   case ISD::VECREDUCE_SMIN:
5174   case ISD::VECREDUCE_UMAX:
5175     if (Operand.getValueType().getScalarType() == MVT::i1)
5176       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5177     break;
5178   case ISD::VECREDUCE_SMAX:
5179   case ISD::VECREDUCE_UMIN:
5180     if (Operand.getValueType().getScalarType() == MVT::i1)
5181       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5182     break;
5183   }
5184 
5185   SDNode *N;
5186   SDVTList VTs = getVTList(VT);
5187   SDValue Ops[] = {Operand};
5188   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5189     FoldingSetNodeID ID;
5190     AddNodeIDNode(ID, Opcode, VTs, Ops);
5191     void *IP = nullptr;
5192     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5193       E->intersectFlagsWith(Flags);
5194       return SDValue(E, 0);
5195     }
5196 
5197     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5198     N->setFlags(Flags);
5199     createOperands(N, Ops);
5200     CSEMap.InsertNode(N, IP);
5201   } else {
5202     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5203     createOperands(N, Ops);
5204   }
5205 
5206   InsertNode(N);
5207   SDValue V = SDValue(N, 0);
5208   NewSDValueDbgMsg(V, "Creating new node: ", this);
5209   return V;
5210 }
5211 
5212 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5213                                        const APInt &C2) {
5214   switch (Opcode) {
5215   case ISD::ADD:  return C1 + C2;
5216   case ISD::SUB:  return C1 - C2;
5217   case ISD::MUL:  return C1 * C2;
5218   case ISD::AND:  return C1 & C2;
5219   case ISD::OR:   return C1 | C2;
5220   case ISD::XOR:  return C1 ^ C2;
5221   case ISD::SHL:  return C1 << C2;
5222   case ISD::SRL:  return C1.lshr(C2);
5223   case ISD::SRA:  return C1.ashr(C2);
5224   case ISD::ROTL: return C1.rotl(C2);
5225   case ISD::ROTR: return C1.rotr(C2);
5226   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5227   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5228   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5229   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5230   case ISD::SADDSAT: return C1.sadd_sat(C2);
5231   case ISD::UADDSAT: return C1.uadd_sat(C2);
5232   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5233   case ISD::USUBSAT: return C1.usub_sat(C2);
5234   case ISD::UDIV:
5235     if (!C2.getBoolValue())
5236       break;
5237     return C1.udiv(C2);
5238   case ISD::UREM:
5239     if (!C2.getBoolValue())
5240       break;
5241     return C1.urem(C2);
5242   case ISD::SDIV:
5243     if (!C2.getBoolValue())
5244       break;
5245     return C1.sdiv(C2);
5246   case ISD::SREM:
5247     if (!C2.getBoolValue())
5248       break;
5249     return C1.srem(C2);
5250   case ISD::MULHS: {
5251     unsigned FullWidth = C1.getBitWidth() * 2;
5252     APInt C1Ext = C1.sext(FullWidth);
5253     APInt C2Ext = C2.sext(FullWidth);
5254     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5255   }
5256   case ISD::MULHU: {
5257     unsigned FullWidth = C1.getBitWidth() * 2;
5258     APInt C1Ext = C1.zext(FullWidth);
5259     APInt C2Ext = C2.zext(FullWidth);
5260     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5261   }
5262   }
5263   return llvm::None;
5264 }
5265 
5266 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5267                                        const GlobalAddressSDNode *GA,
5268                                        const SDNode *N2) {
5269   if (GA->getOpcode() != ISD::GlobalAddress)
5270     return SDValue();
5271   if (!TLI->isOffsetFoldingLegal(GA))
5272     return SDValue();
5273   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5274   if (!C2)
5275     return SDValue();
5276   int64_t Offset = C2->getSExtValue();
5277   switch (Opcode) {
5278   case ISD::ADD: break;
5279   case ISD::SUB: Offset = -uint64_t(Offset); break;
5280   default: return SDValue();
5281   }
5282   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5283                           GA->getOffset() + uint64_t(Offset));
5284 }
5285 
5286 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5287   switch (Opcode) {
5288   case ISD::SDIV:
5289   case ISD::UDIV:
5290   case ISD::SREM:
5291   case ISD::UREM: {
5292     // If a divisor is zero/undef or any element of a divisor vector is
5293     // zero/undef, the whole op is undef.
5294     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5295     SDValue Divisor = Ops[1];
5296     if (Divisor.isUndef() || isNullConstant(Divisor))
5297       return true;
5298 
5299     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5300            llvm::any_of(Divisor->op_values(),
5301                         [](SDValue V) { return V.isUndef() ||
5302                                         isNullConstant(V); });
5303     // TODO: Handle signed overflow.
5304   }
5305   // TODO: Handle oversized shifts.
5306   default:
5307     return false;
5308   }
5309 }
5310 
5311 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5312                                              EVT VT, ArrayRef<SDValue> Ops) {
5313   // If the opcode is a target-specific ISD node, there's nothing we can
5314   // do here and the operand rules may not line up with the below, so
5315   // bail early.
5316   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5317   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5318   // foldCONCAT_VECTORS in getNode before this is called.
5319   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5320     return SDValue();
5321 
5322   unsigned NumOps = Ops.size();
5323   if (NumOps == 0)
5324     return SDValue();
5325 
5326   if (isUndef(Opcode, Ops))
5327     return getUNDEF(VT);
5328 
5329   // Handle binops special cases.
5330   if (NumOps == 2) {
5331     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5332       return CFP;
5333 
5334     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5335       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5336         if (C1->isOpaque() || C2->isOpaque())
5337           return SDValue();
5338 
5339         Optional<APInt> FoldAttempt =
5340             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5341         if (!FoldAttempt)
5342           return SDValue();
5343 
5344         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5345         assert((!Folded || !VT.isVector()) &&
5346                "Can't fold vectors ops with scalar operands");
5347         return Folded;
5348       }
5349     }
5350 
5351     // fold (add Sym, c) -> Sym+c
5352     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5353       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5354     if (TLI->isCommutativeBinOp(Opcode))
5355       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5356         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5357   }
5358 
5359   // This is for vector folding only from here on.
5360   if (!VT.isVector())
5361     return SDValue();
5362 
5363   ElementCount NumElts = VT.getVectorElementCount();
5364 
5365   // See if we can fold through bitcasted integer ops.
5366   // TODO: Can we handle undef elements?
5367   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5368       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5369       Ops[0].getOpcode() == ISD::BITCAST &&
5370       Ops[1].getOpcode() == ISD::BITCAST) {
5371     SDValue N1 = peekThroughBitcasts(Ops[0]);
5372     SDValue N2 = peekThroughBitcasts(Ops[1]);
5373     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5374     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5375     EVT BVVT = N1.getValueType();
5376     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5377       bool IsLE = getDataLayout().isLittleEndian();
5378       unsigned EltBits = VT.getScalarSizeInBits();
5379       SmallVector<APInt> RawBits1, RawBits2;
5380       BitVector UndefElts1, UndefElts2;
5381       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5382           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5383           UndefElts1.none() && UndefElts2.none()) {
5384         SmallVector<APInt> RawBits;
5385         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5386           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5387           if (!Fold)
5388             break;
5389           RawBits.push_back(Fold.getValue());
5390         }
5391         if (RawBits.size() == NumElts.getFixedValue()) {
5392           // We have constant folded, but we need to cast this again back to
5393           // the original (possibly legalized) type.
5394           SmallVector<APInt> DstBits;
5395           BitVector DstUndefs;
5396           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5397                                            DstBits, RawBits, DstUndefs,
5398                                            BitVector(RawBits.size(), false));
5399           EVT BVEltVT = BV1->getOperand(0).getValueType();
5400           unsigned BVEltBits = BVEltVT.getSizeInBits();
5401           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5402           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5403             if (DstUndefs[I])
5404               continue;
5405             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5406           }
5407           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5408         }
5409       }
5410     }
5411   }
5412 
5413   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5414     return !Op.getValueType().isVector() ||
5415            Op.getValueType().getVectorElementCount() == NumElts;
5416   };
5417 
5418   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5419     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5420            Op.getOpcode() == ISD::BUILD_VECTOR ||
5421            Op.getOpcode() == ISD::SPLAT_VECTOR;
5422   };
5423 
5424   // All operands must be vector types with the same number of elements as
5425   // the result type and must be either UNDEF or a build/splat vector
5426   // or UNDEF scalars.
5427   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5428       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5429     return SDValue();
5430 
5431   // If we are comparing vectors, then the result needs to be a i1 boolean
5432   // that is then sign-extended back to the legal result type.
5433   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5434 
5435   // Find legal integer scalar type for constant promotion and
5436   // ensure that its scalar size is at least as large as source.
5437   EVT LegalSVT = VT.getScalarType();
5438   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5439     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5440     if (LegalSVT.bitsLT(VT.getScalarType()))
5441       return SDValue();
5442   }
5443 
5444   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5445   // only have one operand to check. For fixed-length vector types we may have
5446   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5447   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5448 
5449   // Constant fold each scalar lane separately.
5450   SmallVector<SDValue, 4> ScalarResults;
5451   for (unsigned I = 0; I != NumVectorElts; I++) {
5452     SmallVector<SDValue, 4> ScalarOps;
5453     for (SDValue Op : Ops) {
5454       EVT InSVT = Op.getValueType().getScalarType();
5455       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5456           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5457         if (Op.isUndef())
5458           ScalarOps.push_back(getUNDEF(InSVT));
5459         else
5460           ScalarOps.push_back(Op);
5461         continue;
5462       }
5463 
5464       SDValue ScalarOp =
5465           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5466       EVT ScalarVT = ScalarOp.getValueType();
5467 
5468       // Build vector (integer) scalar operands may need implicit
5469       // truncation - do this before constant folding.
5470       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5471         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5472 
5473       ScalarOps.push_back(ScalarOp);
5474     }
5475 
5476     // Constant fold the scalar operands.
5477     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5478 
5479     // Legalize the (integer) scalar constant if necessary.
5480     if (LegalSVT != SVT)
5481       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5482 
5483     // Scalar folding only succeeded if the result is a constant or UNDEF.
5484     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5485         ScalarResult.getOpcode() != ISD::ConstantFP)
5486       return SDValue();
5487     ScalarResults.push_back(ScalarResult);
5488   }
5489 
5490   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5491                                    : getBuildVector(VT, DL, ScalarResults);
5492   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5493   return V;
5494 }
5495 
5496 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5497                                          EVT VT, SDValue N1, SDValue N2) {
5498   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5499   //       should. That will require dealing with a potentially non-default
5500   //       rounding mode, checking the "opStatus" return value from the APFloat
5501   //       math calculations, and possibly other variations.
5502   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5503   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5504   if (N1CFP && N2CFP) {
5505     APFloat C1 = N1CFP->getValueAPF(); // make copy
5506     const APFloat &C2 = N2CFP->getValueAPF();
5507     switch (Opcode) {
5508     case ISD::FADD:
5509       C1.add(C2, APFloat::rmNearestTiesToEven);
5510       return getConstantFP(C1, DL, VT);
5511     case ISD::FSUB:
5512       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5513       return getConstantFP(C1, DL, VT);
5514     case ISD::FMUL:
5515       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5516       return getConstantFP(C1, DL, VT);
5517     case ISD::FDIV:
5518       C1.divide(C2, APFloat::rmNearestTiesToEven);
5519       return getConstantFP(C1, DL, VT);
5520     case ISD::FREM:
5521       C1.mod(C2);
5522       return getConstantFP(C1, DL, VT);
5523     case ISD::FCOPYSIGN:
5524       C1.copySign(C2);
5525       return getConstantFP(C1, DL, VT);
5526     case ISD::FMINNUM:
5527       return getConstantFP(minnum(C1, C2), DL, VT);
5528     case ISD::FMAXNUM:
5529       return getConstantFP(maxnum(C1, C2), DL, VT);
5530     case ISD::FMINIMUM:
5531       return getConstantFP(minimum(C1, C2), DL, VT);
5532     case ISD::FMAXIMUM:
5533       return getConstantFP(maximum(C1, C2), DL, VT);
5534     default: break;
5535     }
5536   }
5537   if (N1CFP && Opcode == ISD::FP_ROUND) {
5538     APFloat C1 = N1CFP->getValueAPF();    // make copy
5539     bool Unused;
5540     // This can return overflow, underflow, or inexact; we don't care.
5541     // FIXME need to be more flexible about rounding mode.
5542     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5543                       &Unused);
5544     return getConstantFP(C1, DL, VT);
5545   }
5546 
5547   switch (Opcode) {
5548   case ISD::FSUB:
5549     // -0.0 - undef --> undef (consistent with "fneg undef")
5550     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5551       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5552         return getUNDEF(VT);
5553     LLVM_FALLTHROUGH;
5554 
5555   case ISD::FADD:
5556   case ISD::FMUL:
5557   case ISD::FDIV:
5558   case ISD::FREM:
5559     // If both operands are undef, the result is undef. If 1 operand is undef,
5560     // the result is NaN. This should match the behavior of the IR optimizer.
5561     if (N1.isUndef() && N2.isUndef())
5562       return getUNDEF(VT);
5563     if (N1.isUndef() || N2.isUndef())
5564       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5565   }
5566   return SDValue();
5567 }
5568 
5569 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5570   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5571 
5572   // There's no need to assert on a byte-aligned pointer. All pointers are at
5573   // least byte aligned.
5574   if (A == Align(1))
5575     return Val;
5576 
5577   FoldingSetNodeID ID;
5578   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5579   ID.AddInteger(A.value());
5580 
5581   void *IP = nullptr;
5582   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5583     return SDValue(E, 0);
5584 
5585   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5586                                          Val.getValueType(), A);
5587   createOperands(N, {Val});
5588 
5589   CSEMap.InsertNode(N, IP);
5590   InsertNode(N);
5591 
5592   SDValue V(N, 0);
5593   NewSDValueDbgMsg(V, "Creating new node: ", this);
5594   return V;
5595 }
5596 
5597 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5598                               SDValue N1, SDValue N2) {
5599   SDNodeFlags Flags;
5600   if (Inserter)
5601     Flags = Inserter->getFlags();
5602   return getNode(Opcode, DL, VT, N1, N2, Flags);
5603 }
5604 
5605 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5606                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5607   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5608          N2.getOpcode() != ISD::DELETED_NODE &&
5609          "Operand is DELETED_NODE!");
5610   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5611   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5612   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5613   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5614 
5615   // Canonicalize constant to RHS if commutative.
5616   if (TLI->isCommutativeBinOp(Opcode)) {
5617     if (N1C && !N2C) {
5618       std::swap(N1C, N2C);
5619       std::swap(N1, N2);
5620     } else if (N1CFP && !N2CFP) {
5621       std::swap(N1CFP, N2CFP);
5622       std::swap(N1, N2);
5623     }
5624   }
5625 
5626   switch (Opcode) {
5627   default: break;
5628   case ISD::TokenFactor:
5629     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5630            N2.getValueType() == MVT::Other && "Invalid token factor!");
5631     // Fold trivial token factors.
5632     if (N1.getOpcode() == ISD::EntryToken) return N2;
5633     if (N2.getOpcode() == ISD::EntryToken) return N1;
5634     if (N1 == N2) return N1;
5635     break;
5636   case ISD::BUILD_VECTOR: {
5637     // Attempt to simplify BUILD_VECTOR.
5638     SDValue Ops[] = {N1, N2};
5639     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5640       return V;
5641     break;
5642   }
5643   case ISD::CONCAT_VECTORS: {
5644     SDValue Ops[] = {N1, N2};
5645     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5646       return V;
5647     break;
5648   }
5649   case ISD::AND:
5650     assert(VT.isInteger() && "This operator does not apply to FP types!");
5651     assert(N1.getValueType() == N2.getValueType() &&
5652            N1.getValueType() == VT && "Binary operator types must match!");
5653     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5654     // worth handling here.
5655     if (N2C && N2C->isZero())
5656       return N2;
5657     if (N2C && N2C->isAllOnes()) // X & -1 -> X
5658       return N1;
5659     break;
5660   case ISD::OR:
5661   case ISD::XOR:
5662   case ISD::ADD:
5663   case ISD::SUB:
5664     assert(VT.isInteger() && "This operator does not apply to FP types!");
5665     assert(N1.getValueType() == N2.getValueType() &&
5666            N1.getValueType() == VT && "Binary operator types must match!");
5667     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5668     // it's worth handling here.
5669     if (N2C && N2C->isZero())
5670       return N1;
5671     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5672         VT.getVectorElementType() == MVT::i1)
5673       return getNode(ISD::XOR, DL, VT, N1, N2);
5674     break;
5675   case ISD::MUL:
5676     assert(VT.isInteger() && "This operator does not apply to FP types!");
5677     assert(N1.getValueType() == N2.getValueType() &&
5678            N1.getValueType() == VT && "Binary operator types must match!");
5679     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5680       return getNode(ISD::AND, DL, VT, N1, N2);
5681     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5682       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5683       const APInt &N2CImm = N2C->getAPIntValue();
5684       return getVScale(DL, VT, MulImm * N2CImm);
5685     }
5686     break;
5687   case ISD::UDIV:
5688   case ISD::UREM:
5689   case ISD::MULHU:
5690   case ISD::MULHS:
5691   case ISD::SDIV:
5692   case ISD::SREM:
5693   case ISD::SADDSAT:
5694   case ISD::SSUBSAT:
5695   case ISD::UADDSAT:
5696   case ISD::USUBSAT:
5697     assert(VT.isInteger() && "This operator does not apply to FP types!");
5698     assert(N1.getValueType() == N2.getValueType() &&
5699            N1.getValueType() == VT && "Binary operator types must match!");
5700     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5701       // fold (add_sat x, y) -> (or x, y) for bool types.
5702       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5703         return getNode(ISD::OR, DL, VT, N1, N2);
5704       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5705       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5706         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5707     }
5708     break;
5709   case ISD::SMIN:
5710   case ISD::UMAX:
5711     assert(VT.isInteger() && "This operator does not apply to FP types!");
5712     assert(N1.getValueType() == N2.getValueType() &&
5713            N1.getValueType() == VT && "Binary operator types must match!");
5714     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5715       return getNode(ISD::OR, DL, VT, N1, N2);
5716     break;
5717   case ISD::SMAX:
5718   case ISD::UMIN:
5719     assert(VT.isInteger() && "This operator does not apply to FP types!");
5720     assert(N1.getValueType() == N2.getValueType() &&
5721            N1.getValueType() == VT && "Binary operator types must match!");
5722     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5723       return getNode(ISD::AND, DL, VT, N1, N2);
5724     break;
5725   case ISD::FADD:
5726   case ISD::FSUB:
5727   case ISD::FMUL:
5728   case ISD::FDIV:
5729   case ISD::FREM:
5730     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5731     assert(N1.getValueType() == N2.getValueType() &&
5732            N1.getValueType() == VT && "Binary operator types must match!");
5733     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5734       return V;
5735     break;
5736   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5737     assert(N1.getValueType() == VT &&
5738            N1.getValueType().isFloatingPoint() &&
5739            N2.getValueType().isFloatingPoint() &&
5740            "Invalid FCOPYSIGN!");
5741     break;
5742   case ISD::SHL:
5743     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5744       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5745       const APInt &ShiftImm = N2C->getAPIntValue();
5746       return getVScale(DL, VT, MulImm << ShiftImm);
5747     }
5748     LLVM_FALLTHROUGH;
5749   case ISD::SRA:
5750   case ISD::SRL:
5751     if (SDValue V = simplifyShift(N1, N2))
5752       return V;
5753     LLVM_FALLTHROUGH;
5754   case ISD::ROTL:
5755   case ISD::ROTR:
5756     assert(VT == N1.getValueType() &&
5757            "Shift operators return type must be the same as their first arg");
5758     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5759            "Shifts only work on integers");
5760     assert((!VT.isVector() || VT == N2.getValueType()) &&
5761            "Vector shift amounts must be in the same as their first arg");
5762     // Verify that the shift amount VT is big enough to hold valid shift
5763     // amounts.  This catches things like trying to shift an i1024 value by an
5764     // i8, which is easy to fall into in generic code that uses
5765     // TLI.getShiftAmount().
5766     assert(N2.getValueType().getScalarSizeInBits() >=
5767                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5768            "Invalid use of small shift amount with oversized value!");
5769 
5770     // Always fold shifts of i1 values so the code generator doesn't need to
5771     // handle them.  Since we know the size of the shift has to be less than the
5772     // size of the value, the shift/rotate count is guaranteed to be zero.
5773     if (VT == MVT::i1)
5774       return N1;
5775     if (N2C && N2C->isZero())
5776       return N1;
5777     break;
5778   case ISD::FP_ROUND:
5779     assert(VT.isFloatingPoint() &&
5780            N1.getValueType().isFloatingPoint() &&
5781            VT.bitsLE(N1.getValueType()) &&
5782            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5783            "Invalid FP_ROUND!");
5784     if (N1.getValueType() == VT) return N1;  // noop conversion.
5785     break;
5786   case ISD::AssertSext:
5787   case ISD::AssertZext: {
5788     EVT EVT = cast<VTSDNode>(N2)->getVT();
5789     assert(VT == N1.getValueType() && "Not an inreg extend!");
5790     assert(VT.isInteger() && EVT.isInteger() &&
5791            "Cannot *_EXTEND_INREG FP types");
5792     assert(!EVT.isVector() &&
5793            "AssertSExt/AssertZExt type should be the vector element type "
5794            "rather than the vector type!");
5795     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5796     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5797     break;
5798   }
5799   case ISD::SIGN_EXTEND_INREG: {
5800     EVT EVT = cast<VTSDNode>(N2)->getVT();
5801     assert(VT == N1.getValueType() && "Not an inreg extend!");
5802     assert(VT.isInteger() && EVT.isInteger() &&
5803            "Cannot *_EXTEND_INREG FP types");
5804     assert(EVT.isVector() == VT.isVector() &&
5805            "SIGN_EXTEND_INREG type should be vector iff the operand "
5806            "type is vector!");
5807     assert((!EVT.isVector() ||
5808             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5809            "Vector element counts must match in SIGN_EXTEND_INREG");
5810     assert(EVT.bitsLE(VT) && "Not extending!");
5811     if (EVT == VT) return N1;  // Not actually extending
5812 
5813     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5814       unsigned FromBits = EVT.getScalarSizeInBits();
5815       Val <<= Val.getBitWidth() - FromBits;
5816       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5817       return getConstant(Val, DL, ConstantVT);
5818     };
5819 
5820     if (N1C) {
5821       const APInt &Val = N1C->getAPIntValue();
5822       return SignExtendInReg(Val, VT);
5823     }
5824 
5825     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5826       SmallVector<SDValue, 8> Ops;
5827       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5828       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5829         SDValue Op = N1.getOperand(i);
5830         if (Op.isUndef()) {
5831           Ops.push_back(getUNDEF(OpVT));
5832           continue;
5833         }
5834         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5835         APInt Val = C->getAPIntValue();
5836         Ops.push_back(SignExtendInReg(Val, OpVT));
5837       }
5838       return getBuildVector(VT, DL, Ops);
5839     }
5840     break;
5841   }
5842   case ISD::FP_TO_SINT_SAT:
5843   case ISD::FP_TO_UINT_SAT: {
5844     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5845            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5846     assert(N1.getValueType().isVector() == VT.isVector() &&
5847            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5848            "vector!");
5849     assert((!VT.isVector() || VT.getVectorNumElements() ==
5850                                   N1.getValueType().getVectorNumElements()) &&
5851            "Vector element counts must match in FP_TO_*INT_SAT");
5852     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5853            "Type to saturate to must be a scalar.");
5854     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5855            "Not extending!");
5856     break;
5857   }
5858   case ISD::EXTRACT_VECTOR_ELT:
5859     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5860            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5861              element type of the vector.");
5862 
5863     // Extract from an undefined value or using an undefined index is undefined.
5864     if (N1.isUndef() || N2.isUndef())
5865       return getUNDEF(VT);
5866 
5867     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5868     // vectors. For scalable vectors we will provide appropriate support for
5869     // dealing with arbitrary indices.
5870     if (N2C && N1.getValueType().isFixedLengthVector() &&
5871         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5872       return getUNDEF(VT);
5873 
5874     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5875     // expanding copies of large vectors from registers. This only works for
5876     // fixed length vectors, since we need to know the exact number of
5877     // elements.
5878     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5879         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5880       unsigned Factor =
5881         N1.getOperand(0).getValueType().getVectorNumElements();
5882       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5883                      N1.getOperand(N2C->getZExtValue() / Factor),
5884                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5885     }
5886 
5887     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5888     // lowering is expanding large vector constants.
5889     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5890                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5891       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5892               N1.getValueType().isFixedLengthVector()) &&
5893              "BUILD_VECTOR used for scalable vectors");
5894       unsigned Index =
5895           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5896       SDValue Elt = N1.getOperand(Index);
5897 
5898       if (VT != Elt.getValueType())
5899         // If the vector element type is not legal, the BUILD_VECTOR operands
5900         // are promoted and implicitly truncated, and the result implicitly
5901         // extended. Make that explicit here.
5902         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5903 
5904       return Elt;
5905     }
5906 
5907     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5908     // operations are lowered to scalars.
5909     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5910       // If the indices are the same, return the inserted element else
5911       // if the indices are known different, extract the element from
5912       // the original vector.
5913       SDValue N1Op2 = N1.getOperand(2);
5914       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5915 
5916       if (N1Op2C && N2C) {
5917         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5918           if (VT == N1.getOperand(1).getValueType())
5919             return N1.getOperand(1);
5920           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5921         }
5922         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5923       }
5924     }
5925 
5926     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5927     // when vector types are scalarized and v1iX is legal.
5928     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5929     // Here we are completely ignoring the extract element index (N2),
5930     // which is fine for fixed width vectors, since any index other than 0
5931     // is undefined anyway. However, this cannot be ignored for scalable
5932     // vectors - in theory we could support this, but we don't want to do this
5933     // without a profitability check.
5934     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5935         N1.getValueType().isFixedLengthVector() &&
5936         N1.getValueType().getVectorNumElements() == 1) {
5937       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5938                      N1.getOperand(1));
5939     }
5940     break;
5941   case ISD::EXTRACT_ELEMENT:
5942     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5943     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5944            (N1.getValueType().isInteger() == VT.isInteger()) &&
5945            N1.getValueType() != VT &&
5946            "Wrong types for EXTRACT_ELEMENT!");
5947 
5948     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5949     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5950     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5951     if (N1.getOpcode() == ISD::BUILD_PAIR)
5952       return N1.getOperand(N2C->getZExtValue());
5953 
5954     // EXTRACT_ELEMENT of a constant int is also very common.
5955     if (N1C) {
5956       unsigned ElementSize = VT.getSizeInBits();
5957       unsigned Shift = ElementSize * N2C->getZExtValue();
5958       const APInt &Val = N1C->getAPIntValue();
5959       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5960     }
5961     break;
5962   case ISD::EXTRACT_SUBVECTOR: {
5963     EVT N1VT = N1.getValueType();
5964     assert(VT.isVector() && N1VT.isVector() &&
5965            "Extract subvector VTs must be vectors!");
5966     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5967            "Extract subvector VTs must have the same element type!");
5968     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5969            "Cannot extract a scalable vector from a fixed length vector!");
5970     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5971             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5972            "Extract subvector must be from larger vector to smaller vector!");
5973     assert(N2C && "Extract subvector index must be a constant");
5974     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5975             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5976                 N1VT.getVectorMinNumElements()) &&
5977            "Extract subvector overflow!");
5978     assert(N2C->getAPIntValue().getBitWidth() ==
5979                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5980            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5981 
5982     // Trivial extraction.
5983     if (VT == N1VT)
5984       return N1;
5985 
5986     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5987     if (N1.isUndef())
5988       return getUNDEF(VT);
5989 
5990     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5991     // the concat have the same type as the extract.
5992     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5993         VT == N1.getOperand(0).getValueType()) {
5994       unsigned Factor = VT.getVectorMinNumElements();
5995       return N1.getOperand(N2C->getZExtValue() / Factor);
5996     }
5997 
5998     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5999     // during shuffle legalization.
6000     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6001         VT == N1.getOperand(1).getValueType())
6002       return N1.getOperand(1);
6003     break;
6004   }
6005   }
6006 
6007   // Perform trivial constant folding.
6008   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6009     return SV;
6010 
6011   // Canonicalize an UNDEF to the RHS, even over a constant.
6012   if (N1.isUndef()) {
6013     if (TLI->isCommutativeBinOp(Opcode)) {
6014       std::swap(N1, N2);
6015     } else {
6016       switch (Opcode) {
6017       case ISD::SIGN_EXTEND_INREG:
6018       case ISD::SUB:
6019         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6020       case ISD::UDIV:
6021       case ISD::SDIV:
6022       case ISD::UREM:
6023       case ISD::SREM:
6024       case ISD::SSUBSAT:
6025       case ISD::USUBSAT:
6026         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6027       }
6028     }
6029   }
6030 
6031   // Fold a bunch of operators when the RHS is undef.
6032   if (N2.isUndef()) {
6033     switch (Opcode) {
6034     case ISD::XOR:
6035       if (N1.isUndef())
6036         // Handle undef ^ undef -> 0 special case. This is a common
6037         // idiom (misuse).
6038         return getConstant(0, DL, VT);
6039       LLVM_FALLTHROUGH;
6040     case ISD::ADD:
6041     case ISD::SUB:
6042     case ISD::UDIV:
6043     case ISD::SDIV:
6044     case ISD::UREM:
6045     case ISD::SREM:
6046       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6047     case ISD::MUL:
6048     case ISD::AND:
6049     case ISD::SSUBSAT:
6050     case ISD::USUBSAT:
6051       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6052     case ISD::OR:
6053     case ISD::SADDSAT:
6054     case ISD::UADDSAT:
6055       return getAllOnesConstant(DL, VT);
6056     }
6057   }
6058 
6059   // Memoize this node if possible.
6060   SDNode *N;
6061   SDVTList VTs = getVTList(VT);
6062   SDValue Ops[] = {N1, N2};
6063   if (VT != MVT::Glue) {
6064     FoldingSetNodeID ID;
6065     AddNodeIDNode(ID, Opcode, VTs, Ops);
6066     void *IP = nullptr;
6067     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6068       E->intersectFlagsWith(Flags);
6069       return SDValue(E, 0);
6070     }
6071 
6072     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6073     N->setFlags(Flags);
6074     createOperands(N, Ops);
6075     CSEMap.InsertNode(N, IP);
6076   } else {
6077     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6078     createOperands(N, Ops);
6079   }
6080 
6081   InsertNode(N);
6082   SDValue V = SDValue(N, 0);
6083   NewSDValueDbgMsg(V, "Creating new node: ", this);
6084   return V;
6085 }
6086 
6087 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6088                               SDValue N1, SDValue N2, SDValue N3) {
6089   SDNodeFlags Flags;
6090   if (Inserter)
6091     Flags = Inserter->getFlags();
6092   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6093 }
6094 
6095 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6096                               SDValue N1, SDValue N2, SDValue N3,
6097                               const SDNodeFlags Flags) {
6098   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6099          N2.getOpcode() != ISD::DELETED_NODE &&
6100          N3.getOpcode() != ISD::DELETED_NODE &&
6101          "Operand is DELETED_NODE!");
6102   // Perform various simplifications.
6103   switch (Opcode) {
6104   case ISD::FMA: {
6105     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6106     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6107            N3.getValueType() == VT && "FMA types must match!");
6108     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6109     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6110     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6111     if (N1CFP && N2CFP && N3CFP) {
6112       APFloat  V1 = N1CFP->getValueAPF();
6113       const APFloat &V2 = N2CFP->getValueAPF();
6114       const APFloat &V3 = N3CFP->getValueAPF();
6115       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6116       return getConstantFP(V1, DL, VT);
6117     }
6118     break;
6119   }
6120   case ISD::BUILD_VECTOR: {
6121     // Attempt to simplify BUILD_VECTOR.
6122     SDValue Ops[] = {N1, N2, N3};
6123     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6124       return V;
6125     break;
6126   }
6127   case ISD::CONCAT_VECTORS: {
6128     SDValue Ops[] = {N1, N2, N3};
6129     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6130       return V;
6131     break;
6132   }
6133   case ISD::SETCC: {
6134     assert(VT.isInteger() && "SETCC result type must be an integer!");
6135     assert(N1.getValueType() == N2.getValueType() &&
6136            "SETCC operands must have the same type!");
6137     assert(VT.isVector() == N1.getValueType().isVector() &&
6138            "SETCC type should be vector iff the operand type is vector!");
6139     assert((!VT.isVector() || VT.getVectorElementCount() ==
6140                                   N1.getValueType().getVectorElementCount()) &&
6141            "SETCC vector element counts must match!");
6142     // Use FoldSetCC to simplify SETCC's.
6143     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6144       return V;
6145     // Vector constant folding.
6146     SDValue Ops[] = {N1, N2, N3};
6147     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6148       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6149       return V;
6150     }
6151     break;
6152   }
6153   case ISD::SELECT:
6154   case ISD::VSELECT:
6155     if (SDValue V = simplifySelect(N1, N2, N3))
6156       return V;
6157     break;
6158   case ISD::VECTOR_SHUFFLE:
6159     llvm_unreachable("should use getVectorShuffle constructor!");
6160   case ISD::VECTOR_SPLICE: {
6161     if (cast<ConstantSDNode>(N3)->isNullValue())
6162       return N1;
6163     break;
6164   }
6165   case ISD::INSERT_VECTOR_ELT: {
6166     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6167     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6168     // for scalable vectors where we will generate appropriate code to
6169     // deal with out-of-bounds cases correctly.
6170     if (N3C && N1.getValueType().isFixedLengthVector() &&
6171         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6172       return getUNDEF(VT);
6173 
6174     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6175     if (N3.isUndef())
6176       return getUNDEF(VT);
6177 
6178     // If the inserted element is an UNDEF, just use the input vector.
6179     if (N2.isUndef())
6180       return N1;
6181 
6182     break;
6183   }
6184   case ISD::INSERT_SUBVECTOR: {
6185     // Inserting undef into undef is still undef.
6186     if (N1.isUndef() && N2.isUndef())
6187       return getUNDEF(VT);
6188 
6189     EVT N2VT = N2.getValueType();
6190     assert(VT == N1.getValueType() &&
6191            "Dest and insert subvector source types must match!");
6192     assert(VT.isVector() && N2VT.isVector() &&
6193            "Insert subvector VTs must be vectors!");
6194     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6195            "Cannot insert a scalable vector into a fixed length vector!");
6196     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6197             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6198            "Insert subvector must be from smaller vector to larger vector!");
6199     assert(isa<ConstantSDNode>(N3) &&
6200            "Insert subvector index must be constant");
6201     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6202             (N2VT.getVectorMinNumElements() +
6203              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6204                 VT.getVectorMinNumElements()) &&
6205            "Insert subvector overflow!");
6206     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6207                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6208            "Constant index for INSERT_SUBVECTOR has an invalid size");
6209 
6210     // Trivial insertion.
6211     if (VT == N2VT)
6212       return N2;
6213 
6214     // If this is an insert of an extracted vector into an undef vector, we
6215     // can just use the input to the extract.
6216     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6217         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6218       return N2.getOperand(0);
6219     break;
6220   }
6221   case ISD::BITCAST:
6222     // Fold bit_convert nodes from a type to themselves.
6223     if (N1.getValueType() == VT)
6224       return N1;
6225     break;
6226   }
6227 
6228   // Memoize node if it doesn't produce a flag.
6229   SDNode *N;
6230   SDVTList VTs = getVTList(VT);
6231   SDValue Ops[] = {N1, N2, N3};
6232   if (VT != MVT::Glue) {
6233     FoldingSetNodeID ID;
6234     AddNodeIDNode(ID, Opcode, VTs, Ops);
6235     void *IP = nullptr;
6236     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6237       E->intersectFlagsWith(Flags);
6238       return SDValue(E, 0);
6239     }
6240 
6241     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6242     N->setFlags(Flags);
6243     createOperands(N, Ops);
6244     CSEMap.InsertNode(N, IP);
6245   } else {
6246     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6247     createOperands(N, Ops);
6248   }
6249 
6250   InsertNode(N);
6251   SDValue V = SDValue(N, 0);
6252   NewSDValueDbgMsg(V, "Creating new node: ", this);
6253   return V;
6254 }
6255 
6256 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6257                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6258   SDValue Ops[] = { N1, N2, N3, N4 };
6259   return getNode(Opcode, DL, VT, Ops);
6260 }
6261 
6262 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6263                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6264                               SDValue N5) {
6265   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6266   return getNode(Opcode, DL, VT, Ops);
6267 }
6268 
6269 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6270 /// the incoming stack arguments to be loaded from the stack.
6271 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6272   SmallVector<SDValue, 8> ArgChains;
6273 
6274   // Include the original chain at the beginning of the list. When this is
6275   // used by target LowerCall hooks, this helps legalize find the
6276   // CALLSEQ_BEGIN node.
6277   ArgChains.push_back(Chain);
6278 
6279   // Add a chain value for each stack argument.
6280   for (SDNode *U : getEntryNode().getNode()->uses())
6281     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6282       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6283         if (FI->getIndex() < 0)
6284           ArgChains.push_back(SDValue(L, 1));
6285 
6286   // Build a tokenfactor for all the chains.
6287   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6288 }
6289 
6290 /// getMemsetValue - Vectorized representation of the memset value
6291 /// operand.
6292 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6293                               const SDLoc &dl) {
6294   assert(!Value.isUndef());
6295 
6296   unsigned NumBits = VT.getScalarSizeInBits();
6297   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6298     assert(C->getAPIntValue().getBitWidth() == 8);
6299     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6300     if (VT.isInteger()) {
6301       bool IsOpaque = VT.getSizeInBits() > 64 ||
6302           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6303       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6304     }
6305     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6306                              VT);
6307   }
6308 
6309   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6310   EVT IntVT = VT.getScalarType();
6311   if (!IntVT.isInteger())
6312     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6313 
6314   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6315   if (NumBits > 8) {
6316     // Use a multiplication with 0x010101... to extend the input to the
6317     // required length.
6318     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6319     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6320                         DAG.getConstant(Magic, dl, IntVT));
6321   }
6322 
6323   if (VT != Value.getValueType() && !VT.isInteger())
6324     Value = DAG.getBitcast(VT.getScalarType(), Value);
6325   if (VT != Value.getValueType())
6326     Value = DAG.getSplatBuildVector(VT, dl, Value);
6327 
6328   return Value;
6329 }
6330 
6331 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6332 /// used when a memcpy is turned into a memset when the source is a constant
6333 /// string ptr.
6334 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6335                                   const TargetLowering &TLI,
6336                                   const ConstantDataArraySlice &Slice) {
6337   // Handle vector with all elements zero.
6338   if (Slice.Array == nullptr) {
6339     if (VT.isInteger())
6340       return DAG.getConstant(0, dl, VT);
6341     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6342       return DAG.getConstantFP(0.0, dl, VT);
6343     if (VT.isVector()) {
6344       unsigned NumElts = VT.getVectorNumElements();
6345       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6346       return DAG.getNode(ISD::BITCAST, dl, VT,
6347                          DAG.getConstant(0, dl,
6348                                          EVT::getVectorVT(*DAG.getContext(),
6349                                                           EltVT, NumElts)));
6350     }
6351     llvm_unreachable("Expected type!");
6352   }
6353 
6354   assert(!VT.isVector() && "Can't handle vector type here!");
6355   unsigned NumVTBits = VT.getSizeInBits();
6356   unsigned NumVTBytes = NumVTBits / 8;
6357   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6358 
6359   APInt Val(NumVTBits, 0);
6360   if (DAG.getDataLayout().isLittleEndian()) {
6361     for (unsigned i = 0; i != NumBytes; ++i)
6362       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6363   } else {
6364     for (unsigned i = 0; i != NumBytes; ++i)
6365       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6366   }
6367 
6368   // If the "cost" of materializing the integer immediate is less than the cost
6369   // of a load, then it is cost effective to turn the load into the immediate.
6370   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6371   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6372     return DAG.getConstant(Val, dl, VT);
6373   return SDValue();
6374 }
6375 
6376 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6377                                            const SDLoc &DL,
6378                                            const SDNodeFlags Flags) {
6379   EVT VT = Base.getValueType();
6380   SDValue Index;
6381 
6382   if (Offset.isScalable())
6383     Index = getVScale(DL, Base.getValueType(),
6384                       APInt(Base.getValueSizeInBits().getFixedSize(),
6385                             Offset.getKnownMinSize()));
6386   else
6387     Index = getConstant(Offset.getFixedSize(), DL, VT);
6388 
6389   return getMemBasePlusOffset(Base, Index, DL, Flags);
6390 }
6391 
6392 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6393                                            const SDLoc &DL,
6394                                            const SDNodeFlags Flags) {
6395   assert(Offset.getValueType().isInteger());
6396   EVT BasePtrVT = Ptr.getValueType();
6397   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6398 }
6399 
6400 /// Returns true if memcpy source is constant data.
6401 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6402   uint64_t SrcDelta = 0;
6403   GlobalAddressSDNode *G = nullptr;
6404   if (Src.getOpcode() == ISD::GlobalAddress)
6405     G = cast<GlobalAddressSDNode>(Src);
6406   else if (Src.getOpcode() == ISD::ADD &&
6407            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6408            Src.getOperand(1).getOpcode() == ISD::Constant) {
6409     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6410     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6411   }
6412   if (!G)
6413     return false;
6414 
6415   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6416                                   SrcDelta + G->getOffset());
6417 }
6418 
6419 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6420                                       SelectionDAG &DAG) {
6421   // On Darwin, -Os means optimize for size without hurting performance, so
6422   // only really optimize for size when -Oz (MinSize) is used.
6423   if (MF.getTarget().getTargetTriple().isOSDarwin())
6424     return MF.getFunction().hasMinSize();
6425   return DAG.shouldOptForSize();
6426 }
6427 
6428 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6429                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6430                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6431                           SmallVector<SDValue, 16> &OutStoreChains) {
6432   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6433   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6434   SmallVector<SDValue, 16> GluedLoadChains;
6435   for (unsigned i = From; i < To; ++i) {
6436     OutChains.push_back(OutLoadChains[i]);
6437     GluedLoadChains.push_back(OutLoadChains[i]);
6438   }
6439 
6440   // Chain for all loads.
6441   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6442                                   GluedLoadChains);
6443 
6444   for (unsigned i = From; i < To; ++i) {
6445     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6446     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6447                                   ST->getBasePtr(), ST->getMemoryVT(),
6448                                   ST->getMemOperand());
6449     OutChains.push_back(NewStore);
6450   }
6451 }
6452 
6453 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6454                                        SDValue Chain, SDValue Dst, SDValue Src,
6455                                        uint64_t Size, Align Alignment,
6456                                        bool isVol, bool AlwaysInline,
6457                                        MachinePointerInfo DstPtrInfo,
6458                                        MachinePointerInfo SrcPtrInfo,
6459                                        const AAMDNodes &AAInfo) {
6460   // Turn a memcpy of undef to nop.
6461   // FIXME: We need to honor volatile even is Src is undef.
6462   if (Src.isUndef())
6463     return Chain;
6464 
6465   // Expand memcpy to a series of load and store ops if the size operand falls
6466   // below a certain threshold.
6467   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6468   // rather than maybe a humongous number of loads and stores.
6469   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6470   const DataLayout &DL = DAG.getDataLayout();
6471   LLVMContext &C = *DAG.getContext();
6472   std::vector<EVT> MemOps;
6473   bool DstAlignCanChange = false;
6474   MachineFunction &MF = DAG.getMachineFunction();
6475   MachineFrameInfo &MFI = MF.getFrameInfo();
6476   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6477   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6478   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6479     DstAlignCanChange = true;
6480   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6481   if (!SrcAlign || Alignment > *SrcAlign)
6482     SrcAlign = Alignment;
6483   assert(SrcAlign && "SrcAlign must be set");
6484   ConstantDataArraySlice Slice;
6485   // If marked as volatile, perform a copy even when marked as constant.
6486   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6487   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6488   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6489   const MemOp Op = isZeroConstant
6490                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6491                                     /*IsZeroMemset*/ true, isVol)
6492                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6493                                      *SrcAlign, isVol, CopyFromConstant);
6494   if (!TLI.findOptimalMemOpLowering(
6495           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6496           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6497     return SDValue();
6498 
6499   if (DstAlignCanChange) {
6500     Type *Ty = MemOps[0].getTypeForEVT(C);
6501     Align NewAlign = DL.getABITypeAlign(Ty);
6502 
6503     // Don't promote to an alignment that would require dynamic stack
6504     // realignment.
6505     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6506     if (!TRI->hasStackRealignment(MF))
6507       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6508         NewAlign = NewAlign / 2;
6509 
6510     if (NewAlign > Alignment) {
6511       // Give the stack frame object a larger alignment if needed.
6512       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6513         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6514       Alignment = NewAlign;
6515     }
6516   }
6517 
6518   // Prepare AAInfo for loads/stores after lowering this memcpy.
6519   AAMDNodes NewAAInfo = AAInfo;
6520   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6521 
6522   MachineMemOperand::Flags MMOFlags =
6523       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6524   SmallVector<SDValue, 16> OutLoadChains;
6525   SmallVector<SDValue, 16> OutStoreChains;
6526   SmallVector<SDValue, 32> OutChains;
6527   unsigned NumMemOps = MemOps.size();
6528   uint64_t SrcOff = 0, DstOff = 0;
6529   for (unsigned i = 0; i != NumMemOps; ++i) {
6530     EVT VT = MemOps[i];
6531     unsigned VTSize = VT.getSizeInBits() / 8;
6532     SDValue Value, Store;
6533 
6534     if (VTSize > Size) {
6535       // Issuing an unaligned load / store pair  that overlaps with the previous
6536       // pair. Adjust the offset accordingly.
6537       assert(i == NumMemOps-1 && i != 0);
6538       SrcOff -= VTSize - Size;
6539       DstOff -= VTSize - Size;
6540     }
6541 
6542     if (CopyFromConstant &&
6543         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6544       // It's unlikely a store of a vector immediate can be done in a single
6545       // instruction. It would require a load from a constantpool first.
6546       // We only handle zero vectors here.
6547       // FIXME: Handle other cases where store of vector immediate is done in
6548       // a single instruction.
6549       ConstantDataArraySlice SubSlice;
6550       if (SrcOff < Slice.Length) {
6551         SubSlice = Slice;
6552         SubSlice.move(SrcOff);
6553       } else {
6554         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6555         SubSlice.Array = nullptr;
6556         SubSlice.Offset = 0;
6557         SubSlice.Length = VTSize;
6558       }
6559       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6560       if (Value.getNode()) {
6561         Store = DAG.getStore(
6562             Chain, dl, Value,
6563             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6564             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6565         OutChains.push_back(Store);
6566       }
6567     }
6568 
6569     if (!Store.getNode()) {
6570       // The type might not be legal for the target.  This should only happen
6571       // if the type is smaller than a legal type, as on PPC, so the right
6572       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6573       // to Load/Store if NVT==VT.
6574       // FIXME does the case above also need this?
6575       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6576       assert(NVT.bitsGE(VT));
6577 
6578       bool isDereferenceable =
6579         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6580       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6581       if (isDereferenceable)
6582         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6583 
6584       Value = DAG.getExtLoad(
6585           ISD::EXTLOAD, dl, NVT, Chain,
6586           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6587           SrcPtrInfo.getWithOffset(SrcOff), VT,
6588           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6589       OutLoadChains.push_back(Value.getValue(1));
6590 
6591       Store = DAG.getTruncStore(
6592           Chain, dl, Value,
6593           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6594           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6595       OutStoreChains.push_back(Store);
6596     }
6597     SrcOff += VTSize;
6598     DstOff += VTSize;
6599     Size -= VTSize;
6600   }
6601 
6602   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6603                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6604   unsigned NumLdStInMemcpy = OutStoreChains.size();
6605 
6606   if (NumLdStInMemcpy) {
6607     // It may be that memcpy might be converted to memset if it's memcpy
6608     // of constants. In such a case, we won't have loads and stores, but
6609     // just stores. In the absence of loads, there is nothing to gang up.
6610     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6611       // If target does not care, just leave as it.
6612       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6613         OutChains.push_back(OutLoadChains[i]);
6614         OutChains.push_back(OutStoreChains[i]);
6615       }
6616     } else {
6617       // Ld/St less than/equal limit set by target.
6618       if (NumLdStInMemcpy <= GluedLdStLimit) {
6619           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6620                                         NumLdStInMemcpy, OutLoadChains,
6621                                         OutStoreChains);
6622       } else {
6623         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6624         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6625         unsigned GlueIter = 0;
6626 
6627         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6628           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6629           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6630 
6631           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6632                                        OutLoadChains, OutStoreChains);
6633           GlueIter += GluedLdStLimit;
6634         }
6635 
6636         // Residual ld/st.
6637         if (RemainingLdStInMemcpy) {
6638           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6639                                         RemainingLdStInMemcpy, OutLoadChains,
6640                                         OutStoreChains);
6641         }
6642       }
6643     }
6644   }
6645   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6646 }
6647 
6648 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6649                                         SDValue Chain, SDValue Dst, SDValue Src,
6650                                         uint64_t Size, Align Alignment,
6651                                         bool isVol, bool AlwaysInline,
6652                                         MachinePointerInfo DstPtrInfo,
6653                                         MachinePointerInfo SrcPtrInfo,
6654                                         const AAMDNodes &AAInfo) {
6655   // Turn a memmove of undef to nop.
6656   // FIXME: We need to honor volatile even is Src is undef.
6657   if (Src.isUndef())
6658     return Chain;
6659 
6660   // Expand memmove to a series of load and store ops if the size operand falls
6661   // below a certain threshold.
6662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6663   const DataLayout &DL = DAG.getDataLayout();
6664   LLVMContext &C = *DAG.getContext();
6665   std::vector<EVT> MemOps;
6666   bool DstAlignCanChange = false;
6667   MachineFunction &MF = DAG.getMachineFunction();
6668   MachineFrameInfo &MFI = MF.getFrameInfo();
6669   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6670   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6671   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6672     DstAlignCanChange = true;
6673   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6674   if (!SrcAlign || Alignment > *SrcAlign)
6675     SrcAlign = Alignment;
6676   assert(SrcAlign && "SrcAlign must be set");
6677   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6678   if (!TLI.findOptimalMemOpLowering(
6679           MemOps, Limit,
6680           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6681                       /*IsVolatile*/ true),
6682           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6683           MF.getFunction().getAttributes()))
6684     return SDValue();
6685 
6686   if (DstAlignCanChange) {
6687     Type *Ty = MemOps[0].getTypeForEVT(C);
6688     Align NewAlign = DL.getABITypeAlign(Ty);
6689     if (NewAlign > Alignment) {
6690       // Give the stack frame object a larger alignment if needed.
6691       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6692         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6693       Alignment = NewAlign;
6694     }
6695   }
6696 
6697   // Prepare AAInfo for loads/stores after lowering this memmove.
6698   AAMDNodes NewAAInfo = AAInfo;
6699   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6700 
6701   MachineMemOperand::Flags MMOFlags =
6702       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6703   uint64_t SrcOff = 0, DstOff = 0;
6704   SmallVector<SDValue, 8> LoadValues;
6705   SmallVector<SDValue, 8> LoadChains;
6706   SmallVector<SDValue, 8> OutChains;
6707   unsigned NumMemOps = MemOps.size();
6708   for (unsigned i = 0; i < NumMemOps; i++) {
6709     EVT VT = MemOps[i];
6710     unsigned VTSize = VT.getSizeInBits() / 8;
6711     SDValue Value;
6712 
6713     bool isDereferenceable =
6714       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6715     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6716     if (isDereferenceable)
6717       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6718 
6719     Value = DAG.getLoad(
6720         VT, dl, Chain,
6721         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6722         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6723     LoadValues.push_back(Value);
6724     LoadChains.push_back(Value.getValue(1));
6725     SrcOff += VTSize;
6726   }
6727   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6728   OutChains.clear();
6729   for (unsigned i = 0; i < NumMemOps; i++) {
6730     EVT VT = MemOps[i];
6731     unsigned VTSize = VT.getSizeInBits() / 8;
6732     SDValue Store;
6733 
6734     Store = DAG.getStore(
6735         Chain, dl, LoadValues[i],
6736         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6737         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6738     OutChains.push_back(Store);
6739     DstOff += VTSize;
6740   }
6741 
6742   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6743 }
6744 
6745 /// Lower the call to 'memset' intrinsic function into a series of store
6746 /// operations.
6747 ///
6748 /// \param DAG Selection DAG where lowered code is placed.
6749 /// \param dl Link to corresponding IR location.
6750 /// \param Chain Control flow dependency.
6751 /// \param Dst Pointer to destination memory location.
6752 /// \param Src Value of byte to write into the memory.
6753 /// \param Size Number of bytes to write.
6754 /// \param Alignment Alignment of the destination in bytes.
6755 /// \param isVol True if destination is volatile.
6756 /// \param DstPtrInfo IR information on the memory pointer.
6757 /// \returns New head in the control flow, if lowering was successful, empty
6758 /// SDValue otherwise.
6759 ///
6760 /// The function tries to replace 'llvm.memset' intrinsic with several store
6761 /// operations and value calculation code. This is usually profitable for small
6762 /// memory size.
6763 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6764                                SDValue Chain, SDValue Dst, SDValue Src,
6765                                uint64_t Size, Align Alignment, bool isVol,
6766                                MachinePointerInfo DstPtrInfo,
6767                                const AAMDNodes &AAInfo) {
6768   // Turn a memset of undef to nop.
6769   // FIXME: We need to honor volatile even is Src is undef.
6770   if (Src.isUndef())
6771     return Chain;
6772 
6773   // Expand memset to a series of load/store ops if the size operand
6774   // falls below a certain threshold.
6775   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6776   std::vector<EVT> MemOps;
6777   bool DstAlignCanChange = false;
6778   MachineFunction &MF = DAG.getMachineFunction();
6779   MachineFrameInfo &MFI = MF.getFrameInfo();
6780   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6781   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6782   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6783     DstAlignCanChange = true;
6784   bool IsZeroVal =
6785       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6786   if (!TLI.findOptimalMemOpLowering(
6787           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6788           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6789           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6790     return SDValue();
6791 
6792   if (DstAlignCanChange) {
6793     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6794     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6795     if (NewAlign > Alignment) {
6796       // Give the stack frame object a larger alignment if needed.
6797       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6798         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6799       Alignment = NewAlign;
6800     }
6801   }
6802 
6803   SmallVector<SDValue, 8> OutChains;
6804   uint64_t DstOff = 0;
6805   unsigned NumMemOps = MemOps.size();
6806 
6807   // Find the largest store and generate the bit pattern for it.
6808   EVT LargestVT = MemOps[0];
6809   for (unsigned i = 1; i < NumMemOps; i++)
6810     if (MemOps[i].bitsGT(LargestVT))
6811       LargestVT = MemOps[i];
6812   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6813 
6814   // Prepare AAInfo for loads/stores after lowering this memset.
6815   AAMDNodes NewAAInfo = AAInfo;
6816   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6817 
6818   for (unsigned i = 0; i < NumMemOps; i++) {
6819     EVT VT = MemOps[i];
6820     unsigned VTSize = VT.getSizeInBits() / 8;
6821     if (VTSize > Size) {
6822       // Issuing an unaligned load / store pair  that overlaps with the previous
6823       // pair. Adjust the offset accordingly.
6824       assert(i == NumMemOps-1 && i != 0);
6825       DstOff -= VTSize - Size;
6826     }
6827 
6828     // If this store is smaller than the largest store see whether we can get
6829     // the smaller value for free with a truncate.
6830     SDValue Value = MemSetValue;
6831     if (VT.bitsLT(LargestVT)) {
6832       if (!LargestVT.isVector() && !VT.isVector() &&
6833           TLI.isTruncateFree(LargestVT, VT))
6834         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6835       else
6836         Value = getMemsetValue(Src, VT, DAG, dl);
6837     }
6838     assert(Value.getValueType() == VT && "Value with wrong type.");
6839     SDValue Store = DAG.getStore(
6840         Chain, dl, Value,
6841         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6842         DstPtrInfo.getWithOffset(DstOff), Alignment,
6843         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6844         NewAAInfo);
6845     OutChains.push_back(Store);
6846     DstOff += VT.getSizeInBits() / 8;
6847     Size -= VTSize;
6848   }
6849 
6850   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6851 }
6852 
6853 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6854                                             unsigned AS) {
6855   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6856   // pointer operands can be losslessly bitcasted to pointers of address space 0
6857   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6858     report_fatal_error("cannot lower memory intrinsic in address space " +
6859                        Twine(AS));
6860   }
6861 }
6862 
6863 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6864                                 SDValue Src, SDValue Size, Align Alignment,
6865                                 bool isVol, bool AlwaysInline, bool isTailCall,
6866                                 MachinePointerInfo DstPtrInfo,
6867                                 MachinePointerInfo SrcPtrInfo,
6868                                 const AAMDNodes &AAInfo) {
6869   // Check to see if we should lower the memcpy to loads and stores first.
6870   // For cases within the target-specified limits, this is the best choice.
6871   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6872   if (ConstantSize) {
6873     // Memcpy with size zero? Just return the original chain.
6874     if (ConstantSize->isZero())
6875       return Chain;
6876 
6877     SDValue Result = getMemcpyLoadsAndStores(
6878         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6879         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6880     if (Result.getNode())
6881       return Result;
6882   }
6883 
6884   // Then check to see if we should lower the memcpy with target-specific
6885   // code. If the target chooses to do this, this is the next best.
6886   if (TSI) {
6887     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6888         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6889         DstPtrInfo, SrcPtrInfo);
6890     if (Result.getNode())
6891       return Result;
6892   }
6893 
6894   // If we really need inline code and the target declined to provide it,
6895   // use a (potentially long) sequence of loads and stores.
6896   if (AlwaysInline) {
6897     assert(ConstantSize && "AlwaysInline requires a constant size!");
6898     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6899                                    ConstantSize->getZExtValue(), Alignment,
6900                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6901   }
6902 
6903   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6904   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6905 
6906   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6907   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6908   // respect volatile, so they may do things like read or write memory
6909   // beyond the given memory regions. But fixing this isn't easy, and most
6910   // people don't care.
6911 
6912   // Emit a library call.
6913   TargetLowering::ArgListTy Args;
6914   TargetLowering::ArgListEntry Entry;
6915   Entry.Ty = Type::getInt8PtrTy(*getContext());
6916   Entry.Node = Dst; Args.push_back(Entry);
6917   Entry.Node = Src; Args.push_back(Entry);
6918 
6919   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6920   Entry.Node = Size; Args.push_back(Entry);
6921   // FIXME: pass in SDLoc
6922   TargetLowering::CallLoweringInfo CLI(*this);
6923   CLI.setDebugLoc(dl)
6924       .setChain(Chain)
6925       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6926                     Dst.getValueType().getTypeForEVT(*getContext()),
6927                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6928                                       TLI->getPointerTy(getDataLayout())),
6929                     std::move(Args))
6930       .setDiscardResult()
6931       .setTailCall(isTailCall);
6932 
6933   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6934   return CallResult.second;
6935 }
6936 
6937 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6938                                       SDValue Dst, unsigned DstAlign,
6939                                       SDValue Src, unsigned SrcAlign,
6940                                       SDValue Size, Type *SizeTy,
6941                                       unsigned ElemSz, bool isTailCall,
6942                                       MachinePointerInfo DstPtrInfo,
6943                                       MachinePointerInfo SrcPtrInfo) {
6944   // Emit a library call.
6945   TargetLowering::ArgListTy Args;
6946   TargetLowering::ArgListEntry Entry;
6947   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6948   Entry.Node = Dst;
6949   Args.push_back(Entry);
6950 
6951   Entry.Node = Src;
6952   Args.push_back(Entry);
6953 
6954   Entry.Ty = SizeTy;
6955   Entry.Node = Size;
6956   Args.push_back(Entry);
6957 
6958   RTLIB::Libcall LibraryCall =
6959       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6960   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6961     report_fatal_error("Unsupported element size");
6962 
6963   TargetLowering::CallLoweringInfo CLI(*this);
6964   CLI.setDebugLoc(dl)
6965       .setChain(Chain)
6966       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6967                     Type::getVoidTy(*getContext()),
6968                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6969                                       TLI->getPointerTy(getDataLayout())),
6970                     std::move(Args))
6971       .setDiscardResult()
6972       .setTailCall(isTailCall);
6973 
6974   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6975   return CallResult.second;
6976 }
6977 
6978 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6979                                  SDValue Src, SDValue Size, Align Alignment,
6980                                  bool isVol, bool isTailCall,
6981                                  MachinePointerInfo DstPtrInfo,
6982                                  MachinePointerInfo SrcPtrInfo,
6983                                  const AAMDNodes &AAInfo) {
6984   // Check to see if we should lower the memmove to loads and stores first.
6985   // For cases within the target-specified limits, this is the best choice.
6986   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6987   if (ConstantSize) {
6988     // Memmove with size zero? Just return the original chain.
6989     if (ConstantSize->isZero())
6990       return Chain;
6991 
6992     SDValue Result = getMemmoveLoadsAndStores(
6993         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6994         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6995     if (Result.getNode())
6996       return Result;
6997   }
6998 
6999   // Then check to see if we should lower the memmove with target-specific
7000   // code. If the target chooses to do this, this is the next best.
7001   if (TSI) {
7002     SDValue Result =
7003         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7004                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7005     if (Result.getNode())
7006       return Result;
7007   }
7008 
7009   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7010   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7011 
7012   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7013   // not be safe.  See memcpy above for more details.
7014 
7015   // Emit a library call.
7016   TargetLowering::ArgListTy Args;
7017   TargetLowering::ArgListEntry Entry;
7018   Entry.Ty = Type::getInt8PtrTy(*getContext());
7019   Entry.Node = Dst; Args.push_back(Entry);
7020   Entry.Node = Src; Args.push_back(Entry);
7021 
7022   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7023   Entry.Node = Size; Args.push_back(Entry);
7024   // FIXME:  pass in SDLoc
7025   TargetLowering::CallLoweringInfo CLI(*this);
7026   CLI.setDebugLoc(dl)
7027       .setChain(Chain)
7028       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7029                     Dst.getValueType().getTypeForEVT(*getContext()),
7030                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7031                                       TLI->getPointerTy(getDataLayout())),
7032                     std::move(Args))
7033       .setDiscardResult()
7034       .setTailCall(isTailCall);
7035 
7036   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7037   return CallResult.second;
7038 }
7039 
7040 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7041                                        SDValue Dst, unsigned DstAlign,
7042                                        SDValue Src, unsigned SrcAlign,
7043                                        SDValue Size, Type *SizeTy,
7044                                        unsigned ElemSz, bool isTailCall,
7045                                        MachinePointerInfo DstPtrInfo,
7046                                        MachinePointerInfo SrcPtrInfo) {
7047   // Emit a library call.
7048   TargetLowering::ArgListTy Args;
7049   TargetLowering::ArgListEntry Entry;
7050   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7051   Entry.Node = Dst;
7052   Args.push_back(Entry);
7053 
7054   Entry.Node = Src;
7055   Args.push_back(Entry);
7056 
7057   Entry.Ty = SizeTy;
7058   Entry.Node = Size;
7059   Args.push_back(Entry);
7060 
7061   RTLIB::Libcall LibraryCall =
7062       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7063   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7064     report_fatal_error("Unsupported element size");
7065 
7066   TargetLowering::CallLoweringInfo CLI(*this);
7067   CLI.setDebugLoc(dl)
7068       .setChain(Chain)
7069       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7070                     Type::getVoidTy(*getContext()),
7071                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7072                                       TLI->getPointerTy(getDataLayout())),
7073                     std::move(Args))
7074       .setDiscardResult()
7075       .setTailCall(isTailCall);
7076 
7077   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7078   return CallResult.second;
7079 }
7080 
7081 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7082                                 SDValue Src, SDValue Size, Align Alignment,
7083                                 bool isVol, bool isTailCall,
7084                                 MachinePointerInfo DstPtrInfo,
7085                                 const AAMDNodes &AAInfo) {
7086   // Check to see if we should lower the memset to stores first.
7087   // For cases within the target-specified limits, this is the best choice.
7088   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7089   if (ConstantSize) {
7090     // Memset with size zero? Just return the original chain.
7091     if (ConstantSize->isZero())
7092       return Chain;
7093 
7094     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7095                                      ConstantSize->getZExtValue(), Alignment,
7096                                      isVol, DstPtrInfo, AAInfo);
7097 
7098     if (Result.getNode())
7099       return Result;
7100   }
7101 
7102   // Then check to see if we should lower the memset with target-specific
7103   // code. If the target chooses to do this, this is the next best.
7104   if (TSI) {
7105     SDValue Result = TSI->EmitTargetCodeForMemset(
7106         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7107     if (Result.getNode())
7108       return Result;
7109   }
7110 
7111   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7112 
7113   // Emit a library call.
7114   TargetLowering::ArgListTy Args;
7115   TargetLowering::ArgListEntry Entry;
7116   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7117   Args.push_back(Entry);
7118   Entry.Node = Src;
7119   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7120   Args.push_back(Entry);
7121   Entry.Node = Size;
7122   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7123   Args.push_back(Entry);
7124 
7125   // FIXME: pass in SDLoc
7126   TargetLowering::CallLoweringInfo CLI(*this);
7127   CLI.setDebugLoc(dl)
7128       .setChain(Chain)
7129       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7130                     Dst.getValueType().getTypeForEVT(*getContext()),
7131                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7132                                       TLI->getPointerTy(getDataLayout())),
7133                     std::move(Args))
7134       .setDiscardResult()
7135       .setTailCall(isTailCall);
7136 
7137   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7138   return CallResult.second;
7139 }
7140 
7141 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7142                                       SDValue Dst, unsigned DstAlign,
7143                                       SDValue Value, SDValue Size, Type *SizeTy,
7144                                       unsigned ElemSz, bool isTailCall,
7145                                       MachinePointerInfo DstPtrInfo) {
7146   // Emit a library call.
7147   TargetLowering::ArgListTy Args;
7148   TargetLowering::ArgListEntry Entry;
7149   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7150   Entry.Node = Dst;
7151   Args.push_back(Entry);
7152 
7153   Entry.Ty = Type::getInt8Ty(*getContext());
7154   Entry.Node = Value;
7155   Args.push_back(Entry);
7156 
7157   Entry.Ty = SizeTy;
7158   Entry.Node = Size;
7159   Args.push_back(Entry);
7160 
7161   RTLIB::Libcall LibraryCall =
7162       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7163   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7164     report_fatal_error("Unsupported element size");
7165 
7166   TargetLowering::CallLoweringInfo CLI(*this);
7167   CLI.setDebugLoc(dl)
7168       .setChain(Chain)
7169       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7170                     Type::getVoidTy(*getContext()),
7171                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7172                                       TLI->getPointerTy(getDataLayout())),
7173                     std::move(Args))
7174       .setDiscardResult()
7175       .setTailCall(isTailCall);
7176 
7177   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7178   return CallResult.second;
7179 }
7180 
7181 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7182                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7183                                 MachineMemOperand *MMO) {
7184   FoldingSetNodeID ID;
7185   ID.AddInteger(MemVT.getRawBits());
7186   AddNodeIDNode(ID, Opcode, VTList, Ops);
7187   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7188   void* IP = nullptr;
7189   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7190     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7191     return SDValue(E, 0);
7192   }
7193 
7194   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7195                                     VTList, MemVT, MMO);
7196   createOperands(N, Ops);
7197 
7198   CSEMap.InsertNode(N, IP);
7199   InsertNode(N);
7200   return SDValue(N, 0);
7201 }
7202 
7203 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7204                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7205                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7206                                        MachineMemOperand *MMO) {
7207   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7208          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7209   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7210 
7211   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7212   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7213 }
7214 
7215 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7216                                 SDValue Chain, SDValue Ptr, SDValue Val,
7217                                 MachineMemOperand *MMO) {
7218   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7219           Opcode == ISD::ATOMIC_LOAD_SUB ||
7220           Opcode == ISD::ATOMIC_LOAD_AND ||
7221           Opcode == ISD::ATOMIC_LOAD_CLR ||
7222           Opcode == ISD::ATOMIC_LOAD_OR ||
7223           Opcode == ISD::ATOMIC_LOAD_XOR ||
7224           Opcode == ISD::ATOMIC_LOAD_NAND ||
7225           Opcode == ISD::ATOMIC_LOAD_MIN ||
7226           Opcode == ISD::ATOMIC_LOAD_MAX ||
7227           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7228           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7229           Opcode == ISD::ATOMIC_LOAD_FADD ||
7230           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7231           Opcode == ISD::ATOMIC_SWAP ||
7232           Opcode == ISD::ATOMIC_STORE) &&
7233          "Invalid Atomic Op");
7234 
7235   EVT VT = Val.getValueType();
7236 
7237   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7238                                                getVTList(VT, MVT::Other);
7239   SDValue Ops[] = {Chain, Ptr, Val};
7240   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7241 }
7242 
7243 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7244                                 EVT VT, SDValue Chain, SDValue Ptr,
7245                                 MachineMemOperand *MMO) {
7246   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7247 
7248   SDVTList VTs = getVTList(VT, MVT::Other);
7249   SDValue Ops[] = {Chain, Ptr};
7250   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7251 }
7252 
7253 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7254 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7255   if (Ops.size() == 1)
7256     return Ops[0];
7257 
7258   SmallVector<EVT, 4> VTs;
7259   VTs.reserve(Ops.size());
7260   for (const SDValue &Op : Ops)
7261     VTs.push_back(Op.getValueType());
7262   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7263 }
7264 
7265 SDValue SelectionDAG::getMemIntrinsicNode(
7266     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7267     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7268     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7269   if (!Size && MemVT.isScalableVector())
7270     Size = MemoryLocation::UnknownSize;
7271   else if (!Size)
7272     Size = MemVT.getStoreSize();
7273 
7274   MachineFunction &MF = getMachineFunction();
7275   MachineMemOperand *MMO =
7276       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7277 
7278   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7279 }
7280 
7281 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7282                                           SDVTList VTList,
7283                                           ArrayRef<SDValue> Ops, EVT MemVT,
7284                                           MachineMemOperand *MMO) {
7285   assert((Opcode == ISD::INTRINSIC_VOID ||
7286           Opcode == ISD::INTRINSIC_W_CHAIN ||
7287           Opcode == ISD::PREFETCH ||
7288           ((int)Opcode <= std::numeric_limits<int>::max() &&
7289            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7290          "Opcode is not a memory-accessing opcode!");
7291 
7292   // Memoize the node unless it returns a flag.
7293   MemIntrinsicSDNode *N;
7294   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7295     FoldingSetNodeID ID;
7296     AddNodeIDNode(ID, Opcode, VTList, Ops);
7297     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7298         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7299     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7300     void *IP = nullptr;
7301     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7302       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7303       return SDValue(E, 0);
7304     }
7305 
7306     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7307                                       VTList, MemVT, MMO);
7308     createOperands(N, Ops);
7309 
7310   CSEMap.InsertNode(N, IP);
7311   } else {
7312     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7313                                       VTList, MemVT, MMO);
7314     createOperands(N, Ops);
7315   }
7316   InsertNode(N);
7317   SDValue V(N, 0);
7318   NewSDValueDbgMsg(V, "Creating new node: ", this);
7319   return V;
7320 }
7321 
7322 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7323                                       SDValue Chain, int FrameIndex,
7324                                       int64_t Size, int64_t Offset) {
7325   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7326   const auto VTs = getVTList(MVT::Other);
7327   SDValue Ops[2] = {
7328       Chain,
7329       getFrameIndex(FrameIndex,
7330                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7331                     true)};
7332 
7333   FoldingSetNodeID ID;
7334   AddNodeIDNode(ID, Opcode, VTs, Ops);
7335   ID.AddInteger(FrameIndex);
7336   ID.AddInteger(Size);
7337   ID.AddInteger(Offset);
7338   void *IP = nullptr;
7339   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7340     return SDValue(E, 0);
7341 
7342   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7343       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7344   createOperands(N, Ops);
7345   CSEMap.InsertNode(N, IP);
7346   InsertNode(N);
7347   SDValue V(N, 0);
7348   NewSDValueDbgMsg(V, "Creating new node: ", this);
7349   return V;
7350 }
7351 
7352 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7353                                          uint64_t Guid, uint64_t Index,
7354                                          uint32_t Attr) {
7355   const unsigned Opcode = ISD::PSEUDO_PROBE;
7356   const auto VTs = getVTList(MVT::Other);
7357   SDValue Ops[] = {Chain};
7358   FoldingSetNodeID ID;
7359   AddNodeIDNode(ID, Opcode, VTs, Ops);
7360   ID.AddInteger(Guid);
7361   ID.AddInteger(Index);
7362   void *IP = nullptr;
7363   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7364     return SDValue(E, 0);
7365 
7366   auto *N = newSDNode<PseudoProbeSDNode>(
7367       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7368   createOperands(N, Ops);
7369   CSEMap.InsertNode(N, IP);
7370   InsertNode(N);
7371   SDValue V(N, 0);
7372   NewSDValueDbgMsg(V, "Creating new node: ", this);
7373   return V;
7374 }
7375 
7376 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7377 /// MachinePointerInfo record from it.  This is particularly useful because the
7378 /// code generator has many cases where it doesn't bother passing in a
7379 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7380 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7381                                            SelectionDAG &DAG, SDValue Ptr,
7382                                            int64_t Offset = 0) {
7383   // If this is FI+Offset, we can model it.
7384   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7385     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7386                                              FI->getIndex(), Offset);
7387 
7388   // If this is (FI+Offset1)+Offset2, we can model it.
7389   if (Ptr.getOpcode() != ISD::ADD ||
7390       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7391       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7392     return Info;
7393 
7394   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7395   return MachinePointerInfo::getFixedStack(
7396       DAG.getMachineFunction(), FI,
7397       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7398 }
7399 
7400 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7401 /// MachinePointerInfo record from it.  This is particularly useful because the
7402 /// code generator has many cases where it doesn't bother passing in a
7403 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7404 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7405                                            SelectionDAG &DAG, SDValue Ptr,
7406                                            SDValue OffsetOp) {
7407   // If the 'Offset' value isn't a constant, we can't handle this.
7408   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7409     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7410   if (OffsetOp.isUndef())
7411     return InferPointerInfo(Info, DAG, Ptr);
7412   return Info;
7413 }
7414 
7415 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7416                               EVT VT, const SDLoc &dl, SDValue Chain,
7417                               SDValue Ptr, SDValue Offset,
7418                               MachinePointerInfo PtrInfo, EVT MemVT,
7419                               Align Alignment,
7420                               MachineMemOperand::Flags MMOFlags,
7421                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7422   assert(Chain.getValueType() == MVT::Other &&
7423         "Invalid chain type");
7424 
7425   MMOFlags |= MachineMemOperand::MOLoad;
7426   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7427   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7428   // clients.
7429   if (PtrInfo.V.isNull())
7430     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7431 
7432   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7433   MachineFunction &MF = getMachineFunction();
7434   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7435                                                    Alignment, AAInfo, Ranges);
7436   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7437 }
7438 
7439 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7440                               EVT VT, const SDLoc &dl, SDValue Chain,
7441                               SDValue Ptr, SDValue Offset, EVT MemVT,
7442                               MachineMemOperand *MMO) {
7443   if (VT == MemVT) {
7444     ExtType = ISD::NON_EXTLOAD;
7445   } else if (ExtType == ISD::NON_EXTLOAD) {
7446     assert(VT == MemVT && "Non-extending load from different memory type!");
7447   } else {
7448     // Extending load.
7449     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7450            "Should only be an extending load, not truncating!");
7451     assert(VT.isInteger() == MemVT.isInteger() &&
7452            "Cannot convert from FP to Int or Int -> FP!");
7453     assert(VT.isVector() == MemVT.isVector() &&
7454            "Cannot use an ext load to convert to or from a vector!");
7455     assert((!VT.isVector() ||
7456             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7457            "Cannot use an ext load to change the number of vector elements!");
7458   }
7459 
7460   bool Indexed = AM != ISD::UNINDEXED;
7461   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7462 
7463   SDVTList VTs = Indexed ?
7464     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7465   SDValue Ops[] = { Chain, Ptr, Offset };
7466   FoldingSetNodeID ID;
7467   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7468   ID.AddInteger(MemVT.getRawBits());
7469   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7470       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7471   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7472   void *IP = nullptr;
7473   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7474     cast<LoadSDNode>(E)->refineAlignment(MMO);
7475     return SDValue(E, 0);
7476   }
7477   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7478                                   ExtType, MemVT, MMO);
7479   createOperands(N, Ops);
7480 
7481   CSEMap.InsertNode(N, IP);
7482   InsertNode(N);
7483   SDValue V(N, 0);
7484   NewSDValueDbgMsg(V, "Creating new node: ", this);
7485   return V;
7486 }
7487 
7488 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7489                               SDValue Ptr, MachinePointerInfo PtrInfo,
7490                               MaybeAlign Alignment,
7491                               MachineMemOperand::Flags MMOFlags,
7492                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7493   SDValue Undef = getUNDEF(Ptr.getValueType());
7494   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7495                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7496 }
7497 
7498 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7499                               SDValue Ptr, MachineMemOperand *MMO) {
7500   SDValue Undef = getUNDEF(Ptr.getValueType());
7501   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7502                  VT, MMO);
7503 }
7504 
7505 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7506                                  EVT VT, SDValue Chain, SDValue Ptr,
7507                                  MachinePointerInfo PtrInfo, EVT MemVT,
7508                                  MaybeAlign Alignment,
7509                                  MachineMemOperand::Flags MMOFlags,
7510                                  const AAMDNodes &AAInfo) {
7511   SDValue Undef = getUNDEF(Ptr.getValueType());
7512   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7513                  MemVT, Alignment, MMOFlags, AAInfo);
7514 }
7515 
7516 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7517                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7518                                  MachineMemOperand *MMO) {
7519   SDValue Undef = getUNDEF(Ptr.getValueType());
7520   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7521                  MemVT, MMO);
7522 }
7523 
7524 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7525                                      SDValue Base, SDValue Offset,
7526                                      ISD::MemIndexedMode AM) {
7527   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7528   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7529   // Don't propagate the invariant or dereferenceable flags.
7530   auto MMOFlags =
7531       LD->getMemOperand()->getFlags() &
7532       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7533   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7534                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7535                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7536 }
7537 
7538 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7539                                SDValue Ptr, MachinePointerInfo PtrInfo,
7540                                Align Alignment,
7541                                MachineMemOperand::Flags MMOFlags,
7542                                const AAMDNodes &AAInfo) {
7543   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7544 
7545   MMOFlags |= MachineMemOperand::MOStore;
7546   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7547 
7548   if (PtrInfo.V.isNull())
7549     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7550 
7551   MachineFunction &MF = getMachineFunction();
7552   uint64_t Size =
7553       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7554   MachineMemOperand *MMO =
7555       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7556   return getStore(Chain, dl, Val, Ptr, MMO);
7557 }
7558 
7559 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7560                                SDValue Ptr, MachineMemOperand *MMO) {
7561   assert(Chain.getValueType() == MVT::Other &&
7562         "Invalid chain type");
7563   EVT VT = Val.getValueType();
7564   SDVTList VTs = getVTList(MVT::Other);
7565   SDValue Undef = getUNDEF(Ptr.getValueType());
7566   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7567   FoldingSetNodeID ID;
7568   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7569   ID.AddInteger(VT.getRawBits());
7570   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7571       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7572   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7573   void *IP = nullptr;
7574   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7575     cast<StoreSDNode>(E)->refineAlignment(MMO);
7576     return SDValue(E, 0);
7577   }
7578   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7579                                    ISD::UNINDEXED, false, VT, MMO);
7580   createOperands(N, Ops);
7581 
7582   CSEMap.InsertNode(N, IP);
7583   InsertNode(N);
7584   SDValue V(N, 0);
7585   NewSDValueDbgMsg(V, "Creating new node: ", this);
7586   return V;
7587 }
7588 
7589 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7590                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7591                                     EVT SVT, Align Alignment,
7592                                     MachineMemOperand::Flags MMOFlags,
7593                                     const AAMDNodes &AAInfo) {
7594   assert(Chain.getValueType() == MVT::Other &&
7595         "Invalid chain type");
7596 
7597   MMOFlags |= MachineMemOperand::MOStore;
7598   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7599 
7600   if (PtrInfo.V.isNull())
7601     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7602 
7603   MachineFunction &MF = getMachineFunction();
7604   MachineMemOperand *MMO = MF.getMachineMemOperand(
7605       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7606       Alignment, AAInfo);
7607   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7608 }
7609 
7610 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7611                                     SDValue Ptr, EVT SVT,
7612                                     MachineMemOperand *MMO) {
7613   EVT VT = Val.getValueType();
7614 
7615   assert(Chain.getValueType() == MVT::Other &&
7616         "Invalid chain type");
7617   if (VT == SVT)
7618     return getStore(Chain, dl, Val, Ptr, MMO);
7619 
7620   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7621          "Should only be a truncating store, not extending!");
7622   assert(VT.isInteger() == SVT.isInteger() &&
7623          "Can't do FP-INT conversion!");
7624   assert(VT.isVector() == SVT.isVector() &&
7625          "Cannot use trunc store to convert to or from a vector!");
7626   assert((!VT.isVector() ||
7627           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7628          "Cannot use trunc store to change the number of vector elements!");
7629 
7630   SDVTList VTs = getVTList(MVT::Other);
7631   SDValue Undef = getUNDEF(Ptr.getValueType());
7632   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7633   FoldingSetNodeID ID;
7634   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7635   ID.AddInteger(SVT.getRawBits());
7636   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7637       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7638   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7639   void *IP = nullptr;
7640   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7641     cast<StoreSDNode>(E)->refineAlignment(MMO);
7642     return SDValue(E, 0);
7643   }
7644   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7645                                    ISD::UNINDEXED, true, SVT, MMO);
7646   createOperands(N, Ops);
7647 
7648   CSEMap.InsertNode(N, IP);
7649   InsertNode(N);
7650   SDValue V(N, 0);
7651   NewSDValueDbgMsg(V, "Creating new node: ", this);
7652   return V;
7653 }
7654 
7655 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7656                                       SDValue Base, SDValue Offset,
7657                                       ISD::MemIndexedMode AM) {
7658   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7659   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7660   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7661   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7662   FoldingSetNodeID ID;
7663   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7664   ID.AddInteger(ST->getMemoryVT().getRawBits());
7665   ID.AddInteger(ST->getRawSubclassData());
7666   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7667   void *IP = nullptr;
7668   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7669     return SDValue(E, 0);
7670 
7671   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7672                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7673                                    ST->getMemOperand());
7674   createOperands(N, Ops);
7675 
7676   CSEMap.InsertNode(N, IP);
7677   InsertNode(N);
7678   SDValue V(N, 0);
7679   NewSDValueDbgMsg(V, "Creating new node: ", this);
7680   return V;
7681 }
7682 
7683 SDValue SelectionDAG::getLoadVP(
7684     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7685     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7686     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7687     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7688     const MDNode *Ranges, bool IsExpanding) {
7689   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7690 
7691   MMOFlags |= MachineMemOperand::MOLoad;
7692   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7693   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7694   // clients.
7695   if (PtrInfo.V.isNull())
7696     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7697 
7698   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7699   MachineFunction &MF = getMachineFunction();
7700   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7701                                                    Alignment, AAInfo, Ranges);
7702   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7703                    MMO, IsExpanding);
7704 }
7705 
7706 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7707                                 ISD::LoadExtType ExtType, EVT VT,
7708                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7709                                 SDValue Offset, SDValue Mask, SDValue EVL,
7710                                 EVT MemVT, MachineMemOperand *MMO,
7711                                 bool IsExpanding) {
7712   bool Indexed = AM != ISD::UNINDEXED;
7713   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7714 
7715   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7716                          : getVTList(VT, MVT::Other);
7717   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7718   FoldingSetNodeID ID;
7719   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7720   ID.AddInteger(VT.getRawBits());
7721   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7722       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7723   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7724   void *IP = nullptr;
7725   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7726     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7727     return SDValue(E, 0);
7728   }
7729   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7730                                     ExtType, IsExpanding, MemVT, MMO);
7731   createOperands(N, Ops);
7732 
7733   CSEMap.InsertNode(N, IP);
7734   InsertNode(N);
7735   SDValue V(N, 0);
7736   NewSDValueDbgMsg(V, "Creating new node: ", this);
7737   return V;
7738 }
7739 
7740 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7741                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7742                                 MachinePointerInfo PtrInfo,
7743                                 MaybeAlign Alignment,
7744                                 MachineMemOperand::Flags MMOFlags,
7745                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7746                                 bool IsExpanding) {
7747   SDValue Undef = getUNDEF(Ptr.getValueType());
7748   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7749                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7750                    IsExpanding);
7751 }
7752 
7753 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7754                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7755                                 MachineMemOperand *MMO, bool IsExpanding) {
7756   SDValue Undef = getUNDEF(Ptr.getValueType());
7757   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7758                    Mask, EVL, VT, MMO, IsExpanding);
7759 }
7760 
7761 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7762                                    EVT VT, SDValue Chain, SDValue Ptr,
7763                                    SDValue Mask, SDValue EVL,
7764                                    MachinePointerInfo PtrInfo, EVT MemVT,
7765                                    MaybeAlign Alignment,
7766                                    MachineMemOperand::Flags MMOFlags,
7767                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7768   SDValue Undef = getUNDEF(Ptr.getValueType());
7769   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7770                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7771                    IsExpanding);
7772 }
7773 
7774 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7775                                    EVT VT, SDValue Chain, SDValue Ptr,
7776                                    SDValue Mask, SDValue EVL, EVT MemVT,
7777                                    MachineMemOperand *MMO, bool IsExpanding) {
7778   SDValue Undef = getUNDEF(Ptr.getValueType());
7779   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7780                    EVL, MemVT, MMO, IsExpanding);
7781 }
7782 
7783 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7784                                        SDValue Base, SDValue Offset,
7785                                        ISD::MemIndexedMode AM) {
7786   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7787   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7788   // Don't propagate the invariant or dereferenceable flags.
7789   auto MMOFlags =
7790       LD->getMemOperand()->getFlags() &
7791       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7792   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7793                    LD->getChain(), Base, Offset, LD->getMask(),
7794                    LD->getVectorLength(), LD->getPointerInfo(),
7795                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7796                    nullptr, LD->isExpandingLoad());
7797 }
7798 
7799 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7800                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7801                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7802                                  ISD::MemIndexedMode AM, bool IsTruncating,
7803                                  bool IsCompressing) {
7804   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7805   bool Indexed = AM != ISD::UNINDEXED;
7806   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7807   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7808                          : getVTList(MVT::Other);
7809   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
7810   FoldingSetNodeID ID;
7811   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7812   ID.AddInteger(MemVT.getRawBits());
7813   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7814       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7815   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7816   void *IP = nullptr;
7817   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7818     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7819     return SDValue(E, 0);
7820   }
7821   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7822                                      IsTruncating, IsCompressing, MemVT, MMO);
7823   createOperands(N, Ops);
7824 
7825   CSEMap.InsertNode(N, IP);
7826   InsertNode(N);
7827   SDValue V(N, 0);
7828   NewSDValueDbgMsg(V, "Creating new node: ", this);
7829   return V;
7830 }
7831 
7832 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7833                                       SDValue Val, SDValue Ptr, SDValue Mask,
7834                                       SDValue EVL, MachinePointerInfo PtrInfo,
7835                                       EVT SVT, Align Alignment,
7836                                       MachineMemOperand::Flags MMOFlags,
7837                                       const AAMDNodes &AAInfo,
7838                                       bool IsCompressing) {
7839   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7840 
7841   MMOFlags |= MachineMemOperand::MOStore;
7842   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7843 
7844   if (PtrInfo.V.isNull())
7845     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7846 
7847   MachineFunction &MF = getMachineFunction();
7848   MachineMemOperand *MMO = MF.getMachineMemOperand(
7849       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7850       Alignment, AAInfo);
7851   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7852                          IsCompressing);
7853 }
7854 
7855 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7856                                       SDValue Val, SDValue Ptr, SDValue Mask,
7857                                       SDValue EVL, EVT SVT,
7858                                       MachineMemOperand *MMO,
7859                                       bool IsCompressing) {
7860   EVT VT = Val.getValueType();
7861 
7862   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7863   if (VT == SVT)
7864     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
7865                       EVL, VT, MMO, ISD::UNINDEXED,
7866                       /*IsTruncating*/ false, IsCompressing);
7867 
7868   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7869          "Should only be a truncating store, not extending!");
7870   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7871   assert(VT.isVector() == SVT.isVector() &&
7872          "Cannot use trunc store to convert to or from a vector!");
7873   assert((!VT.isVector() ||
7874           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7875          "Cannot use trunc store to change the number of vector elements!");
7876 
7877   SDVTList VTs = getVTList(MVT::Other);
7878   SDValue Undef = getUNDEF(Ptr.getValueType());
7879   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7880   FoldingSetNodeID ID;
7881   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7882   ID.AddInteger(SVT.getRawBits());
7883   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7884       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7885   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7886   void *IP = nullptr;
7887   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7888     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7889     return SDValue(E, 0);
7890   }
7891   auto *N =
7892       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7893                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7894   createOperands(N, Ops);
7895 
7896   CSEMap.InsertNode(N, IP);
7897   InsertNode(N);
7898   SDValue V(N, 0);
7899   NewSDValueDbgMsg(V, "Creating new node: ", this);
7900   return V;
7901 }
7902 
7903 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7904                                         SDValue Base, SDValue Offset,
7905                                         ISD::MemIndexedMode AM) {
7906   auto *ST = cast<VPStoreSDNode>(OrigStore);
7907   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7908   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7909   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7910                    Offset,         ST->getMask(),  ST->getVectorLength()};
7911   FoldingSetNodeID ID;
7912   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7913   ID.AddInteger(ST->getMemoryVT().getRawBits());
7914   ID.AddInteger(ST->getRawSubclassData());
7915   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7916   void *IP = nullptr;
7917   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7918     return SDValue(E, 0);
7919 
7920   auto *N = newSDNode<VPStoreSDNode>(
7921       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7922       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7923   createOperands(N, Ops);
7924 
7925   CSEMap.InsertNode(N, IP);
7926   InsertNode(N);
7927   SDValue V(N, 0);
7928   NewSDValueDbgMsg(V, "Creating new node: ", this);
7929   return V;
7930 }
7931 
7932 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7933                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7934                                   ISD::MemIndexType IndexType) {
7935   assert(Ops.size() == 6 && "Incompatible number of operands");
7936 
7937   FoldingSetNodeID ID;
7938   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7939   ID.AddInteger(VT.getRawBits());
7940   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7941       dl.getIROrder(), VTs, VT, MMO, IndexType));
7942   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7943   void *IP = nullptr;
7944   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7945     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7946     return SDValue(E, 0);
7947   }
7948 
7949   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7950                                       VT, MMO, IndexType);
7951   createOperands(N, Ops);
7952 
7953   assert(N->getMask().getValueType().getVectorElementCount() ==
7954              N->getValueType(0).getVectorElementCount() &&
7955          "Vector width mismatch between mask and data");
7956   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7957              N->getValueType(0).getVectorElementCount().isScalable() &&
7958          "Scalable flags of index and data do not match");
7959   assert(ElementCount::isKnownGE(
7960              N->getIndex().getValueType().getVectorElementCount(),
7961              N->getValueType(0).getVectorElementCount()) &&
7962          "Vector width mismatch between index and data");
7963   assert(isa<ConstantSDNode>(N->getScale()) &&
7964          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7965          "Scale should be a constant power of 2");
7966 
7967   CSEMap.InsertNode(N, IP);
7968   InsertNode(N);
7969   SDValue V(N, 0);
7970   NewSDValueDbgMsg(V, "Creating new node: ", this);
7971   return V;
7972 }
7973 
7974 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7975                                    ArrayRef<SDValue> Ops,
7976                                    MachineMemOperand *MMO,
7977                                    ISD::MemIndexType IndexType) {
7978   assert(Ops.size() == 7 && "Incompatible number of operands");
7979 
7980   FoldingSetNodeID ID;
7981   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
7982   ID.AddInteger(VT.getRawBits());
7983   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
7984       dl.getIROrder(), VTs, VT, MMO, IndexType));
7985   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7986   void *IP = nullptr;
7987   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7988     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
7989     return SDValue(E, 0);
7990   }
7991   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7992                                        VT, MMO, IndexType);
7993   createOperands(N, Ops);
7994 
7995   assert(N->getMask().getValueType().getVectorElementCount() ==
7996              N->getValue().getValueType().getVectorElementCount() &&
7997          "Vector width mismatch between mask and data");
7998   assert(
7999       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8000           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8001       "Scalable flags of index and data do not match");
8002   assert(ElementCount::isKnownGE(
8003              N->getIndex().getValueType().getVectorElementCount(),
8004              N->getValue().getValueType().getVectorElementCount()) &&
8005          "Vector width mismatch between index and data");
8006   assert(isa<ConstantSDNode>(N->getScale()) &&
8007          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8008          "Scale should be a constant power of 2");
8009 
8010   CSEMap.InsertNode(N, IP);
8011   InsertNode(N);
8012   SDValue V(N, 0);
8013   NewSDValueDbgMsg(V, "Creating new node: ", this);
8014   return V;
8015 }
8016 
8017 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8018                                     SDValue Base, SDValue Offset, SDValue Mask,
8019                                     SDValue PassThru, EVT MemVT,
8020                                     MachineMemOperand *MMO,
8021                                     ISD::MemIndexedMode AM,
8022                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8023   bool Indexed = AM != ISD::UNINDEXED;
8024   assert((Indexed || Offset.isUndef()) &&
8025          "Unindexed masked load with an offset!");
8026   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8027                          : getVTList(VT, MVT::Other);
8028   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8029   FoldingSetNodeID ID;
8030   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8031   ID.AddInteger(MemVT.getRawBits());
8032   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8033       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8034   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8035   void *IP = nullptr;
8036   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8037     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8038     return SDValue(E, 0);
8039   }
8040   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8041                                         AM, ExtTy, isExpanding, MemVT, MMO);
8042   createOperands(N, Ops);
8043 
8044   CSEMap.InsertNode(N, IP);
8045   InsertNode(N);
8046   SDValue V(N, 0);
8047   NewSDValueDbgMsg(V, "Creating new node: ", this);
8048   return V;
8049 }
8050 
8051 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8052                                            SDValue Base, SDValue Offset,
8053                                            ISD::MemIndexedMode AM) {
8054   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8055   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8056   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8057                        Offset, LD->getMask(), LD->getPassThru(),
8058                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8059                        LD->getExtensionType(), LD->isExpandingLoad());
8060 }
8061 
8062 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8063                                      SDValue Val, SDValue Base, SDValue Offset,
8064                                      SDValue Mask, EVT MemVT,
8065                                      MachineMemOperand *MMO,
8066                                      ISD::MemIndexedMode AM, bool IsTruncating,
8067                                      bool IsCompressing) {
8068   assert(Chain.getValueType() == MVT::Other &&
8069         "Invalid chain type");
8070   bool Indexed = AM != ISD::UNINDEXED;
8071   assert((Indexed || Offset.isUndef()) &&
8072          "Unindexed masked store with an offset!");
8073   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8074                          : getVTList(MVT::Other);
8075   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8076   FoldingSetNodeID ID;
8077   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8078   ID.AddInteger(MemVT.getRawBits());
8079   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8080       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8081   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8082   void *IP = nullptr;
8083   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8084     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8085     return SDValue(E, 0);
8086   }
8087   auto *N =
8088       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8089                                    IsTruncating, IsCompressing, MemVT, MMO);
8090   createOperands(N, Ops);
8091 
8092   CSEMap.InsertNode(N, IP);
8093   InsertNode(N);
8094   SDValue V(N, 0);
8095   NewSDValueDbgMsg(V, "Creating new node: ", this);
8096   return V;
8097 }
8098 
8099 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8100                                             SDValue Base, SDValue Offset,
8101                                             ISD::MemIndexedMode AM) {
8102   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8103   assert(ST->getOffset().isUndef() &&
8104          "Masked store is already a indexed store!");
8105   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8106                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8107                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8108 }
8109 
8110 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8111                                       ArrayRef<SDValue> Ops,
8112                                       MachineMemOperand *MMO,
8113                                       ISD::MemIndexType IndexType,
8114                                       ISD::LoadExtType ExtTy) {
8115   assert(Ops.size() == 6 && "Incompatible number of operands");
8116 
8117   FoldingSetNodeID ID;
8118   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8119   ID.AddInteger(MemVT.getRawBits());
8120   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8121       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8122   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8123   void *IP = nullptr;
8124   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8125     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8126     return SDValue(E, 0);
8127   }
8128 
8129   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8130   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8131                                           VTs, MemVT, MMO, IndexType, ExtTy);
8132   createOperands(N, Ops);
8133 
8134   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8135          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8136   assert(N->getMask().getValueType().getVectorElementCount() ==
8137              N->getValueType(0).getVectorElementCount() &&
8138          "Vector width mismatch between mask and data");
8139   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8140              N->getValueType(0).getVectorElementCount().isScalable() &&
8141          "Scalable flags of index and data do not match");
8142   assert(ElementCount::isKnownGE(
8143              N->getIndex().getValueType().getVectorElementCount(),
8144              N->getValueType(0).getVectorElementCount()) &&
8145          "Vector width mismatch between index and data");
8146   assert(isa<ConstantSDNode>(N->getScale()) &&
8147          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8148          "Scale should be a constant power of 2");
8149 
8150   CSEMap.InsertNode(N, IP);
8151   InsertNode(N);
8152   SDValue V(N, 0);
8153   NewSDValueDbgMsg(V, "Creating new node: ", this);
8154   return V;
8155 }
8156 
8157 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8158                                        ArrayRef<SDValue> Ops,
8159                                        MachineMemOperand *MMO,
8160                                        ISD::MemIndexType IndexType,
8161                                        bool IsTrunc) {
8162   assert(Ops.size() == 6 && "Incompatible number of operands");
8163 
8164   FoldingSetNodeID ID;
8165   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8166   ID.AddInteger(MemVT.getRawBits());
8167   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8168       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8169   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8170   void *IP = nullptr;
8171   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8172     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8173     return SDValue(E, 0);
8174   }
8175 
8176   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8177   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8178                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8179   createOperands(N, Ops);
8180 
8181   assert(N->getMask().getValueType().getVectorElementCount() ==
8182              N->getValue().getValueType().getVectorElementCount() &&
8183          "Vector width mismatch between mask and data");
8184   assert(
8185       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8186           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8187       "Scalable flags of index and data do not match");
8188   assert(ElementCount::isKnownGE(
8189              N->getIndex().getValueType().getVectorElementCount(),
8190              N->getValue().getValueType().getVectorElementCount()) &&
8191          "Vector width mismatch between index and data");
8192   assert(isa<ConstantSDNode>(N->getScale()) &&
8193          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8194          "Scale should be a constant power of 2");
8195 
8196   CSEMap.InsertNode(N, IP);
8197   InsertNode(N);
8198   SDValue V(N, 0);
8199   NewSDValueDbgMsg(V, "Creating new node: ", this);
8200   return V;
8201 }
8202 
8203 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8204   // select undef, T, F --> T (if T is a constant), otherwise F
8205   // select, ?, undef, F --> F
8206   // select, ?, T, undef --> T
8207   if (Cond.isUndef())
8208     return isConstantValueOfAnyType(T) ? T : F;
8209   if (T.isUndef())
8210     return F;
8211   if (F.isUndef())
8212     return T;
8213 
8214   // select true, T, F --> T
8215   // select false, T, F --> F
8216   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8217     return CondC->isZero() ? F : T;
8218 
8219   // TODO: This should simplify VSELECT with constant condition using something
8220   // like this (but check boolean contents to be complete?):
8221   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8222   //    return T;
8223   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8224   //    return F;
8225 
8226   // select ?, T, T --> T
8227   if (T == F)
8228     return T;
8229 
8230   return SDValue();
8231 }
8232 
8233 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8234   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8235   if (X.isUndef())
8236     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8237   // shift X, undef --> undef (because it may shift by the bitwidth)
8238   if (Y.isUndef())
8239     return getUNDEF(X.getValueType());
8240 
8241   // shift 0, Y --> 0
8242   // shift X, 0 --> X
8243   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8244     return X;
8245 
8246   // shift X, C >= bitwidth(X) --> undef
8247   // All vector elements must be too big (or undef) to avoid partial undefs.
8248   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8249     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8250   };
8251   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8252     return getUNDEF(X.getValueType());
8253 
8254   return SDValue();
8255 }
8256 
8257 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8258                                       SDNodeFlags Flags) {
8259   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8260   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8261   // operation is poison. That result can be relaxed to undef.
8262   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8263   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8264   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8265                 (YC && YC->getValueAPF().isNaN());
8266   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8267                 (YC && YC->getValueAPF().isInfinity());
8268 
8269   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8270     return getUNDEF(X.getValueType());
8271 
8272   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8273     return getUNDEF(X.getValueType());
8274 
8275   if (!YC)
8276     return SDValue();
8277 
8278   // X + -0.0 --> X
8279   if (Opcode == ISD::FADD)
8280     if (YC->getValueAPF().isNegZero())
8281       return X;
8282 
8283   // X - +0.0 --> X
8284   if (Opcode == ISD::FSUB)
8285     if (YC->getValueAPF().isPosZero())
8286       return X;
8287 
8288   // X * 1.0 --> X
8289   // X / 1.0 --> X
8290   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8291     if (YC->getValueAPF().isExactlyValue(1.0))
8292       return X;
8293 
8294   // X * 0.0 --> 0.0
8295   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8296     if (YC->getValueAPF().isZero())
8297       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8298 
8299   return SDValue();
8300 }
8301 
8302 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8303                                SDValue Ptr, SDValue SV, unsigned Align) {
8304   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8305   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8306 }
8307 
8308 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8309                               ArrayRef<SDUse> Ops) {
8310   switch (Ops.size()) {
8311   case 0: return getNode(Opcode, DL, VT);
8312   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8313   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8314   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8315   default: break;
8316   }
8317 
8318   // Copy from an SDUse array into an SDValue array for use with
8319   // the regular getNode logic.
8320   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8321   return getNode(Opcode, DL, VT, NewOps);
8322 }
8323 
8324 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8325                               ArrayRef<SDValue> Ops) {
8326   SDNodeFlags Flags;
8327   if (Inserter)
8328     Flags = Inserter->getFlags();
8329   return getNode(Opcode, DL, VT, Ops, Flags);
8330 }
8331 
8332 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8333                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8334   unsigned NumOps = Ops.size();
8335   switch (NumOps) {
8336   case 0: return getNode(Opcode, DL, VT);
8337   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8338   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8339   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8340   default: break;
8341   }
8342 
8343 #ifndef NDEBUG
8344   for (auto &Op : Ops)
8345     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8346            "Operand is DELETED_NODE!");
8347 #endif
8348 
8349   switch (Opcode) {
8350   default: break;
8351   case ISD::BUILD_VECTOR:
8352     // Attempt to simplify BUILD_VECTOR.
8353     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8354       return V;
8355     break;
8356   case ISD::CONCAT_VECTORS:
8357     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8358       return V;
8359     break;
8360   case ISD::SELECT_CC:
8361     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8362     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8363            "LHS and RHS of condition must have same type!");
8364     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8365            "True and False arms of SelectCC must have same type!");
8366     assert(Ops[2].getValueType() == VT &&
8367            "select_cc node must be of same type as true and false value!");
8368     break;
8369   case ISD::BR_CC:
8370     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8371     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8372            "LHS/RHS of comparison should match types!");
8373     break;
8374   }
8375 
8376   // Memoize nodes.
8377   SDNode *N;
8378   SDVTList VTs = getVTList(VT);
8379 
8380   if (VT != MVT::Glue) {
8381     FoldingSetNodeID ID;
8382     AddNodeIDNode(ID, Opcode, VTs, Ops);
8383     void *IP = nullptr;
8384 
8385     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8386       return SDValue(E, 0);
8387 
8388     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8389     createOperands(N, Ops);
8390 
8391     CSEMap.InsertNode(N, IP);
8392   } else {
8393     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8394     createOperands(N, Ops);
8395   }
8396 
8397   N->setFlags(Flags);
8398   InsertNode(N);
8399   SDValue V(N, 0);
8400   NewSDValueDbgMsg(V, "Creating new node: ", this);
8401   return V;
8402 }
8403 
8404 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8405                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8406   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8407 }
8408 
8409 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8410                               ArrayRef<SDValue> Ops) {
8411   SDNodeFlags Flags;
8412   if (Inserter)
8413     Flags = Inserter->getFlags();
8414   return getNode(Opcode, DL, VTList, Ops, Flags);
8415 }
8416 
8417 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8418                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8419   if (VTList.NumVTs == 1)
8420     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8421 
8422 #ifndef NDEBUG
8423   for (auto &Op : Ops)
8424     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8425            "Operand is DELETED_NODE!");
8426 #endif
8427 
8428   switch (Opcode) {
8429   case ISD::STRICT_FP_EXTEND:
8430     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8431            "Invalid STRICT_FP_EXTEND!");
8432     assert(VTList.VTs[0].isFloatingPoint() &&
8433            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8434     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8435            "STRICT_FP_EXTEND result type should be vector iff the operand "
8436            "type is vector!");
8437     assert((!VTList.VTs[0].isVector() ||
8438             VTList.VTs[0].getVectorNumElements() ==
8439             Ops[1].getValueType().getVectorNumElements()) &&
8440            "Vector element count mismatch!");
8441     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8442            "Invalid fpext node, dst <= src!");
8443     break;
8444   case ISD::STRICT_FP_ROUND:
8445     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8446     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8447            "STRICT_FP_ROUND result type should be vector iff the operand "
8448            "type is vector!");
8449     assert((!VTList.VTs[0].isVector() ||
8450             VTList.VTs[0].getVectorNumElements() ==
8451             Ops[1].getValueType().getVectorNumElements()) &&
8452            "Vector element count mismatch!");
8453     assert(VTList.VTs[0].isFloatingPoint() &&
8454            Ops[1].getValueType().isFloatingPoint() &&
8455            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8456            isa<ConstantSDNode>(Ops[2]) &&
8457            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8458             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8459            "Invalid STRICT_FP_ROUND!");
8460     break;
8461 #if 0
8462   // FIXME: figure out how to safely handle things like
8463   // int foo(int x) { return 1 << (x & 255); }
8464   // int bar() { return foo(256); }
8465   case ISD::SRA_PARTS:
8466   case ISD::SRL_PARTS:
8467   case ISD::SHL_PARTS:
8468     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8469         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8470       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8471     else if (N3.getOpcode() == ISD::AND)
8472       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8473         // If the and is only masking out bits that cannot effect the shift,
8474         // eliminate the and.
8475         unsigned NumBits = VT.getScalarSizeInBits()*2;
8476         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8477           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8478       }
8479     break;
8480 #endif
8481   }
8482 
8483   // Memoize the node unless it returns a flag.
8484   SDNode *N;
8485   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8486     FoldingSetNodeID ID;
8487     AddNodeIDNode(ID, Opcode, VTList, Ops);
8488     void *IP = nullptr;
8489     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8490       return SDValue(E, 0);
8491 
8492     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8493     createOperands(N, Ops);
8494     CSEMap.InsertNode(N, IP);
8495   } else {
8496     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8497     createOperands(N, Ops);
8498   }
8499 
8500   N->setFlags(Flags);
8501   InsertNode(N);
8502   SDValue V(N, 0);
8503   NewSDValueDbgMsg(V, "Creating new node: ", this);
8504   return V;
8505 }
8506 
8507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8508                               SDVTList VTList) {
8509   return getNode(Opcode, DL, VTList, None);
8510 }
8511 
8512 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8513                               SDValue N1) {
8514   SDValue Ops[] = { N1 };
8515   return getNode(Opcode, DL, VTList, Ops);
8516 }
8517 
8518 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8519                               SDValue N1, SDValue N2) {
8520   SDValue Ops[] = { N1, N2 };
8521   return getNode(Opcode, DL, VTList, Ops);
8522 }
8523 
8524 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8525                               SDValue N1, SDValue N2, SDValue N3) {
8526   SDValue Ops[] = { N1, N2, N3 };
8527   return getNode(Opcode, DL, VTList, Ops);
8528 }
8529 
8530 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8531                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8532   SDValue Ops[] = { N1, N2, N3, N4 };
8533   return getNode(Opcode, DL, VTList, Ops);
8534 }
8535 
8536 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8537                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8538                               SDValue N5) {
8539   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8540   return getNode(Opcode, DL, VTList, Ops);
8541 }
8542 
8543 SDVTList SelectionDAG::getVTList(EVT VT) {
8544   return makeVTList(SDNode::getValueTypeList(VT), 1);
8545 }
8546 
8547 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8548   FoldingSetNodeID ID;
8549   ID.AddInteger(2U);
8550   ID.AddInteger(VT1.getRawBits());
8551   ID.AddInteger(VT2.getRawBits());
8552 
8553   void *IP = nullptr;
8554   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8555   if (!Result) {
8556     EVT *Array = Allocator.Allocate<EVT>(2);
8557     Array[0] = VT1;
8558     Array[1] = VT2;
8559     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8560     VTListMap.InsertNode(Result, IP);
8561   }
8562   return Result->getSDVTList();
8563 }
8564 
8565 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8566   FoldingSetNodeID ID;
8567   ID.AddInteger(3U);
8568   ID.AddInteger(VT1.getRawBits());
8569   ID.AddInteger(VT2.getRawBits());
8570   ID.AddInteger(VT3.getRawBits());
8571 
8572   void *IP = nullptr;
8573   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8574   if (!Result) {
8575     EVT *Array = Allocator.Allocate<EVT>(3);
8576     Array[0] = VT1;
8577     Array[1] = VT2;
8578     Array[2] = VT3;
8579     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8580     VTListMap.InsertNode(Result, IP);
8581   }
8582   return Result->getSDVTList();
8583 }
8584 
8585 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8586   FoldingSetNodeID ID;
8587   ID.AddInteger(4U);
8588   ID.AddInteger(VT1.getRawBits());
8589   ID.AddInteger(VT2.getRawBits());
8590   ID.AddInteger(VT3.getRawBits());
8591   ID.AddInteger(VT4.getRawBits());
8592 
8593   void *IP = nullptr;
8594   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8595   if (!Result) {
8596     EVT *Array = Allocator.Allocate<EVT>(4);
8597     Array[0] = VT1;
8598     Array[1] = VT2;
8599     Array[2] = VT3;
8600     Array[3] = VT4;
8601     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8602     VTListMap.InsertNode(Result, IP);
8603   }
8604   return Result->getSDVTList();
8605 }
8606 
8607 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8608   unsigned NumVTs = VTs.size();
8609   FoldingSetNodeID ID;
8610   ID.AddInteger(NumVTs);
8611   for (unsigned index = 0; index < NumVTs; index++) {
8612     ID.AddInteger(VTs[index].getRawBits());
8613   }
8614 
8615   void *IP = nullptr;
8616   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8617   if (!Result) {
8618     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8619     llvm::copy(VTs, Array);
8620     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8621     VTListMap.InsertNode(Result, IP);
8622   }
8623   return Result->getSDVTList();
8624 }
8625 
8626 
8627 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8628 /// specified operands.  If the resultant node already exists in the DAG,
8629 /// this does not modify the specified node, instead it returns the node that
8630 /// already exists.  If the resultant node does not exist in the DAG, the
8631 /// input node is returned.  As a degenerate case, if you specify the same
8632 /// input operands as the node already has, the input node is returned.
8633 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8634   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8635 
8636   // Check to see if there is no change.
8637   if (Op == N->getOperand(0)) return N;
8638 
8639   // See if the modified node already exists.
8640   void *InsertPos = nullptr;
8641   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8642     return Existing;
8643 
8644   // Nope it doesn't.  Remove the node from its current place in the maps.
8645   if (InsertPos)
8646     if (!RemoveNodeFromCSEMaps(N))
8647       InsertPos = nullptr;
8648 
8649   // Now we update the operands.
8650   N->OperandList[0].set(Op);
8651 
8652   updateDivergence(N);
8653   // If this gets put into a CSE map, add it.
8654   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8655   return N;
8656 }
8657 
8658 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8659   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8660 
8661   // Check to see if there is no change.
8662   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8663     return N;   // No operands changed, just return the input node.
8664 
8665   // See if the modified node already exists.
8666   void *InsertPos = nullptr;
8667   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8668     return Existing;
8669 
8670   // Nope it doesn't.  Remove the node from its current place in the maps.
8671   if (InsertPos)
8672     if (!RemoveNodeFromCSEMaps(N))
8673       InsertPos = nullptr;
8674 
8675   // Now we update the operands.
8676   if (N->OperandList[0] != Op1)
8677     N->OperandList[0].set(Op1);
8678   if (N->OperandList[1] != Op2)
8679     N->OperandList[1].set(Op2);
8680 
8681   updateDivergence(N);
8682   // If this gets put into a CSE map, add it.
8683   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8684   return N;
8685 }
8686 
8687 SDNode *SelectionDAG::
8688 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8689   SDValue Ops[] = { Op1, Op2, Op3 };
8690   return UpdateNodeOperands(N, Ops);
8691 }
8692 
8693 SDNode *SelectionDAG::
8694 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8695                    SDValue Op3, SDValue Op4) {
8696   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8697   return UpdateNodeOperands(N, Ops);
8698 }
8699 
8700 SDNode *SelectionDAG::
8701 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8702                    SDValue Op3, SDValue Op4, SDValue Op5) {
8703   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8704   return UpdateNodeOperands(N, Ops);
8705 }
8706 
8707 SDNode *SelectionDAG::
8708 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8709   unsigned NumOps = Ops.size();
8710   assert(N->getNumOperands() == NumOps &&
8711          "Update with wrong number of operands");
8712 
8713   // If no operands changed just return the input node.
8714   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8715     return N;
8716 
8717   // See if the modified node already exists.
8718   void *InsertPos = nullptr;
8719   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8720     return Existing;
8721 
8722   // Nope it doesn't.  Remove the node from its current place in the maps.
8723   if (InsertPos)
8724     if (!RemoveNodeFromCSEMaps(N))
8725       InsertPos = nullptr;
8726 
8727   // Now we update the operands.
8728   for (unsigned i = 0; i != NumOps; ++i)
8729     if (N->OperandList[i] != Ops[i])
8730       N->OperandList[i].set(Ops[i]);
8731 
8732   updateDivergence(N);
8733   // If this gets put into a CSE map, add it.
8734   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8735   return N;
8736 }
8737 
8738 /// DropOperands - Release the operands and set this node to have
8739 /// zero operands.
8740 void SDNode::DropOperands() {
8741   // Unlike the code in MorphNodeTo that does this, we don't need to
8742   // watch for dead nodes here.
8743   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8744     SDUse &Use = *I++;
8745     Use.set(SDValue());
8746   }
8747 }
8748 
8749 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8750                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8751   if (NewMemRefs.empty()) {
8752     N->clearMemRefs();
8753     return;
8754   }
8755 
8756   // Check if we can avoid allocating by storing a single reference directly.
8757   if (NewMemRefs.size() == 1) {
8758     N->MemRefs = NewMemRefs[0];
8759     N->NumMemRefs = 1;
8760     return;
8761   }
8762 
8763   MachineMemOperand **MemRefsBuffer =
8764       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8765   llvm::copy(NewMemRefs, MemRefsBuffer);
8766   N->MemRefs = MemRefsBuffer;
8767   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8768 }
8769 
8770 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8771 /// machine opcode.
8772 ///
8773 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8774                                    EVT VT) {
8775   SDVTList VTs = getVTList(VT);
8776   return SelectNodeTo(N, MachineOpc, VTs, None);
8777 }
8778 
8779 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8780                                    EVT VT, SDValue Op1) {
8781   SDVTList VTs = getVTList(VT);
8782   SDValue Ops[] = { Op1 };
8783   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8784 }
8785 
8786 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8787                                    EVT VT, SDValue Op1,
8788                                    SDValue Op2) {
8789   SDVTList VTs = getVTList(VT);
8790   SDValue Ops[] = { Op1, Op2 };
8791   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8792 }
8793 
8794 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8795                                    EVT VT, SDValue Op1,
8796                                    SDValue Op2, SDValue Op3) {
8797   SDVTList VTs = getVTList(VT);
8798   SDValue Ops[] = { Op1, Op2, Op3 };
8799   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8800 }
8801 
8802 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8803                                    EVT VT, ArrayRef<SDValue> Ops) {
8804   SDVTList VTs = getVTList(VT);
8805   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8806 }
8807 
8808 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8809                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8810   SDVTList VTs = getVTList(VT1, VT2);
8811   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8812 }
8813 
8814 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8815                                    EVT VT1, EVT VT2) {
8816   SDVTList VTs = getVTList(VT1, VT2);
8817   return SelectNodeTo(N, MachineOpc, VTs, None);
8818 }
8819 
8820 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8821                                    EVT VT1, EVT VT2, EVT VT3,
8822                                    ArrayRef<SDValue> Ops) {
8823   SDVTList VTs = getVTList(VT1, VT2, VT3);
8824   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8825 }
8826 
8827 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8828                                    EVT VT1, EVT VT2,
8829                                    SDValue Op1, SDValue Op2) {
8830   SDVTList VTs = getVTList(VT1, VT2);
8831   SDValue Ops[] = { Op1, Op2 };
8832   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8833 }
8834 
8835 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8836                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8837   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8838   // Reset the NodeID to -1.
8839   New->setNodeId(-1);
8840   if (New != N) {
8841     ReplaceAllUsesWith(N, New);
8842     RemoveDeadNode(N);
8843   }
8844   return New;
8845 }
8846 
8847 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8848 /// the line number information on the merged node since it is not possible to
8849 /// preserve the information that operation is associated with multiple lines.
8850 /// This will make the debugger working better at -O0, were there is a higher
8851 /// probability having other instructions associated with that line.
8852 ///
8853 /// For IROrder, we keep the smaller of the two
8854 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8855   DebugLoc NLoc = N->getDebugLoc();
8856   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8857     N->setDebugLoc(DebugLoc());
8858   }
8859   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8860   N->setIROrder(Order);
8861   return N;
8862 }
8863 
8864 /// MorphNodeTo - This *mutates* the specified node to have the specified
8865 /// return type, opcode, and operands.
8866 ///
8867 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8868 /// node of the specified opcode and operands, it returns that node instead of
8869 /// the current one.  Note that the SDLoc need not be the same.
8870 ///
8871 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8872 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8873 /// node, and because it doesn't require CSE recalculation for any of
8874 /// the node's users.
8875 ///
8876 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8877 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8878 /// the legalizer which maintain worklists that would need to be updated when
8879 /// deleting things.
8880 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8881                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8882   // If an identical node already exists, use it.
8883   void *IP = nullptr;
8884   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8885     FoldingSetNodeID ID;
8886     AddNodeIDNode(ID, Opc, VTs, Ops);
8887     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8888       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8889   }
8890 
8891   if (!RemoveNodeFromCSEMaps(N))
8892     IP = nullptr;
8893 
8894   // Start the morphing.
8895   N->NodeType = Opc;
8896   N->ValueList = VTs.VTs;
8897   N->NumValues = VTs.NumVTs;
8898 
8899   // Clear the operands list, updating used nodes to remove this from their
8900   // use list.  Keep track of any operands that become dead as a result.
8901   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8902   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8903     SDUse &Use = *I++;
8904     SDNode *Used = Use.getNode();
8905     Use.set(SDValue());
8906     if (Used->use_empty())
8907       DeadNodeSet.insert(Used);
8908   }
8909 
8910   // For MachineNode, initialize the memory references information.
8911   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8912     MN->clearMemRefs();
8913 
8914   // Swap for an appropriately sized array from the recycler.
8915   removeOperands(N);
8916   createOperands(N, Ops);
8917 
8918   // Delete any nodes that are still dead after adding the uses for the
8919   // new operands.
8920   if (!DeadNodeSet.empty()) {
8921     SmallVector<SDNode *, 16> DeadNodes;
8922     for (SDNode *N : DeadNodeSet)
8923       if (N->use_empty())
8924         DeadNodes.push_back(N);
8925     RemoveDeadNodes(DeadNodes);
8926   }
8927 
8928   if (IP)
8929     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8930   return N;
8931 }
8932 
8933 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8934   unsigned OrigOpc = Node->getOpcode();
8935   unsigned NewOpc;
8936   switch (OrigOpc) {
8937   default:
8938     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8939 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8940   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8941 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8942   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8943 #include "llvm/IR/ConstrainedOps.def"
8944   }
8945 
8946   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8947 
8948   // We're taking this node out of the chain, so we need to re-link things.
8949   SDValue InputChain = Node->getOperand(0);
8950   SDValue OutputChain = SDValue(Node, 1);
8951   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8952 
8953   SmallVector<SDValue, 3> Ops;
8954   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8955     Ops.push_back(Node->getOperand(i));
8956 
8957   SDVTList VTs = getVTList(Node->getValueType(0));
8958   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8959 
8960   // MorphNodeTo can operate in two ways: if an existing node with the
8961   // specified operands exists, it can just return it.  Otherwise, it
8962   // updates the node in place to have the requested operands.
8963   if (Res == Node) {
8964     // If we updated the node in place, reset the node ID.  To the isel,
8965     // this should be just like a newly allocated machine node.
8966     Res->setNodeId(-1);
8967   } else {
8968     ReplaceAllUsesWith(Node, Res);
8969     RemoveDeadNode(Node);
8970   }
8971 
8972   return Res;
8973 }
8974 
8975 /// getMachineNode - These are used for target selectors to create a new node
8976 /// with specified return type(s), MachineInstr opcode, and operands.
8977 ///
8978 /// Note that getMachineNode returns the resultant node.  If there is already a
8979 /// node of the specified opcode and operands, it returns that node instead of
8980 /// the current one.
8981 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8982                                             EVT VT) {
8983   SDVTList VTs = getVTList(VT);
8984   return getMachineNode(Opcode, dl, VTs, None);
8985 }
8986 
8987 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8988                                             EVT VT, SDValue Op1) {
8989   SDVTList VTs = getVTList(VT);
8990   SDValue Ops[] = { Op1 };
8991   return getMachineNode(Opcode, dl, VTs, Ops);
8992 }
8993 
8994 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8995                                             EVT VT, SDValue Op1, SDValue Op2) {
8996   SDVTList VTs = getVTList(VT);
8997   SDValue Ops[] = { Op1, Op2 };
8998   return getMachineNode(Opcode, dl, VTs, Ops);
8999 }
9000 
9001 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9002                                             EVT VT, SDValue Op1, SDValue Op2,
9003                                             SDValue Op3) {
9004   SDVTList VTs = getVTList(VT);
9005   SDValue Ops[] = { Op1, Op2, Op3 };
9006   return getMachineNode(Opcode, dl, VTs, Ops);
9007 }
9008 
9009 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9010                                             EVT VT, ArrayRef<SDValue> Ops) {
9011   SDVTList VTs = getVTList(VT);
9012   return getMachineNode(Opcode, dl, VTs, Ops);
9013 }
9014 
9015 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9016                                             EVT VT1, EVT VT2, SDValue Op1,
9017                                             SDValue Op2) {
9018   SDVTList VTs = getVTList(VT1, VT2);
9019   SDValue Ops[] = { Op1, Op2 };
9020   return getMachineNode(Opcode, dl, VTs, Ops);
9021 }
9022 
9023 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9024                                             EVT VT1, EVT VT2, SDValue Op1,
9025                                             SDValue Op2, SDValue Op3) {
9026   SDVTList VTs = getVTList(VT1, VT2);
9027   SDValue Ops[] = { Op1, Op2, Op3 };
9028   return getMachineNode(Opcode, dl, VTs, Ops);
9029 }
9030 
9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9032                                             EVT VT1, EVT VT2,
9033                                             ArrayRef<SDValue> Ops) {
9034   SDVTList VTs = getVTList(VT1, VT2);
9035   return getMachineNode(Opcode, dl, VTs, Ops);
9036 }
9037 
9038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9039                                             EVT VT1, EVT VT2, EVT VT3,
9040                                             SDValue Op1, SDValue Op2) {
9041   SDVTList VTs = getVTList(VT1, VT2, VT3);
9042   SDValue Ops[] = { Op1, Op2 };
9043   return getMachineNode(Opcode, dl, VTs, Ops);
9044 }
9045 
9046 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9047                                             EVT VT1, EVT VT2, EVT VT3,
9048                                             SDValue Op1, SDValue Op2,
9049                                             SDValue Op3) {
9050   SDVTList VTs = getVTList(VT1, VT2, VT3);
9051   SDValue Ops[] = { Op1, Op2, Op3 };
9052   return getMachineNode(Opcode, dl, VTs, Ops);
9053 }
9054 
9055 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9056                                             EVT VT1, EVT VT2, EVT VT3,
9057                                             ArrayRef<SDValue> Ops) {
9058   SDVTList VTs = getVTList(VT1, VT2, VT3);
9059   return getMachineNode(Opcode, dl, VTs, Ops);
9060 }
9061 
9062 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9063                                             ArrayRef<EVT> ResultTys,
9064                                             ArrayRef<SDValue> Ops) {
9065   SDVTList VTs = getVTList(ResultTys);
9066   return getMachineNode(Opcode, dl, VTs, Ops);
9067 }
9068 
9069 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9070                                             SDVTList VTs,
9071                                             ArrayRef<SDValue> Ops) {
9072   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9073   MachineSDNode *N;
9074   void *IP = nullptr;
9075 
9076   if (DoCSE) {
9077     FoldingSetNodeID ID;
9078     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9079     IP = nullptr;
9080     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9081       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9082     }
9083   }
9084 
9085   // Allocate a new MachineSDNode.
9086   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9087   createOperands(N, Ops);
9088 
9089   if (DoCSE)
9090     CSEMap.InsertNode(N, IP);
9091 
9092   InsertNode(N);
9093   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9094   return N;
9095 }
9096 
9097 /// getTargetExtractSubreg - A convenience function for creating
9098 /// TargetOpcode::EXTRACT_SUBREG nodes.
9099 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9100                                              SDValue Operand) {
9101   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9102   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9103                                   VT, Operand, SRIdxVal);
9104   return SDValue(Subreg, 0);
9105 }
9106 
9107 /// getTargetInsertSubreg - A convenience function for creating
9108 /// TargetOpcode::INSERT_SUBREG nodes.
9109 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9110                                             SDValue Operand, SDValue Subreg) {
9111   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9112   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9113                                   VT, Operand, Subreg, SRIdxVal);
9114   return SDValue(Result, 0);
9115 }
9116 
9117 /// getNodeIfExists - Get the specified node if it's already available, or
9118 /// else return NULL.
9119 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9120                                       ArrayRef<SDValue> Ops) {
9121   SDNodeFlags Flags;
9122   if (Inserter)
9123     Flags = Inserter->getFlags();
9124   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9125 }
9126 
9127 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9128                                       ArrayRef<SDValue> Ops,
9129                                       const SDNodeFlags Flags) {
9130   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9131     FoldingSetNodeID ID;
9132     AddNodeIDNode(ID, Opcode, VTList, Ops);
9133     void *IP = nullptr;
9134     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9135       E->intersectFlagsWith(Flags);
9136       return E;
9137     }
9138   }
9139   return nullptr;
9140 }
9141 
9142 /// doesNodeExist - Check if a node exists without modifying its flags.
9143 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9144                                  ArrayRef<SDValue> Ops) {
9145   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9146     FoldingSetNodeID ID;
9147     AddNodeIDNode(ID, Opcode, VTList, Ops);
9148     void *IP = nullptr;
9149     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9150       return true;
9151   }
9152   return false;
9153 }
9154 
9155 /// getDbgValue - Creates a SDDbgValue node.
9156 ///
9157 /// SDNode
9158 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9159                                       SDNode *N, unsigned R, bool IsIndirect,
9160                                       const DebugLoc &DL, unsigned O) {
9161   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9162          "Expected inlined-at fields to agree");
9163   return new (DbgInfo->getAlloc())
9164       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9165                  {}, IsIndirect, DL, O,
9166                  /*IsVariadic=*/false);
9167 }
9168 
9169 /// Constant
9170 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9171                                               DIExpression *Expr,
9172                                               const Value *C,
9173                                               const DebugLoc &DL, unsigned O) {
9174   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9175          "Expected inlined-at fields to agree");
9176   return new (DbgInfo->getAlloc())
9177       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9178                  /*IsIndirect=*/false, DL, O,
9179                  /*IsVariadic=*/false);
9180 }
9181 
9182 /// FrameIndex
9183 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9184                                                 DIExpression *Expr, unsigned FI,
9185                                                 bool IsIndirect,
9186                                                 const DebugLoc &DL,
9187                                                 unsigned O) {
9188   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9189          "Expected inlined-at fields to agree");
9190   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9191 }
9192 
9193 /// FrameIndex with dependencies
9194 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9195                                                 DIExpression *Expr, unsigned FI,
9196                                                 ArrayRef<SDNode *> Dependencies,
9197                                                 bool IsIndirect,
9198                                                 const DebugLoc &DL,
9199                                                 unsigned O) {
9200   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9201          "Expected inlined-at fields to agree");
9202   return new (DbgInfo->getAlloc())
9203       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9204                  Dependencies, IsIndirect, DL, O,
9205                  /*IsVariadic=*/false);
9206 }
9207 
9208 /// VReg
9209 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9210                                           unsigned VReg, bool IsIndirect,
9211                                           const DebugLoc &DL, unsigned O) {
9212   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9213          "Expected inlined-at fields to agree");
9214   return new (DbgInfo->getAlloc())
9215       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9216                  {}, IsIndirect, DL, O,
9217                  /*IsVariadic=*/false);
9218 }
9219 
9220 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9221                                           ArrayRef<SDDbgOperand> Locs,
9222                                           ArrayRef<SDNode *> Dependencies,
9223                                           bool IsIndirect, const DebugLoc &DL,
9224                                           unsigned O, bool IsVariadic) {
9225   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9226          "Expected inlined-at fields to agree");
9227   return new (DbgInfo->getAlloc())
9228       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9229                  DL, O, IsVariadic);
9230 }
9231 
9232 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9233                                      unsigned OffsetInBits, unsigned SizeInBits,
9234                                      bool InvalidateDbg) {
9235   SDNode *FromNode = From.getNode();
9236   SDNode *ToNode = To.getNode();
9237   assert(FromNode && ToNode && "Can't modify dbg values");
9238 
9239   // PR35338
9240   // TODO: assert(From != To && "Redundant dbg value transfer");
9241   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9242   if (From == To || FromNode == ToNode)
9243     return;
9244 
9245   if (!FromNode->getHasDebugValue())
9246     return;
9247 
9248   SDDbgOperand FromLocOp =
9249       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9250   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9251 
9252   SmallVector<SDDbgValue *, 2> ClonedDVs;
9253   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9254     if (Dbg->isInvalidated())
9255       continue;
9256 
9257     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9258 
9259     // Create a new location ops vector that is equal to the old vector, but
9260     // with each instance of FromLocOp replaced with ToLocOp.
9261     bool Changed = false;
9262     auto NewLocOps = Dbg->copyLocationOps();
9263     std::replace_if(
9264         NewLocOps.begin(), NewLocOps.end(),
9265         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9266           bool Match = Op == FromLocOp;
9267           Changed |= Match;
9268           return Match;
9269         },
9270         ToLocOp);
9271     // Ignore this SDDbgValue if we didn't find a matching location.
9272     if (!Changed)
9273       continue;
9274 
9275     DIVariable *Var = Dbg->getVariable();
9276     auto *Expr = Dbg->getExpression();
9277     // If a fragment is requested, update the expression.
9278     if (SizeInBits) {
9279       // When splitting a larger (e.g., sign-extended) value whose
9280       // lower bits are described with an SDDbgValue, do not attempt
9281       // to transfer the SDDbgValue to the upper bits.
9282       if (auto FI = Expr->getFragmentInfo())
9283         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9284           continue;
9285       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9286                                                              SizeInBits);
9287       if (!Fragment)
9288         continue;
9289       Expr = *Fragment;
9290     }
9291 
9292     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9293     // Clone the SDDbgValue and move it to To.
9294     SDDbgValue *Clone = getDbgValueList(
9295         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9296         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9297         Dbg->isVariadic());
9298     ClonedDVs.push_back(Clone);
9299 
9300     if (InvalidateDbg) {
9301       // Invalidate value and indicate the SDDbgValue should not be emitted.
9302       Dbg->setIsInvalidated();
9303       Dbg->setIsEmitted();
9304     }
9305   }
9306 
9307   for (SDDbgValue *Dbg : ClonedDVs) {
9308     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9309            "Transferred DbgValues should depend on the new SDNode");
9310     AddDbgValue(Dbg, false);
9311   }
9312 }
9313 
9314 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9315   if (!N.getHasDebugValue())
9316     return;
9317 
9318   SmallVector<SDDbgValue *, 2> ClonedDVs;
9319   for (auto DV : GetDbgValues(&N)) {
9320     if (DV->isInvalidated())
9321       continue;
9322     switch (N.getOpcode()) {
9323     default:
9324       break;
9325     case ISD::ADD:
9326       SDValue N0 = N.getOperand(0);
9327       SDValue N1 = N.getOperand(1);
9328       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9329           isConstantIntBuildVectorOrConstantInt(N1)) {
9330         uint64_t Offset = N.getConstantOperandVal(1);
9331 
9332         // Rewrite an ADD constant node into a DIExpression. Since we are
9333         // performing arithmetic to compute the variable's *value* in the
9334         // DIExpression, we need to mark the expression with a
9335         // DW_OP_stack_value.
9336         auto *DIExpr = DV->getExpression();
9337         auto NewLocOps = DV->copyLocationOps();
9338         bool Changed = false;
9339         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9340           // We're not given a ResNo to compare against because the whole
9341           // node is going away. We know that any ISD::ADD only has one
9342           // result, so we can assume any node match is using the result.
9343           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9344               NewLocOps[i].getSDNode() != &N)
9345             continue;
9346           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9347           SmallVector<uint64_t, 3> ExprOps;
9348           DIExpression::appendOffset(ExprOps, Offset);
9349           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9350           Changed = true;
9351         }
9352         (void)Changed;
9353         assert(Changed && "Salvage target doesn't use N");
9354 
9355         auto AdditionalDependencies = DV->getAdditionalDependencies();
9356         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9357                                             NewLocOps, AdditionalDependencies,
9358                                             DV->isIndirect(), DV->getDebugLoc(),
9359                                             DV->getOrder(), DV->isVariadic());
9360         ClonedDVs.push_back(Clone);
9361         DV->setIsInvalidated();
9362         DV->setIsEmitted();
9363         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9364                    N0.getNode()->dumprFull(this);
9365                    dbgs() << " into " << *DIExpr << '\n');
9366       }
9367     }
9368   }
9369 
9370   for (SDDbgValue *Dbg : ClonedDVs) {
9371     assert(!Dbg->getSDNodes().empty() &&
9372            "Salvaged DbgValue should depend on a new SDNode");
9373     AddDbgValue(Dbg, false);
9374   }
9375 }
9376 
9377 /// Creates a SDDbgLabel node.
9378 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9379                                       const DebugLoc &DL, unsigned O) {
9380   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9381          "Expected inlined-at fields to agree");
9382   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9383 }
9384 
9385 namespace {
9386 
9387 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9388 /// pointed to by a use iterator is deleted, increment the use iterator
9389 /// so that it doesn't dangle.
9390 ///
9391 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9392   SDNode::use_iterator &UI;
9393   SDNode::use_iterator &UE;
9394 
9395   void NodeDeleted(SDNode *N, SDNode *E) override {
9396     // Increment the iterator as needed.
9397     while (UI != UE && N == *UI)
9398       ++UI;
9399   }
9400 
9401 public:
9402   RAUWUpdateListener(SelectionDAG &d,
9403                      SDNode::use_iterator &ui,
9404                      SDNode::use_iterator &ue)
9405     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9406 };
9407 
9408 } // end anonymous namespace
9409 
9410 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9411 /// This can cause recursive merging of nodes in the DAG.
9412 ///
9413 /// This version assumes From has a single result value.
9414 ///
9415 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9416   SDNode *From = FromN.getNode();
9417   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9418          "Cannot replace with this method!");
9419   assert(From != To.getNode() && "Cannot replace uses of with self");
9420 
9421   // Preserve Debug Values
9422   transferDbgValues(FromN, To);
9423 
9424   // Iterate over all the existing uses of From. New uses will be added
9425   // to the beginning of the use list, which we avoid visiting.
9426   // This specifically avoids visiting uses of From that arise while the
9427   // replacement is happening, because any such uses would be the result
9428   // of CSE: If an existing node looks like From after one of its operands
9429   // is replaced by To, we don't want to replace of all its users with To
9430   // too. See PR3018 for more info.
9431   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9432   RAUWUpdateListener Listener(*this, UI, UE);
9433   while (UI != UE) {
9434     SDNode *User = *UI;
9435 
9436     // This node is about to morph, remove its old self from the CSE maps.
9437     RemoveNodeFromCSEMaps(User);
9438 
9439     // A user can appear in a use list multiple times, and when this
9440     // happens the uses are usually next to each other in the list.
9441     // To help reduce the number of CSE recomputations, process all
9442     // the uses of this user that we can find this way.
9443     do {
9444       SDUse &Use = UI.getUse();
9445       ++UI;
9446       Use.set(To);
9447       if (To->isDivergent() != From->isDivergent())
9448         updateDivergence(User);
9449     } while (UI != UE && *UI == User);
9450     // Now that we have modified User, add it back to the CSE maps.  If it
9451     // already exists there, recursively merge the results together.
9452     AddModifiedNodeToCSEMaps(User);
9453   }
9454 
9455   // If we just RAUW'd the root, take note.
9456   if (FromN == getRoot())
9457     setRoot(To);
9458 }
9459 
9460 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9461 /// This can cause recursive merging of nodes in the DAG.
9462 ///
9463 /// This version assumes that for each value of From, there is a
9464 /// corresponding value in To in the same position with the same type.
9465 ///
9466 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9467 #ifndef NDEBUG
9468   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9469     assert((!From->hasAnyUseOfValue(i) ||
9470             From->getValueType(i) == To->getValueType(i)) &&
9471            "Cannot use this version of ReplaceAllUsesWith!");
9472 #endif
9473 
9474   // Handle the trivial case.
9475   if (From == To)
9476     return;
9477 
9478   // Preserve Debug Info. Only do this if there's a use.
9479   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9480     if (From->hasAnyUseOfValue(i)) {
9481       assert((i < To->getNumValues()) && "Invalid To location");
9482       transferDbgValues(SDValue(From, i), SDValue(To, i));
9483     }
9484 
9485   // Iterate over just the existing users of From. See the comments in
9486   // the ReplaceAllUsesWith above.
9487   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9488   RAUWUpdateListener Listener(*this, UI, UE);
9489   while (UI != UE) {
9490     SDNode *User = *UI;
9491 
9492     // This node is about to morph, remove its old self from the CSE maps.
9493     RemoveNodeFromCSEMaps(User);
9494 
9495     // A user can appear in a use list multiple times, and when this
9496     // happens the uses are usually next to each other in the list.
9497     // To help reduce the number of CSE recomputations, process all
9498     // the uses of this user that we can find this way.
9499     do {
9500       SDUse &Use = UI.getUse();
9501       ++UI;
9502       Use.setNode(To);
9503       if (To->isDivergent() != From->isDivergent())
9504         updateDivergence(User);
9505     } while (UI != UE && *UI == User);
9506 
9507     // Now that we have modified User, add it back to the CSE maps.  If it
9508     // already exists there, recursively merge the results together.
9509     AddModifiedNodeToCSEMaps(User);
9510   }
9511 
9512   // If we just RAUW'd the root, take note.
9513   if (From == getRoot().getNode())
9514     setRoot(SDValue(To, getRoot().getResNo()));
9515 }
9516 
9517 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9518 /// This can cause recursive merging of nodes in the DAG.
9519 ///
9520 /// This version can replace From with any result values.  To must match the
9521 /// number and types of values returned by From.
9522 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9523   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9524     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9525 
9526   // Preserve Debug Info.
9527   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9528     transferDbgValues(SDValue(From, i), To[i]);
9529 
9530   // Iterate over just the existing users of From. See the comments in
9531   // the ReplaceAllUsesWith above.
9532   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9533   RAUWUpdateListener Listener(*this, UI, UE);
9534   while (UI != UE) {
9535     SDNode *User = *UI;
9536 
9537     // This node is about to morph, remove its old self from the CSE maps.
9538     RemoveNodeFromCSEMaps(User);
9539 
9540     // A user can appear in a use list multiple times, and when this happens the
9541     // uses are usually next to each other in the list.  To help reduce the
9542     // number of CSE and divergence recomputations, process all the uses of this
9543     // user that we can find this way.
9544     bool To_IsDivergent = false;
9545     do {
9546       SDUse &Use = UI.getUse();
9547       const SDValue &ToOp = To[Use.getResNo()];
9548       ++UI;
9549       Use.set(ToOp);
9550       To_IsDivergent |= ToOp->isDivergent();
9551     } while (UI != UE && *UI == User);
9552 
9553     if (To_IsDivergent != From->isDivergent())
9554       updateDivergence(User);
9555 
9556     // Now that we have modified User, add it back to the CSE maps.  If it
9557     // already exists there, recursively merge the results together.
9558     AddModifiedNodeToCSEMaps(User);
9559   }
9560 
9561   // If we just RAUW'd the root, take note.
9562   if (From == getRoot().getNode())
9563     setRoot(SDValue(To[getRoot().getResNo()]));
9564 }
9565 
9566 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9567 /// uses of other values produced by From.getNode() alone.  The Deleted
9568 /// vector is handled the same way as for ReplaceAllUsesWith.
9569 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9570   // Handle the really simple, really trivial case efficiently.
9571   if (From == To) return;
9572 
9573   // Handle the simple, trivial, case efficiently.
9574   if (From.getNode()->getNumValues() == 1) {
9575     ReplaceAllUsesWith(From, To);
9576     return;
9577   }
9578 
9579   // Preserve Debug Info.
9580   transferDbgValues(From, To);
9581 
9582   // Iterate over just the existing users of From. See the comments in
9583   // the ReplaceAllUsesWith above.
9584   SDNode::use_iterator UI = From.getNode()->use_begin(),
9585                        UE = From.getNode()->use_end();
9586   RAUWUpdateListener Listener(*this, UI, UE);
9587   while (UI != UE) {
9588     SDNode *User = *UI;
9589     bool UserRemovedFromCSEMaps = false;
9590 
9591     // A user can appear in a use list multiple times, and when this
9592     // happens the uses are usually next to each other in the list.
9593     // To help reduce the number of CSE recomputations, process all
9594     // the uses of this user that we can find this way.
9595     do {
9596       SDUse &Use = UI.getUse();
9597 
9598       // Skip uses of different values from the same node.
9599       if (Use.getResNo() != From.getResNo()) {
9600         ++UI;
9601         continue;
9602       }
9603 
9604       // If this node hasn't been modified yet, it's still in the CSE maps,
9605       // so remove its old self from the CSE maps.
9606       if (!UserRemovedFromCSEMaps) {
9607         RemoveNodeFromCSEMaps(User);
9608         UserRemovedFromCSEMaps = true;
9609       }
9610 
9611       ++UI;
9612       Use.set(To);
9613       if (To->isDivergent() != From->isDivergent())
9614         updateDivergence(User);
9615     } while (UI != UE && *UI == User);
9616     // We are iterating over all uses of the From node, so if a use
9617     // doesn't use the specific value, no changes are made.
9618     if (!UserRemovedFromCSEMaps)
9619       continue;
9620 
9621     // Now that we have modified User, add it back to the CSE maps.  If it
9622     // already exists there, recursively merge the results together.
9623     AddModifiedNodeToCSEMaps(User);
9624   }
9625 
9626   // If we just RAUW'd the root, take note.
9627   if (From == getRoot())
9628     setRoot(To);
9629 }
9630 
9631 namespace {
9632 
9633   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9634   /// to record information about a use.
9635   struct UseMemo {
9636     SDNode *User;
9637     unsigned Index;
9638     SDUse *Use;
9639   };
9640 
9641   /// operator< - Sort Memos by User.
9642   bool operator<(const UseMemo &L, const UseMemo &R) {
9643     return (intptr_t)L.User < (intptr_t)R.User;
9644   }
9645 
9646 } // end anonymous namespace
9647 
9648 bool SelectionDAG::calculateDivergence(SDNode *N) {
9649   if (TLI->isSDNodeAlwaysUniform(N)) {
9650     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9651            "Conflicting divergence information!");
9652     return false;
9653   }
9654   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9655     return true;
9656   for (auto &Op : N->ops()) {
9657     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9658       return true;
9659   }
9660   return false;
9661 }
9662 
9663 void SelectionDAG::updateDivergence(SDNode *N) {
9664   SmallVector<SDNode *, 16> Worklist(1, N);
9665   do {
9666     N = Worklist.pop_back_val();
9667     bool IsDivergent = calculateDivergence(N);
9668     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9669       N->SDNodeBits.IsDivergent = IsDivergent;
9670       llvm::append_range(Worklist, N->uses());
9671     }
9672   } while (!Worklist.empty());
9673 }
9674 
9675 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9676   DenseMap<SDNode *, unsigned> Degree;
9677   Order.reserve(AllNodes.size());
9678   for (auto &N : allnodes()) {
9679     unsigned NOps = N.getNumOperands();
9680     Degree[&N] = NOps;
9681     if (0 == NOps)
9682       Order.push_back(&N);
9683   }
9684   for (size_t I = 0; I != Order.size(); ++I) {
9685     SDNode *N = Order[I];
9686     for (auto U : N->uses()) {
9687       unsigned &UnsortedOps = Degree[U];
9688       if (0 == --UnsortedOps)
9689         Order.push_back(U);
9690     }
9691   }
9692 }
9693 
9694 #ifndef NDEBUG
9695 void SelectionDAG::VerifyDAGDivergence() {
9696   std::vector<SDNode *> TopoOrder;
9697   CreateTopologicalOrder(TopoOrder);
9698   for (auto *N : TopoOrder) {
9699     assert(calculateDivergence(N) == N->isDivergent() &&
9700            "Divergence bit inconsistency detected");
9701   }
9702 }
9703 #endif
9704 
9705 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9706 /// uses of other values produced by From.getNode() alone.  The same value
9707 /// may appear in both the From and To list.  The Deleted vector is
9708 /// handled the same way as for ReplaceAllUsesWith.
9709 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9710                                               const SDValue *To,
9711                                               unsigned Num){
9712   // Handle the simple, trivial case efficiently.
9713   if (Num == 1)
9714     return ReplaceAllUsesOfValueWith(*From, *To);
9715 
9716   transferDbgValues(*From, *To);
9717 
9718   // Read up all the uses and make records of them. This helps
9719   // processing new uses that are introduced during the
9720   // replacement process.
9721   SmallVector<UseMemo, 4> Uses;
9722   for (unsigned i = 0; i != Num; ++i) {
9723     unsigned FromResNo = From[i].getResNo();
9724     SDNode *FromNode = From[i].getNode();
9725     for (SDNode::use_iterator UI = FromNode->use_begin(),
9726          E = FromNode->use_end(); UI != E; ++UI) {
9727       SDUse &Use = UI.getUse();
9728       if (Use.getResNo() == FromResNo) {
9729         UseMemo Memo = { *UI, i, &Use };
9730         Uses.push_back(Memo);
9731       }
9732     }
9733   }
9734 
9735   // Sort the uses, so that all the uses from a given User are together.
9736   llvm::sort(Uses);
9737 
9738   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9739        UseIndex != UseIndexEnd; ) {
9740     // We know that this user uses some value of From.  If it is the right
9741     // value, update it.
9742     SDNode *User = Uses[UseIndex].User;
9743 
9744     // This node is about to morph, remove its old self from the CSE maps.
9745     RemoveNodeFromCSEMaps(User);
9746 
9747     // The Uses array is sorted, so all the uses for a given User
9748     // are next to each other in the list.
9749     // To help reduce the number of CSE recomputations, process all
9750     // the uses of this user that we can find this way.
9751     do {
9752       unsigned i = Uses[UseIndex].Index;
9753       SDUse &Use = *Uses[UseIndex].Use;
9754       ++UseIndex;
9755 
9756       Use.set(To[i]);
9757     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9758 
9759     // Now that we have modified User, add it back to the CSE maps.  If it
9760     // already exists there, recursively merge the results together.
9761     AddModifiedNodeToCSEMaps(User);
9762   }
9763 }
9764 
9765 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9766 /// based on their topological order. It returns the maximum id and a vector
9767 /// of the SDNodes* in assigned order by reference.
9768 unsigned SelectionDAG::AssignTopologicalOrder() {
9769   unsigned DAGSize = 0;
9770 
9771   // SortedPos tracks the progress of the algorithm. Nodes before it are
9772   // sorted, nodes after it are unsorted. When the algorithm completes
9773   // it is at the end of the list.
9774   allnodes_iterator SortedPos = allnodes_begin();
9775 
9776   // Visit all the nodes. Move nodes with no operands to the front of
9777   // the list immediately. Annotate nodes that do have operands with their
9778   // operand count. Before we do this, the Node Id fields of the nodes
9779   // may contain arbitrary values. After, the Node Id fields for nodes
9780   // before SortedPos will contain the topological sort index, and the
9781   // Node Id fields for nodes At SortedPos and after will contain the
9782   // count of outstanding operands.
9783   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
9784     checkForCycles(&N, this);
9785     unsigned Degree = N.getNumOperands();
9786     if (Degree == 0) {
9787       // A node with no uses, add it to the result array immediately.
9788       N.setNodeId(DAGSize++);
9789       allnodes_iterator Q(&N);
9790       if (Q != SortedPos)
9791         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9792       assert(SortedPos != AllNodes.end() && "Overran node list");
9793       ++SortedPos;
9794     } else {
9795       // Temporarily use the Node Id as scratch space for the degree count.
9796       N.setNodeId(Degree);
9797     }
9798   }
9799 
9800   // Visit all the nodes. As we iterate, move nodes into sorted order,
9801   // such that by the time the end is reached all nodes will be sorted.
9802   for (SDNode &Node : allnodes()) {
9803     SDNode *N = &Node;
9804     checkForCycles(N, this);
9805     // N is in sorted position, so all its uses have one less operand
9806     // that needs to be sorted.
9807     for (SDNode *P : N->uses()) {
9808       unsigned Degree = P->getNodeId();
9809       assert(Degree != 0 && "Invalid node degree");
9810       --Degree;
9811       if (Degree == 0) {
9812         // All of P's operands are sorted, so P may sorted now.
9813         P->setNodeId(DAGSize++);
9814         if (P->getIterator() != SortedPos)
9815           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9816         assert(SortedPos != AllNodes.end() && "Overran node list");
9817         ++SortedPos;
9818       } else {
9819         // Update P's outstanding operand count.
9820         P->setNodeId(Degree);
9821       }
9822     }
9823     if (Node.getIterator() == SortedPos) {
9824 #ifndef NDEBUG
9825       allnodes_iterator I(N);
9826       SDNode *S = &*++I;
9827       dbgs() << "Overran sorted position:\n";
9828       S->dumprFull(this); dbgs() << "\n";
9829       dbgs() << "Checking if this is due to cycles\n";
9830       checkForCycles(this, true);
9831 #endif
9832       llvm_unreachable(nullptr);
9833     }
9834   }
9835 
9836   assert(SortedPos == AllNodes.end() &&
9837          "Topological sort incomplete!");
9838   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9839          "First node in topological sort is not the entry token!");
9840   assert(AllNodes.front().getNodeId() == 0 &&
9841          "First node in topological sort has non-zero id!");
9842   assert(AllNodes.front().getNumOperands() == 0 &&
9843          "First node in topological sort has operands!");
9844   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9845          "Last node in topologic sort has unexpected id!");
9846   assert(AllNodes.back().use_empty() &&
9847          "Last node in topologic sort has users!");
9848   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9849   return DAGSize;
9850 }
9851 
9852 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9853 /// value is produced by SD.
9854 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9855   for (SDNode *SD : DB->getSDNodes()) {
9856     if (!SD)
9857       continue;
9858     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9859     SD->setHasDebugValue(true);
9860   }
9861   DbgInfo->add(DB, isParameter);
9862 }
9863 
9864 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9865 
9866 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9867                                                    SDValue NewMemOpChain) {
9868   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9869   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9870   // The new memory operation must have the same position as the old load in
9871   // terms of memory dependency. Create a TokenFactor for the old load and new
9872   // memory operation and update uses of the old load's output chain to use that
9873   // TokenFactor.
9874   if (OldChain == NewMemOpChain || OldChain.use_empty())
9875     return NewMemOpChain;
9876 
9877   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9878                                 OldChain, NewMemOpChain);
9879   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9880   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9881   return TokenFactor;
9882 }
9883 
9884 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9885                                                    SDValue NewMemOp) {
9886   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9887   SDValue OldChain = SDValue(OldLoad, 1);
9888   SDValue NewMemOpChain = NewMemOp.getValue(1);
9889   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9890 }
9891 
9892 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9893                                                      Function **OutFunction) {
9894   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9895 
9896   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9897   auto *Module = MF->getFunction().getParent();
9898   auto *Function = Module->getFunction(Symbol);
9899 
9900   if (OutFunction != nullptr)
9901       *OutFunction = Function;
9902 
9903   if (Function != nullptr) {
9904     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9905     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9906   }
9907 
9908   std::string ErrorStr;
9909   raw_string_ostream ErrorFormatter(ErrorStr);
9910   ErrorFormatter << "Undefined external symbol ";
9911   ErrorFormatter << '"' << Symbol << '"';
9912   report_fatal_error(Twine(ErrorFormatter.str()));
9913 }
9914 
9915 //===----------------------------------------------------------------------===//
9916 //                              SDNode Class
9917 //===----------------------------------------------------------------------===//
9918 
9919 bool llvm::isNullConstant(SDValue V) {
9920   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9921   return Const != nullptr && Const->isZero();
9922 }
9923 
9924 bool llvm::isNullFPConstant(SDValue V) {
9925   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9926   return Const != nullptr && Const->isZero() && !Const->isNegative();
9927 }
9928 
9929 bool llvm::isAllOnesConstant(SDValue V) {
9930   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9931   return Const != nullptr && Const->isAllOnes();
9932 }
9933 
9934 bool llvm::isOneConstant(SDValue V) {
9935   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9936   return Const != nullptr && Const->isOne();
9937 }
9938 
9939 SDValue llvm::peekThroughBitcasts(SDValue V) {
9940   while (V.getOpcode() == ISD::BITCAST)
9941     V = V.getOperand(0);
9942   return V;
9943 }
9944 
9945 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9946   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9947     V = V.getOperand(0);
9948   return V;
9949 }
9950 
9951 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9952   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9953     V = V.getOperand(0);
9954   return V;
9955 }
9956 
9957 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9958   if (V.getOpcode() != ISD::XOR)
9959     return false;
9960   V = peekThroughBitcasts(V.getOperand(1));
9961   unsigned NumBits = V.getScalarValueSizeInBits();
9962   ConstantSDNode *C =
9963       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9964   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9965 }
9966 
9967 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9968                                           bool AllowTruncation) {
9969   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9970     return CN;
9971 
9972   // SplatVectors can truncate their operands. Ignore that case here unless
9973   // AllowTruncation is set.
9974   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9975     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9976     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9977       EVT CVT = CN->getValueType(0);
9978       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9979       if (AllowTruncation || CVT == VecEltVT)
9980         return CN;
9981     }
9982   }
9983 
9984   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9985     BitVector UndefElements;
9986     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9987 
9988     // BuildVectors can truncate their operands. Ignore that case here unless
9989     // AllowTruncation is set.
9990     if (CN && (UndefElements.none() || AllowUndefs)) {
9991       EVT CVT = CN->getValueType(0);
9992       EVT NSVT = N.getValueType().getScalarType();
9993       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9994       if (AllowTruncation || (CVT == NSVT))
9995         return CN;
9996     }
9997   }
9998 
9999   return nullptr;
10000 }
10001 
10002 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10003                                           bool AllowUndefs,
10004                                           bool AllowTruncation) {
10005   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10006     return CN;
10007 
10008   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10009     BitVector UndefElements;
10010     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10011 
10012     // BuildVectors can truncate their operands. Ignore that case here unless
10013     // AllowTruncation is set.
10014     if (CN && (UndefElements.none() || AllowUndefs)) {
10015       EVT CVT = CN->getValueType(0);
10016       EVT NSVT = N.getValueType().getScalarType();
10017       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10018       if (AllowTruncation || (CVT == NSVT))
10019         return CN;
10020     }
10021   }
10022 
10023   return nullptr;
10024 }
10025 
10026 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10027   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10028     return CN;
10029 
10030   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10031     BitVector UndefElements;
10032     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10033     if (CN && (UndefElements.none() || AllowUndefs))
10034       return CN;
10035   }
10036 
10037   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10038     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10039       return CN;
10040 
10041   return nullptr;
10042 }
10043 
10044 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10045                                               const APInt &DemandedElts,
10046                                               bool AllowUndefs) {
10047   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10048     return CN;
10049 
10050   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10051     BitVector UndefElements;
10052     ConstantFPSDNode *CN =
10053         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10054     if (CN && (UndefElements.none() || AllowUndefs))
10055       return CN;
10056   }
10057 
10058   return nullptr;
10059 }
10060 
10061 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10062   // TODO: may want to use peekThroughBitcast() here.
10063   ConstantSDNode *C =
10064       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10065   return C && C->isZero();
10066 }
10067 
10068 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10069   // TODO: may want to use peekThroughBitcast() here.
10070   unsigned BitWidth = N.getScalarValueSizeInBits();
10071   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10072   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10073 }
10074 
10075 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10076   N = peekThroughBitcasts(N);
10077   unsigned BitWidth = N.getScalarValueSizeInBits();
10078   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10079   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10080 }
10081 
10082 HandleSDNode::~HandleSDNode() {
10083   DropOperands();
10084 }
10085 
10086 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10087                                          const DebugLoc &DL,
10088                                          const GlobalValue *GA, EVT VT,
10089                                          int64_t o, unsigned TF)
10090     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10091   TheGlobal = GA;
10092 }
10093 
10094 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10095                                          EVT VT, unsigned SrcAS,
10096                                          unsigned DestAS)
10097     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10098       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10099 
10100 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10101                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10102     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10103   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10104   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10105   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10106   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10107 
10108   // We check here that the size of the memory operand fits within the size of
10109   // the MMO. This is because the MMO might indicate only a possible address
10110   // range instead of specifying the affected memory addresses precisely.
10111   // TODO: Make MachineMemOperands aware of scalable vectors.
10112   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10113          "Size mismatch!");
10114 }
10115 
10116 /// Profile - Gather unique data for the node.
10117 ///
10118 void SDNode::Profile(FoldingSetNodeID &ID) const {
10119   AddNodeIDNode(ID, this);
10120 }
10121 
10122 namespace {
10123 
10124   struct EVTArray {
10125     std::vector<EVT> VTs;
10126 
10127     EVTArray() {
10128       VTs.reserve(MVT::VALUETYPE_SIZE);
10129       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10130         VTs.push_back(MVT((MVT::SimpleValueType)i));
10131     }
10132   };
10133 
10134 } // end anonymous namespace
10135 
10136 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10137 static ManagedStatic<EVTArray> SimpleVTArray;
10138 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10139 
10140 /// getValueTypeList - Return a pointer to the specified value type.
10141 ///
10142 const EVT *SDNode::getValueTypeList(EVT VT) {
10143   if (VT.isExtended()) {
10144     sys::SmartScopedLock<true> Lock(*VTMutex);
10145     return &(*EVTs->insert(VT).first);
10146   }
10147   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10148   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10149 }
10150 
10151 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10152 /// indicated value.  This method ignores uses of other values defined by this
10153 /// operation.
10154 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10155   assert(Value < getNumValues() && "Bad value!");
10156 
10157   // TODO: Only iterate over uses of a given value of the node
10158   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10159     if (UI.getUse().getResNo() == Value) {
10160       if (NUses == 0)
10161         return false;
10162       --NUses;
10163     }
10164   }
10165 
10166   // Found exactly the right number of uses?
10167   return NUses == 0;
10168 }
10169 
10170 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10171 /// value. This method ignores uses of other values defined by this operation.
10172 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10173   assert(Value < getNumValues() && "Bad value!");
10174 
10175   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10176     if (UI.getUse().getResNo() == Value)
10177       return true;
10178 
10179   return false;
10180 }
10181 
10182 /// isOnlyUserOf - Return true if this node is the only use of N.
10183 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10184   bool Seen = false;
10185   for (const SDNode *User : N->uses()) {
10186     if (User == this)
10187       Seen = true;
10188     else
10189       return false;
10190   }
10191 
10192   return Seen;
10193 }
10194 
10195 /// Return true if the only users of N are contained in Nodes.
10196 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10197   bool Seen = false;
10198   for (const SDNode *User : N->uses()) {
10199     if (llvm::is_contained(Nodes, User))
10200       Seen = true;
10201     else
10202       return false;
10203   }
10204 
10205   return Seen;
10206 }
10207 
10208 /// isOperand - Return true if this node is an operand of N.
10209 bool SDValue::isOperandOf(const SDNode *N) const {
10210   return is_contained(N->op_values(), *this);
10211 }
10212 
10213 bool SDNode::isOperandOf(const SDNode *N) const {
10214   return any_of(N->op_values(),
10215                 [this](SDValue Op) { return this == Op.getNode(); });
10216 }
10217 
10218 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10219 /// be a chain) reaches the specified operand without crossing any
10220 /// side-effecting instructions on any chain path.  In practice, this looks
10221 /// through token factors and non-volatile loads.  In order to remain efficient,
10222 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10223 ///
10224 /// Note that we only need to examine chains when we're searching for
10225 /// side-effects; SelectionDAG requires that all side-effects are represented
10226 /// by chains, even if another operand would force a specific ordering. This
10227 /// constraint is necessary to allow transformations like splitting loads.
10228 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10229                                              unsigned Depth) const {
10230   if (*this == Dest) return true;
10231 
10232   // Don't search too deeply, we just want to be able to see through
10233   // TokenFactor's etc.
10234   if (Depth == 0) return false;
10235 
10236   // If this is a token factor, all inputs to the TF happen in parallel.
10237   if (getOpcode() == ISD::TokenFactor) {
10238     // First, try a shallow search.
10239     if (is_contained((*this)->ops(), Dest)) {
10240       // We found the chain we want as an operand of this TokenFactor.
10241       // Essentially, we reach the chain without side-effects if we could
10242       // serialize the TokenFactor into a simple chain of operations with
10243       // Dest as the last operation. This is automatically true if the
10244       // chain has one use: there are no other ordering constraints.
10245       // If the chain has more than one use, we give up: some other
10246       // use of Dest might force a side-effect between Dest and the current
10247       // node.
10248       if (Dest.hasOneUse())
10249         return true;
10250     }
10251     // Next, try a deep search: check whether every operand of the TokenFactor
10252     // reaches Dest.
10253     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10254       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10255     });
10256   }
10257 
10258   // Loads don't have side effects, look through them.
10259   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10260     if (Ld->isUnordered())
10261       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10262   }
10263   return false;
10264 }
10265 
10266 bool SDNode::hasPredecessor(const SDNode *N) const {
10267   SmallPtrSet<const SDNode *, 32> Visited;
10268   SmallVector<const SDNode *, 16> Worklist;
10269   Worklist.push_back(this);
10270   return hasPredecessorHelper(N, Visited, Worklist);
10271 }
10272 
10273 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10274   this->Flags.intersectWith(Flags);
10275 }
10276 
10277 SDValue
10278 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10279                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10280                                   bool AllowPartials) {
10281   // The pattern must end in an extract from index 0.
10282   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10283       !isNullConstant(Extract->getOperand(1)))
10284     return SDValue();
10285 
10286   // Match against one of the candidate binary ops.
10287   SDValue Op = Extract->getOperand(0);
10288   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10289         return Op.getOpcode() == unsigned(BinOp);
10290       }))
10291     return SDValue();
10292 
10293   // Floating-point reductions may require relaxed constraints on the final step
10294   // of the reduction because they may reorder intermediate operations.
10295   unsigned CandidateBinOp = Op.getOpcode();
10296   if (Op.getValueType().isFloatingPoint()) {
10297     SDNodeFlags Flags = Op->getFlags();
10298     switch (CandidateBinOp) {
10299     case ISD::FADD:
10300       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10301         return SDValue();
10302       break;
10303     default:
10304       llvm_unreachable("Unhandled FP opcode for binop reduction");
10305     }
10306   }
10307 
10308   // Matching failed - attempt to see if we did enough stages that a partial
10309   // reduction from a subvector is possible.
10310   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10311     if (!AllowPartials || !Op)
10312       return SDValue();
10313     EVT OpVT = Op.getValueType();
10314     EVT OpSVT = OpVT.getScalarType();
10315     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10316     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10317       return SDValue();
10318     BinOp = (ISD::NodeType)CandidateBinOp;
10319     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10320                    getVectorIdxConstant(0, SDLoc(Op)));
10321   };
10322 
10323   // At each stage, we're looking for something that looks like:
10324   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10325   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10326   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10327   // %a = binop <8 x i32> %op, %s
10328   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10329   // we expect something like:
10330   // <4,5,6,7,u,u,u,u>
10331   // <2,3,u,u,u,u,u,u>
10332   // <1,u,u,u,u,u,u,u>
10333   // While a partial reduction match would be:
10334   // <2,3,u,u,u,u,u,u>
10335   // <1,u,u,u,u,u,u,u>
10336   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10337   SDValue PrevOp;
10338   for (unsigned i = 0; i < Stages; ++i) {
10339     unsigned MaskEnd = (1 << i);
10340 
10341     if (Op.getOpcode() != CandidateBinOp)
10342       return PartialReduction(PrevOp, MaskEnd);
10343 
10344     SDValue Op0 = Op.getOperand(0);
10345     SDValue Op1 = Op.getOperand(1);
10346 
10347     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10348     if (Shuffle) {
10349       Op = Op1;
10350     } else {
10351       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10352       Op = Op0;
10353     }
10354 
10355     // The first operand of the shuffle should be the same as the other operand
10356     // of the binop.
10357     if (!Shuffle || Shuffle->getOperand(0) != Op)
10358       return PartialReduction(PrevOp, MaskEnd);
10359 
10360     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10361     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10362       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10363         return PartialReduction(PrevOp, MaskEnd);
10364 
10365     PrevOp = Op;
10366   }
10367 
10368   // Handle subvector reductions, which tend to appear after the shuffle
10369   // reduction stages.
10370   while (Op.getOpcode() == CandidateBinOp) {
10371     unsigned NumElts = Op.getValueType().getVectorNumElements();
10372     SDValue Op0 = Op.getOperand(0);
10373     SDValue Op1 = Op.getOperand(1);
10374     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10375         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10376         Op0.getOperand(0) != Op1.getOperand(0))
10377       break;
10378     SDValue Src = Op0.getOperand(0);
10379     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10380     if (NumSrcElts != (2 * NumElts))
10381       break;
10382     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10383           Op1.getConstantOperandAPInt(1) == NumElts) &&
10384         !(Op1.getConstantOperandAPInt(1) == 0 &&
10385           Op0.getConstantOperandAPInt(1) == NumElts))
10386       break;
10387     Op = Src;
10388   }
10389 
10390   BinOp = (ISD::NodeType)CandidateBinOp;
10391   return Op;
10392 }
10393 
10394 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10395   assert(N->getNumValues() == 1 &&
10396          "Can't unroll a vector with multiple results!");
10397 
10398   EVT VT = N->getValueType(0);
10399   unsigned NE = VT.getVectorNumElements();
10400   EVT EltVT = VT.getVectorElementType();
10401   SDLoc dl(N);
10402 
10403   SmallVector<SDValue, 8> Scalars;
10404   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10405 
10406   // If ResNE is 0, fully unroll the vector op.
10407   if (ResNE == 0)
10408     ResNE = NE;
10409   else if (NE > ResNE)
10410     NE = ResNE;
10411 
10412   unsigned i;
10413   for (i= 0; i != NE; ++i) {
10414     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10415       SDValue Operand = N->getOperand(j);
10416       EVT OperandVT = Operand.getValueType();
10417       if (OperandVT.isVector()) {
10418         // A vector operand; extract a single element.
10419         EVT OperandEltVT = OperandVT.getVectorElementType();
10420         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10421                               Operand, getVectorIdxConstant(i, dl));
10422       } else {
10423         // A scalar operand; just use it as is.
10424         Operands[j] = Operand;
10425       }
10426     }
10427 
10428     switch (N->getOpcode()) {
10429     default: {
10430       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10431                                 N->getFlags()));
10432       break;
10433     }
10434     case ISD::VSELECT:
10435       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10436       break;
10437     case ISD::SHL:
10438     case ISD::SRA:
10439     case ISD::SRL:
10440     case ISD::ROTL:
10441     case ISD::ROTR:
10442       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10443                                getShiftAmountOperand(Operands[0].getValueType(),
10444                                                      Operands[1])));
10445       break;
10446     case ISD::SIGN_EXTEND_INREG: {
10447       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10448       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10449                                 Operands[0],
10450                                 getValueType(ExtVT)));
10451     }
10452     }
10453   }
10454 
10455   for (; i < ResNE; ++i)
10456     Scalars.push_back(getUNDEF(EltVT));
10457 
10458   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10459   return getBuildVector(VecVT, dl, Scalars);
10460 }
10461 
10462 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10463     SDNode *N, unsigned ResNE) {
10464   unsigned Opcode = N->getOpcode();
10465   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10466           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10467           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10468          "Expected an overflow opcode");
10469 
10470   EVT ResVT = N->getValueType(0);
10471   EVT OvVT = N->getValueType(1);
10472   EVT ResEltVT = ResVT.getVectorElementType();
10473   EVT OvEltVT = OvVT.getVectorElementType();
10474   SDLoc dl(N);
10475 
10476   // If ResNE is 0, fully unroll the vector op.
10477   unsigned NE = ResVT.getVectorNumElements();
10478   if (ResNE == 0)
10479     ResNE = NE;
10480   else if (NE > ResNE)
10481     NE = ResNE;
10482 
10483   SmallVector<SDValue, 8> LHSScalars;
10484   SmallVector<SDValue, 8> RHSScalars;
10485   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10486   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10487 
10488   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10489   SDVTList VTs = getVTList(ResEltVT, SVT);
10490   SmallVector<SDValue, 8> ResScalars;
10491   SmallVector<SDValue, 8> OvScalars;
10492   for (unsigned i = 0; i < NE; ++i) {
10493     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10494     SDValue Ov =
10495         getSelect(dl, OvEltVT, Res.getValue(1),
10496                   getBoolConstant(true, dl, OvEltVT, ResVT),
10497                   getConstant(0, dl, OvEltVT));
10498 
10499     ResScalars.push_back(Res);
10500     OvScalars.push_back(Ov);
10501   }
10502 
10503   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10504   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10505 
10506   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10507   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10508   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10509                         getBuildVector(NewOvVT, dl, OvScalars));
10510 }
10511 
10512 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10513                                                   LoadSDNode *Base,
10514                                                   unsigned Bytes,
10515                                                   int Dist) const {
10516   if (LD->isVolatile() || Base->isVolatile())
10517     return false;
10518   // TODO: probably too restrictive for atomics, revisit
10519   if (!LD->isSimple())
10520     return false;
10521   if (LD->isIndexed() || Base->isIndexed())
10522     return false;
10523   if (LD->getChain() != Base->getChain())
10524     return false;
10525   EVT VT = LD->getValueType(0);
10526   if (VT.getSizeInBits() / 8 != Bytes)
10527     return false;
10528 
10529   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10530   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10531 
10532   int64_t Offset = 0;
10533   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10534     return (Dist * Bytes == Offset);
10535   return false;
10536 }
10537 
10538 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10539 /// if it cannot be inferred.
10540 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10541   // If this is a GlobalAddress + cst, return the alignment.
10542   const GlobalValue *GV = nullptr;
10543   int64_t GVOffset = 0;
10544   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10545     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10546     KnownBits Known(PtrWidth);
10547     llvm::computeKnownBits(GV, Known, getDataLayout());
10548     unsigned AlignBits = Known.countMinTrailingZeros();
10549     if (AlignBits)
10550       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10551   }
10552 
10553   // If this is a direct reference to a stack slot, use information about the
10554   // stack slot's alignment.
10555   int FrameIdx = INT_MIN;
10556   int64_t FrameOffset = 0;
10557   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10558     FrameIdx = FI->getIndex();
10559   } else if (isBaseWithConstantOffset(Ptr) &&
10560              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10561     // Handle FI+Cst
10562     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10563     FrameOffset = Ptr.getConstantOperandVal(1);
10564   }
10565 
10566   if (FrameIdx != INT_MIN) {
10567     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10568     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10569   }
10570 
10571   return None;
10572 }
10573 
10574 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10575 /// which is split (or expanded) into two not necessarily identical pieces.
10576 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10577   // Currently all types are split in half.
10578   EVT LoVT, HiVT;
10579   if (!VT.isVector())
10580     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10581   else
10582     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10583 
10584   return std::make_pair(LoVT, HiVT);
10585 }
10586 
10587 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10588 /// type, dependent on an enveloping VT that has been split into two identical
10589 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10590 std::pair<EVT, EVT>
10591 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10592                                        bool *HiIsEmpty) const {
10593   EVT EltTp = VT.getVectorElementType();
10594   // Examples:
10595   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10596   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10597   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10598   //   etc.
10599   ElementCount VTNumElts = VT.getVectorElementCount();
10600   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10601   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10602          "Mixing fixed width and scalable vectors when enveloping a type");
10603   EVT LoVT, HiVT;
10604   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10605     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10606     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10607     *HiIsEmpty = false;
10608   } else {
10609     // Flag that hi type has zero storage size, but return split envelop type
10610     // (this would be easier if vector types with zero elements were allowed).
10611     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10612     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10613     *HiIsEmpty = true;
10614   }
10615   return std::make_pair(LoVT, HiVT);
10616 }
10617 
10618 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10619 /// low/high part.
10620 std::pair<SDValue, SDValue>
10621 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10622                           const EVT &HiVT) {
10623   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10624          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10625          "Splitting vector with an invalid mixture of fixed and scalable "
10626          "vector types");
10627   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10628              N.getValueType().getVectorMinNumElements() &&
10629          "More vector elements requested than available!");
10630   SDValue Lo, Hi;
10631   Lo =
10632       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10633   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10634   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10635   // IDX with the runtime scaling factor of the result vector type. For
10636   // fixed-width result vectors, that runtime scaling factor is 1.
10637   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10638                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10639   return std::make_pair(Lo, Hi);
10640 }
10641 
10642 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
10643                                                    const SDLoc &DL) {
10644   // Split the vector length parameter.
10645   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
10646   EVT VT = N.getValueType();
10647   assert(VecVT.getVectorElementCount().isKnownEven() &&
10648          "Expecting the mask to be an evenly-sized vector");
10649   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
10650   SDValue HalfNumElts =
10651       VecVT.isFixedLengthVector()
10652           ? getConstant(HalfMinNumElts, DL, VT)
10653           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
10654   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
10655   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
10656   return std::make_pair(Lo, Hi);
10657 }
10658 
10659 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10660 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10661   EVT VT = N.getValueType();
10662   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10663                                 NextPowerOf2(VT.getVectorNumElements()));
10664   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10665                  getVectorIdxConstant(0, DL));
10666 }
10667 
10668 void SelectionDAG::ExtractVectorElements(SDValue Op,
10669                                          SmallVectorImpl<SDValue> &Args,
10670                                          unsigned Start, unsigned Count,
10671                                          EVT EltVT) {
10672   EVT VT = Op.getValueType();
10673   if (Count == 0)
10674     Count = VT.getVectorNumElements();
10675   if (EltVT == EVT())
10676     EltVT = VT.getVectorElementType();
10677   SDLoc SL(Op);
10678   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10679     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10680                            getVectorIdxConstant(i, SL)));
10681   }
10682 }
10683 
10684 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10685 unsigned GlobalAddressSDNode::getAddressSpace() const {
10686   return getGlobal()->getType()->getAddressSpace();
10687 }
10688 
10689 Type *ConstantPoolSDNode::getType() const {
10690   if (isMachineConstantPoolEntry())
10691     return Val.MachineCPVal->getType();
10692   return Val.ConstVal->getType();
10693 }
10694 
10695 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10696                                         unsigned &SplatBitSize,
10697                                         bool &HasAnyUndefs,
10698                                         unsigned MinSplatBits,
10699                                         bool IsBigEndian) const {
10700   EVT VT = getValueType(0);
10701   assert(VT.isVector() && "Expected a vector type");
10702   unsigned VecWidth = VT.getSizeInBits();
10703   if (MinSplatBits > VecWidth)
10704     return false;
10705 
10706   // FIXME: The widths are based on this node's type, but build vectors can
10707   // truncate their operands.
10708   SplatValue = APInt(VecWidth, 0);
10709   SplatUndef = APInt(VecWidth, 0);
10710 
10711   // Get the bits. Bits with undefined values (when the corresponding element
10712   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10713   // in SplatValue. If any of the values are not constant, give up and return
10714   // false.
10715   unsigned int NumOps = getNumOperands();
10716   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10717   unsigned EltWidth = VT.getScalarSizeInBits();
10718 
10719   for (unsigned j = 0; j < NumOps; ++j) {
10720     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10721     SDValue OpVal = getOperand(i);
10722     unsigned BitPos = j * EltWidth;
10723 
10724     if (OpVal.isUndef())
10725       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10726     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10727       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10728     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10729       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10730     else
10731       return false;
10732   }
10733 
10734   // The build_vector is all constants or undefs. Find the smallest element
10735   // size that splats the vector.
10736   HasAnyUndefs = (SplatUndef != 0);
10737 
10738   // FIXME: This does not work for vectors with elements less than 8 bits.
10739   while (VecWidth > 8) {
10740     unsigned HalfSize = VecWidth / 2;
10741     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10742     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10743     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10744     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10745 
10746     // If the two halves do not match (ignoring undef bits), stop here.
10747     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10748         MinSplatBits > HalfSize)
10749       break;
10750 
10751     SplatValue = HighValue | LowValue;
10752     SplatUndef = HighUndef & LowUndef;
10753 
10754     VecWidth = HalfSize;
10755   }
10756 
10757   SplatBitSize = VecWidth;
10758   return true;
10759 }
10760 
10761 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10762                                          BitVector *UndefElements) const {
10763   unsigned NumOps = getNumOperands();
10764   if (UndefElements) {
10765     UndefElements->clear();
10766     UndefElements->resize(NumOps);
10767   }
10768   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10769   if (!DemandedElts)
10770     return SDValue();
10771   SDValue Splatted;
10772   for (unsigned i = 0; i != NumOps; ++i) {
10773     if (!DemandedElts[i])
10774       continue;
10775     SDValue Op = getOperand(i);
10776     if (Op.isUndef()) {
10777       if (UndefElements)
10778         (*UndefElements)[i] = true;
10779     } else if (!Splatted) {
10780       Splatted = Op;
10781     } else if (Splatted != Op) {
10782       return SDValue();
10783     }
10784   }
10785 
10786   if (!Splatted) {
10787     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10788     assert(getOperand(FirstDemandedIdx).isUndef() &&
10789            "Can only have a splat without a constant for all undefs.");
10790     return getOperand(FirstDemandedIdx);
10791   }
10792 
10793   return Splatted;
10794 }
10795 
10796 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10797   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10798   return getSplatValue(DemandedElts, UndefElements);
10799 }
10800 
10801 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10802                                             SmallVectorImpl<SDValue> &Sequence,
10803                                             BitVector *UndefElements) const {
10804   unsigned NumOps = getNumOperands();
10805   Sequence.clear();
10806   if (UndefElements) {
10807     UndefElements->clear();
10808     UndefElements->resize(NumOps);
10809   }
10810   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10811   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10812     return false;
10813 
10814   // Set the undefs even if we don't find a sequence (like getSplatValue).
10815   if (UndefElements)
10816     for (unsigned I = 0; I != NumOps; ++I)
10817       if (DemandedElts[I] && getOperand(I).isUndef())
10818         (*UndefElements)[I] = true;
10819 
10820   // Iteratively widen the sequence length looking for repetitions.
10821   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10822     Sequence.append(SeqLen, SDValue());
10823     for (unsigned I = 0; I != NumOps; ++I) {
10824       if (!DemandedElts[I])
10825         continue;
10826       SDValue &SeqOp = Sequence[I % SeqLen];
10827       SDValue Op = getOperand(I);
10828       if (Op.isUndef()) {
10829         if (!SeqOp)
10830           SeqOp = Op;
10831         continue;
10832       }
10833       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10834         Sequence.clear();
10835         break;
10836       }
10837       SeqOp = Op;
10838     }
10839     if (!Sequence.empty())
10840       return true;
10841   }
10842 
10843   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10844   return false;
10845 }
10846 
10847 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10848                                             BitVector *UndefElements) const {
10849   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10850   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10851 }
10852 
10853 ConstantSDNode *
10854 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10855                                         BitVector *UndefElements) const {
10856   return dyn_cast_or_null<ConstantSDNode>(
10857       getSplatValue(DemandedElts, UndefElements));
10858 }
10859 
10860 ConstantSDNode *
10861 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10862   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10863 }
10864 
10865 ConstantFPSDNode *
10866 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10867                                           BitVector *UndefElements) const {
10868   return dyn_cast_or_null<ConstantFPSDNode>(
10869       getSplatValue(DemandedElts, UndefElements));
10870 }
10871 
10872 ConstantFPSDNode *
10873 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10874   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10875 }
10876 
10877 int32_t
10878 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10879                                                    uint32_t BitWidth) const {
10880   if (ConstantFPSDNode *CN =
10881           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10882     bool IsExact;
10883     APSInt IntVal(BitWidth);
10884     const APFloat &APF = CN->getValueAPF();
10885     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10886             APFloat::opOK ||
10887         !IsExact)
10888       return -1;
10889 
10890     return IntVal.exactLogBase2();
10891   }
10892   return -1;
10893 }
10894 
10895 bool BuildVectorSDNode::getConstantRawBits(
10896     bool IsLittleEndian, unsigned DstEltSizeInBits,
10897     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
10898   // Early-out if this contains anything but Undef/Constant/ConstantFP.
10899   if (!isConstant())
10900     return false;
10901 
10902   unsigned NumSrcOps = getNumOperands();
10903   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
10904   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10905          "Invalid bitcast scale");
10906 
10907   // Extract raw src bits.
10908   SmallVector<APInt> SrcBitElements(NumSrcOps,
10909                                     APInt::getNullValue(SrcEltSizeInBits));
10910   BitVector SrcUndeElements(NumSrcOps, false);
10911 
10912   for (unsigned I = 0; I != NumSrcOps; ++I) {
10913     SDValue Op = getOperand(I);
10914     if (Op.isUndef()) {
10915       SrcUndeElements.set(I);
10916       continue;
10917     }
10918     auto *CInt = dyn_cast<ConstantSDNode>(Op);
10919     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
10920     assert((CInt || CFP) && "Unknown constant");
10921     SrcBitElements[I] =
10922         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
10923              : CFP->getValueAPF().bitcastToAPInt();
10924   }
10925 
10926   // Recast to dst width.
10927   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
10928                 SrcBitElements, UndefElements, SrcUndeElements);
10929   return true;
10930 }
10931 
10932 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
10933                                       unsigned DstEltSizeInBits,
10934                                       SmallVectorImpl<APInt> &DstBitElements,
10935                                       ArrayRef<APInt> SrcBitElements,
10936                                       BitVector &DstUndefElements,
10937                                       const BitVector &SrcUndefElements) {
10938   unsigned NumSrcOps = SrcBitElements.size();
10939   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
10940   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10941          "Invalid bitcast scale");
10942   assert(NumSrcOps == SrcUndefElements.size() &&
10943          "Vector size mismatch");
10944 
10945   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
10946   DstUndefElements.clear();
10947   DstUndefElements.resize(NumDstOps, false);
10948   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
10949 
10950   // Concatenate src elements constant bits together into dst element.
10951   if (SrcEltSizeInBits <= DstEltSizeInBits) {
10952     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
10953     for (unsigned I = 0; I != NumDstOps; ++I) {
10954       DstUndefElements.set(I);
10955       APInt &DstBits = DstBitElements[I];
10956       for (unsigned J = 0; J != Scale; ++J) {
10957         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
10958         if (SrcUndefElements[Idx])
10959           continue;
10960         DstUndefElements.reset(I);
10961         const APInt &SrcBits = SrcBitElements[Idx];
10962         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
10963                "Illegal constant bitwidths");
10964         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
10965       }
10966     }
10967     return;
10968   }
10969 
10970   // Split src element constant bits into dst elements.
10971   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
10972   for (unsigned I = 0; I != NumSrcOps; ++I) {
10973     if (SrcUndefElements[I]) {
10974       DstUndefElements.set(I * Scale, (I + 1) * Scale);
10975       continue;
10976     }
10977     const APInt &SrcBits = SrcBitElements[I];
10978     for (unsigned J = 0; J != Scale; ++J) {
10979       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
10980       APInt &DstBits = DstBitElements[Idx];
10981       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
10982     }
10983   }
10984 }
10985 
10986 bool BuildVectorSDNode::isConstant() const {
10987   for (const SDValue &Op : op_values()) {
10988     unsigned Opc = Op.getOpcode();
10989     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10990       return false;
10991   }
10992   return true;
10993 }
10994 
10995 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10996   // Find the first non-undef value in the shuffle mask.
10997   unsigned i, e;
10998   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10999     /* search */;
11000 
11001   // If all elements are undefined, this shuffle can be considered a splat
11002   // (although it should eventually get simplified away completely).
11003   if (i == e)
11004     return true;
11005 
11006   // Make sure all remaining elements are either undef or the same as the first
11007   // non-undef value.
11008   for (int Idx = Mask[i]; i != e; ++i)
11009     if (Mask[i] >= 0 && Mask[i] != Idx)
11010       return false;
11011   return true;
11012 }
11013 
11014 // Returns the SDNode if it is a constant integer BuildVector
11015 // or constant integer.
11016 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11017   if (isa<ConstantSDNode>(N))
11018     return N.getNode();
11019   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11020     return N.getNode();
11021   // Treat a GlobalAddress supporting constant offset folding as a
11022   // constant integer.
11023   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11024     if (GA->getOpcode() == ISD::GlobalAddress &&
11025         TLI->isOffsetFoldingLegal(GA))
11026       return GA;
11027   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11028       isa<ConstantSDNode>(N.getOperand(0)))
11029     return N.getNode();
11030   return nullptr;
11031 }
11032 
11033 // Returns the SDNode if it is a constant float BuildVector
11034 // or constant float.
11035 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11036   if (isa<ConstantFPSDNode>(N))
11037     return N.getNode();
11038 
11039   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11040     return N.getNode();
11041 
11042   return nullptr;
11043 }
11044 
11045 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11046   assert(!Node->OperandList && "Node already has operands");
11047   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11048          "too many operands to fit into SDNode");
11049   SDUse *Ops = OperandRecycler.allocate(
11050       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11051 
11052   bool IsDivergent = false;
11053   for (unsigned I = 0; I != Vals.size(); ++I) {
11054     Ops[I].setUser(Node);
11055     Ops[I].setInitial(Vals[I]);
11056     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11057       IsDivergent |= Ops[I].getNode()->isDivergent();
11058   }
11059   Node->NumOperands = Vals.size();
11060   Node->OperandList = Ops;
11061   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11062     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11063     Node->SDNodeBits.IsDivergent = IsDivergent;
11064   }
11065   checkForCycles(Node);
11066 }
11067 
11068 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11069                                      SmallVectorImpl<SDValue> &Vals) {
11070   size_t Limit = SDNode::getMaxNumOperands();
11071   while (Vals.size() > Limit) {
11072     unsigned SliceIdx = Vals.size() - Limit;
11073     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11074     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11075     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11076     Vals.emplace_back(NewTF);
11077   }
11078   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11079 }
11080 
11081 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11082                                         EVT VT, SDNodeFlags Flags) {
11083   switch (Opcode) {
11084   default:
11085     return SDValue();
11086   case ISD::ADD:
11087   case ISD::OR:
11088   case ISD::XOR:
11089   case ISD::UMAX:
11090     return getConstant(0, DL, VT);
11091   case ISD::MUL:
11092     return getConstant(1, DL, VT);
11093   case ISD::AND:
11094   case ISD::UMIN:
11095     return getAllOnesConstant(DL, VT);
11096   case ISD::SMAX:
11097     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11098   case ISD::SMIN:
11099     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11100   case ISD::FADD:
11101     return getConstantFP(-0.0, DL, VT);
11102   case ISD::FMUL:
11103     return getConstantFP(1.0, DL, VT);
11104   case ISD::FMINNUM:
11105   case ISD::FMAXNUM: {
11106     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11107     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11108     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11109                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11110                         APFloat::getLargest(Semantics);
11111     if (Opcode == ISD::FMAXNUM)
11112       NeutralAF.changeSign();
11113 
11114     return getConstantFP(NeutralAF, DL, VT);
11115   }
11116   }
11117 }
11118 
11119 #ifndef NDEBUG
11120 static void checkForCyclesHelper(const SDNode *N,
11121                                  SmallPtrSetImpl<const SDNode*> &Visited,
11122                                  SmallPtrSetImpl<const SDNode*> &Checked,
11123                                  const llvm::SelectionDAG *DAG) {
11124   // If this node has already been checked, don't check it again.
11125   if (Checked.count(N))
11126     return;
11127 
11128   // If a node has already been visited on this depth-first walk, reject it as
11129   // a cycle.
11130   if (!Visited.insert(N).second) {
11131     errs() << "Detected cycle in SelectionDAG\n";
11132     dbgs() << "Offending node:\n";
11133     N->dumprFull(DAG); dbgs() << "\n";
11134     abort();
11135   }
11136 
11137   for (const SDValue &Op : N->op_values())
11138     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11139 
11140   Checked.insert(N);
11141   Visited.erase(N);
11142 }
11143 #endif
11144 
11145 void llvm::checkForCycles(const llvm::SDNode *N,
11146                           const llvm::SelectionDAG *DAG,
11147                           bool force) {
11148 #ifndef NDEBUG
11149   bool check = force;
11150 #ifdef EXPENSIVE_CHECKS
11151   check = true;
11152 #endif  // EXPENSIVE_CHECKS
11153   if (check) {
11154     assert(N && "Checking nonexistent SDNode");
11155     SmallPtrSet<const SDNode*, 32> visited;
11156     SmallPtrSet<const SDNode*, 32> checked;
11157     checkForCyclesHelper(N, visited, checked, DAG);
11158   }
11159 #endif  // !NDEBUG
11160 }
11161 
11162 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11163   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11164 }
11165