1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 return ISD::FADD; 377 case ISD::VECREDUCE_FMUL: 378 case ISD::VECREDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 return ISD::ADD; 382 case ISD::VECREDUCE_MUL: 383 return ISD::MUL; 384 case ISD::VECREDUCE_AND: 385 return ISD::AND; 386 case ISD::VECREDUCE_OR: 387 return ISD::OR; 388 case ISD::VECREDUCE_XOR: 389 return ISD::XOR; 390 case ISD::VECREDUCE_SMAX: 391 return ISD::SMAX; 392 case ISD::VECREDUCE_SMIN: 393 return ISD::SMIN; 394 case ISD::VECREDUCE_UMAX: 395 return ISD::UMAX; 396 case ISD::VECREDUCE_UMIN: 397 return ISD::UMIN; 398 case ISD::VECREDUCE_FMAX: 399 return ISD::FMAXNUM; 400 case ISD::VECREDUCE_FMIN: 401 return ISD::FMINNUM; 402 } 403 } 404 405 bool ISD::isVPOpcode(unsigned Opcode) { 406 switch (Opcode) { 407 default: 408 return false; 409 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 410 case ISD::VPSD: \ 411 return true; 412 #include "llvm/IR/VPIntrinsics.def" 413 } 414 } 415 416 bool ISD::isVPBinaryOp(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 break; 420 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 421 #define VP_PROPERTY_BINARYOP return true; 422 #define END_REGISTER_VP_SDNODE(VPSD) break; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 return false; 426 } 427 428 bool ISD::isVPReduction(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 /// The operand position of the vector mask. 441 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 442 switch (Opcode) { 443 default: 444 return None; 445 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 446 case ISD::VPSD: \ 447 return MASKPOS; 448 #include "llvm/IR/VPIntrinsics.def" 449 } 450 } 451 452 /// The operand position of the explicit vector length parameter. 453 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 458 case ISD::VPSD: \ 459 return EVLPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 465 switch (ExtType) { 466 case ISD::EXTLOAD: 467 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 468 case ISD::SEXTLOAD: 469 return ISD::SIGN_EXTEND; 470 case ISD::ZEXTLOAD: 471 return ISD::ZERO_EXTEND; 472 default: 473 break; 474 } 475 476 llvm_unreachable("Invalid LoadExtType"); 477 } 478 479 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 480 // To perform this operation, we just need to swap the L and G bits of the 481 // operation. 482 unsigned OldL = (Operation >> 2) & 1; 483 unsigned OldG = (Operation >> 1) & 1; 484 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 485 (OldL << 1) | // New G bit 486 (OldG << 2)); // New L bit. 487 } 488 489 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 490 unsigned Operation = Op; 491 if (isIntegerLike) 492 Operation ^= 7; // Flip L, G, E bits, but not U. 493 else 494 Operation ^= 15; // Flip all of the condition bits. 495 496 if (Operation > ISD::SETTRUE2) 497 Operation &= ~8; // Don't let N and U bits get set. 498 499 return ISD::CondCode(Operation); 500 } 501 502 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 503 return getSetCCInverseImpl(Op, Type.isInteger()); 504 } 505 506 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 507 bool isIntegerLike) { 508 return getSetCCInverseImpl(Op, isIntegerLike); 509 } 510 511 /// For an integer comparison, return 1 if the comparison is a signed operation 512 /// and 2 if the result is an unsigned comparison. Return zero if the operation 513 /// does not depend on the sign of the input (setne and seteq). 514 static int isSignedOp(ISD::CondCode Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Illegal integer setcc operation!"); 517 case ISD::SETEQ: 518 case ISD::SETNE: return 0; 519 case ISD::SETLT: 520 case ISD::SETLE: 521 case ISD::SETGT: 522 case ISD::SETGE: return 1; 523 case ISD::SETULT: 524 case ISD::SETULE: 525 case ISD::SETUGT: 526 case ISD::SETUGE: return 2; 527 } 528 } 529 530 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 531 EVT Type) { 532 bool IsInteger = Type.isInteger(); 533 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 534 // Cannot fold a signed integer setcc with an unsigned integer setcc. 535 return ISD::SETCC_INVALID; 536 537 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 538 539 // If the N and U bits get set, then the resultant comparison DOES suddenly 540 // care about orderedness, and it is true when ordered. 541 if (Op > ISD::SETTRUE2) 542 Op &= ~16; // Clear the U bit if the N bit is set. 543 544 // Canonicalize illegal integer setcc's. 545 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 546 Op = ISD::SETNE; 547 548 return ISD::CondCode(Op); 549 } 550 551 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 552 EVT Type) { 553 bool IsInteger = Type.isInteger(); 554 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 555 // Cannot fold a signed setcc with an unsigned setcc. 556 return ISD::SETCC_INVALID; 557 558 // Combine all of the condition bits. 559 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 560 561 // Canonicalize illegal integer setcc's. 562 if (IsInteger) { 563 switch (Result) { 564 default: break; 565 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 566 case ISD::SETOEQ: // SETEQ & SETU[LG]E 567 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 568 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 569 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 570 } 571 } 572 573 return Result; 574 } 575 576 //===----------------------------------------------------------------------===// 577 // SDNode Profile Support 578 //===----------------------------------------------------------------------===// 579 580 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 581 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 582 ID.AddInteger(OpC); 583 } 584 585 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 586 /// solely with their pointer. 587 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 588 ID.AddPointer(VTList.VTs); 589 } 590 591 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 592 static void AddNodeIDOperands(FoldingSetNodeID &ID, 593 ArrayRef<SDValue> Ops) { 594 for (auto& Op : Ops) { 595 ID.AddPointer(Op.getNode()); 596 ID.AddInteger(Op.getResNo()); 597 } 598 } 599 600 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 601 static void AddNodeIDOperands(FoldingSetNodeID &ID, 602 ArrayRef<SDUse> Ops) { 603 for (auto& Op : Ops) { 604 ID.AddPointer(Op.getNode()); 605 ID.AddInteger(Op.getResNo()); 606 } 607 } 608 609 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 610 SDVTList VTList, ArrayRef<SDValue> OpList) { 611 AddNodeIDOpcode(ID, OpC); 612 AddNodeIDValueTypes(ID, VTList); 613 AddNodeIDOperands(ID, OpList); 614 } 615 616 /// If this is an SDNode with special info, add this info to the NodeID data. 617 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 618 switch (N->getOpcode()) { 619 case ISD::TargetExternalSymbol: 620 case ISD::ExternalSymbol: 621 case ISD::MCSymbol: 622 llvm_unreachable("Should only be used on nodes with operands"); 623 default: break; // Normal nodes don't need extra info. 624 case ISD::TargetConstant: 625 case ISD::Constant: { 626 const ConstantSDNode *C = cast<ConstantSDNode>(N); 627 ID.AddPointer(C->getConstantIntValue()); 628 ID.AddBoolean(C->isOpaque()); 629 break; 630 } 631 case ISD::TargetConstantFP: 632 case ISD::ConstantFP: 633 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 634 break; 635 case ISD::TargetGlobalAddress: 636 case ISD::GlobalAddress: 637 case ISD::TargetGlobalTLSAddress: 638 case ISD::GlobalTLSAddress: { 639 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 640 ID.AddPointer(GA->getGlobal()); 641 ID.AddInteger(GA->getOffset()); 642 ID.AddInteger(GA->getTargetFlags()); 643 break; 644 } 645 case ISD::BasicBlock: 646 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 647 break; 648 case ISD::Register: 649 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 650 break; 651 case ISD::RegisterMask: 652 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 653 break; 654 case ISD::SRCVALUE: 655 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 656 break; 657 case ISD::FrameIndex: 658 case ISD::TargetFrameIndex: 659 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 660 break; 661 case ISD::LIFETIME_START: 662 case ISD::LIFETIME_END: 663 if (cast<LifetimeSDNode>(N)->hasOffset()) { 664 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 665 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 666 } 667 break; 668 case ISD::PSEUDO_PROBE: 669 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 670 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 671 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 672 break; 673 case ISD::JumpTable: 674 case ISD::TargetJumpTable: 675 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 676 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 677 break; 678 case ISD::ConstantPool: 679 case ISD::TargetConstantPool: { 680 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 681 ID.AddInteger(CP->getAlign().value()); 682 ID.AddInteger(CP->getOffset()); 683 if (CP->isMachineConstantPoolEntry()) 684 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 685 else 686 ID.AddPointer(CP->getConstVal()); 687 ID.AddInteger(CP->getTargetFlags()); 688 break; 689 } 690 case ISD::TargetIndex: { 691 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 692 ID.AddInteger(TI->getIndex()); 693 ID.AddInteger(TI->getOffset()); 694 ID.AddInteger(TI->getTargetFlags()); 695 break; 696 } 697 case ISD::LOAD: { 698 const LoadSDNode *LD = cast<LoadSDNode>(N); 699 ID.AddInteger(LD->getMemoryVT().getRawBits()); 700 ID.AddInteger(LD->getRawSubclassData()); 701 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 702 break; 703 } 704 case ISD::STORE: { 705 const StoreSDNode *ST = cast<StoreSDNode>(N); 706 ID.AddInteger(ST->getMemoryVT().getRawBits()); 707 ID.AddInteger(ST->getRawSubclassData()); 708 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 709 break; 710 } 711 case ISD::VP_LOAD: { 712 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 713 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 714 ID.AddInteger(ELD->getRawSubclassData()); 715 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 716 break; 717 } 718 case ISD::VP_STORE: { 719 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 720 ID.AddInteger(EST->getMemoryVT().getRawBits()); 721 ID.AddInteger(EST->getRawSubclassData()); 722 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 723 break; 724 } 725 case ISD::VP_GATHER: { 726 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 727 ID.AddInteger(EG->getMemoryVT().getRawBits()); 728 ID.AddInteger(EG->getRawSubclassData()); 729 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 730 break; 731 } 732 case ISD::VP_SCATTER: { 733 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 734 ID.AddInteger(ES->getMemoryVT().getRawBits()); 735 ID.AddInteger(ES->getRawSubclassData()); 736 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 737 break; 738 } 739 case ISD::MLOAD: { 740 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 741 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 742 ID.AddInteger(MLD->getRawSubclassData()); 743 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 744 break; 745 } 746 case ISD::MSTORE: { 747 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 748 ID.AddInteger(MST->getMemoryVT().getRawBits()); 749 ID.AddInteger(MST->getRawSubclassData()); 750 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 751 break; 752 } 753 case ISD::MGATHER: { 754 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 755 ID.AddInteger(MG->getMemoryVT().getRawBits()); 756 ID.AddInteger(MG->getRawSubclassData()); 757 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 758 break; 759 } 760 case ISD::MSCATTER: { 761 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 762 ID.AddInteger(MS->getMemoryVT().getRawBits()); 763 ID.AddInteger(MS->getRawSubclassData()); 764 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 765 break; 766 } 767 case ISD::ATOMIC_CMP_SWAP: 768 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 769 case ISD::ATOMIC_SWAP: 770 case ISD::ATOMIC_LOAD_ADD: 771 case ISD::ATOMIC_LOAD_SUB: 772 case ISD::ATOMIC_LOAD_AND: 773 case ISD::ATOMIC_LOAD_CLR: 774 case ISD::ATOMIC_LOAD_OR: 775 case ISD::ATOMIC_LOAD_XOR: 776 case ISD::ATOMIC_LOAD_NAND: 777 case ISD::ATOMIC_LOAD_MIN: 778 case ISD::ATOMIC_LOAD_MAX: 779 case ISD::ATOMIC_LOAD_UMIN: 780 case ISD::ATOMIC_LOAD_UMAX: 781 case ISD::ATOMIC_LOAD: 782 case ISD::ATOMIC_STORE: { 783 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 784 ID.AddInteger(AT->getMemoryVT().getRawBits()); 785 ID.AddInteger(AT->getRawSubclassData()); 786 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 787 break; 788 } 789 case ISD::PREFETCH: { 790 const MemSDNode *PF = cast<MemSDNode>(N); 791 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 792 break; 793 } 794 case ISD::VECTOR_SHUFFLE: { 795 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 796 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 797 i != e; ++i) 798 ID.AddInteger(SVN->getMaskElt(i)); 799 break; 800 } 801 case ISD::TargetBlockAddress: 802 case ISD::BlockAddress: { 803 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 804 ID.AddPointer(BA->getBlockAddress()); 805 ID.AddInteger(BA->getOffset()); 806 ID.AddInteger(BA->getTargetFlags()); 807 break; 808 } 809 } // end switch (N->getOpcode()) 810 811 // Target specific memory nodes could also have address spaces to check. 812 if (N->isTargetMemoryOpcode()) 813 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 814 } 815 816 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 817 /// data. 818 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 819 AddNodeIDOpcode(ID, N->getOpcode()); 820 // Add the return value info. 821 AddNodeIDValueTypes(ID, N->getVTList()); 822 // Add the operand info. 823 AddNodeIDOperands(ID, N->ops()); 824 825 // Handle SDNode leafs with special info. 826 AddNodeIDCustom(ID, N); 827 } 828 829 //===----------------------------------------------------------------------===// 830 // SelectionDAG Class 831 //===----------------------------------------------------------------------===// 832 833 /// doNotCSE - Return true if CSE should not be performed for this node. 834 static bool doNotCSE(SDNode *N) { 835 if (N->getValueType(0) == MVT::Glue) 836 return true; // Never CSE anything that produces a flag. 837 838 switch (N->getOpcode()) { 839 default: break; 840 case ISD::HANDLENODE: 841 case ISD::EH_LABEL: 842 return true; // Never CSE these nodes. 843 } 844 845 // Check that remaining values produced are not flags. 846 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 847 if (N->getValueType(i) == MVT::Glue) 848 return true; // Never CSE anything that produces a flag. 849 850 return false; 851 } 852 853 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 854 /// SelectionDAG. 855 void SelectionDAG::RemoveDeadNodes() { 856 // Create a dummy node (which is not added to allnodes), that adds a reference 857 // to the root node, preventing it from being deleted. 858 HandleSDNode Dummy(getRoot()); 859 860 SmallVector<SDNode*, 128> DeadNodes; 861 862 // Add all obviously-dead nodes to the DeadNodes worklist. 863 for (SDNode &Node : allnodes()) 864 if (Node.use_empty()) 865 DeadNodes.push_back(&Node); 866 867 RemoveDeadNodes(DeadNodes); 868 869 // If the root changed (e.g. it was a dead load, update the root). 870 setRoot(Dummy.getValue()); 871 } 872 873 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 874 /// given list, and any nodes that become unreachable as a result. 875 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 876 877 // Process the worklist, deleting the nodes and adding their uses to the 878 // worklist. 879 while (!DeadNodes.empty()) { 880 SDNode *N = DeadNodes.pop_back_val(); 881 // Skip to next node if we've already managed to delete the node. This could 882 // happen if replacing a node causes a node previously added to the node to 883 // be deleted. 884 if (N->getOpcode() == ISD::DELETED_NODE) 885 continue; 886 887 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 888 DUL->NodeDeleted(N, nullptr); 889 890 // Take the node out of the appropriate CSE map. 891 RemoveNodeFromCSEMaps(N); 892 893 // Next, brutally remove the operand list. This is safe to do, as there are 894 // no cycles in the graph. 895 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 896 SDUse &Use = *I++; 897 SDNode *Operand = Use.getNode(); 898 Use.set(SDValue()); 899 900 // Now that we removed this operand, see if there are no uses of it left. 901 if (Operand->use_empty()) 902 DeadNodes.push_back(Operand); 903 } 904 905 DeallocateNode(N); 906 } 907 } 908 909 void SelectionDAG::RemoveDeadNode(SDNode *N){ 910 SmallVector<SDNode*, 16> DeadNodes(1, N); 911 912 // Create a dummy node that adds a reference to the root node, preventing 913 // it from being deleted. (This matters if the root is an operand of the 914 // dead node.) 915 HandleSDNode Dummy(getRoot()); 916 917 RemoveDeadNodes(DeadNodes); 918 } 919 920 void SelectionDAG::DeleteNode(SDNode *N) { 921 // First take this out of the appropriate CSE map. 922 RemoveNodeFromCSEMaps(N); 923 924 // Finally, remove uses due to operands of this node, remove from the 925 // AllNodes list, and delete the node. 926 DeleteNodeNotInCSEMaps(N); 927 } 928 929 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 930 assert(N->getIterator() != AllNodes.begin() && 931 "Cannot delete the entry node!"); 932 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 933 934 // Drop all of the operands and decrement used node's use counts. 935 N->DropOperands(); 936 937 DeallocateNode(N); 938 } 939 940 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 941 assert(!(V->isVariadic() && isParameter)); 942 if (isParameter) 943 ByvalParmDbgValues.push_back(V); 944 else 945 DbgValues.push_back(V); 946 for (const SDNode *Node : V->getSDNodes()) 947 if (Node) 948 DbgValMap[Node].push_back(V); 949 } 950 951 void SDDbgInfo::erase(const SDNode *Node) { 952 DbgValMapType::iterator I = DbgValMap.find(Node); 953 if (I == DbgValMap.end()) 954 return; 955 for (auto &Val: I->second) 956 Val->setIsInvalidated(); 957 DbgValMap.erase(I); 958 } 959 960 void SelectionDAG::DeallocateNode(SDNode *N) { 961 // If we have operands, deallocate them. 962 removeOperands(N); 963 964 NodeAllocator.Deallocate(AllNodes.remove(N)); 965 966 // Set the opcode to DELETED_NODE to help catch bugs when node 967 // memory is reallocated. 968 // FIXME: There are places in SDag that have grown a dependency on the opcode 969 // value in the released node. 970 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 971 N->NodeType = ISD::DELETED_NODE; 972 973 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 974 // them and forget about that node. 975 DbgInfo->erase(N); 976 } 977 978 #ifndef NDEBUG 979 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 980 static void VerifySDNode(SDNode *N) { 981 switch (N->getOpcode()) { 982 default: 983 break; 984 case ISD::BUILD_PAIR: { 985 EVT VT = N->getValueType(0); 986 assert(N->getNumValues() == 1 && "Too many results!"); 987 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 988 "Wrong return type!"); 989 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 990 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 991 "Mismatched operand types!"); 992 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 993 "Wrong operand type!"); 994 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 995 "Wrong return type size"); 996 break; 997 } 998 case ISD::BUILD_VECTOR: { 999 assert(N->getNumValues() == 1 && "Too many results!"); 1000 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1001 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1002 "Wrong number of operands!"); 1003 EVT EltVT = N->getValueType(0).getVectorElementType(); 1004 for (const SDUse &Op : N->ops()) { 1005 assert((Op.getValueType() == EltVT || 1006 (EltVT.isInteger() && Op.getValueType().isInteger() && 1007 EltVT.bitsLE(Op.getValueType()))) && 1008 "Wrong operand type!"); 1009 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1010 "Operands must all have the same type"); 1011 } 1012 break; 1013 } 1014 } 1015 } 1016 #endif // NDEBUG 1017 1018 /// Insert a newly allocated node into the DAG. 1019 /// 1020 /// Handles insertion into the all nodes list and CSE map, as well as 1021 /// verification and other common operations when a new node is allocated. 1022 void SelectionDAG::InsertNode(SDNode *N) { 1023 AllNodes.push_back(N); 1024 #ifndef NDEBUG 1025 N->PersistentId = NextPersistentId++; 1026 VerifySDNode(N); 1027 #endif 1028 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1029 DUL->NodeInserted(N); 1030 } 1031 1032 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1033 /// correspond to it. This is useful when we're about to delete or repurpose 1034 /// the node. We don't want future request for structurally identical nodes 1035 /// to return N anymore. 1036 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1037 bool Erased = false; 1038 switch (N->getOpcode()) { 1039 case ISD::HANDLENODE: return false; // noop. 1040 case ISD::CONDCODE: 1041 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1042 "Cond code doesn't exist!"); 1043 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1044 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1045 break; 1046 case ISD::ExternalSymbol: 1047 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1048 break; 1049 case ISD::TargetExternalSymbol: { 1050 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1051 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1052 ESN->getSymbol(), ESN->getTargetFlags())); 1053 break; 1054 } 1055 case ISD::MCSymbol: { 1056 auto *MCSN = cast<MCSymbolSDNode>(N); 1057 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1058 break; 1059 } 1060 case ISD::VALUETYPE: { 1061 EVT VT = cast<VTSDNode>(N)->getVT(); 1062 if (VT.isExtended()) { 1063 Erased = ExtendedValueTypeNodes.erase(VT); 1064 } else { 1065 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1066 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1067 } 1068 break; 1069 } 1070 default: 1071 // Remove it from the CSE Map. 1072 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1073 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1074 Erased = CSEMap.RemoveNode(N); 1075 break; 1076 } 1077 #ifndef NDEBUG 1078 // Verify that the node was actually in one of the CSE maps, unless it has a 1079 // flag result (which cannot be CSE'd) or is one of the special cases that are 1080 // not subject to CSE. 1081 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1082 !N->isMachineOpcode() && !doNotCSE(N)) { 1083 N->dump(this); 1084 dbgs() << "\n"; 1085 llvm_unreachable("Node is not in map!"); 1086 } 1087 #endif 1088 return Erased; 1089 } 1090 1091 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1092 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1093 /// node already exists, in which case transfer all its users to the existing 1094 /// node. This transfer can potentially trigger recursive merging. 1095 void 1096 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1097 // For node types that aren't CSE'd, just act as if no identical node 1098 // already exists. 1099 if (!doNotCSE(N)) { 1100 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1101 if (Existing != N) { 1102 // If there was already an existing matching node, use ReplaceAllUsesWith 1103 // to replace the dead one with the existing one. This can cause 1104 // recursive merging of other unrelated nodes down the line. 1105 ReplaceAllUsesWith(N, Existing); 1106 1107 // N is now dead. Inform the listeners and delete it. 1108 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1109 DUL->NodeDeleted(N, Existing); 1110 DeleteNodeNotInCSEMaps(N); 1111 return; 1112 } 1113 } 1114 1115 // If the node doesn't already exist, we updated it. Inform listeners. 1116 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1117 DUL->NodeUpdated(N); 1118 } 1119 1120 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1121 /// were replaced with those specified. If this node is never memoized, 1122 /// return null, otherwise return a pointer to the slot it would take. If a 1123 /// node already exists with these operands, the slot will be non-null. 1124 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1125 void *&InsertPos) { 1126 if (doNotCSE(N)) 1127 return nullptr; 1128 1129 SDValue Ops[] = { Op }; 1130 FoldingSetNodeID ID; 1131 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1132 AddNodeIDCustom(ID, N); 1133 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1134 if (Node) 1135 Node->intersectFlagsWith(N->getFlags()); 1136 return Node; 1137 } 1138 1139 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1140 /// were replaced with those specified. If this node is never memoized, 1141 /// return null, otherwise return a pointer to the slot it would take. If a 1142 /// node already exists with these operands, the slot will be non-null. 1143 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1144 SDValue Op1, SDValue Op2, 1145 void *&InsertPos) { 1146 if (doNotCSE(N)) 1147 return nullptr; 1148 1149 SDValue Ops[] = { Op1, Op2 }; 1150 FoldingSetNodeID ID; 1151 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1152 AddNodeIDCustom(ID, N); 1153 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1154 if (Node) 1155 Node->intersectFlagsWith(N->getFlags()); 1156 return Node; 1157 } 1158 1159 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1160 /// were replaced with those specified. If this node is never memoized, 1161 /// return null, otherwise return a pointer to the slot it would take. If a 1162 /// node already exists with these operands, the slot will be non-null. 1163 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1164 void *&InsertPos) { 1165 if (doNotCSE(N)) 1166 return nullptr; 1167 1168 FoldingSetNodeID ID; 1169 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1170 AddNodeIDCustom(ID, N); 1171 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1172 if (Node) 1173 Node->intersectFlagsWith(N->getFlags()); 1174 return Node; 1175 } 1176 1177 Align SelectionDAG::getEVTAlign(EVT VT) const { 1178 Type *Ty = VT == MVT::iPTR ? 1179 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1180 VT.getTypeForEVT(*getContext()); 1181 1182 return getDataLayout().getABITypeAlign(Ty); 1183 } 1184 1185 // EntryNode could meaningfully have debug info if we can find it... 1186 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1187 : TM(tm), OptLevel(OL), 1188 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1189 Root(getEntryNode()) { 1190 InsertNode(&EntryNode); 1191 DbgInfo = new SDDbgInfo(); 1192 } 1193 1194 void SelectionDAG::init(MachineFunction &NewMF, 1195 OptimizationRemarkEmitter &NewORE, 1196 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1197 LegacyDivergenceAnalysis * Divergence, 1198 ProfileSummaryInfo *PSIin, 1199 BlockFrequencyInfo *BFIin) { 1200 MF = &NewMF; 1201 SDAGISelPass = PassPtr; 1202 ORE = &NewORE; 1203 TLI = getSubtarget().getTargetLowering(); 1204 TSI = getSubtarget().getSelectionDAGInfo(); 1205 LibInfo = LibraryInfo; 1206 Context = &MF->getFunction().getContext(); 1207 DA = Divergence; 1208 PSI = PSIin; 1209 BFI = BFIin; 1210 } 1211 1212 SelectionDAG::~SelectionDAG() { 1213 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1214 allnodes_clear(); 1215 OperandRecycler.clear(OperandAllocator); 1216 delete DbgInfo; 1217 } 1218 1219 bool SelectionDAG::shouldOptForSize() const { 1220 return MF->getFunction().hasOptSize() || 1221 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1222 } 1223 1224 void SelectionDAG::allnodes_clear() { 1225 assert(&*AllNodes.begin() == &EntryNode); 1226 AllNodes.remove(AllNodes.begin()); 1227 while (!AllNodes.empty()) 1228 DeallocateNode(&AllNodes.front()); 1229 #ifndef NDEBUG 1230 NextPersistentId = 0; 1231 #endif 1232 } 1233 1234 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1235 void *&InsertPos) { 1236 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1237 if (N) { 1238 switch (N->getOpcode()) { 1239 default: break; 1240 case ISD::Constant: 1241 case ISD::ConstantFP: 1242 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1243 "debug location. Use another overload."); 1244 } 1245 } 1246 return N; 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 const SDLoc &DL, void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 case ISD::Constant: 1255 case ISD::ConstantFP: 1256 // Erase debug location from the node if the node is used at several 1257 // different places. Do not propagate one location to all uses as it 1258 // will cause a worse single stepping debugging experience. 1259 if (N->getDebugLoc() != DL.getDebugLoc()) 1260 N->setDebugLoc(DebugLoc()); 1261 break; 1262 default: 1263 // When the node's point of use is located earlier in the instruction 1264 // sequence than its prior point of use, update its debug info to the 1265 // earlier location. 1266 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1267 N->setDebugLoc(DL.getDebugLoc()); 1268 break; 1269 } 1270 } 1271 return N; 1272 } 1273 1274 void SelectionDAG::clear() { 1275 allnodes_clear(); 1276 OperandRecycler.clear(OperandAllocator); 1277 OperandAllocator.Reset(); 1278 CSEMap.clear(); 1279 1280 ExtendedValueTypeNodes.clear(); 1281 ExternalSymbols.clear(); 1282 TargetExternalSymbols.clear(); 1283 MCSymbols.clear(); 1284 SDCallSiteDbgInfo.clear(); 1285 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1286 static_cast<CondCodeSDNode*>(nullptr)); 1287 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1288 static_cast<SDNode*>(nullptr)); 1289 1290 EntryNode.UseList = nullptr; 1291 InsertNode(&EntryNode); 1292 Root = getEntryNode(); 1293 DbgInfo->clear(); 1294 } 1295 1296 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1297 return VT.bitsGT(Op.getValueType()) 1298 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1299 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1300 } 1301 1302 std::pair<SDValue, SDValue> 1303 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1304 const SDLoc &DL, EVT VT) { 1305 assert(!VT.bitsEq(Op.getValueType()) && 1306 "Strict no-op FP extend/round not allowed."); 1307 SDValue Res = 1308 VT.bitsGT(Op.getValueType()) 1309 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1310 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1311 {Chain, Op, getIntPtrConstant(0, DL)}); 1312 1313 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1314 } 1315 1316 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1317 return VT.bitsGT(Op.getValueType()) ? 1318 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1319 getNode(ISD::TRUNCATE, DL, VT, Op); 1320 } 1321 1322 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1323 return VT.bitsGT(Op.getValueType()) ? 1324 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1325 getNode(ISD::TRUNCATE, DL, VT, Op); 1326 } 1327 1328 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1329 return VT.bitsGT(Op.getValueType()) ? 1330 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1331 getNode(ISD::TRUNCATE, DL, VT, Op); 1332 } 1333 1334 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1335 EVT OpVT) { 1336 if (VT.bitsLE(Op.getValueType())) 1337 return getNode(ISD::TRUNCATE, SL, VT, Op); 1338 1339 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1340 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1344 EVT OpVT = Op.getValueType(); 1345 assert(VT.isInteger() && OpVT.isInteger() && 1346 "Cannot getZeroExtendInReg FP types"); 1347 assert(VT.isVector() == OpVT.isVector() && 1348 "getZeroExtendInReg type should be vector iff the operand " 1349 "type is vector!"); 1350 assert((!VT.isVector() || 1351 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1352 "Vector element counts must match in getZeroExtendInReg"); 1353 assert(VT.bitsLE(OpVT) && "Not extending!"); 1354 if (OpVT == VT) 1355 return Op; 1356 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1357 VT.getScalarSizeInBits()); 1358 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1359 } 1360 1361 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 // Only unsigned pointer semantics are supported right now. In the future this 1363 // might delegate to TLI to check pointer signedness. 1364 return getZExtOrTrunc(Op, DL, VT); 1365 } 1366 1367 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1368 // Only unsigned pointer semantics are supported right now. In the future this 1369 // might delegate to TLI to check pointer signedness. 1370 return getZeroExtendInReg(Op, DL, VT); 1371 } 1372 1373 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1374 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1375 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1376 } 1377 1378 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1379 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1380 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1381 } 1382 1383 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1384 EVT OpVT) { 1385 if (!V) 1386 return getConstant(0, DL, VT); 1387 1388 switch (TLI->getBooleanContents(OpVT)) { 1389 case TargetLowering::ZeroOrOneBooleanContent: 1390 case TargetLowering::UndefinedBooleanContent: 1391 return getConstant(1, DL, VT); 1392 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1393 return getAllOnesConstant(DL, VT); 1394 } 1395 llvm_unreachable("Unexpected boolean content enum!"); 1396 } 1397 1398 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1399 bool isT, bool isO) { 1400 EVT EltVT = VT.getScalarType(); 1401 assert((EltVT.getSizeInBits() >= 64 || 1402 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1403 "getConstant with a uint64_t value that doesn't fit in the type!"); 1404 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1405 } 1406 1407 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1408 bool isT, bool isO) { 1409 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1410 } 1411 1412 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1413 EVT VT, bool isT, bool isO) { 1414 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1415 1416 EVT EltVT = VT.getScalarType(); 1417 const ConstantInt *Elt = &Val; 1418 1419 // In some cases the vector type is legal but the element type is illegal and 1420 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1421 // inserted value (the type does not need to match the vector element type). 1422 // Any extra bits introduced will be truncated away. 1423 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1424 TargetLowering::TypePromoteInteger) { 1425 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1426 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1427 Elt = ConstantInt::get(*getContext(), NewVal); 1428 } 1429 // In other cases the element type is illegal and needs to be expanded, for 1430 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1431 // the value into n parts and use a vector type with n-times the elements. 1432 // Then bitcast to the type requested. 1433 // Legalizing constants too early makes the DAGCombiner's job harder so we 1434 // only legalize if the DAG tells us we must produce legal types. 1435 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1436 TLI->getTypeAction(*getContext(), EltVT) == 1437 TargetLowering::TypeExpandInteger) { 1438 const APInt &NewVal = Elt->getValue(); 1439 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1440 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1441 1442 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1443 if (VT.isScalableVector()) { 1444 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1445 "Can only handle an even split!"); 1446 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1447 1448 SmallVector<SDValue, 2> ScalarParts; 1449 for (unsigned i = 0; i != Parts; ++i) 1450 ScalarParts.push_back(getConstant( 1451 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1452 ViaEltVT, isT, isO)); 1453 1454 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1455 } 1456 1457 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1458 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1459 1460 // Check the temporary vector is the correct size. If this fails then 1461 // getTypeToTransformTo() probably returned a type whose size (in bits) 1462 // isn't a power-of-2 factor of the requested type size. 1463 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1464 1465 SmallVector<SDValue, 2> EltParts; 1466 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1467 EltParts.push_back(getConstant( 1468 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1469 ViaEltVT, isT, isO)); 1470 1471 // EltParts is currently in little endian order. If we actually want 1472 // big-endian order then reverse it now. 1473 if (getDataLayout().isBigEndian()) 1474 std::reverse(EltParts.begin(), EltParts.end()); 1475 1476 // The elements must be reversed when the element order is different 1477 // to the endianness of the elements (because the BITCAST is itself a 1478 // vector shuffle in this situation). However, we do not need any code to 1479 // perform this reversal because getConstant() is producing a vector 1480 // splat. 1481 // This situation occurs in MIPS MSA. 1482 1483 SmallVector<SDValue, 8> Ops; 1484 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1485 llvm::append_range(Ops, EltParts); 1486 1487 SDValue V = 1488 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1489 return V; 1490 } 1491 1492 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1493 "APInt size does not match type size!"); 1494 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1495 FoldingSetNodeID ID; 1496 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1497 ID.AddPointer(Elt); 1498 ID.AddBoolean(isO); 1499 void *IP = nullptr; 1500 SDNode *N = nullptr; 1501 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1502 if (!VT.isVector()) 1503 return SDValue(N, 0); 1504 1505 if (!N) { 1506 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1507 CSEMap.InsertNode(N, IP); 1508 InsertNode(N); 1509 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1510 } 1511 1512 SDValue Result(N, 0); 1513 if (VT.isScalableVector()) 1514 Result = getSplatVector(VT, DL, Result); 1515 else if (VT.isVector()) 1516 Result = getSplatBuildVector(VT, DL, Result); 1517 1518 return Result; 1519 } 1520 1521 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1522 bool isTarget) { 1523 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1524 } 1525 1526 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1527 const SDLoc &DL, bool LegalTypes) { 1528 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1529 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1530 return getConstant(Val, DL, ShiftVT); 1531 } 1532 1533 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1534 bool isTarget) { 1535 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1536 } 1537 1538 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1539 bool isTarget) { 1540 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1541 } 1542 1543 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1544 EVT VT, bool isTarget) { 1545 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1546 1547 EVT EltVT = VT.getScalarType(); 1548 1549 // Do the map lookup using the actual bit pattern for the floating point 1550 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1551 // we don't have issues with SNANs. 1552 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1553 FoldingSetNodeID ID; 1554 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1555 ID.AddPointer(&V); 1556 void *IP = nullptr; 1557 SDNode *N = nullptr; 1558 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1559 if (!VT.isVector()) 1560 return SDValue(N, 0); 1561 1562 if (!N) { 1563 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1564 CSEMap.InsertNode(N, IP); 1565 InsertNode(N); 1566 } 1567 1568 SDValue Result(N, 0); 1569 if (VT.isScalableVector()) 1570 Result = getSplatVector(VT, DL, Result); 1571 else if (VT.isVector()) 1572 Result = getSplatBuildVector(VT, DL, Result); 1573 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1574 return Result; 1575 } 1576 1577 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1578 bool isTarget) { 1579 EVT EltVT = VT.getScalarType(); 1580 if (EltVT == MVT::f32) 1581 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1582 if (EltVT == MVT::f64) 1583 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1584 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1585 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1586 bool Ignored; 1587 APFloat APF = APFloat(Val); 1588 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1589 &Ignored); 1590 return getConstantFP(APF, DL, VT, isTarget); 1591 } 1592 llvm_unreachable("Unsupported type in getConstantFP"); 1593 } 1594 1595 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1596 EVT VT, int64_t Offset, bool isTargetGA, 1597 unsigned TargetFlags) { 1598 assert((TargetFlags == 0 || isTargetGA) && 1599 "Cannot set target flags on target-independent globals"); 1600 1601 // Truncate (with sign-extension) the offset value to the pointer size. 1602 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1603 if (BitWidth < 64) 1604 Offset = SignExtend64(Offset, BitWidth); 1605 1606 unsigned Opc; 1607 if (GV->isThreadLocal()) 1608 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1609 else 1610 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1611 1612 FoldingSetNodeID ID; 1613 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1614 ID.AddPointer(GV); 1615 ID.AddInteger(Offset); 1616 ID.AddInteger(TargetFlags); 1617 void *IP = nullptr; 1618 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1619 return SDValue(E, 0); 1620 1621 auto *N = newSDNode<GlobalAddressSDNode>( 1622 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1623 CSEMap.InsertNode(N, IP); 1624 InsertNode(N); 1625 return SDValue(N, 0); 1626 } 1627 1628 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1629 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1630 FoldingSetNodeID ID; 1631 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1632 ID.AddInteger(FI); 1633 void *IP = nullptr; 1634 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1635 return SDValue(E, 0); 1636 1637 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1644 unsigned TargetFlags) { 1645 assert((TargetFlags == 0 || isTarget) && 1646 "Cannot set target flags on target-independent jump tables"); 1647 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1650 ID.AddInteger(JTI); 1651 ID.AddInteger(TargetFlags); 1652 void *IP = nullptr; 1653 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1654 return SDValue(E, 0); 1655 1656 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1657 CSEMap.InsertNode(N, IP); 1658 InsertNode(N); 1659 return SDValue(N, 0); 1660 } 1661 1662 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1663 MaybeAlign Alignment, int Offset, 1664 bool isTarget, unsigned TargetFlags) { 1665 assert((TargetFlags == 0 || isTarget) && 1666 "Cannot set target flags on target-independent globals"); 1667 if (!Alignment) 1668 Alignment = shouldOptForSize() 1669 ? getDataLayout().getABITypeAlign(C->getType()) 1670 : getDataLayout().getPrefTypeAlign(C->getType()); 1671 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1672 FoldingSetNodeID ID; 1673 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1674 ID.AddInteger(Alignment->value()); 1675 ID.AddInteger(Offset); 1676 ID.AddPointer(C); 1677 ID.AddInteger(TargetFlags); 1678 void *IP = nullptr; 1679 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1680 return SDValue(E, 0); 1681 1682 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1683 TargetFlags); 1684 CSEMap.InsertNode(N, IP); 1685 InsertNode(N); 1686 SDValue V = SDValue(N, 0); 1687 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1688 return V; 1689 } 1690 1691 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1692 MaybeAlign Alignment, int Offset, 1693 bool isTarget, unsigned TargetFlags) { 1694 assert((TargetFlags == 0 || isTarget) && 1695 "Cannot set target flags on target-independent globals"); 1696 if (!Alignment) 1697 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1698 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(Alignment->value()); 1702 ID.AddInteger(Offset); 1703 C->addSelectionDAGCSEId(ID); 1704 ID.AddInteger(TargetFlags); 1705 void *IP = nullptr; 1706 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1707 return SDValue(E, 0); 1708 1709 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1710 TargetFlags); 1711 CSEMap.InsertNode(N, IP); 1712 InsertNode(N); 1713 return SDValue(N, 0); 1714 } 1715 1716 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1717 unsigned TargetFlags) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1720 ID.AddInteger(Index); 1721 ID.AddInteger(Offset); 1722 ID.AddInteger(TargetFlags); 1723 void *IP = nullptr; 1724 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1725 return SDValue(E, 0); 1726 1727 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1728 CSEMap.InsertNode(N, IP); 1729 InsertNode(N); 1730 return SDValue(N, 0); 1731 } 1732 1733 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1734 FoldingSetNodeID ID; 1735 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1736 ID.AddPointer(MBB); 1737 void *IP = nullptr; 1738 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1739 return SDValue(E, 0); 1740 1741 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1742 CSEMap.InsertNode(N, IP); 1743 InsertNode(N); 1744 return SDValue(N, 0); 1745 } 1746 1747 SDValue SelectionDAG::getValueType(EVT VT) { 1748 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1749 ValueTypeNodes.size()) 1750 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1751 1752 SDNode *&N = VT.isExtended() ? 1753 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1754 1755 if (N) return SDValue(N, 0); 1756 N = newSDNode<VTSDNode>(VT); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1762 SDNode *&N = ExternalSymbols[Sym]; 1763 if (N) return SDValue(N, 0); 1764 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1765 InsertNode(N); 1766 return SDValue(N, 0); 1767 } 1768 1769 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1770 SDNode *&N = MCSymbols[Sym]; 1771 if (N) 1772 return SDValue(N, 0); 1773 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1774 InsertNode(N); 1775 return SDValue(N, 0); 1776 } 1777 1778 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1779 unsigned TargetFlags) { 1780 SDNode *&N = 1781 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1782 if (N) return SDValue(N, 0); 1783 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1784 InsertNode(N); 1785 return SDValue(N, 0); 1786 } 1787 1788 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1789 if ((unsigned)Cond >= CondCodeNodes.size()) 1790 CondCodeNodes.resize(Cond+1); 1791 1792 if (!CondCodeNodes[Cond]) { 1793 auto *N = newSDNode<CondCodeSDNode>(Cond); 1794 CondCodeNodes[Cond] = N; 1795 InsertNode(N); 1796 } 1797 1798 return SDValue(CondCodeNodes[Cond], 0); 1799 } 1800 1801 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1802 APInt One(ResVT.getScalarSizeInBits(), 1); 1803 return getStepVector(DL, ResVT, One); 1804 } 1805 1806 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1807 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1808 if (ResVT.isScalableVector()) 1809 return getNode( 1810 ISD::STEP_VECTOR, DL, ResVT, 1811 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1812 1813 SmallVector<SDValue, 16> OpsStepConstants; 1814 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1815 OpsStepConstants.push_back( 1816 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1817 return getBuildVector(ResVT, DL, OpsStepConstants); 1818 } 1819 1820 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1821 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1822 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1823 std::swap(N1, N2); 1824 ShuffleVectorSDNode::commuteMask(M); 1825 } 1826 1827 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1828 SDValue N2, ArrayRef<int> Mask) { 1829 assert(VT.getVectorNumElements() == Mask.size() && 1830 "Must have the same number of vector elements as mask elements!"); 1831 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1832 "Invalid VECTOR_SHUFFLE"); 1833 1834 // Canonicalize shuffle undef, undef -> undef 1835 if (N1.isUndef() && N2.isUndef()) 1836 return getUNDEF(VT); 1837 1838 // Validate that all indices in Mask are within the range of the elements 1839 // input to the shuffle. 1840 int NElts = Mask.size(); 1841 assert(llvm::all_of(Mask, 1842 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1843 "Index out of range"); 1844 1845 // Copy the mask so we can do any needed cleanup. 1846 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1847 1848 // Canonicalize shuffle v, v -> v, undef 1849 if (N1 == N2) { 1850 N2 = getUNDEF(VT); 1851 for (int i = 0; i != NElts; ++i) 1852 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1853 } 1854 1855 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1856 if (N1.isUndef()) 1857 commuteShuffle(N1, N2, MaskVec); 1858 1859 if (TLI->hasVectorBlend()) { 1860 // If shuffling a splat, try to blend the splat instead. We do this here so 1861 // that even when this arises during lowering we don't have to re-handle it. 1862 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1863 BitVector UndefElements; 1864 SDValue Splat = BV->getSplatValue(&UndefElements); 1865 if (!Splat) 1866 return; 1867 1868 for (int i = 0; i < NElts; ++i) { 1869 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1870 continue; 1871 1872 // If this input comes from undef, mark it as such. 1873 if (UndefElements[MaskVec[i] - Offset]) { 1874 MaskVec[i] = -1; 1875 continue; 1876 } 1877 1878 // If we can blend a non-undef lane, use that instead. 1879 if (!UndefElements[i]) 1880 MaskVec[i] = i + Offset; 1881 } 1882 }; 1883 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1884 BlendSplat(N1BV, 0); 1885 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1886 BlendSplat(N2BV, NElts); 1887 } 1888 1889 // Canonicalize all index into lhs, -> shuffle lhs, undef 1890 // Canonicalize all index into rhs, -> shuffle rhs, undef 1891 bool AllLHS = true, AllRHS = true; 1892 bool N2Undef = N2.isUndef(); 1893 for (int i = 0; i != NElts; ++i) { 1894 if (MaskVec[i] >= NElts) { 1895 if (N2Undef) 1896 MaskVec[i] = -1; 1897 else 1898 AllLHS = false; 1899 } else if (MaskVec[i] >= 0) { 1900 AllRHS = false; 1901 } 1902 } 1903 if (AllLHS && AllRHS) 1904 return getUNDEF(VT); 1905 if (AllLHS && !N2Undef) 1906 N2 = getUNDEF(VT); 1907 if (AllRHS) { 1908 N1 = getUNDEF(VT); 1909 commuteShuffle(N1, N2, MaskVec); 1910 } 1911 // Reset our undef status after accounting for the mask. 1912 N2Undef = N2.isUndef(); 1913 // Re-check whether both sides ended up undef. 1914 if (N1.isUndef() && N2Undef) 1915 return getUNDEF(VT); 1916 1917 // If Identity shuffle return that node. 1918 bool Identity = true, AllSame = true; 1919 for (int i = 0; i != NElts; ++i) { 1920 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1921 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1922 } 1923 if (Identity && NElts) 1924 return N1; 1925 1926 // Shuffling a constant splat doesn't change the result. 1927 if (N2Undef) { 1928 SDValue V = N1; 1929 1930 // Look through any bitcasts. We check that these don't change the number 1931 // (and size) of elements and just changes their types. 1932 while (V.getOpcode() == ISD::BITCAST) 1933 V = V->getOperand(0); 1934 1935 // A splat should always show up as a build vector node. 1936 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1937 BitVector UndefElements; 1938 SDValue Splat = BV->getSplatValue(&UndefElements); 1939 // If this is a splat of an undef, shuffling it is also undef. 1940 if (Splat && Splat.isUndef()) 1941 return getUNDEF(VT); 1942 1943 bool SameNumElts = 1944 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1945 1946 // We only have a splat which can skip shuffles if there is a splatted 1947 // value and no undef lanes rearranged by the shuffle. 1948 if (Splat && UndefElements.none()) { 1949 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1950 // number of elements match or the value splatted is a zero constant. 1951 if (SameNumElts) 1952 return N1; 1953 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1954 if (C->isZero()) 1955 return N1; 1956 } 1957 1958 // If the shuffle itself creates a splat, build the vector directly. 1959 if (AllSame && SameNumElts) { 1960 EVT BuildVT = BV->getValueType(0); 1961 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1962 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1963 1964 // We may have jumped through bitcasts, so the type of the 1965 // BUILD_VECTOR may not match the type of the shuffle. 1966 if (BuildVT != VT) 1967 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1968 return NewBV; 1969 } 1970 } 1971 } 1972 1973 FoldingSetNodeID ID; 1974 SDValue Ops[2] = { N1, N2 }; 1975 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1976 for (int i = 0; i != NElts; ++i) 1977 ID.AddInteger(MaskVec[i]); 1978 1979 void* IP = nullptr; 1980 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1981 return SDValue(E, 0); 1982 1983 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1984 // SDNode doesn't have access to it. This memory will be "leaked" when 1985 // the node is deallocated, but recovered when the NodeAllocator is released. 1986 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1987 llvm::copy(MaskVec, MaskAlloc); 1988 1989 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1990 dl.getDebugLoc(), MaskAlloc); 1991 createOperands(N, Ops); 1992 1993 CSEMap.InsertNode(N, IP); 1994 InsertNode(N); 1995 SDValue V = SDValue(N, 0); 1996 NewSDValueDbgMsg(V, "Creating new node: ", this); 1997 return V; 1998 } 1999 2000 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2001 EVT VT = SV.getValueType(0); 2002 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2003 ShuffleVectorSDNode::commuteMask(MaskVec); 2004 2005 SDValue Op0 = SV.getOperand(0); 2006 SDValue Op1 = SV.getOperand(1); 2007 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2008 } 2009 2010 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2011 FoldingSetNodeID ID; 2012 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2013 ID.AddInteger(RegNo); 2014 void *IP = nullptr; 2015 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2016 return SDValue(E, 0); 2017 2018 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2019 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2028 ID.AddPointer(RegMask); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2034 CSEMap.InsertNode(N, IP); 2035 InsertNode(N); 2036 return SDValue(N, 0); 2037 } 2038 2039 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2040 MCSymbol *Label) { 2041 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2042 } 2043 2044 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2045 SDValue Root, MCSymbol *Label) { 2046 FoldingSetNodeID ID; 2047 SDValue Ops[] = { Root }; 2048 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2049 ID.AddPointer(Label); 2050 void *IP = nullptr; 2051 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2052 return SDValue(E, 0); 2053 2054 auto *N = 2055 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2056 createOperands(N, Ops); 2057 2058 CSEMap.InsertNode(N, IP); 2059 InsertNode(N); 2060 return SDValue(N, 0); 2061 } 2062 2063 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2064 int64_t Offset, bool isTarget, 2065 unsigned TargetFlags) { 2066 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2067 2068 FoldingSetNodeID ID; 2069 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2070 ID.AddPointer(BA); 2071 ID.AddInteger(Offset); 2072 ID.AddInteger(TargetFlags); 2073 void *IP = nullptr; 2074 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2075 return SDValue(E, 0); 2076 2077 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2078 CSEMap.InsertNode(N, IP); 2079 InsertNode(N); 2080 return SDValue(N, 0); 2081 } 2082 2083 SDValue SelectionDAG::getSrcValue(const Value *V) { 2084 FoldingSetNodeID ID; 2085 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2086 ID.AddPointer(V); 2087 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<SrcValueSDNode>(V); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2101 ID.AddPointer(MD); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<MDNodeSDNode>(MD); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2114 if (VT == V.getValueType()) 2115 return V; 2116 2117 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2118 } 2119 2120 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2121 unsigned SrcAS, unsigned DestAS) { 2122 SDValue Ops[] = {Ptr}; 2123 FoldingSetNodeID ID; 2124 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2125 ID.AddInteger(SrcAS); 2126 ID.AddInteger(DestAS); 2127 2128 void *IP = nullptr; 2129 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2130 return SDValue(E, 0); 2131 2132 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2133 VT, SrcAS, DestAS); 2134 createOperands(N, Ops); 2135 2136 CSEMap.InsertNode(N, IP); 2137 InsertNode(N); 2138 return SDValue(N, 0); 2139 } 2140 2141 SDValue SelectionDAG::getFreeze(SDValue V) { 2142 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2143 } 2144 2145 /// getShiftAmountOperand - Return the specified value casted to 2146 /// the target's desired shift amount type. 2147 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2148 EVT OpTy = Op.getValueType(); 2149 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2150 if (OpTy == ShTy || OpTy.isVector()) return Op; 2151 2152 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2153 } 2154 2155 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2156 SDLoc dl(Node); 2157 const TargetLowering &TLI = getTargetLoweringInfo(); 2158 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2159 EVT VT = Node->getValueType(0); 2160 SDValue Tmp1 = Node->getOperand(0); 2161 SDValue Tmp2 = Node->getOperand(1); 2162 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2163 2164 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2165 Tmp2, MachinePointerInfo(V)); 2166 SDValue VAList = VAListLoad; 2167 2168 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2169 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2170 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2171 2172 VAList = 2173 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2174 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2175 } 2176 2177 // Increment the pointer, VAList, to the next vaarg 2178 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2179 getConstant(getDataLayout().getTypeAllocSize( 2180 VT.getTypeForEVT(*getContext())), 2181 dl, VAList.getValueType())); 2182 // Store the incremented VAList to the legalized pointer 2183 Tmp1 = 2184 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2185 // Load the actual argument out of the pointer VAList 2186 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2187 } 2188 2189 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2190 SDLoc dl(Node); 2191 const TargetLowering &TLI = getTargetLoweringInfo(); 2192 // This defaults to loading a pointer from the input and storing it to the 2193 // output, returning the chain. 2194 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2195 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2196 SDValue Tmp1 = 2197 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2198 Node->getOperand(2), MachinePointerInfo(VS)); 2199 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2200 MachinePointerInfo(VD)); 2201 } 2202 2203 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2204 const DataLayout &DL = getDataLayout(); 2205 Type *Ty = VT.getTypeForEVT(*getContext()); 2206 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2207 2208 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2209 return RedAlign; 2210 2211 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2212 const Align StackAlign = TFI->getStackAlign(); 2213 2214 // See if we can choose a smaller ABI alignment in cases where it's an 2215 // illegal vector type that will get broken down. 2216 if (RedAlign > StackAlign) { 2217 EVT IntermediateVT; 2218 MVT RegisterVT; 2219 unsigned NumIntermediates; 2220 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2221 NumIntermediates, RegisterVT); 2222 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2223 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2224 if (RedAlign2 < RedAlign) 2225 RedAlign = RedAlign2; 2226 } 2227 2228 return RedAlign; 2229 } 2230 2231 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2232 MachineFrameInfo &MFI = MF->getFrameInfo(); 2233 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2234 int StackID = 0; 2235 if (Bytes.isScalable()) 2236 StackID = TFI->getStackIDForScalableVectors(); 2237 // The stack id gives an indication of whether the object is scalable or 2238 // not, so it's safe to pass in the minimum size here. 2239 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2240 false, nullptr, StackID); 2241 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2242 } 2243 2244 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2245 Type *Ty = VT.getTypeForEVT(*getContext()); 2246 Align StackAlign = 2247 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2248 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2249 } 2250 2251 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2252 TypeSize VT1Size = VT1.getStoreSize(); 2253 TypeSize VT2Size = VT2.getStoreSize(); 2254 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2255 "Don't know how to choose the maximum size when creating a stack " 2256 "temporary"); 2257 TypeSize Bytes = 2258 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2259 2260 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2261 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2262 const DataLayout &DL = getDataLayout(); 2263 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2264 return CreateStackTemporary(Bytes, Align); 2265 } 2266 2267 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2268 ISD::CondCode Cond, const SDLoc &dl) { 2269 EVT OpVT = N1.getValueType(); 2270 2271 // These setcc operations always fold. 2272 switch (Cond) { 2273 default: break; 2274 case ISD::SETFALSE: 2275 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2276 case ISD::SETTRUE: 2277 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2278 2279 case ISD::SETOEQ: 2280 case ISD::SETOGT: 2281 case ISD::SETOGE: 2282 case ISD::SETOLT: 2283 case ISD::SETOLE: 2284 case ISD::SETONE: 2285 case ISD::SETO: 2286 case ISD::SETUO: 2287 case ISD::SETUEQ: 2288 case ISD::SETUNE: 2289 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2290 break; 2291 } 2292 2293 if (OpVT.isInteger()) { 2294 // For EQ and NE, we can always pick a value for the undef to make the 2295 // predicate pass or fail, so we can return undef. 2296 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2297 // icmp eq/ne X, undef -> undef. 2298 if ((N1.isUndef() || N2.isUndef()) && 2299 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2300 return getUNDEF(VT); 2301 2302 // If both operands are undef, we can return undef for int comparison. 2303 // icmp undef, undef -> undef. 2304 if (N1.isUndef() && N2.isUndef()) 2305 return getUNDEF(VT); 2306 2307 // icmp X, X -> true/false 2308 // icmp X, undef -> true/false because undef could be X. 2309 if (N1 == N2) 2310 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2311 } 2312 2313 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2314 const APInt &C2 = N2C->getAPIntValue(); 2315 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2316 const APInt &C1 = N1C->getAPIntValue(); 2317 2318 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2319 dl, VT, OpVT); 2320 } 2321 } 2322 2323 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2324 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2325 2326 if (N1CFP && N2CFP) { 2327 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2328 switch (Cond) { 2329 default: break; 2330 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2331 return getUNDEF(VT); 2332 LLVM_FALLTHROUGH; 2333 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2334 OpVT); 2335 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2336 return getUNDEF(VT); 2337 LLVM_FALLTHROUGH; 2338 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2339 R==APFloat::cmpLessThan, dl, VT, 2340 OpVT); 2341 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2342 return getUNDEF(VT); 2343 LLVM_FALLTHROUGH; 2344 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2345 OpVT); 2346 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2347 return getUNDEF(VT); 2348 LLVM_FALLTHROUGH; 2349 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2350 VT, OpVT); 2351 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2352 return getUNDEF(VT); 2353 LLVM_FALLTHROUGH; 2354 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2355 R==APFloat::cmpEqual, dl, VT, 2356 OpVT); 2357 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2358 return getUNDEF(VT); 2359 LLVM_FALLTHROUGH; 2360 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2361 R==APFloat::cmpEqual, dl, VT, OpVT); 2362 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2363 OpVT); 2364 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2365 OpVT); 2366 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2367 R==APFloat::cmpEqual, dl, VT, 2368 OpVT); 2369 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2370 OpVT); 2371 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2372 R==APFloat::cmpLessThan, dl, VT, 2373 OpVT); 2374 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2375 R==APFloat::cmpUnordered, dl, VT, 2376 OpVT); 2377 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2378 VT, OpVT); 2379 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2380 OpVT); 2381 } 2382 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2383 // Ensure that the constant occurs on the RHS. 2384 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2385 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2386 return SDValue(); 2387 return getSetCC(dl, VT, N2, N1, SwappedCond); 2388 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2389 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2390 // If an operand is known to be a nan (or undef that could be a nan), we can 2391 // fold it. 2392 // Choosing NaN for the undef will always make unordered comparison succeed 2393 // and ordered comparison fails. 2394 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2395 switch (ISD::getUnorderedFlavor(Cond)) { 2396 default: 2397 llvm_unreachable("Unknown flavor!"); 2398 case 0: // Known false. 2399 return getBoolConstant(false, dl, VT, OpVT); 2400 case 1: // Known true. 2401 return getBoolConstant(true, dl, VT, OpVT); 2402 case 2: // Undefined. 2403 return getUNDEF(VT); 2404 } 2405 } 2406 2407 // Could not fold it. 2408 return SDValue(); 2409 } 2410 2411 /// See if the specified operand can be simplified with the knowledge that only 2412 /// the bits specified by DemandedBits are used. 2413 /// TODO: really we should be making this into the DAG equivalent of 2414 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2415 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2416 EVT VT = V.getValueType(); 2417 2418 if (VT.isScalableVector()) 2419 return SDValue(); 2420 2421 APInt DemandedElts = VT.isVector() 2422 ? APInt::getAllOnes(VT.getVectorNumElements()) 2423 : APInt(1, 1); 2424 return GetDemandedBits(V, DemandedBits, DemandedElts); 2425 } 2426 2427 /// See if the specified operand can be simplified with the knowledge that only 2428 /// the bits specified by DemandedBits are used in the elements specified by 2429 /// DemandedElts. 2430 /// TODO: really we should be making this into the DAG equivalent of 2431 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2432 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2433 const APInt &DemandedElts) { 2434 switch (V.getOpcode()) { 2435 default: 2436 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2437 *this, 0); 2438 case ISD::Constant: { 2439 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2440 APInt NewVal = CVal & DemandedBits; 2441 if (NewVal != CVal) 2442 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2443 break; 2444 } 2445 case ISD::SRL: 2446 // Only look at single-use SRLs. 2447 if (!V.getNode()->hasOneUse()) 2448 break; 2449 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2450 // See if we can recursively simplify the LHS. 2451 unsigned Amt = RHSC->getZExtValue(); 2452 2453 // Watch out for shift count overflow though. 2454 if (Amt >= DemandedBits.getBitWidth()) 2455 break; 2456 APInt SrcDemandedBits = DemandedBits << Amt; 2457 if (SDValue SimplifyLHS = 2458 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2459 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2460 V.getOperand(1)); 2461 } 2462 break; 2463 } 2464 return SDValue(); 2465 } 2466 2467 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2468 /// use this predicate to simplify operations downstream. 2469 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2470 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2471 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2472 } 2473 2474 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2475 /// this predicate to simplify operations downstream. Mask is known to be zero 2476 /// for bits that V cannot have. 2477 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2478 unsigned Depth) const { 2479 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2480 } 2481 2482 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2483 /// DemandedElts. We use this predicate to simplify operations downstream. 2484 /// Mask is known to be zero for bits that V cannot have. 2485 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2486 const APInt &DemandedElts, 2487 unsigned Depth) const { 2488 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2489 } 2490 2491 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2492 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2495 } 2496 2497 /// isSplatValue - Return true if the vector V has the same value 2498 /// across all DemandedElts. For scalable vectors it does not make 2499 /// sense to specify which elements are demanded or undefined, therefore 2500 /// they are simply ignored. 2501 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2502 APInt &UndefElts, unsigned Depth) const { 2503 unsigned Opcode = V.getOpcode(); 2504 EVT VT = V.getValueType(); 2505 assert(VT.isVector() && "Vector type expected"); 2506 2507 if (!VT.isScalableVector() && !DemandedElts) 2508 return false; // No demanded elts, better to assume we don't know anything. 2509 2510 if (Depth >= MaxRecursionDepth) 2511 return false; // Limit search depth. 2512 2513 // Deal with some common cases here that work for both fixed and scalable 2514 // vector types. 2515 switch (Opcode) { 2516 case ISD::SPLAT_VECTOR: 2517 UndefElts = V.getOperand(0).isUndef() 2518 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2519 : APInt(DemandedElts.getBitWidth(), 0); 2520 return true; 2521 case ISD::ADD: 2522 case ISD::SUB: 2523 case ISD::AND: 2524 case ISD::XOR: 2525 case ISD::OR: { 2526 APInt UndefLHS, UndefRHS; 2527 SDValue LHS = V.getOperand(0); 2528 SDValue RHS = V.getOperand(1); 2529 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2530 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2531 UndefElts = UndefLHS | UndefRHS; 2532 return true; 2533 } 2534 return false; 2535 } 2536 case ISD::ABS: 2537 case ISD::TRUNCATE: 2538 case ISD::SIGN_EXTEND: 2539 case ISD::ZERO_EXTEND: 2540 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2541 default: 2542 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2543 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2544 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2545 break; 2546 } 2547 2548 // We don't support other cases than those above for scalable vectors at 2549 // the moment. 2550 if (VT.isScalableVector()) 2551 return false; 2552 2553 unsigned NumElts = VT.getVectorNumElements(); 2554 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2555 UndefElts = APInt::getZero(NumElts); 2556 2557 switch (Opcode) { 2558 case ISD::BUILD_VECTOR: { 2559 SDValue Scl; 2560 for (unsigned i = 0; i != NumElts; ++i) { 2561 SDValue Op = V.getOperand(i); 2562 if (Op.isUndef()) { 2563 UndefElts.setBit(i); 2564 continue; 2565 } 2566 if (!DemandedElts[i]) 2567 continue; 2568 if (Scl && Scl != Op) 2569 return false; 2570 Scl = Op; 2571 } 2572 return true; 2573 } 2574 case ISD::VECTOR_SHUFFLE: { 2575 // Check if this is a shuffle node doing a splat. 2576 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2577 int SplatIndex = -1; 2578 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2579 for (int i = 0; i != (int)NumElts; ++i) { 2580 int M = Mask[i]; 2581 if (M < 0) { 2582 UndefElts.setBit(i); 2583 continue; 2584 } 2585 if (!DemandedElts[i]) 2586 continue; 2587 if (0 <= SplatIndex && SplatIndex != M) 2588 return false; 2589 SplatIndex = M; 2590 } 2591 return true; 2592 } 2593 case ISD::EXTRACT_SUBVECTOR: { 2594 // Offset the demanded elts by the subvector index. 2595 SDValue Src = V.getOperand(0); 2596 // We don't support scalable vectors at the moment. 2597 if (Src.getValueType().isScalableVector()) 2598 return false; 2599 uint64_t Idx = V.getConstantOperandVal(1); 2600 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2601 APInt UndefSrcElts; 2602 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2603 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2604 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2605 return true; 2606 } 2607 break; 2608 } 2609 case ISD::ANY_EXTEND_VECTOR_INREG: 2610 case ISD::SIGN_EXTEND_VECTOR_INREG: 2611 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2612 // Widen the demanded elts by the src element count. 2613 SDValue Src = V.getOperand(0); 2614 // We don't support scalable vectors at the moment. 2615 if (Src.getValueType().isScalableVector()) 2616 return false; 2617 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2618 APInt UndefSrcElts; 2619 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2620 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2621 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2622 return true; 2623 } 2624 break; 2625 } 2626 } 2627 2628 return false; 2629 } 2630 2631 /// Helper wrapper to main isSplatValue function. 2632 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2633 EVT VT = V.getValueType(); 2634 assert(VT.isVector() && "Vector type expected"); 2635 2636 APInt UndefElts; 2637 APInt DemandedElts; 2638 2639 // For now we don't support this with scalable vectors. 2640 if (!VT.isScalableVector()) 2641 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2642 return isSplatValue(V, DemandedElts, UndefElts) && 2643 (AllowUndefs || !UndefElts); 2644 } 2645 2646 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2647 V = peekThroughExtractSubvectors(V); 2648 2649 EVT VT = V.getValueType(); 2650 unsigned Opcode = V.getOpcode(); 2651 switch (Opcode) { 2652 default: { 2653 APInt UndefElts; 2654 APInt DemandedElts; 2655 2656 if (!VT.isScalableVector()) 2657 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2658 2659 if (isSplatValue(V, DemandedElts, UndefElts)) { 2660 if (VT.isScalableVector()) { 2661 // DemandedElts and UndefElts are ignored for scalable vectors, since 2662 // the only supported cases are SPLAT_VECTOR nodes. 2663 SplatIdx = 0; 2664 } else { 2665 // Handle case where all demanded elements are UNDEF. 2666 if (DemandedElts.isSubsetOf(UndefElts)) { 2667 SplatIdx = 0; 2668 return getUNDEF(VT); 2669 } 2670 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2671 } 2672 return V; 2673 } 2674 break; 2675 } 2676 case ISD::SPLAT_VECTOR: 2677 SplatIdx = 0; 2678 return V; 2679 case ISD::VECTOR_SHUFFLE: { 2680 if (VT.isScalableVector()) 2681 return SDValue(); 2682 2683 // Check if this is a shuffle node doing a splat. 2684 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2685 // getTargetVShiftNode currently struggles without the splat source. 2686 auto *SVN = cast<ShuffleVectorSDNode>(V); 2687 if (!SVN->isSplat()) 2688 break; 2689 int Idx = SVN->getSplatIndex(); 2690 int NumElts = V.getValueType().getVectorNumElements(); 2691 SplatIdx = Idx % NumElts; 2692 return V.getOperand(Idx / NumElts); 2693 } 2694 } 2695 2696 return SDValue(); 2697 } 2698 2699 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2700 int SplatIdx; 2701 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2702 EVT SVT = SrcVector.getValueType().getScalarType(); 2703 EVT LegalSVT = SVT; 2704 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2705 if (!SVT.isInteger()) 2706 return SDValue(); 2707 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2708 if (LegalSVT.bitsLT(SVT)) 2709 return SDValue(); 2710 } 2711 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2712 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2713 } 2714 return SDValue(); 2715 } 2716 2717 const APInt * 2718 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2719 const APInt &DemandedElts) const { 2720 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2721 V.getOpcode() == ISD::SRA) && 2722 "Unknown shift node"); 2723 unsigned BitWidth = V.getScalarValueSizeInBits(); 2724 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2725 // Shifting more than the bitwidth is not valid. 2726 const APInt &ShAmt = SA->getAPIntValue(); 2727 if (ShAmt.ult(BitWidth)) 2728 return &ShAmt; 2729 } 2730 return nullptr; 2731 } 2732 2733 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2734 SDValue V, const APInt &DemandedElts) const { 2735 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2736 V.getOpcode() == ISD::SRA) && 2737 "Unknown shift node"); 2738 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2739 return ValidAmt; 2740 unsigned BitWidth = V.getScalarValueSizeInBits(); 2741 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2742 if (!BV) 2743 return nullptr; 2744 const APInt *MinShAmt = nullptr; 2745 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2746 if (!DemandedElts[i]) 2747 continue; 2748 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2749 if (!SA) 2750 return nullptr; 2751 // Shifting more than the bitwidth is not valid. 2752 const APInt &ShAmt = SA->getAPIntValue(); 2753 if (ShAmt.uge(BitWidth)) 2754 return nullptr; 2755 if (MinShAmt && MinShAmt->ule(ShAmt)) 2756 continue; 2757 MinShAmt = &ShAmt; 2758 } 2759 return MinShAmt; 2760 } 2761 2762 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2763 SDValue V, const APInt &DemandedElts) const { 2764 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2765 V.getOpcode() == ISD::SRA) && 2766 "Unknown shift node"); 2767 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2768 return ValidAmt; 2769 unsigned BitWidth = V.getScalarValueSizeInBits(); 2770 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2771 if (!BV) 2772 return nullptr; 2773 const APInt *MaxShAmt = nullptr; 2774 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2775 if (!DemandedElts[i]) 2776 continue; 2777 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2778 if (!SA) 2779 return nullptr; 2780 // Shifting more than the bitwidth is not valid. 2781 const APInt &ShAmt = SA->getAPIntValue(); 2782 if (ShAmt.uge(BitWidth)) 2783 return nullptr; 2784 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2785 continue; 2786 MaxShAmt = &ShAmt; 2787 } 2788 return MaxShAmt; 2789 } 2790 2791 /// Determine which bits of Op are known to be either zero or one and return 2792 /// them in Known. For vectors, the known bits are those that are shared by 2793 /// every vector element. 2794 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2795 EVT VT = Op.getValueType(); 2796 2797 // TOOD: Until we have a plan for how to represent demanded elements for 2798 // scalable vectors, we can just bail out for now. 2799 if (Op.getValueType().isScalableVector()) { 2800 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2801 return KnownBits(BitWidth); 2802 } 2803 2804 APInt DemandedElts = VT.isVector() 2805 ? APInt::getAllOnes(VT.getVectorNumElements()) 2806 : APInt(1, 1); 2807 return computeKnownBits(Op, DemandedElts, Depth); 2808 } 2809 2810 /// Determine which bits of Op are known to be either zero or one and return 2811 /// them in Known. The DemandedElts argument allows us to only collect the known 2812 /// bits that are shared by the requested vector elements. 2813 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2814 unsigned Depth) const { 2815 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2816 2817 KnownBits Known(BitWidth); // Don't know anything. 2818 2819 // TOOD: Until we have a plan for how to represent demanded elements for 2820 // scalable vectors, we can just bail out for now. 2821 if (Op.getValueType().isScalableVector()) 2822 return Known; 2823 2824 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2825 // We know all of the bits for a constant! 2826 return KnownBits::makeConstant(C->getAPIntValue()); 2827 } 2828 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2829 // We know all of the bits for a constant fp! 2830 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2831 } 2832 2833 if (Depth >= MaxRecursionDepth) 2834 return Known; // Limit search depth. 2835 2836 KnownBits Known2; 2837 unsigned NumElts = DemandedElts.getBitWidth(); 2838 assert((!Op.getValueType().isVector() || 2839 NumElts == Op.getValueType().getVectorNumElements()) && 2840 "Unexpected vector size"); 2841 2842 if (!DemandedElts) 2843 return Known; // No demanded elts, better to assume we don't know anything. 2844 2845 unsigned Opcode = Op.getOpcode(); 2846 switch (Opcode) { 2847 case ISD::BUILD_VECTOR: 2848 // Collect the known bits that are shared by every demanded vector element. 2849 Known.Zero.setAllBits(); Known.One.setAllBits(); 2850 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2851 if (!DemandedElts[i]) 2852 continue; 2853 2854 SDValue SrcOp = Op.getOperand(i); 2855 Known2 = computeKnownBits(SrcOp, Depth + 1); 2856 2857 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2858 if (SrcOp.getValueSizeInBits() != BitWidth) { 2859 assert(SrcOp.getValueSizeInBits() > BitWidth && 2860 "Expected BUILD_VECTOR implicit truncation"); 2861 Known2 = Known2.trunc(BitWidth); 2862 } 2863 2864 // Known bits are the values that are shared by every demanded element. 2865 Known = KnownBits::commonBits(Known, Known2); 2866 2867 // If we don't know any bits, early out. 2868 if (Known.isUnknown()) 2869 break; 2870 } 2871 break; 2872 case ISD::VECTOR_SHUFFLE: { 2873 // Collect the known bits that are shared by every vector element referenced 2874 // by the shuffle. 2875 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2876 Known.Zero.setAllBits(); Known.One.setAllBits(); 2877 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2878 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2879 for (unsigned i = 0; i != NumElts; ++i) { 2880 if (!DemandedElts[i]) 2881 continue; 2882 2883 int M = SVN->getMaskElt(i); 2884 if (M < 0) { 2885 // For UNDEF elements, we don't know anything about the common state of 2886 // the shuffle result. 2887 Known.resetAll(); 2888 DemandedLHS.clearAllBits(); 2889 DemandedRHS.clearAllBits(); 2890 break; 2891 } 2892 2893 if ((unsigned)M < NumElts) 2894 DemandedLHS.setBit((unsigned)M % NumElts); 2895 else 2896 DemandedRHS.setBit((unsigned)M % NumElts); 2897 } 2898 // Known bits are the values that are shared by every demanded element. 2899 if (!!DemandedLHS) { 2900 SDValue LHS = Op.getOperand(0); 2901 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2902 Known = KnownBits::commonBits(Known, Known2); 2903 } 2904 // If we don't know any bits, early out. 2905 if (Known.isUnknown()) 2906 break; 2907 if (!!DemandedRHS) { 2908 SDValue RHS = Op.getOperand(1); 2909 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2910 Known = KnownBits::commonBits(Known, Known2); 2911 } 2912 break; 2913 } 2914 case ISD::CONCAT_VECTORS: { 2915 // Split DemandedElts and test each of the demanded subvectors. 2916 Known.Zero.setAllBits(); Known.One.setAllBits(); 2917 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2918 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2919 unsigned NumSubVectors = Op.getNumOperands(); 2920 for (unsigned i = 0; i != NumSubVectors; ++i) { 2921 APInt DemandedSub = 2922 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2923 if (!!DemandedSub) { 2924 SDValue Sub = Op.getOperand(i); 2925 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2926 Known = KnownBits::commonBits(Known, Known2); 2927 } 2928 // If we don't know any bits, early out. 2929 if (Known.isUnknown()) 2930 break; 2931 } 2932 break; 2933 } 2934 case ISD::INSERT_SUBVECTOR: { 2935 // Demand any elements from the subvector and the remainder from the src its 2936 // inserted into. 2937 SDValue Src = Op.getOperand(0); 2938 SDValue Sub = Op.getOperand(1); 2939 uint64_t Idx = Op.getConstantOperandVal(2); 2940 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2941 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2942 APInt DemandedSrcElts = DemandedElts; 2943 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2944 2945 Known.One.setAllBits(); 2946 Known.Zero.setAllBits(); 2947 if (!!DemandedSubElts) { 2948 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2949 if (Known.isUnknown()) 2950 break; // early-out. 2951 } 2952 if (!!DemandedSrcElts) { 2953 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2954 Known = KnownBits::commonBits(Known, Known2); 2955 } 2956 break; 2957 } 2958 case ISD::EXTRACT_SUBVECTOR: { 2959 // Offset the demanded elts by the subvector index. 2960 SDValue Src = Op.getOperand(0); 2961 // Bail until we can represent demanded elements for scalable vectors. 2962 if (Src.getValueType().isScalableVector()) 2963 break; 2964 uint64_t Idx = Op.getConstantOperandVal(1); 2965 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2966 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2967 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2968 break; 2969 } 2970 case ISD::SCALAR_TO_VECTOR: { 2971 // We know about scalar_to_vector as much as we know about it source, 2972 // which becomes the first element of otherwise unknown vector. 2973 if (DemandedElts != 1) 2974 break; 2975 2976 SDValue N0 = Op.getOperand(0); 2977 Known = computeKnownBits(N0, Depth + 1); 2978 if (N0.getValueSizeInBits() != BitWidth) 2979 Known = Known.trunc(BitWidth); 2980 2981 break; 2982 } 2983 case ISD::BITCAST: { 2984 SDValue N0 = Op.getOperand(0); 2985 EVT SubVT = N0.getValueType(); 2986 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2987 2988 // Ignore bitcasts from unsupported types. 2989 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2990 break; 2991 2992 // Fast handling of 'identity' bitcasts. 2993 if (BitWidth == SubBitWidth) { 2994 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2995 break; 2996 } 2997 2998 bool IsLE = getDataLayout().isLittleEndian(); 2999 3000 // Bitcast 'small element' vector to 'large element' scalar/vector. 3001 if ((BitWidth % SubBitWidth) == 0) { 3002 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3003 3004 // Collect known bits for the (larger) output by collecting the known 3005 // bits from each set of sub elements and shift these into place. 3006 // We need to separately call computeKnownBits for each set of 3007 // sub elements as the knownbits for each is likely to be different. 3008 unsigned SubScale = BitWidth / SubBitWidth; 3009 APInt SubDemandedElts(NumElts * SubScale, 0); 3010 for (unsigned i = 0; i != NumElts; ++i) 3011 if (DemandedElts[i]) 3012 SubDemandedElts.setBit(i * SubScale); 3013 3014 for (unsigned i = 0; i != SubScale; ++i) { 3015 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3016 Depth + 1); 3017 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3018 Known.insertBits(Known2, SubBitWidth * Shifts); 3019 } 3020 } 3021 3022 // Bitcast 'large element' scalar/vector to 'small element' vector. 3023 if ((SubBitWidth % BitWidth) == 0) { 3024 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3025 3026 // Collect known bits for the (smaller) output by collecting the known 3027 // bits from the overlapping larger input elements and extracting the 3028 // sub sections we actually care about. 3029 unsigned SubScale = SubBitWidth / BitWidth; 3030 APInt SubDemandedElts = 3031 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3032 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3033 3034 Known.Zero.setAllBits(); Known.One.setAllBits(); 3035 for (unsigned i = 0; i != NumElts; ++i) 3036 if (DemandedElts[i]) { 3037 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3038 unsigned Offset = (Shifts % SubScale) * BitWidth; 3039 Known = KnownBits::commonBits(Known, 3040 Known2.extractBits(BitWidth, Offset)); 3041 // If we don't know any bits, early out. 3042 if (Known.isUnknown()) 3043 break; 3044 } 3045 } 3046 break; 3047 } 3048 case ISD::AND: 3049 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3050 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3051 3052 Known &= Known2; 3053 break; 3054 case ISD::OR: 3055 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3056 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3057 3058 Known |= Known2; 3059 break; 3060 case ISD::XOR: 3061 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3062 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3063 3064 Known ^= Known2; 3065 break; 3066 case ISD::MUL: { 3067 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3068 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3069 Known = KnownBits::mul(Known, Known2); 3070 break; 3071 } 3072 case ISD::MULHU: { 3073 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3074 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3075 Known = KnownBits::mulhu(Known, Known2); 3076 break; 3077 } 3078 case ISD::MULHS: { 3079 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3080 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3081 Known = KnownBits::mulhs(Known, Known2); 3082 break; 3083 } 3084 case ISD::UMUL_LOHI: { 3085 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3086 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3087 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3088 if (Op.getResNo() == 0) 3089 Known = KnownBits::mul(Known, Known2); 3090 else 3091 Known = KnownBits::mulhu(Known, Known2); 3092 break; 3093 } 3094 case ISD::SMUL_LOHI: { 3095 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3096 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3097 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3098 if (Op.getResNo() == 0) 3099 Known = KnownBits::mul(Known, Known2); 3100 else 3101 Known = KnownBits::mulhs(Known, Known2); 3102 break; 3103 } 3104 case ISD::UDIV: { 3105 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3106 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3107 Known = KnownBits::udiv(Known, Known2); 3108 break; 3109 } 3110 case ISD::SELECT: 3111 case ISD::VSELECT: 3112 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3113 // If we don't know any bits, early out. 3114 if (Known.isUnknown()) 3115 break; 3116 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3117 3118 // Only known if known in both the LHS and RHS. 3119 Known = KnownBits::commonBits(Known, Known2); 3120 break; 3121 case ISD::SELECT_CC: 3122 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3123 // If we don't know any bits, early out. 3124 if (Known.isUnknown()) 3125 break; 3126 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3127 3128 // Only known if known in both the LHS and RHS. 3129 Known = KnownBits::commonBits(Known, Known2); 3130 break; 3131 case ISD::SMULO: 3132 case ISD::UMULO: 3133 if (Op.getResNo() != 1) 3134 break; 3135 // The boolean result conforms to getBooleanContents. 3136 // If we know the result of a setcc has the top bits zero, use this info. 3137 // We know that we have an integer-based boolean since these operations 3138 // are only available for integer. 3139 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3140 TargetLowering::ZeroOrOneBooleanContent && 3141 BitWidth > 1) 3142 Known.Zero.setBitsFrom(1); 3143 break; 3144 case ISD::SETCC: 3145 case ISD::STRICT_FSETCC: 3146 case ISD::STRICT_FSETCCS: { 3147 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3148 // If we know the result of a setcc has the top bits zero, use this info. 3149 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3150 TargetLowering::ZeroOrOneBooleanContent && 3151 BitWidth > 1) 3152 Known.Zero.setBitsFrom(1); 3153 break; 3154 } 3155 case ISD::SHL: 3156 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3158 Known = KnownBits::shl(Known, Known2); 3159 3160 // Minimum shift low bits are known zero. 3161 if (const APInt *ShMinAmt = 3162 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3163 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3164 break; 3165 case ISD::SRL: 3166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3167 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3168 Known = KnownBits::lshr(Known, Known2); 3169 3170 // Minimum shift high bits are known zero. 3171 if (const APInt *ShMinAmt = 3172 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3173 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3174 break; 3175 case ISD::SRA: 3176 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3177 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3178 Known = KnownBits::ashr(Known, Known2); 3179 // TODO: Add minimum shift high known sign bits. 3180 break; 3181 case ISD::FSHL: 3182 case ISD::FSHR: 3183 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3184 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3185 3186 // For fshl, 0-shift returns the 1st arg. 3187 // For fshr, 0-shift returns the 2nd arg. 3188 if (Amt == 0) { 3189 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3190 DemandedElts, Depth + 1); 3191 break; 3192 } 3193 3194 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3195 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3196 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3198 if (Opcode == ISD::FSHL) { 3199 Known.One <<= Amt; 3200 Known.Zero <<= Amt; 3201 Known2.One.lshrInPlace(BitWidth - Amt); 3202 Known2.Zero.lshrInPlace(BitWidth - Amt); 3203 } else { 3204 Known.One <<= BitWidth - Amt; 3205 Known.Zero <<= BitWidth - Amt; 3206 Known2.One.lshrInPlace(Amt); 3207 Known2.Zero.lshrInPlace(Amt); 3208 } 3209 Known.One |= Known2.One; 3210 Known.Zero |= Known2.Zero; 3211 } 3212 break; 3213 case ISD::SIGN_EXTEND_INREG: { 3214 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3215 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3216 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3217 break; 3218 } 3219 case ISD::CTTZ: 3220 case ISD::CTTZ_ZERO_UNDEF: { 3221 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 // If we have a known 1, its position is our upper bound. 3223 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3224 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3225 Known.Zero.setBitsFrom(LowBits); 3226 break; 3227 } 3228 case ISD::CTLZ: 3229 case ISD::CTLZ_ZERO_UNDEF: { 3230 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3231 // If we have a known 1, its position is our upper bound. 3232 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3233 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3234 Known.Zero.setBitsFrom(LowBits); 3235 break; 3236 } 3237 case ISD::CTPOP: { 3238 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3239 // If we know some of the bits are zero, they can't be one. 3240 unsigned PossibleOnes = Known2.countMaxPopulation(); 3241 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3242 break; 3243 } 3244 case ISD::PARITY: { 3245 // Parity returns 0 everywhere but the LSB. 3246 Known.Zero.setBitsFrom(1); 3247 break; 3248 } 3249 case ISD::LOAD: { 3250 LoadSDNode *LD = cast<LoadSDNode>(Op); 3251 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3252 if (ISD::isNON_EXTLoad(LD) && Cst) { 3253 // Determine any common known bits from the loaded constant pool value. 3254 Type *CstTy = Cst->getType(); 3255 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3256 // If its a vector splat, then we can (quickly) reuse the scalar path. 3257 // NOTE: We assume all elements match and none are UNDEF. 3258 if (CstTy->isVectorTy()) { 3259 if (const Constant *Splat = Cst->getSplatValue()) { 3260 Cst = Splat; 3261 CstTy = Cst->getType(); 3262 } 3263 } 3264 // TODO - do we need to handle different bitwidths? 3265 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3266 // Iterate across all vector elements finding common known bits. 3267 Known.One.setAllBits(); 3268 Known.Zero.setAllBits(); 3269 for (unsigned i = 0; i != NumElts; ++i) { 3270 if (!DemandedElts[i]) 3271 continue; 3272 if (Constant *Elt = Cst->getAggregateElement(i)) { 3273 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3274 const APInt &Value = CInt->getValue(); 3275 Known.One &= Value; 3276 Known.Zero &= ~Value; 3277 continue; 3278 } 3279 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3280 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3281 Known.One &= Value; 3282 Known.Zero &= ~Value; 3283 continue; 3284 } 3285 } 3286 Known.One.clearAllBits(); 3287 Known.Zero.clearAllBits(); 3288 break; 3289 } 3290 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3291 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3292 Known = KnownBits::makeConstant(CInt->getValue()); 3293 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3294 Known = 3295 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3296 } 3297 } 3298 } 3299 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3300 // If this is a ZEXTLoad and we are looking at the loaded value. 3301 EVT VT = LD->getMemoryVT(); 3302 unsigned MemBits = VT.getScalarSizeInBits(); 3303 Known.Zero.setBitsFrom(MemBits); 3304 } else if (const MDNode *Ranges = LD->getRanges()) { 3305 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3306 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3307 } 3308 break; 3309 } 3310 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3311 EVT InVT = Op.getOperand(0).getValueType(); 3312 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3313 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3314 Known = Known.zext(BitWidth); 3315 break; 3316 } 3317 case ISD::ZERO_EXTEND: { 3318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3319 Known = Known.zext(BitWidth); 3320 break; 3321 } 3322 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3323 EVT InVT = Op.getOperand(0).getValueType(); 3324 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3325 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3326 // If the sign bit is known to be zero or one, then sext will extend 3327 // it to the top bits, else it will just zext. 3328 Known = Known.sext(BitWidth); 3329 break; 3330 } 3331 case ISD::SIGN_EXTEND: { 3332 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3333 // If the sign bit is known to be zero or one, then sext will extend 3334 // it to the top bits, else it will just zext. 3335 Known = Known.sext(BitWidth); 3336 break; 3337 } 3338 case ISD::ANY_EXTEND_VECTOR_INREG: { 3339 EVT InVT = Op.getOperand(0).getValueType(); 3340 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3341 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3342 Known = Known.anyext(BitWidth); 3343 break; 3344 } 3345 case ISD::ANY_EXTEND: { 3346 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3347 Known = Known.anyext(BitWidth); 3348 break; 3349 } 3350 case ISD::TRUNCATE: { 3351 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3352 Known = Known.trunc(BitWidth); 3353 break; 3354 } 3355 case ISD::AssertZext: { 3356 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3357 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3358 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3359 Known.Zero |= (~InMask); 3360 Known.One &= (~Known.Zero); 3361 break; 3362 } 3363 case ISD::AssertAlign: { 3364 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3365 assert(LogOfAlign != 0); 3366 3367 // TODO: Should use maximum with source 3368 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3369 // well as clearing one bits. 3370 Known.Zero.setLowBits(LogOfAlign); 3371 Known.One.clearLowBits(LogOfAlign); 3372 break; 3373 } 3374 case ISD::FGETSIGN: 3375 // All bits are zero except the low bit. 3376 Known.Zero.setBitsFrom(1); 3377 break; 3378 case ISD::USUBO: 3379 case ISD::SSUBO: 3380 if (Op.getResNo() == 1) { 3381 // If we know the result of a setcc has the top bits zero, use this info. 3382 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3383 TargetLowering::ZeroOrOneBooleanContent && 3384 BitWidth > 1) 3385 Known.Zero.setBitsFrom(1); 3386 break; 3387 } 3388 LLVM_FALLTHROUGH; 3389 case ISD::SUB: 3390 case ISD::SUBC: { 3391 assert(Op.getResNo() == 0 && 3392 "We only compute knownbits for the difference here."); 3393 3394 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3395 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3396 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3397 Known, Known2); 3398 break; 3399 } 3400 case ISD::UADDO: 3401 case ISD::SADDO: 3402 case ISD::ADDCARRY: 3403 if (Op.getResNo() == 1) { 3404 // If we know the result of a setcc has the top bits zero, use this info. 3405 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3406 TargetLowering::ZeroOrOneBooleanContent && 3407 BitWidth > 1) 3408 Known.Zero.setBitsFrom(1); 3409 break; 3410 } 3411 LLVM_FALLTHROUGH; 3412 case ISD::ADD: 3413 case ISD::ADDC: 3414 case ISD::ADDE: { 3415 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3416 3417 // With ADDE and ADDCARRY, a carry bit may be added in. 3418 KnownBits Carry(1); 3419 if (Opcode == ISD::ADDE) 3420 // Can't track carry from glue, set carry to unknown. 3421 Carry.resetAll(); 3422 else if (Opcode == ISD::ADDCARRY) 3423 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3424 // the trouble (how often will we find a known carry bit). And I haven't 3425 // tested this very much yet, but something like this might work: 3426 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3427 // Carry = Carry.zextOrTrunc(1, false); 3428 Carry.resetAll(); 3429 else 3430 Carry.setAllZero(); 3431 3432 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3433 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3434 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3435 break; 3436 } 3437 case ISD::SREM: { 3438 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3439 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3440 Known = KnownBits::srem(Known, Known2); 3441 break; 3442 } 3443 case ISD::UREM: { 3444 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3445 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3446 Known = KnownBits::urem(Known, Known2); 3447 break; 3448 } 3449 case ISD::EXTRACT_ELEMENT: { 3450 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3451 const unsigned Index = Op.getConstantOperandVal(1); 3452 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3453 3454 // Remove low part of known bits mask 3455 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3456 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3457 3458 // Remove high part of known bit mask 3459 Known = Known.trunc(EltBitWidth); 3460 break; 3461 } 3462 case ISD::EXTRACT_VECTOR_ELT: { 3463 SDValue InVec = Op.getOperand(0); 3464 SDValue EltNo = Op.getOperand(1); 3465 EVT VecVT = InVec.getValueType(); 3466 // computeKnownBits not yet implemented for scalable vectors. 3467 if (VecVT.isScalableVector()) 3468 break; 3469 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3470 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3471 3472 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3473 // anything about the extended bits. 3474 if (BitWidth > EltBitWidth) 3475 Known = Known.trunc(EltBitWidth); 3476 3477 // If we know the element index, just demand that vector element, else for 3478 // an unknown element index, ignore DemandedElts and demand them all. 3479 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3480 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3481 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3482 DemandedSrcElts = 3483 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3484 3485 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3486 if (BitWidth > EltBitWidth) 3487 Known = Known.anyext(BitWidth); 3488 break; 3489 } 3490 case ISD::INSERT_VECTOR_ELT: { 3491 // If we know the element index, split the demand between the 3492 // source vector and the inserted element, otherwise assume we need 3493 // the original demanded vector elements and the value. 3494 SDValue InVec = Op.getOperand(0); 3495 SDValue InVal = Op.getOperand(1); 3496 SDValue EltNo = Op.getOperand(2); 3497 bool DemandedVal = true; 3498 APInt DemandedVecElts = DemandedElts; 3499 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3500 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3501 unsigned EltIdx = CEltNo->getZExtValue(); 3502 DemandedVal = !!DemandedElts[EltIdx]; 3503 DemandedVecElts.clearBit(EltIdx); 3504 } 3505 Known.One.setAllBits(); 3506 Known.Zero.setAllBits(); 3507 if (DemandedVal) { 3508 Known2 = computeKnownBits(InVal, Depth + 1); 3509 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3510 } 3511 if (!!DemandedVecElts) { 3512 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3513 Known = KnownBits::commonBits(Known, Known2); 3514 } 3515 break; 3516 } 3517 case ISD::BITREVERSE: { 3518 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3519 Known = Known2.reverseBits(); 3520 break; 3521 } 3522 case ISD::BSWAP: { 3523 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3524 Known = Known2.byteSwap(); 3525 break; 3526 } 3527 case ISD::ABS: { 3528 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3529 Known = Known2.abs(); 3530 break; 3531 } 3532 case ISD::USUBSAT: { 3533 // The result of usubsat will never be larger than the LHS. 3534 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3535 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3536 break; 3537 } 3538 case ISD::UMIN: { 3539 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3540 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3541 Known = KnownBits::umin(Known, Known2); 3542 break; 3543 } 3544 case ISD::UMAX: { 3545 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3546 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3547 Known = KnownBits::umax(Known, Known2); 3548 break; 3549 } 3550 case ISD::SMIN: 3551 case ISD::SMAX: { 3552 // If we have a clamp pattern, we know that the number of sign bits will be 3553 // the minimum of the clamp min/max range. 3554 bool IsMax = (Opcode == ISD::SMAX); 3555 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3556 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3557 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3558 CstHigh = 3559 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3560 if (CstLow && CstHigh) { 3561 if (!IsMax) 3562 std::swap(CstLow, CstHigh); 3563 3564 const APInt &ValueLow = CstLow->getAPIntValue(); 3565 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3566 if (ValueLow.sle(ValueHigh)) { 3567 unsigned LowSignBits = ValueLow.getNumSignBits(); 3568 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3569 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3570 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3571 Known.One.setHighBits(MinSignBits); 3572 break; 3573 } 3574 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3575 Known.Zero.setHighBits(MinSignBits); 3576 break; 3577 } 3578 } 3579 } 3580 3581 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3582 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3583 if (IsMax) 3584 Known = KnownBits::smax(Known, Known2); 3585 else 3586 Known = KnownBits::smin(Known, Known2); 3587 break; 3588 } 3589 case ISD::FP_TO_UINT_SAT: { 3590 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3591 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3592 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3593 break; 3594 } 3595 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3596 if (Op.getResNo() == 1) { 3597 // The boolean result conforms to getBooleanContents. 3598 // If we know the result of a setcc has the top bits zero, use this info. 3599 // We know that we have an integer-based boolean since these operations 3600 // are only available for integer. 3601 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3602 TargetLowering::ZeroOrOneBooleanContent && 3603 BitWidth > 1) 3604 Known.Zero.setBitsFrom(1); 3605 break; 3606 } 3607 LLVM_FALLTHROUGH; 3608 case ISD::ATOMIC_CMP_SWAP: 3609 case ISD::ATOMIC_SWAP: 3610 case ISD::ATOMIC_LOAD_ADD: 3611 case ISD::ATOMIC_LOAD_SUB: 3612 case ISD::ATOMIC_LOAD_AND: 3613 case ISD::ATOMIC_LOAD_CLR: 3614 case ISD::ATOMIC_LOAD_OR: 3615 case ISD::ATOMIC_LOAD_XOR: 3616 case ISD::ATOMIC_LOAD_NAND: 3617 case ISD::ATOMIC_LOAD_MIN: 3618 case ISD::ATOMIC_LOAD_MAX: 3619 case ISD::ATOMIC_LOAD_UMIN: 3620 case ISD::ATOMIC_LOAD_UMAX: 3621 case ISD::ATOMIC_LOAD: { 3622 unsigned MemBits = 3623 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3624 // If we are looking at the loaded value. 3625 if (Op.getResNo() == 0) { 3626 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3627 Known.Zero.setBitsFrom(MemBits); 3628 } 3629 break; 3630 } 3631 case ISD::FrameIndex: 3632 case ISD::TargetFrameIndex: 3633 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3634 Known, getMachineFunction()); 3635 break; 3636 3637 default: 3638 if (Opcode < ISD::BUILTIN_OP_END) 3639 break; 3640 LLVM_FALLTHROUGH; 3641 case ISD::INTRINSIC_WO_CHAIN: 3642 case ISD::INTRINSIC_W_CHAIN: 3643 case ISD::INTRINSIC_VOID: 3644 // Allow the target to implement this method for its nodes. 3645 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3646 break; 3647 } 3648 3649 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3650 return Known; 3651 } 3652 3653 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3654 SDValue N1) const { 3655 // X + 0 never overflow 3656 if (isNullConstant(N1)) 3657 return OFK_Never; 3658 3659 KnownBits N1Known = computeKnownBits(N1); 3660 if (N1Known.Zero.getBoolValue()) { 3661 KnownBits N0Known = computeKnownBits(N0); 3662 3663 bool overflow; 3664 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3665 if (!overflow) 3666 return OFK_Never; 3667 } 3668 3669 // mulhi + 1 never overflow 3670 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3671 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3672 return OFK_Never; 3673 3674 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3675 KnownBits N0Known = computeKnownBits(N0); 3676 3677 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3678 return OFK_Never; 3679 } 3680 3681 return OFK_Sometime; 3682 } 3683 3684 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3685 EVT OpVT = Val.getValueType(); 3686 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3687 3688 // Is the constant a known power of 2? 3689 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3690 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3691 3692 // A left-shift of a constant one will have exactly one bit set because 3693 // shifting the bit off the end is undefined. 3694 if (Val.getOpcode() == ISD::SHL) { 3695 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3696 if (C && C->getAPIntValue() == 1) 3697 return true; 3698 } 3699 3700 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3701 // one bit set. 3702 if (Val.getOpcode() == ISD::SRL) { 3703 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3704 if (C && C->getAPIntValue().isSignMask()) 3705 return true; 3706 } 3707 3708 // Are all operands of a build vector constant powers of two? 3709 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3710 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3711 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3712 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3713 return false; 3714 })) 3715 return true; 3716 3717 // Is the operand of a splat vector a constant power of two? 3718 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3719 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3720 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3721 return true; 3722 3723 // More could be done here, though the above checks are enough 3724 // to handle some common cases. 3725 3726 // Fall back to computeKnownBits to catch other known cases. 3727 KnownBits Known = computeKnownBits(Val); 3728 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3729 } 3730 3731 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3732 EVT VT = Op.getValueType(); 3733 3734 // TODO: Assume we don't know anything for now. 3735 if (VT.isScalableVector()) 3736 return 1; 3737 3738 APInt DemandedElts = VT.isVector() 3739 ? APInt::getAllOnes(VT.getVectorNumElements()) 3740 : APInt(1, 1); 3741 return ComputeNumSignBits(Op, DemandedElts, Depth); 3742 } 3743 3744 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3745 unsigned Depth) const { 3746 EVT VT = Op.getValueType(); 3747 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3748 unsigned VTBits = VT.getScalarSizeInBits(); 3749 unsigned NumElts = DemandedElts.getBitWidth(); 3750 unsigned Tmp, Tmp2; 3751 unsigned FirstAnswer = 1; 3752 3753 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3754 const APInt &Val = C->getAPIntValue(); 3755 return Val.getNumSignBits(); 3756 } 3757 3758 if (Depth >= MaxRecursionDepth) 3759 return 1; // Limit search depth. 3760 3761 if (!DemandedElts || VT.isScalableVector()) 3762 return 1; // No demanded elts, better to assume we don't know anything. 3763 3764 unsigned Opcode = Op.getOpcode(); 3765 switch (Opcode) { 3766 default: break; 3767 case ISD::AssertSext: 3768 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3769 return VTBits-Tmp+1; 3770 case ISD::AssertZext: 3771 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3772 return VTBits-Tmp; 3773 3774 case ISD::BUILD_VECTOR: 3775 Tmp = VTBits; 3776 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3777 if (!DemandedElts[i]) 3778 continue; 3779 3780 SDValue SrcOp = Op.getOperand(i); 3781 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3782 3783 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3784 if (SrcOp.getValueSizeInBits() != VTBits) { 3785 assert(SrcOp.getValueSizeInBits() > VTBits && 3786 "Expected BUILD_VECTOR implicit truncation"); 3787 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3788 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3789 } 3790 Tmp = std::min(Tmp, Tmp2); 3791 } 3792 return Tmp; 3793 3794 case ISD::VECTOR_SHUFFLE: { 3795 // Collect the minimum number of sign bits that are shared by every vector 3796 // element referenced by the shuffle. 3797 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3798 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3799 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3800 for (unsigned i = 0; i != NumElts; ++i) { 3801 int M = SVN->getMaskElt(i); 3802 if (!DemandedElts[i]) 3803 continue; 3804 // For UNDEF elements, we don't know anything about the common state of 3805 // the shuffle result. 3806 if (M < 0) 3807 return 1; 3808 if ((unsigned)M < NumElts) 3809 DemandedLHS.setBit((unsigned)M % NumElts); 3810 else 3811 DemandedRHS.setBit((unsigned)M % NumElts); 3812 } 3813 Tmp = std::numeric_limits<unsigned>::max(); 3814 if (!!DemandedLHS) 3815 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3816 if (!!DemandedRHS) { 3817 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3818 Tmp = std::min(Tmp, Tmp2); 3819 } 3820 // If we don't know anything, early out and try computeKnownBits fall-back. 3821 if (Tmp == 1) 3822 break; 3823 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3824 return Tmp; 3825 } 3826 3827 case ISD::BITCAST: { 3828 SDValue N0 = Op.getOperand(0); 3829 EVT SrcVT = N0.getValueType(); 3830 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3831 3832 // Ignore bitcasts from unsupported types.. 3833 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3834 break; 3835 3836 // Fast handling of 'identity' bitcasts. 3837 if (VTBits == SrcBits) 3838 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3839 3840 bool IsLE = getDataLayout().isLittleEndian(); 3841 3842 // Bitcast 'large element' scalar/vector to 'small element' vector. 3843 if ((SrcBits % VTBits) == 0) { 3844 assert(VT.isVector() && "Expected bitcast to vector"); 3845 3846 unsigned Scale = SrcBits / VTBits; 3847 APInt SrcDemandedElts = 3848 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3849 3850 // Fast case - sign splat can be simply split across the small elements. 3851 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3852 if (Tmp == SrcBits) 3853 return VTBits; 3854 3855 // Slow case - determine how far the sign extends into each sub-element. 3856 Tmp2 = VTBits; 3857 for (unsigned i = 0; i != NumElts; ++i) 3858 if (DemandedElts[i]) { 3859 unsigned SubOffset = i % Scale; 3860 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3861 SubOffset = SubOffset * VTBits; 3862 if (Tmp <= SubOffset) 3863 return 1; 3864 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3865 } 3866 return Tmp2; 3867 } 3868 break; 3869 } 3870 3871 case ISD::FP_TO_SINT_SAT: 3872 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 3873 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3874 return VTBits - Tmp + 1; 3875 case ISD::SIGN_EXTEND: 3876 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3877 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3878 case ISD::SIGN_EXTEND_INREG: 3879 // Max of the input and what this extends. 3880 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3881 Tmp = VTBits-Tmp+1; 3882 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3883 return std::max(Tmp, Tmp2); 3884 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3885 SDValue Src = Op.getOperand(0); 3886 EVT SrcVT = Src.getValueType(); 3887 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3888 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3889 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3890 } 3891 case ISD::SRA: 3892 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3893 // SRA X, C -> adds C sign bits. 3894 if (const APInt *ShAmt = 3895 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3896 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3897 return Tmp; 3898 case ISD::SHL: 3899 if (const APInt *ShAmt = 3900 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3901 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3902 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3903 if (ShAmt->ult(Tmp)) 3904 return Tmp - ShAmt->getZExtValue(); 3905 } 3906 break; 3907 case ISD::AND: 3908 case ISD::OR: 3909 case ISD::XOR: // NOT is handled here. 3910 // Logical binary ops preserve the number of sign bits at the worst. 3911 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3912 if (Tmp != 1) { 3913 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3914 FirstAnswer = std::min(Tmp, Tmp2); 3915 // We computed what we know about the sign bits as our first 3916 // answer. Now proceed to the generic code that uses 3917 // computeKnownBits, and pick whichever answer is better. 3918 } 3919 break; 3920 3921 case ISD::SELECT: 3922 case ISD::VSELECT: 3923 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3924 if (Tmp == 1) return 1; // Early out. 3925 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3926 return std::min(Tmp, Tmp2); 3927 case ISD::SELECT_CC: 3928 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3929 if (Tmp == 1) return 1; // Early out. 3930 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3931 return std::min(Tmp, Tmp2); 3932 3933 case ISD::SMIN: 3934 case ISD::SMAX: { 3935 // If we have a clamp pattern, we know that the number of sign bits will be 3936 // the minimum of the clamp min/max range. 3937 bool IsMax = (Opcode == ISD::SMAX); 3938 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3939 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3940 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3941 CstHigh = 3942 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3943 if (CstLow && CstHigh) { 3944 if (!IsMax) 3945 std::swap(CstLow, CstHigh); 3946 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3947 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3948 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3949 return std::min(Tmp, Tmp2); 3950 } 3951 } 3952 3953 // Fallback - just get the minimum number of sign bits of the operands. 3954 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3955 if (Tmp == 1) 3956 return 1; // Early out. 3957 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3958 return std::min(Tmp, Tmp2); 3959 } 3960 case ISD::UMIN: 3961 case ISD::UMAX: 3962 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3963 if (Tmp == 1) 3964 return 1; // Early out. 3965 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3966 return std::min(Tmp, Tmp2); 3967 case ISD::SADDO: 3968 case ISD::UADDO: 3969 case ISD::SSUBO: 3970 case ISD::USUBO: 3971 case ISD::SMULO: 3972 case ISD::UMULO: 3973 if (Op.getResNo() != 1) 3974 break; 3975 // The boolean result conforms to getBooleanContents. Fall through. 3976 // If setcc returns 0/-1, all bits are sign bits. 3977 // We know that we have an integer-based boolean since these operations 3978 // are only available for integer. 3979 if (TLI->getBooleanContents(VT.isVector(), false) == 3980 TargetLowering::ZeroOrNegativeOneBooleanContent) 3981 return VTBits; 3982 break; 3983 case ISD::SETCC: 3984 case ISD::STRICT_FSETCC: 3985 case ISD::STRICT_FSETCCS: { 3986 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3987 // If setcc returns 0/-1, all bits are sign bits. 3988 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3989 TargetLowering::ZeroOrNegativeOneBooleanContent) 3990 return VTBits; 3991 break; 3992 } 3993 case ISD::ROTL: 3994 case ISD::ROTR: 3995 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3996 3997 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3998 if (Tmp == VTBits) 3999 return VTBits; 4000 4001 if (ConstantSDNode *C = 4002 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4003 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4004 4005 // Handle rotate right by N like a rotate left by 32-N. 4006 if (Opcode == ISD::ROTR) 4007 RotAmt = (VTBits - RotAmt) % VTBits; 4008 4009 // If we aren't rotating out all of the known-in sign bits, return the 4010 // number that are left. This handles rotl(sext(x), 1) for example. 4011 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4012 } 4013 break; 4014 case ISD::ADD: 4015 case ISD::ADDC: 4016 // Add can have at most one carry bit. Thus we know that the output 4017 // is, at worst, one more bit than the inputs. 4018 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4019 if (Tmp == 1) return 1; // Early out. 4020 4021 // Special case decrementing a value (ADD X, -1): 4022 if (ConstantSDNode *CRHS = 4023 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4024 if (CRHS->isAllOnes()) { 4025 KnownBits Known = 4026 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4027 4028 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4029 // sign bits set. 4030 if ((Known.Zero | 1).isAllOnes()) 4031 return VTBits; 4032 4033 // If we are subtracting one from a positive number, there is no carry 4034 // out of the result. 4035 if (Known.isNonNegative()) 4036 return Tmp; 4037 } 4038 4039 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4040 if (Tmp2 == 1) return 1; // Early out. 4041 return std::min(Tmp, Tmp2) - 1; 4042 case ISD::SUB: 4043 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4044 if (Tmp2 == 1) return 1; // Early out. 4045 4046 // Handle NEG. 4047 if (ConstantSDNode *CLHS = 4048 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4049 if (CLHS->isZero()) { 4050 KnownBits Known = 4051 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4052 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4053 // sign bits set. 4054 if ((Known.Zero | 1).isAllOnes()) 4055 return VTBits; 4056 4057 // If the input is known to be positive (the sign bit is known clear), 4058 // the output of the NEG has the same number of sign bits as the input. 4059 if (Known.isNonNegative()) 4060 return Tmp2; 4061 4062 // Otherwise, we treat this like a SUB. 4063 } 4064 4065 // Sub can have at most one carry bit. Thus we know that the output 4066 // is, at worst, one more bit than the inputs. 4067 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4068 if (Tmp == 1) return 1; // Early out. 4069 return std::min(Tmp, Tmp2) - 1; 4070 case ISD::MUL: { 4071 // The output of the Mul can be at most twice the valid bits in the inputs. 4072 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4073 if (SignBitsOp0 == 1) 4074 break; 4075 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4076 if (SignBitsOp1 == 1) 4077 break; 4078 unsigned OutValidBits = 4079 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4080 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4081 } 4082 case ISD::SREM: 4083 // The sign bit is the LHS's sign bit, except when the result of the 4084 // remainder is zero. The magnitude of the result should be less than or 4085 // equal to the magnitude of the LHS. Therefore, the result should have 4086 // at least as many sign bits as the left hand side. 4087 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4088 case ISD::TRUNCATE: { 4089 // Check if the sign bits of source go down as far as the truncated value. 4090 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4091 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4092 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4093 return NumSrcSignBits - (NumSrcBits - VTBits); 4094 break; 4095 } 4096 case ISD::EXTRACT_ELEMENT: { 4097 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4098 const int BitWidth = Op.getValueSizeInBits(); 4099 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4100 4101 // Get reverse index (starting from 1), Op1 value indexes elements from 4102 // little end. Sign starts at big end. 4103 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4104 4105 // If the sign portion ends in our element the subtraction gives correct 4106 // result. Otherwise it gives either negative or > bitwidth result 4107 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4108 } 4109 case ISD::INSERT_VECTOR_ELT: { 4110 // If we know the element index, split the demand between the 4111 // source vector and the inserted element, otherwise assume we need 4112 // the original demanded vector elements and the value. 4113 SDValue InVec = Op.getOperand(0); 4114 SDValue InVal = Op.getOperand(1); 4115 SDValue EltNo = Op.getOperand(2); 4116 bool DemandedVal = true; 4117 APInt DemandedVecElts = DemandedElts; 4118 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4119 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4120 unsigned EltIdx = CEltNo->getZExtValue(); 4121 DemandedVal = !!DemandedElts[EltIdx]; 4122 DemandedVecElts.clearBit(EltIdx); 4123 } 4124 Tmp = std::numeric_limits<unsigned>::max(); 4125 if (DemandedVal) { 4126 // TODO - handle implicit truncation of inserted elements. 4127 if (InVal.getScalarValueSizeInBits() != VTBits) 4128 break; 4129 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4130 Tmp = std::min(Tmp, Tmp2); 4131 } 4132 if (!!DemandedVecElts) { 4133 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4134 Tmp = std::min(Tmp, Tmp2); 4135 } 4136 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4137 return Tmp; 4138 } 4139 case ISD::EXTRACT_VECTOR_ELT: { 4140 SDValue InVec = Op.getOperand(0); 4141 SDValue EltNo = Op.getOperand(1); 4142 EVT VecVT = InVec.getValueType(); 4143 // ComputeNumSignBits not yet implemented for scalable vectors. 4144 if (VecVT.isScalableVector()) 4145 break; 4146 const unsigned BitWidth = Op.getValueSizeInBits(); 4147 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4148 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4149 4150 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4151 // anything about sign bits. But if the sizes match we can derive knowledge 4152 // about sign bits from the vector operand. 4153 if (BitWidth != EltBitWidth) 4154 break; 4155 4156 // If we know the element index, just demand that vector element, else for 4157 // an unknown element index, ignore DemandedElts and demand them all. 4158 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4159 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4160 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4161 DemandedSrcElts = 4162 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4163 4164 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4165 } 4166 case ISD::EXTRACT_SUBVECTOR: { 4167 // Offset the demanded elts by the subvector index. 4168 SDValue Src = Op.getOperand(0); 4169 // Bail until we can represent demanded elements for scalable vectors. 4170 if (Src.getValueType().isScalableVector()) 4171 break; 4172 uint64_t Idx = Op.getConstantOperandVal(1); 4173 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4174 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4175 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4176 } 4177 case ISD::CONCAT_VECTORS: { 4178 // Determine the minimum number of sign bits across all demanded 4179 // elts of the input vectors. Early out if the result is already 1. 4180 Tmp = std::numeric_limits<unsigned>::max(); 4181 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4182 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4183 unsigned NumSubVectors = Op.getNumOperands(); 4184 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4185 APInt DemandedSub = 4186 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4187 if (!DemandedSub) 4188 continue; 4189 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4190 Tmp = std::min(Tmp, Tmp2); 4191 } 4192 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4193 return Tmp; 4194 } 4195 case ISD::INSERT_SUBVECTOR: { 4196 // Demand any elements from the subvector and the remainder from the src its 4197 // inserted into. 4198 SDValue Src = Op.getOperand(0); 4199 SDValue Sub = Op.getOperand(1); 4200 uint64_t Idx = Op.getConstantOperandVal(2); 4201 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4202 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4203 APInt DemandedSrcElts = DemandedElts; 4204 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4205 4206 Tmp = std::numeric_limits<unsigned>::max(); 4207 if (!!DemandedSubElts) { 4208 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4209 if (Tmp == 1) 4210 return 1; // early-out 4211 } 4212 if (!!DemandedSrcElts) { 4213 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4214 Tmp = std::min(Tmp, Tmp2); 4215 } 4216 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4217 return Tmp; 4218 } 4219 case ISD::ATOMIC_CMP_SWAP: 4220 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4221 case ISD::ATOMIC_SWAP: 4222 case ISD::ATOMIC_LOAD_ADD: 4223 case ISD::ATOMIC_LOAD_SUB: 4224 case ISD::ATOMIC_LOAD_AND: 4225 case ISD::ATOMIC_LOAD_CLR: 4226 case ISD::ATOMIC_LOAD_OR: 4227 case ISD::ATOMIC_LOAD_XOR: 4228 case ISD::ATOMIC_LOAD_NAND: 4229 case ISD::ATOMIC_LOAD_MIN: 4230 case ISD::ATOMIC_LOAD_MAX: 4231 case ISD::ATOMIC_LOAD_UMIN: 4232 case ISD::ATOMIC_LOAD_UMAX: 4233 case ISD::ATOMIC_LOAD: { 4234 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4235 // If we are looking at the loaded value. 4236 if (Op.getResNo() == 0) { 4237 if (Tmp == VTBits) 4238 return 1; // early-out 4239 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4240 return VTBits - Tmp + 1; 4241 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4242 return VTBits - Tmp; 4243 } 4244 break; 4245 } 4246 } 4247 4248 // If we are looking at the loaded value of the SDNode. 4249 if (Op.getResNo() == 0) { 4250 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4251 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4252 unsigned ExtType = LD->getExtensionType(); 4253 switch (ExtType) { 4254 default: break; 4255 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4256 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4257 return VTBits - Tmp + 1; 4258 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4259 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4260 return VTBits - Tmp; 4261 case ISD::NON_EXTLOAD: 4262 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4263 // We only need to handle vectors - computeKnownBits should handle 4264 // scalar cases. 4265 Type *CstTy = Cst->getType(); 4266 if (CstTy->isVectorTy() && 4267 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4268 Tmp = VTBits; 4269 for (unsigned i = 0; i != NumElts; ++i) { 4270 if (!DemandedElts[i]) 4271 continue; 4272 if (Constant *Elt = Cst->getAggregateElement(i)) { 4273 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4274 const APInt &Value = CInt->getValue(); 4275 Tmp = std::min(Tmp, Value.getNumSignBits()); 4276 continue; 4277 } 4278 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4279 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4280 Tmp = std::min(Tmp, Value.getNumSignBits()); 4281 continue; 4282 } 4283 } 4284 // Unknown type. Conservatively assume no bits match sign bit. 4285 return 1; 4286 } 4287 return Tmp; 4288 } 4289 } 4290 break; 4291 } 4292 } 4293 } 4294 4295 // Allow the target to implement this method for its nodes. 4296 if (Opcode >= ISD::BUILTIN_OP_END || 4297 Opcode == ISD::INTRINSIC_WO_CHAIN || 4298 Opcode == ISD::INTRINSIC_W_CHAIN || 4299 Opcode == ISD::INTRINSIC_VOID) { 4300 unsigned NumBits = 4301 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4302 if (NumBits > 1) 4303 FirstAnswer = std::max(FirstAnswer, NumBits); 4304 } 4305 4306 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4307 // use this information. 4308 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4309 return std::max(FirstAnswer, Known.countMinSignBits()); 4310 } 4311 4312 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4313 unsigned Depth) const { 4314 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4315 return Op.getScalarValueSizeInBits() - SignBits + 1; 4316 } 4317 4318 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4319 const APInt &DemandedElts, 4320 unsigned Depth) const { 4321 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4322 return Op.getScalarValueSizeInBits() - SignBits + 1; 4323 } 4324 4325 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4326 unsigned Depth) const { 4327 // Early out for FREEZE. 4328 if (Op.getOpcode() == ISD::FREEZE) 4329 return true; 4330 4331 // TODO: Assume we don't know anything for now. 4332 EVT VT = Op.getValueType(); 4333 if (VT.isScalableVector()) 4334 return false; 4335 4336 APInt DemandedElts = VT.isVector() 4337 ? APInt::getAllOnes(VT.getVectorNumElements()) 4338 : APInt(1, 1); 4339 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4340 } 4341 4342 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4343 const APInt &DemandedElts, 4344 bool PoisonOnly, 4345 unsigned Depth) const { 4346 unsigned Opcode = Op.getOpcode(); 4347 4348 // Early out for FREEZE. 4349 if (Opcode == ISD::FREEZE) 4350 return true; 4351 4352 if (Depth >= MaxRecursionDepth) 4353 return false; // Limit search depth. 4354 4355 if (isIntOrFPConstant(Op)) 4356 return true; 4357 4358 switch (Opcode) { 4359 case ISD::UNDEF: 4360 return PoisonOnly; 4361 4362 case ISD::BUILD_VECTOR: 4363 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4364 // this shouldn't affect the result. 4365 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4366 if (!DemandedElts[i]) 4367 continue; 4368 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4369 Depth + 1)) 4370 return false; 4371 } 4372 return true; 4373 4374 // TODO: Search for noundef attributes from library functions. 4375 4376 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4377 4378 default: 4379 // Allow the target to implement this method for its nodes. 4380 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4381 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4382 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4383 Op, DemandedElts, *this, PoisonOnly, Depth); 4384 break; 4385 } 4386 4387 return false; 4388 } 4389 4390 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4391 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4392 !isa<ConstantSDNode>(Op.getOperand(1))) 4393 return false; 4394 4395 if (Op.getOpcode() == ISD::OR && 4396 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4397 return false; 4398 4399 return true; 4400 } 4401 4402 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4403 // If we're told that NaNs won't happen, assume they won't. 4404 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4405 return true; 4406 4407 if (Depth >= MaxRecursionDepth) 4408 return false; // Limit search depth. 4409 4410 // TODO: Handle vectors. 4411 // If the value is a constant, we can obviously see if it is a NaN or not. 4412 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4413 return !C->getValueAPF().isNaN() || 4414 (SNaN && !C->getValueAPF().isSignaling()); 4415 } 4416 4417 unsigned Opcode = Op.getOpcode(); 4418 switch (Opcode) { 4419 case ISD::FADD: 4420 case ISD::FSUB: 4421 case ISD::FMUL: 4422 case ISD::FDIV: 4423 case ISD::FREM: 4424 case ISD::FSIN: 4425 case ISD::FCOS: { 4426 if (SNaN) 4427 return true; 4428 // TODO: Need isKnownNeverInfinity 4429 return false; 4430 } 4431 case ISD::FCANONICALIZE: 4432 case ISD::FEXP: 4433 case ISD::FEXP2: 4434 case ISD::FTRUNC: 4435 case ISD::FFLOOR: 4436 case ISD::FCEIL: 4437 case ISD::FROUND: 4438 case ISD::FROUNDEVEN: 4439 case ISD::FRINT: 4440 case ISD::FNEARBYINT: { 4441 if (SNaN) 4442 return true; 4443 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4444 } 4445 case ISD::FABS: 4446 case ISD::FNEG: 4447 case ISD::FCOPYSIGN: { 4448 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4449 } 4450 case ISD::SELECT: 4451 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4452 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4453 case ISD::FP_EXTEND: 4454 case ISD::FP_ROUND: { 4455 if (SNaN) 4456 return true; 4457 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4458 } 4459 case ISD::SINT_TO_FP: 4460 case ISD::UINT_TO_FP: 4461 return true; 4462 case ISD::FMA: 4463 case ISD::FMAD: { 4464 if (SNaN) 4465 return true; 4466 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4467 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4468 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4469 } 4470 case ISD::FSQRT: // Need is known positive 4471 case ISD::FLOG: 4472 case ISD::FLOG2: 4473 case ISD::FLOG10: 4474 case ISD::FPOWI: 4475 case ISD::FPOW: { 4476 if (SNaN) 4477 return true; 4478 // TODO: Refine on operand 4479 return false; 4480 } 4481 case ISD::FMINNUM: 4482 case ISD::FMAXNUM: { 4483 // Only one needs to be known not-nan, since it will be returned if the 4484 // other ends up being one. 4485 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4486 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4487 } 4488 case ISD::FMINNUM_IEEE: 4489 case ISD::FMAXNUM_IEEE: { 4490 if (SNaN) 4491 return true; 4492 // This can return a NaN if either operand is an sNaN, or if both operands 4493 // are NaN. 4494 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4495 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4496 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4497 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4498 } 4499 case ISD::FMINIMUM: 4500 case ISD::FMAXIMUM: { 4501 // TODO: Does this quiet or return the origina NaN as-is? 4502 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4503 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4504 } 4505 case ISD::EXTRACT_VECTOR_ELT: { 4506 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4507 } 4508 default: 4509 if (Opcode >= ISD::BUILTIN_OP_END || 4510 Opcode == ISD::INTRINSIC_WO_CHAIN || 4511 Opcode == ISD::INTRINSIC_W_CHAIN || 4512 Opcode == ISD::INTRINSIC_VOID) { 4513 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4514 } 4515 4516 return false; 4517 } 4518 } 4519 4520 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4521 assert(Op.getValueType().isFloatingPoint() && 4522 "Floating point type expected"); 4523 4524 // If the value is a constant, we can obviously see if it is a zero or not. 4525 // TODO: Add BuildVector support. 4526 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4527 return !C->isZero(); 4528 return false; 4529 } 4530 4531 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4532 assert(!Op.getValueType().isFloatingPoint() && 4533 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4534 4535 // If the value is a constant, we can obviously see if it is a zero or not. 4536 if (ISD::matchUnaryPredicate(Op, 4537 [](ConstantSDNode *C) { return !C->isZero(); })) 4538 return true; 4539 4540 // TODO: Recognize more cases here. 4541 switch (Op.getOpcode()) { 4542 default: break; 4543 case ISD::OR: 4544 if (isKnownNeverZero(Op.getOperand(1)) || 4545 isKnownNeverZero(Op.getOperand(0))) 4546 return true; 4547 break; 4548 } 4549 4550 return false; 4551 } 4552 4553 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4554 // Check the obvious case. 4555 if (A == B) return true; 4556 4557 // For for negative and positive zero. 4558 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4559 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4560 if (CA->isZero() && CB->isZero()) return true; 4561 4562 // Otherwise they may not be equal. 4563 return false; 4564 } 4565 4566 // FIXME: unify with llvm::haveNoCommonBitsSet. 4567 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4568 assert(A.getValueType() == B.getValueType() && 4569 "Values must have the same type"); 4570 // Match masked merge pattern (X & ~M) op (Y & M) 4571 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4572 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4573 if (isBitwiseNot(NotM, true)) { 4574 SDValue NotOperand = NotM->getOperand(0); 4575 return NotOperand == And->getOperand(0) || 4576 NotOperand == And->getOperand(1); 4577 } 4578 return false; 4579 }; 4580 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4581 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4582 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4583 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4584 return true; 4585 } 4586 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4587 computeKnownBits(B)); 4588 } 4589 4590 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4591 SelectionDAG &DAG) { 4592 if (cast<ConstantSDNode>(Step)->isZero()) 4593 return DAG.getConstant(0, DL, VT); 4594 4595 return SDValue(); 4596 } 4597 4598 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4599 ArrayRef<SDValue> Ops, 4600 SelectionDAG &DAG) { 4601 int NumOps = Ops.size(); 4602 assert(NumOps != 0 && "Can't build an empty vector!"); 4603 assert(!VT.isScalableVector() && 4604 "BUILD_VECTOR cannot be used with scalable types"); 4605 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4606 "Incorrect element count in BUILD_VECTOR!"); 4607 4608 // BUILD_VECTOR of UNDEFs is UNDEF. 4609 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4610 return DAG.getUNDEF(VT); 4611 4612 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4613 SDValue IdentitySrc; 4614 bool IsIdentity = true; 4615 for (int i = 0; i != NumOps; ++i) { 4616 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4617 Ops[i].getOperand(0).getValueType() != VT || 4618 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4619 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4620 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4621 IsIdentity = false; 4622 break; 4623 } 4624 IdentitySrc = Ops[i].getOperand(0); 4625 } 4626 if (IsIdentity) 4627 return IdentitySrc; 4628 4629 return SDValue(); 4630 } 4631 4632 /// Try to simplify vector concatenation to an input value, undef, or build 4633 /// vector. 4634 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4635 ArrayRef<SDValue> Ops, 4636 SelectionDAG &DAG) { 4637 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4638 assert(llvm::all_of(Ops, 4639 [Ops](SDValue Op) { 4640 return Ops[0].getValueType() == Op.getValueType(); 4641 }) && 4642 "Concatenation of vectors with inconsistent value types!"); 4643 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4644 VT.getVectorElementCount() && 4645 "Incorrect element count in vector concatenation!"); 4646 4647 if (Ops.size() == 1) 4648 return Ops[0]; 4649 4650 // Concat of UNDEFs is UNDEF. 4651 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4652 return DAG.getUNDEF(VT); 4653 4654 // Scan the operands and look for extract operations from a single source 4655 // that correspond to insertion at the same location via this concatenation: 4656 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4657 SDValue IdentitySrc; 4658 bool IsIdentity = true; 4659 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4660 SDValue Op = Ops[i]; 4661 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4662 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4663 Op.getOperand(0).getValueType() != VT || 4664 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4665 Op.getConstantOperandVal(1) != IdentityIndex) { 4666 IsIdentity = false; 4667 break; 4668 } 4669 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4670 "Unexpected identity source vector for concat of extracts"); 4671 IdentitySrc = Op.getOperand(0); 4672 } 4673 if (IsIdentity) { 4674 assert(IdentitySrc && "Failed to set source vector of extracts"); 4675 return IdentitySrc; 4676 } 4677 4678 // The code below this point is only designed to work for fixed width 4679 // vectors, so we bail out for now. 4680 if (VT.isScalableVector()) 4681 return SDValue(); 4682 4683 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4684 // simplified to one big BUILD_VECTOR. 4685 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4686 EVT SVT = VT.getScalarType(); 4687 SmallVector<SDValue, 16> Elts; 4688 for (SDValue Op : Ops) { 4689 EVT OpVT = Op.getValueType(); 4690 if (Op.isUndef()) 4691 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4692 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4693 Elts.append(Op->op_begin(), Op->op_end()); 4694 else 4695 return SDValue(); 4696 } 4697 4698 // BUILD_VECTOR requires all inputs to be of the same type, find the 4699 // maximum type and extend them all. 4700 for (SDValue Op : Elts) 4701 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4702 4703 if (SVT.bitsGT(VT.getScalarType())) { 4704 for (SDValue &Op : Elts) { 4705 if (Op.isUndef()) 4706 Op = DAG.getUNDEF(SVT); 4707 else 4708 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4709 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4710 : DAG.getSExtOrTrunc(Op, DL, SVT); 4711 } 4712 } 4713 4714 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4715 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4716 return V; 4717 } 4718 4719 /// Gets or creates the specified node. 4720 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4721 FoldingSetNodeID ID; 4722 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4723 void *IP = nullptr; 4724 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4725 return SDValue(E, 0); 4726 4727 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4728 getVTList(VT)); 4729 CSEMap.InsertNode(N, IP); 4730 4731 InsertNode(N); 4732 SDValue V = SDValue(N, 0); 4733 NewSDValueDbgMsg(V, "Creating new node: ", this); 4734 return V; 4735 } 4736 4737 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4738 SDValue Operand) { 4739 SDNodeFlags Flags; 4740 if (Inserter) 4741 Flags = Inserter->getFlags(); 4742 return getNode(Opcode, DL, VT, Operand, Flags); 4743 } 4744 4745 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4746 SDValue Operand, const SDNodeFlags Flags) { 4747 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4748 "Operand is DELETED_NODE!"); 4749 // Constant fold unary operations with an integer constant operand. Even 4750 // opaque constant will be folded, because the folding of unary operations 4751 // doesn't create new constants with different values. Nevertheless, the 4752 // opaque flag is preserved during folding to prevent future folding with 4753 // other constants. 4754 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4755 const APInt &Val = C->getAPIntValue(); 4756 switch (Opcode) { 4757 default: break; 4758 case ISD::SIGN_EXTEND: 4759 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4760 C->isTargetOpcode(), C->isOpaque()); 4761 case ISD::TRUNCATE: 4762 if (C->isOpaque()) 4763 break; 4764 LLVM_FALLTHROUGH; 4765 case ISD::ZERO_EXTEND: 4766 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4767 C->isTargetOpcode(), C->isOpaque()); 4768 case ISD::ANY_EXTEND: 4769 // Some targets like RISCV prefer to sign extend some types. 4770 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4771 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4772 C->isTargetOpcode(), C->isOpaque()); 4773 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4774 C->isTargetOpcode(), C->isOpaque()); 4775 case ISD::UINT_TO_FP: 4776 case ISD::SINT_TO_FP: { 4777 APFloat apf(EVTToAPFloatSemantics(VT), 4778 APInt::getZero(VT.getSizeInBits())); 4779 (void)apf.convertFromAPInt(Val, 4780 Opcode==ISD::SINT_TO_FP, 4781 APFloat::rmNearestTiesToEven); 4782 return getConstantFP(apf, DL, VT); 4783 } 4784 case ISD::BITCAST: 4785 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4786 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4787 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4788 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4789 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4790 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4791 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4792 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4793 break; 4794 case ISD::ABS: 4795 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4796 C->isOpaque()); 4797 case ISD::BITREVERSE: 4798 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4799 C->isOpaque()); 4800 case ISD::BSWAP: 4801 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4802 C->isOpaque()); 4803 case ISD::CTPOP: 4804 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4805 C->isOpaque()); 4806 case ISD::CTLZ: 4807 case ISD::CTLZ_ZERO_UNDEF: 4808 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4809 C->isOpaque()); 4810 case ISD::CTTZ: 4811 case ISD::CTTZ_ZERO_UNDEF: 4812 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4813 C->isOpaque()); 4814 case ISD::FP16_TO_FP: { 4815 bool Ignored; 4816 APFloat FPV(APFloat::IEEEhalf(), 4817 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4818 4819 // This can return overflow, underflow, or inexact; we don't care. 4820 // FIXME need to be more flexible about rounding mode. 4821 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4822 APFloat::rmNearestTiesToEven, &Ignored); 4823 return getConstantFP(FPV, DL, VT); 4824 } 4825 case ISD::STEP_VECTOR: { 4826 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4827 return V; 4828 break; 4829 } 4830 } 4831 } 4832 4833 // Constant fold unary operations with a floating point constant operand. 4834 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4835 APFloat V = C->getValueAPF(); // make copy 4836 switch (Opcode) { 4837 case ISD::FNEG: 4838 V.changeSign(); 4839 return getConstantFP(V, DL, VT); 4840 case ISD::FABS: 4841 V.clearSign(); 4842 return getConstantFP(V, DL, VT); 4843 case ISD::FCEIL: { 4844 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4845 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4846 return getConstantFP(V, DL, VT); 4847 break; 4848 } 4849 case ISD::FTRUNC: { 4850 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4851 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4852 return getConstantFP(V, DL, VT); 4853 break; 4854 } 4855 case ISD::FFLOOR: { 4856 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4857 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4858 return getConstantFP(V, DL, VT); 4859 break; 4860 } 4861 case ISD::FP_EXTEND: { 4862 bool ignored; 4863 // This can return overflow, underflow, or inexact; we don't care. 4864 // FIXME need to be more flexible about rounding mode. 4865 (void)V.convert(EVTToAPFloatSemantics(VT), 4866 APFloat::rmNearestTiesToEven, &ignored); 4867 return getConstantFP(V, DL, VT); 4868 } 4869 case ISD::FP_TO_SINT: 4870 case ISD::FP_TO_UINT: { 4871 bool ignored; 4872 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4873 // FIXME need to be more flexible about rounding mode. 4874 APFloat::opStatus s = 4875 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4876 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4877 break; 4878 return getConstant(IntVal, DL, VT); 4879 } 4880 case ISD::BITCAST: 4881 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4882 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4883 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4884 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4885 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4886 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4887 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4888 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4889 break; 4890 case ISD::FP_TO_FP16: { 4891 bool Ignored; 4892 // This can return overflow, underflow, or inexact; we don't care. 4893 // FIXME need to be more flexible about rounding mode. 4894 (void)V.convert(APFloat::IEEEhalf(), 4895 APFloat::rmNearestTiesToEven, &Ignored); 4896 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4897 } 4898 } 4899 } 4900 4901 // Constant fold unary operations with a vector integer or float operand. 4902 switch (Opcode) { 4903 default: 4904 // FIXME: Entirely reasonable to perform folding of other unary 4905 // operations here as the need arises. 4906 break; 4907 case ISD::FNEG: 4908 case ISD::FABS: 4909 case ISD::FCEIL: 4910 case ISD::FTRUNC: 4911 case ISD::FFLOOR: 4912 case ISD::FP_EXTEND: 4913 case ISD::FP_TO_SINT: 4914 case ISD::FP_TO_UINT: 4915 case ISD::TRUNCATE: 4916 case ISD::ANY_EXTEND: 4917 case ISD::ZERO_EXTEND: 4918 case ISD::SIGN_EXTEND: 4919 case ISD::UINT_TO_FP: 4920 case ISD::SINT_TO_FP: 4921 case ISD::ABS: 4922 case ISD::BITREVERSE: 4923 case ISD::BSWAP: 4924 case ISD::CTLZ: 4925 case ISD::CTLZ_ZERO_UNDEF: 4926 case ISD::CTTZ: 4927 case ISD::CTTZ_ZERO_UNDEF: 4928 case ISD::CTPOP: { 4929 SDValue Ops = {Operand}; 4930 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4931 return Fold; 4932 } 4933 } 4934 4935 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4936 switch (Opcode) { 4937 case ISD::STEP_VECTOR: 4938 assert(VT.isScalableVector() && 4939 "STEP_VECTOR can only be used with scalable types"); 4940 assert(OpOpcode == ISD::TargetConstant && 4941 VT.getVectorElementType() == Operand.getValueType() && 4942 "Unexpected step operand"); 4943 break; 4944 case ISD::FREEZE: 4945 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4946 break; 4947 case ISD::TokenFactor: 4948 case ISD::MERGE_VALUES: 4949 case ISD::CONCAT_VECTORS: 4950 return Operand; // Factor, merge or concat of one node? No need. 4951 case ISD::BUILD_VECTOR: { 4952 // Attempt to simplify BUILD_VECTOR. 4953 SDValue Ops[] = {Operand}; 4954 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4955 return V; 4956 break; 4957 } 4958 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4959 case ISD::FP_EXTEND: 4960 assert(VT.isFloatingPoint() && 4961 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4962 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4963 assert((!VT.isVector() || 4964 VT.getVectorElementCount() == 4965 Operand.getValueType().getVectorElementCount()) && 4966 "Vector element count mismatch!"); 4967 assert(Operand.getValueType().bitsLT(VT) && 4968 "Invalid fpext node, dst < src!"); 4969 if (Operand.isUndef()) 4970 return getUNDEF(VT); 4971 break; 4972 case ISD::FP_TO_SINT: 4973 case ISD::FP_TO_UINT: 4974 if (Operand.isUndef()) 4975 return getUNDEF(VT); 4976 break; 4977 case ISD::SINT_TO_FP: 4978 case ISD::UINT_TO_FP: 4979 // [us]itofp(undef) = 0, because the result value is bounded. 4980 if (Operand.isUndef()) 4981 return getConstantFP(0.0, DL, VT); 4982 break; 4983 case ISD::SIGN_EXTEND: 4984 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4985 "Invalid SIGN_EXTEND!"); 4986 assert(VT.isVector() == Operand.getValueType().isVector() && 4987 "SIGN_EXTEND result type type should be vector iff the operand " 4988 "type is vector!"); 4989 if (Operand.getValueType() == VT) return Operand; // noop extension 4990 assert((!VT.isVector() || 4991 VT.getVectorElementCount() == 4992 Operand.getValueType().getVectorElementCount()) && 4993 "Vector element count mismatch!"); 4994 assert(Operand.getValueType().bitsLT(VT) && 4995 "Invalid sext node, dst < src!"); 4996 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4997 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4998 if (OpOpcode == ISD::UNDEF) 4999 // sext(undef) = 0, because the top bits will all be the same. 5000 return getConstant(0, DL, VT); 5001 break; 5002 case ISD::ZERO_EXTEND: 5003 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5004 "Invalid ZERO_EXTEND!"); 5005 assert(VT.isVector() == Operand.getValueType().isVector() && 5006 "ZERO_EXTEND result type type should be vector iff the operand " 5007 "type is vector!"); 5008 if (Operand.getValueType() == VT) return Operand; // noop extension 5009 assert((!VT.isVector() || 5010 VT.getVectorElementCount() == 5011 Operand.getValueType().getVectorElementCount()) && 5012 "Vector element count mismatch!"); 5013 assert(Operand.getValueType().bitsLT(VT) && 5014 "Invalid zext node, dst < src!"); 5015 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5016 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5017 if (OpOpcode == ISD::UNDEF) 5018 // zext(undef) = 0, because the top bits will be zero. 5019 return getConstant(0, DL, VT); 5020 break; 5021 case ISD::ANY_EXTEND: 5022 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5023 "Invalid ANY_EXTEND!"); 5024 assert(VT.isVector() == Operand.getValueType().isVector() && 5025 "ANY_EXTEND result type type should be vector iff the operand " 5026 "type is vector!"); 5027 if (Operand.getValueType() == VT) return Operand; // noop extension 5028 assert((!VT.isVector() || 5029 VT.getVectorElementCount() == 5030 Operand.getValueType().getVectorElementCount()) && 5031 "Vector element count mismatch!"); 5032 assert(Operand.getValueType().bitsLT(VT) && 5033 "Invalid anyext node, dst < src!"); 5034 5035 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5036 OpOpcode == ISD::ANY_EXTEND) 5037 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5038 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5039 if (OpOpcode == ISD::UNDEF) 5040 return getUNDEF(VT); 5041 5042 // (ext (trunc x)) -> x 5043 if (OpOpcode == ISD::TRUNCATE) { 5044 SDValue OpOp = Operand.getOperand(0); 5045 if (OpOp.getValueType() == VT) { 5046 transferDbgValues(Operand, OpOp); 5047 return OpOp; 5048 } 5049 } 5050 break; 5051 case ISD::TRUNCATE: 5052 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5053 "Invalid TRUNCATE!"); 5054 assert(VT.isVector() == Operand.getValueType().isVector() && 5055 "TRUNCATE result type type should be vector iff the operand " 5056 "type is vector!"); 5057 if (Operand.getValueType() == VT) return Operand; // noop truncate 5058 assert((!VT.isVector() || 5059 VT.getVectorElementCount() == 5060 Operand.getValueType().getVectorElementCount()) && 5061 "Vector element count mismatch!"); 5062 assert(Operand.getValueType().bitsGT(VT) && 5063 "Invalid truncate node, src < dst!"); 5064 if (OpOpcode == ISD::TRUNCATE) 5065 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5066 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5067 OpOpcode == ISD::ANY_EXTEND) { 5068 // If the source is smaller than the dest, we still need an extend. 5069 if (Operand.getOperand(0).getValueType().getScalarType() 5070 .bitsLT(VT.getScalarType())) 5071 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5072 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5073 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5074 return Operand.getOperand(0); 5075 } 5076 if (OpOpcode == ISD::UNDEF) 5077 return getUNDEF(VT); 5078 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5079 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5080 break; 5081 case ISD::ANY_EXTEND_VECTOR_INREG: 5082 case ISD::ZERO_EXTEND_VECTOR_INREG: 5083 case ISD::SIGN_EXTEND_VECTOR_INREG: 5084 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5085 assert(Operand.getValueType().bitsLE(VT) && 5086 "The input must be the same size or smaller than the result."); 5087 assert(VT.getVectorMinNumElements() < 5088 Operand.getValueType().getVectorMinNumElements() && 5089 "The destination vector type must have fewer lanes than the input."); 5090 break; 5091 case ISD::ABS: 5092 assert(VT.isInteger() && VT == Operand.getValueType() && 5093 "Invalid ABS!"); 5094 if (OpOpcode == ISD::UNDEF) 5095 return getUNDEF(VT); 5096 break; 5097 case ISD::BSWAP: 5098 assert(VT.isInteger() && VT == Operand.getValueType() && 5099 "Invalid BSWAP!"); 5100 assert((VT.getScalarSizeInBits() % 16 == 0) && 5101 "BSWAP types must be a multiple of 16 bits!"); 5102 if (OpOpcode == ISD::UNDEF) 5103 return getUNDEF(VT); 5104 break; 5105 case ISD::BITREVERSE: 5106 assert(VT.isInteger() && VT == Operand.getValueType() && 5107 "Invalid BITREVERSE!"); 5108 if (OpOpcode == ISD::UNDEF) 5109 return getUNDEF(VT); 5110 break; 5111 case ISD::BITCAST: 5112 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5113 "Cannot BITCAST between types of different sizes!"); 5114 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5115 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5116 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5117 if (OpOpcode == ISD::UNDEF) 5118 return getUNDEF(VT); 5119 break; 5120 case ISD::SCALAR_TO_VECTOR: 5121 assert(VT.isVector() && !Operand.getValueType().isVector() && 5122 (VT.getVectorElementType() == Operand.getValueType() || 5123 (VT.getVectorElementType().isInteger() && 5124 Operand.getValueType().isInteger() && 5125 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5126 "Illegal SCALAR_TO_VECTOR node!"); 5127 if (OpOpcode == ISD::UNDEF) 5128 return getUNDEF(VT); 5129 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5130 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5131 isa<ConstantSDNode>(Operand.getOperand(1)) && 5132 Operand.getConstantOperandVal(1) == 0 && 5133 Operand.getOperand(0).getValueType() == VT) 5134 return Operand.getOperand(0); 5135 break; 5136 case ISD::FNEG: 5137 // Negation of an unknown bag of bits is still completely undefined. 5138 if (OpOpcode == ISD::UNDEF) 5139 return getUNDEF(VT); 5140 5141 if (OpOpcode == ISD::FNEG) // --X -> X 5142 return Operand.getOperand(0); 5143 break; 5144 case ISD::FABS: 5145 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5146 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5147 break; 5148 case ISD::VSCALE: 5149 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5150 break; 5151 case ISD::CTPOP: 5152 if (Operand.getValueType().getScalarType() == MVT::i1) 5153 return Operand; 5154 break; 5155 case ISD::CTLZ: 5156 case ISD::CTTZ: 5157 if (Operand.getValueType().getScalarType() == MVT::i1) 5158 return getNOT(DL, Operand, Operand.getValueType()); 5159 break; 5160 case ISD::VECREDUCE_SMIN: 5161 case ISD::VECREDUCE_UMAX: 5162 if (Operand.getValueType().getScalarType() == MVT::i1) 5163 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5164 break; 5165 case ISD::VECREDUCE_SMAX: 5166 case ISD::VECREDUCE_UMIN: 5167 if (Operand.getValueType().getScalarType() == MVT::i1) 5168 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5169 break; 5170 } 5171 5172 SDNode *N; 5173 SDVTList VTs = getVTList(VT); 5174 SDValue Ops[] = {Operand}; 5175 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5176 FoldingSetNodeID ID; 5177 AddNodeIDNode(ID, Opcode, VTs, Ops); 5178 void *IP = nullptr; 5179 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5180 E->intersectFlagsWith(Flags); 5181 return SDValue(E, 0); 5182 } 5183 5184 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5185 N->setFlags(Flags); 5186 createOperands(N, Ops); 5187 CSEMap.InsertNode(N, IP); 5188 } else { 5189 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5190 createOperands(N, Ops); 5191 } 5192 5193 InsertNode(N); 5194 SDValue V = SDValue(N, 0); 5195 NewSDValueDbgMsg(V, "Creating new node: ", this); 5196 return V; 5197 } 5198 5199 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5200 const APInt &C2) { 5201 switch (Opcode) { 5202 case ISD::ADD: return C1 + C2; 5203 case ISD::SUB: return C1 - C2; 5204 case ISD::MUL: return C1 * C2; 5205 case ISD::AND: return C1 & C2; 5206 case ISD::OR: return C1 | C2; 5207 case ISD::XOR: return C1 ^ C2; 5208 case ISD::SHL: return C1 << C2; 5209 case ISD::SRL: return C1.lshr(C2); 5210 case ISD::SRA: return C1.ashr(C2); 5211 case ISD::ROTL: return C1.rotl(C2); 5212 case ISD::ROTR: return C1.rotr(C2); 5213 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5214 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5215 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5216 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5217 case ISD::SADDSAT: return C1.sadd_sat(C2); 5218 case ISD::UADDSAT: return C1.uadd_sat(C2); 5219 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5220 case ISD::USUBSAT: return C1.usub_sat(C2); 5221 case ISD::UDIV: 5222 if (!C2.getBoolValue()) 5223 break; 5224 return C1.udiv(C2); 5225 case ISD::UREM: 5226 if (!C2.getBoolValue()) 5227 break; 5228 return C1.urem(C2); 5229 case ISD::SDIV: 5230 if (!C2.getBoolValue()) 5231 break; 5232 return C1.sdiv(C2); 5233 case ISD::SREM: 5234 if (!C2.getBoolValue()) 5235 break; 5236 return C1.srem(C2); 5237 case ISD::MULHS: { 5238 unsigned FullWidth = C1.getBitWidth() * 2; 5239 APInt C1Ext = C1.sext(FullWidth); 5240 APInt C2Ext = C2.sext(FullWidth); 5241 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5242 } 5243 case ISD::MULHU: { 5244 unsigned FullWidth = C1.getBitWidth() * 2; 5245 APInt C1Ext = C1.zext(FullWidth); 5246 APInt C2Ext = C2.zext(FullWidth); 5247 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5248 } 5249 } 5250 return llvm::None; 5251 } 5252 5253 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5254 const GlobalAddressSDNode *GA, 5255 const SDNode *N2) { 5256 if (GA->getOpcode() != ISD::GlobalAddress) 5257 return SDValue(); 5258 if (!TLI->isOffsetFoldingLegal(GA)) 5259 return SDValue(); 5260 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5261 if (!C2) 5262 return SDValue(); 5263 int64_t Offset = C2->getSExtValue(); 5264 switch (Opcode) { 5265 case ISD::ADD: break; 5266 case ISD::SUB: Offset = -uint64_t(Offset); break; 5267 default: return SDValue(); 5268 } 5269 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5270 GA->getOffset() + uint64_t(Offset)); 5271 } 5272 5273 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5274 switch (Opcode) { 5275 case ISD::SDIV: 5276 case ISD::UDIV: 5277 case ISD::SREM: 5278 case ISD::UREM: { 5279 // If a divisor is zero/undef or any element of a divisor vector is 5280 // zero/undef, the whole op is undef. 5281 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5282 SDValue Divisor = Ops[1]; 5283 if (Divisor.isUndef() || isNullConstant(Divisor)) 5284 return true; 5285 5286 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5287 llvm::any_of(Divisor->op_values(), 5288 [](SDValue V) { return V.isUndef() || 5289 isNullConstant(V); }); 5290 // TODO: Handle signed overflow. 5291 } 5292 // TODO: Handle oversized shifts. 5293 default: 5294 return false; 5295 } 5296 } 5297 5298 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5299 EVT VT, ArrayRef<SDValue> Ops) { 5300 // If the opcode is a target-specific ISD node, there's nothing we can 5301 // do here and the operand rules may not line up with the below, so 5302 // bail early. 5303 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5304 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5305 // foldCONCAT_VECTORS in getNode before this is called. 5306 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5307 return SDValue(); 5308 5309 unsigned NumOps = Ops.size(); 5310 if (NumOps == 0) 5311 return SDValue(); 5312 5313 if (isUndef(Opcode, Ops)) 5314 return getUNDEF(VT); 5315 5316 // Handle binops special cases. 5317 if (NumOps == 2) { 5318 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5319 return CFP; 5320 5321 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5322 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5323 if (C1->isOpaque() || C2->isOpaque()) 5324 return SDValue(); 5325 5326 Optional<APInt> FoldAttempt = 5327 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5328 if (!FoldAttempt) 5329 return SDValue(); 5330 5331 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5332 assert((!Folded || !VT.isVector()) && 5333 "Can't fold vectors ops with scalar operands"); 5334 return Folded; 5335 } 5336 } 5337 5338 // fold (add Sym, c) -> Sym+c 5339 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5340 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5341 if (TLI->isCommutativeBinOp(Opcode)) 5342 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5343 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5344 } 5345 5346 // This is for vector folding only from here on. 5347 if (!VT.isVector()) 5348 return SDValue(); 5349 5350 ElementCount NumElts = VT.getVectorElementCount(); 5351 5352 // See if we can fold through bitcasted integer ops. 5353 // TODO: Can we handle undef elements? 5354 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5355 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5356 Ops[0].getOpcode() == ISD::BITCAST && 5357 Ops[1].getOpcode() == ISD::BITCAST) { 5358 SDValue N1 = peekThroughBitcasts(Ops[0]); 5359 SDValue N2 = peekThroughBitcasts(Ops[1]); 5360 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5361 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5362 EVT BVVT = N1.getValueType(); 5363 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5364 bool IsLE = getDataLayout().isLittleEndian(); 5365 unsigned EltBits = VT.getScalarSizeInBits(); 5366 SmallVector<APInt> RawBits1, RawBits2; 5367 BitVector UndefElts1, UndefElts2; 5368 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5369 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5370 UndefElts1.none() && UndefElts2.none()) { 5371 SmallVector<APInt> RawBits; 5372 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5373 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5374 if (!Fold) 5375 break; 5376 RawBits.push_back(Fold.getValue()); 5377 } 5378 if (RawBits.size() == NumElts.getFixedValue()) { 5379 // We have constant folded, but we need to cast this again back to 5380 // the original (possibly legalized) type. 5381 SmallVector<APInt> DstBits; 5382 BitVector DstUndefs; 5383 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5384 DstBits, RawBits, DstUndefs, 5385 BitVector(RawBits.size(), false)); 5386 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5387 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5388 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5389 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5390 if (DstUndefs[I]) 5391 continue; 5392 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5393 } 5394 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5395 } 5396 } 5397 } 5398 } 5399 5400 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5401 return !Op.getValueType().isVector() || 5402 Op.getValueType().getVectorElementCount() == NumElts; 5403 }; 5404 5405 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5406 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5407 Op.getOpcode() == ISD::BUILD_VECTOR || 5408 Op.getOpcode() == ISD::SPLAT_VECTOR; 5409 }; 5410 5411 // All operands must be vector types with the same number of elements as 5412 // the result type and must be either UNDEF or a build/splat vector 5413 // or UNDEF scalars. 5414 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5415 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5416 return SDValue(); 5417 5418 // If we are comparing vectors, then the result needs to be a i1 boolean 5419 // that is then sign-extended back to the legal result type. 5420 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5421 5422 // Find legal integer scalar type for constant promotion and 5423 // ensure that its scalar size is at least as large as source. 5424 EVT LegalSVT = VT.getScalarType(); 5425 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5426 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5427 if (LegalSVT.bitsLT(VT.getScalarType())) 5428 return SDValue(); 5429 } 5430 5431 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5432 // only have one operand to check. For fixed-length vector types we may have 5433 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5434 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5435 5436 // Constant fold each scalar lane separately. 5437 SmallVector<SDValue, 4> ScalarResults; 5438 for (unsigned I = 0; I != NumVectorElts; I++) { 5439 SmallVector<SDValue, 4> ScalarOps; 5440 for (SDValue Op : Ops) { 5441 EVT InSVT = Op.getValueType().getScalarType(); 5442 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5443 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5444 if (Op.isUndef()) 5445 ScalarOps.push_back(getUNDEF(InSVT)); 5446 else 5447 ScalarOps.push_back(Op); 5448 continue; 5449 } 5450 5451 SDValue ScalarOp = 5452 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5453 EVT ScalarVT = ScalarOp.getValueType(); 5454 5455 // Build vector (integer) scalar operands may need implicit 5456 // truncation - do this before constant folding. 5457 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5458 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5459 5460 ScalarOps.push_back(ScalarOp); 5461 } 5462 5463 // Constant fold the scalar operands. 5464 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5465 5466 // Legalize the (integer) scalar constant if necessary. 5467 if (LegalSVT != SVT) 5468 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5469 5470 // Scalar folding only succeeded if the result is a constant or UNDEF. 5471 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5472 ScalarResult.getOpcode() != ISD::ConstantFP) 5473 return SDValue(); 5474 ScalarResults.push_back(ScalarResult); 5475 } 5476 5477 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5478 : getBuildVector(VT, DL, ScalarResults); 5479 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5480 return V; 5481 } 5482 5483 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5484 EVT VT, SDValue N1, SDValue N2) { 5485 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5486 // should. That will require dealing with a potentially non-default 5487 // rounding mode, checking the "opStatus" return value from the APFloat 5488 // math calculations, and possibly other variations. 5489 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5490 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5491 if (N1CFP && N2CFP) { 5492 APFloat C1 = N1CFP->getValueAPF(); // make copy 5493 const APFloat &C2 = N2CFP->getValueAPF(); 5494 switch (Opcode) { 5495 case ISD::FADD: 5496 C1.add(C2, APFloat::rmNearestTiesToEven); 5497 return getConstantFP(C1, DL, VT); 5498 case ISD::FSUB: 5499 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5500 return getConstantFP(C1, DL, VT); 5501 case ISD::FMUL: 5502 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5503 return getConstantFP(C1, DL, VT); 5504 case ISD::FDIV: 5505 C1.divide(C2, APFloat::rmNearestTiesToEven); 5506 return getConstantFP(C1, DL, VT); 5507 case ISD::FREM: 5508 C1.mod(C2); 5509 return getConstantFP(C1, DL, VT); 5510 case ISD::FCOPYSIGN: 5511 C1.copySign(C2); 5512 return getConstantFP(C1, DL, VT); 5513 case ISD::FMINNUM: 5514 return getConstantFP(minnum(C1, C2), DL, VT); 5515 case ISD::FMAXNUM: 5516 return getConstantFP(maxnum(C1, C2), DL, VT); 5517 case ISD::FMINIMUM: 5518 return getConstantFP(minimum(C1, C2), DL, VT); 5519 case ISD::FMAXIMUM: 5520 return getConstantFP(maximum(C1, C2), DL, VT); 5521 default: break; 5522 } 5523 } 5524 if (N1CFP && Opcode == ISD::FP_ROUND) { 5525 APFloat C1 = N1CFP->getValueAPF(); // make copy 5526 bool Unused; 5527 // This can return overflow, underflow, or inexact; we don't care. 5528 // FIXME need to be more flexible about rounding mode. 5529 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5530 &Unused); 5531 return getConstantFP(C1, DL, VT); 5532 } 5533 5534 switch (Opcode) { 5535 case ISD::FSUB: 5536 // -0.0 - undef --> undef (consistent with "fneg undef") 5537 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5538 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5539 return getUNDEF(VT); 5540 LLVM_FALLTHROUGH; 5541 5542 case ISD::FADD: 5543 case ISD::FMUL: 5544 case ISD::FDIV: 5545 case ISD::FREM: 5546 // If both operands are undef, the result is undef. If 1 operand is undef, 5547 // the result is NaN. This should match the behavior of the IR optimizer. 5548 if (N1.isUndef() && N2.isUndef()) 5549 return getUNDEF(VT); 5550 if (N1.isUndef() || N2.isUndef()) 5551 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5552 } 5553 return SDValue(); 5554 } 5555 5556 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5557 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5558 5559 // There's no need to assert on a byte-aligned pointer. All pointers are at 5560 // least byte aligned. 5561 if (A == Align(1)) 5562 return Val; 5563 5564 FoldingSetNodeID ID; 5565 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5566 ID.AddInteger(A.value()); 5567 5568 void *IP = nullptr; 5569 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5570 return SDValue(E, 0); 5571 5572 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5573 Val.getValueType(), A); 5574 createOperands(N, {Val}); 5575 5576 CSEMap.InsertNode(N, IP); 5577 InsertNode(N); 5578 5579 SDValue V(N, 0); 5580 NewSDValueDbgMsg(V, "Creating new node: ", this); 5581 return V; 5582 } 5583 5584 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5585 SDValue N1, SDValue N2) { 5586 SDNodeFlags Flags; 5587 if (Inserter) 5588 Flags = Inserter->getFlags(); 5589 return getNode(Opcode, DL, VT, N1, N2, Flags); 5590 } 5591 5592 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5593 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5594 assert(N1.getOpcode() != ISD::DELETED_NODE && 5595 N2.getOpcode() != ISD::DELETED_NODE && 5596 "Operand is DELETED_NODE!"); 5597 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5598 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5599 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5600 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5601 5602 // Canonicalize constant to RHS if commutative. 5603 if (TLI->isCommutativeBinOp(Opcode)) { 5604 if (N1C && !N2C) { 5605 std::swap(N1C, N2C); 5606 std::swap(N1, N2); 5607 } else if (N1CFP && !N2CFP) { 5608 std::swap(N1CFP, N2CFP); 5609 std::swap(N1, N2); 5610 } 5611 } 5612 5613 switch (Opcode) { 5614 default: break; 5615 case ISD::TokenFactor: 5616 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5617 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5618 // Fold trivial token factors. 5619 if (N1.getOpcode() == ISD::EntryToken) return N2; 5620 if (N2.getOpcode() == ISD::EntryToken) return N1; 5621 if (N1 == N2) return N1; 5622 break; 5623 case ISD::BUILD_VECTOR: { 5624 // Attempt to simplify BUILD_VECTOR. 5625 SDValue Ops[] = {N1, N2}; 5626 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5627 return V; 5628 break; 5629 } 5630 case ISD::CONCAT_VECTORS: { 5631 SDValue Ops[] = {N1, N2}; 5632 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5633 return V; 5634 break; 5635 } 5636 case ISD::AND: 5637 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5638 assert(N1.getValueType() == N2.getValueType() && 5639 N1.getValueType() == VT && "Binary operator types must match!"); 5640 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5641 // worth handling here. 5642 if (N2C && N2C->isZero()) 5643 return N2; 5644 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5645 return N1; 5646 break; 5647 case ISD::OR: 5648 case ISD::XOR: 5649 case ISD::ADD: 5650 case ISD::SUB: 5651 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5652 assert(N1.getValueType() == N2.getValueType() && 5653 N1.getValueType() == VT && "Binary operator types must match!"); 5654 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5655 // it's worth handling here. 5656 if (N2C && N2C->isZero()) 5657 return N1; 5658 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5659 VT.getVectorElementType() == MVT::i1) 5660 return getNode(ISD::XOR, DL, VT, N1, N2); 5661 break; 5662 case ISD::MUL: 5663 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5664 assert(N1.getValueType() == N2.getValueType() && 5665 N1.getValueType() == VT && "Binary operator types must match!"); 5666 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5667 return getNode(ISD::AND, DL, VT, N1, N2); 5668 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5669 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5670 const APInt &N2CImm = N2C->getAPIntValue(); 5671 return getVScale(DL, VT, MulImm * N2CImm); 5672 } 5673 break; 5674 case ISD::UDIV: 5675 case ISD::UREM: 5676 case ISD::MULHU: 5677 case ISD::MULHS: 5678 case ISD::SDIV: 5679 case ISD::SREM: 5680 case ISD::SADDSAT: 5681 case ISD::SSUBSAT: 5682 case ISD::UADDSAT: 5683 case ISD::USUBSAT: 5684 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5685 assert(N1.getValueType() == N2.getValueType() && 5686 N1.getValueType() == VT && "Binary operator types must match!"); 5687 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5688 // fold (add_sat x, y) -> (or x, y) for bool types. 5689 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5690 return getNode(ISD::OR, DL, VT, N1, N2); 5691 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5692 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5693 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5694 } 5695 break; 5696 case ISD::SMIN: 5697 case ISD::UMAX: 5698 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5699 assert(N1.getValueType() == N2.getValueType() && 5700 N1.getValueType() == VT && "Binary operator types must match!"); 5701 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5702 return getNode(ISD::OR, DL, VT, N1, N2); 5703 break; 5704 case ISD::SMAX: 5705 case ISD::UMIN: 5706 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5707 assert(N1.getValueType() == N2.getValueType() && 5708 N1.getValueType() == VT && "Binary operator types must match!"); 5709 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5710 return getNode(ISD::AND, DL, VT, N1, N2); 5711 break; 5712 case ISD::FADD: 5713 case ISD::FSUB: 5714 case ISD::FMUL: 5715 case ISD::FDIV: 5716 case ISD::FREM: 5717 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5718 assert(N1.getValueType() == N2.getValueType() && 5719 N1.getValueType() == VT && "Binary operator types must match!"); 5720 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5721 return V; 5722 break; 5723 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5724 assert(N1.getValueType() == VT && 5725 N1.getValueType().isFloatingPoint() && 5726 N2.getValueType().isFloatingPoint() && 5727 "Invalid FCOPYSIGN!"); 5728 break; 5729 case ISD::SHL: 5730 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5731 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5732 const APInt &ShiftImm = N2C->getAPIntValue(); 5733 return getVScale(DL, VT, MulImm << ShiftImm); 5734 } 5735 LLVM_FALLTHROUGH; 5736 case ISD::SRA: 5737 case ISD::SRL: 5738 if (SDValue V = simplifyShift(N1, N2)) 5739 return V; 5740 LLVM_FALLTHROUGH; 5741 case ISD::ROTL: 5742 case ISD::ROTR: 5743 assert(VT == N1.getValueType() && 5744 "Shift operators return type must be the same as their first arg"); 5745 assert(VT.isInteger() && N2.getValueType().isInteger() && 5746 "Shifts only work on integers"); 5747 assert((!VT.isVector() || VT == N2.getValueType()) && 5748 "Vector shift amounts must be in the same as their first arg"); 5749 // Verify that the shift amount VT is big enough to hold valid shift 5750 // amounts. This catches things like trying to shift an i1024 value by an 5751 // i8, which is easy to fall into in generic code that uses 5752 // TLI.getShiftAmount(). 5753 assert(N2.getValueType().getScalarSizeInBits() >= 5754 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5755 "Invalid use of small shift amount with oversized value!"); 5756 5757 // Always fold shifts of i1 values so the code generator doesn't need to 5758 // handle them. Since we know the size of the shift has to be less than the 5759 // size of the value, the shift/rotate count is guaranteed to be zero. 5760 if (VT == MVT::i1) 5761 return N1; 5762 if (N2C && N2C->isZero()) 5763 return N1; 5764 break; 5765 case ISD::FP_ROUND: 5766 assert(VT.isFloatingPoint() && 5767 N1.getValueType().isFloatingPoint() && 5768 VT.bitsLE(N1.getValueType()) && 5769 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5770 "Invalid FP_ROUND!"); 5771 if (N1.getValueType() == VT) return N1; // noop conversion. 5772 break; 5773 case ISD::AssertSext: 5774 case ISD::AssertZext: { 5775 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5776 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5777 assert(VT.isInteger() && EVT.isInteger() && 5778 "Cannot *_EXTEND_INREG FP types"); 5779 assert(!EVT.isVector() && 5780 "AssertSExt/AssertZExt type should be the vector element type " 5781 "rather than the vector type!"); 5782 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5783 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5784 break; 5785 } 5786 case ISD::SIGN_EXTEND_INREG: { 5787 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5788 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5789 assert(VT.isInteger() && EVT.isInteger() && 5790 "Cannot *_EXTEND_INREG FP types"); 5791 assert(EVT.isVector() == VT.isVector() && 5792 "SIGN_EXTEND_INREG type should be vector iff the operand " 5793 "type is vector!"); 5794 assert((!EVT.isVector() || 5795 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5796 "Vector element counts must match in SIGN_EXTEND_INREG"); 5797 assert(EVT.bitsLE(VT) && "Not extending!"); 5798 if (EVT == VT) return N1; // Not actually extending 5799 5800 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5801 unsigned FromBits = EVT.getScalarSizeInBits(); 5802 Val <<= Val.getBitWidth() - FromBits; 5803 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5804 return getConstant(Val, DL, ConstantVT); 5805 }; 5806 5807 if (N1C) { 5808 const APInt &Val = N1C->getAPIntValue(); 5809 return SignExtendInReg(Val, VT); 5810 } 5811 5812 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5813 SmallVector<SDValue, 8> Ops; 5814 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5815 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5816 SDValue Op = N1.getOperand(i); 5817 if (Op.isUndef()) { 5818 Ops.push_back(getUNDEF(OpVT)); 5819 continue; 5820 } 5821 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5822 APInt Val = C->getAPIntValue(); 5823 Ops.push_back(SignExtendInReg(Val, OpVT)); 5824 } 5825 return getBuildVector(VT, DL, Ops); 5826 } 5827 break; 5828 } 5829 case ISD::FP_TO_SINT_SAT: 5830 case ISD::FP_TO_UINT_SAT: { 5831 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5832 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5833 assert(N1.getValueType().isVector() == VT.isVector() && 5834 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5835 "vector!"); 5836 assert((!VT.isVector() || VT.getVectorNumElements() == 5837 N1.getValueType().getVectorNumElements()) && 5838 "Vector element counts must match in FP_TO_*INT_SAT"); 5839 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5840 "Type to saturate to must be a scalar."); 5841 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5842 "Not extending!"); 5843 break; 5844 } 5845 case ISD::EXTRACT_VECTOR_ELT: 5846 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5847 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5848 element type of the vector."); 5849 5850 // Extract from an undefined value or using an undefined index is undefined. 5851 if (N1.isUndef() || N2.isUndef()) 5852 return getUNDEF(VT); 5853 5854 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5855 // vectors. For scalable vectors we will provide appropriate support for 5856 // dealing with arbitrary indices. 5857 if (N2C && N1.getValueType().isFixedLengthVector() && 5858 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5859 return getUNDEF(VT); 5860 5861 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5862 // expanding copies of large vectors from registers. This only works for 5863 // fixed length vectors, since we need to know the exact number of 5864 // elements. 5865 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5866 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5867 unsigned Factor = 5868 N1.getOperand(0).getValueType().getVectorNumElements(); 5869 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5870 N1.getOperand(N2C->getZExtValue() / Factor), 5871 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5872 } 5873 5874 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5875 // lowering is expanding large vector constants. 5876 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5877 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5878 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5879 N1.getValueType().isFixedLengthVector()) && 5880 "BUILD_VECTOR used for scalable vectors"); 5881 unsigned Index = 5882 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5883 SDValue Elt = N1.getOperand(Index); 5884 5885 if (VT != Elt.getValueType()) 5886 // If the vector element type is not legal, the BUILD_VECTOR operands 5887 // are promoted and implicitly truncated, and the result implicitly 5888 // extended. Make that explicit here. 5889 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5890 5891 return Elt; 5892 } 5893 5894 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5895 // operations are lowered to scalars. 5896 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5897 // If the indices are the same, return the inserted element else 5898 // if the indices are known different, extract the element from 5899 // the original vector. 5900 SDValue N1Op2 = N1.getOperand(2); 5901 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5902 5903 if (N1Op2C && N2C) { 5904 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5905 if (VT == N1.getOperand(1).getValueType()) 5906 return N1.getOperand(1); 5907 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5908 } 5909 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5910 } 5911 } 5912 5913 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5914 // when vector types are scalarized and v1iX is legal. 5915 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5916 // Here we are completely ignoring the extract element index (N2), 5917 // which is fine for fixed width vectors, since any index other than 0 5918 // is undefined anyway. However, this cannot be ignored for scalable 5919 // vectors - in theory we could support this, but we don't want to do this 5920 // without a profitability check. 5921 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5922 N1.getValueType().isFixedLengthVector() && 5923 N1.getValueType().getVectorNumElements() == 1) { 5924 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5925 N1.getOperand(1)); 5926 } 5927 break; 5928 case ISD::EXTRACT_ELEMENT: 5929 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5930 assert(!N1.getValueType().isVector() && !VT.isVector() && 5931 (N1.getValueType().isInteger() == VT.isInteger()) && 5932 N1.getValueType() != VT && 5933 "Wrong types for EXTRACT_ELEMENT!"); 5934 5935 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5936 // 64-bit integers into 32-bit parts. Instead of building the extract of 5937 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5938 if (N1.getOpcode() == ISD::BUILD_PAIR) 5939 return N1.getOperand(N2C->getZExtValue()); 5940 5941 // EXTRACT_ELEMENT of a constant int is also very common. 5942 if (N1C) { 5943 unsigned ElementSize = VT.getSizeInBits(); 5944 unsigned Shift = ElementSize * N2C->getZExtValue(); 5945 const APInt &Val = N1C->getAPIntValue(); 5946 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5947 } 5948 break; 5949 case ISD::EXTRACT_SUBVECTOR: { 5950 EVT N1VT = N1.getValueType(); 5951 assert(VT.isVector() && N1VT.isVector() && 5952 "Extract subvector VTs must be vectors!"); 5953 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5954 "Extract subvector VTs must have the same element type!"); 5955 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5956 "Cannot extract a scalable vector from a fixed length vector!"); 5957 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5958 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5959 "Extract subvector must be from larger vector to smaller vector!"); 5960 assert(N2C && "Extract subvector index must be a constant"); 5961 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5962 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5963 N1VT.getVectorMinNumElements()) && 5964 "Extract subvector overflow!"); 5965 assert(N2C->getAPIntValue().getBitWidth() == 5966 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5967 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5968 5969 // Trivial extraction. 5970 if (VT == N1VT) 5971 return N1; 5972 5973 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5974 if (N1.isUndef()) 5975 return getUNDEF(VT); 5976 5977 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5978 // the concat have the same type as the extract. 5979 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5980 VT == N1.getOperand(0).getValueType()) { 5981 unsigned Factor = VT.getVectorMinNumElements(); 5982 return N1.getOperand(N2C->getZExtValue() / Factor); 5983 } 5984 5985 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5986 // during shuffle legalization. 5987 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5988 VT == N1.getOperand(1).getValueType()) 5989 return N1.getOperand(1); 5990 break; 5991 } 5992 } 5993 5994 // Perform trivial constant folding. 5995 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5996 return SV; 5997 5998 // Canonicalize an UNDEF to the RHS, even over a constant. 5999 if (N1.isUndef()) { 6000 if (TLI->isCommutativeBinOp(Opcode)) { 6001 std::swap(N1, N2); 6002 } else { 6003 switch (Opcode) { 6004 case ISD::SIGN_EXTEND_INREG: 6005 case ISD::SUB: 6006 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6007 case ISD::UDIV: 6008 case ISD::SDIV: 6009 case ISD::UREM: 6010 case ISD::SREM: 6011 case ISD::SSUBSAT: 6012 case ISD::USUBSAT: 6013 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6014 } 6015 } 6016 } 6017 6018 // Fold a bunch of operators when the RHS is undef. 6019 if (N2.isUndef()) { 6020 switch (Opcode) { 6021 case ISD::XOR: 6022 if (N1.isUndef()) 6023 // Handle undef ^ undef -> 0 special case. This is a common 6024 // idiom (misuse). 6025 return getConstant(0, DL, VT); 6026 LLVM_FALLTHROUGH; 6027 case ISD::ADD: 6028 case ISD::SUB: 6029 case ISD::UDIV: 6030 case ISD::SDIV: 6031 case ISD::UREM: 6032 case ISD::SREM: 6033 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6034 case ISD::MUL: 6035 case ISD::AND: 6036 case ISD::SSUBSAT: 6037 case ISD::USUBSAT: 6038 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6039 case ISD::OR: 6040 case ISD::SADDSAT: 6041 case ISD::UADDSAT: 6042 return getAllOnesConstant(DL, VT); 6043 } 6044 } 6045 6046 // Memoize this node if possible. 6047 SDNode *N; 6048 SDVTList VTs = getVTList(VT); 6049 SDValue Ops[] = {N1, N2}; 6050 if (VT != MVT::Glue) { 6051 FoldingSetNodeID ID; 6052 AddNodeIDNode(ID, Opcode, VTs, Ops); 6053 void *IP = nullptr; 6054 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6055 E->intersectFlagsWith(Flags); 6056 return SDValue(E, 0); 6057 } 6058 6059 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6060 N->setFlags(Flags); 6061 createOperands(N, Ops); 6062 CSEMap.InsertNode(N, IP); 6063 } else { 6064 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6065 createOperands(N, Ops); 6066 } 6067 6068 InsertNode(N); 6069 SDValue V = SDValue(N, 0); 6070 NewSDValueDbgMsg(V, "Creating new node: ", this); 6071 return V; 6072 } 6073 6074 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6075 SDValue N1, SDValue N2, SDValue N3) { 6076 SDNodeFlags Flags; 6077 if (Inserter) 6078 Flags = Inserter->getFlags(); 6079 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6080 } 6081 6082 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6083 SDValue N1, SDValue N2, SDValue N3, 6084 const SDNodeFlags Flags) { 6085 assert(N1.getOpcode() != ISD::DELETED_NODE && 6086 N2.getOpcode() != ISD::DELETED_NODE && 6087 N3.getOpcode() != ISD::DELETED_NODE && 6088 "Operand is DELETED_NODE!"); 6089 // Perform various simplifications. 6090 switch (Opcode) { 6091 case ISD::FMA: { 6092 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6093 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6094 N3.getValueType() == VT && "FMA types must match!"); 6095 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6096 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6097 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6098 if (N1CFP && N2CFP && N3CFP) { 6099 APFloat V1 = N1CFP->getValueAPF(); 6100 const APFloat &V2 = N2CFP->getValueAPF(); 6101 const APFloat &V3 = N3CFP->getValueAPF(); 6102 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6103 return getConstantFP(V1, DL, VT); 6104 } 6105 break; 6106 } 6107 case ISD::BUILD_VECTOR: { 6108 // Attempt to simplify BUILD_VECTOR. 6109 SDValue Ops[] = {N1, N2, N3}; 6110 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6111 return V; 6112 break; 6113 } 6114 case ISD::CONCAT_VECTORS: { 6115 SDValue Ops[] = {N1, N2, N3}; 6116 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6117 return V; 6118 break; 6119 } 6120 case ISD::SETCC: { 6121 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6122 assert(N1.getValueType() == N2.getValueType() && 6123 "SETCC operands must have the same type!"); 6124 assert(VT.isVector() == N1.getValueType().isVector() && 6125 "SETCC type should be vector iff the operand type is vector!"); 6126 assert((!VT.isVector() || VT.getVectorElementCount() == 6127 N1.getValueType().getVectorElementCount()) && 6128 "SETCC vector element counts must match!"); 6129 // Use FoldSetCC to simplify SETCC's. 6130 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6131 return V; 6132 // Vector constant folding. 6133 SDValue Ops[] = {N1, N2, N3}; 6134 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6135 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6136 return V; 6137 } 6138 break; 6139 } 6140 case ISD::SELECT: 6141 case ISD::VSELECT: 6142 if (SDValue V = simplifySelect(N1, N2, N3)) 6143 return V; 6144 break; 6145 case ISD::VECTOR_SHUFFLE: 6146 llvm_unreachable("should use getVectorShuffle constructor!"); 6147 case ISD::VECTOR_SPLICE: { 6148 if (cast<ConstantSDNode>(N3)->isNullValue()) 6149 return N1; 6150 break; 6151 } 6152 case ISD::INSERT_VECTOR_ELT: { 6153 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6154 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6155 // for scalable vectors where we will generate appropriate code to 6156 // deal with out-of-bounds cases correctly. 6157 if (N3C && N1.getValueType().isFixedLengthVector() && 6158 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6159 return getUNDEF(VT); 6160 6161 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6162 if (N3.isUndef()) 6163 return getUNDEF(VT); 6164 6165 // If the inserted element is an UNDEF, just use the input vector. 6166 if (N2.isUndef()) 6167 return N1; 6168 6169 break; 6170 } 6171 case ISD::INSERT_SUBVECTOR: { 6172 // Inserting undef into undef is still undef. 6173 if (N1.isUndef() && N2.isUndef()) 6174 return getUNDEF(VT); 6175 6176 EVT N2VT = N2.getValueType(); 6177 assert(VT == N1.getValueType() && 6178 "Dest and insert subvector source types must match!"); 6179 assert(VT.isVector() && N2VT.isVector() && 6180 "Insert subvector VTs must be vectors!"); 6181 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6182 "Cannot insert a scalable vector into a fixed length vector!"); 6183 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6184 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6185 "Insert subvector must be from smaller vector to larger vector!"); 6186 assert(isa<ConstantSDNode>(N3) && 6187 "Insert subvector index must be constant"); 6188 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6189 (N2VT.getVectorMinNumElements() + 6190 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6191 VT.getVectorMinNumElements()) && 6192 "Insert subvector overflow!"); 6193 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6194 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6195 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6196 6197 // Trivial insertion. 6198 if (VT == N2VT) 6199 return N2; 6200 6201 // If this is an insert of an extracted vector into an undef vector, we 6202 // can just use the input to the extract. 6203 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6204 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6205 return N2.getOperand(0); 6206 break; 6207 } 6208 case ISD::BITCAST: 6209 // Fold bit_convert nodes from a type to themselves. 6210 if (N1.getValueType() == VT) 6211 return N1; 6212 break; 6213 } 6214 6215 // Memoize node if it doesn't produce a flag. 6216 SDNode *N; 6217 SDVTList VTs = getVTList(VT); 6218 SDValue Ops[] = {N1, N2, N3}; 6219 if (VT != MVT::Glue) { 6220 FoldingSetNodeID ID; 6221 AddNodeIDNode(ID, Opcode, VTs, Ops); 6222 void *IP = nullptr; 6223 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6224 E->intersectFlagsWith(Flags); 6225 return SDValue(E, 0); 6226 } 6227 6228 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6229 N->setFlags(Flags); 6230 createOperands(N, Ops); 6231 CSEMap.InsertNode(N, IP); 6232 } else { 6233 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6234 createOperands(N, Ops); 6235 } 6236 6237 InsertNode(N); 6238 SDValue V = SDValue(N, 0); 6239 NewSDValueDbgMsg(V, "Creating new node: ", this); 6240 return V; 6241 } 6242 6243 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6244 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6245 SDValue Ops[] = { N1, N2, N3, N4 }; 6246 return getNode(Opcode, DL, VT, Ops); 6247 } 6248 6249 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6250 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6251 SDValue N5) { 6252 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6253 return getNode(Opcode, DL, VT, Ops); 6254 } 6255 6256 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6257 /// the incoming stack arguments to be loaded from the stack. 6258 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6259 SmallVector<SDValue, 8> ArgChains; 6260 6261 // Include the original chain at the beginning of the list. When this is 6262 // used by target LowerCall hooks, this helps legalize find the 6263 // CALLSEQ_BEGIN node. 6264 ArgChains.push_back(Chain); 6265 6266 // Add a chain value for each stack argument. 6267 for (SDNode *U : getEntryNode().getNode()->uses()) 6268 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6269 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6270 if (FI->getIndex() < 0) 6271 ArgChains.push_back(SDValue(L, 1)); 6272 6273 // Build a tokenfactor for all the chains. 6274 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6275 } 6276 6277 /// getMemsetValue - Vectorized representation of the memset value 6278 /// operand. 6279 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6280 const SDLoc &dl) { 6281 assert(!Value.isUndef()); 6282 6283 unsigned NumBits = VT.getScalarSizeInBits(); 6284 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6285 assert(C->getAPIntValue().getBitWidth() == 8); 6286 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6287 if (VT.isInteger()) { 6288 bool IsOpaque = VT.getSizeInBits() > 64 || 6289 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6290 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6291 } 6292 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6293 VT); 6294 } 6295 6296 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6297 EVT IntVT = VT.getScalarType(); 6298 if (!IntVT.isInteger()) 6299 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6300 6301 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6302 if (NumBits > 8) { 6303 // Use a multiplication with 0x010101... to extend the input to the 6304 // required length. 6305 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6306 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6307 DAG.getConstant(Magic, dl, IntVT)); 6308 } 6309 6310 if (VT != Value.getValueType() && !VT.isInteger()) 6311 Value = DAG.getBitcast(VT.getScalarType(), Value); 6312 if (VT != Value.getValueType()) 6313 Value = DAG.getSplatBuildVector(VT, dl, Value); 6314 6315 return Value; 6316 } 6317 6318 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6319 /// used when a memcpy is turned into a memset when the source is a constant 6320 /// string ptr. 6321 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6322 const TargetLowering &TLI, 6323 const ConstantDataArraySlice &Slice) { 6324 // Handle vector with all elements zero. 6325 if (Slice.Array == nullptr) { 6326 if (VT.isInteger()) 6327 return DAG.getConstant(0, dl, VT); 6328 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6329 return DAG.getConstantFP(0.0, dl, VT); 6330 if (VT.isVector()) { 6331 unsigned NumElts = VT.getVectorNumElements(); 6332 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6333 return DAG.getNode(ISD::BITCAST, dl, VT, 6334 DAG.getConstant(0, dl, 6335 EVT::getVectorVT(*DAG.getContext(), 6336 EltVT, NumElts))); 6337 } 6338 llvm_unreachable("Expected type!"); 6339 } 6340 6341 assert(!VT.isVector() && "Can't handle vector type here!"); 6342 unsigned NumVTBits = VT.getSizeInBits(); 6343 unsigned NumVTBytes = NumVTBits / 8; 6344 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6345 6346 APInt Val(NumVTBits, 0); 6347 if (DAG.getDataLayout().isLittleEndian()) { 6348 for (unsigned i = 0; i != NumBytes; ++i) 6349 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6350 } else { 6351 for (unsigned i = 0; i != NumBytes; ++i) 6352 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6353 } 6354 6355 // If the "cost" of materializing the integer immediate is less than the cost 6356 // of a load, then it is cost effective to turn the load into the immediate. 6357 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6358 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6359 return DAG.getConstant(Val, dl, VT); 6360 return SDValue(); 6361 } 6362 6363 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6364 const SDLoc &DL, 6365 const SDNodeFlags Flags) { 6366 EVT VT = Base.getValueType(); 6367 SDValue Index; 6368 6369 if (Offset.isScalable()) 6370 Index = getVScale(DL, Base.getValueType(), 6371 APInt(Base.getValueSizeInBits().getFixedSize(), 6372 Offset.getKnownMinSize())); 6373 else 6374 Index = getConstant(Offset.getFixedSize(), DL, VT); 6375 6376 return getMemBasePlusOffset(Base, Index, DL, Flags); 6377 } 6378 6379 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6380 const SDLoc &DL, 6381 const SDNodeFlags Flags) { 6382 assert(Offset.getValueType().isInteger()); 6383 EVT BasePtrVT = Ptr.getValueType(); 6384 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6385 } 6386 6387 /// Returns true if memcpy source is constant data. 6388 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6389 uint64_t SrcDelta = 0; 6390 GlobalAddressSDNode *G = nullptr; 6391 if (Src.getOpcode() == ISD::GlobalAddress) 6392 G = cast<GlobalAddressSDNode>(Src); 6393 else if (Src.getOpcode() == ISD::ADD && 6394 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6395 Src.getOperand(1).getOpcode() == ISD::Constant) { 6396 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6397 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6398 } 6399 if (!G) 6400 return false; 6401 6402 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6403 SrcDelta + G->getOffset()); 6404 } 6405 6406 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6407 SelectionDAG &DAG) { 6408 // On Darwin, -Os means optimize for size without hurting performance, so 6409 // only really optimize for size when -Oz (MinSize) is used. 6410 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6411 return MF.getFunction().hasMinSize(); 6412 return DAG.shouldOptForSize(); 6413 } 6414 6415 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6416 SmallVector<SDValue, 32> &OutChains, unsigned From, 6417 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6418 SmallVector<SDValue, 16> &OutStoreChains) { 6419 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6420 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6421 SmallVector<SDValue, 16> GluedLoadChains; 6422 for (unsigned i = From; i < To; ++i) { 6423 OutChains.push_back(OutLoadChains[i]); 6424 GluedLoadChains.push_back(OutLoadChains[i]); 6425 } 6426 6427 // Chain for all loads. 6428 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6429 GluedLoadChains); 6430 6431 for (unsigned i = From; i < To; ++i) { 6432 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6433 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6434 ST->getBasePtr(), ST->getMemoryVT(), 6435 ST->getMemOperand()); 6436 OutChains.push_back(NewStore); 6437 } 6438 } 6439 6440 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6441 SDValue Chain, SDValue Dst, SDValue Src, 6442 uint64_t Size, Align Alignment, 6443 bool isVol, bool AlwaysInline, 6444 MachinePointerInfo DstPtrInfo, 6445 MachinePointerInfo SrcPtrInfo, 6446 const AAMDNodes &AAInfo) { 6447 // Turn a memcpy of undef to nop. 6448 // FIXME: We need to honor volatile even is Src is undef. 6449 if (Src.isUndef()) 6450 return Chain; 6451 6452 // Expand memcpy to a series of load and store ops if the size operand falls 6453 // below a certain threshold. 6454 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6455 // rather than maybe a humongous number of loads and stores. 6456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6457 const DataLayout &DL = DAG.getDataLayout(); 6458 LLVMContext &C = *DAG.getContext(); 6459 std::vector<EVT> MemOps; 6460 bool DstAlignCanChange = false; 6461 MachineFunction &MF = DAG.getMachineFunction(); 6462 MachineFrameInfo &MFI = MF.getFrameInfo(); 6463 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6464 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6465 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6466 DstAlignCanChange = true; 6467 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6468 if (!SrcAlign || Alignment > *SrcAlign) 6469 SrcAlign = Alignment; 6470 assert(SrcAlign && "SrcAlign must be set"); 6471 ConstantDataArraySlice Slice; 6472 // If marked as volatile, perform a copy even when marked as constant. 6473 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6474 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6475 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6476 const MemOp Op = isZeroConstant 6477 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6478 /*IsZeroMemset*/ true, isVol) 6479 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6480 *SrcAlign, isVol, CopyFromConstant); 6481 if (!TLI.findOptimalMemOpLowering( 6482 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6483 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6484 return SDValue(); 6485 6486 if (DstAlignCanChange) { 6487 Type *Ty = MemOps[0].getTypeForEVT(C); 6488 Align NewAlign = DL.getABITypeAlign(Ty); 6489 6490 // Don't promote to an alignment that would require dynamic stack 6491 // realignment. 6492 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6493 if (!TRI->hasStackRealignment(MF)) 6494 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6495 NewAlign = NewAlign / 2; 6496 6497 if (NewAlign > Alignment) { 6498 // Give the stack frame object a larger alignment if needed. 6499 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6500 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6501 Alignment = NewAlign; 6502 } 6503 } 6504 6505 // Prepare AAInfo for loads/stores after lowering this memcpy. 6506 AAMDNodes NewAAInfo = AAInfo; 6507 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6508 6509 MachineMemOperand::Flags MMOFlags = 6510 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6511 SmallVector<SDValue, 16> OutLoadChains; 6512 SmallVector<SDValue, 16> OutStoreChains; 6513 SmallVector<SDValue, 32> OutChains; 6514 unsigned NumMemOps = MemOps.size(); 6515 uint64_t SrcOff = 0, DstOff = 0; 6516 for (unsigned i = 0; i != NumMemOps; ++i) { 6517 EVT VT = MemOps[i]; 6518 unsigned VTSize = VT.getSizeInBits() / 8; 6519 SDValue Value, Store; 6520 6521 if (VTSize > Size) { 6522 // Issuing an unaligned load / store pair that overlaps with the previous 6523 // pair. Adjust the offset accordingly. 6524 assert(i == NumMemOps-1 && i != 0); 6525 SrcOff -= VTSize - Size; 6526 DstOff -= VTSize - Size; 6527 } 6528 6529 if (CopyFromConstant && 6530 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6531 // It's unlikely a store of a vector immediate can be done in a single 6532 // instruction. It would require a load from a constantpool first. 6533 // We only handle zero vectors here. 6534 // FIXME: Handle other cases where store of vector immediate is done in 6535 // a single instruction. 6536 ConstantDataArraySlice SubSlice; 6537 if (SrcOff < Slice.Length) { 6538 SubSlice = Slice; 6539 SubSlice.move(SrcOff); 6540 } else { 6541 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6542 SubSlice.Array = nullptr; 6543 SubSlice.Offset = 0; 6544 SubSlice.Length = VTSize; 6545 } 6546 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6547 if (Value.getNode()) { 6548 Store = DAG.getStore( 6549 Chain, dl, Value, 6550 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6551 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6552 OutChains.push_back(Store); 6553 } 6554 } 6555 6556 if (!Store.getNode()) { 6557 // The type might not be legal for the target. This should only happen 6558 // if the type is smaller than a legal type, as on PPC, so the right 6559 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6560 // to Load/Store if NVT==VT. 6561 // FIXME does the case above also need this? 6562 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6563 assert(NVT.bitsGE(VT)); 6564 6565 bool isDereferenceable = 6566 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6567 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6568 if (isDereferenceable) 6569 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6570 6571 Value = DAG.getExtLoad( 6572 ISD::EXTLOAD, dl, NVT, Chain, 6573 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6574 SrcPtrInfo.getWithOffset(SrcOff), VT, 6575 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6576 OutLoadChains.push_back(Value.getValue(1)); 6577 6578 Store = DAG.getTruncStore( 6579 Chain, dl, Value, 6580 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6581 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6582 OutStoreChains.push_back(Store); 6583 } 6584 SrcOff += VTSize; 6585 DstOff += VTSize; 6586 Size -= VTSize; 6587 } 6588 6589 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6590 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6591 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6592 6593 if (NumLdStInMemcpy) { 6594 // It may be that memcpy might be converted to memset if it's memcpy 6595 // of constants. In such a case, we won't have loads and stores, but 6596 // just stores. In the absence of loads, there is nothing to gang up. 6597 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6598 // If target does not care, just leave as it. 6599 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6600 OutChains.push_back(OutLoadChains[i]); 6601 OutChains.push_back(OutStoreChains[i]); 6602 } 6603 } else { 6604 // Ld/St less than/equal limit set by target. 6605 if (NumLdStInMemcpy <= GluedLdStLimit) { 6606 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6607 NumLdStInMemcpy, OutLoadChains, 6608 OutStoreChains); 6609 } else { 6610 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6611 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6612 unsigned GlueIter = 0; 6613 6614 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6615 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6616 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6617 6618 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6619 OutLoadChains, OutStoreChains); 6620 GlueIter += GluedLdStLimit; 6621 } 6622 6623 // Residual ld/st. 6624 if (RemainingLdStInMemcpy) { 6625 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6626 RemainingLdStInMemcpy, OutLoadChains, 6627 OutStoreChains); 6628 } 6629 } 6630 } 6631 } 6632 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6633 } 6634 6635 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6636 SDValue Chain, SDValue Dst, SDValue Src, 6637 uint64_t Size, Align Alignment, 6638 bool isVol, bool AlwaysInline, 6639 MachinePointerInfo DstPtrInfo, 6640 MachinePointerInfo SrcPtrInfo, 6641 const AAMDNodes &AAInfo) { 6642 // Turn a memmove of undef to nop. 6643 // FIXME: We need to honor volatile even is Src is undef. 6644 if (Src.isUndef()) 6645 return Chain; 6646 6647 // Expand memmove to a series of load and store ops if the size operand falls 6648 // below a certain threshold. 6649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6650 const DataLayout &DL = DAG.getDataLayout(); 6651 LLVMContext &C = *DAG.getContext(); 6652 std::vector<EVT> MemOps; 6653 bool DstAlignCanChange = false; 6654 MachineFunction &MF = DAG.getMachineFunction(); 6655 MachineFrameInfo &MFI = MF.getFrameInfo(); 6656 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6657 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6658 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6659 DstAlignCanChange = true; 6660 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6661 if (!SrcAlign || Alignment > *SrcAlign) 6662 SrcAlign = Alignment; 6663 assert(SrcAlign && "SrcAlign must be set"); 6664 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6665 if (!TLI.findOptimalMemOpLowering( 6666 MemOps, Limit, 6667 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6668 /*IsVolatile*/ true), 6669 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6670 MF.getFunction().getAttributes())) 6671 return SDValue(); 6672 6673 if (DstAlignCanChange) { 6674 Type *Ty = MemOps[0].getTypeForEVT(C); 6675 Align NewAlign = DL.getABITypeAlign(Ty); 6676 if (NewAlign > Alignment) { 6677 // Give the stack frame object a larger alignment if needed. 6678 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6679 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6680 Alignment = NewAlign; 6681 } 6682 } 6683 6684 // Prepare AAInfo for loads/stores after lowering this memmove. 6685 AAMDNodes NewAAInfo = AAInfo; 6686 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6687 6688 MachineMemOperand::Flags MMOFlags = 6689 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6690 uint64_t SrcOff = 0, DstOff = 0; 6691 SmallVector<SDValue, 8> LoadValues; 6692 SmallVector<SDValue, 8> LoadChains; 6693 SmallVector<SDValue, 8> OutChains; 6694 unsigned NumMemOps = MemOps.size(); 6695 for (unsigned i = 0; i < NumMemOps; i++) { 6696 EVT VT = MemOps[i]; 6697 unsigned VTSize = VT.getSizeInBits() / 8; 6698 SDValue Value; 6699 6700 bool isDereferenceable = 6701 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6702 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6703 if (isDereferenceable) 6704 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6705 6706 Value = DAG.getLoad( 6707 VT, dl, Chain, 6708 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6709 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6710 LoadValues.push_back(Value); 6711 LoadChains.push_back(Value.getValue(1)); 6712 SrcOff += VTSize; 6713 } 6714 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6715 OutChains.clear(); 6716 for (unsigned i = 0; i < NumMemOps; i++) { 6717 EVT VT = MemOps[i]; 6718 unsigned VTSize = VT.getSizeInBits() / 8; 6719 SDValue Store; 6720 6721 Store = DAG.getStore( 6722 Chain, dl, LoadValues[i], 6723 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6724 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6725 OutChains.push_back(Store); 6726 DstOff += VTSize; 6727 } 6728 6729 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6730 } 6731 6732 /// Lower the call to 'memset' intrinsic function into a series of store 6733 /// operations. 6734 /// 6735 /// \param DAG Selection DAG where lowered code is placed. 6736 /// \param dl Link to corresponding IR location. 6737 /// \param Chain Control flow dependency. 6738 /// \param Dst Pointer to destination memory location. 6739 /// \param Src Value of byte to write into the memory. 6740 /// \param Size Number of bytes to write. 6741 /// \param Alignment Alignment of the destination in bytes. 6742 /// \param isVol True if destination is volatile. 6743 /// \param DstPtrInfo IR information on the memory pointer. 6744 /// \returns New head in the control flow, if lowering was successful, empty 6745 /// SDValue otherwise. 6746 /// 6747 /// The function tries to replace 'llvm.memset' intrinsic with several store 6748 /// operations and value calculation code. This is usually profitable for small 6749 /// memory size. 6750 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6751 SDValue Chain, SDValue Dst, SDValue Src, 6752 uint64_t Size, Align Alignment, bool isVol, 6753 MachinePointerInfo DstPtrInfo, 6754 const AAMDNodes &AAInfo) { 6755 // Turn a memset of undef to nop. 6756 // FIXME: We need to honor volatile even is Src is undef. 6757 if (Src.isUndef()) 6758 return Chain; 6759 6760 // Expand memset to a series of load/store ops if the size operand 6761 // falls below a certain threshold. 6762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6763 std::vector<EVT> MemOps; 6764 bool DstAlignCanChange = false; 6765 MachineFunction &MF = DAG.getMachineFunction(); 6766 MachineFrameInfo &MFI = MF.getFrameInfo(); 6767 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6768 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6769 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6770 DstAlignCanChange = true; 6771 bool IsZeroVal = 6772 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6773 if (!TLI.findOptimalMemOpLowering( 6774 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6775 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6776 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6777 return SDValue(); 6778 6779 if (DstAlignCanChange) { 6780 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6781 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6782 if (NewAlign > Alignment) { 6783 // Give the stack frame object a larger alignment if needed. 6784 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6785 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6786 Alignment = NewAlign; 6787 } 6788 } 6789 6790 SmallVector<SDValue, 8> OutChains; 6791 uint64_t DstOff = 0; 6792 unsigned NumMemOps = MemOps.size(); 6793 6794 // Find the largest store and generate the bit pattern for it. 6795 EVT LargestVT = MemOps[0]; 6796 for (unsigned i = 1; i < NumMemOps; i++) 6797 if (MemOps[i].bitsGT(LargestVT)) 6798 LargestVT = MemOps[i]; 6799 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6800 6801 // Prepare AAInfo for loads/stores after lowering this memset. 6802 AAMDNodes NewAAInfo = AAInfo; 6803 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6804 6805 for (unsigned i = 0; i < NumMemOps; i++) { 6806 EVT VT = MemOps[i]; 6807 unsigned VTSize = VT.getSizeInBits() / 8; 6808 if (VTSize > Size) { 6809 // Issuing an unaligned load / store pair that overlaps with the previous 6810 // pair. Adjust the offset accordingly. 6811 assert(i == NumMemOps-1 && i != 0); 6812 DstOff -= VTSize - Size; 6813 } 6814 6815 // If this store is smaller than the largest store see whether we can get 6816 // the smaller value for free with a truncate. 6817 SDValue Value = MemSetValue; 6818 if (VT.bitsLT(LargestVT)) { 6819 if (!LargestVT.isVector() && !VT.isVector() && 6820 TLI.isTruncateFree(LargestVT, VT)) 6821 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6822 else 6823 Value = getMemsetValue(Src, VT, DAG, dl); 6824 } 6825 assert(Value.getValueType() == VT && "Value with wrong type."); 6826 SDValue Store = DAG.getStore( 6827 Chain, dl, Value, 6828 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6829 DstPtrInfo.getWithOffset(DstOff), Alignment, 6830 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6831 NewAAInfo); 6832 OutChains.push_back(Store); 6833 DstOff += VT.getSizeInBits() / 8; 6834 Size -= VTSize; 6835 } 6836 6837 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6838 } 6839 6840 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6841 unsigned AS) { 6842 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6843 // pointer operands can be losslessly bitcasted to pointers of address space 0 6844 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6845 report_fatal_error("cannot lower memory intrinsic in address space " + 6846 Twine(AS)); 6847 } 6848 } 6849 6850 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6851 SDValue Src, SDValue Size, Align Alignment, 6852 bool isVol, bool AlwaysInline, bool isTailCall, 6853 MachinePointerInfo DstPtrInfo, 6854 MachinePointerInfo SrcPtrInfo, 6855 const AAMDNodes &AAInfo) { 6856 // Check to see if we should lower the memcpy to loads and stores first. 6857 // For cases within the target-specified limits, this is the best choice. 6858 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6859 if (ConstantSize) { 6860 // Memcpy with size zero? Just return the original chain. 6861 if (ConstantSize->isZero()) 6862 return Chain; 6863 6864 SDValue Result = getMemcpyLoadsAndStores( 6865 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6866 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6867 if (Result.getNode()) 6868 return Result; 6869 } 6870 6871 // Then check to see if we should lower the memcpy with target-specific 6872 // code. If the target chooses to do this, this is the next best. 6873 if (TSI) { 6874 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6875 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6876 DstPtrInfo, SrcPtrInfo); 6877 if (Result.getNode()) 6878 return Result; 6879 } 6880 6881 // If we really need inline code and the target declined to provide it, 6882 // use a (potentially long) sequence of loads and stores. 6883 if (AlwaysInline) { 6884 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6885 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6886 ConstantSize->getZExtValue(), Alignment, 6887 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6888 } 6889 6890 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6891 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6892 6893 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6894 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6895 // respect volatile, so they may do things like read or write memory 6896 // beyond the given memory regions. But fixing this isn't easy, and most 6897 // people don't care. 6898 6899 // Emit a library call. 6900 TargetLowering::ArgListTy Args; 6901 TargetLowering::ArgListEntry Entry; 6902 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6903 Entry.Node = Dst; Args.push_back(Entry); 6904 Entry.Node = Src; Args.push_back(Entry); 6905 6906 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6907 Entry.Node = Size; Args.push_back(Entry); 6908 // FIXME: pass in SDLoc 6909 TargetLowering::CallLoweringInfo CLI(*this); 6910 CLI.setDebugLoc(dl) 6911 .setChain(Chain) 6912 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6913 Dst.getValueType().getTypeForEVT(*getContext()), 6914 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6915 TLI->getPointerTy(getDataLayout())), 6916 std::move(Args)) 6917 .setDiscardResult() 6918 .setTailCall(isTailCall); 6919 6920 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6921 return CallResult.second; 6922 } 6923 6924 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6925 SDValue Dst, unsigned DstAlign, 6926 SDValue Src, unsigned SrcAlign, 6927 SDValue Size, Type *SizeTy, 6928 unsigned ElemSz, bool isTailCall, 6929 MachinePointerInfo DstPtrInfo, 6930 MachinePointerInfo SrcPtrInfo) { 6931 // Emit a library call. 6932 TargetLowering::ArgListTy Args; 6933 TargetLowering::ArgListEntry Entry; 6934 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6935 Entry.Node = Dst; 6936 Args.push_back(Entry); 6937 6938 Entry.Node = Src; 6939 Args.push_back(Entry); 6940 6941 Entry.Ty = SizeTy; 6942 Entry.Node = Size; 6943 Args.push_back(Entry); 6944 6945 RTLIB::Libcall LibraryCall = 6946 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6947 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6948 report_fatal_error("Unsupported element size"); 6949 6950 TargetLowering::CallLoweringInfo CLI(*this); 6951 CLI.setDebugLoc(dl) 6952 .setChain(Chain) 6953 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6954 Type::getVoidTy(*getContext()), 6955 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6956 TLI->getPointerTy(getDataLayout())), 6957 std::move(Args)) 6958 .setDiscardResult() 6959 .setTailCall(isTailCall); 6960 6961 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6962 return CallResult.second; 6963 } 6964 6965 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6966 SDValue Src, SDValue Size, Align Alignment, 6967 bool isVol, bool isTailCall, 6968 MachinePointerInfo DstPtrInfo, 6969 MachinePointerInfo SrcPtrInfo, 6970 const AAMDNodes &AAInfo) { 6971 // Check to see if we should lower the memmove to loads and stores first. 6972 // For cases within the target-specified limits, this is the best choice. 6973 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6974 if (ConstantSize) { 6975 // Memmove with size zero? Just return the original chain. 6976 if (ConstantSize->isZero()) 6977 return Chain; 6978 6979 SDValue Result = getMemmoveLoadsAndStores( 6980 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6981 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6982 if (Result.getNode()) 6983 return Result; 6984 } 6985 6986 // Then check to see if we should lower the memmove with target-specific 6987 // code. If the target chooses to do this, this is the next best. 6988 if (TSI) { 6989 SDValue Result = 6990 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6991 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6992 if (Result.getNode()) 6993 return Result; 6994 } 6995 6996 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6997 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6998 6999 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7000 // not be safe. See memcpy above for more details. 7001 7002 // Emit a library call. 7003 TargetLowering::ArgListTy Args; 7004 TargetLowering::ArgListEntry Entry; 7005 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7006 Entry.Node = Dst; Args.push_back(Entry); 7007 Entry.Node = Src; Args.push_back(Entry); 7008 7009 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7010 Entry.Node = Size; Args.push_back(Entry); 7011 // FIXME: pass in SDLoc 7012 TargetLowering::CallLoweringInfo CLI(*this); 7013 CLI.setDebugLoc(dl) 7014 .setChain(Chain) 7015 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7016 Dst.getValueType().getTypeForEVT(*getContext()), 7017 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7018 TLI->getPointerTy(getDataLayout())), 7019 std::move(Args)) 7020 .setDiscardResult() 7021 .setTailCall(isTailCall); 7022 7023 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7024 return CallResult.second; 7025 } 7026 7027 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7028 SDValue Dst, unsigned DstAlign, 7029 SDValue Src, unsigned SrcAlign, 7030 SDValue Size, Type *SizeTy, 7031 unsigned ElemSz, bool isTailCall, 7032 MachinePointerInfo DstPtrInfo, 7033 MachinePointerInfo SrcPtrInfo) { 7034 // Emit a library call. 7035 TargetLowering::ArgListTy Args; 7036 TargetLowering::ArgListEntry Entry; 7037 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7038 Entry.Node = Dst; 7039 Args.push_back(Entry); 7040 7041 Entry.Node = Src; 7042 Args.push_back(Entry); 7043 7044 Entry.Ty = SizeTy; 7045 Entry.Node = Size; 7046 Args.push_back(Entry); 7047 7048 RTLIB::Libcall LibraryCall = 7049 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7050 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7051 report_fatal_error("Unsupported element size"); 7052 7053 TargetLowering::CallLoweringInfo CLI(*this); 7054 CLI.setDebugLoc(dl) 7055 .setChain(Chain) 7056 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7057 Type::getVoidTy(*getContext()), 7058 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7059 TLI->getPointerTy(getDataLayout())), 7060 std::move(Args)) 7061 .setDiscardResult() 7062 .setTailCall(isTailCall); 7063 7064 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7065 return CallResult.second; 7066 } 7067 7068 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7069 SDValue Src, SDValue Size, Align Alignment, 7070 bool isVol, bool isTailCall, 7071 MachinePointerInfo DstPtrInfo, 7072 const AAMDNodes &AAInfo) { 7073 // Check to see if we should lower the memset to stores first. 7074 // For cases within the target-specified limits, this is the best choice. 7075 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7076 if (ConstantSize) { 7077 // Memset with size zero? Just return the original chain. 7078 if (ConstantSize->isZero()) 7079 return Chain; 7080 7081 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7082 ConstantSize->getZExtValue(), Alignment, 7083 isVol, DstPtrInfo, AAInfo); 7084 7085 if (Result.getNode()) 7086 return Result; 7087 } 7088 7089 // Then check to see if we should lower the memset with target-specific 7090 // code. If the target chooses to do this, this is the next best. 7091 if (TSI) { 7092 SDValue Result = TSI->EmitTargetCodeForMemset( 7093 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7094 if (Result.getNode()) 7095 return Result; 7096 } 7097 7098 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7099 7100 // Emit a library call. 7101 TargetLowering::ArgListTy Args; 7102 TargetLowering::ArgListEntry Entry; 7103 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7104 Args.push_back(Entry); 7105 Entry.Node = Src; 7106 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7107 Args.push_back(Entry); 7108 Entry.Node = Size; 7109 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7110 Args.push_back(Entry); 7111 7112 // FIXME: pass in SDLoc 7113 TargetLowering::CallLoweringInfo CLI(*this); 7114 CLI.setDebugLoc(dl) 7115 .setChain(Chain) 7116 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7117 Dst.getValueType().getTypeForEVT(*getContext()), 7118 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7119 TLI->getPointerTy(getDataLayout())), 7120 std::move(Args)) 7121 .setDiscardResult() 7122 .setTailCall(isTailCall); 7123 7124 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7125 return CallResult.second; 7126 } 7127 7128 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7129 SDValue Dst, unsigned DstAlign, 7130 SDValue Value, SDValue Size, Type *SizeTy, 7131 unsigned ElemSz, bool isTailCall, 7132 MachinePointerInfo DstPtrInfo) { 7133 // Emit a library call. 7134 TargetLowering::ArgListTy Args; 7135 TargetLowering::ArgListEntry Entry; 7136 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7137 Entry.Node = Dst; 7138 Args.push_back(Entry); 7139 7140 Entry.Ty = Type::getInt8Ty(*getContext()); 7141 Entry.Node = Value; 7142 Args.push_back(Entry); 7143 7144 Entry.Ty = SizeTy; 7145 Entry.Node = Size; 7146 Args.push_back(Entry); 7147 7148 RTLIB::Libcall LibraryCall = 7149 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7150 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7151 report_fatal_error("Unsupported element size"); 7152 7153 TargetLowering::CallLoweringInfo CLI(*this); 7154 CLI.setDebugLoc(dl) 7155 .setChain(Chain) 7156 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7157 Type::getVoidTy(*getContext()), 7158 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7159 TLI->getPointerTy(getDataLayout())), 7160 std::move(Args)) 7161 .setDiscardResult() 7162 .setTailCall(isTailCall); 7163 7164 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7165 return CallResult.second; 7166 } 7167 7168 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7169 SDVTList VTList, ArrayRef<SDValue> Ops, 7170 MachineMemOperand *MMO) { 7171 FoldingSetNodeID ID; 7172 ID.AddInteger(MemVT.getRawBits()); 7173 AddNodeIDNode(ID, Opcode, VTList, Ops); 7174 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7175 void* IP = nullptr; 7176 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7177 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7178 return SDValue(E, 0); 7179 } 7180 7181 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7182 VTList, MemVT, MMO); 7183 createOperands(N, Ops); 7184 7185 CSEMap.InsertNode(N, IP); 7186 InsertNode(N); 7187 return SDValue(N, 0); 7188 } 7189 7190 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7191 EVT MemVT, SDVTList VTs, SDValue Chain, 7192 SDValue Ptr, SDValue Cmp, SDValue Swp, 7193 MachineMemOperand *MMO) { 7194 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7195 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7196 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7197 7198 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7199 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7200 } 7201 7202 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7203 SDValue Chain, SDValue Ptr, SDValue Val, 7204 MachineMemOperand *MMO) { 7205 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7206 Opcode == ISD::ATOMIC_LOAD_SUB || 7207 Opcode == ISD::ATOMIC_LOAD_AND || 7208 Opcode == ISD::ATOMIC_LOAD_CLR || 7209 Opcode == ISD::ATOMIC_LOAD_OR || 7210 Opcode == ISD::ATOMIC_LOAD_XOR || 7211 Opcode == ISD::ATOMIC_LOAD_NAND || 7212 Opcode == ISD::ATOMIC_LOAD_MIN || 7213 Opcode == ISD::ATOMIC_LOAD_MAX || 7214 Opcode == ISD::ATOMIC_LOAD_UMIN || 7215 Opcode == ISD::ATOMIC_LOAD_UMAX || 7216 Opcode == ISD::ATOMIC_LOAD_FADD || 7217 Opcode == ISD::ATOMIC_LOAD_FSUB || 7218 Opcode == ISD::ATOMIC_SWAP || 7219 Opcode == ISD::ATOMIC_STORE) && 7220 "Invalid Atomic Op"); 7221 7222 EVT VT = Val.getValueType(); 7223 7224 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7225 getVTList(VT, MVT::Other); 7226 SDValue Ops[] = {Chain, Ptr, Val}; 7227 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7228 } 7229 7230 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7231 EVT VT, SDValue Chain, SDValue Ptr, 7232 MachineMemOperand *MMO) { 7233 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7234 7235 SDVTList VTs = getVTList(VT, MVT::Other); 7236 SDValue Ops[] = {Chain, Ptr}; 7237 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7238 } 7239 7240 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7241 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7242 if (Ops.size() == 1) 7243 return Ops[0]; 7244 7245 SmallVector<EVT, 4> VTs; 7246 VTs.reserve(Ops.size()); 7247 for (const SDValue &Op : Ops) 7248 VTs.push_back(Op.getValueType()); 7249 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7250 } 7251 7252 SDValue SelectionDAG::getMemIntrinsicNode( 7253 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7254 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7255 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7256 if (!Size && MemVT.isScalableVector()) 7257 Size = MemoryLocation::UnknownSize; 7258 else if (!Size) 7259 Size = MemVT.getStoreSize(); 7260 7261 MachineFunction &MF = getMachineFunction(); 7262 MachineMemOperand *MMO = 7263 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7264 7265 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7266 } 7267 7268 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7269 SDVTList VTList, 7270 ArrayRef<SDValue> Ops, EVT MemVT, 7271 MachineMemOperand *MMO) { 7272 assert((Opcode == ISD::INTRINSIC_VOID || 7273 Opcode == ISD::INTRINSIC_W_CHAIN || 7274 Opcode == ISD::PREFETCH || 7275 ((int)Opcode <= std::numeric_limits<int>::max() && 7276 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7277 "Opcode is not a memory-accessing opcode!"); 7278 7279 // Memoize the node unless it returns a flag. 7280 MemIntrinsicSDNode *N; 7281 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7282 FoldingSetNodeID ID; 7283 AddNodeIDNode(ID, Opcode, VTList, Ops); 7284 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7285 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7286 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7287 void *IP = nullptr; 7288 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7289 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7290 return SDValue(E, 0); 7291 } 7292 7293 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7294 VTList, MemVT, MMO); 7295 createOperands(N, Ops); 7296 7297 CSEMap.InsertNode(N, IP); 7298 } else { 7299 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7300 VTList, MemVT, MMO); 7301 createOperands(N, Ops); 7302 } 7303 InsertNode(N); 7304 SDValue V(N, 0); 7305 NewSDValueDbgMsg(V, "Creating new node: ", this); 7306 return V; 7307 } 7308 7309 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7310 SDValue Chain, int FrameIndex, 7311 int64_t Size, int64_t Offset) { 7312 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7313 const auto VTs = getVTList(MVT::Other); 7314 SDValue Ops[2] = { 7315 Chain, 7316 getFrameIndex(FrameIndex, 7317 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7318 true)}; 7319 7320 FoldingSetNodeID ID; 7321 AddNodeIDNode(ID, Opcode, VTs, Ops); 7322 ID.AddInteger(FrameIndex); 7323 ID.AddInteger(Size); 7324 ID.AddInteger(Offset); 7325 void *IP = nullptr; 7326 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7327 return SDValue(E, 0); 7328 7329 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7330 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7331 createOperands(N, Ops); 7332 CSEMap.InsertNode(N, IP); 7333 InsertNode(N); 7334 SDValue V(N, 0); 7335 NewSDValueDbgMsg(V, "Creating new node: ", this); 7336 return V; 7337 } 7338 7339 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7340 uint64_t Guid, uint64_t Index, 7341 uint32_t Attr) { 7342 const unsigned Opcode = ISD::PSEUDO_PROBE; 7343 const auto VTs = getVTList(MVT::Other); 7344 SDValue Ops[] = {Chain}; 7345 FoldingSetNodeID ID; 7346 AddNodeIDNode(ID, Opcode, VTs, Ops); 7347 ID.AddInteger(Guid); 7348 ID.AddInteger(Index); 7349 void *IP = nullptr; 7350 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7351 return SDValue(E, 0); 7352 7353 auto *N = newSDNode<PseudoProbeSDNode>( 7354 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7355 createOperands(N, Ops); 7356 CSEMap.InsertNode(N, IP); 7357 InsertNode(N); 7358 SDValue V(N, 0); 7359 NewSDValueDbgMsg(V, "Creating new node: ", this); 7360 return V; 7361 } 7362 7363 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7364 /// MachinePointerInfo record from it. This is particularly useful because the 7365 /// code generator has many cases where it doesn't bother passing in a 7366 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7367 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7368 SelectionDAG &DAG, SDValue Ptr, 7369 int64_t Offset = 0) { 7370 // If this is FI+Offset, we can model it. 7371 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7372 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7373 FI->getIndex(), Offset); 7374 7375 // If this is (FI+Offset1)+Offset2, we can model it. 7376 if (Ptr.getOpcode() != ISD::ADD || 7377 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7378 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7379 return Info; 7380 7381 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7382 return MachinePointerInfo::getFixedStack( 7383 DAG.getMachineFunction(), FI, 7384 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7385 } 7386 7387 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7388 /// MachinePointerInfo record from it. This is particularly useful because the 7389 /// code generator has many cases where it doesn't bother passing in a 7390 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7391 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7392 SelectionDAG &DAG, SDValue Ptr, 7393 SDValue OffsetOp) { 7394 // If the 'Offset' value isn't a constant, we can't handle this. 7395 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7396 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7397 if (OffsetOp.isUndef()) 7398 return InferPointerInfo(Info, DAG, Ptr); 7399 return Info; 7400 } 7401 7402 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7403 EVT VT, const SDLoc &dl, SDValue Chain, 7404 SDValue Ptr, SDValue Offset, 7405 MachinePointerInfo PtrInfo, EVT MemVT, 7406 Align Alignment, 7407 MachineMemOperand::Flags MMOFlags, 7408 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7409 assert(Chain.getValueType() == MVT::Other && 7410 "Invalid chain type"); 7411 7412 MMOFlags |= MachineMemOperand::MOLoad; 7413 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7414 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7415 // clients. 7416 if (PtrInfo.V.isNull()) 7417 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7418 7419 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7420 MachineFunction &MF = getMachineFunction(); 7421 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7422 Alignment, AAInfo, Ranges); 7423 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7424 } 7425 7426 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7427 EVT VT, const SDLoc &dl, SDValue Chain, 7428 SDValue Ptr, SDValue Offset, EVT MemVT, 7429 MachineMemOperand *MMO) { 7430 if (VT == MemVT) { 7431 ExtType = ISD::NON_EXTLOAD; 7432 } else if (ExtType == ISD::NON_EXTLOAD) { 7433 assert(VT == MemVT && "Non-extending load from different memory type!"); 7434 } else { 7435 // Extending load. 7436 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7437 "Should only be an extending load, not truncating!"); 7438 assert(VT.isInteger() == MemVT.isInteger() && 7439 "Cannot convert from FP to Int or Int -> FP!"); 7440 assert(VT.isVector() == MemVT.isVector() && 7441 "Cannot use an ext load to convert to or from a vector!"); 7442 assert((!VT.isVector() || 7443 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7444 "Cannot use an ext load to change the number of vector elements!"); 7445 } 7446 7447 bool Indexed = AM != ISD::UNINDEXED; 7448 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7449 7450 SDVTList VTs = Indexed ? 7451 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7452 SDValue Ops[] = { Chain, Ptr, Offset }; 7453 FoldingSetNodeID ID; 7454 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7455 ID.AddInteger(MemVT.getRawBits()); 7456 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7457 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7458 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7459 void *IP = nullptr; 7460 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7461 cast<LoadSDNode>(E)->refineAlignment(MMO); 7462 return SDValue(E, 0); 7463 } 7464 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7465 ExtType, MemVT, MMO); 7466 createOperands(N, Ops); 7467 7468 CSEMap.InsertNode(N, IP); 7469 InsertNode(N); 7470 SDValue V(N, 0); 7471 NewSDValueDbgMsg(V, "Creating new node: ", this); 7472 return V; 7473 } 7474 7475 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7476 SDValue Ptr, MachinePointerInfo PtrInfo, 7477 MaybeAlign Alignment, 7478 MachineMemOperand::Flags MMOFlags, 7479 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7480 SDValue Undef = getUNDEF(Ptr.getValueType()); 7481 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7482 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7483 } 7484 7485 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7486 SDValue Ptr, MachineMemOperand *MMO) { 7487 SDValue Undef = getUNDEF(Ptr.getValueType()); 7488 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7489 VT, MMO); 7490 } 7491 7492 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7493 EVT VT, SDValue Chain, SDValue Ptr, 7494 MachinePointerInfo PtrInfo, EVT MemVT, 7495 MaybeAlign Alignment, 7496 MachineMemOperand::Flags MMOFlags, 7497 const AAMDNodes &AAInfo) { 7498 SDValue Undef = getUNDEF(Ptr.getValueType()); 7499 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7500 MemVT, Alignment, MMOFlags, AAInfo); 7501 } 7502 7503 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7504 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7505 MachineMemOperand *MMO) { 7506 SDValue Undef = getUNDEF(Ptr.getValueType()); 7507 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7508 MemVT, MMO); 7509 } 7510 7511 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7512 SDValue Base, SDValue Offset, 7513 ISD::MemIndexedMode AM) { 7514 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7515 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7516 // Don't propagate the invariant or dereferenceable flags. 7517 auto MMOFlags = 7518 LD->getMemOperand()->getFlags() & 7519 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7520 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7521 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7522 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7523 } 7524 7525 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7526 SDValue Ptr, MachinePointerInfo PtrInfo, 7527 Align Alignment, 7528 MachineMemOperand::Flags MMOFlags, 7529 const AAMDNodes &AAInfo) { 7530 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7531 7532 MMOFlags |= MachineMemOperand::MOStore; 7533 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7534 7535 if (PtrInfo.V.isNull()) 7536 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7537 7538 MachineFunction &MF = getMachineFunction(); 7539 uint64_t Size = 7540 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7541 MachineMemOperand *MMO = 7542 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7543 return getStore(Chain, dl, Val, Ptr, MMO); 7544 } 7545 7546 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7547 SDValue Ptr, MachineMemOperand *MMO) { 7548 assert(Chain.getValueType() == MVT::Other && 7549 "Invalid chain type"); 7550 EVT VT = Val.getValueType(); 7551 SDVTList VTs = getVTList(MVT::Other); 7552 SDValue Undef = getUNDEF(Ptr.getValueType()); 7553 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7554 FoldingSetNodeID ID; 7555 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7556 ID.AddInteger(VT.getRawBits()); 7557 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7558 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7559 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7560 void *IP = nullptr; 7561 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7562 cast<StoreSDNode>(E)->refineAlignment(MMO); 7563 return SDValue(E, 0); 7564 } 7565 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7566 ISD::UNINDEXED, false, VT, MMO); 7567 createOperands(N, Ops); 7568 7569 CSEMap.InsertNode(N, IP); 7570 InsertNode(N); 7571 SDValue V(N, 0); 7572 NewSDValueDbgMsg(V, "Creating new node: ", this); 7573 return V; 7574 } 7575 7576 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7577 SDValue Ptr, MachinePointerInfo PtrInfo, 7578 EVT SVT, Align Alignment, 7579 MachineMemOperand::Flags MMOFlags, 7580 const AAMDNodes &AAInfo) { 7581 assert(Chain.getValueType() == MVT::Other && 7582 "Invalid chain type"); 7583 7584 MMOFlags |= MachineMemOperand::MOStore; 7585 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7586 7587 if (PtrInfo.V.isNull()) 7588 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7589 7590 MachineFunction &MF = getMachineFunction(); 7591 MachineMemOperand *MMO = MF.getMachineMemOperand( 7592 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7593 Alignment, AAInfo); 7594 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7595 } 7596 7597 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7598 SDValue Ptr, EVT SVT, 7599 MachineMemOperand *MMO) { 7600 EVT VT = Val.getValueType(); 7601 7602 assert(Chain.getValueType() == MVT::Other && 7603 "Invalid chain type"); 7604 if (VT == SVT) 7605 return getStore(Chain, dl, Val, Ptr, MMO); 7606 7607 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7608 "Should only be a truncating store, not extending!"); 7609 assert(VT.isInteger() == SVT.isInteger() && 7610 "Can't do FP-INT conversion!"); 7611 assert(VT.isVector() == SVT.isVector() && 7612 "Cannot use trunc store to convert to or from a vector!"); 7613 assert((!VT.isVector() || 7614 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7615 "Cannot use trunc store to change the number of vector elements!"); 7616 7617 SDVTList VTs = getVTList(MVT::Other); 7618 SDValue Undef = getUNDEF(Ptr.getValueType()); 7619 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7620 FoldingSetNodeID ID; 7621 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7622 ID.AddInteger(SVT.getRawBits()); 7623 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7624 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7625 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7626 void *IP = nullptr; 7627 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7628 cast<StoreSDNode>(E)->refineAlignment(MMO); 7629 return SDValue(E, 0); 7630 } 7631 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7632 ISD::UNINDEXED, true, SVT, MMO); 7633 createOperands(N, Ops); 7634 7635 CSEMap.InsertNode(N, IP); 7636 InsertNode(N); 7637 SDValue V(N, 0); 7638 NewSDValueDbgMsg(V, "Creating new node: ", this); 7639 return V; 7640 } 7641 7642 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7643 SDValue Base, SDValue Offset, 7644 ISD::MemIndexedMode AM) { 7645 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7646 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7647 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7648 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7649 FoldingSetNodeID ID; 7650 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7651 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7652 ID.AddInteger(ST->getRawSubclassData()); 7653 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7654 void *IP = nullptr; 7655 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7656 return SDValue(E, 0); 7657 7658 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7659 ST->isTruncatingStore(), ST->getMemoryVT(), 7660 ST->getMemOperand()); 7661 createOperands(N, Ops); 7662 7663 CSEMap.InsertNode(N, IP); 7664 InsertNode(N); 7665 SDValue V(N, 0); 7666 NewSDValueDbgMsg(V, "Creating new node: ", this); 7667 return V; 7668 } 7669 7670 SDValue SelectionDAG::getLoadVP( 7671 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7672 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7673 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7674 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7675 const MDNode *Ranges, bool IsExpanding) { 7676 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7677 7678 MMOFlags |= MachineMemOperand::MOLoad; 7679 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7680 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7681 // clients. 7682 if (PtrInfo.V.isNull()) 7683 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7684 7685 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7686 MachineFunction &MF = getMachineFunction(); 7687 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7688 Alignment, AAInfo, Ranges); 7689 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7690 MMO, IsExpanding); 7691 } 7692 7693 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7694 ISD::LoadExtType ExtType, EVT VT, 7695 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7696 SDValue Offset, SDValue Mask, SDValue EVL, 7697 EVT MemVT, MachineMemOperand *MMO, 7698 bool IsExpanding) { 7699 if (VT == MemVT) { 7700 ExtType = ISD::NON_EXTLOAD; 7701 } else if (ExtType == ISD::NON_EXTLOAD) { 7702 assert(VT == MemVT && "Non-extending load from different memory type!"); 7703 } else { 7704 // Extending load. 7705 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7706 "Should only be an extending load, not truncating!"); 7707 assert(VT.isInteger() == MemVT.isInteger() && 7708 "Cannot convert from FP to Int or Int -> FP!"); 7709 assert(VT.isVector() == MemVT.isVector() && 7710 "Cannot use an ext load to convert to or from a vector!"); 7711 assert((!VT.isVector() || 7712 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7713 "Cannot use an ext load to change the number of vector elements!"); 7714 } 7715 7716 bool Indexed = AM != ISD::UNINDEXED; 7717 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7718 7719 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7720 : getVTList(VT, MVT::Other); 7721 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7722 FoldingSetNodeID ID; 7723 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7724 ID.AddInteger(VT.getRawBits()); 7725 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7726 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7727 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7728 void *IP = nullptr; 7729 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7730 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7731 return SDValue(E, 0); 7732 } 7733 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7734 ExtType, IsExpanding, MemVT, MMO); 7735 createOperands(N, Ops); 7736 7737 CSEMap.InsertNode(N, IP); 7738 InsertNode(N); 7739 SDValue V(N, 0); 7740 NewSDValueDbgMsg(V, "Creating new node: ", this); 7741 return V; 7742 } 7743 7744 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7745 SDValue Ptr, SDValue Mask, SDValue EVL, 7746 MachinePointerInfo PtrInfo, 7747 MaybeAlign Alignment, 7748 MachineMemOperand::Flags MMOFlags, 7749 const AAMDNodes &AAInfo, const MDNode *Ranges, 7750 bool IsExpanding) { 7751 SDValue Undef = getUNDEF(Ptr.getValueType()); 7752 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7753 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7754 IsExpanding); 7755 } 7756 7757 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7758 SDValue Ptr, SDValue Mask, SDValue EVL, 7759 MachineMemOperand *MMO, bool IsExpanding) { 7760 SDValue Undef = getUNDEF(Ptr.getValueType()); 7761 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7762 Mask, EVL, VT, MMO, IsExpanding); 7763 } 7764 7765 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7766 EVT VT, SDValue Chain, SDValue Ptr, 7767 SDValue Mask, SDValue EVL, 7768 MachinePointerInfo PtrInfo, EVT MemVT, 7769 MaybeAlign Alignment, 7770 MachineMemOperand::Flags MMOFlags, 7771 const AAMDNodes &AAInfo, bool IsExpanding) { 7772 SDValue Undef = getUNDEF(Ptr.getValueType()); 7773 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7774 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7775 IsExpanding); 7776 } 7777 7778 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7779 EVT VT, SDValue Chain, SDValue Ptr, 7780 SDValue Mask, SDValue EVL, EVT MemVT, 7781 MachineMemOperand *MMO, bool IsExpanding) { 7782 SDValue Undef = getUNDEF(Ptr.getValueType()); 7783 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7784 EVL, MemVT, MMO, IsExpanding); 7785 } 7786 7787 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7788 SDValue Base, SDValue Offset, 7789 ISD::MemIndexedMode AM) { 7790 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7791 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7792 // Don't propagate the invariant or dereferenceable flags. 7793 auto MMOFlags = 7794 LD->getMemOperand()->getFlags() & 7795 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7796 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7797 LD->getChain(), Base, Offset, LD->getMask(), 7798 LD->getVectorLength(), LD->getPointerInfo(), 7799 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7800 nullptr, LD->isExpandingLoad()); 7801 } 7802 7803 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7804 SDValue Ptr, SDValue Mask, SDValue EVL, 7805 MachinePointerInfo PtrInfo, Align Alignment, 7806 MachineMemOperand::Flags MMOFlags, 7807 const AAMDNodes &AAInfo, bool IsCompressing) { 7808 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7809 7810 MMOFlags |= MachineMemOperand::MOStore; 7811 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7812 7813 if (PtrInfo.V.isNull()) 7814 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7815 7816 MachineFunction &MF = getMachineFunction(); 7817 uint64_t Size = 7818 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7819 MachineMemOperand *MMO = 7820 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7821 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7822 } 7823 7824 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7825 SDValue Ptr, SDValue Mask, SDValue EVL, 7826 MachineMemOperand *MMO, bool IsCompressing) { 7827 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7828 EVT VT = Val.getValueType(); 7829 SDVTList VTs = getVTList(MVT::Other); 7830 SDValue Undef = getUNDEF(Ptr.getValueType()); 7831 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7832 FoldingSetNodeID ID; 7833 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7834 ID.AddInteger(VT.getRawBits()); 7835 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7836 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7837 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7838 void *IP = nullptr; 7839 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7840 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7841 return SDValue(E, 0); 7842 } 7843 auto *N = 7844 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7845 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7846 createOperands(N, Ops); 7847 7848 CSEMap.InsertNode(N, IP); 7849 InsertNode(N); 7850 SDValue V(N, 0); 7851 NewSDValueDbgMsg(V, "Creating new node: ", this); 7852 return V; 7853 } 7854 7855 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7856 SDValue Val, SDValue Ptr, SDValue Mask, 7857 SDValue EVL, MachinePointerInfo PtrInfo, 7858 EVT SVT, Align Alignment, 7859 MachineMemOperand::Flags MMOFlags, 7860 const AAMDNodes &AAInfo, 7861 bool IsCompressing) { 7862 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7863 7864 MMOFlags |= MachineMemOperand::MOStore; 7865 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7866 7867 if (PtrInfo.V.isNull()) 7868 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7869 7870 MachineFunction &MF = getMachineFunction(); 7871 MachineMemOperand *MMO = MF.getMachineMemOperand( 7872 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7873 Alignment, AAInfo); 7874 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7875 IsCompressing); 7876 } 7877 7878 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7879 SDValue Val, SDValue Ptr, SDValue Mask, 7880 SDValue EVL, EVT SVT, 7881 MachineMemOperand *MMO, 7882 bool IsCompressing) { 7883 EVT VT = Val.getValueType(); 7884 7885 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7886 if (VT == SVT) 7887 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7888 7889 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7890 "Should only be a truncating store, not extending!"); 7891 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7892 assert(VT.isVector() == SVT.isVector() && 7893 "Cannot use trunc store to convert to or from a vector!"); 7894 assert((!VT.isVector() || 7895 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7896 "Cannot use trunc store to change the number of vector elements!"); 7897 7898 SDVTList VTs = getVTList(MVT::Other); 7899 SDValue Undef = getUNDEF(Ptr.getValueType()); 7900 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7901 FoldingSetNodeID ID; 7902 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7903 ID.AddInteger(SVT.getRawBits()); 7904 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7905 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7906 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7907 void *IP = nullptr; 7908 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7909 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7910 return SDValue(E, 0); 7911 } 7912 auto *N = 7913 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7914 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7915 createOperands(N, Ops); 7916 7917 CSEMap.InsertNode(N, IP); 7918 InsertNode(N); 7919 SDValue V(N, 0); 7920 NewSDValueDbgMsg(V, "Creating new node: ", this); 7921 return V; 7922 } 7923 7924 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7925 SDValue Base, SDValue Offset, 7926 ISD::MemIndexedMode AM) { 7927 auto *ST = cast<VPStoreSDNode>(OrigStore); 7928 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7929 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7930 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7931 Offset, ST->getMask(), ST->getVectorLength()}; 7932 FoldingSetNodeID ID; 7933 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7934 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7935 ID.AddInteger(ST->getRawSubclassData()); 7936 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7937 void *IP = nullptr; 7938 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7939 return SDValue(E, 0); 7940 7941 auto *N = newSDNode<VPStoreSDNode>( 7942 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7943 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7944 createOperands(N, Ops); 7945 7946 CSEMap.InsertNode(N, IP); 7947 InsertNode(N); 7948 SDValue V(N, 0); 7949 NewSDValueDbgMsg(V, "Creating new node: ", this); 7950 return V; 7951 } 7952 7953 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7954 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7955 ISD::MemIndexType IndexType) { 7956 assert(Ops.size() == 6 && "Incompatible number of operands"); 7957 7958 FoldingSetNodeID ID; 7959 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7960 ID.AddInteger(VT.getRawBits()); 7961 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7962 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7963 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7964 void *IP = nullptr; 7965 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7966 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7967 return SDValue(E, 0); 7968 } 7969 7970 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7971 VT, MMO, IndexType); 7972 createOperands(N, Ops); 7973 7974 assert(N->getMask().getValueType().getVectorElementCount() == 7975 N->getValueType(0).getVectorElementCount() && 7976 "Vector width mismatch between mask and data"); 7977 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7978 N->getValueType(0).getVectorElementCount().isScalable() && 7979 "Scalable flags of index and data do not match"); 7980 assert(ElementCount::isKnownGE( 7981 N->getIndex().getValueType().getVectorElementCount(), 7982 N->getValueType(0).getVectorElementCount()) && 7983 "Vector width mismatch between index and data"); 7984 assert(isa<ConstantSDNode>(N->getScale()) && 7985 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7986 "Scale should be a constant power of 2"); 7987 7988 CSEMap.InsertNode(N, IP); 7989 InsertNode(N); 7990 SDValue V(N, 0); 7991 NewSDValueDbgMsg(V, "Creating new node: ", this); 7992 return V; 7993 } 7994 7995 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7996 ArrayRef<SDValue> Ops, 7997 MachineMemOperand *MMO, 7998 ISD::MemIndexType IndexType) { 7999 assert(Ops.size() == 7 && "Incompatible number of operands"); 8000 8001 FoldingSetNodeID ID; 8002 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8003 ID.AddInteger(VT.getRawBits()); 8004 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8005 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8006 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8007 void *IP = nullptr; 8008 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8009 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8010 return SDValue(E, 0); 8011 } 8012 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8013 VT, MMO, IndexType); 8014 createOperands(N, Ops); 8015 8016 assert(N->getMask().getValueType().getVectorElementCount() == 8017 N->getValue().getValueType().getVectorElementCount() && 8018 "Vector width mismatch between mask and data"); 8019 assert( 8020 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8021 N->getValue().getValueType().getVectorElementCount().isScalable() && 8022 "Scalable flags of index and data do not match"); 8023 assert(ElementCount::isKnownGE( 8024 N->getIndex().getValueType().getVectorElementCount(), 8025 N->getValue().getValueType().getVectorElementCount()) && 8026 "Vector width mismatch between index and data"); 8027 assert(isa<ConstantSDNode>(N->getScale()) && 8028 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8029 "Scale should be a constant power of 2"); 8030 8031 CSEMap.InsertNode(N, IP); 8032 InsertNode(N); 8033 SDValue V(N, 0); 8034 NewSDValueDbgMsg(V, "Creating new node: ", this); 8035 return V; 8036 } 8037 8038 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8039 SDValue Base, SDValue Offset, SDValue Mask, 8040 SDValue PassThru, EVT MemVT, 8041 MachineMemOperand *MMO, 8042 ISD::MemIndexedMode AM, 8043 ISD::LoadExtType ExtTy, bool isExpanding) { 8044 bool Indexed = AM != ISD::UNINDEXED; 8045 assert((Indexed || Offset.isUndef()) && 8046 "Unindexed masked load with an offset!"); 8047 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8048 : getVTList(VT, MVT::Other); 8049 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8050 FoldingSetNodeID ID; 8051 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8052 ID.AddInteger(MemVT.getRawBits()); 8053 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8054 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8055 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8056 void *IP = nullptr; 8057 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8058 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8059 return SDValue(E, 0); 8060 } 8061 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8062 AM, ExtTy, isExpanding, MemVT, MMO); 8063 createOperands(N, Ops); 8064 8065 CSEMap.InsertNode(N, IP); 8066 InsertNode(N); 8067 SDValue V(N, 0); 8068 NewSDValueDbgMsg(V, "Creating new node: ", this); 8069 return V; 8070 } 8071 8072 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8073 SDValue Base, SDValue Offset, 8074 ISD::MemIndexedMode AM) { 8075 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8076 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8077 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8078 Offset, LD->getMask(), LD->getPassThru(), 8079 LD->getMemoryVT(), LD->getMemOperand(), AM, 8080 LD->getExtensionType(), LD->isExpandingLoad()); 8081 } 8082 8083 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8084 SDValue Val, SDValue Base, SDValue Offset, 8085 SDValue Mask, EVT MemVT, 8086 MachineMemOperand *MMO, 8087 ISD::MemIndexedMode AM, bool IsTruncating, 8088 bool IsCompressing) { 8089 assert(Chain.getValueType() == MVT::Other && 8090 "Invalid chain type"); 8091 bool Indexed = AM != ISD::UNINDEXED; 8092 assert((Indexed || Offset.isUndef()) && 8093 "Unindexed masked store with an offset!"); 8094 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8095 : getVTList(MVT::Other); 8096 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8097 FoldingSetNodeID ID; 8098 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8099 ID.AddInteger(MemVT.getRawBits()); 8100 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8101 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8102 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8103 void *IP = nullptr; 8104 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8105 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8106 return SDValue(E, 0); 8107 } 8108 auto *N = 8109 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8110 IsTruncating, IsCompressing, MemVT, MMO); 8111 createOperands(N, Ops); 8112 8113 CSEMap.InsertNode(N, IP); 8114 InsertNode(N); 8115 SDValue V(N, 0); 8116 NewSDValueDbgMsg(V, "Creating new node: ", this); 8117 return V; 8118 } 8119 8120 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8121 SDValue Base, SDValue Offset, 8122 ISD::MemIndexedMode AM) { 8123 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8124 assert(ST->getOffset().isUndef() && 8125 "Masked store is already a indexed store!"); 8126 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8127 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8128 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8129 } 8130 8131 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8132 ArrayRef<SDValue> Ops, 8133 MachineMemOperand *MMO, 8134 ISD::MemIndexType IndexType, 8135 ISD::LoadExtType ExtTy) { 8136 assert(Ops.size() == 6 && "Incompatible number of operands"); 8137 8138 FoldingSetNodeID ID; 8139 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8140 ID.AddInteger(MemVT.getRawBits()); 8141 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8142 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8143 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8144 void *IP = nullptr; 8145 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8146 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8147 return SDValue(E, 0); 8148 } 8149 8150 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8151 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8152 VTs, MemVT, MMO, IndexType, ExtTy); 8153 createOperands(N, Ops); 8154 8155 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8156 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8157 assert(N->getMask().getValueType().getVectorElementCount() == 8158 N->getValueType(0).getVectorElementCount() && 8159 "Vector width mismatch between mask and data"); 8160 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8161 N->getValueType(0).getVectorElementCount().isScalable() && 8162 "Scalable flags of index and data do not match"); 8163 assert(ElementCount::isKnownGE( 8164 N->getIndex().getValueType().getVectorElementCount(), 8165 N->getValueType(0).getVectorElementCount()) && 8166 "Vector width mismatch between index and data"); 8167 assert(isa<ConstantSDNode>(N->getScale()) && 8168 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8169 "Scale should be a constant power of 2"); 8170 8171 CSEMap.InsertNode(N, IP); 8172 InsertNode(N); 8173 SDValue V(N, 0); 8174 NewSDValueDbgMsg(V, "Creating new node: ", this); 8175 return V; 8176 } 8177 8178 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8179 ArrayRef<SDValue> Ops, 8180 MachineMemOperand *MMO, 8181 ISD::MemIndexType IndexType, 8182 bool IsTrunc) { 8183 assert(Ops.size() == 6 && "Incompatible number of operands"); 8184 8185 FoldingSetNodeID ID; 8186 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8187 ID.AddInteger(MemVT.getRawBits()); 8188 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8189 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8190 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8191 void *IP = nullptr; 8192 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8193 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8194 return SDValue(E, 0); 8195 } 8196 8197 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8198 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8199 VTs, MemVT, MMO, IndexType, IsTrunc); 8200 createOperands(N, Ops); 8201 8202 assert(N->getMask().getValueType().getVectorElementCount() == 8203 N->getValue().getValueType().getVectorElementCount() && 8204 "Vector width mismatch between mask and data"); 8205 assert( 8206 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8207 N->getValue().getValueType().getVectorElementCount().isScalable() && 8208 "Scalable flags of index and data do not match"); 8209 assert(ElementCount::isKnownGE( 8210 N->getIndex().getValueType().getVectorElementCount(), 8211 N->getValue().getValueType().getVectorElementCount()) && 8212 "Vector width mismatch between index and data"); 8213 assert(isa<ConstantSDNode>(N->getScale()) && 8214 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8215 "Scale should be a constant power of 2"); 8216 8217 CSEMap.InsertNode(N, IP); 8218 InsertNode(N); 8219 SDValue V(N, 0); 8220 NewSDValueDbgMsg(V, "Creating new node: ", this); 8221 return V; 8222 } 8223 8224 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8225 // select undef, T, F --> T (if T is a constant), otherwise F 8226 // select, ?, undef, F --> F 8227 // select, ?, T, undef --> T 8228 if (Cond.isUndef()) 8229 return isConstantValueOfAnyType(T) ? T : F; 8230 if (T.isUndef()) 8231 return F; 8232 if (F.isUndef()) 8233 return T; 8234 8235 // select true, T, F --> T 8236 // select false, T, F --> F 8237 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8238 return CondC->isZero() ? F : T; 8239 8240 // TODO: This should simplify VSELECT with constant condition using something 8241 // like this (but check boolean contents to be complete?): 8242 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8243 // return T; 8244 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8245 // return F; 8246 8247 // select ?, T, T --> T 8248 if (T == F) 8249 return T; 8250 8251 return SDValue(); 8252 } 8253 8254 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8255 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8256 if (X.isUndef()) 8257 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8258 // shift X, undef --> undef (because it may shift by the bitwidth) 8259 if (Y.isUndef()) 8260 return getUNDEF(X.getValueType()); 8261 8262 // shift 0, Y --> 0 8263 // shift X, 0 --> X 8264 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8265 return X; 8266 8267 // shift X, C >= bitwidth(X) --> undef 8268 // All vector elements must be too big (or undef) to avoid partial undefs. 8269 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8270 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8271 }; 8272 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8273 return getUNDEF(X.getValueType()); 8274 8275 return SDValue(); 8276 } 8277 8278 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8279 SDNodeFlags Flags) { 8280 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8281 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8282 // operation is poison. That result can be relaxed to undef. 8283 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8284 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8285 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8286 (YC && YC->getValueAPF().isNaN()); 8287 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8288 (YC && YC->getValueAPF().isInfinity()); 8289 8290 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8291 return getUNDEF(X.getValueType()); 8292 8293 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8294 return getUNDEF(X.getValueType()); 8295 8296 if (!YC) 8297 return SDValue(); 8298 8299 // X + -0.0 --> X 8300 if (Opcode == ISD::FADD) 8301 if (YC->getValueAPF().isNegZero()) 8302 return X; 8303 8304 // X - +0.0 --> X 8305 if (Opcode == ISD::FSUB) 8306 if (YC->getValueAPF().isPosZero()) 8307 return X; 8308 8309 // X * 1.0 --> X 8310 // X / 1.0 --> X 8311 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8312 if (YC->getValueAPF().isExactlyValue(1.0)) 8313 return X; 8314 8315 // X * 0.0 --> 0.0 8316 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8317 if (YC->getValueAPF().isZero()) 8318 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8319 8320 return SDValue(); 8321 } 8322 8323 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8324 SDValue Ptr, SDValue SV, unsigned Align) { 8325 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8326 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8327 } 8328 8329 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8330 ArrayRef<SDUse> Ops) { 8331 switch (Ops.size()) { 8332 case 0: return getNode(Opcode, DL, VT); 8333 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8334 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8335 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8336 default: break; 8337 } 8338 8339 // Copy from an SDUse array into an SDValue array for use with 8340 // the regular getNode logic. 8341 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8342 return getNode(Opcode, DL, VT, NewOps); 8343 } 8344 8345 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8346 ArrayRef<SDValue> Ops) { 8347 SDNodeFlags Flags; 8348 if (Inserter) 8349 Flags = Inserter->getFlags(); 8350 return getNode(Opcode, DL, VT, Ops, Flags); 8351 } 8352 8353 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8354 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8355 unsigned NumOps = Ops.size(); 8356 switch (NumOps) { 8357 case 0: return getNode(Opcode, DL, VT); 8358 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8359 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8360 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8361 default: break; 8362 } 8363 8364 #ifndef NDEBUG 8365 for (auto &Op : Ops) 8366 assert(Op.getOpcode() != ISD::DELETED_NODE && 8367 "Operand is DELETED_NODE!"); 8368 #endif 8369 8370 switch (Opcode) { 8371 default: break; 8372 case ISD::BUILD_VECTOR: 8373 // Attempt to simplify BUILD_VECTOR. 8374 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8375 return V; 8376 break; 8377 case ISD::CONCAT_VECTORS: 8378 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8379 return V; 8380 break; 8381 case ISD::SELECT_CC: 8382 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8383 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8384 "LHS and RHS of condition must have same type!"); 8385 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8386 "True and False arms of SelectCC must have same type!"); 8387 assert(Ops[2].getValueType() == VT && 8388 "select_cc node must be of same type as true and false value!"); 8389 break; 8390 case ISD::BR_CC: 8391 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8392 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8393 "LHS/RHS of comparison should match types!"); 8394 break; 8395 } 8396 8397 // Memoize nodes. 8398 SDNode *N; 8399 SDVTList VTs = getVTList(VT); 8400 8401 if (VT != MVT::Glue) { 8402 FoldingSetNodeID ID; 8403 AddNodeIDNode(ID, Opcode, VTs, Ops); 8404 void *IP = nullptr; 8405 8406 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8407 return SDValue(E, 0); 8408 8409 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8410 createOperands(N, Ops); 8411 8412 CSEMap.InsertNode(N, IP); 8413 } else { 8414 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8415 createOperands(N, Ops); 8416 } 8417 8418 N->setFlags(Flags); 8419 InsertNode(N); 8420 SDValue V(N, 0); 8421 NewSDValueDbgMsg(V, "Creating new node: ", this); 8422 return V; 8423 } 8424 8425 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8426 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8427 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8428 } 8429 8430 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8431 ArrayRef<SDValue> Ops) { 8432 SDNodeFlags Flags; 8433 if (Inserter) 8434 Flags = Inserter->getFlags(); 8435 return getNode(Opcode, DL, VTList, Ops, Flags); 8436 } 8437 8438 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8439 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8440 if (VTList.NumVTs == 1) 8441 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8442 8443 #ifndef NDEBUG 8444 for (auto &Op : Ops) 8445 assert(Op.getOpcode() != ISD::DELETED_NODE && 8446 "Operand is DELETED_NODE!"); 8447 #endif 8448 8449 switch (Opcode) { 8450 case ISD::STRICT_FP_EXTEND: 8451 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8452 "Invalid STRICT_FP_EXTEND!"); 8453 assert(VTList.VTs[0].isFloatingPoint() && 8454 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8455 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8456 "STRICT_FP_EXTEND result type should be vector iff the operand " 8457 "type is vector!"); 8458 assert((!VTList.VTs[0].isVector() || 8459 VTList.VTs[0].getVectorNumElements() == 8460 Ops[1].getValueType().getVectorNumElements()) && 8461 "Vector element count mismatch!"); 8462 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8463 "Invalid fpext node, dst <= src!"); 8464 break; 8465 case ISD::STRICT_FP_ROUND: 8466 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8467 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8468 "STRICT_FP_ROUND result type should be vector iff the operand " 8469 "type is vector!"); 8470 assert((!VTList.VTs[0].isVector() || 8471 VTList.VTs[0].getVectorNumElements() == 8472 Ops[1].getValueType().getVectorNumElements()) && 8473 "Vector element count mismatch!"); 8474 assert(VTList.VTs[0].isFloatingPoint() && 8475 Ops[1].getValueType().isFloatingPoint() && 8476 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8477 isa<ConstantSDNode>(Ops[2]) && 8478 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8479 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8480 "Invalid STRICT_FP_ROUND!"); 8481 break; 8482 #if 0 8483 // FIXME: figure out how to safely handle things like 8484 // int foo(int x) { return 1 << (x & 255); } 8485 // int bar() { return foo(256); } 8486 case ISD::SRA_PARTS: 8487 case ISD::SRL_PARTS: 8488 case ISD::SHL_PARTS: 8489 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8490 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8491 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8492 else if (N3.getOpcode() == ISD::AND) 8493 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8494 // If the and is only masking out bits that cannot effect the shift, 8495 // eliminate the and. 8496 unsigned NumBits = VT.getScalarSizeInBits()*2; 8497 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8498 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8499 } 8500 break; 8501 #endif 8502 } 8503 8504 // Memoize the node unless it returns a flag. 8505 SDNode *N; 8506 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8507 FoldingSetNodeID ID; 8508 AddNodeIDNode(ID, Opcode, VTList, Ops); 8509 void *IP = nullptr; 8510 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8511 return SDValue(E, 0); 8512 8513 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8514 createOperands(N, Ops); 8515 CSEMap.InsertNode(N, IP); 8516 } else { 8517 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8518 createOperands(N, Ops); 8519 } 8520 8521 N->setFlags(Flags); 8522 InsertNode(N); 8523 SDValue V(N, 0); 8524 NewSDValueDbgMsg(V, "Creating new node: ", this); 8525 return V; 8526 } 8527 8528 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8529 SDVTList VTList) { 8530 return getNode(Opcode, DL, VTList, None); 8531 } 8532 8533 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8534 SDValue N1) { 8535 SDValue Ops[] = { N1 }; 8536 return getNode(Opcode, DL, VTList, Ops); 8537 } 8538 8539 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8540 SDValue N1, SDValue N2) { 8541 SDValue Ops[] = { N1, N2 }; 8542 return getNode(Opcode, DL, VTList, Ops); 8543 } 8544 8545 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8546 SDValue N1, SDValue N2, SDValue N3) { 8547 SDValue Ops[] = { N1, N2, N3 }; 8548 return getNode(Opcode, DL, VTList, Ops); 8549 } 8550 8551 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8552 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8553 SDValue Ops[] = { N1, N2, N3, N4 }; 8554 return getNode(Opcode, DL, VTList, Ops); 8555 } 8556 8557 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8558 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8559 SDValue N5) { 8560 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8561 return getNode(Opcode, DL, VTList, Ops); 8562 } 8563 8564 SDVTList SelectionDAG::getVTList(EVT VT) { 8565 return makeVTList(SDNode::getValueTypeList(VT), 1); 8566 } 8567 8568 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8569 FoldingSetNodeID ID; 8570 ID.AddInteger(2U); 8571 ID.AddInteger(VT1.getRawBits()); 8572 ID.AddInteger(VT2.getRawBits()); 8573 8574 void *IP = nullptr; 8575 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8576 if (!Result) { 8577 EVT *Array = Allocator.Allocate<EVT>(2); 8578 Array[0] = VT1; 8579 Array[1] = VT2; 8580 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8581 VTListMap.InsertNode(Result, IP); 8582 } 8583 return Result->getSDVTList(); 8584 } 8585 8586 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8587 FoldingSetNodeID ID; 8588 ID.AddInteger(3U); 8589 ID.AddInteger(VT1.getRawBits()); 8590 ID.AddInteger(VT2.getRawBits()); 8591 ID.AddInteger(VT3.getRawBits()); 8592 8593 void *IP = nullptr; 8594 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8595 if (!Result) { 8596 EVT *Array = Allocator.Allocate<EVT>(3); 8597 Array[0] = VT1; 8598 Array[1] = VT2; 8599 Array[2] = VT3; 8600 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8601 VTListMap.InsertNode(Result, IP); 8602 } 8603 return Result->getSDVTList(); 8604 } 8605 8606 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8607 FoldingSetNodeID ID; 8608 ID.AddInteger(4U); 8609 ID.AddInteger(VT1.getRawBits()); 8610 ID.AddInteger(VT2.getRawBits()); 8611 ID.AddInteger(VT3.getRawBits()); 8612 ID.AddInteger(VT4.getRawBits()); 8613 8614 void *IP = nullptr; 8615 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8616 if (!Result) { 8617 EVT *Array = Allocator.Allocate<EVT>(4); 8618 Array[0] = VT1; 8619 Array[1] = VT2; 8620 Array[2] = VT3; 8621 Array[3] = VT4; 8622 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8623 VTListMap.InsertNode(Result, IP); 8624 } 8625 return Result->getSDVTList(); 8626 } 8627 8628 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8629 unsigned NumVTs = VTs.size(); 8630 FoldingSetNodeID ID; 8631 ID.AddInteger(NumVTs); 8632 for (unsigned index = 0; index < NumVTs; index++) { 8633 ID.AddInteger(VTs[index].getRawBits()); 8634 } 8635 8636 void *IP = nullptr; 8637 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8638 if (!Result) { 8639 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8640 llvm::copy(VTs, Array); 8641 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8642 VTListMap.InsertNode(Result, IP); 8643 } 8644 return Result->getSDVTList(); 8645 } 8646 8647 8648 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8649 /// specified operands. If the resultant node already exists in the DAG, 8650 /// this does not modify the specified node, instead it returns the node that 8651 /// already exists. If the resultant node does not exist in the DAG, the 8652 /// input node is returned. As a degenerate case, if you specify the same 8653 /// input operands as the node already has, the input node is returned. 8654 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8655 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8656 8657 // Check to see if there is no change. 8658 if (Op == N->getOperand(0)) return N; 8659 8660 // See if the modified node already exists. 8661 void *InsertPos = nullptr; 8662 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8663 return Existing; 8664 8665 // Nope it doesn't. Remove the node from its current place in the maps. 8666 if (InsertPos) 8667 if (!RemoveNodeFromCSEMaps(N)) 8668 InsertPos = nullptr; 8669 8670 // Now we update the operands. 8671 N->OperandList[0].set(Op); 8672 8673 updateDivergence(N); 8674 // If this gets put into a CSE map, add it. 8675 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8676 return N; 8677 } 8678 8679 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8680 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8681 8682 // Check to see if there is no change. 8683 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8684 return N; // No operands changed, just return the input node. 8685 8686 // See if the modified node already exists. 8687 void *InsertPos = nullptr; 8688 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8689 return Existing; 8690 8691 // Nope it doesn't. Remove the node from its current place in the maps. 8692 if (InsertPos) 8693 if (!RemoveNodeFromCSEMaps(N)) 8694 InsertPos = nullptr; 8695 8696 // Now we update the operands. 8697 if (N->OperandList[0] != Op1) 8698 N->OperandList[0].set(Op1); 8699 if (N->OperandList[1] != Op2) 8700 N->OperandList[1].set(Op2); 8701 8702 updateDivergence(N); 8703 // If this gets put into a CSE map, add it. 8704 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8705 return N; 8706 } 8707 8708 SDNode *SelectionDAG:: 8709 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8710 SDValue Ops[] = { Op1, Op2, Op3 }; 8711 return UpdateNodeOperands(N, Ops); 8712 } 8713 8714 SDNode *SelectionDAG:: 8715 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8716 SDValue Op3, SDValue Op4) { 8717 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8718 return UpdateNodeOperands(N, Ops); 8719 } 8720 8721 SDNode *SelectionDAG:: 8722 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8723 SDValue Op3, SDValue Op4, SDValue Op5) { 8724 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8725 return UpdateNodeOperands(N, Ops); 8726 } 8727 8728 SDNode *SelectionDAG:: 8729 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8730 unsigned NumOps = Ops.size(); 8731 assert(N->getNumOperands() == NumOps && 8732 "Update with wrong number of operands"); 8733 8734 // If no operands changed just return the input node. 8735 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8736 return N; 8737 8738 // See if the modified node already exists. 8739 void *InsertPos = nullptr; 8740 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8741 return Existing; 8742 8743 // Nope it doesn't. Remove the node from its current place in the maps. 8744 if (InsertPos) 8745 if (!RemoveNodeFromCSEMaps(N)) 8746 InsertPos = nullptr; 8747 8748 // Now we update the operands. 8749 for (unsigned i = 0; i != NumOps; ++i) 8750 if (N->OperandList[i] != Ops[i]) 8751 N->OperandList[i].set(Ops[i]); 8752 8753 updateDivergence(N); 8754 // If this gets put into a CSE map, add it. 8755 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8756 return N; 8757 } 8758 8759 /// DropOperands - Release the operands and set this node to have 8760 /// zero operands. 8761 void SDNode::DropOperands() { 8762 // Unlike the code in MorphNodeTo that does this, we don't need to 8763 // watch for dead nodes here. 8764 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8765 SDUse &Use = *I++; 8766 Use.set(SDValue()); 8767 } 8768 } 8769 8770 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8771 ArrayRef<MachineMemOperand *> NewMemRefs) { 8772 if (NewMemRefs.empty()) { 8773 N->clearMemRefs(); 8774 return; 8775 } 8776 8777 // Check if we can avoid allocating by storing a single reference directly. 8778 if (NewMemRefs.size() == 1) { 8779 N->MemRefs = NewMemRefs[0]; 8780 N->NumMemRefs = 1; 8781 return; 8782 } 8783 8784 MachineMemOperand **MemRefsBuffer = 8785 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8786 llvm::copy(NewMemRefs, MemRefsBuffer); 8787 N->MemRefs = MemRefsBuffer; 8788 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8789 } 8790 8791 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8792 /// machine opcode. 8793 /// 8794 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8795 EVT VT) { 8796 SDVTList VTs = getVTList(VT); 8797 return SelectNodeTo(N, MachineOpc, VTs, None); 8798 } 8799 8800 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8801 EVT VT, SDValue Op1) { 8802 SDVTList VTs = getVTList(VT); 8803 SDValue Ops[] = { Op1 }; 8804 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8805 } 8806 8807 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8808 EVT VT, SDValue Op1, 8809 SDValue Op2) { 8810 SDVTList VTs = getVTList(VT); 8811 SDValue Ops[] = { Op1, Op2 }; 8812 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8813 } 8814 8815 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8816 EVT VT, SDValue Op1, 8817 SDValue Op2, SDValue Op3) { 8818 SDVTList VTs = getVTList(VT); 8819 SDValue Ops[] = { Op1, Op2, Op3 }; 8820 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8821 } 8822 8823 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8824 EVT VT, ArrayRef<SDValue> Ops) { 8825 SDVTList VTs = getVTList(VT); 8826 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8827 } 8828 8829 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8830 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8831 SDVTList VTs = getVTList(VT1, VT2); 8832 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8833 } 8834 8835 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8836 EVT VT1, EVT VT2) { 8837 SDVTList VTs = getVTList(VT1, VT2); 8838 return SelectNodeTo(N, MachineOpc, VTs, None); 8839 } 8840 8841 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8842 EVT VT1, EVT VT2, EVT VT3, 8843 ArrayRef<SDValue> Ops) { 8844 SDVTList VTs = getVTList(VT1, VT2, VT3); 8845 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8846 } 8847 8848 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8849 EVT VT1, EVT VT2, 8850 SDValue Op1, SDValue Op2) { 8851 SDVTList VTs = getVTList(VT1, VT2); 8852 SDValue Ops[] = { Op1, Op2 }; 8853 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8854 } 8855 8856 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8857 SDVTList VTs,ArrayRef<SDValue> Ops) { 8858 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8859 // Reset the NodeID to -1. 8860 New->setNodeId(-1); 8861 if (New != N) { 8862 ReplaceAllUsesWith(N, New); 8863 RemoveDeadNode(N); 8864 } 8865 return New; 8866 } 8867 8868 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8869 /// the line number information on the merged node since it is not possible to 8870 /// preserve the information that operation is associated with multiple lines. 8871 /// This will make the debugger working better at -O0, were there is a higher 8872 /// probability having other instructions associated with that line. 8873 /// 8874 /// For IROrder, we keep the smaller of the two 8875 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8876 DebugLoc NLoc = N->getDebugLoc(); 8877 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8878 N->setDebugLoc(DebugLoc()); 8879 } 8880 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8881 N->setIROrder(Order); 8882 return N; 8883 } 8884 8885 /// MorphNodeTo - This *mutates* the specified node to have the specified 8886 /// return type, opcode, and operands. 8887 /// 8888 /// Note that MorphNodeTo returns the resultant node. If there is already a 8889 /// node of the specified opcode and operands, it returns that node instead of 8890 /// the current one. Note that the SDLoc need not be the same. 8891 /// 8892 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8893 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8894 /// node, and because it doesn't require CSE recalculation for any of 8895 /// the node's users. 8896 /// 8897 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8898 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8899 /// the legalizer which maintain worklists that would need to be updated when 8900 /// deleting things. 8901 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8902 SDVTList VTs, ArrayRef<SDValue> Ops) { 8903 // If an identical node already exists, use it. 8904 void *IP = nullptr; 8905 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8906 FoldingSetNodeID ID; 8907 AddNodeIDNode(ID, Opc, VTs, Ops); 8908 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8909 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8910 } 8911 8912 if (!RemoveNodeFromCSEMaps(N)) 8913 IP = nullptr; 8914 8915 // Start the morphing. 8916 N->NodeType = Opc; 8917 N->ValueList = VTs.VTs; 8918 N->NumValues = VTs.NumVTs; 8919 8920 // Clear the operands list, updating used nodes to remove this from their 8921 // use list. Keep track of any operands that become dead as a result. 8922 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8923 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8924 SDUse &Use = *I++; 8925 SDNode *Used = Use.getNode(); 8926 Use.set(SDValue()); 8927 if (Used->use_empty()) 8928 DeadNodeSet.insert(Used); 8929 } 8930 8931 // For MachineNode, initialize the memory references information. 8932 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8933 MN->clearMemRefs(); 8934 8935 // Swap for an appropriately sized array from the recycler. 8936 removeOperands(N); 8937 createOperands(N, Ops); 8938 8939 // Delete any nodes that are still dead after adding the uses for the 8940 // new operands. 8941 if (!DeadNodeSet.empty()) { 8942 SmallVector<SDNode *, 16> DeadNodes; 8943 for (SDNode *N : DeadNodeSet) 8944 if (N->use_empty()) 8945 DeadNodes.push_back(N); 8946 RemoveDeadNodes(DeadNodes); 8947 } 8948 8949 if (IP) 8950 CSEMap.InsertNode(N, IP); // Memoize the new node. 8951 return N; 8952 } 8953 8954 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8955 unsigned OrigOpc = Node->getOpcode(); 8956 unsigned NewOpc; 8957 switch (OrigOpc) { 8958 default: 8959 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8960 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8961 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8962 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8963 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8964 #include "llvm/IR/ConstrainedOps.def" 8965 } 8966 8967 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8968 8969 // We're taking this node out of the chain, so we need to re-link things. 8970 SDValue InputChain = Node->getOperand(0); 8971 SDValue OutputChain = SDValue(Node, 1); 8972 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8973 8974 SmallVector<SDValue, 3> Ops; 8975 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8976 Ops.push_back(Node->getOperand(i)); 8977 8978 SDVTList VTs = getVTList(Node->getValueType(0)); 8979 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8980 8981 // MorphNodeTo can operate in two ways: if an existing node with the 8982 // specified operands exists, it can just return it. Otherwise, it 8983 // updates the node in place to have the requested operands. 8984 if (Res == Node) { 8985 // If we updated the node in place, reset the node ID. To the isel, 8986 // this should be just like a newly allocated machine node. 8987 Res->setNodeId(-1); 8988 } else { 8989 ReplaceAllUsesWith(Node, Res); 8990 RemoveDeadNode(Node); 8991 } 8992 8993 return Res; 8994 } 8995 8996 /// getMachineNode - These are used for target selectors to create a new node 8997 /// with specified return type(s), MachineInstr opcode, and operands. 8998 /// 8999 /// Note that getMachineNode returns the resultant node. If there is already a 9000 /// node of the specified opcode and operands, it returns that node instead of 9001 /// the current one. 9002 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9003 EVT VT) { 9004 SDVTList VTs = getVTList(VT); 9005 return getMachineNode(Opcode, dl, VTs, None); 9006 } 9007 9008 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9009 EVT VT, SDValue Op1) { 9010 SDVTList VTs = getVTList(VT); 9011 SDValue Ops[] = { Op1 }; 9012 return getMachineNode(Opcode, dl, VTs, Ops); 9013 } 9014 9015 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9016 EVT VT, SDValue Op1, SDValue Op2) { 9017 SDVTList VTs = getVTList(VT); 9018 SDValue Ops[] = { Op1, Op2 }; 9019 return getMachineNode(Opcode, dl, VTs, Ops); 9020 } 9021 9022 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9023 EVT VT, SDValue Op1, SDValue Op2, 9024 SDValue Op3) { 9025 SDVTList VTs = getVTList(VT); 9026 SDValue Ops[] = { Op1, Op2, Op3 }; 9027 return getMachineNode(Opcode, dl, VTs, Ops); 9028 } 9029 9030 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9031 EVT VT, ArrayRef<SDValue> Ops) { 9032 SDVTList VTs = getVTList(VT); 9033 return getMachineNode(Opcode, dl, VTs, Ops); 9034 } 9035 9036 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9037 EVT VT1, EVT VT2, SDValue Op1, 9038 SDValue Op2) { 9039 SDVTList VTs = getVTList(VT1, VT2); 9040 SDValue Ops[] = { Op1, Op2 }; 9041 return getMachineNode(Opcode, dl, VTs, Ops); 9042 } 9043 9044 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9045 EVT VT1, EVT VT2, SDValue Op1, 9046 SDValue Op2, SDValue Op3) { 9047 SDVTList VTs = getVTList(VT1, VT2); 9048 SDValue Ops[] = { Op1, Op2, Op3 }; 9049 return getMachineNode(Opcode, dl, VTs, Ops); 9050 } 9051 9052 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9053 EVT VT1, EVT VT2, 9054 ArrayRef<SDValue> Ops) { 9055 SDVTList VTs = getVTList(VT1, VT2); 9056 return getMachineNode(Opcode, dl, VTs, Ops); 9057 } 9058 9059 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9060 EVT VT1, EVT VT2, EVT VT3, 9061 SDValue Op1, SDValue Op2) { 9062 SDVTList VTs = getVTList(VT1, VT2, VT3); 9063 SDValue Ops[] = { Op1, Op2 }; 9064 return getMachineNode(Opcode, dl, VTs, Ops); 9065 } 9066 9067 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9068 EVT VT1, EVT VT2, EVT VT3, 9069 SDValue Op1, SDValue Op2, 9070 SDValue Op3) { 9071 SDVTList VTs = getVTList(VT1, VT2, VT3); 9072 SDValue Ops[] = { Op1, Op2, Op3 }; 9073 return getMachineNode(Opcode, dl, VTs, Ops); 9074 } 9075 9076 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9077 EVT VT1, EVT VT2, EVT VT3, 9078 ArrayRef<SDValue> Ops) { 9079 SDVTList VTs = getVTList(VT1, VT2, VT3); 9080 return getMachineNode(Opcode, dl, VTs, Ops); 9081 } 9082 9083 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9084 ArrayRef<EVT> ResultTys, 9085 ArrayRef<SDValue> Ops) { 9086 SDVTList VTs = getVTList(ResultTys); 9087 return getMachineNode(Opcode, dl, VTs, Ops); 9088 } 9089 9090 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9091 SDVTList VTs, 9092 ArrayRef<SDValue> Ops) { 9093 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9094 MachineSDNode *N; 9095 void *IP = nullptr; 9096 9097 if (DoCSE) { 9098 FoldingSetNodeID ID; 9099 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9100 IP = nullptr; 9101 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9102 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9103 } 9104 } 9105 9106 // Allocate a new MachineSDNode. 9107 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9108 createOperands(N, Ops); 9109 9110 if (DoCSE) 9111 CSEMap.InsertNode(N, IP); 9112 9113 InsertNode(N); 9114 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9115 return N; 9116 } 9117 9118 /// getTargetExtractSubreg - A convenience function for creating 9119 /// TargetOpcode::EXTRACT_SUBREG nodes. 9120 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9121 SDValue Operand) { 9122 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9123 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9124 VT, Operand, SRIdxVal); 9125 return SDValue(Subreg, 0); 9126 } 9127 9128 /// getTargetInsertSubreg - A convenience function for creating 9129 /// TargetOpcode::INSERT_SUBREG nodes. 9130 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9131 SDValue Operand, SDValue Subreg) { 9132 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9133 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9134 VT, Operand, Subreg, SRIdxVal); 9135 return SDValue(Result, 0); 9136 } 9137 9138 /// getNodeIfExists - Get the specified node if it's already available, or 9139 /// else return NULL. 9140 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9141 ArrayRef<SDValue> Ops) { 9142 SDNodeFlags Flags; 9143 if (Inserter) 9144 Flags = Inserter->getFlags(); 9145 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9146 } 9147 9148 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9149 ArrayRef<SDValue> Ops, 9150 const SDNodeFlags Flags) { 9151 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9152 FoldingSetNodeID ID; 9153 AddNodeIDNode(ID, Opcode, VTList, Ops); 9154 void *IP = nullptr; 9155 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9156 E->intersectFlagsWith(Flags); 9157 return E; 9158 } 9159 } 9160 return nullptr; 9161 } 9162 9163 /// doesNodeExist - Check if a node exists without modifying its flags. 9164 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9165 ArrayRef<SDValue> Ops) { 9166 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9167 FoldingSetNodeID ID; 9168 AddNodeIDNode(ID, Opcode, VTList, Ops); 9169 void *IP = nullptr; 9170 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9171 return true; 9172 } 9173 return false; 9174 } 9175 9176 /// getDbgValue - Creates a SDDbgValue node. 9177 /// 9178 /// SDNode 9179 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9180 SDNode *N, unsigned R, bool IsIndirect, 9181 const DebugLoc &DL, unsigned O) { 9182 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9183 "Expected inlined-at fields to agree"); 9184 return new (DbgInfo->getAlloc()) 9185 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9186 {}, IsIndirect, DL, O, 9187 /*IsVariadic=*/false); 9188 } 9189 9190 /// Constant 9191 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9192 DIExpression *Expr, 9193 const Value *C, 9194 const DebugLoc &DL, unsigned O) { 9195 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9196 "Expected inlined-at fields to agree"); 9197 return new (DbgInfo->getAlloc()) 9198 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9199 /*IsIndirect=*/false, DL, O, 9200 /*IsVariadic=*/false); 9201 } 9202 9203 /// FrameIndex 9204 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9205 DIExpression *Expr, unsigned FI, 9206 bool IsIndirect, 9207 const DebugLoc &DL, 9208 unsigned O) { 9209 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9210 "Expected inlined-at fields to agree"); 9211 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9212 } 9213 9214 /// FrameIndex with dependencies 9215 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9216 DIExpression *Expr, unsigned FI, 9217 ArrayRef<SDNode *> Dependencies, 9218 bool IsIndirect, 9219 const DebugLoc &DL, 9220 unsigned O) { 9221 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9222 "Expected inlined-at fields to agree"); 9223 return new (DbgInfo->getAlloc()) 9224 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9225 Dependencies, IsIndirect, DL, O, 9226 /*IsVariadic=*/false); 9227 } 9228 9229 /// VReg 9230 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9231 unsigned VReg, bool IsIndirect, 9232 const DebugLoc &DL, unsigned O) { 9233 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9234 "Expected inlined-at fields to agree"); 9235 return new (DbgInfo->getAlloc()) 9236 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9237 {}, IsIndirect, DL, O, 9238 /*IsVariadic=*/false); 9239 } 9240 9241 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9242 ArrayRef<SDDbgOperand> Locs, 9243 ArrayRef<SDNode *> Dependencies, 9244 bool IsIndirect, const DebugLoc &DL, 9245 unsigned O, bool IsVariadic) { 9246 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9247 "Expected inlined-at fields to agree"); 9248 return new (DbgInfo->getAlloc()) 9249 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9250 DL, O, IsVariadic); 9251 } 9252 9253 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9254 unsigned OffsetInBits, unsigned SizeInBits, 9255 bool InvalidateDbg) { 9256 SDNode *FromNode = From.getNode(); 9257 SDNode *ToNode = To.getNode(); 9258 assert(FromNode && ToNode && "Can't modify dbg values"); 9259 9260 // PR35338 9261 // TODO: assert(From != To && "Redundant dbg value transfer"); 9262 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9263 if (From == To || FromNode == ToNode) 9264 return; 9265 9266 if (!FromNode->getHasDebugValue()) 9267 return; 9268 9269 SDDbgOperand FromLocOp = 9270 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9271 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9272 9273 SmallVector<SDDbgValue *, 2> ClonedDVs; 9274 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9275 if (Dbg->isInvalidated()) 9276 continue; 9277 9278 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9279 9280 // Create a new location ops vector that is equal to the old vector, but 9281 // with each instance of FromLocOp replaced with ToLocOp. 9282 bool Changed = false; 9283 auto NewLocOps = Dbg->copyLocationOps(); 9284 std::replace_if( 9285 NewLocOps.begin(), NewLocOps.end(), 9286 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9287 bool Match = Op == FromLocOp; 9288 Changed |= Match; 9289 return Match; 9290 }, 9291 ToLocOp); 9292 // Ignore this SDDbgValue if we didn't find a matching location. 9293 if (!Changed) 9294 continue; 9295 9296 DIVariable *Var = Dbg->getVariable(); 9297 auto *Expr = Dbg->getExpression(); 9298 // If a fragment is requested, update the expression. 9299 if (SizeInBits) { 9300 // When splitting a larger (e.g., sign-extended) value whose 9301 // lower bits are described with an SDDbgValue, do not attempt 9302 // to transfer the SDDbgValue to the upper bits. 9303 if (auto FI = Expr->getFragmentInfo()) 9304 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9305 continue; 9306 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9307 SizeInBits); 9308 if (!Fragment) 9309 continue; 9310 Expr = *Fragment; 9311 } 9312 9313 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9314 // Clone the SDDbgValue and move it to To. 9315 SDDbgValue *Clone = getDbgValueList( 9316 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9317 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9318 Dbg->isVariadic()); 9319 ClonedDVs.push_back(Clone); 9320 9321 if (InvalidateDbg) { 9322 // Invalidate value and indicate the SDDbgValue should not be emitted. 9323 Dbg->setIsInvalidated(); 9324 Dbg->setIsEmitted(); 9325 } 9326 } 9327 9328 for (SDDbgValue *Dbg : ClonedDVs) { 9329 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9330 "Transferred DbgValues should depend on the new SDNode"); 9331 AddDbgValue(Dbg, false); 9332 } 9333 } 9334 9335 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9336 if (!N.getHasDebugValue()) 9337 return; 9338 9339 SmallVector<SDDbgValue *, 2> ClonedDVs; 9340 for (auto DV : GetDbgValues(&N)) { 9341 if (DV->isInvalidated()) 9342 continue; 9343 switch (N.getOpcode()) { 9344 default: 9345 break; 9346 case ISD::ADD: 9347 SDValue N0 = N.getOperand(0); 9348 SDValue N1 = N.getOperand(1); 9349 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9350 isConstantIntBuildVectorOrConstantInt(N1)) { 9351 uint64_t Offset = N.getConstantOperandVal(1); 9352 9353 // Rewrite an ADD constant node into a DIExpression. Since we are 9354 // performing arithmetic to compute the variable's *value* in the 9355 // DIExpression, we need to mark the expression with a 9356 // DW_OP_stack_value. 9357 auto *DIExpr = DV->getExpression(); 9358 auto NewLocOps = DV->copyLocationOps(); 9359 bool Changed = false; 9360 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9361 // We're not given a ResNo to compare against because the whole 9362 // node is going away. We know that any ISD::ADD only has one 9363 // result, so we can assume any node match is using the result. 9364 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9365 NewLocOps[i].getSDNode() != &N) 9366 continue; 9367 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9368 SmallVector<uint64_t, 3> ExprOps; 9369 DIExpression::appendOffset(ExprOps, Offset); 9370 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9371 Changed = true; 9372 } 9373 (void)Changed; 9374 assert(Changed && "Salvage target doesn't use N"); 9375 9376 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9377 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9378 NewLocOps, AdditionalDependencies, 9379 DV->isIndirect(), DV->getDebugLoc(), 9380 DV->getOrder(), DV->isVariadic()); 9381 ClonedDVs.push_back(Clone); 9382 DV->setIsInvalidated(); 9383 DV->setIsEmitted(); 9384 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9385 N0.getNode()->dumprFull(this); 9386 dbgs() << " into " << *DIExpr << '\n'); 9387 } 9388 } 9389 } 9390 9391 for (SDDbgValue *Dbg : ClonedDVs) { 9392 assert(!Dbg->getSDNodes().empty() && 9393 "Salvaged DbgValue should depend on a new SDNode"); 9394 AddDbgValue(Dbg, false); 9395 } 9396 } 9397 9398 /// Creates a SDDbgLabel node. 9399 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9400 const DebugLoc &DL, unsigned O) { 9401 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9402 "Expected inlined-at fields to agree"); 9403 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9404 } 9405 9406 namespace { 9407 9408 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9409 /// pointed to by a use iterator is deleted, increment the use iterator 9410 /// so that it doesn't dangle. 9411 /// 9412 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9413 SDNode::use_iterator &UI; 9414 SDNode::use_iterator &UE; 9415 9416 void NodeDeleted(SDNode *N, SDNode *E) override { 9417 // Increment the iterator as needed. 9418 while (UI != UE && N == *UI) 9419 ++UI; 9420 } 9421 9422 public: 9423 RAUWUpdateListener(SelectionDAG &d, 9424 SDNode::use_iterator &ui, 9425 SDNode::use_iterator &ue) 9426 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9427 }; 9428 9429 } // end anonymous namespace 9430 9431 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9432 /// This can cause recursive merging of nodes in the DAG. 9433 /// 9434 /// This version assumes From has a single result value. 9435 /// 9436 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9437 SDNode *From = FromN.getNode(); 9438 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9439 "Cannot replace with this method!"); 9440 assert(From != To.getNode() && "Cannot replace uses of with self"); 9441 9442 // Preserve Debug Values 9443 transferDbgValues(FromN, To); 9444 9445 // Iterate over all the existing uses of From. New uses will be added 9446 // to the beginning of the use list, which we avoid visiting. 9447 // This specifically avoids visiting uses of From that arise while the 9448 // replacement is happening, because any such uses would be the result 9449 // of CSE: If an existing node looks like From after one of its operands 9450 // is replaced by To, we don't want to replace of all its users with To 9451 // too. See PR3018 for more info. 9452 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9453 RAUWUpdateListener Listener(*this, UI, UE); 9454 while (UI != UE) { 9455 SDNode *User = *UI; 9456 9457 // This node is about to morph, remove its old self from the CSE maps. 9458 RemoveNodeFromCSEMaps(User); 9459 9460 // A user can appear in a use list multiple times, and when this 9461 // happens the uses are usually next to each other in the list. 9462 // To help reduce the number of CSE recomputations, process all 9463 // the uses of this user that we can find this way. 9464 do { 9465 SDUse &Use = UI.getUse(); 9466 ++UI; 9467 Use.set(To); 9468 if (To->isDivergent() != From->isDivergent()) 9469 updateDivergence(User); 9470 } while (UI != UE && *UI == User); 9471 // Now that we have modified User, add it back to the CSE maps. If it 9472 // already exists there, recursively merge the results together. 9473 AddModifiedNodeToCSEMaps(User); 9474 } 9475 9476 // If we just RAUW'd the root, take note. 9477 if (FromN == getRoot()) 9478 setRoot(To); 9479 } 9480 9481 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9482 /// This can cause recursive merging of nodes in the DAG. 9483 /// 9484 /// This version assumes that for each value of From, there is a 9485 /// corresponding value in To in the same position with the same type. 9486 /// 9487 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9488 #ifndef NDEBUG 9489 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9490 assert((!From->hasAnyUseOfValue(i) || 9491 From->getValueType(i) == To->getValueType(i)) && 9492 "Cannot use this version of ReplaceAllUsesWith!"); 9493 #endif 9494 9495 // Handle the trivial case. 9496 if (From == To) 9497 return; 9498 9499 // Preserve Debug Info. Only do this if there's a use. 9500 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9501 if (From->hasAnyUseOfValue(i)) { 9502 assert((i < To->getNumValues()) && "Invalid To location"); 9503 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9504 } 9505 9506 // Iterate over just the existing users of From. See the comments in 9507 // the ReplaceAllUsesWith above. 9508 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9509 RAUWUpdateListener Listener(*this, UI, UE); 9510 while (UI != UE) { 9511 SDNode *User = *UI; 9512 9513 // This node is about to morph, remove its old self from the CSE maps. 9514 RemoveNodeFromCSEMaps(User); 9515 9516 // A user can appear in a use list multiple times, and when this 9517 // happens the uses are usually next to each other in the list. 9518 // To help reduce the number of CSE recomputations, process all 9519 // the uses of this user that we can find this way. 9520 do { 9521 SDUse &Use = UI.getUse(); 9522 ++UI; 9523 Use.setNode(To); 9524 if (To->isDivergent() != From->isDivergent()) 9525 updateDivergence(User); 9526 } while (UI != UE && *UI == User); 9527 9528 // Now that we have modified User, add it back to the CSE maps. If it 9529 // already exists there, recursively merge the results together. 9530 AddModifiedNodeToCSEMaps(User); 9531 } 9532 9533 // If we just RAUW'd the root, take note. 9534 if (From == getRoot().getNode()) 9535 setRoot(SDValue(To, getRoot().getResNo())); 9536 } 9537 9538 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9539 /// This can cause recursive merging of nodes in the DAG. 9540 /// 9541 /// This version can replace From with any result values. To must match the 9542 /// number and types of values returned by From. 9543 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9544 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9545 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9546 9547 // Preserve Debug Info. 9548 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9549 transferDbgValues(SDValue(From, i), To[i]); 9550 9551 // Iterate over just the existing users of From. See the comments in 9552 // the ReplaceAllUsesWith above. 9553 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9554 RAUWUpdateListener Listener(*this, UI, UE); 9555 while (UI != UE) { 9556 SDNode *User = *UI; 9557 9558 // This node is about to morph, remove its old self from the CSE maps. 9559 RemoveNodeFromCSEMaps(User); 9560 9561 // A user can appear in a use list multiple times, and when this happens the 9562 // uses are usually next to each other in the list. To help reduce the 9563 // number of CSE and divergence recomputations, process all the uses of this 9564 // user that we can find this way. 9565 bool To_IsDivergent = false; 9566 do { 9567 SDUse &Use = UI.getUse(); 9568 const SDValue &ToOp = To[Use.getResNo()]; 9569 ++UI; 9570 Use.set(ToOp); 9571 To_IsDivergent |= ToOp->isDivergent(); 9572 } while (UI != UE && *UI == User); 9573 9574 if (To_IsDivergent != From->isDivergent()) 9575 updateDivergence(User); 9576 9577 // Now that we have modified User, add it back to the CSE maps. If it 9578 // already exists there, recursively merge the results together. 9579 AddModifiedNodeToCSEMaps(User); 9580 } 9581 9582 // If we just RAUW'd the root, take note. 9583 if (From == getRoot().getNode()) 9584 setRoot(SDValue(To[getRoot().getResNo()])); 9585 } 9586 9587 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9588 /// uses of other values produced by From.getNode() alone. The Deleted 9589 /// vector is handled the same way as for ReplaceAllUsesWith. 9590 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9591 // Handle the really simple, really trivial case efficiently. 9592 if (From == To) return; 9593 9594 // Handle the simple, trivial, case efficiently. 9595 if (From.getNode()->getNumValues() == 1) { 9596 ReplaceAllUsesWith(From, To); 9597 return; 9598 } 9599 9600 // Preserve Debug Info. 9601 transferDbgValues(From, To); 9602 9603 // Iterate over just the existing users of From. See the comments in 9604 // the ReplaceAllUsesWith above. 9605 SDNode::use_iterator UI = From.getNode()->use_begin(), 9606 UE = From.getNode()->use_end(); 9607 RAUWUpdateListener Listener(*this, UI, UE); 9608 while (UI != UE) { 9609 SDNode *User = *UI; 9610 bool UserRemovedFromCSEMaps = false; 9611 9612 // A user can appear in a use list multiple times, and when this 9613 // happens the uses are usually next to each other in the list. 9614 // To help reduce the number of CSE recomputations, process all 9615 // the uses of this user that we can find this way. 9616 do { 9617 SDUse &Use = UI.getUse(); 9618 9619 // Skip uses of different values from the same node. 9620 if (Use.getResNo() != From.getResNo()) { 9621 ++UI; 9622 continue; 9623 } 9624 9625 // If this node hasn't been modified yet, it's still in the CSE maps, 9626 // so remove its old self from the CSE maps. 9627 if (!UserRemovedFromCSEMaps) { 9628 RemoveNodeFromCSEMaps(User); 9629 UserRemovedFromCSEMaps = true; 9630 } 9631 9632 ++UI; 9633 Use.set(To); 9634 if (To->isDivergent() != From->isDivergent()) 9635 updateDivergence(User); 9636 } while (UI != UE && *UI == User); 9637 // We are iterating over all uses of the From node, so if a use 9638 // doesn't use the specific value, no changes are made. 9639 if (!UserRemovedFromCSEMaps) 9640 continue; 9641 9642 // Now that we have modified User, add it back to the CSE maps. If it 9643 // already exists there, recursively merge the results together. 9644 AddModifiedNodeToCSEMaps(User); 9645 } 9646 9647 // If we just RAUW'd the root, take note. 9648 if (From == getRoot()) 9649 setRoot(To); 9650 } 9651 9652 namespace { 9653 9654 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9655 /// to record information about a use. 9656 struct UseMemo { 9657 SDNode *User; 9658 unsigned Index; 9659 SDUse *Use; 9660 }; 9661 9662 /// operator< - Sort Memos by User. 9663 bool operator<(const UseMemo &L, const UseMemo &R) { 9664 return (intptr_t)L.User < (intptr_t)R.User; 9665 } 9666 9667 } // end anonymous namespace 9668 9669 bool SelectionDAG::calculateDivergence(SDNode *N) { 9670 if (TLI->isSDNodeAlwaysUniform(N)) { 9671 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9672 "Conflicting divergence information!"); 9673 return false; 9674 } 9675 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9676 return true; 9677 for (auto &Op : N->ops()) { 9678 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9679 return true; 9680 } 9681 return false; 9682 } 9683 9684 void SelectionDAG::updateDivergence(SDNode *N) { 9685 SmallVector<SDNode *, 16> Worklist(1, N); 9686 do { 9687 N = Worklist.pop_back_val(); 9688 bool IsDivergent = calculateDivergence(N); 9689 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9690 N->SDNodeBits.IsDivergent = IsDivergent; 9691 llvm::append_range(Worklist, N->uses()); 9692 } 9693 } while (!Worklist.empty()); 9694 } 9695 9696 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9697 DenseMap<SDNode *, unsigned> Degree; 9698 Order.reserve(AllNodes.size()); 9699 for (auto &N : allnodes()) { 9700 unsigned NOps = N.getNumOperands(); 9701 Degree[&N] = NOps; 9702 if (0 == NOps) 9703 Order.push_back(&N); 9704 } 9705 for (size_t I = 0; I != Order.size(); ++I) { 9706 SDNode *N = Order[I]; 9707 for (auto U : N->uses()) { 9708 unsigned &UnsortedOps = Degree[U]; 9709 if (0 == --UnsortedOps) 9710 Order.push_back(U); 9711 } 9712 } 9713 } 9714 9715 #ifndef NDEBUG 9716 void SelectionDAG::VerifyDAGDivergence() { 9717 std::vector<SDNode *> TopoOrder; 9718 CreateTopologicalOrder(TopoOrder); 9719 for (auto *N : TopoOrder) { 9720 assert(calculateDivergence(N) == N->isDivergent() && 9721 "Divergence bit inconsistency detected"); 9722 } 9723 } 9724 #endif 9725 9726 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9727 /// uses of other values produced by From.getNode() alone. The same value 9728 /// may appear in both the From and To list. The Deleted vector is 9729 /// handled the same way as for ReplaceAllUsesWith. 9730 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9731 const SDValue *To, 9732 unsigned Num){ 9733 // Handle the simple, trivial case efficiently. 9734 if (Num == 1) 9735 return ReplaceAllUsesOfValueWith(*From, *To); 9736 9737 transferDbgValues(*From, *To); 9738 9739 // Read up all the uses and make records of them. This helps 9740 // processing new uses that are introduced during the 9741 // replacement process. 9742 SmallVector<UseMemo, 4> Uses; 9743 for (unsigned i = 0; i != Num; ++i) { 9744 unsigned FromResNo = From[i].getResNo(); 9745 SDNode *FromNode = From[i].getNode(); 9746 for (SDNode::use_iterator UI = FromNode->use_begin(), 9747 E = FromNode->use_end(); UI != E; ++UI) { 9748 SDUse &Use = UI.getUse(); 9749 if (Use.getResNo() == FromResNo) { 9750 UseMemo Memo = { *UI, i, &Use }; 9751 Uses.push_back(Memo); 9752 } 9753 } 9754 } 9755 9756 // Sort the uses, so that all the uses from a given User are together. 9757 llvm::sort(Uses); 9758 9759 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9760 UseIndex != UseIndexEnd; ) { 9761 // We know that this user uses some value of From. If it is the right 9762 // value, update it. 9763 SDNode *User = Uses[UseIndex].User; 9764 9765 // This node is about to morph, remove its old self from the CSE maps. 9766 RemoveNodeFromCSEMaps(User); 9767 9768 // The Uses array is sorted, so all the uses for a given User 9769 // are next to each other in the list. 9770 // To help reduce the number of CSE recomputations, process all 9771 // the uses of this user that we can find this way. 9772 do { 9773 unsigned i = Uses[UseIndex].Index; 9774 SDUse &Use = *Uses[UseIndex].Use; 9775 ++UseIndex; 9776 9777 Use.set(To[i]); 9778 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9779 9780 // Now that we have modified User, add it back to the CSE maps. If it 9781 // already exists there, recursively merge the results together. 9782 AddModifiedNodeToCSEMaps(User); 9783 } 9784 } 9785 9786 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9787 /// based on their topological order. It returns the maximum id and a vector 9788 /// of the SDNodes* in assigned order by reference. 9789 unsigned SelectionDAG::AssignTopologicalOrder() { 9790 unsigned DAGSize = 0; 9791 9792 // SortedPos tracks the progress of the algorithm. Nodes before it are 9793 // sorted, nodes after it are unsorted. When the algorithm completes 9794 // it is at the end of the list. 9795 allnodes_iterator SortedPos = allnodes_begin(); 9796 9797 // Visit all the nodes. Move nodes with no operands to the front of 9798 // the list immediately. Annotate nodes that do have operands with their 9799 // operand count. Before we do this, the Node Id fields of the nodes 9800 // may contain arbitrary values. After, the Node Id fields for nodes 9801 // before SortedPos will contain the topological sort index, and the 9802 // Node Id fields for nodes At SortedPos and after will contain the 9803 // count of outstanding operands. 9804 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9805 checkForCycles(&N, this); 9806 unsigned Degree = N.getNumOperands(); 9807 if (Degree == 0) { 9808 // A node with no uses, add it to the result array immediately. 9809 N.setNodeId(DAGSize++); 9810 allnodes_iterator Q(&N); 9811 if (Q != SortedPos) 9812 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9813 assert(SortedPos != AllNodes.end() && "Overran node list"); 9814 ++SortedPos; 9815 } else { 9816 // Temporarily use the Node Id as scratch space for the degree count. 9817 N.setNodeId(Degree); 9818 } 9819 } 9820 9821 // Visit all the nodes. As we iterate, move nodes into sorted order, 9822 // such that by the time the end is reached all nodes will be sorted. 9823 for (SDNode &Node : allnodes()) { 9824 SDNode *N = &Node; 9825 checkForCycles(N, this); 9826 // N is in sorted position, so all its uses have one less operand 9827 // that needs to be sorted. 9828 for (SDNode *P : N->uses()) { 9829 unsigned Degree = P->getNodeId(); 9830 assert(Degree != 0 && "Invalid node degree"); 9831 --Degree; 9832 if (Degree == 0) { 9833 // All of P's operands are sorted, so P may sorted now. 9834 P->setNodeId(DAGSize++); 9835 if (P->getIterator() != SortedPos) 9836 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9837 assert(SortedPos != AllNodes.end() && "Overran node list"); 9838 ++SortedPos; 9839 } else { 9840 // Update P's outstanding operand count. 9841 P->setNodeId(Degree); 9842 } 9843 } 9844 if (Node.getIterator() == SortedPos) { 9845 #ifndef NDEBUG 9846 allnodes_iterator I(N); 9847 SDNode *S = &*++I; 9848 dbgs() << "Overran sorted position:\n"; 9849 S->dumprFull(this); dbgs() << "\n"; 9850 dbgs() << "Checking if this is due to cycles\n"; 9851 checkForCycles(this, true); 9852 #endif 9853 llvm_unreachable(nullptr); 9854 } 9855 } 9856 9857 assert(SortedPos == AllNodes.end() && 9858 "Topological sort incomplete!"); 9859 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9860 "First node in topological sort is not the entry token!"); 9861 assert(AllNodes.front().getNodeId() == 0 && 9862 "First node in topological sort has non-zero id!"); 9863 assert(AllNodes.front().getNumOperands() == 0 && 9864 "First node in topological sort has operands!"); 9865 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9866 "Last node in topologic sort has unexpected id!"); 9867 assert(AllNodes.back().use_empty() && 9868 "Last node in topologic sort has users!"); 9869 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9870 return DAGSize; 9871 } 9872 9873 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9874 /// value is produced by SD. 9875 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9876 for (SDNode *SD : DB->getSDNodes()) { 9877 if (!SD) 9878 continue; 9879 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9880 SD->setHasDebugValue(true); 9881 } 9882 DbgInfo->add(DB, isParameter); 9883 } 9884 9885 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9886 9887 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9888 SDValue NewMemOpChain) { 9889 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9890 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9891 // The new memory operation must have the same position as the old load in 9892 // terms of memory dependency. Create a TokenFactor for the old load and new 9893 // memory operation and update uses of the old load's output chain to use that 9894 // TokenFactor. 9895 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9896 return NewMemOpChain; 9897 9898 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9899 OldChain, NewMemOpChain); 9900 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9901 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9902 return TokenFactor; 9903 } 9904 9905 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9906 SDValue NewMemOp) { 9907 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9908 SDValue OldChain = SDValue(OldLoad, 1); 9909 SDValue NewMemOpChain = NewMemOp.getValue(1); 9910 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9911 } 9912 9913 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9914 Function **OutFunction) { 9915 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9916 9917 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9918 auto *Module = MF->getFunction().getParent(); 9919 auto *Function = Module->getFunction(Symbol); 9920 9921 if (OutFunction != nullptr) 9922 *OutFunction = Function; 9923 9924 if (Function != nullptr) { 9925 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9926 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9927 } 9928 9929 std::string ErrorStr; 9930 raw_string_ostream ErrorFormatter(ErrorStr); 9931 ErrorFormatter << "Undefined external symbol "; 9932 ErrorFormatter << '"' << Symbol << '"'; 9933 report_fatal_error(Twine(ErrorFormatter.str())); 9934 } 9935 9936 //===----------------------------------------------------------------------===// 9937 // SDNode Class 9938 //===----------------------------------------------------------------------===// 9939 9940 bool llvm::isNullConstant(SDValue V) { 9941 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9942 return Const != nullptr && Const->isZero(); 9943 } 9944 9945 bool llvm::isNullFPConstant(SDValue V) { 9946 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9947 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9948 } 9949 9950 bool llvm::isAllOnesConstant(SDValue V) { 9951 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9952 return Const != nullptr && Const->isAllOnes(); 9953 } 9954 9955 bool llvm::isOneConstant(SDValue V) { 9956 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9957 return Const != nullptr && Const->isOne(); 9958 } 9959 9960 SDValue llvm::peekThroughBitcasts(SDValue V) { 9961 while (V.getOpcode() == ISD::BITCAST) 9962 V = V.getOperand(0); 9963 return V; 9964 } 9965 9966 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9967 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9968 V = V.getOperand(0); 9969 return V; 9970 } 9971 9972 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9973 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9974 V = V.getOperand(0); 9975 return V; 9976 } 9977 9978 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9979 if (V.getOpcode() != ISD::XOR) 9980 return false; 9981 V = peekThroughBitcasts(V.getOperand(1)); 9982 unsigned NumBits = V.getScalarValueSizeInBits(); 9983 ConstantSDNode *C = 9984 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9985 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9986 } 9987 9988 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9989 bool AllowTruncation) { 9990 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9991 return CN; 9992 9993 // SplatVectors can truncate their operands. Ignore that case here unless 9994 // AllowTruncation is set. 9995 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9996 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9997 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9998 EVT CVT = CN->getValueType(0); 9999 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10000 if (AllowTruncation || CVT == VecEltVT) 10001 return CN; 10002 } 10003 } 10004 10005 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10006 BitVector UndefElements; 10007 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10008 10009 // BuildVectors can truncate their operands. Ignore that case here unless 10010 // AllowTruncation is set. 10011 if (CN && (UndefElements.none() || AllowUndefs)) { 10012 EVT CVT = CN->getValueType(0); 10013 EVT NSVT = N.getValueType().getScalarType(); 10014 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10015 if (AllowTruncation || (CVT == NSVT)) 10016 return CN; 10017 } 10018 } 10019 10020 return nullptr; 10021 } 10022 10023 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10024 bool AllowUndefs, 10025 bool AllowTruncation) { 10026 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10027 return CN; 10028 10029 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10030 BitVector UndefElements; 10031 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10032 10033 // BuildVectors can truncate their operands. Ignore that case here unless 10034 // AllowTruncation is set. 10035 if (CN && (UndefElements.none() || AllowUndefs)) { 10036 EVT CVT = CN->getValueType(0); 10037 EVT NSVT = N.getValueType().getScalarType(); 10038 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10039 if (AllowTruncation || (CVT == NSVT)) 10040 return CN; 10041 } 10042 } 10043 10044 return nullptr; 10045 } 10046 10047 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10048 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10049 return CN; 10050 10051 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10052 BitVector UndefElements; 10053 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10054 if (CN && (UndefElements.none() || AllowUndefs)) 10055 return CN; 10056 } 10057 10058 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10059 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10060 return CN; 10061 10062 return nullptr; 10063 } 10064 10065 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10066 const APInt &DemandedElts, 10067 bool AllowUndefs) { 10068 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10069 return CN; 10070 10071 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10072 BitVector UndefElements; 10073 ConstantFPSDNode *CN = 10074 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10075 if (CN && (UndefElements.none() || AllowUndefs)) 10076 return CN; 10077 } 10078 10079 return nullptr; 10080 } 10081 10082 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10083 // TODO: may want to use peekThroughBitcast() here. 10084 ConstantSDNode *C = 10085 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10086 return C && C->isZero(); 10087 } 10088 10089 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10090 // TODO: may want to use peekThroughBitcast() here. 10091 unsigned BitWidth = N.getScalarValueSizeInBits(); 10092 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10093 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10094 } 10095 10096 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10097 N = peekThroughBitcasts(N); 10098 unsigned BitWidth = N.getScalarValueSizeInBits(); 10099 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10100 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10101 } 10102 10103 HandleSDNode::~HandleSDNode() { 10104 DropOperands(); 10105 } 10106 10107 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10108 const DebugLoc &DL, 10109 const GlobalValue *GA, EVT VT, 10110 int64_t o, unsigned TF) 10111 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10112 TheGlobal = GA; 10113 } 10114 10115 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10116 EVT VT, unsigned SrcAS, 10117 unsigned DestAS) 10118 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10119 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10120 10121 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10122 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10123 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10124 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10125 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10126 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10127 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10128 10129 // We check here that the size of the memory operand fits within the size of 10130 // the MMO. This is because the MMO might indicate only a possible address 10131 // range instead of specifying the affected memory addresses precisely. 10132 // TODO: Make MachineMemOperands aware of scalable vectors. 10133 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10134 "Size mismatch!"); 10135 } 10136 10137 /// Profile - Gather unique data for the node. 10138 /// 10139 void SDNode::Profile(FoldingSetNodeID &ID) const { 10140 AddNodeIDNode(ID, this); 10141 } 10142 10143 namespace { 10144 10145 struct EVTArray { 10146 std::vector<EVT> VTs; 10147 10148 EVTArray() { 10149 VTs.reserve(MVT::VALUETYPE_SIZE); 10150 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10151 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10152 } 10153 }; 10154 10155 } // end anonymous namespace 10156 10157 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10158 static ManagedStatic<EVTArray> SimpleVTArray; 10159 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10160 10161 /// getValueTypeList - Return a pointer to the specified value type. 10162 /// 10163 const EVT *SDNode::getValueTypeList(EVT VT) { 10164 if (VT.isExtended()) { 10165 sys::SmartScopedLock<true> Lock(*VTMutex); 10166 return &(*EVTs->insert(VT).first); 10167 } 10168 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10169 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10170 } 10171 10172 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10173 /// indicated value. This method ignores uses of other values defined by this 10174 /// operation. 10175 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10176 assert(Value < getNumValues() && "Bad value!"); 10177 10178 // TODO: Only iterate over uses of a given value of the node 10179 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10180 if (UI.getUse().getResNo() == Value) { 10181 if (NUses == 0) 10182 return false; 10183 --NUses; 10184 } 10185 } 10186 10187 // Found exactly the right number of uses? 10188 return NUses == 0; 10189 } 10190 10191 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10192 /// value. This method ignores uses of other values defined by this operation. 10193 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10194 assert(Value < getNumValues() && "Bad value!"); 10195 10196 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10197 if (UI.getUse().getResNo() == Value) 10198 return true; 10199 10200 return false; 10201 } 10202 10203 /// isOnlyUserOf - Return true if this node is the only use of N. 10204 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10205 bool Seen = false; 10206 for (const SDNode *User : N->uses()) { 10207 if (User == this) 10208 Seen = true; 10209 else 10210 return false; 10211 } 10212 10213 return Seen; 10214 } 10215 10216 /// Return true if the only users of N are contained in Nodes. 10217 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10218 bool Seen = false; 10219 for (const SDNode *User : N->uses()) { 10220 if (llvm::is_contained(Nodes, User)) 10221 Seen = true; 10222 else 10223 return false; 10224 } 10225 10226 return Seen; 10227 } 10228 10229 /// isOperand - Return true if this node is an operand of N. 10230 bool SDValue::isOperandOf(const SDNode *N) const { 10231 return is_contained(N->op_values(), *this); 10232 } 10233 10234 bool SDNode::isOperandOf(const SDNode *N) const { 10235 return any_of(N->op_values(), 10236 [this](SDValue Op) { return this == Op.getNode(); }); 10237 } 10238 10239 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10240 /// be a chain) reaches the specified operand without crossing any 10241 /// side-effecting instructions on any chain path. In practice, this looks 10242 /// through token factors and non-volatile loads. In order to remain efficient, 10243 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10244 /// 10245 /// Note that we only need to examine chains when we're searching for 10246 /// side-effects; SelectionDAG requires that all side-effects are represented 10247 /// by chains, even if another operand would force a specific ordering. This 10248 /// constraint is necessary to allow transformations like splitting loads. 10249 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10250 unsigned Depth) const { 10251 if (*this == Dest) return true; 10252 10253 // Don't search too deeply, we just want to be able to see through 10254 // TokenFactor's etc. 10255 if (Depth == 0) return false; 10256 10257 // If this is a token factor, all inputs to the TF happen in parallel. 10258 if (getOpcode() == ISD::TokenFactor) { 10259 // First, try a shallow search. 10260 if (is_contained((*this)->ops(), Dest)) { 10261 // We found the chain we want as an operand of this TokenFactor. 10262 // Essentially, we reach the chain without side-effects if we could 10263 // serialize the TokenFactor into a simple chain of operations with 10264 // Dest as the last operation. This is automatically true if the 10265 // chain has one use: there are no other ordering constraints. 10266 // If the chain has more than one use, we give up: some other 10267 // use of Dest might force a side-effect between Dest and the current 10268 // node. 10269 if (Dest.hasOneUse()) 10270 return true; 10271 } 10272 // Next, try a deep search: check whether every operand of the TokenFactor 10273 // reaches Dest. 10274 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10275 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10276 }); 10277 } 10278 10279 // Loads don't have side effects, look through them. 10280 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10281 if (Ld->isUnordered()) 10282 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10283 } 10284 return false; 10285 } 10286 10287 bool SDNode::hasPredecessor(const SDNode *N) const { 10288 SmallPtrSet<const SDNode *, 32> Visited; 10289 SmallVector<const SDNode *, 16> Worklist; 10290 Worklist.push_back(this); 10291 return hasPredecessorHelper(N, Visited, Worklist); 10292 } 10293 10294 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10295 this->Flags.intersectWith(Flags); 10296 } 10297 10298 SDValue 10299 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10300 ArrayRef<ISD::NodeType> CandidateBinOps, 10301 bool AllowPartials) { 10302 // The pattern must end in an extract from index 0. 10303 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10304 !isNullConstant(Extract->getOperand(1))) 10305 return SDValue(); 10306 10307 // Match against one of the candidate binary ops. 10308 SDValue Op = Extract->getOperand(0); 10309 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10310 return Op.getOpcode() == unsigned(BinOp); 10311 })) 10312 return SDValue(); 10313 10314 // Floating-point reductions may require relaxed constraints on the final step 10315 // of the reduction because they may reorder intermediate operations. 10316 unsigned CandidateBinOp = Op.getOpcode(); 10317 if (Op.getValueType().isFloatingPoint()) { 10318 SDNodeFlags Flags = Op->getFlags(); 10319 switch (CandidateBinOp) { 10320 case ISD::FADD: 10321 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10322 return SDValue(); 10323 break; 10324 default: 10325 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10326 } 10327 } 10328 10329 // Matching failed - attempt to see if we did enough stages that a partial 10330 // reduction from a subvector is possible. 10331 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10332 if (!AllowPartials || !Op) 10333 return SDValue(); 10334 EVT OpVT = Op.getValueType(); 10335 EVT OpSVT = OpVT.getScalarType(); 10336 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10337 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10338 return SDValue(); 10339 BinOp = (ISD::NodeType)CandidateBinOp; 10340 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10341 getVectorIdxConstant(0, SDLoc(Op))); 10342 }; 10343 10344 // At each stage, we're looking for something that looks like: 10345 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10346 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10347 // i32 undef, i32 undef, i32 undef, i32 undef> 10348 // %a = binop <8 x i32> %op, %s 10349 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10350 // we expect something like: 10351 // <4,5,6,7,u,u,u,u> 10352 // <2,3,u,u,u,u,u,u> 10353 // <1,u,u,u,u,u,u,u> 10354 // While a partial reduction match would be: 10355 // <2,3,u,u,u,u,u,u> 10356 // <1,u,u,u,u,u,u,u> 10357 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10358 SDValue PrevOp; 10359 for (unsigned i = 0; i < Stages; ++i) { 10360 unsigned MaskEnd = (1 << i); 10361 10362 if (Op.getOpcode() != CandidateBinOp) 10363 return PartialReduction(PrevOp, MaskEnd); 10364 10365 SDValue Op0 = Op.getOperand(0); 10366 SDValue Op1 = Op.getOperand(1); 10367 10368 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10369 if (Shuffle) { 10370 Op = Op1; 10371 } else { 10372 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10373 Op = Op0; 10374 } 10375 10376 // The first operand of the shuffle should be the same as the other operand 10377 // of the binop. 10378 if (!Shuffle || Shuffle->getOperand(0) != Op) 10379 return PartialReduction(PrevOp, MaskEnd); 10380 10381 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10382 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10383 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10384 return PartialReduction(PrevOp, MaskEnd); 10385 10386 PrevOp = Op; 10387 } 10388 10389 // Handle subvector reductions, which tend to appear after the shuffle 10390 // reduction stages. 10391 while (Op.getOpcode() == CandidateBinOp) { 10392 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10393 SDValue Op0 = Op.getOperand(0); 10394 SDValue Op1 = Op.getOperand(1); 10395 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10396 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10397 Op0.getOperand(0) != Op1.getOperand(0)) 10398 break; 10399 SDValue Src = Op0.getOperand(0); 10400 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10401 if (NumSrcElts != (2 * NumElts)) 10402 break; 10403 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10404 Op1.getConstantOperandAPInt(1) == NumElts) && 10405 !(Op1.getConstantOperandAPInt(1) == 0 && 10406 Op0.getConstantOperandAPInt(1) == NumElts)) 10407 break; 10408 Op = Src; 10409 } 10410 10411 BinOp = (ISD::NodeType)CandidateBinOp; 10412 return Op; 10413 } 10414 10415 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10416 assert(N->getNumValues() == 1 && 10417 "Can't unroll a vector with multiple results!"); 10418 10419 EVT VT = N->getValueType(0); 10420 unsigned NE = VT.getVectorNumElements(); 10421 EVT EltVT = VT.getVectorElementType(); 10422 SDLoc dl(N); 10423 10424 SmallVector<SDValue, 8> Scalars; 10425 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10426 10427 // If ResNE is 0, fully unroll the vector op. 10428 if (ResNE == 0) 10429 ResNE = NE; 10430 else if (NE > ResNE) 10431 NE = ResNE; 10432 10433 unsigned i; 10434 for (i= 0; i != NE; ++i) { 10435 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10436 SDValue Operand = N->getOperand(j); 10437 EVT OperandVT = Operand.getValueType(); 10438 if (OperandVT.isVector()) { 10439 // A vector operand; extract a single element. 10440 EVT OperandEltVT = OperandVT.getVectorElementType(); 10441 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10442 Operand, getVectorIdxConstant(i, dl)); 10443 } else { 10444 // A scalar operand; just use it as is. 10445 Operands[j] = Operand; 10446 } 10447 } 10448 10449 switch (N->getOpcode()) { 10450 default: { 10451 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10452 N->getFlags())); 10453 break; 10454 } 10455 case ISD::VSELECT: 10456 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10457 break; 10458 case ISD::SHL: 10459 case ISD::SRA: 10460 case ISD::SRL: 10461 case ISD::ROTL: 10462 case ISD::ROTR: 10463 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10464 getShiftAmountOperand(Operands[0].getValueType(), 10465 Operands[1]))); 10466 break; 10467 case ISD::SIGN_EXTEND_INREG: { 10468 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10469 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10470 Operands[0], 10471 getValueType(ExtVT))); 10472 } 10473 } 10474 } 10475 10476 for (; i < ResNE; ++i) 10477 Scalars.push_back(getUNDEF(EltVT)); 10478 10479 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10480 return getBuildVector(VecVT, dl, Scalars); 10481 } 10482 10483 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10484 SDNode *N, unsigned ResNE) { 10485 unsigned Opcode = N->getOpcode(); 10486 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10487 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10488 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10489 "Expected an overflow opcode"); 10490 10491 EVT ResVT = N->getValueType(0); 10492 EVT OvVT = N->getValueType(1); 10493 EVT ResEltVT = ResVT.getVectorElementType(); 10494 EVT OvEltVT = OvVT.getVectorElementType(); 10495 SDLoc dl(N); 10496 10497 // If ResNE is 0, fully unroll the vector op. 10498 unsigned NE = ResVT.getVectorNumElements(); 10499 if (ResNE == 0) 10500 ResNE = NE; 10501 else if (NE > ResNE) 10502 NE = ResNE; 10503 10504 SmallVector<SDValue, 8> LHSScalars; 10505 SmallVector<SDValue, 8> RHSScalars; 10506 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10507 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10508 10509 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10510 SDVTList VTs = getVTList(ResEltVT, SVT); 10511 SmallVector<SDValue, 8> ResScalars; 10512 SmallVector<SDValue, 8> OvScalars; 10513 for (unsigned i = 0; i < NE; ++i) { 10514 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10515 SDValue Ov = 10516 getSelect(dl, OvEltVT, Res.getValue(1), 10517 getBoolConstant(true, dl, OvEltVT, ResVT), 10518 getConstant(0, dl, OvEltVT)); 10519 10520 ResScalars.push_back(Res); 10521 OvScalars.push_back(Ov); 10522 } 10523 10524 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10525 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10526 10527 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10528 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10529 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10530 getBuildVector(NewOvVT, dl, OvScalars)); 10531 } 10532 10533 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10534 LoadSDNode *Base, 10535 unsigned Bytes, 10536 int Dist) const { 10537 if (LD->isVolatile() || Base->isVolatile()) 10538 return false; 10539 // TODO: probably too restrictive for atomics, revisit 10540 if (!LD->isSimple()) 10541 return false; 10542 if (LD->isIndexed() || Base->isIndexed()) 10543 return false; 10544 if (LD->getChain() != Base->getChain()) 10545 return false; 10546 EVT VT = LD->getValueType(0); 10547 if (VT.getSizeInBits() / 8 != Bytes) 10548 return false; 10549 10550 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10551 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10552 10553 int64_t Offset = 0; 10554 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10555 return (Dist * Bytes == Offset); 10556 return false; 10557 } 10558 10559 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10560 /// if it cannot be inferred. 10561 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10562 // If this is a GlobalAddress + cst, return the alignment. 10563 const GlobalValue *GV = nullptr; 10564 int64_t GVOffset = 0; 10565 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10566 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10567 KnownBits Known(PtrWidth); 10568 llvm::computeKnownBits(GV, Known, getDataLayout()); 10569 unsigned AlignBits = Known.countMinTrailingZeros(); 10570 if (AlignBits) 10571 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10572 } 10573 10574 // If this is a direct reference to a stack slot, use information about the 10575 // stack slot's alignment. 10576 int FrameIdx = INT_MIN; 10577 int64_t FrameOffset = 0; 10578 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10579 FrameIdx = FI->getIndex(); 10580 } else if (isBaseWithConstantOffset(Ptr) && 10581 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10582 // Handle FI+Cst 10583 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10584 FrameOffset = Ptr.getConstantOperandVal(1); 10585 } 10586 10587 if (FrameIdx != INT_MIN) { 10588 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10589 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10590 } 10591 10592 return None; 10593 } 10594 10595 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10596 /// which is split (or expanded) into two not necessarily identical pieces. 10597 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10598 // Currently all types are split in half. 10599 EVT LoVT, HiVT; 10600 if (!VT.isVector()) 10601 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10602 else 10603 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10604 10605 return std::make_pair(LoVT, HiVT); 10606 } 10607 10608 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10609 /// type, dependent on an enveloping VT that has been split into two identical 10610 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10611 std::pair<EVT, EVT> 10612 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10613 bool *HiIsEmpty) const { 10614 EVT EltTp = VT.getVectorElementType(); 10615 // Examples: 10616 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10617 // custom VL=9 with enveloping VL=8/8 yields 8/1 10618 // custom VL=10 with enveloping VL=8/8 yields 8/2 10619 // etc. 10620 ElementCount VTNumElts = VT.getVectorElementCount(); 10621 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10622 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10623 "Mixing fixed width and scalable vectors when enveloping a type"); 10624 EVT LoVT, HiVT; 10625 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10626 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10627 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10628 *HiIsEmpty = false; 10629 } else { 10630 // Flag that hi type has zero storage size, but return split envelop type 10631 // (this would be easier if vector types with zero elements were allowed). 10632 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10633 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10634 *HiIsEmpty = true; 10635 } 10636 return std::make_pair(LoVT, HiVT); 10637 } 10638 10639 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10640 /// low/high part. 10641 std::pair<SDValue, SDValue> 10642 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10643 const EVT &HiVT) { 10644 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10645 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10646 "Splitting vector with an invalid mixture of fixed and scalable " 10647 "vector types"); 10648 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10649 N.getValueType().getVectorMinNumElements() && 10650 "More vector elements requested than available!"); 10651 SDValue Lo, Hi; 10652 Lo = 10653 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10654 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10655 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10656 // IDX with the runtime scaling factor of the result vector type. For 10657 // fixed-width result vectors, that runtime scaling factor is 1. 10658 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10659 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10660 return std::make_pair(Lo, Hi); 10661 } 10662 10663 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 10664 const SDLoc &DL) { 10665 // Split the vector length parameter. 10666 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 10667 EVT VT = N.getValueType(); 10668 assert(VecVT.getVectorElementCount().isKnownEven() && 10669 "Expecting the mask to be an evenly-sized vector"); 10670 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 10671 SDValue HalfNumElts = 10672 VecVT.isFixedLengthVector() 10673 ? getConstant(HalfMinNumElts, DL, VT) 10674 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 10675 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 10676 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 10677 return std::make_pair(Lo, Hi); 10678 } 10679 10680 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10681 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10682 EVT VT = N.getValueType(); 10683 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10684 NextPowerOf2(VT.getVectorNumElements())); 10685 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10686 getVectorIdxConstant(0, DL)); 10687 } 10688 10689 void SelectionDAG::ExtractVectorElements(SDValue Op, 10690 SmallVectorImpl<SDValue> &Args, 10691 unsigned Start, unsigned Count, 10692 EVT EltVT) { 10693 EVT VT = Op.getValueType(); 10694 if (Count == 0) 10695 Count = VT.getVectorNumElements(); 10696 if (EltVT == EVT()) 10697 EltVT = VT.getVectorElementType(); 10698 SDLoc SL(Op); 10699 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10700 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10701 getVectorIdxConstant(i, SL))); 10702 } 10703 } 10704 10705 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10706 unsigned GlobalAddressSDNode::getAddressSpace() const { 10707 return getGlobal()->getType()->getAddressSpace(); 10708 } 10709 10710 Type *ConstantPoolSDNode::getType() const { 10711 if (isMachineConstantPoolEntry()) 10712 return Val.MachineCPVal->getType(); 10713 return Val.ConstVal->getType(); 10714 } 10715 10716 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10717 unsigned &SplatBitSize, 10718 bool &HasAnyUndefs, 10719 unsigned MinSplatBits, 10720 bool IsBigEndian) const { 10721 EVT VT = getValueType(0); 10722 assert(VT.isVector() && "Expected a vector type"); 10723 unsigned VecWidth = VT.getSizeInBits(); 10724 if (MinSplatBits > VecWidth) 10725 return false; 10726 10727 // FIXME: The widths are based on this node's type, but build vectors can 10728 // truncate their operands. 10729 SplatValue = APInt(VecWidth, 0); 10730 SplatUndef = APInt(VecWidth, 0); 10731 10732 // Get the bits. Bits with undefined values (when the corresponding element 10733 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10734 // in SplatValue. If any of the values are not constant, give up and return 10735 // false. 10736 unsigned int NumOps = getNumOperands(); 10737 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10738 unsigned EltWidth = VT.getScalarSizeInBits(); 10739 10740 for (unsigned j = 0; j < NumOps; ++j) { 10741 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10742 SDValue OpVal = getOperand(i); 10743 unsigned BitPos = j * EltWidth; 10744 10745 if (OpVal.isUndef()) 10746 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10747 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10748 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10749 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10750 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10751 else 10752 return false; 10753 } 10754 10755 // The build_vector is all constants or undefs. Find the smallest element 10756 // size that splats the vector. 10757 HasAnyUndefs = (SplatUndef != 0); 10758 10759 // FIXME: This does not work for vectors with elements less than 8 bits. 10760 while (VecWidth > 8) { 10761 unsigned HalfSize = VecWidth / 2; 10762 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10763 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10764 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10765 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10766 10767 // If the two halves do not match (ignoring undef bits), stop here. 10768 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10769 MinSplatBits > HalfSize) 10770 break; 10771 10772 SplatValue = HighValue | LowValue; 10773 SplatUndef = HighUndef & LowUndef; 10774 10775 VecWidth = HalfSize; 10776 } 10777 10778 SplatBitSize = VecWidth; 10779 return true; 10780 } 10781 10782 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10783 BitVector *UndefElements) const { 10784 unsigned NumOps = getNumOperands(); 10785 if (UndefElements) { 10786 UndefElements->clear(); 10787 UndefElements->resize(NumOps); 10788 } 10789 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10790 if (!DemandedElts) 10791 return SDValue(); 10792 SDValue Splatted; 10793 for (unsigned i = 0; i != NumOps; ++i) { 10794 if (!DemandedElts[i]) 10795 continue; 10796 SDValue Op = getOperand(i); 10797 if (Op.isUndef()) { 10798 if (UndefElements) 10799 (*UndefElements)[i] = true; 10800 } else if (!Splatted) { 10801 Splatted = Op; 10802 } else if (Splatted != Op) { 10803 return SDValue(); 10804 } 10805 } 10806 10807 if (!Splatted) { 10808 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10809 assert(getOperand(FirstDemandedIdx).isUndef() && 10810 "Can only have a splat without a constant for all undefs."); 10811 return getOperand(FirstDemandedIdx); 10812 } 10813 10814 return Splatted; 10815 } 10816 10817 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10818 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10819 return getSplatValue(DemandedElts, UndefElements); 10820 } 10821 10822 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10823 SmallVectorImpl<SDValue> &Sequence, 10824 BitVector *UndefElements) const { 10825 unsigned NumOps = getNumOperands(); 10826 Sequence.clear(); 10827 if (UndefElements) { 10828 UndefElements->clear(); 10829 UndefElements->resize(NumOps); 10830 } 10831 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10832 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10833 return false; 10834 10835 // Set the undefs even if we don't find a sequence (like getSplatValue). 10836 if (UndefElements) 10837 for (unsigned I = 0; I != NumOps; ++I) 10838 if (DemandedElts[I] && getOperand(I).isUndef()) 10839 (*UndefElements)[I] = true; 10840 10841 // Iteratively widen the sequence length looking for repetitions. 10842 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10843 Sequence.append(SeqLen, SDValue()); 10844 for (unsigned I = 0; I != NumOps; ++I) { 10845 if (!DemandedElts[I]) 10846 continue; 10847 SDValue &SeqOp = Sequence[I % SeqLen]; 10848 SDValue Op = getOperand(I); 10849 if (Op.isUndef()) { 10850 if (!SeqOp) 10851 SeqOp = Op; 10852 continue; 10853 } 10854 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10855 Sequence.clear(); 10856 break; 10857 } 10858 SeqOp = Op; 10859 } 10860 if (!Sequence.empty()) 10861 return true; 10862 } 10863 10864 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10865 return false; 10866 } 10867 10868 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10869 BitVector *UndefElements) const { 10870 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10871 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10872 } 10873 10874 ConstantSDNode * 10875 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10876 BitVector *UndefElements) const { 10877 return dyn_cast_or_null<ConstantSDNode>( 10878 getSplatValue(DemandedElts, UndefElements)); 10879 } 10880 10881 ConstantSDNode * 10882 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10883 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10884 } 10885 10886 ConstantFPSDNode * 10887 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10888 BitVector *UndefElements) const { 10889 return dyn_cast_or_null<ConstantFPSDNode>( 10890 getSplatValue(DemandedElts, UndefElements)); 10891 } 10892 10893 ConstantFPSDNode * 10894 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10895 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10896 } 10897 10898 int32_t 10899 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10900 uint32_t BitWidth) const { 10901 if (ConstantFPSDNode *CN = 10902 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10903 bool IsExact; 10904 APSInt IntVal(BitWidth); 10905 const APFloat &APF = CN->getValueAPF(); 10906 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10907 APFloat::opOK || 10908 !IsExact) 10909 return -1; 10910 10911 return IntVal.exactLogBase2(); 10912 } 10913 return -1; 10914 } 10915 10916 bool BuildVectorSDNode::getConstantRawBits( 10917 bool IsLittleEndian, unsigned DstEltSizeInBits, 10918 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10919 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10920 if (!isConstant()) 10921 return false; 10922 10923 unsigned NumSrcOps = getNumOperands(); 10924 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10925 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10926 "Invalid bitcast scale"); 10927 10928 // Extract raw src bits. 10929 SmallVector<APInt> SrcBitElements(NumSrcOps, 10930 APInt::getNullValue(SrcEltSizeInBits)); 10931 BitVector SrcUndeElements(NumSrcOps, false); 10932 10933 for (unsigned I = 0; I != NumSrcOps; ++I) { 10934 SDValue Op = getOperand(I); 10935 if (Op.isUndef()) { 10936 SrcUndeElements.set(I); 10937 continue; 10938 } 10939 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10940 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10941 assert((CInt || CFP) && "Unknown constant"); 10942 SrcBitElements[I] = 10943 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10944 : CFP->getValueAPF().bitcastToAPInt(); 10945 } 10946 10947 // Recast to dst width. 10948 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10949 SrcBitElements, UndefElements, SrcUndeElements); 10950 return true; 10951 } 10952 10953 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10954 unsigned DstEltSizeInBits, 10955 SmallVectorImpl<APInt> &DstBitElements, 10956 ArrayRef<APInt> SrcBitElements, 10957 BitVector &DstUndefElements, 10958 const BitVector &SrcUndefElements) { 10959 unsigned NumSrcOps = SrcBitElements.size(); 10960 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10961 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10962 "Invalid bitcast scale"); 10963 assert(NumSrcOps == SrcUndefElements.size() && 10964 "Vector size mismatch"); 10965 10966 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10967 DstUndefElements.clear(); 10968 DstUndefElements.resize(NumDstOps, false); 10969 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10970 10971 // Concatenate src elements constant bits together into dst element. 10972 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10973 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10974 for (unsigned I = 0; I != NumDstOps; ++I) { 10975 DstUndefElements.set(I); 10976 APInt &DstBits = DstBitElements[I]; 10977 for (unsigned J = 0; J != Scale; ++J) { 10978 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10979 if (SrcUndefElements[Idx]) 10980 continue; 10981 DstUndefElements.reset(I); 10982 const APInt &SrcBits = SrcBitElements[Idx]; 10983 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10984 "Illegal constant bitwidths"); 10985 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10986 } 10987 } 10988 return; 10989 } 10990 10991 // Split src element constant bits into dst elements. 10992 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10993 for (unsigned I = 0; I != NumSrcOps; ++I) { 10994 if (SrcUndefElements[I]) { 10995 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10996 continue; 10997 } 10998 const APInt &SrcBits = SrcBitElements[I]; 10999 for (unsigned J = 0; J != Scale; ++J) { 11000 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11001 APInt &DstBits = DstBitElements[Idx]; 11002 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11003 } 11004 } 11005 } 11006 11007 bool BuildVectorSDNode::isConstant() const { 11008 for (const SDValue &Op : op_values()) { 11009 unsigned Opc = Op.getOpcode(); 11010 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11011 return false; 11012 } 11013 return true; 11014 } 11015 11016 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11017 // Find the first non-undef value in the shuffle mask. 11018 unsigned i, e; 11019 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11020 /* search */; 11021 11022 // If all elements are undefined, this shuffle can be considered a splat 11023 // (although it should eventually get simplified away completely). 11024 if (i == e) 11025 return true; 11026 11027 // Make sure all remaining elements are either undef or the same as the first 11028 // non-undef value. 11029 for (int Idx = Mask[i]; i != e; ++i) 11030 if (Mask[i] >= 0 && Mask[i] != Idx) 11031 return false; 11032 return true; 11033 } 11034 11035 // Returns the SDNode if it is a constant integer BuildVector 11036 // or constant integer. 11037 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11038 if (isa<ConstantSDNode>(N)) 11039 return N.getNode(); 11040 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11041 return N.getNode(); 11042 // Treat a GlobalAddress supporting constant offset folding as a 11043 // constant integer. 11044 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11045 if (GA->getOpcode() == ISD::GlobalAddress && 11046 TLI->isOffsetFoldingLegal(GA)) 11047 return GA; 11048 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11049 isa<ConstantSDNode>(N.getOperand(0))) 11050 return N.getNode(); 11051 return nullptr; 11052 } 11053 11054 // Returns the SDNode if it is a constant float BuildVector 11055 // or constant float. 11056 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11057 if (isa<ConstantFPSDNode>(N)) 11058 return N.getNode(); 11059 11060 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11061 return N.getNode(); 11062 11063 return nullptr; 11064 } 11065 11066 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11067 assert(!Node->OperandList && "Node already has operands"); 11068 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11069 "too many operands to fit into SDNode"); 11070 SDUse *Ops = OperandRecycler.allocate( 11071 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11072 11073 bool IsDivergent = false; 11074 for (unsigned I = 0; I != Vals.size(); ++I) { 11075 Ops[I].setUser(Node); 11076 Ops[I].setInitial(Vals[I]); 11077 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11078 IsDivergent |= Ops[I].getNode()->isDivergent(); 11079 } 11080 Node->NumOperands = Vals.size(); 11081 Node->OperandList = Ops; 11082 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11083 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11084 Node->SDNodeBits.IsDivergent = IsDivergent; 11085 } 11086 checkForCycles(Node); 11087 } 11088 11089 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11090 SmallVectorImpl<SDValue> &Vals) { 11091 size_t Limit = SDNode::getMaxNumOperands(); 11092 while (Vals.size() > Limit) { 11093 unsigned SliceIdx = Vals.size() - Limit; 11094 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11095 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11096 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11097 Vals.emplace_back(NewTF); 11098 } 11099 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11100 } 11101 11102 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11103 EVT VT, SDNodeFlags Flags) { 11104 switch (Opcode) { 11105 default: 11106 return SDValue(); 11107 case ISD::ADD: 11108 case ISD::OR: 11109 case ISD::XOR: 11110 case ISD::UMAX: 11111 return getConstant(0, DL, VT); 11112 case ISD::MUL: 11113 return getConstant(1, DL, VT); 11114 case ISD::AND: 11115 case ISD::UMIN: 11116 return getAllOnesConstant(DL, VT); 11117 case ISD::SMAX: 11118 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11119 case ISD::SMIN: 11120 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11121 case ISD::FADD: 11122 return getConstantFP(-0.0, DL, VT); 11123 case ISD::FMUL: 11124 return getConstantFP(1.0, DL, VT); 11125 case ISD::FMINNUM: 11126 case ISD::FMAXNUM: { 11127 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11128 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11129 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11130 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11131 APFloat::getLargest(Semantics); 11132 if (Opcode == ISD::FMAXNUM) 11133 NeutralAF.changeSign(); 11134 11135 return getConstantFP(NeutralAF, DL, VT); 11136 } 11137 } 11138 } 11139 11140 #ifndef NDEBUG 11141 static void checkForCyclesHelper(const SDNode *N, 11142 SmallPtrSetImpl<const SDNode*> &Visited, 11143 SmallPtrSetImpl<const SDNode*> &Checked, 11144 const llvm::SelectionDAG *DAG) { 11145 // If this node has already been checked, don't check it again. 11146 if (Checked.count(N)) 11147 return; 11148 11149 // If a node has already been visited on this depth-first walk, reject it as 11150 // a cycle. 11151 if (!Visited.insert(N).second) { 11152 errs() << "Detected cycle in SelectionDAG\n"; 11153 dbgs() << "Offending node:\n"; 11154 N->dumprFull(DAG); dbgs() << "\n"; 11155 abort(); 11156 } 11157 11158 for (const SDValue &Op : N->op_values()) 11159 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11160 11161 Checked.insert(N); 11162 Visited.erase(N); 11163 } 11164 #endif 11165 11166 void llvm::checkForCycles(const llvm::SDNode *N, 11167 const llvm::SelectionDAG *DAG, 11168 bool force) { 11169 #ifndef NDEBUG 11170 bool check = force; 11171 #ifdef EXPENSIVE_CHECKS 11172 check = true; 11173 #endif // EXPENSIVE_CHECKS 11174 if (check) { 11175 assert(N && "Checking nonexistent SDNode"); 11176 SmallPtrSet<const SDNode*, 32> visited; 11177 SmallPtrSet<const SDNode*, 32> checked; 11178 checkForCyclesHelper(N, visited, checked, DAG); 11179 } 11180 #endif // !NDEBUG 11181 } 11182 11183 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11184 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11185 } 11186