1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 case ISD::VP_REDUCE_FADD: 377 case ISD::VP_REDUCE_SEQ_FADD: 378 return ISD::FADD; 379 case ISD::VECREDUCE_FMUL: 380 case ISD::VECREDUCE_SEQ_FMUL: 381 case ISD::VP_REDUCE_FMUL: 382 case ISD::VP_REDUCE_SEQ_FMUL: 383 return ISD::FMUL; 384 case ISD::VECREDUCE_ADD: 385 case ISD::VP_REDUCE_ADD: 386 return ISD::ADD; 387 case ISD::VECREDUCE_MUL: 388 case ISD::VP_REDUCE_MUL: 389 return ISD::MUL; 390 case ISD::VECREDUCE_AND: 391 case ISD::VP_REDUCE_AND: 392 return ISD::AND; 393 case ISD::VECREDUCE_OR: 394 case ISD::VP_REDUCE_OR: 395 return ISD::OR; 396 case ISD::VECREDUCE_XOR: 397 case ISD::VP_REDUCE_XOR: 398 return ISD::XOR; 399 case ISD::VECREDUCE_SMAX: 400 case ISD::VP_REDUCE_SMAX: 401 return ISD::SMAX; 402 case ISD::VECREDUCE_SMIN: 403 case ISD::VP_REDUCE_SMIN: 404 return ISD::SMIN; 405 case ISD::VECREDUCE_UMAX: 406 case ISD::VP_REDUCE_UMAX: 407 return ISD::UMAX; 408 case ISD::VECREDUCE_UMIN: 409 case ISD::VP_REDUCE_UMIN: 410 return ISD::UMIN; 411 case ISD::VECREDUCE_FMAX: 412 case ISD::VP_REDUCE_FMAX: 413 return ISD::FMAXNUM; 414 case ISD::VECREDUCE_FMIN: 415 case ISD::VP_REDUCE_FMIN: 416 return ISD::FMINNUM; 417 } 418 } 419 420 bool ISD::isVPOpcode(unsigned Opcode) { 421 switch (Opcode) { 422 default: 423 return false; 424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 425 case ISD::VPSD: \ 426 return true; 427 #include "llvm/IR/VPIntrinsics.def" 428 } 429 } 430 431 bool ISD::isVPBinaryOp(unsigned Opcode) { 432 switch (Opcode) { 433 default: 434 break; 435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 436 #define VP_PROPERTY_BINARYOP return true; 437 #define END_REGISTER_VP_SDNODE(VPSD) break; 438 #include "llvm/IR/VPIntrinsics.def" 439 } 440 return false; 441 } 442 443 bool ISD::isVPReduction(unsigned Opcode) { 444 switch (Opcode) { 445 default: 446 break; 447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 449 #define END_REGISTER_VP_SDNODE(VPSD) break; 450 #include "llvm/IR/VPIntrinsics.def" 451 } 452 return false; 453 } 454 455 /// The operand position of the vector mask. 456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 457 switch (Opcode) { 458 default: 459 return None; 460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 461 case ISD::VPSD: \ 462 return MASKPOS; 463 #include "llvm/IR/VPIntrinsics.def" 464 } 465 } 466 467 /// The operand position of the explicit vector length parameter. 468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 469 switch (Opcode) { 470 default: 471 return None; 472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 473 case ISD::VPSD: \ 474 return EVLPOS; 475 #include "llvm/IR/VPIntrinsics.def" 476 } 477 } 478 479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 480 switch (ExtType) { 481 case ISD::EXTLOAD: 482 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 483 case ISD::SEXTLOAD: 484 return ISD::SIGN_EXTEND; 485 case ISD::ZEXTLOAD: 486 return ISD::ZERO_EXTEND; 487 default: 488 break; 489 } 490 491 llvm_unreachable("Invalid LoadExtType"); 492 } 493 494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 495 // To perform this operation, we just need to swap the L and G bits of the 496 // operation. 497 unsigned OldL = (Operation >> 2) & 1; 498 unsigned OldG = (Operation >> 1) & 1; 499 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 500 (OldL << 1) | // New G bit 501 (OldG << 2)); // New L bit. 502 } 503 504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 505 unsigned Operation = Op; 506 if (isIntegerLike) 507 Operation ^= 7; // Flip L, G, E bits, but not U. 508 else 509 Operation ^= 15; // Flip all of the condition bits. 510 511 if (Operation > ISD::SETTRUE2) 512 Operation &= ~8; // Don't let N and U bits get set. 513 514 return ISD::CondCode(Operation); 515 } 516 517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 518 return getSetCCInverseImpl(Op, Type.isInteger()); 519 } 520 521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 522 bool isIntegerLike) { 523 return getSetCCInverseImpl(Op, isIntegerLike); 524 } 525 526 /// For an integer comparison, return 1 if the comparison is a signed operation 527 /// and 2 if the result is an unsigned comparison. Return zero if the operation 528 /// does not depend on the sign of the input (setne and seteq). 529 static int isSignedOp(ISD::CondCode Opcode) { 530 switch (Opcode) { 531 default: llvm_unreachable("Illegal integer setcc operation!"); 532 case ISD::SETEQ: 533 case ISD::SETNE: return 0; 534 case ISD::SETLT: 535 case ISD::SETLE: 536 case ISD::SETGT: 537 case ISD::SETGE: return 1; 538 case ISD::SETULT: 539 case ISD::SETULE: 540 case ISD::SETUGT: 541 case ISD::SETUGE: return 2; 542 } 543 } 544 545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 546 EVT Type) { 547 bool IsInteger = Type.isInteger(); 548 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 549 // Cannot fold a signed integer setcc with an unsigned integer setcc. 550 return ISD::SETCC_INVALID; 551 552 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 553 554 // If the N and U bits get set, then the resultant comparison DOES suddenly 555 // care about orderedness, and it is true when ordered. 556 if (Op > ISD::SETTRUE2) 557 Op &= ~16; // Clear the U bit if the N bit is set. 558 559 // Canonicalize illegal integer setcc's. 560 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 561 Op = ISD::SETNE; 562 563 return ISD::CondCode(Op); 564 } 565 566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 567 EVT Type) { 568 bool IsInteger = Type.isInteger(); 569 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 570 // Cannot fold a signed setcc with an unsigned setcc. 571 return ISD::SETCC_INVALID; 572 573 // Combine all of the condition bits. 574 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 575 576 // Canonicalize illegal integer setcc's. 577 if (IsInteger) { 578 switch (Result) { 579 default: break; 580 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 581 case ISD::SETOEQ: // SETEQ & SETU[LG]E 582 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 583 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 584 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 585 } 586 } 587 588 return Result; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SDNode Profile Support 593 //===----------------------------------------------------------------------===// 594 595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 597 ID.AddInteger(OpC); 598 } 599 600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 601 /// solely with their pointer. 602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 603 ID.AddPointer(VTList.VTs); 604 } 605 606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 607 static void AddNodeIDOperands(FoldingSetNodeID &ID, 608 ArrayRef<SDValue> Ops) { 609 for (auto& Op : Ops) { 610 ID.AddPointer(Op.getNode()); 611 ID.AddInteger(Op.getResNo()); 612 } 613 } 614 615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 616 static void AddNodeIDOperands(FoldingSetNodeID &ID, 617 ArrayRef<SDUse> Ops) { 618 for (auto& Op : Ops) { 619 ID.AddPointer(Op.getNode()); 620 ID.AddInteger(Op.getResNo()); 621 } 622 } 623 624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 625 SDVTList VTList, ArrayRef<SDValue> OpList) { 626 AddNodeIDOpcode(ID, OpC); 627 AddNodeIDValueTypes(ID, VTList); 628 AddNodeIDOperands(ID, OpList); 629 } 630 631 /// If this is an SDNode with special info, add this info to the NodeID data. 632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 633 switch (N->getOpcode()) { 634 case ISD::TargetExternalSymbol: 635 case ISD::ExternalSymbol: 636 case ISD::MCSymbol: 637 llvm_unreachable("Should only be used on nodes with operands"); 638 default: break; // Normal nodes don't need extra info. 639 case ISD::TargetConstant: 640 case ISD::Constant: { 641 const ConstantSDNode *C = cast<ConstantSDNode>(N); 642 ID.AddPointer(C->getConstantIntValue()); 643 ID.AddBoolean(C->isOpaque()); 644 break; 645 } 646 case ISD::TargetConstantFP: 647 case ISD::ConstantFP: 648 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 649 break; 650 case ISD::TargetGlobalAddress: 651 case ISD::GlobalAddress: 652 case ISD::TargetGlobalTLSAddress: 653 case ISD::GlobalTLSAddress: { 654 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 655 ID.AddPointer(GA->getGlobal()); 656 ID.AddInteger(GA->getOffset()); 657 ID.AddInteger(GA->getTargetFlags()); 658 break; 659 } 660 case ISD::BasicBlock: 661 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 662 break; 663 case ISD::Register: 664 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 665 break; 666 case ISD::RegisterMask: 667 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 668 break; 669 case ISD::SRCVALUE: 670 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 671 break; 672 case ISD::FrameIndex: 673 case ISD::TargetFrameIndex: 674 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 675 break; 676 case ISD::LIFETIME_START: 677 case ISD::LIFETIME_END: 678 if (cast<LifetimeSDNode>(N)->hasOffset()) { 679 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 680 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 681 } 682 break; 683 case ISD::PSEUDO_PROBE: 684 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 685 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 686 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 687 break; 688 case ISD::JumpTable: 689 case ISD::TargetJumpTable: 690 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 691 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 692 break; 693 case ISD::ConstantPool: 694 case ISD::TargetConstantPool: { 695 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 696 ID.AddInteger(CP->getAlign().value()); 697 ID.AddInteger(CP->getOffset()); 698 if (CP->isMachineConstantPoolEntry()) 699 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 700 else 701 ID.AddPointer(CP->getConstVal()); 702 ID.AddInteger(CP->getTargetFlags()); 703 break; 704 } 705 case ISD::TargetIndex: { 706 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 707 ID.AddInteger(TI->getIndex()); 708 ID.AddInteger(TI->getOffset()); 709 ID.AddInteger(TI->getTargetFlags()); 710 break; 711 } 712 case ISD::LOAD: { 713 const LoadSDNode *LD = cast<LoadSDNode>(N); 714 ID.AddInteger(LD->getMemoryVT().getRawBits()); 715 ID.AddInteger(LD->getRawSubclassData()); 716 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 717 break; 718 } 719 case ISD::STORE: { 720 const StoreSDNode *ST = cast<StoreSDNode>(N); 721 ID.AddInteger(ST->getMemoryVT().getRawBits()); 722 ID.AddInteger(ST->getRawSubclassData()); 723 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 724 break; 725 } 726 case ISD::VP_LOAD: { 727 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 728 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 729 ID.AddInteger(ELD->getRawSubclassData()); 730 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 break; 739 } 740 case ISD::VP_GATHER: { 741 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 742 ID.AddInteger(EG->getMemoryVT().getRawBits()); 743 ID.AddInteger(EG->getRawSubclassData()); 744 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 745 break; 746 } 747 case ISD::VP_SCATTER: { 748 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 749 ID.AddInteger(ES->getMemoryVT().getRawBits()); 750 ID.AddInteger(ES->getRawSubclassData()); 751 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 752 break; 753 } 754 case ISD::MLOAD: { 755 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 756 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 757 ID.AddInteger(MLD->getRawSubclassData()); 758 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 759 break; 760 } 761 case ISD::MSTORE: { 762 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 763 ID.AddInteger(MST->getMemoryVT().getRawBits()); 764 ID.AddInteger(MST->getRawSubclassData()); 765 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 766 break; 767 } 768 case ISD::MGATHER: { 769 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 770 ID.AddInteger(MG->getMemoryVT().getRawBits()); 771 ID.AddInteger(MG->getRawSubclassData()); 772 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 773 break; 774 } 775 case ISD::MSCATTER: { 776 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 777 ID.AddInteger(MS->getMemoryVT().getRawBits()); 778 ID.AddInteger(MS->getRawSubclassData()); 779 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 780 break; 781 } 782 case ISD::ATOMIC_CMP_SWAP: 783 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 784 case ISD::ATOMIC_SWAP: 785 case ISD::ATOMIC_LOAD_ADD: 786 case ISD::ATOMIC_LOAD_SUB: 787 case ISD::ATOMIC_LOAD_AND: 788 case ISD::ATOMIC_LOAD_CLR: 789 case ISD::ATOMIC_LOAD_OR: 790 case ISD::ATOMIC_LOAD_XOR: 791 case ISD::ATOMIC_LOAD_NAND: 792 case ISD::ATOMIC_LOAD_MIN: 793 case ISD::ATOMIC_LOAD_MAX: 794 case ISD::ATOMIC_LOAD_UMIN: 795 case ISD::ATOMIC_LOAD_UMAX: 796 case ISD::ATOMIC_LOAD: 797 case ISD::ATOMIC_STORE: { 798 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 799 ID.AddInteger(AT->getMemoryVT().getRawBits()); 800 ID.AddInteger(AT->getRawSubclassData()); 801 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 802 break; 803 } 804 case ISD::PREFETCH: { 805 const MemSDNode *PF = cast<MemSDNode>(N); 806 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 807 break; 808 } 809 case ISD::VECTOR_SHUFFLE: { 810 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 811 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 812 i != e; ++i) 813 ID.AddInteger(SVN->getMaskElt(i)); 814 break; 815 } 816 case ISD::TargetBlockAddress: 817 case ISD::BlockAddress: { 818 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 819 ID.AddPointer(BA->getBlockAddress()); 820 ID.AddInteger(BA->getOffset()); 821 ID.AddInteger(BA->getTargetFlags()); 822 break; 823 } 824 } // end switch (N->getOpcode()) 825 826 // Target specific memory nodes could also have address spaces to check. 827 if (N->isTargetMemoryOpcode()) 828 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 829 } 830 831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 832 /// data. 833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 834 AddNodeIDOpcode(ID, N->getOpcode()); 835 // Add the return value info. 836 AddNodeIDValueTypes(ID, N->getVTList()); 837 // Add the operand info. 838 AddNodeIDOperands(ID, N->ops()); 839 840 // Handle SDNode leafs with special info. 841 AddNodeIDCustom(ID, N); 842 } 843 844 //===----------------------------------------------------------------------===// 845 // SelectionDAG Class 846 //===----------------------------------------------------------------------===// 847 848 /// doNotCSE - Return true if CSE should not be performed for this node. 849 static bool doNotCSE(SDNode *N) { 850 if (N->getValueType(0) == MVT::Glue) 851 return true; // Never CSE anything that produces a flag. 852 853 switch (N->getOpcode()) { 854 default: break; 855 case ISD::HANDLENODE: 856 case ISD::EH_LABEL: 857 return true; // Never CSE these nodes. 858 } 859 860 // Check that remaining values produced are not flags. 861 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 862 if (N->getValueType(i) == MVT::Glue) 863 return true; // Never CSE anything that produces a flag. 864 865 return false; 866 } 867 868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 869 /// SelectionDAG. 870 void SelectionDAG::RemoveDeadNodes() { 871 // Create a dummy node (which is not added to allnodes), that adds a reference 872 // to the root node, preventing it from being deleted. 873 HandleSDNode Dummy(getRoot()); 874 875 SmallVector<SDNode*, 128> DeadNodes; 876 877 // Add all obviously-dead nodes to the DeadNodes worklist. 878 for (SDNode &Node : allnodes()) 879 if (Node.use_empty()) 880 DeadNodes.push_back(&Node); 881 882 RemoveDeadNodes(DeadNodes); 883 884 // If the root changed (e.g. it was a dead load, update the root). 885 setRoot(Dummy.getValue()); 886 } 887 888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 889 /// given list, and any nodes that become unreachable as a result. 890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 891 892 // Process the worklist, deleting the nodes and adding their uses to the 893 // worklist. 894 while (!DeadNodes.empty()) { 895 SDNode *N = DeadNodes.pop_back_val(); 896 // Skip to next node if we've already managed to delete the node. This could 897 // happen if replacing a node causes a node previously added to the node to 898 // be deleted. 899 if (N->getOpcode() == ISD::DELETED_NODE) 900 continue; 901 902 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 903 DUL->NodeDeleted(N, nullptr); 904 905 // Take the node out of the appropriate CSE map. 906 RemoveNodeFromCSEMaps(N); 907 908 // Next, brutally remove the operand list. This is safe to do, as there are 909 // no cycles in the graph. 910 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 911 SDUse &Use = *I++; 912 SDNode *Operand = Use.getNode(); 913 Use.set(SDValue()); 914 915 // Now that we removed this operand, see if there are no uses of it left. 916 if (Operand->use_empty()) 917 DeadNodes.push_back(Operand); 918 } 919 920 DeallocateNode(N); 921 } 922 } 923 924 void SelectionDAG::RemoveDeadNode(SDNode *N){ 925 SmallVector<SDNode*, 16> DeadNodes(1, N); 926 927 // Create a dummy node that adds a reference to the root node, preventing 928 // it from being deleted. (This matters if the root is an operand of the 929 // dead node.) 930 HandleSDNode Dummy(getRoot()); 931 932 RemoveDeadNodes(DeadNodes); 933 } 934 935 void SelectionDAG::DeleteNode(SDNode *N) { 936 // First take this out of the appropriate CSE map. 937 RemoveNodeFromCSEMaps(N); 938 939 // Finally, remove uses due to operands of this node, remove from the 940 // AllNodes list, and delete the node. 941 DeleteNodeNotInCSEMaps(N); 942 } 943 944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 945 assert(N->getIterator() != AllNodes.begin() && 946 "Cannot delete the entry node!"); 947 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 948 949 // Drop all of the operands and decrement used node's use counts. 950 N->DropOperands(); 951 952 DeallocateNode(N); 953 } 954 955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 956 assert(!(V->isVariadic() && isParameter)); 957 if (isParameter) 958 ByvalParmDbgValues.push_back(V); 959 else 960 DbgValues.push_back(V); 961 for (const SDNode *Node : V->getSDNodes()) 962 if (Node) 963 DbgValMap[Node].push_back(V); 964 } 965 966 void SDDbgInfo::erase(const SDNode *Node) { 967 DbgValMapType::iterator I = DbgValMap.find(Node); 968 if (I == DbgValMap.end()) 969 return; 970 for (auto &Val: I->second) 971 Val->setIsInvalidated(); 972 DbgValMap.erase(I); 973 } 974 975 void SelectionDAG::DeallocateNode(SDNode *N) { 976 // If we have operands, deallocate them. 977 removeOperands(N); 978 979 NodeAllocator.Deallocate(AllNodes.remove(N)); 980 981 // Set the opcode to DELETED_NODE to help catch bugs when node 982 // memory is reallocated. 983 // FIXME: There are places in SDag that have grown a dependency on the opcode 984 // value in the released node. 985 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 986 N->NodeType = ISD::DELETED_NODE; 987 988 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 989 // them and forget about that node. 990 DbgInfo->erase(N); 991 } 992 993 #ifndef NDEBUG 994 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 995 static void VerifySDNode(SDNode *N) { 996 switch (N->getOpcode()) { 997 default: 998 break; 999 case ISD::BUILD_PAIR: { 1000 EVT VT = N->getValueType(0); 1001 assert(N->getNumValues() == 1 && "Too many results!"); 1002 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1003 "Wrong return type!"); 1004 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1005 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1006 "Mismatched operand types!"); 1007 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1008 "Wrong operand type!"); 1009 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1010 "Wrong return type size"); 1011 break; 1012 } 1013 case ISD::BUILD_VECTOR: { 1014 assert(N->getNumValues() == 1 && "Too many results!"); 1015 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1016 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1017 "Wrong number of operands!"); 1018 EVT EltVT = N->getValueType(0).getVectorElementType(); 1019 for (const SDUse &Op : N->ops()) { 1020 assert((Op.getValueType() == EltVT || 1021 (EltVT.isInteger() && Op.getValueType().isInteger() && 1022 EltVT.bitsLE(Op.getValueType()))) && 1023 "Wrong operand type!"); 1024 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1025 "Operands must all have the same type"); 1026 } 1027 break; 1028 } 1029 } 1030 } 1031 #endif // NDEBUG 1032 1033 /// Insert a newly allocated node into the DAG. 1034 /// 1035 /// Handles insertion into the all nodes list and CSE map, as well as 1036 /// verification and other common operations when a new node is allocated. 1037 void SelectionDAG::InsertNode(SDNode *N) { 1038 AllNodes.push_back(N); 1039 #ifndef NDEBUG 1040 N->PersistentId = NextPersistentId++; 1041 VerifySDNode(N); 1042 #endif 1043 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1044 DUL->NodeInserted(N); 1045 } 1046 1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1048 /// correspond to it. This is useful when we're about to delete or repurpose 1049 /// the node. We don't want future request for structurally identical nodes 1050 /// to return N anymore. 1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1052 bool Erased = false; 1053 switch (N->getOpcode()) { 1054 case ISD::HANDLENODE: return false; // noop. 1055 case ISD::CONDCODE: 1056 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1057 "Cond code doesn't exist!"); 1058 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1059 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1060 break; 1061 case ISD::ExternalSymbol: 1062 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1063 break; 1064 case ISD::TargetExternalSymbol: { 1065 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1066 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1067 ESN->getSymbol(), ESN->getTargetFlags())); 1068 break; 1069 } 1070 case ISD::MCSymbol: { 1071 auto *MCSN = cast<MCSymbolSDNode>(N); 1072 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1073 break; 1074 } 1075 case ISD::VALUETYPE: { 1076 EVT VT = cast<VTSDNode>(N)->getVT(); 1077 if (VT.isExtended()) { 1078 Erased = ExtendedValueTypeNodes.erase(VT); 1079 } else { 1080 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1081 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1082 } 1083 break; 1084 } 1085 default: 1086 // Remove it from the CSE Map. 1087 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1088 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1089 Erased = CSEMap.RemoveNode(N); 1090 break; 1091 } 1092 #ifndef NDEBUG 1093 // Verify that the node was actually in one of the CSE maps, unless it has a 1094 // flag result (which cannot be CSE'd) or is one of the special cases that are 1095 // not subject to CSE. 1096 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1097 !N->isMachineOpcode() && !doNotCSE(N)) { 1098 N->dump(this); 1099 dbgs() << "\n"; 1100 llvm_unreachable("Node is not in map!"); 1101 } 1102 #endif 1103 return Erased; 1104 } 1105 1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1108 /// node already exists, in which case transfer all its users to the existing 1109 /// node. This transfer can potentially trigger recursive merging. 1110 void 1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1112 // For node types that aren't CSE'd, just act as if no identical node 1113 // already exists. 1114 if (!doNotCSE(N)) { 1115 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1116 if (Existing != N) { 1117 // If there was already an existing matching node, use ReplaceAllUsesWith 1118 // to replace the dead one with the existing one. This can cause 1119 // recursive merging of other unrelated nodes down the line. 1120 ReplaceAllUsesWith(N, Existing); 1121 1122 // N is now dead. Inform the listeners and delete it. 1123 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1124 DUL->NodeDeleted(N, Existing); 1125 DeleteNodeNotInCSEMaps(N); 1126 return; 1127 } 1128 } 1129 1130 // If the node doesn't already exist, we updated it. Inform listeners. 1131 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1132 DUL->NodeUpdated(N); 1133 } 1134 1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1136 /// were replaced with those specified. If this node is never memoized, 1137 /// return null, otherwise return a pointer to the slot it would take. If a 1138 /// node already exists with these operands, the slot will be non-null. 1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1140 void *&InsertPos) { 1141 if (doNotCSE(N)) 1142 return nullptr; 1143 1144 SDValue Ops[] = { Op }; 1145 FoldingSetNodeID ID; 1146 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1147 AddNodeIDCustom(ID, N); 1148 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1149 if (Node) 1150 Node->intersectFlagsWith(N->getFlags()); 1151 return Node; 1152 } 1153 1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1155 /// were replaced with those specified. If this node is never memoized, 1156 /// return null, otherwise return a pointer to the slot it would take. If a 1157 /// node already exists with these operands, the slot will be non-null. 1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1159 SDValue Op1, SDValue Op2, 1160 void *&InsertPos) { 1161 if (doNotCSE(N)) 1162 return nullptr; 1163 1164 SDValue Ops[] = { Op1, Op2 }; 1165 FoldingSetNodeID ID; 1166 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1167 AddNodeIDCustom(ID, N); 1168 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1169 if (Node) 1170 Node->intersectFlagsWith(N->getFlags()); 1171 return Node; 1172 } 1173 1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1175 /// were replaced with those specified. If this node is never memoized, 1176 /// return null, otherwise return a pointer to the slot it would take. If a 1177 /// node already exists with these operands, the slot will be non-null. 1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1179 void *&InsertPos) { 1180 if (doNotCSE(N)) 1181 return nullptr; 1182 1183 FoldingSetNodeID ID; 1184 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1185 AddNodeIDCustom(ID, N); 1186 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1187 if (Node) 1188 Node->intersectFlagsWith(N->getFlags()); 1189 return Node; 1190 } 1191 1192 Align SelectionDAG::getEVTAlign(EVT VT) const { 1193 Type *Ty = VT == MVT::iPTR ? 1194 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1195 VT.getTypeForEVT(*getContext()); 1196 1197 return getDataLayout().getABITypeAlign(Ty); 1198 } 1199 1200 // EntryNode could meaningfully have debug info if we can find it... 1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1202 : TM(tm), OptLevel(OL), 1203 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1204 Root(getEntryNode()) { 1205 InsertNode(&EntryNode); 1206 DbgInfo = new SDDbgInfo(); 1207 } 1208 1209 void SelectionDAG::init(MachineFunction &NewMF, 1210 OptimizationRemarkEmitter &NewORE, 1211 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1212 LegacyDivergenceAnalysis * Divergence, 1213 ProfileSummaryInfo *PSIin, 1214 BlockFrequencyInfo *BFIin) { 1215 MF = &NewMF; 1216 SDAGISelPass = PassPtr; 1217 ORE = &NewORE; 1218 TLI = getSubtarget().getTargetLowering(); 1219 TSI = getSubtarget().getSelectionDAGInfo(); 1220 LibInfo = LibraryInfo; 1221 Context = &MF->getFunction().getContext(); 1222 DA = Divergence; 1223 PSI = PSIin; 1224 BFI = BFIin; 1225 } 1226 1227 SelectionDAG::~SelectionDAG() { 1228 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1229 allnodes_clear(); 1230 OperandRecycler.clear(OperandAllocator); 1231 delete DbgInfo; 1232 } 1233 1234 bool SelectionDAG::shouldOptForSize() const { 1235 return MF->getFunction().hasOptSize() || 1236 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1237 } 1238 1239 void SelectionDAG::allnodes_clear() { 1240 assert(&*AllNodes.begin() == &EntryNode); 1241 AllNodes.remove(AllNodes.begin()); 1242 while (!AllNodes.empty()) 1243 DeallocateNode(&AllNodes.front()); 1244 #ifndef NDEBUG 1245 NextPersistentId = 0; 1246 #endif 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 default: break; 1255 case ISD::Constant: 1256 case ISD::ConstantFP: 1257 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1258 "debug location. Use another overload."); 1259 } 1260 } 1261 return N; 1262 } 1263 1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1265 const SDLoc &DL, void *&InsertPos) { 1266 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1267 if (N) { 1268 switch (N->getOpcode()) { 1269 case ISD::Constant: 1270 case ISD::ConstantFP: 1271 // Erase debug location from the node if the node is used at several 1272 // different places. Do not propagate one location to all uses as it 1273 // will cause a worse single stepping debugging experience. 1274 if (N->getDebugLoc() != DL.getDebugLoc()) 1275 N->setDebugLoc(DebugLoc()); 1276 break; 1277 default: 1278 // When the node's point of use is located earlier in the instruction 1279 // sequence than its prior point of use, update its debug info to the 1280 // earlier location. 1281 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1282 N->setDebugLoc(DL.getDebugLoc()); 1283 break; 1284 } 1285 } 1286 return N; 1287 } 1288 1289 void SelectionDAG::clear() { 1290 allnodes_clear(); 1291 OperandRecycler.clear(OperandAllocator); 1292 OperandAllocator.Reset(); 1293 CSEMap.clear(); 1294 1295 ExtendedValueTypeNodes.clear(); 1296 ExternalSymbols.clear(); 1297 TargetExternalSymbols.clear(); 1298 MCSymbols.clear(); 1299 SDCallSiteDbgInfo.clear(); 1300 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1301 static_cast<CondCodeSDNode*>(nullptr)); 1302 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1303 static_cast<SDNode*>(nullptr)); 1304 1305 EntryNode.UseList = nullptr; 1306 InsertNode(&EntryNode); 1307 Root = getEntryNode(); 1308 DbgInfo->clear(); 1309 } 1310 1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1312 return VT.bitsGT(Op.getValueType()) 1313 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1314 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1315 } 1316 1317 std::pair<SDValue, SDValue> 1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1319 const SDLoc &DL, EVT VT) { 1320 assert(!VT.bitsEq(Op.getValueType()) && 1321 "Strict no-op FP extend/round not allowed."); 1322 SDValue Res = 1323 VT.bitsGT(Op.getValueType()) 1324 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1325 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1326 {Chain, Op, getIntPtrConstant(0, DL)}); 1327 1328 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1329 } 1330 1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1332 return VT.bitsGT(Op.getValueType()) ? 1333 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1334 getNode(ISD::TRUNCATE, DL, VT, Op); 1335 } 1336 1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1338 return VT.bitsGT(Op.getValueType()) ? 1339 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1340 getNode(ISD::TRUNCATE, DL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1344 return VT.bitsGT(Op.getValueType()) ? 1345 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1346 getNode(ISD::TRUNCATE, DL, VT, Op); 1347 } 1348 1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1350 EVT OpVT) { 1351 if (VT.bitsLE(Op.getValueType())) 1352 return getNode(ISD::TRUNCATE, SL, VT, Op); 1353 1354 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1355 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1356 } 1357 1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1359 EVT OpVT = Op.getValueType(); 1360 assert(VT.isInteger() && OpVT.isInteger() && 1361 "Cannot getZeroExtendInReg FP types"); 1362 assert(VT.isVector() == OpVT.isVector() && 1363 "getZeroExtendInReg type should be vector iff the operand " 1364 "type is vector!"); 1365 assert((!VT.isVector() || 1366 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1367 "Vector element counts must match in getZeroExtendInReg"); 1368 assert(VT.bitsLE(OpVT) && "Not extending!"); 1369 if (OpVT == VT) 1370 return Op; 1371 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1372 VT.getScalarSizeInBits()); 1373 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1374 } 1375 1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1377 // Only unsigned pointer semantics are supported right now. In the future this 1378 // might delegate to TLI to check pointer signedness. 1379 return getZExtOrTrunc(Op, DL, VT); 1380 } 1381 1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1383 // Only unsigned pointer semantics are supported right now. In the future this 1384 // might delegate to TLI to check pointer signedness. 1385 return getZeroExtendInReg(Op, DL, VT); 1386 } 1387 1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1390 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1391 } 1392 1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1394 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1395 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1396 } 1397 1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1399 EVT OpVT) { 1400 if (!V) 1401 return getConstant(0, DL, VT); 1402 1403 switch (TLI->getBooleanContents(OpVT)) { 1404 case TargetLowering::ZeroOrOneBooleanContent: 1405 case TargetLowering::UndefinedBooleanContent: 1406 return getConstant(1, DL, VT); 1407 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1408 return getAllOnesConstant(DL, VT); 1409 } 1410 llvm_unreachable("Unexpected boolean content enum!"); 1411 } 1412 1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1414 bool isT, bool isO) { 1415 EVT EltVT = VT.getScalarType(); 1416 assert((EltVT.getSizeInBits() >= 64 || 1417 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1418 "getConstant with a uint64_t value that doesn't fit in the type!"); 1419 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1420 } 1421 1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1423 bool isT, bool isO) { 1424 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1425 } 1426 1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1428 EVT VT, bool isT, bool isO) { 1429 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1430 1431 EVT EltVT = VT.getScalarType(); 1432 const ConstantInt *Elt = &Val; 1433 1434 // In some cases the vector type is legal but the element type is illegal and 1435 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1436 // inserted value (the type does not need to match the vector element type). 1437 // Any extra bits introduced will be truncated away. 1438 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1439 TargetLowering::TypePromoteInteger) { 1440 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1441 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1442 Elt = ConstantInt::get(*getContext(), NewVal); 1443 } 1444 // In other cases the element type is illegal and needs to be expanded, for 1445 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1446 // the value into n parts and use a vector type with n-times the elements. 1447 // Then bitcast to the type requested. 1448 // Legalizing constants too early makes the DAGCombiner's job harder so we 1449 // only legalize if the DAG tells us we must produce legal types. 1450 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1451 TLI->getTypeAction(*getContext(), EltVT) == 1452 TargetLowering::TypeExpandInteger) { 1453 const APInt &NewVal = Elt->getValue(); 1454 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1455 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1456 1457 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1458 if (VT.isScalableVector()) { 1459 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1460 "Can only handle an even split!"); 1461 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1462 1463 SmallVector<SDValue, 2> ScalarParts; 1464 for (unsigned i = 0; i != Parts; ++i) 1465 ScalarParts.push_back(getConstant( 1466 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1467 ViaEltVT, isT, isO)); 1468 1469 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1470 } 1471 1472 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1473 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1474 1475 // Check the temporary vector is the correct size. If this fails then 1476 // getTypeToTransformTo() probably returned a type whose size (in bits) 1477 // isn't a power-of-2 factor of the requested type size. 1478 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1479 1480 SmallVector<SDValue, 2> EltParts; 1481 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1482 EltParts.push_back(getConstant( 1483 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1484 ViaEltVT, isT, isO)); 1485 1486 // EltParts is currently in little endian order. If we actually want 1487 // big-endian order then reverse it now. 1488 if (getDataLayout().isBigEndian()) 1489 std::reverse(EltParts.begin(), EltParts.end()); 1490 1491 // The elements must be reversed when the element order is different 1492 // to the endianness of the elements (because the BITCAST is itself a 1493 // vector shuffle in this situation). However, we do not need any code to 1494 // perform this reversal because getConstant() is producing a vector 1495 // splat. 1496 // This situation occurs in MIPS MSA. 1497 1498 SmallVector<SDValue, 8> Ops; 1499 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1500 llvm::append_range(Ops, EltParts); 1501 1502 SDValue V = 1503 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1504 return V; 1505 } 1506 1507 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1508 "APInt size does not match type size!"); 1509 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1510 FoldingSetNodeID ID; 1511 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1512 ID.AddPointer(Elt); 1513 ID.AddBoolean(isO); 1514 void *IP = nullptr; 1515 SDNode *N = nullptr; 1516 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1517 if (!VT.isVector()) 1518 return SDValue(N, 0); 1519 1520 if (!N) { 1521 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1525 } 1526 1527 SDValue Result(N, 0); 1528 if (VT.isScalableVector()) 1529 Result = getSplatVector(VT, DL, Result); 1530 else if (VT.isVector()) 1531 Result = getSplatBuildVector(VT, DL, Result); 1532 1533 return Result; 1534 } 1535 1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1537 bool isTarget) { 1538 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1539 } 1540 1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1542 const SDLoc &DL, bool LegalTypes) { 1543 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1544 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1545 return getConstant(Val, DL, ShiftVT); 1546 } 1547 1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1549 bool isTarget) { 1550 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1551 } 1552 1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1554 bool isTarget) { 1555 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1556 } 1557 1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1559 EVT VT, bool isTarget) { 1560 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1561 1562 EVT EltVT = VT.getScalarType(); 1563 1564 // Do the map lookup using the actual bit pattern for the floating point 1565 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1566 // we don't have issues with SNANs. 1567 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1568 FoldingSetNodeID ID; 1569 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1570 ID.AddPointer(&V); 1571 void *IP = nullptr; 1572 SDNode *N = nullptr; 1573 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1574 if (!VT.isVector()) 1575 return SDValue(N, 0); 1576 1577 if (!N) { 1578 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1579 CSEMap.InsertNode(N, IP); 1580 InsertNode(N); 1581 } 1582 1583 SDValue Result(N, 0); 1584 if (VT.isScalableVector()) 1585 Result = getSplatVector(VT, DL, Result); 1586 else if (VT.isVector()) 1587 Result = getSplatBuildVector(VT, DL, Result); 1588 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1589 return Result; 1590 } 1591 1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1593 bool isTarget) { 1594 EVT EltVT = VT.getScalarType(); 1595 if (EltVT == MVT::f32) 1596 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1597 if (EltVT == MVT::f64) 1598 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1599 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1600 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1601 bool Ignored; 1602 APFloat APF = APFloat(Val); 1603 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1604 &Ignored); 1605 return getConstantFP(APF, DL, VT, isTarget); 1606 } 1607 llvm_unreachable("Unsupported type in getConstantFP"); 1608 } 1609 1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1611 EVT VT, int64_t Offset, bool isTargetGA, 1612 unsigned TargetFlags) { 1613 assert((TargetFlags == 0 || isTargetGA) && 1614 "Cannot set target flags on target-independent globals"); 1615 1616 // Truncate (with sign-extension) the offset value to the pointer size. 1617 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1618 if (BitWidth < 64) 1619 Offset = SignExtend64(Offset, BitWidth); 1620 1621 unsigned Opc; 1622 if (GV->isThreadLocal()) 1623 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1624 else 1625 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1626 1627 FoldingSetNodeID ID; 1628 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1629 ID.AddPointer(GV); 1630 ID.AddInteger(Offset); 1631 ID.AddInteger(TargetFlags); 1632 void *IP = nullptr; 1633 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1634 return SDValue(E, 0); 1635 1636 auto *N = newSDNode<GlobalAddressSDNode>( 1637 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1644 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1645 FoldingSetNodeID ID; 1646 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1647 ID.AddInteger(FI); 1648 void *IP = nullptr; 1649 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1650 return SDValue(E, 0); 1651 1652 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1653 CSEMap.InsertNode(N, IP); 1654 InsertNode(N); 1655 return SDValue(N, 0); 1656 } 1657 1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1659 unsigned TargetFlags) { 1660 assert((TargetFlags == 0 || isTarget) && 1661 "Cannot set target flags on target-independent jump tables"); 1662 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddInteger(JTI); 1666 ID.AddInteger(TargetFlags); 1667 void *IP = nullptr; 1668 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1669 return SDValue(E, 0); 1670 1671 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1672 CSEMap.InsertNode(N, IP); 1673 InsertNode(N); 1674 return SDValue(N, 0); 1675 } 1676 1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1678 MaybeAlign Alignment, int Offset, 1679 bool isTarget, unsigned TargetFlags) { 1680 assert((TargetFlags == 0 || isTarget) && 1681 "Cannot set target flags on target-independent globals"); 1682 if (!Alignment) 1683 Alignment = shouldOptForSize() 1684 ? getDataLayout().getABITypeAlign(C->getType()) 1685 : getDataLayout().getPrefTypeAlign(C->getType()); 1686 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1687 FoldingSetNodeID ID; 1688 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1689 ID.AddInteger(Alignment->value()); 1690 ID.AddInteger(Offset); 1691 ID.AddPointer(C); 1692 ID.AddInteger(TargetFlags); 1693 void *IP = nullptr; 1694 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1695 return SDValue(E, 0); 1696 1697 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1698 TargetFlags); 1699 CSEMap.InsertNode(N, IP); 1700 InsertNode(N); 1701 SDValue V = SDValue(N, 0); 1702 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1703 return V; 1704 } 1705 1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1707 MaybeAlign Alignment, int Offset, 1708 bool isTarget, unsigned TargetFlags) { 1709 assert((TargetFlags == 0 || isTarget) && 1710 "Cannot set target flags on target-independent globals"); 1711 if (!Alignment) 1712 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1713 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1714 FoldingSetNodeID ID; 1715 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1716 ID.AddInteger(Alignment->value()); 1717 ID.AddInteger(Offset); 1718 C->addSelectionDAGCSEId(ID); 1719 ID.AddInteger(TargetFlags); 1720 void *IP = nullptr; 1721 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1722 return SDValue(E, 0); 1723 1724 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1725 TargetFlags); 1726 CSEMap.InsertNode(N, IP); 1727 InsertNode(N); 1728 return SDValue(N, 0); 1729 } 1730 1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1732 unsigned TargetFlags) { 1733 FoldingSetNodeID ID; 1734 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1735 ID.AddInteger(Index); 1736 ID.AddInteger(Offset); 1737 ID.AddInteger(TargetFlags); 1738 void *IP = nullptr; 1739 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1740 return SDValue(E, 0); 1741 1742 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1743 CSEMap.InsertNode(N, IP); 1744 InsertNode(N); 1745 return SDValue(N, 0); 1746 } 1747 1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1749 FoldingSetNodeID ID; 1750 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1751 ID.AddPointer(MBB); 1752 void *IP = nullptr; 1753 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1754 return SDValue(E, 0); 1755 1756 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1757 CSEMap.InsertNode(N, IP); 1758 InsertNode(N); 1759 return SDValue(N, 0); 1760 } 1761 1762 SDValue SelectionDAG::getValueType(EVT VT) { 1763 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1764 ValueTypeNodes.size()) 1765 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1766 1767 SDNode *&N = VT.isExtended() ? 1768 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1769 1770 if (N) return SDValue(N, 0); 1771 N = newSDNode<VTSDNode>(VT); 1772 InsertNode(N); 1773 return SDValue(N, 0); 1774 } 1775 1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1777 SDNode *&N = ExternalSymbols[Sym]; 1778 if (N) return SDValue(N, 0); 1779 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1785 SDNode *&N = MCSymbols[Sym]; 1786 if (N) 1787 return SDValue(N, 0); 1788 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1789 InsertNode(N); 1790 return SDValue(N, 0); 1791 } 1792 1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1794 unsigned TargetFlags) { 1795 SDNode *&N = 1796 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1797 if (N) return SDValue(N, 0); 1798 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1804 if ((unsigned)Cond >= CondCodeNodes.size()) 1805 CondCodeNodes.resize(Cond+1); 1806 1807 if (!CondCodeNodes[Cond]) { 1808 auto *N = newSDNode<CondCodeSDNode>(Cond); 1809 CondCodeNodes[Cond] = N; 1810 InsertNode(N); 1811 } 1812 1813 return SDValue(CondCodeNodes[Cond], 0); 1814 } 1815 1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1817 APInt One(ResVT.getScalarSizeInBits(), 1); 1818 return getStepVector(DL, ResVT, One); 1819 } 1820 1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1822 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1823 if (ResVT.isScalableVector()) 1824 return getNode( 1825 ISD::STEP_VECTOR, DL, ResVT, 1826 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1827 1828 SmallVector<SDValue, 16> OpsStepConstants; 1829 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1830 OpsStepConstants.push_back( 1831 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1832 return getBuildVector(ResVT, DL, OpsStepConstants); 1833 } 1834 1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1838 std::swap(N1, N2); 1839 ShuffleVectorSDNode::commuteMask(M); 1840 } 1841 1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1843 SDValue N2, ArrayRef<int> Mask) { 1844 assert(VT.getVectorNumElements() == Mask.size() && 1845 "Must have the same number of vector elements as mask elements!"); 1846 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1847 "Invalid VECTOR_SHUFFLE"); 1848 1849 // Canonicalize shuffle undef, undef -> undef 1850 if (N1.isUndef() && N2.isUndef()) 1851 return getUNDEF(VT); 1852 1853 // Validate that all indices in Mask are within the range of the elements 1854 // input to the shuffle. 1855 int NElts = Mask.size(); 1856 assert(llvm::all_of(Mask, 1857 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1858 "Index out of range"); 1859 1860 // Copy the mask so we can do any needed cleanup. 1861 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1862 1863 // Canonicalize shuffle v, v -> v, undef 1864 if (N1 == N2) { 1865 N2 = getUNDEF(VT); 1866 for (int i = 0; i != NElts; ++i) 1867 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1868 } 1869 1870 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1871 if (N1.isUndef()) 1872 commuteShuffle(N1, N2, MaskVec); 1873 1874 if (TLI->hasVectorBlend()) { 1875 // If shuffling a splat, try to blend the splat instead. We do this here so 1876 // that even when this arises during lowering we don't have to re-handle it. 1877 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1878 BitVector UndefElements; 1879 SDValue Splat = BV->getSplatValue(&UndefElements); 1880 if (!Splat) 1881 return; 1882 1883 for (int i = 0; i < NElts; ++i) { 1884 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1885 continue; 1886 1887 // If this input comes from undef, mark it as such. 1888 if (UndefElements[MaskVec[i] - Offset]) { 1889 MaskVec[i] = -1; 1890 continue; 1891 } 1892 1893 // If we can blend a non-undef lane, use that instead. 1894 if (!UndefElements[i]) 1895 MaskVec[i] = i + Offset; 1896 } 1897 }; 1898 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1899 BlendSplat(N1BV, 0); 1900 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1901 BlendSplat(N2BV, NElts); 1902 } 1903 1904 // Canonicalize all index into lhs, -> shuffle lhs, undef 1905 // Canonicalize all index into rhs, -> shuffle rhs, undef 1906 bool AllLHS = true, AllRHS = true; 1907 bool N2Undef = N2.isUndef(); 1908 for (int i = 0; i != NElts; ++i) { 1909 if (MaskVec[i] >= NElts) { 1910 if (N2Undef) 1911 MaskVec[i] = -1; 1912 else 1913 AllLHS = false; 1914 } else if (MaskVec[i] >= 0) { 1915 AllRHS = false; 1916 } 1917 } 1918 if (AllLHS && AllRHS) 1919 return getUNDEF(VT); 1920 if (AllLHS && !N2Undef) 1921 N2 = getUNDEF(VT); 1922 if (AllRHS) { 1923 N1 = getUNDEF(VT); 1924 commuteShuffle(N1, N2, MaskVec); 1925 } 1926 // Reset our undef status after accounting for the mask. 1927 N2Undef = N2.isUndef(); 1928 // Re-check whether both sides ended up undef. 1929 if (N1.isUndef() && N2Undef) 1930 return getUNDEF(VT); 1931 1932 // If Identity shuffle return that node. 1933 bool Identity = true, AllSame = true; 1934 for (int i = 0; i != NElts; ++i) { 1935 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1936 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1937 } 1938 if (Identity && NElts) 1939 return N1; 1940 1941 // Shuffling a constant splat doesn't change the result. 1942 if (N2Undef) { 1943 SDValue V = N1; 1944 1945 // Look through any bitcasts. We check that these don't change the number 1946 // (and size) of elements and just changes their types. 1947 while (V.getOpcode() == ISD::BITCAST) 1948 V = V->getOperand(0); 1949 1950 // A splat should always show up as a build vector node. 1951 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1952 BitVector UndefElements; 1953 SDValue Splat = BV->getSplatValue(&UndefElements); 1954 // If this is a splat of an undef, shuffling it is also undef. 1955 if (Splat && Splat.isUndef()) 1956 return getUNDEF(VT); 1957 1958 bool SameNumElts = 1959 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1960 1961 // We only have a splat which can skip shuffles if there is a splatted 1962 // value and no undef lanes rearranged by the shuffle. 1963 if (Splat && UndefElements.none()) { 1964 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1965 // number of elements match or the value splatted is a zero constant. 1966 if (SameNumElts) 1967 return N1; 1968 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1969 if (C->isZero()) 1970 return N1; 1971 } 1972 1973 // If the shuffle itself creates a splat, build the vector directly. 1974 if (AllSame && SameNumElts) { 1975 EVT BuildVT = BV->getValueType(0); 1976 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1977 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1978 1979 // We may have jumped through bitcasts, so the type of the 1980 // BUILD_VECTOR may not match the type of the shuffle. 1981 if (BuildVT != VT) 1982 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1983 return NewBV; 1984 } 1985 } 1986 } 1987 1988 FoldingSetNodeID ID; 1989 SDValue Ops[2] = { N1, N2 }; 1990 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1991 for (int i = 0; i != NElts; ++i) 1992 ID.AddInteger(MaskVec[i]); 1993 1994 void* IP = nullptr; 1995 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1996 return SDValue(E, 0); 1997 1998 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1999 // SDNode doesn't have access to it. This memory will be "leaked" when 2000 // the node is deallocated, but recovered when the NodeAllocator is released. 2001 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2002 llvm::copy(MaskVec, MaskAlloc); 2003 2004 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2005 dl.getDebugLoc(), MaskAlloc); 2006 createOperands(N, Ops); 2007 2008 CSEMap.InsertNode(N, IP); 2009 InsertNode(N); 2010 SDValue V = SDValue(N, 0); 2011 NewSDValueDbgMsg(V, "Creating new node: ", this); 2012 return V; 2013 } 2014 2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2016 EVT VT = SV.getValueType(0); 2017 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2018 ShuffleVectorSDNode::commuteMask(MaskVec); 2019 2020 SDValue Op0 = SV.getOperand(0); 2021 SDValue Op1 = SV.getOperand(1); 2022 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2023 } 2024 2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2028 ID.AddInteger(RegNo); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2034 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2041 FoldingSetNodeID ID; 2042 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2043 ID.AddPointer(RegMask); 2044 void *IP = nullptr; 2045 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2046 return SDValue(E, 0); 2047 2048 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2049 CSEMap.InsertNode(N, IP); 2050 InsertNode(N); 2051 return SDValue(N, 0); 2052 } 2053 2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2055 MCSymbol *Label) { 2056 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2057 } 2058 2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2060 SDValue Root, MCSymbol *Label) { 2061 FoldingSetNodeID ID; 2062 SDValue Ops[] = { Root }; 2063 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2064 ID.AddPointer(Label); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = 2070 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2071 createOperands(N, Ops); 2072 2073 CSEMap.InsertNode(N, IP); 2074 InsertNode(N); 2075 return SDValue(N, 0); 2076 } 2077 2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2079 int64_t Offset, bool isTarget, 2080 unsigned TargetFlags) { 2081 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2082 2083 FoldingSetNodeID ID; 2084 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2085 ID.AddPointer(BA); 2086 ID.AddInteger(Offset); 2087 ID.AddInteger(TargetFlags); 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getSrcValue(const Value *V) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2101 ID.AddPointer(V); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<SrcValueSDNode>(V); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2114 FoldingSetNodeID ID; 2115 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2116 ID.AddPointer(MD); 2117 2118 void *IP = nullptr; 2119 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2120 return SDValue(E, 0); 2121 2122 auto *N = newSDNode<MDNodeSDNode>(MD); 2123 CSEMap.InsertNode(N, IP); 2124 InsertNode(N); 2125 return SDValue(N, 0); 2126 } 2127 2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2129 if (VT == V.getValueType()) 2130 return V; 2131 2132 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2133 } 2134 2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2136 unsigned SrcAS, unsigned DestAS) { 2137 SDValue Ops[] = {Ptr}; 2138 FoldingSetNodeID ID; 2139 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2140 ID.AddInteger(SrcAS); 2141 ID.AddInteger(DestAS); 2142 2143 void *IP = nullptr; 2144 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2145 return SDValue(E, 0); 2146 2147 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2148 VT, SrcAS, DestAS); 2149 createOperands(N, Ops); 2150 2151 CSEMap.InsertNode(N, IP); 2152 InsertNode(N); 2153 return SDValue(N, 0); 2154 } 2155 2156 SDValue SelectionDAG::getFreeze(SDValue V) { 2157 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2158 } 2159 2160 /// getShiftAmountOperand - Return the specified value casted to 2161 /// the target's desired shift amount type. 2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2163 EVT OpTy = Op.getValueType(); 2164 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2165 if (OpTy == ShTy || OpTy.isVector()) return Op; 2166 2167 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2168 } 2169 2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2171 SDLoc dl(Node); 2172 const TargetLowering &TLI = getTargetLoweringInfo(); 2173 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2174 EVT VT = Node->getValueType(0); 2175 SDValue Tmp1 = Node->getOperand(0); 2176 SDValue Tmp2 = Node->getOperand(1); 2177 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2178 2179 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2180 Tmp2, MachinePointerInfo(V)); 2181 SDValue VAList = VAListLoad; 2182 2183 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2184 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2185 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2186 2187 VAList = 2188 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2189 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2190 } 2191 2192 // Increment the pointer, VAList, to the next vaarg 2193 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2194 getConstant(getDataLayout().getTypeAllocSize( 2195 VT.getTypeForEVT(*getContext())), 2196 dl, VAList.getValueType())); 2197 // Store the incremented VAList to the legalized pointer 2198 Tmp1 = 2199 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2200 // Load the actual argument out of the pointer VAList 2201 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2202 } 2203 2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2205 SDLoc dl(Node); 2206 const TargetLowering &TLI = getTargetLoweringInfo(); 2207 // This defaults to loading a pointer from the input and storing it to the 2208 // output, returning the chain. 2209 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2210 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2211 SDValue Tmp1 = 2212 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2213 Node->getOperand(2), MachinePointerInfo(VS)); 2214 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2215 MachinePointerInfo(VD)); 2216 } 2217 2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2219 const DataLayout &DL = getDataLayout(); 2220 Type *Ty = VT.getTypeForEVT(*getContext()); 2221 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2222 2223 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2224 return RedAlign; 2225 2226 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2227 const Align StackAlign = TFI->getStackAlign(); 2228 2229 // See if we can choose a smaller ABI alignment in cases where it's an 2230 // illegal vector type that will get broken down. 2231 if (RedAlign > StackAlign) { 2232 EVT IntermediateVT; 2233 MVT RegisterVT; 2234 unsigned NumIntermediates; 2235 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2236 NumIntermediates, RegisterVT); 2237 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2238 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2239 if (RedAlign2 < RedAlign) 2240 RedAlign = RedAlign2; 2241 } 2242 2243 return RedAlign; 2244 } 2245 2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2247 MachineFrameInfo &MFI = MF->getFrameInfo(); 2248 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2249 int StackID = 0; 2250 if (Bytes.isScalable()) 2251 StackID = TFI->getStackIDForScalableVectors(); 2252 // The stack id gives an indication of whether the object is scalable or 2253 // not, so it's safe to pass in the minimum size here. 2254 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2255 false, nullptr, StackID); 2256 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2257 } 2258 2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2260 Type *Ty = VT.getTypeForEVT(*getContext()); 2261 Align StackAlign = 2262 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2263 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2264 } 2265 2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2267 TypeSize VT1Size = VT1.getStoreSize(); 2268 TypeSize VT2Size = VT2.getStoreSize(); 2269 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2270 "Don't know how to choose the maximum size when creating a stack " 2271 "temporary"); 2272 TypeSize Bytes = 2273 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2274 2275 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2276 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2277 const DataLayout &DL = getDataLayout(); 2278 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2279 return CreateStackTemporary(Bytes, Align); 2280 } 2281 2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2283 ISD::CondCode Cond, const SDLoc &dl) { 2284 EVT OpVT = N1.getValueType(); 2285 2286 // These setcc operations always fold. 2287 switch (Cond) { 2288 default: break; 2289 case ISD::SETFALSE: 2290 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2291 case ISD::SETTRUE: 2292 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2293 2294 case ISD::SETOEQ: 2295 case ISD::SETOGT: 2296 case ISD::SETOGE: 2297 case ISD::SETOLT: 2298 case ISD::SETOLE: 2299 case ISD::SETONE: 2300 case ISD::SETO: 2301 case ISD::SETUO: 2302 case ISD::SETUEQ: 2303 case ISD::SETUNE: 2304 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2305 break; 2306 } 2307 2308 if (OpVT.isInteger()) { 2309 // For EQ and NE, we can always pick a value for the undef to make the 2310 // predicate pass or fail, so we can return undef. 2311 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2312 // icmp eq/ne X, undef -> undef. 2313 if ((N1.isUndef() || N2.isUndef()) && 2314 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2315 return getUNDEF(VT); 2316 2317 // If both operands are undef, we can return undef for int comparison. 2318 // icmp undef, undef -> undef. 2319 if (N1.isUndef() && N2.isUndef()) 2320 return getUNDEF(VT); 2321 2322 // icmp X, X -> true/false 2323 // icmp X, undef -> true/false because undef could be X. 2324 if (N1 == N2) 2325 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2326 } 2327 2328 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2329 const APInt &C2 = N2C->getAPIntValue(); 2330 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2331 const APInt &C1 = N1C->getAPIntValue(); 2332 2333 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2334 dl, VT, OpVT); 2335 } 2336 } 2337 2338 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2339 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2340 2341 if (N1CFP && N2CFP) { 2342 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2343 switch (Cond) { 2344 default: break; 2345 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2346 return getUNDEF(VT); 2347 LLVM_FALLTHROUGH; 2348 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2349 OpVT); 2350 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2351 return getUNDEF(VT); 2352 LLVM_FALLTHROUGH; 2353 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2354 R==APFloat::cmpLessThan, dl, VT, 2355 OpVT); 2356 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2357 return getUNDEF(VT); 2358 LLVM_FALLTHROUGH; 2359 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2360 OpVT); 2361 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2362 return getUNDEF(VT); 2363 LLVM_FALLTHROUGH; 2364 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2365 VT, OpVT); 2366 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2367 return getUNDEF(VT); 2368 LLVM_FALLTHROUGH; 2369 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2370 R==APFloat::cmpEqual, dl, VT, 2371 OpVT); 2372 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2373 return getUNDEF(VT); 2374 LLVM_FALLTHROUGH; 2375 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2376 R==APFloat::cmpEqual, dl, VT, OpVT); 2377 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2378 OpVT); 2379 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2380 OpVT); 2381 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2382 R==APFloat::cmpEqual, dl, VT, 2383 OpVT); 2384 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2387 R==APFloat::cmpLessThan, dl, VT, 2388 OpVT); 2389 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpUnordered, dl, VT, 2391 OpVT); 2392 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2393 VT, OpVT); 2394 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2395 OpVT); 2396 } 2397 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2398 // Ensure that the constant occurs on the RHS. 2399 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2400 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2401 return SDValue(); 2402 return getSetCC(dl, VT, N2, N1, SwappedCond); 2403 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2404 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2405 // If an operand is known to be a nan (or undef that could be a nan), we can 2406 // fold it. 2407 // Choosing NaN for the undef will always make unordered comparison succeed 2408 // and ordered comparison fails. 2409 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2410 switch (ISD::getUnorderedFlavor(Cond)) { 2411 default: 2412 llvm_unreachable("Unknown flavor!"); 2413 case 0: // Known false. 2414 return getBoolConstant(false, dl, VT, OpVT); 2415 case 1: // Known true. 2416 return getBoolConstant(true, dl, VT, OpVT); 2417 case 2: // Undefined. 2418 return getUNDEF(VT); 2419 } 2420 } 2421 2422 // Could not fold it. 2423 return SDValue(); 2424 } 2425 2426 /// See if the specified operand can be simplified with the knowledge that only 2427 /// the bits specified by DemandedBits are used. 2428 /// TODO: really we should be making this into the DAG equivalent of 2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2431 EVT VT = V.getValueType(); 2432 2433 if (VT.isScalableVector()) 2434 return SDValue(); 2435 2436 APInt DemandedElts = VT.isVector() 2437 ? APInt::getAllOnes(VT.getVectorNumElements()) 2438 : APInt(1, 1); 2439 return GetDemandedBits(V, DemandedBits, DemandedElts); 2440 } 2441 2442 /// See if the specified operand can be simplified with the knowledge that only 2443 /// the bits specified by DemandedBits are used in the elements specified by 2444 /// DemandedElts. 2445 /// TODO: really we should be making this into the DAG equivalent of 2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2448 const APInt &DemandedElts) { 2449 switch (V.getOpcode()) { 2450 default: 2451 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2452 *this); 2453 case ISD::Constant: { 2454 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2455 APInt NewVal = CVal & DemandedBits; 2456 if (NewVal != CVal) 2457 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2458 break; 2459 } 2460 case ISD::SRL: 2461 // Only look at single-use SRLs. 2462 if (!V.getNode()->hasOneUse()) 2463 break; 2464 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2465 // See if we can recursively simplify the LHS. 2466 unsigned Amt = RHSC->getZExtValue(); 2467 2468 // Watch out for shift count overflow though. 2469 if (Amt >= DemandedBits.getBitWidth()) 2470 break; 2471 APInt SrcDemandedBits = DemandedBits << Amt; 2472 if (SDValue SimplifyLHS = 2473 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2474 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2475 V.getOperand(1)); 2476 } 2477 break; 2478 } 2479 return SDValue(); 2480 } 2481 2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2483 /// use this predicate to simplify operations downstream. 2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2485 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2486 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2487 } 2488 2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2490 /// this predicate to simplify operations downstream. Mask is known to be zero 2491 /// for bits that V cannot have. 2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2495 } 2496 2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2498 /// DemandedElts. We use this predicate to simplify operations downstream. 2499 /// Mask is known to be zero for bits that V cannot have. 2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2501 const APInt &DemandedElts, 2502 unsigned Depth) const { 2503 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2504 } 2505 2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2508 unsigned Depth) const { 2509 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2510 } 2511 2512 /// isSplatValue - Return true if the vector V has the same value 2513 /// across all DemandedElts. For scalable vectors it does not make 2514 /// sense to specify which elements are demanded or undefined, therefore 2515 /// they are simply ignored. 2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2517 APInt &UndefElts, unsigned Depth) const { 2518 unsigned Opcode = V.getOpcode(); 2519 EVT VT = V.getValueType(); 2520 assert(VT.isVector() && "Vector type expected"); 2521 2522 if (!VT.isScalableVector() && !DemandedElts) 2523 return false; // No demanded elts, better to assume we don't know anything. 2524 2525 if (Depth >= MaxRecursionDepth) 2526 return false; // Limit search depth. 2527 2528 // Deal with some common cases here that work for both fixed and scalable 2529 // vector types. 2530 switch (Opcode) { 2531 case ISD::SPLAT_VECTOR: 2532 UndefElts = V.getOperand(0).isUndef() 2533 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2534 : APInt(DemandedElts.getBitWidth(), 0); 2535 return true; 2536 case ISD::ADD: 2537 case ISD::SUB: 2538 case ISD::AND: 2539 case ISD::XOR: 2540 case ISD::OR: { 2541 APInt UndefLHS, UndefRHS; 2542 SDValue LHS = V.getOperand(0); 2543 SDValue RHS = V.getOperand(1); 2544 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2545 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2546 UndefElts = UndefLHS | UndefRHS; 2547 return true; 2548 } 2549 return false; 2550 } 2551 case ISD::ABS: 2552 case ISD::TRUNCATE: 2553 case ISD::SIGN_EXTEND: 2554 case ISD::ZERO_EXTEND: 2555 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2556 default: 2557 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2558 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2559 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2560 break; 2561 } 2562 2563 // We don't support other cases than those above for scalable vectors at 2564 // the moment. 2565 if (VT.isScalableVector()) 2566 return false; 2567 2568 unsigned NumElts = VT.getVectorNumElements(); 2569 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2570 UndefElts = APInt::getZero(NumElts); 2571 2572 switch (Opcode) { 2573 case ISD::BUILD_VECTOR: { 2574 SDValue Scl; 2575 for (unsigned i = 0; i != NumElts; ++i) { 2576 SDValue Op = V.getOperand(i); 2577 if (Op.isUndef()) { 2578 UndefElts.setBit(i); 2579 continue; 2580 } 2581 if (!DemandedElts[i]) 2582 continue; 2583 if (Scl && Scl != Op) 2584 return false; 2585 Scl = Op; 2586 } 2587 return true; 2588 } 2589 case ISD::VECTOR_SHUFFLE: { 2590 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2591 APInt DemandedLHS = APInt::getNullValue(NumElts); 2592 APInt DemandedRHS = APInt::getNullValue(NumElts); 2593 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2594 for (int i = 0; i != (int)NumElts; ++i) { 2595 int M = Mask[i]; 2596 if (M < 0) { 2597 UndefElts.setBit(i); 2598 continue; 2599 } 2600 if (!DemandedElts[i]) 2601 continue; 2602 if (M < (int)NumElts) 2603 DemandedLHS.setBit(M); 2604 else 2605 DemandedRHS.setBit(M - NumElts); 2606 } 2607 2608 // If we aren't demanding either op, assume there's no splat. 2609 // If we are demanding both ops, assume there's no splat. 2610 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2611 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2612 return false; 2613 2614 // See if the demanded elts of the source op is a splat or we only demand 2615 // one element, which should always be a splat. 2616 // TODO: Handle source ops splats with undefs. 2617 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2618 APInt SrcUndefs; 2619 return (SrcElts.countPopulation() == 1) || 2620 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2621 (SrcElts & SrcUndefs).isZero()); 2622 }; 2623 if (!DemandedLHS.isZero()) 2624 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2625 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2626 } 2627 case ISD::EXTRACT_SUBVECTOR: { 2628 // Offset the demanded elts by the subvector index. 2629 SDValue Src = V.getOperand(0); 2630 // We don't support scalable vectors at the moment. 2631 if (Src.getValueType().isScalableVector()) 2632 return false; 2633 uint64_t Idx = V.getConstantOperandVal(1); 2634 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2635 APInt UndefSrcElts; 2636 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2637 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2638 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2639 return true; 2640 } 2641 break; 2642 } 2643 case ISD::ANY_EXTEND_VECTOR_INREG: 2644 case ISD::SIGN_EXTEND_VECTOR_INREG: 2645 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2646 // Widen the demanded elts by the src element count. 2647 SDValue Src = V.getOperand(0); 2648 // We don't support scalable vectors at the moment. 2649 if (Src.getValueType().isScalableVector()) 2650 return false; 2651 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2652 APInt UndefSrcElts; 2653 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2654 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2655 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2656 return true; 2657 } 2658 break; 2659 } 2660 case ISD::BITCAST: { 2661 SDValue Src = V.getOperand(0); 2662 EVT SrcVT = Src.getValueType(); 2663 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2664 unsigned BitWidth = VT.getScalarSizeInBits(); 2665 2666 // Ignore bitcasts from unsupported types. 2667 // TODO: Add fp support? 2668 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2669 break; 2670 2671 // Bitcast 'small element' vector to 'large element' vector. 2672 if ((BitWidth % SrcBitWidth) == 0) { 2673 // See if each sub element is a splat. 2674 unsigned Scale = BitWidth / SrcBitWidth; 2675 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2676 APInt ScaledDemandedElts = 2677 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2678 for (unsigned I = 0; I != Scale; ++I) { 2679 APInt SubUndefElts; 2680 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2681 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2682 SubDemandedElts &= ScaledDemandedElts; 2683 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2684 return false; 2685 // TODO: Add support for merging sub undef elements. 2686 if (SubDemandedElts.isSubsetOf(SubUndefElts)) 2687 return false; 2688 } 2689 return true; 2690 } 2691 break; 2692 } 2693 } 2694 2695 return false; 2696 } 2697 2698 /// Helper wrapper to main isSplatValue function. 2699 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2700 EVT VT = V.getValueType(); 2701 assert(VT.isVector() && "Vector type expected"); 2702 2703 APInt UndefElts; 2704 APInt DemandedElts; 2705 2706 // For now we don't support this with scalable vectors. 2707 if (!VT.isScalableVector()) 2708 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2709 return isSplatValue(V, DemandedElts, UndefElts) && 2710 (AllowUndefs || !UndefElts); 2711 } 2712 2713 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2714 V = peekThroughExtractSubvectors(V); 2715 2716 EVT VT = V.getValueType(); 2717 unsigned Opcode = V.getOpcode(); 2718 switch (Opcode) { 2719 default: { 2720 APInt UndefElts; 2721 APInt DemandedElts; 2722 2723 if (!VT.isScalableVector()) 2724 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2725 2726 if (isSplatValue(V, DemandedElts, UndefElts)) { 2727 if (VT.isScalableVector()) { 2728 // DemandedElts and UndefElts are ignored for scalable vectors, since 2729 // the only supported cases are SPLAT_VECTOR nodes. 2730 SplatIdx = 0; 2731 } else { 2732 // Handle case where all demanded elements are UNDEF. 2733 if (DemandedElts.isSubsetOf(UndefElts)) { 2734 SplatIdx = 0; 2735 return getUNDEF(VT); 2736 } 2737 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2738 } 2739 return V; 2740 } 2741 break; 2742 } 2743 case ISD::SPLAT_VECTOR: 2744 SplatIdx = 0; 2745 return V; 2746 case ISD::VECTOR_SHUFFLE: { 2747 if (VT.isScalableVector()) 2748 return SDValue(); 2749 2750 // Check if this is a shuffle node doing a splat. 2751 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2752 // getTargetVShiftNode currently struggles without the splat source. 2753 auto *SVN = cast<ShuffleVectorSDNode>(V); 2754 if (!SVN->isSplat()) 2755 break; 2756 int Idx = SVN->getSplatIndex(); 2757 int NumElts = V.getValueType().getVectorNumElements(); 2758 SplatIdx = Idx % NumElts; 2759 return V.getOperand(Idx / NumElts); 2760 } 2761 } 2762 2763 return SDValue(); 2764 } 2765 2766 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2767 int SplatIdx; 2768 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2769 EVT SVT = SrcVector.getValueType().getScalarType(); 2770 EVT LegalSVT = SVT; 2771 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2772 if (!SVT.isInteger()) 2773 return SDValue(); 2774 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2775 if (LegalSVT.bitsLT(SVT)) 2776 return SDValue(); 2777 } 2778 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2779 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2780 } 2781 return SDValue(); 2782 } 2783 2784 const APInt * 2785 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2786 const APInt &DemandedElts) const { 2787 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2788 V.getOpcode() == ISD::SRA) && 2789 "Unknown shift node"); 2790 unsigned BitWidth = V.getScalarValueSizeInBits(); 2791 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2792 // Shifting more than the bitwidth is not valid. 2793 const APInt &ShAmt = SA->getAPIntValue(); 2794 if (ShAmt.ult(BitWidth)) 2795 return &ShAmt; 2796 } 2797 return nullptr; 2798 } 2799 2800 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2801 SDValue V, const APInt &DemandedElts) const { 2802 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2803 V.getOpcode() == ISD::SRA) && 2804 "Unknown shift node"); 2805 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2806 return ValidAmt; 2807 unsigned BitWidth = V.getScalarValueSizeInBits(); 2808 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2809 if (!BV) 2810 return nullptr; 2811 const APInt *MinShAmt = nullptr; 2812 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2813 if (!DemandedElts[i]) 2814 continue; 2815 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2816 if (!SA) 2817 return nullptr; 2818 // Shifting more than the bitwidth is not valid. 2819 const APInt &ShAmt = SA->getAPIntValue(); 2820 if (ShAmt.uge(BitWidth)) 2821 return nullptr; 2822 if (MinShAmt && MinShAmt->ule(ShAmt)) 2823 continue; 2824 MinShAmt = &ShAmt; 2825 } 2826 return MinShAmt; 2827 } 2828 2829 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2830 SDValue V, const APInt &DemandedElts) const { 2831 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2832 V.getOpcode() == ISD::SRA) && 2833 "Unknown shift node"); 2834 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2835 return ValidAmt; 2836 unsigned BitWidth = V.getScalarValueSizeInBits(); 2837 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2838 if (!BV) 2839 return nullptr; 2840 const APInt *MaxShAmt = nullptr; 2841 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2842 if (!DemandedElts[i]) 2843 continue; 2844 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2845 if (!SA) 2846 return nullptr; 2847 // Shifting more than the bitwidth is not valid. 2848 const APInt &ShAmt = SA->getAPIntValue(); 2849 if (ShAmt.uge(BitWidth)) 2850 return nullptr; 2851 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2852 continue; 2853 MaxShAmt = &ShAmt; 2854 } 2855 return MaxShAmt; 2856 } 2857 2858 /// Determine which bits of Op are known to be either zero or one and return 2859 /// them in Known. For vectors, the known bits are those that are shared by 2860 /// every vector element. 2861 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2862 EVT VT = Op.getValueType(); 2863 2864 // TOOD: Until we have a plan for how to represent demanded elements for 2865 // scalable vectors, we can just bail out for now. 2866 if (Op.getValueType().isScalableVector()) { 2867 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2868 return KnownBits(BitWidth); 2869 } 2870 2871 APInt DemandedElts = VT.isVector() 2872 ? APInt::getAllOnes(VT.getVectorNumElements()) 2873 : APInt(1, 1); 2874 return computeKnownBits(Op, DemandedElts, Depth); 2875 } 2876 2877 /// Determine which bits of Op are known to be either zero or one and return 2878 /// them in Known. The DemandedElts argument allows us to only collect the known 2879 /// bits that are shared by the requested vector elements. 2880 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2881 unsigned Depth) const { 2882 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2883 2884 KnownBits Known(BitWidth); // Don't know anything. 2885 2886 // TOOD: Until we have a plan for how to represent demanded elements for 2887 // scalable vectors, we can just bail out for now. 2888 if (Op.getValueType().isScalableVector()) 2889 return Known; 2890 2891 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2892 // We know all of the bits for a constant! 2893 return KnownBits::makeConstant(C->getAPIntValue()); 2894 } 2895 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2896 // We know all of the bits for a constant fp! 2897 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2898 } 2899 2900 if (Depth >= MaxRecursionDepth) 2901 return Known; // Limit search depth. 2902 2903 KnownBits Known2; 2904 unsigned NumElts = DemandedElts.getBitWidth(); 2905 assert((!Op.getValueType().isVector() || 2906 NumElts == Op.getValueType().getVectorNumElements()) && 2907 "Unexpected vector size"); 2908 2909 if (!DemandedElts) 2910 return Known; // No demanded elts, better to assume we don't know anything. 2911 2912 unsigned Opcode = Op.getOpcode(); 2913 switch (Opcode) { 2914 case ISD::BUILD_VECTOR: 2915 // Collect the known bits that are shared by every demanded vector element. 2916 Known.Zero.setAllBits(); Known.One.setAllBits(); 2917 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2918 if (!DemandedElts[i]) 2919 continue; 2920 2921 SDValue SrcOp = Op.getOperand(i); 2922 Known2 = computeKnownBits(SrcOp, Depth + 1); 2923 2924 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2925 if (SrcOp.getValueSizeInBits() != BitWidth) { 2926 assert(SrcOp.getValueSizeInBits() > BitWidth && 2927 "Expected BUILD_VECTOR implicit truncation"); 2928 Known2 = Known2.trunc(BitWidth); 2929 } 2930 2931 // Known bits are the values that are shared by every demanded element. 2932 Known = KnownBits::commonBits(Known, Known2); 2933 2934 // If we don't know any bits, early out. 2935 if (Known.isUnknown()) 2936 break; 2937 } 2938 break; 2939 case ISD::VECTOR_SHUFFLE: { 2940 // Collect the known bits that are shared by every vector element referenced 2941 // by the shuffle. 2942 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2943 Known.Zero.setAllBits(); Known.One.setAllBits(); 2944 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2945 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2946 for (unsigned i = 0; i != NumElts; ++i) { 2947 if (!DemandedElts[i]) 2948 continue; 2949 2950 int M = SVN->getMaskElt(i); 2951 if (M < 0) { 2952 // For UNDEF elements, we don't know anything about the common state of 2953 // the shuffle result. 2954 Known.resetAll(); 2955 DemandedLHS.clearAllBits(); 2956 DemandedRHS.clearAllBits(); 2957 break; 2958 } 2959 2960 if ((unsigned)M < NumElts) 2961 DemandedLHS.setBit((unsigned)M % NumElts); 2962 else 2963 DemandedRHS.setBit((unsigned)M % NumElts); 2964 } 2965 // Known bits are the values that are shared by every demanded element. 2966 if (!!DemandedLHS) { 2967 SDValue LHS = Op.getOperand(0); 2968 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2969 Known = KnownBits::commonBits(Known, Known2); 2970 } 2971 // If we don't know any bits, early out. 2972 if (Known.isUnknown()) 2973 break; 2974 if (!!DemandedRHS) { 2975 SDValue RHS = Op.getOperand(1); 2976 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2977 Known = KnownBits::commonBits(Known, Known2); 2978 } 2979 break; 2980 } 2981 case ISD::CONCAT_VECTORS: { 2982 // Split DemandedElts and test each of the demanded subvectors. 2983 Known.Zero.setAllBits(); Known.One.setAllBits(); 2984 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2985 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2986 unsigned NumSubVectors = Op.getNumOperands(); 2987 for (unsigned i = 0; i != NumSubVectors; ++i) { 2988 APInt DemandedSub = 2989 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2990 if (!!DemandedSub) { 2991 SDValue Sub = Op.getOperand(i); 2992 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2993 Known = KnownBits::commonBits(Known, Known2); 2994 } 2995 // If we don't know any bits, early out. 2996 if (Known.isUnknown()) 2997 break; 2998 } 2999 break; 3000 } 3001 case ISD::INSERT_SUBVECTOR: { 3002 // Demand any elements from the subvector and the remainder from the src its 3003 // inserted into. 3004 SDValue Src = Op.getOperand(0); 3005 SDValue Sub = Op.getOperand(1); 3006 uint64_t Idx = Op.getConstantOperandVal(2); 3007 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3008 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3009 APInt DemandedSrcElts = DemandedElts; 3010 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3011 3012 Known.One.setAllBits(); 3013 Known.Zero.setAllBits(); 3014 if (!!DemandedSubElts) { 3015 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3016 if (Known.isUnknown()) 3017 break; // early-out. 3018 } 3019 if (!!DemandedSrcElts) { 3020 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3021 Known = KnownBits::commonBits(Known, Known2); 3022 } 3023 break; 3024 } 3025 case ISD::EXTRACT_SUBVECTOR: { 3026 // Offset the demanded elts by the subvector index. 3027 SDValue Src = Op.getOperand(0); 3028 // Bail until we can represent demanded elements for scalable vectors. 3029 if (Src.getValueType().isScalableVector()) 3030 break; 3031 uint64_t Idx = Op.getConstantOperandVal(1); 3032 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3033 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3034 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3035 break; 3036 } 3037 case ISD::SCALAR_TO_VECTOR: { 3038 // We know about scalar_to_vector as much as we know about it source, 3039 // which becomes the first element of otherwise unknown vector. 3040 if (DemandedElts != 1) 3041 break; 3042 3043 SDValue N0 = Op.getOperand(0); 3044 Known = computeKnownBits(N0, Depth + 1); 3045 if (N0.getValueSizeInBits() != BitWidth) 3046 Known = Known.trunc(BitWidth); 3047 3048 break; 3049 } 3050 case ISD::BITCAST: { 3051 SDValue N0 = Op.getOperand(0); 3052 EVT SubVT = N0.getValueType(); 3053 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3054 3055 // Ignore bitcasts from unsupported types. 3056 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3057 break; 3058 3059 // Fast handling of 'identity' bitcasts. 3060 if (BitWidth == SubBitWidth) { 3061 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3062 break; 3063 } 3064 3065 bool IsLE = getDataLayout().isLittleEndian(); 3066 3067 // Bitcast 'small element' vector to 'large element' scalar/vector. 3068 if ((BitWidth % SubBitWidth) == 0) { 3069 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3070 3071 // Collect known bits for the (larger) output by collecting the known 3072 // bits from each set of sub elements and shift these into place. 3073 // We need to separately call computeKnownBits for each set of 3074 // sub elements as the knownbits for each is likely to be different. 3075 unsigned SubScale = BitWidth / SubBitWidth; 3076 APInt SubDemandedElts(NumElts * SubScale, 0); 3077 for (unsigned i = 0; i != NumElts; ++i) 3078 if (DemandedElts[i]) 3079 SubDemandedElts.setBit(i * SubScale); 3080 3081 for (unsigned i = 0; i != SubScale; ++i) { 3082 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3083 Depth + 1); 3084 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3085 Known.insertBits(Known2, SubBitWidth * Shifts); 3086 } 3087 } 3088 3089 // Bitcast 'large element' scalar/vector to 'small element' vector. 3090 if ((SubBitWidth % BitWidth) == 0) { 3091 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3092 3093 // Collect known bits for the (smaller) output by collecting the known 3094 // bits from the overlapping larger input elements and extracting the 3095 // sub sections we actually care about. 3096 unsigned SubScale = SubBitWidth / BitWidth; 3097 APInt SubDemandedElts = 3098 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3099 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3100 3101 Known.Zero.setAllBits(); Known.One.setAllBits(); 3102 for (unsigned i = 0; i != NumElts; ++i) 3103 if (DemandedElts[i]) { 3104 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3105 unsigned Offset = (Shifts % SubScale) * BitWidth; 3106 Known = KnownBits::commonBits(Known, 3107 Known2.extractBits(BitWidth, Offset)); 3108 // If we don't know any bits, early out. 3109 if (Known.isUnknown()) 3110 break; 3111 } 3112 } 3113 break; 3114 } 3115 case ISD::AND: 3116 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3117 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3118 3119 Known &= Known2; 3120 break; 3121 case ISD::OR: 3122 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3123 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3124 3125 Known |= Known2; 3126 break; 3127 case ISD::XOR: 3128 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3129 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3130 3131 Known ^= Known2; 3132 break; 3133 case ISD::MUL: { 3134 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3135 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3136 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3137 // TODO: SelfMultiply can be poison, but not undef. 3138 if (SelfMultiply) 3139 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3140 Op.getOperand(0), DemandedElts, false, Depth + 1); 3141 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3142 break; 3143 } 3144 case ISD::MULHU: { 3145 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3146 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3147 Known = KnownBits::mulhu(Known, Known2); 3148 break; 3149 } 3150 case ISD::MULHS: { 3151 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3152 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3153 Known = KnownBits::mulhs(Known, Known2); 3154 break; 3155 } 3156 case ISD::UMUL_LOHI: { 3157 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3158 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3159 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3160 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3161 if (Op.getResNo() == 0) 3162 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3163 else 3164 Known = KnownBits::mulhu(Known, Known2); 3165 break; 3166 } 3167 case ISD::SMUL_LOHI: { 3168 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3169 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3170 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3171 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3172 if (Op.getResNo() == 0) 3173 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3174 else 3175 Known = KnownBits::mulhs(Known, Known2); 3176 break; 3177 } 3178 case ISD::UDIV: { 3179 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3180 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3181 Known = KnownBits::udiv(Known, Known2); 3182 break; 3183 } 3184 case ISD::AVGCEILU: { 3185 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3186 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3187 Known = Known.zext(BitWidth + 1); 3188 Known2 = Known2.zext(BitWidth + 1); 3189 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3190 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3191 Known = Known.extractBits(BitWidth, 1); 3192 break; 3193 } 3194 case ISD::SELECT: 3195 case ISD::VSELECT: 3196 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3197 // If we don't know any bits, early out. 3198 if (Known.isUnknown()) 3199 break; 3200 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3201 3202 // Only known if known in both the LHS and RHS. 3203 Known = KnownBits::commonBits(Known, Known2); 3204 break; 3205 case ISD::SELECT_CC: 3206 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3207 // If we don't know any bits, early out. 3208 if (Known.isUnknown()) 3209 break; 3210 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3211 3212 // Only known if known in both the LHS and RHS. 3213 Known = KnownBits::commonBits(Known, Known2); 3214 break; 3215 case ISD::SMULO: 3216 case ISD::UMULO: 3217 if (Op.getResNo() != 1) 3218 break; 3219 // The boolean result conforms to getBooleanContents. 3220 // If we know the result of a setcc has the top bits zero, use this info. 3221 // We know that we have an integer-based boolean since these operations 3222 // are only available for integer. 3223 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3224 TargetLowering::ZeroOrOneBooleanContent && 3225 BitWidth > 1) 3226 Known.Zero.setBitsFrom(1); 3227 break; 3228 case ISD::SETCC: 3229 case ISD::STRICT_FSETCC: 3230 case ISD::STRICT_FSETCCS: { 3231 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3232 // If we know the result of a setcc has the top bits zero, use this info. 3233 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3234 TargetLowering::ZeroOrOneBooleanContent && 3235 BitWidth > 1) 3236 Known.Zero.setBitsFrom(1); 3237 break; 3238 } 3239 case ISD::SHL: 3240 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3241 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3242 Known = KnownBits::shl(Known, Known2); 3243 3244 // Minimum shift low bits are known zero. 3245 if (const APInt *ShMinAmt = 3246 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3247 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3248 break; 3249 case ISD::SRL: 3250 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3251 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3252 Known = KnownBits::lshr(Known, Known2); 3253 3254 // Minimum shift high bits are known zero. 3255 if (const APInt *ShMinAmt = 3256 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3257 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3258 break; 3259 case ISD::SRA: 3260 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3261 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3262 Known = KnownBits::ashr(Known, Known2); 3263 // TODO: Add minimum shift high known sign bits. 3264 break; 3265 case ISD::FSHL: 3266 case ISD::FSHR: 3267 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3268 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3269 3270 // For fshl, 0-shift returns the 1st arg. 3271 // For fshr, 0-shift returns the 2nd arg. 3272 if (Amt == 0) { 3273 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3274 DemandedElts, Depth + 1); 3275 break; 3276 } 3277 3278 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3279 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3280 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3281 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3282 if (Opcode == ISD::FSHL) { 3283 Known.One <<= Amt; 3284 Known.Zero <<= Amt; 3285 Known2.One.lshrInPlace(BitWidth - Amt); 3286 Known2.Zero.lshrInPlace(BitWidth - Amt); 3287 } else { 3288 Known.One <<= BitWidth - Amt; 3289 Known.Zero <<= BitWidth - Amt; 3290 Known2.One.lshrInPlace(Amt); 3291 Known2.Zero.lshrInPlace(Amt); 3292 } 3293 Known.One |= Known2.One; 3294 Known.Zero |= Known2.Zero; 3295 } 3296 break; 3297 case ISD::SIGN_EXTEND_INREG: { 3298 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3299 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3300 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3301 break; 3302 } 3303 case ISD::CTTZ: 3304 case ISD::CTTZ_ZERO_UNDEF: { 3305 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3306 // If we have a known 1, its position is our upper bound. 3307 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3308 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3309 Known.Zero.setBitsFrom(LowBits); 3310 break; 3311 } 3312 case ISD::CTLZ: 3313 case ISD::CTLZ_ZERO_UNDEF: { 3314 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3315 // If we have a known 1, its position is our upper bound. 3316 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3317 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3318 Known.Zero.setBitsFrom(LowBits); 3319 break; 3320 } 3321 case ISD::CTPOP: { 3322 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3323 // If we know some of the bits are zero, they can't be one. 3324 unsigned PossibleOnes = Known2.countMaxPopulation(); 3325 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3326 break; 3327 } 3328 case ISD::PARITY: { 3329 // Parity returns 0 everywhere but the LSB. 3330 Known.Zero.setBitsFrom(1); 3331 break; 3332 } 3333 case ISD::LOAD: { 3334 LoadSDNode *LD = cast<LoadSDNode>(Op); 3335 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3336 if (ISD::isNON_EXTLoad(LD) && Cst) { 3337 // Determine any common known bits from the loaded constant pool value. 3338 Type *CstTy = Cst->getType(); 3339 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3340 // If its a vector splat, then we can (quickly) reuse the scalar path. 3341 // NOTE: We assume all elements match and none are UNDEF. 3342 if (CstTy->isVectorTy()) { 3343 if (const Constant *Splat = Cst->getSplatValue()) { 3344 Cst = Splat; 3345 CstTy = Cst->getType(); 3346 } 3347 } 3348 // TODO - do we need to handle different bitwidths? 3349 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3350 // Iterate across all vector elements finding common known bits. 3351 Known.One.setAllBits(); 3352 Known.Zero.setAllBits(); 3353 for (unsigned i = 0; i != NumElts; ++i) { 3354 if (!DemandedElts[i]) 3355 continue; 3356 if (Constant *Elt = Cst->getAggregateElement(i)) { 3357 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3358 const APInt &Value = CInt->getValue(); 3359 Known.One &= Value; 3360 Known.Zero &= ~Value; 3361 continue; 3362 } 3363 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3364 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3365 Known.One &= Value; 3366 Known.Zero &= ~Value; 3367 continue; 3368 } 3369 } 3370 Known.One.clearAllBits(); 3371 Known.Zero.clearAllBits(); 3372 break; 3373 } 3374 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3375 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3376 Known = KnownBits::makeConstant(CInt->getValue()); 3377 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3378 Known = 3379 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3380 } 3381 } 3382 } 3383 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3384 // If this is a ZEXTLoad and we are looking at the loaded value. 3385 EVT VT = LD->getMemoryVT(); 3386 unsigned MemBits = VT.getScalarSizeInBits(); 3387 Known.Zero.setBitsFrom(MemBits); 3388 } else if (const MDNode *Ranges = LD->getRanges()) { 3389 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3390 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3391 } 3392 break; 3393 } 3394 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3395 EVT InVT = Op.getOperand(0).getValueType(); 3396 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3397 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3398 Known = Known.zext(BitWidth); 3399 break; 3400 } 3401 case ISD::ZERO_EXTEND: { 3402 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3403 Known = Known.zext(BitWidth); 3404 break; 3405 } 3406 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3407 EVT InVT = Op.getOperand(0).getValueType(); 3408 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3409 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3410 // If the sign bit is known to be zero or one, then sext will extend 3411 // it to the top bits, else it will just zext. 3412 Known = Known.sext(BitWidth); 3413 break; 3414 } 3415 case ISD::SIGN_EXTEND: { 3416 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3417 // If the sign bit is known to be zero or one, then sext will extend 3418 // it to the top bits, else it will just zext. 3419 Known = Known.sext(BitWidth); 3420 break; 3421 } 3422 case ISD::ANY_EXTEND_VECTOR_INREG: { 3423 EVT InVT = Op.getOperand(0).getValueType(); 3424 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3425 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3426 Known = Known.anyext(BitWidth); 3427 break; 3428 } 3429 case ISD::ANY_EXTEND: { 3430 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3431 Known = Known.anyext(BitWidth); 3432 break; 3433 } 3434 case ISD::TRUNCATE: { 3435 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3436 Known = Known.trunc(BitWidth); 3437 break; 3438 } 3439 case ISD::AssertZext: { 3440 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3441 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3442 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3443 Known.Zero |= (~InMask); 3444 Known.One &= (~Known.Zero); 3445 break; 3446 } 3447 case ISD::AssertAlign: { 3448 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3449 assert(LogOfAlign != 0); 3450 3451 // TODO: Should use maximum with source 3452 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3453 // well as clearing one bits. 3454 Known.Zero.setLowBits(LogOfAlign); 3455 Known.One.clearLowBits(LogOfAlign); 3456 break; 3457 } 3458 case ISD::FGETSIGN: 3459 // All bits are zero except the low bit. 3460 Known.Zero.setBitsFrom(1); 3461 break; 3462 case ISD::USUBO: 3463 case ISD::SSUBO: 3464 if (Op.getResNo() == 1) { 3465 // If we know the result of a setcc has the top bits zero, use this info. 3466 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3467 TargetLowering::ZeroOrOneBooleanContent && 3468 BitWidth > 1) 3469 Known.Zero.setBitsFrom(1); 3470 break; 3471 } 3472 LLVM_FALLTHROUGH; 3473 case ISD::SUB: 3474 case ISD::SUBC: { 3475 assert(Op.getResNo() == 0 && 3476 "We only compute knownbits for the difference here."); 3477 3478 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3479 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3480 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3481 Known, Known2); 3482 break; 3483 } 3484 case ISD::UADDO: 3485 case ISD::SADDO: 3486 case ISD::ADDCARRY: 3487 if (Op.getResNo() == 1) { 3488 // If we know the result of a setcc has the top bits zero, use this info. 3489 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3490 TargetLowering::ZeroOrOneBooleanContent && 3491 BitWidth > 1) 3492 Known.Zero.setBitsFrom(1); 3493 break; 3494 } 3495 LLVM_FALLTHROUGH; 3496 case ISD::ADD: 3497 case ISD::ADDC: 3498 case ISD::ADDE: { 3499 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3500 3501 // With ADDE and ADDCARRY, a carry bit may be added in. 3502 KnownBits Carry(1); 3503 if (Opcode == ISD::ADDE) 3504 // Can't track carry from glue, set carry to unknown. 3505 Carry.resetAll(); 3506 else if (Opcode == ISD::ADDCARRY) 3507 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3508 // the trouble (how often will we find a known carry bit). And I haven't 3509 // tested this very much yet, but something like this might work: 3510 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3511 // Carry = Carry.zextOrTrunc(1, false); 3512 Carry.resetAll(); 3513 else 3514 Carry.setAllZero(); 3515 3516 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3517 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3518 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3519 break; 3520 } 3521 case ISD::SREM: { 3522 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3523 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3524 Known = KnownBits::srem(Known, Known2); 3525 break; 3526 } 3527 case ISD::UREM: { 3528 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3529 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3530 Known = KnownBits::urem(Known, Known2); 3531 break; 3532 } 3533 case ISD::EXTRACT_ELEMENT: { 3534 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3535 const unsigned Index = Op.getConstantOperandVal(1); 3536 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3537 3538 // Remove low part of known bits mask 3539 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3540 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3541 3542 // Remove high part of known bit mask 3543 Known = Known.trunc(EltBitWidth); 3544 break; 3545 } 3546 case ISD::EXTRACT_VECTOR_ELT: { 3547 SDValue InVec = Op.getOperand(0); 3548 SDValue EltNo = Op.getOperand(1); 3549 EVT VecVT = InVec.getValueType(); 3550 // computeKnownBits not yet implemented for scalable vectors. 3551 if (VecVT.isScalableVector()) 3552 break; 3553 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3554 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3555 3556 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3557 // anything about the extended bits. 3558 if (BitWidth > EltBitWidth) 3559 Known = Known.trunc(EltBitWidth); 3560 3561 // If we know the element index, just demand that vector element, else for 3562 // an unknown element index, ignore DemandedElts and demand them all. 3563 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3564 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3565 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3566 DemandedSrcElts = 3567 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3568 3569 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3570 if (BitWidth > EltBitWidth) 3571 Known = Known.anyext(BitWidth); 3572 break; 3573 } 3574 case ISD::INSERT_VECTOR_ELT: { 3575 // If we know the element index, split the demand between the 3576 // source vector and the inserted element, otherwise assume we need 3577 // the original demanded vector elements and the value. 3578 SDValue InVec = Op.getOperand(0); 3579 SDValue InVal = Op.getOperand(1); 3580 SDValue EltNo = Op.getOperand(2); 3581 bool DemandedVal = true; 3582 APInt DemandedVecElts = DemandedElts; 3583 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3584 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3585 unsigned EltIdx = CEltNo->getZExtValue(); 3586 DemandedVal = !!DemandedElts[EltIdx]; 3587 DemandedVecElts.clearBit(EltIdx); 3588 } 3589 Known.One.setAllBits(); 3590 Known.Zero.setAllBits(); 3591 if (DemandedVal) { 3592 Known2 = computeKnownBits(InVal, Depth + 1); 3593 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3594 } 3595 if (!!DemandedVecElts) { 3596 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3597 Known = KnownBits::commonBits(Known, Known2); 3598 } 3599 break; 3600 } 3601 case ISD::BITREVERSE: { 3602 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3603 Known = Known2.reverseBits(); 3604 break; 3605 } 3606 case ISD::BSWAP: { 3607 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3608 Known = Known2.byteSwap(); 3609 break; 3610 } 3611 case ISD::ABS: { 3612 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3613 Known = Known2.abs(); 3614 break; 3615 } 3616 case ISD::USUBSAT: { 3617 // The result of usubsat will never be larger than the LHS. 3618 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3619 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3620 break; 3621 } 3622 case ISD::UMIN: { 3623 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3624 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3625 Known = KnownBits::umin(Known, Known2); 3626 break; 3627 } 3628 case ISD::UMAX: { 3629 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3630 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3631 Known = KnownBits::umax(Known, Known2); 3632 break; 3633 } 3634 case ISD::SMIN: 3635 case ISD::SMAX: { 3636 // If we have a clamp pattern, we know that the number of sign bits will be 3637 // the minimum of the clamp min/max range. 3638 bool IsMax = (Opcode == ISD::SMAX); 3639 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3640 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3641 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3642 CstHigh = 3643 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3644 if (CstLow && CstHigh) { 3645 if (!IsMax) 3646 std::swap(CstLow, CstHigh); 3647 3648 const APInt &ValueLow = CstLow->getAPIntValue(); 3649 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3650 if (ValueLow.sle(ValueHigh)) { 3651 unsigned LowSignBits = ValueLow.getNumSignBits(); 3652 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3653 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3654 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3655 Known.One.setHighBits(MinSignBits); 3656 break; 3657 } 3658 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3659 Known.Zero.setHighBits(MinSignBits); 3660 break; 3661 } 3662 } 3663 } 3664 3665 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3667 if (IsMax) 3668 Known = KnownBits::smax(Known, Known2); 3669 else 3670 Known = KnownBits::smin(Known, Known2); 3671 break; 3672 } 3673 case ISD::FP_TO_UINT_SAT: { 3674 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3675 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3676 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3677 break; 3678 } 3679 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3680 if (Op.getResNo() == 1) { 3681 // The boolean result conforms to getBooleanContents. 3682 // If we know the result of a setcc has the top bits zero, use this info. 3683 // We know that we have an integer-based boolean since these operations 3684 // are only available for integer. 3685 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3686 TargetLowering::ZeroOrOneBooleanContent && 3687 BitWidth > 1) 3688 Known.Zero.setBitsFrom(1); 3689 break; 3690 } 3691 LLVM_FALLTHROUGH; 3692 case ISD::ATOMIC_CMP_SWAP: 3693 case ISD::ATOMIC_SWAP: 3694 case ISD::ATOMIC_LOAD_ADD: 3695 case ISD::ATOMIC_LOAD_SUB: 3696 case ISD::ATOMIC_LOAD_AND: 3697 case ISD::ATOMIC_LOAD_CLR: 3698 case ISD::ATOMIC_LOAD_OR: 3699 case ISD::ATOMIC_LOAD_XOR: 3700 case ISD::ATOMIC_LOAD_NAND: 3701 case ISD::ATOMIC_LOAD_MIN: 3702 case ISD::ATOMIC_LOAD_MAX: 3703 case ISD::ATOMIC_LOAD_UMIN: 3704 case ISD::ATOMIC_LOAD_UMAX: 3705 case ISD::ATOMIC_LOAD: { 3706 unsigned MemBits = 3707 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3708 // If we are looking at the loaded value. 3709 if (Op.getResNo() == 0) { 3710 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3711 Known.Zero.setBitsFrom(MemBits); 3712 } 3713 break; 3714 } 3715 case ISD::FrameIndex: 3716 case ISD::TargetFrameIndex: 3717 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3718 Known, getMachineFunction()); 3719 break; 3720 3721 default: 3722 if (Opcode < ISD::BUILTIN_OP_END) 3723 break; 3724 LLVM_FALLTHROUGH; 3725 case ISD::INTRINSIC_WO_CHAIN: 3726 case ISD::INTRINSIC_W_CHAIN: 3727 case ISD::INTRINSIC_VOID: 3728 // Allow the target to implement this method for its nodes. 3729 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3730 break; 3731 } 3732 3733 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3734 return Known; 3735 } 3736 3737 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3738 SDValue N1) const { 3739 // X + 0 never overflow 3740 if (isNullConstant(N1)) 3741 return OFK_Never; 3742 3743 KnownBits N1Known = computeKnownBits(N1); 3744 if (N1Known.Zero.getBoolValue()) { 3745 KnownBits N0Known = computeKnownBits(N0); 3746 3747 bool overflow; 3748 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3749 if (!overflow) 3750 return OFK_Never; 3751 } 3752 3753 // mulhi + 1 never overflow 3754 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3755 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3756 return OFK_Never; 3757 3758 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3759 KnownBits N0Known = computeKnownBits(N0); 3760 3761 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3762 return OFK_Never; 3763 } 3764 3765 return OFK_Sometime; 3766 } 3767 3768 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3769 EVT OpVT = Val.getValueType(); 3770 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3771 3772 // Is the constant a known power of 2? 3773 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3774 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3775 3776 // A left-shift of a constant one will have exactly one bit set because 3777 // shifting the bit off the end is undefined. 3778 if (Val.getOpcode() == ISD::SHL) { 3779 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3780 if (C && C->getAPIntValue() == 1) 3781 return true; 3782 } 3783 3784 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3785 // one bit set. 3786 if (Val.getOpcode() == ISD::SRL) { 3787 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3788 if (C && C->getAPIntValue().isSignMask()) 3789 return true; 3790 } 3791 3792 // Are all operands of a build vector constant powers of two? 3793 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3794 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3795 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3796 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3797 return false; 3798 })) 3799 return true; 3800 3801 // Is the operand of a splat vector a constant power of two? 3802 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3803 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3804 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3805 return true; 3806 3807 // More could be done here, though the above checks are enough 3808 // to handle some common cases. 3809 3810 // Fall back to computeKnownBits to catch other known cases. 3811 KnownBits Known = computeKnownBits(Val); 3812 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3813 } 3814 3815 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3816 EVT VT = Op.getValueType(); 3817 3818 // TODO: Assume we don't know anything for now. 3819 if (VT.isScalableVector()) 3820 return 1; 3821 3822 APInt DemandedElts = VT.isVector() 3823 ? APInt::getAllOnes(VT.getVectorNumElements()) 3824 : APInt(1, 1); 3825 return ComputeNumSignBits(Op, DemandedElts, Depth); 3826 } 3827 3828 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3829 unsigned Depth) const { 3830 EVT VT = Op.getValueType(); 3831 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3832 unsigned VTBits = VT.getScalarSizeInBits(); 3833 unsigned NumElts = DemandedElts.getBitWidth(); 3834 unsigned Tmp, Tmp2; 3835 unsigned FirstAnswer = 1; 3836 3837 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3838 const APInt &Val = C->getAPIntValue(); 3839 return Val.getNumSignBits(); 3840 } 3841 3842 if (Depth >= MaxRecursionDepth) 3843 return 1; // Limit search depth. 3844 3845 if (!DemandedElts || VT.isScalableVector()) 3846 return 1; // No demanded elts, better to assume we don't know anything. 3847 3848 unsigned Opcode = Op.getOpcode(); 3849 switch (Opcode) { 3850 default: break; 3851 case ISD::AssertSext: 3852 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3853 return VTBits-Tmp+1; 3854 case ISD::AssertZext: 3855 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3856 return VTBits-Tmp; 3857 3858 case ISD::BUILD_VECTOR: 3859 Tmp = VTBits; 3860 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3861 if (!DemandedElts[i]) 3862 continue; 3863 3864 SDValue SrcOp = Op.getOperand(i); 3865 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3866 3867 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3868 if (SrcOp.getValueSizeInBits() != VTBits) { 3869 assert(SrcOp.getValueSizeInBits() > VTBits && 3870 "Expected BUILD_VECTOR implicit truncation"); 3871 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3872 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3873 } 3874 Tmp = std::min(Tmp, Tmp2); 3875 } 3876 return Tmp; 3877 3878 case ISD::VECTOR_SHUFFLE: { 3879 // Collect the minimum number of sign bits that are shared by every vector 3880 // element referenced by the shuffle. 3881 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3882 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3883 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3884 for (unsigned i = 0; i != NumElts; ++i) { 3885 int M = SVN->getMaskElt(i); 3886 if (!DemandedElts[i]) 3887 continue; 3888 // For UNDEF elements, we don't know anything about the common state of 3889 // the shuffle result. 3890 if (M < 0) 3891 return 1; 3892 if ((unsigned)M < NumElts) 3893 DemandedLHS.setBit((unsigned)M % NumElts); 3894 else 3895 DemandedRHS.setBit((unsigned)M % NumElts); 3896 } 3897 Tmp = std::numeric_limits<unsigned>::max(); 3898 if (!!DemandedLHS) 3899 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3900 if (!!DemandedRHS) { 3901 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3902 Tmp = std::min(Tmp, Tmp2); 3903 } 3904 // If we don't know anything, early out and try computeKnownBits fall-back. 3905 if (Tmp == 1) 3906 break; 3907 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3908 return Tmp; 3909 } 3910 3911 case ISD::BITCAST: { 3912 SDValue N0 = Op.getOperand(0); 3913 EVT SrcVT = N0.getValueType(); 3914 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3915 3916 // Ignore bitcasts from unsupported types.. 3917 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3918 break; 3919 3920 // Fast handling of 'identity' bitcasts. 3921 if (VTBits == SrcBits) 3922 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3923 3924 bool IsLE = getDataLayout().isLittleEndian(); 3925 3926 // Bitcast 'large element' scalar/vector to 'small element' vector. 3927 if ((SrcBits % VTBits) == 0) { 3928 assert(VT.isVector() && "Expected bitcast to vector"); 3929 3930 unsigned Scale = SrcBits / VTBits; 3931 APInt SrcDemandedElts = 3932 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3933 3934 // Fast case - sign splat can be simply split across the small elements. 3935 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3936 if (Tmp == SrcBits) 3937 return VTBits; 3938 3939 // Slow case - determine how far the sign extends into each sub-element. 3940 Tmp2 = VTBits; 3941 for (unsigned i = 0; i != NumElts; ++i) 3942 if (DemandedElts[i]) { 3943 unsigned SubOffset = i % Scale; 3944 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3945 SubOffset = SubOffset * VTBits; 3946 if (Tmp <= SubOffset) 3947 return 1; 3948 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3949 } 3950 return Tmp2; 3951 } 3952 break; 3953 } 3954 3955 case ISD::FP_TO_SINT_SAT: 3956 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 3957 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3958 return VTBits - Tmp + 1; 3959 case ISD::SIGN_EXTEND: 3960 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3961 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3962 case ISD::SIGN_EXTEND_INREG: 3963 // Max of the input and what this extends. 3964 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3965 Tmp = VTBits-Tmp+1; 3966 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3967 return std::max(Tmp, Tmp2); 3968 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3969 SDValue Src = Op.getOperand(0); 3970 EVT SrcVT = Src.getValueType(); 3971 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3972 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3973 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3974 } 3975 case ISD::SRA: 3976 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3977 // SRA X, C -> adds C sign bits. 3978 if (const APInt *ShAmt = 3979 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3980 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3981 return Tmp; 3982 case ISD::SHL: 3983 if (const APInt *ShAmt = 3984 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3985 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3986 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3987 if (ShAmt->ult(Tmp)) 3988 return Tmp - ShAmt->getZExtValue(); 3989 } 3990 break; 3991 case ISD::AND: 3992 case ISD::OR: 3993 case ISD::XOR: // NOT is handled here. 3994 // Logical binary ops preserve the number of sign bits at the worst. 3995 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3996 if (Tmp != 1) { 3997 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3998 FirstAnswer = std::min(Tmp, Tmp2); 3999 // We computed what we know about the sign bits as our first 4000 // answer. Now proceed to the generic code that uses 4001 // computeKnownBits, and pick whichever answer is better. 4002 } 4003 break; 4004 4005 case ISD::SELECT: 4006 case ISD::VSELECT: 4007 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4008 if (Tmp == 1) return 1; // Early out. 4009 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4010 return std::min(Tmp, Tmp2); 4011 case ISD::SELECT_CC: 4012 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4013 if (Tmp == 1) return 1; // Early out. 4014 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4015 return std::min(Tmp, Tmp2); 4016 4017 case ISD::SMIN: 4018 case ISD::SMAX: { 4019 // If we have a clamp pattern, we know that the number of sign bits will be 4020 // the minimum of the clamp min/max range. 4021 bool IsMax = (Opcode == ISD::SMAX); 4022 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4023 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4024 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4025 CstHigh = 4026 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4027 if (CstLow && CstHigh) { 4028 if (!IsMax) 4029 std::swap(CstLow, CstHigh); 4030 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4031 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4032 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4033 return std::min(Tmp, Tmp2); 4034 } 4035 } 4036 4037 // Fallback - just get the minimum number of sign bits of the operands. 4038 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4039 if (Tmp == 1) 4040 return 1; // Early out. 4041 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4042 return std::min(Tmp, Tmp2); 4043 } 4044 case ISD::UMIN: 4045 case ISD::UMAX: 4046 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4047 if (Tmp == 1) 4048 return 1; // Early out. 4049 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4050 return std::min(Tmp, Tmp2); 4051 case ISD::SADDO: 4052 case ISD::UADDO: 4053 case ISD::SSUBO: 4054 case ISD::USUBO: 4055 case ISD::SMULO: 4056 case ISD::UMULO: 4057 if (Op.getResNo() != 1) 4058 break; 4059 // The boolean result conforms to getBooleanContents. Fall through. 4060 // If setcc returns 0/-1, all bits are sign bits. 4061 // We know that we have an integer-based boolean since these operations 4062 // are only available for integer. 4063 if (TLI->getBooleanContents(VT.isVector(), false) == 4064 TargetLowering::ZeroOrNegativeOneBooleanContent) 4065 return VTBits; 4066 break; 4067 case ISD::SETCC: 4068 case ISD::STRICT_FSETCC: 4069 case ISD::STRICT_FSETCCS: { 4070 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4071 // If setcc returns 0/-1, all bits are sign bits. 4072 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4073 TargetLowering::ZeroOrNegativeOneBooleanContent) 4074 return VTBits; 4075 break; 4076 } 4077 case ISD::ROTL: 4078 case ISD::ROTR: 4079 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4080 4081 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4082 if (Tmp == VTBits) 4083 return VTBits; 4084 4085 if (ConstantSDNode *C = 4086 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4087 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4088 4089 // Handle rotate right by N like a rotate left by 32-N. 4090 if (Opcode == ISD::ROTR) 4091 RotAmt = (VTBits - RotAmt) % VTBits; 4092 4093 // If we aren't rotating out all of the known-in sign bits, return the 4094 // number that are left. This handles rotl(sext(x), 1) for example. 4095 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4096 } 4097 break; 4098 case ISD::ADD: 4099 case ISD::ADDC: 4100 // Add can have at most one carry bit. Thus we know that the output 4101 // is, at worst, one more bit than the inputs. 4102 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4103 if (Tmp == 1) return 1; // Early out. 4104 4105 // Special case decrementing a value (ADD X, -1): 4106 if (ConstantSDNode *CRHS = 4107 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4108 if (CRHS->isAllOnes()) { 4109 KnownBits Known = 4110 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4111 4112 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4113 // sign bits set. 4114 if ((Known.Zero | 1).isAllOnes()) 4115 return VTBits; 4116 4117 // If we are subtracting one from a positive number, there is no carry 4118 // out of the result. 4119 if (Known.isNonNegative()) 4120 return Tmp; 4121 } 4122 4123 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4124 if (Tmp2 == 1) return 1; // Early out. 4125 return std::min(Tmp, Tmp2) - 1; 4126 case ISD::SUB: 4127 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4128 if (Tmp2 == 1) return 1; // Early out. 4129 4130 // Handle NEG. 4131 if (ConstantSDNode *CLHS = 4132 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4133 if (CLHS->isZero()) { 4134 KnownBits Known = 4135 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4136 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4137 // sign bits set. 4138 if ((Known.Zero | 1).isAllOnes()) 4139 return VTBits; 4140 4141 // If the input is known to be positive (the sign bit is known clear), 4142 // the output of the NEG has the same number of sign bits as the input. 4143 if (Known.isNonNegative()) 4144 return Tmp2; 4145 4146 // Otherwise, we treat this like a SUB. 4147 } 4148 4149 // Sub can have at most one carry bit. Thus we know that the output 4150 // is, at worst, one more bit than the inputs. 4151 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4152 if (Tmp == 1) return 1; // Early out. 4153 return std::min(Tmp, Tmp2) - 1; 4154 case ISD::MUL: { 4155 // The output of the Mul can be at most twice the valid bits in the inputs. 4156 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4157 if (SignBitsOp0 == 1) 4158 break; 4159 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4160 if (SignBitsOp1 == 1) 4161 break; 4162 unsigned OutValidBits = 4163 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4164 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4165 } 4166 case ISD::SREM: 4167 // The sign bit is the LHS's sign bit, except when the result of the 4168 // remainder is zero. The magnitude of the result should be less than or 4169 // equal to the magnitude of the LHS. Therefore, the result should have 4170 // at least as many sign bits as the left hand side. 4171 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4172 case ISD::TRUNCATE: { 4173 // Check if the sign bits of source go down as far as the truncated value. 4174 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4175 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4176 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4177 return NumSrcSignBits - (NumSrcBits - VTBits); 4178 break; 4179 } 4180 case ISD::EXTRACT_ELEMENT: { 4181 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4182 const int BitWidth = Op.getValueSizeInBits(); 4183 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4184 4185 // Get reverse index (starting from 1), Op1 value indexes elements from 4186 // little end. Sign starts at big end. 4187 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4188 4189 // If the sign portion ends in our element the subtraction gives correct 4190 // result. Otherwise it gives either negative or > bitwidth result 4191 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4192 } 4193 case ISD::INSERT_VECTOR_ELT: { 4194 // If we know the element index, split the demand between the 4195 // source vector and the inserted element, otherwise assume we need 4196 // the original demanded vector elements and the value. 4197 SDValue InVec = Op.getOperand(0); 4198 SDValue InVal = Op.getOperand(1); 4199 SDValue EltNo = Op.getOperand(2); 4200 bool DemandedVal = true; 4201 APInt DemandedVecElts = DemandedElts; 4202 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4203 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4204 unsigned EltIdx = CEltNo->getZExtValue(); 4205 DemandedVal = !!DemandedElts[EltIdx]; 4206 DemandedVecElts.clearBit(EltIdx); 4207 } 4208 Tmp = std::numeric_limits<unsigned>::max(); 4209 if (DemandedVal) { 4210 // TODO - handle implicit truncation of inserted elements. 4211 if (InVal.getScalarValueSizeInBits() != VTBits) 4212 break; 4213 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4214 Tmp = std::min(Tmp, Tmp2); 4215 } 4216 if (!!DemandedVecElts) { 4217 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4218 Tmp = std::min(Tmp, Tmp2); 4219 } 4220 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4221 return Tmp; 4222 } 4223 case ISD::EXTRACT_VECTOR_ELT: { 4224 SDValue InVec = Op.getOperand(0); 4225 SDValue EltNo = Op.getOperand(1); 4226 EVT VecVT = InVec.getValueType(); 4227 // ComputeNumSignBits not yet implemented for scalable vectors. 4228 if (VecVT.isScalableVector()) 4229 break; 4230 const unsigned BitWidth = Op.getValueSizeInBits(); 4231 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4232 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4233 4234 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4235 // anything about sign bits. But if the sizes match we can derive knowledge 4236 // about sign bits from the vector operand. 4237 if (BitWidth != EltBitWidth) 4238 break; 4239 4240 // If we know the element index, just demand that vector element, else for 4241 // an unknown element index, ignore DemandedElts and demand them all. 4242 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4243 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4244 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4245 DemandedSrcElts = 4246 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4247 4248 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4249 } 4250 case ISD::EXTRACT_SUBVECTOR: { 4251 // Offset the demanded elts by the subvector index. 4252 SDValue Src = Op.getOperand(0); 4253 // Bail until we can represent demanded elements for scalable vectors. 4254 if (Src.getValueType().isScalableVector()) 4255 break; 4256 uint64_t Idx = Op.getConstantOperandVal(1); 4257 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4258 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4259 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4260 } 4261 case ISD::CONCAT_VECTORS: { 4262 // Determine the minimum number of sign bits across all demanded 4263 // elts of the input vectors. Early out if the result is already 1. 4264 Tmp = std::numeric_limits<unsigned>::max(); 4265 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4266 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4267 unsigned NumSubVectors = Op.getNumOperands(); 4268 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4269 APInt DemandedSub = 4270 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4271 if (!DemandedSub) 4272 continue; 4273 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4274 Tmp = std::min(Tmp, Tmp2); 4275 } 4276 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4277 return Tmp; 4278 } 4279 case ISD::INSERT_SUBVECTOR: { 4280 // Demand any elements from the subvector and the remainder from the src its 4281 // inserted into. 4282 SDValue Src = Op.getOperand(0); 4283 SDValue Sub = Op.getOperand(1); 4284 uint64_t Idx = Op.getConstantOperandVal(2); 4285 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4286 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4287 APInt DemandedSrcElts = DemandedElts; 4288 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4289 4290 Tmp = std::numeric_limits<unsigned>::max(); 4291 if (!!DemandedSubElts) { 4292 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4293 if (Tmp == 1) 4294 return 1; // early-out 4295 } 4296 if (!!DemandedSrcElts) { 4297 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4298 Tmp = std::min(Tmp, Tmp2); 4299 } 4300 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4301 return Tmp; 4302 } 4303 case ISD::ATOMIC_CMP_SWAP: 4304 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4305 case ISD::ATOMIC_SWAP: 4306 case ISD::ATOMIC_LOAD_ADD: 4307 case ISD::ATOMIC_LOAD_SUB: 4308 case ISD::ATOMIC_LOAD_AND: 4309 case ISD::ATOMIC_LOAD_CLR: 4310 case ISD::ATOMIC_LOAD_OR: 4311 case ISD::ATOMIC_LOAD_XOR: 4312 case ISD::ATOMIC_LOAD_NAND: 4313 case ISD::ATOMIC_LOAD_MIN: 4314 case ISD::ATOMIC_LOAD_MAX: 4315 case ISD::ATOMIC_LOAD_UMIN: 4316 case ISD::ATOMIC_LOAD_UMAX: 4317 case ISD::ATOMIC_LOAD: { 4318 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4319 // If we are looking at the loaded value. 4320 if (Op.getResNo() == 0) { 4321 if (Tmp == VTBits) 4322 return 1; // early-out 4323 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4324 return VTBits - Tmp + 1; 4325 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4326 return VTBits - Tmp; 4327 } 4328 break; 4329 } 4330 } 4331 4332 // If we are looking at the loaded value of the SDNode. 4333 if (Op.getResNo() == 0) { 4334 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4335 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4336 unsigned ExtType = LD->getExtensionType(); 4337 switch (ExtType) { 4338 default: break; 4339 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4340 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4341 return VTBits - Tmp + 1; 4342 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4343 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4344 return VTBits - Tmp; 4345 case ISD::NON_EXTLOAD: 4346 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4347 // We only need to handle vectors - computeKnownBits should handle 4348 // scalar cases. 4349 Type *CstTy = Cst->getType(); 4350 if (CstTy->isVectorTy() && 4351 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4352 VTBits == CstTy->getScalarSizeInBits()) { 4353 Tmp = VTBits; 4354 for (unsigned i = 0; i != NumElts; ++i) { 4355 if (!DemandedElts[i]) 4356 continue; 4357 if (Constant *Elt = Cst->getAggregateElement(i)) { 4358 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4359 const APInt &Value = CInt->getValue(); 4360 Tmp = std::min(Tmp, Value.getNumSignBits()); 4361 continue; 4362 } 4363 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4364 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4365 Tmp = std::min(Tmp, Value.getNumSignBits()); 4366 continue; 4367 } 4368 } 4369 // Unknown type. Conservatively assume no bits match sign bit. 4370 return 1; 4371 } 4372 return Tmp; 4373 } 4374 } 4375 break; 4376 } 4377 } 4378 } 4379 4380 // Allow the target to implement this method for its nodes. 4381 if (Opcode >= ISD::BUILTIN_OP_END || 4382 Opcode == ISD::INTRINSIC_WO_CHAIN || 4383 Opcode == ISD::INTRINSIC_W_CHAIN || 4384 Opcode == ISD::INTRINSIC_VOID) { 4385 unsigned NumBits = 4386 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4387 if (NumBits > 1) 4388 FirstAnswer = std::max(FirstAnswer, NumBits); 4389 } 4390 4391 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4392 // use this information. 4393 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4394 return std::max(FirstAnswer, Known.countMinSignBits()); 4395 } 4396 4397 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4398 unsigned Depth) const { 4399 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4400 return Op.getScalarValueSizeInBits() - SignBits + 1; 4401 } 4402 4403 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4404 const APInt &DemandedElts, 4405 unsigned Depth) const { 4406 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4407 return Op.getScalarValueSizeInBits() - SignBits + 1; 4408 } 4409 4410 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4411 unsigned Depth) const { 4412 // Early out for FREEZE. 4413 if (Op.getOpcode() == ISD::FREEZE) 4414 return true; 4415 4416 // TODO: Assume we don't know anything for now. 4417 EVT VT = Op.getValueType(); 4418 if (VT.isScalableVector()) 4419 return false; 4420 4421 APInt DemandedElts = VT.isVector() 4422 ? APInt::getAllOnes(VT.getVectorNumElements()) 4423 : APInt(1, 1); 4424 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4425 } 4426 4427 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4428 const APInt &DemandedElts, 4429 bool PoisonOnly, 4430 unsigned Depth) const { 4431 unsigned Opcode = Op.getOpcode(); 4432 4433 // Early out for FREEZE. 4434 if (Opcode == ISD::FREEZE) 4435 return true; 4436 4437 if (Depth >= MaxRecursionDepth) 4438 return false; // Limit search depth. 4439 4440 if (isIntOrFPConstant(Op)) 4441 return true; 4442 4443 switch (Opcode) { 4444 case ISD::UNDEF: 4445 return PoisonOnly; 4446 4447 case ISD::BUILD_VECTOR: 4448 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4449 // this shouldn't affect the result. 4450 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4451 if (!DemandedElts[i]) 4452 continue; 4453 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4454 Depth + 1)) 4455 return false; 4456 } 4457 return true; 4458 4459 // TODO: Search for noundef attributes from library functions. 4460 4461 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4462 4463 default: 4464 // Allow the target to implement this method for its nodes. 4465 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4466 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4467 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4468 Op, DemandedElts, *this, PoisonOnly, Depth); 4469 break; 4470 } 4471 4472 return false; 4473 } 4474 4475 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4476 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4477 !isa<ConstantSDNode>(Op.getOperand(1))) 4478 return false; 4479 4480 if (Op.getOpcode() == ISD::OR && 4481 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4482 return false; 4483 4484 return true; 4485 } 4486 4487 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4488 // If we're told that NaNs won't happen, assume they won't. 4489 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4490 return true; 4491 4492 if (Depth >= MaxRecursionDepth) 4493 return false; // Limit search depth. 4494 4495 // TODO: Handle vectors. 4496 // If the value is a constant, we can obviously see if it is a NaN or not. 4497 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4498 return !C->getValueAPF().isNaN() || 4499 (SNaN && !C->getValueAPF().isSignaling()); 4500 } 4501 4502 unsigned Opcode = Op.getOpcode(); 4503 switch (Opcode) { 4504 case ISD::FADD: 4505 case ISD::FSUB: 4506 case ISD::FMUL: 4507 case ISD::FDIV: 4508 case ISD::FREM: 4509 case ISD::FSIN: 4510 case ISD::FCOS: { 4511 if (SNaN) 4512 return true; 4513 // TODO: Need isKnownNeverInfinity 4514 return false; 4515 } 4516 case ISD::FCANONICALIZE: 4517 case ISD::FEXP: 4518 case ISD::FEXP2: 4519 case ISD::FTRUNC: 4520 case ISD::FFLOOR: 4521 case ISD::FCEIL: 4522 case ISD::FROUND: 4523 case ISD::FROUNDEVEN: 4524 case ISD::FRINT: 4525 case ISD::FNEARBYINT: { 4526 if (SNaN) 4527 return true; 4528 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4529 } 4530 case ISD::FABS: 4531 case ISD::FNEG: 4532 case ISD::FCOPYSIGN: { 4533 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4534 } 4535 case ISD::SELECT: 4536 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4537 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4538 case ISD::FP_EXTEND: 4539 case ISD::FP_ROUND: { 4540 if (SNaN) 4541 return true; 4542 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4543 } 4544 case ISD::SINT_TO_FP: 4545 case ISD::UINT_TO_FP: 4546 return true; 4547 case ISD::FMA: 4548 case ISD::FMAD: { 4549 if (SNaN) 4550 return true; 4551 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4552 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4553 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4554 } 4555 case ISD::FSQRT: // Need is known positive 4556 case ISD::FLOG: 4557 case ISD::FLOG2: 4558 case ISD::FLOG10: 4559 case ISD::FPOWI: 4560 case ISD::FPOW: { 4561 if (SNaN) 4562 return true; 4563 // TODO: Refine on operand 4564 return false; 4565 } 4566 case ISD::FMINNUM: 4567 case ISD::FMAXNUM: { 4568 // Only one needs to be known not-nan, since it will be returned if the 4569 // other ends up being one. 4570 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4571 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4572 } 4573 case ISD::FMINNUM_IEEE: 4574 case ISD::FMAXNUM_IEEE: { 4575 if (SNaN) 4576 return true; 4577 // This can return a NaN if either operand is an sNaN, or if both operands 4578 // are NaN. 4579 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4580 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4581 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4582 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4583 } 4584 case ISD::FMINIMUM: 4585 case ISD::FMAXIMUM: { 4586 // TODO: Does this quiet or return the origina NaN as-is? 4587 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4588 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4589 } 4590 case ISD::EXTRACT_VECTOR_ELT: { 4591 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4592 } 4593 default: 4594 if (Opcode >= ISD::BUILTIN_OP_END || 4595 Opcode == ISD::INTRINSIC_WO_CHAIN || 4596 Opcode == ISD::INTRINSIC_W_CHAIN || 4597 Opcode == ISD::INTRINSIC_VOID) { 4598 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4599 } 4600 4601 return false; 4602 } 4603 } 4604 4605 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4606 assert(Op.getValueType().isFloatingPoint() && 4607 "Floating point type expected"); 4608 4609 // If the value is a constant, we can obviously see if it is a zero or not. 4610 // TODO: Add BuildVector support. 4611 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4612 return !C->isZero(); 4613 return false; 4614 } 4615 4616 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4617 assert(!Op.getValueType().isFloatingPoint() && 4618 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4619 4620 // If the value is a constant, we can obviously see if it is a zero or not. 4621 if (ISD::matchUnaryPredicate(Op, 4622 [](ConstantSDNode *C) { return !C->isZero(); })) 4623 return true; 4624 4625 // TODO: Recognize more cases here. 4626 switch (Op.getOpcode()) { 4627 default: break; 4628 case ISD::OR: 4629 if (isKnownNeverZero(Op.getOperand(1)) || 4630 isKnownNeverZero(Op.getOperand(0))) 4631 return true; 4632 break; 4633 } 4634 4635 return false; 4636 } 4637 4638 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4639 // Check the obvious case. 4640 if (A == B) return true; 4641 4642 // For for negative and positive zero. 4643 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4644 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4645 if (CA->isZero() && CB->isZero()) return true; 4646 4647 // Otherwise they may not be equal. 4648 return false; 4649 } 4650 4651 // FIXME: unify with llvm::haveNoCommonBitsSet. 4652 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4653 assert(A.getValueType() == B.getValueType() && 4654 "Values must have the same type"); 4655 // Match masked merge pattern (X & ~M) op (Y & M) 4656 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4657 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4658 if (isBitwiseNot(NotM, true)) { 4659 SDValue NotOperand = NotM->getOperand(0); 4660 return NotOperand == And->getOperand(0) || 4661 NotOperand == And->getOperand(1); 4662 } 4663 return false; 4664 }; 4665 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4666 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4667 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4668 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4669 return true; 4670 } 4671 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4672 computeKnownBits(B)); 4673 } 4674 4675 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4676 SelectionDAG &DAG) { 4677 if (cast<ConstantSDNode>(Step)->isZero()) 4678 return DAG.getConstant(0, DL, VT); 4679 4680 return SDValue(); 4681 } 4682 4683 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4684 ArrayRef<SDValue> Ops, 4685 SelectionDAG &DAG) { 4686 int NumOps = Ops.size(); 4687 assert(NumOps != 0 && "Can't build an empty vector!"); 4688 assert(!VT.isScalableVector() && 4689 "BUILD_VECTOR cannot be used with scalable types"); 4690 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4691 "Incorrect element count in BUILD_VECTOR!"); 4692 4693 // BUILD_VECTOR of UNDEFs is UNDEF. 4694 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4695 return DAG.getUNDEF(VT); 4696 4697 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4698 SDValue IdentitySrc; 4699 bool IsIdentity = true; 4700 for (int i = 0; i != NumOps; ++i) { 4701 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4702 Ops[i].getOperand(0).getValueType() != VT || 4703 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4704 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4705 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4706 IsIdentity = false; 4707 break; 4708 } 4709 IdentitySrc = Ops[i].getOperand(0); 4710 } 4711 if (IsIdentity) 4712 return IdentitySrc; 4713 4714 return SDValue(); 4715 } 4716 4717 /// Try to simplify vector concatenation to an input value, undef, or build 4718 /// vector. 4719 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4720 ArrayRef<SDValue> Ops, 4721 SelectionDAG &DAG) { 4722 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4723 assert(llvm::all_of(Ops, 4724 [Ops](SDValue Op) { 4725 return Ops[0].getValueType() == Op.getValueType(); 4726 }) && 4727 "Concatenation of vectors with inconsistent value types!"); 4728 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4729 VT.getVectorElementCount() && 4730 "Incorrect element count in vector concatenation!"); 4731 4732 if (Ops.size() == 1) 4733 return Ops[0]; 4734 4735 // Concat of UNDEFs is UNDEF. 4736 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4737 return DAG.getUNDEF(VT); 4738 4739 // Scan the operands and look for extract operations from a single source 4740 // that correspond to insertion at the same location via this concatenation: 4741 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4742 SDValue IdentitySrc; 4743 bool IsIdentity = true; 4744 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4745 SDValue Op = Ops[i]; 4746 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4747 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4748 Op.getOperand(0).getValueType() != VT || 4749 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4750 Op.getConstantOperandVal(1) != IdentityIndex) { 4751 IsIdentity = false; 4752 break; 4753 } 4754 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4755 "Unexpected identity source vector for concat of extracts"); 4756 IdentitySrc = Op.getOperand(0); 4757 } 4758 if (IsIdentity) { 4759 assert(IdentitySrc && "Failed to set source vector of extracts"); 4760 return IdentitySrc; 4761 } 4762 4763 // The code below this point is only designed to work for fixed width 4764 // vectors, so we bail out for now. 4765 if (VT.isScalableVector()) 4766 return SDValue(); 4767 4768 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4769 // simplified to one big BUILD_VECTOR. 4770 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4771 EVT SVT = VT.getScalarType(); 4772 SmallVector<SDValue, 16> Elts; 4773 for (SDValue Op : Ops) { 4774 EVT OpVT = Op.getValueType(); 4775 if (Op.isUndef()) 4776 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4777 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4778 Elts.append(Op->op_begin(), Op->op_end()); 4779 else 4780 return SDValue(); 4781 } 4782 4783 // BUILD_VECTOR requires all inputs to be of the same type, find the 4784 // maximum type and extend them all. 4785 for (SDValue Op : Elts) 4786 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4787 4788 if (SVT.bitsGT(VT.getScalarType())) { 4789 for (SDValue &Op : Elts) { 4790 if (Op.isUndef()) 4791 Op = DAG.getUNDEF(SVT); 4792 else 4793 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4794 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4795 : DAG.getSExtOrTrunc(Op, DL, SVT); 4796 } 4797 } 4798 4799 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4800 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4801 return V; 4802 } 4803 4804 /// Gets or creates the specified node. 4805 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4806 FoldingSetNodeID ID; 4807 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4808 void *IP = nullptr; 4809 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4810 return SDValue(E, 0); 4811 4812 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4813 getVTList(VT)); 4814 CSEMap.InsertNode(N, IP); 4815 4816 InsertNode(N); 4817 SDValue V = SDValue(N, 0); 4818 NewSDValueDbgMsg(V, "Creating new node: ", this); 4819 return V; 4820 } 4821 4822 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4823 SDValue Operand) { 4824 SDNodeFlags Flags; 4825 if (Inserter) 4826 Flags = Inserter->getFlags(); 4827 return getNode(Opcode, DL, VT, Operand, Flags); 4828 } 4829 4830 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4831 SDValue Operand, const SDNodeFlags Flags) { 4832 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4833 "Operand is DELETED_NODE!"); 4834 // Constant fold unary operations with an integer constant operand. Even 4835 // opaque constant will be folded, because the folding of unary operations 4836 // doesn't create new constants with different values. Nevertheless, the 4837 // opaque flag is preserved during folding to prevent future folding with 4838 // other constants. 4839 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4840 const APInt &Val = C->getAPIntValue(); 4841 switch (Opcode) { 4842 default: break; 4843 case ISD::SIGN_EXTEND: 4844 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4845 C->isTargetOpcode(), C->isOpaque()); 4846 case ISD::TRUNCATE: 4847 if (C->isOpaque()) 4848 break; 4849 LLVM_FALLTHROUGH; 4850 case ISD::ZERO_EXTEND: 4851 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4852 C->isTargetOpcode(), C->isOpaque()); 4853 case ISD::ANY_EXTEND: 4854 // Some targets like RISCV prefer to sign extend some types. 4855 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4856 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4857 C->isTargetOpcode(), C->isOpaque()); 4858 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4859 C->isTargetOpcode(), C->isOpaque()); 4860 case ISD::UINT_TO_FP: 4861 case ISD::SINT_TO_FP: { 4862 APFloat apf(EVTToAPFloatSemantics(VT), 4863 APInt::getZero(VT.getSizeInBits())); 4864 (void)apf.convertFromAPInt(Val, 4865 Opcode==ISD::SINT_TO_FP, 4866 APFloat::rmNearestTiesToEven); 4867 return getConstantFP(apf, DL, VT); 4868 } 4869 case ISD::BITCAST: 4870 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4871 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4872 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4873 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4874 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4875 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4876 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4877 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4878 break; 4879 case ISD::ABS: 4880 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4881 C->isOpaque()); 4882 case ISD::BITREVERSE: 4883 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4884 C->isOpaque()); 4885 case ISD::BSWAP: 4886 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4887 C->isOpaque()); 4888 case ISD::CTPOP: 4889 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4890 C->isOpaque()); 4891 case ISD::CTLZ: 4892 case ISD::CTLZ_ZERO_UNDEF: 4893 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4894 C->isOpaque()); 4895 case ISD::CTTZ: 4896 case ISD::CTTZ_ZERO_UNDEF: 4897 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4898 C->isOpaque()); 4899 case ISD::FP16_TO_FP: { 4900 bool Ignored; 4901 APFloat FPV(APFloat::IEEEhalf(), 4902 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4903 4904 // This can return overflow, underflow, or inexact; we don't care. 4905 // FIXME need to be more flexible about rounding mode. 4906 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4907 APFloat::rmNearestTiesToEven, &Ignored); 4908 return getConstantFP(FPV, DL, VT); 4909 } 4910 case ISD::STEP_VECTOR: { 4911 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4912 return V; 4913 break; 4914 } 4915 } 4916 } 4917 4918 // Constant fold unary operations with a floating point constant operand. 4919 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4920 APFloat V = C->getValueAPF(); // make copy 4921 switch (Opcode) { 4922 case ISD::FNEG: 4923 V.changeSign(); 4924 return getConstantFP(V, DL, VT); 4925 case ISD::FABS: 4926 V.clearSign(); 4927 return getConstantFP(V, DL, VT); 4928 case ISD::FCEIL: { 4929 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4930 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4931 return getConstantFP(V, DL, VT); 4932 break; 4933 } 4934 case ISD::FTRUNC: { 4935 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4936 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4937 return getConstantFP(V, DL, VT); 4938 break; 4939 } 4940 case ISD::FFLOOR: { 4941 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4942 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4943 return getConstantFP(V, DL, VT); 4944 break; 4945 } 4946 case ISD::FP_EXTEND: { 4947 bool ignored; 4948 // This can return overflow, underflow, or inexact; we don't care. 4949 // FIXME need to be more flexible about rounding mode. 4950 (void)V.convert(EVTToAPFloatSemantics(VT), 4951 APFloat::rmNearestTiesToEven, &ignored); 4952 return getConstantFP(V, DL, VT); 4953 } 4954 case ISD::FP_TO_SINT: 4955 case ISD::FP_TO_UINT: { 4956 bool ignored; 4957 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4958 // FIXME need to be more flexible about rounding mode. 4959 APFloat::opStatus s = 4960 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4961 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4962 break; 4963 return getConstant(IntVal, DL, VT); 4964 } 4965 case ISD::BITCAST: 4966 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4967 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4968 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4969 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4970 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4971 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4972 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4973 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4974 break; 4975 case ISD::FP_TO_FP16: { 4976 bool Ignored; 4977 // This can return overflow, underflow, or inexact; we don't care. 4978 // FIXME need to be more flexible about rounding mode. 4979 (void)V.convert(APFloat::IEEEhalf(), 4980 APFloat::rmNearestTiesToEven, &Ignored); 4981 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4982 } 4983 } 4984 } 4985 4986 // Constant fold unary operations with a vector integer or float operand. 4987 switch (Opcode) { 4988 default: 4989 // FIXME: Entirely reasonable to perform folding of other unary 4990 // operations here as the need arises. 4991 break; 4992 case ISD::FNEG: 4993 case ISD::FABS: 4994 case ISD::FCEIL: 4995 case ISD::FTRUNC: 4996 case ISD::FFLOOR: 4997 case ISD::FP_EXTEND: 4998 case ISD::FP_TO_SINT: 4999 case ISD::FP_TO_UINT: 5000 case ISD::TRUNCATE: 5001 case ISD::ANY_EXTEND: 5002 case ISD::ZERO_EXTEND: 5003 case ISD::SIGN_EXTEND: 5004 case ISD::UINT_TO_FP: 5005 case ISD::SINT_TO_FP: 5006 case ISD::ABS: 5007 case ISD::BITREVERSE: 5008 case ISD::BSWAP: 5009 case ISD::CTLZ: 5010 case ISD::CTLZ_ZERO_UNDEF: 5011 case ISD::CTTZ: 5012 case ISD::CTTZ_ZERO_UNDEF: 5013 case ISD::CTPOP: { 5014 SDValue Ops = {Operand}; 5015 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5016 return Fold; 5017 } 5018 } 5019 5020 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5021 switch (Opcode) { 5022 case ISD::STEP_VECTOR: 5023 assert(VT.isScalableVector() && 5024 "STEP_VECTOR can only be used with scalable types"); 5025 assert(OpOpcode == ISD::TargetConstant && 5026 VT.getVectorElementType() == Operand.getValueType() && 5027 "Unexpected step operand"); 5028 break; 5029 case ISD::FREEZE: 5030 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5031 break; 5032 case ISD::TokenFactor: 5033 case ISD::MERGE_VALUES: 5034 case ISD::CONCAT_VECTORS: 5035 return Operand; // Factor, merge or concat of one node? No need. 5036 case ISD::BUILD_VECTOR: { 5037 // Attempt to simplify BUILD_VECTOR. 5038 SDValue Ops[] = {Operand}; 5039 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5040 return V; 5041 break; 5042 } 5043 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5044 case ISD::FP_EXTEND: 5045 assert(VT.isFloatingPoint() && 5046 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5047 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5048 assert((!VT.isVector() || 5049 VT.getVectorElementCount() == 5050 Operand.getValueType().getVectorElementCount()) && 5051 "Vector element count mismatch!"); 5052 assert(Operand.getValueType().bitsLT(VT) && 5053 "Invalid fpext node, dst < src!"); 5054 if (Operand.isUndef()) 5055 return getUNDEF(VT); 5056 break; 5057 case ISD::FP_TO_SINT: 5058 case ISD::FP_TO_UINT: 5059 if (Operand.isUndef()) 5060 return getUNDEF(VT); 5061 break; 5062 case ISD::SINT_TO_FP: 5063 case ISD::UINT_TO_FP: 5064 // [us]itofp(undef) = 0, because the result value is bounded. 5065 if (Operand.isUndef()) 5066 return getConstantFP(0.0, DL, VT); 5067 break; 5068 case ISD::SIGN_EXTEND: 5069 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5070 "Invalid SIGN_EXTEND!"); 5071 assert(VT.isVector() == Operand.getValueType().isVector() && 5072 "SIGN_EXTEND result type type should be vector iff the operand " 5073 "type is vector!"); 5074 if (Operand.getValueType() == VT) return Operand; // noop extension 5075 assert((!VT.isVector() || 5076 VT.getVectorElementCount() == 5077 Operand.getValueType().getVectorElementCount()) && 5078 "Vector element count mismatch!"); 5079 assert(Operand.getValueType().bitsLT(VT) && 5080 "Invalid sext node, dst < src!"); 5081 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5082 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5083 if (OpOpcode == ISD::UNDEF) 5084 // sext(undef) = 0, because the top bits will all be the same. 5085 return getConstant(0, DL, VT); 5086 break; 5087 case ISD::ZERO_EXTEND: 5088 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5089 "Invalid ZERO_EXTEND!"); 5090 assert(VT.isVector() == Operand.getValueType().isVector() && 5091 "ZERO_EXTEND result type type should be vector iff the operand " 5092 "type is vector!"); 5093 if (Operand.getValueType() == VT) return Operand; // noop extension 5094 assert((!VT.isVector() || 5095 VT.getVectorElementCount() == 5096 Operand.getValueType().getVectorElementCount()) && 5097 "Vector element count mismatch!"); 5098 assert(Operand.getValueType().bitsLT(VT) && 5099 "Invalid zext node, dst < src!"); 5100 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5101 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5102 if (OpOpcode == ISD::UNDEF) 5103 // zext(undef) = 0, because the top bits will be zero. 5104 return getConstant(0, DL, VT); 5105 break; 5106 case ISD::ANY_EXTEND: 5107 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5108 "Invalid ANY_EXTEND!"); 5109 assert(VT.isVector() == Operand.getValueType().isVector() && 5110 "ANY_EXTEND result type type should be vector iff the operand " 5111 "type is vector!"); 5112 if (Operand.getValueType() == VT) return Operand; // noop extension 5113 assert((!VT.isVector() || 5114 VT.getVectorElementCount() == 5115 Operand.getValueType().getVectorElementCount()) && 5116 "Vector element count mismatch!"); 5117 assert(Operand.getValueType().bitsLT(VT) && 5118 "Invalid anyext node, dst < src!"); 5119 5120 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5121 OpOpcode == ISD::ANY_EXTEND) 5122 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5123 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5124 if (OpOpcode == ISD::UNDEF) 5125 return getUNDEF(VT); 5126 5127 // (ext (trunc x)) -> x 5128 if (OpOpcode == ISD::TRUNCATE) { 5129 SDValue OpOp = Operand.getOperand(0); 5130 if (OpOp.getValueType() == VT) { 5131 transferDbgValues(Operand, OpOp); 5132 return OpOp; 5133 } 5134 } 5135 break; 5136 case ISD::TRUNCATE: 5137 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5138 "Invalid TRUNCATE!"); 5139 assert(VT.isVector() == Operand.getValueType().isVector() && 5140 "TRUNCATE result type type should be vector iff the operand " 5141 "type is vector!"); 5142 if (Operand.getValueType() == VT) return Operand; // noop truncate 5143 assert((!VT.isVector() || 5144 VT.getVectorElementCount() == 5145 Operand.getValueType().getVectorElementCount()) && 5146 "Vector element count mismatch!"); 5147 assert(Operand.getValueType().bitsGT(VT) && 5148 "Invalid truncate node, src < dst!"); 5149 if (OpOpcode == ISD::TRUNCATE) 5150 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5151 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5152 OpOpcode == ISD::ANY_EXTEND) { 5153 // If the source is smaller than the dest, we still need an extend. 5154 if (Operand.getOperand(0).getValueType().getScalarType() 5155 .bitsLT(VT.getScalarType())) 5156 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5157 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5158 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5159 return Operand.getOperand(0); 5160 } 5161 if (OpOpcode == ISD::UNDEF) 5162 return getUNDEF(VT); 5163 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5164 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5165 break; 5166 case ISD::ANY_EXTEND_VECTOR_INREG: 5167 case ISD::ZERO_EXTEND_VECTOR_INREG: 5168 case ISD::SIGN_EXTEND_VECTOR_INREG: 5169 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5170 assert(Operand.getValueType().bitsLE(VT) && 5171 "The input must be the same size or smaller than the result."); 5172 assert(VT.getVectorMinNumElements() < 5173 Operand.getValueType().getVectorMinNumElements() && 5174 "The destination vector type must have fewer lanes than the input."); 5175 break; 5176 case ISD::ABS: 5177 assert(VT.isInteger() && VT == Operand.getValueType() && 5178 "Invalid ABS!"); 5179 if (OpOpcode == ISD::UNDEF) 5180 return getUNDEF(VT); 5181 break; 5182 case ISD::BSWAP: 5183 assert(VT.isInteger() && VT == Operand.getValueType() && 5184 "Invalid BSWAP!"); 5185 assert((VT.getScalarSizeInBits() % 16 == 0) && 5186 "BSWAP types must be a multiple of 16 bits!"); 5187 if (OpOpcode == ISD::UNDEF) 5188 return getUNDEF(VT); 5189 // bswap(bswap(X)) -> X. 5190 if (OpOpcode == ISD::BSWAP) 5191 return Operand.getOperand(0); 5192 break; 5193 case ISD::BITREVERSE: 5194 assert(VT.isInteger() && VT == Operand.getValueType() && 5195 "Invalid BITREVERSE!"); 5196 if (OpOpcode == ISD::UNDEF) 5197 return getUNDEF(VT); 5198 break; 5199 case ISD::BITCAST: 5200 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5201 "Cannot BITCAST between types of different sizes!"); 5202 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5203 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5204 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5205 if (OpOpcode == ISD::UNDEF) 5206 return getUNDEF(VT); 5207 break; 5208 case ISD::SCALAR_TO_VECTOR: 5209 assert(VT.isVector() && !Operand.getValueType().isVector() && 5210 (VT.getVectorElementType() == Operand.getValueType() || 5211 (VT.getVectorElementType().isInteger() && 5212 Operand.getValueType().isInteger() && 5213 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5214 "Illegal SCALAR_TO_VECTOR node!"); 5215 if (OpOpcode == ISD::UNDEF) 5216 return getUNDEF(VT); 5217 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5218 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5219 isa<ConstantSDNode>(Operand.getOperand(1)) && 5220 Operand.getConstantOperandVal(1) == 0 && 5221 Operand.getOperand(0).getValueType() == VT) 5222 return Operand.getOperand(0); 5223 break; 5224 case ISD::FNEG: 5225 // Negation of an unknown bag of bits is still completely undefined. 5226 if (OpOpcode == ISD::UNDEF) 5227 return getUNDEF(VT); 5228 5229 if (OpOpcode == ISD::FNEG) // --X -> X 5230 return Operand.getOperand(0); 5231 break; 5232 case ISD::FABS: 5233 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5234 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5235 break; 5236 case ISD::VSCALE: 5237 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5238 break; 5239 case ISD::CTPOP: 5240 if (Operand.getValueType().getScalarType() == MVT::i1) 5241 return Operand; 5242 break; 5243 case ISD::CTLZ: 5244 case ISD::CTTZ: 5245 if (Operand.getValueType().getScalarType() == MVT::i1) 5246 return getNOT(DL, Operand, Operand.getValueType()); 5247 break; 5248 case ISD::VECREDUCE_SMIN: 5249 case ISD::VECREDUCE_UMAX: 5250 if (Operand.getValueType().getScalarType() == MVT::i1) 5251 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5252 break; 5253 case ISD::VECREDUCE_SMAX: 5254 case ISD::VECREDUCE_UMIN: 5255 if (Operand.getValueType().getScalarType() == MVT::i1) 5256 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5257 break; 5258 } 5259 5260 SDNode *N; 5261 SDVTList VTs = getVTList(VT); 5262 SDValue Ops[] = {Operand}; 5263 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5264 FoldingSetNodeID ID; 5265 AddNodeIDNode(ID, Opcode, VTs, Ops); 5266 void *IP = nullptr; 5267 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5268 E->intersectFlagsWith(Flags); 5269 return SDValue(E, 0); 5270 } 5271 5272 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5273 N->setFlags(Flags); 5274 createOperands(N, Ops); 5275 CSEMap.InsertNode(N, IP); 5276 } else { 5277 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5278 createOperands(N, Ops); 5279 } 5280 5281 InsertNode(N); 5282 SDValue V = SDValue(N, 0); 5283 NewSDValueDbgMsg(V, "Creating new node: ", this); 5284 return V; 5285 } 5286 5287 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5288 const APInt &C2) { 5289 switch (Opcode) { 5290 case ISD::ADD: return C1 + C2; 5291 case ISD::SUB: return C1 - C2; 5292 case ISD::MUL: return C1 * C2; 5293 case ISD::AND: return C1 & C2; 5294 case ISD::OR: return C1 | C2; 5295 case ISD::XOR: return C1 ^ C2; 5296 case ISD::SHL: return C1 << C2; 5297 case ISD::SRL: return C1.lshr(C2); 5298 case ISD::SRA: return C1.ashr(C2); 5299 case ISD::ROTL: return C1.rotl(C2); 5300 case ISD::ROTR: return C1.rotr(C2); 5301 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5302 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5303 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5304 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5305 case ISD::SADDSAT: return C1.sadd_sat(C2); 5306 case ISD::UADDSAT: return C1.uadd_sat(C2); 5307 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5308 case ISD::USUBSAT: return C1.usub_sat(C2); 5309 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5310 case ISD::USHLSAT: return C1.ushl_sat(C2); 5311 case ISD::UDIV: 5312 if (!C2.getBoolValue()) 5313 break; 5314 return C1.udiv(C2); 5315 case ISD::UREM: 5316 if (!C2.getBoolValue()) 5317 break; 5318 return C1.urem(C2); 5319 case ISD::SDIV: 5320 if (!C2.getBoolValue()) 5321 break; 5322 return C1.sdiv(C2); 5323 case ISD::SREM: 5324 if (!C2.getBoolValue()) 5325 break; 5326 return C1.srem(C2); 5327 case ISD::MULHS: { 5328 unsigned FullWidth = C1.getBitWidth() * 2; 5329 APInt C1Ext = C1.sext(FullWidth); 5330 APInt C2Ext = C2.sext(FullWidth); 5331 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5332 } 5333 case ISD::MULHU: { 5334 unsigned FullWidth = C1.getBitWidth() * 2; 5335 APInt C1Ext = C1.zext(FullWidth); 5336 APInt C2Ext = C2.zext(FullWidth); 5337 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5338 } 5339 case ISD::AVGFLOORS: { 5340 unsigned FullWidth = C1.getBitWidth() + 1; 5341 APInt C1Ext = C1.sext(FullWidth); 5342 APInt C2Ext = C2.sext(FullWidth); 5343 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5344 } 5345 case ISD::AVGFLOORU: { 5346 unsigned FullWidth = C1.getBitWidth() + 1; 5347 APInt C1Ext = C1.zext(FullWidth); 5348 APInt C2Ext = C2.zext(FullWidth); 5349 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5350 } 5351 case ISD::AVGCEILS: { 5352 unsigned FullWidth = C1.getBitWidth() + 1; 5353 APInt C1Ext = C1.sext(FullWidth); 5354 APInt C2Ext = C2.sext(FullWidth); 5355 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5356 } 5357 case ISD::AVGCEILU: { 5358 unsigned FullWidth = C1.getBitWidth() + 1; 5359 APInt C1Ext = C1.zext(FullWidth); 5360 APInt C2Ext = C2.zext(FullWidth); 5361 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5362 } 5363 } 5364 return llvm::None; 5365 } 5366 5367 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5368 const GlobalAddressSDNode *GA, 5369 const SDNode *N2) { 5370 if (GA->getOpcode() != ISD::GlobalAddress) 5371 return SDValue(); 5372 if (!TLI->isOffsetFoldingLegal(GA)) 5373 return SDValue(); 5374 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5375 if (!C2) 5376 return SDValue(); 5377 int64_t Offset = C2->getSExtValue(); 5378 switch (Opcode) { 5379 case ISD::ADD: break; 5380 case ISD::SUB: Offset = -uint64_t(Offset); break; 5381 default: return SDValue(); 5382 } 5383 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5384 GA->getOffset() + uint64_t(Offset)); 5385 } 5386 5387 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5388 switch (Opcode) { 5389 case ISD::SDIV: 5390 case ISD::UDIV: 5391 case ISD::SREM: 5392 case ISD::UREM: { 5393 // If a divisor is zero/undef or any element of a divisor vector is 5394 // zero/undef, the whole op is undef. 5395 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5396 SDValue Divisor = Ops[1]; 5397 if (Divisor.isUndef() || isNullConstant(Divisor)) 5398 return true; 5399 5400 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5401 llvm::any_of(Divisor->op_values(), 5402 [](SDValue V) { return V.isUndef() || 5403 isNullConstant(V); }); 5404 // TODO: Handle signed overflow. 5405 } 5406 // TODO: Handle oversized shifts. 5407 default: 5408 return false; 5409 } 5410 } 5411 5412 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5413 EVT VT, ArrayRef<SDValue> Ops) { 5414 // If the opcode is a target-specific ISD node, there's nothing we can 5415 // do here and the operand rules may not line up with the below, so 5416 // bail early. 5417 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5418 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5419 // foldCONCAT_VECTORS in getNode before this is called. 5420 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5421 return SDValue(); 5422 5423 unsigned NumOps = Ops.size(); 5424 if (NumOps == 0) 5425 return SDValue(); 5426 5427 if (isUndef(Opcode, Ops)) 5428 return getUNDEF(VT); 5429 5430 // Handle binops special cases. 5431 if (NumOps == 2) { 5432 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5433 return CFP; 5434 5435 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5436 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5437 if (C1->isOpaque() || C2->isOpaque()) 5438 return SDValue(); 5439 5440 Optional<APInt> FoldAttempt = 5441 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5442 if (!FoldAttempt) 5443 return SDValue(); 5444 5445 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5446 assert((!Folded || !VT.isVector()) && 5447 "Can't fold vectors ops with scalar operands"); 5448 return Folded; 5449 } 5450 } 5451 5452 // fold (add Sym, c) -> Sym+c 5453 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5454 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5455 if (TLI->isCommutativeBinOp(Opcode)) 5456 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5457 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5458 } 5459 5460 // This is for vector folding only from here on. 5461 if (!VT.isVector()) 5462 return SDValue(); 5463 5464 ElementCount NumElts = VT.getVectorElementCount(); 5465 5466 // See if we can fold through bitcasted integer ops. 5467 // TODO: Can we handle undef elements? 5468 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5469 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5470 Ops[0].getOpcode() == ISD::BITCAST && 5471 Ops[1].getOpcode() == ISD::BITCAST) { 5472 SDValue N1 = peekThroughBitcasts(Ops[0]); 5473 SDValue N2 = peekThroughBitcasts(Ops[1]); 5474 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5475 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5476 EVT BVVT = N1.getValueType(); 5477 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5478 bool IsLE = getDataLayout().isLittleEndian(); 5479 unsigned EltBits = VT.getScalarSizeInBits(); 5480 SmallVector<APInt> RawBits1, RawBits2; 5481 BitVector UndefElts1, UndefElts2; 5482 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5483 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5484 UndefElts1.none() && UndefElts2.none()) { 5485 SmallVector<APInt> RawBits; 5486 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5487 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5488 if (!Fold) 5489 break; 5490 RawBits.push_back(Fold.getValue()); 5491 } 5492 if (RawBits.size() == NumElts.getFixedValue()) { 5493 // We have constant folded, but we need to cast this again back to 5494 // the original (possibly legalized) type. 5495 SmallVector<APInt> DstBits; 5496 BitVector DstUndefs; 5497 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5498 DstBits, RawBits, DstUndefs, 5499 BitVector(RawBits.size(), false)); 5500 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5501 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5502 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5503 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5504 if (DstUndefs[I]) 5505 continue; 5506 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5507 } 5508 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5509 } 5510 } 5511 } 5512 } 5513 5514 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5515 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5516 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5517 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5518 APInt RHSVal; 5519 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5520 APInt NewStep = Opcode == ISD::MUL 5521 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5522 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5523 return getStepVector(DL, VT, NewStep); 5524 } 5525 } 5526 5527 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5528 return !Op.getValueType().isVector() || 5529 Op.getValueType().getVectorElementCount() == NumElts; 5530 }; 5531 5532 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5533 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5534 Op.getOpcode() == ISD::BUILD_VECTOR || 5535 Op.getOpcode() == ISD::SPLAT_VECTOR; 5536 }; 5537 5538 // All operands must be vector types with the same number of elements as 5539 // the result type and must be either UNDEF or a build/splat vector 5540 // or UNDEF scalars. 5541 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5542 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5543 return SDValue(); 5544 5545 // If we are comparing vectors, then the result needs to be a i1 boolean 5546 // that is then sign-extended back to the legal result type. 5547 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5548 5549 // Find legal integer scalar type for constant promotion and 5550 // ensure that its scalar size is at least as large as source. 5551 EVT LegalSVT = VT.getScalarType(); 5552 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5553 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5554 if (LegalSVT.bitsLT(VT.getScalarType())) 5555 return SDValue(); 5556 } 5557 5558 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5559 // only have one operand to check. For fixed-length vector types we may have 5560 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5561 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5562 5563 // Constant fold each scalar lane separately. 5564 SmallVector<SDValue, 4> ScalarResults; 5565 for (unsigned I = 0; I != NumVectorElts; I++) { 5566 SmallVector<SDValue, 4> ScalarOps; 5567 for (SDValue Op : Ops) { 5568 EVT InSVT = Op.getValueType().getScalarType(); 5569 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5570 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5571 if (Op.isUndef()) 5572 ScalarOps.push_back(getUNDEF(InSVT)); 5573 else 5574 ScalarOps.push_back(Op); 5575 continue; 5576 } 5577 5578 SDValue ScalarOp = 5579 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5580 EVT ScalarVT = ScalarOp.getValueType(); 5581 5582 // Build vector (integer) scalar operands may need implicit 5583 // truncation - do this before constant folding. 5584 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5585 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5586 5587 ScalarOps.push_back(ScalarOp); 5588 } 5589 5590 // Constant fold the scalar operands. 5591 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5592 5593 // Legalize the (integer) scalar constant if necessary. 5594 if (LegalSVT != SVT) 5595 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5596 5597 // Scalar folding only succeeded if the result is a constant or UNDEF. 5598 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5599 ScalarResult.getOpcode() != ISD::ConstantFP) 5600 return SDValue(); 5601 ScalarResults.push_back(ScalarResult); 5602 } 5603 5604 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5605 : getBuildVector(VT, DL, ScalarResults); 5606 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5607 return V; 5608 } 5609 5610 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5611 EVT VT, SDValue N1, SDValue N2) { 5612 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5613 // should. That will require dealing with a potentially non-default 5614 // rounding mode, checking the "opStatus" return value from the APFloat 5615 // math calculations, and possibly other variations. 5616 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5617 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5618 if (N1CFP && N2CFP) { 5619 APFloat C1 = N1CFP->getValueAPF(); // make copy 5620 const APFloat &C2 = N2CFP->getValueAPF(); 5621 switch (Opcode) { 5622 case ISD::FADD: 5623 C1.add(C2, APFloat::rmNearestTiesToEven); 5624 return getConstantFP(C1, DL, VT); 5625 case ISD::FSUB: 5626 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5627 return getConstantFP(C1, DL, VT); 5628 case ISD::FMUL: 5629 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5630 return getConstantFP(C1, DL, VT); 5631 case ISD::FDIV: 5632 C1.divide(C2, APFloat::rmNearestTiesToEven); 5633 return getConstantFP(C1, DL, VT); 5634 case ISD::FREM: 5635 C1.mod(C2); 5636 return getConstantFP(C1, DL, VT); 5637 case ISD::FCOPYSIGN: 5638 C1.copySign(C2); 5639 return getConstantFP(C1, DL, VT); 5640 case ISD::FMINNUM: 5641 return getConstantFP(minnum(C1, C2), DL, VT); 5642 case ISD::FMAXNUM: 5643 return getConstantFP(maxnum(C1, C2), DL, VT); 5644 case ISD::FMINIMUM: 5645 return getConstantFP(minimum(C1, C2), DL, VT); 5646 case ISD::FMAXIMUM: 5647 return getConstantFP(maximum(C1, C2), DL, VT); 5648 default: break; 5649 } 5650 } 5651 if (N1CFP && Opcode == ISD::FP_ROUND) { 5652 APFloat C1 = N1CFP->getValueAPF(); // make copy 5653 bool Unused; 5654 // This can return overflow, underflow, or inexact; we don't care. 5655 // FIXME need to be more flexible about rounding mode. 5656 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5657 &Unused); 5658 return getConstantFP(C1, DL, VT); 5659 } 5660 5661 switch (Opcode) { 5662 case ISD::FSUB: 5663 // -0.0 - undef --> undef (consistent with "fneg undef") 5664 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5665 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5666 return getUNDEF(VT); 5667 LLVM_FALLTHROUGH; 5668 5669 case ISD::FADD: 5670 case ISD::FMUL: 5671 case ISD::FDIV: 5672 case ISD::FREM: 5673 // If both operands are undef, the result is undef. If 1 operand is undef, 5674 // the result is NaN. This should match the behavior of the IR optimizer. 5675 if (N1.isUndef() && N2.isUndef()) 5676 return getUNDEF(VT); 5677 if (N1.isUndef() || N2.isUndef()) 5678 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5679 } 5680 return SDValue(); 5681 } 5682 5683 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5684 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5685 5686 // There's no need to assert on a byte-aligned pointer. All pointers are at 5687 // least byte aligned. 5688 if (A == Align(1)) 5689 return Val; 5690 5691 FoldingSetNodeID ID; 5692 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5693 ID.AddInteger(A.value()); 5694 5695 void *IP = nullptr; 5696 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5697 return SDValue(E, 0); 5698 5699 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5700 Val.getValueType(), A); 5701 createOperands(N, {Val}); 5702 5703 CSEMap.InsertNode(N, IP); 5704 InsertNode(N); 5705 5706 SDValue V(N, 0); 5707 NewSDValueDbgMsg(V, "Creating new node: ", this); 5708 return V; 5709 } 5710 5711 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5712 SDValue N1, SDValue N2) { 5713 SDNodeFlags Flags; 5714 if (Inserter) 5715 Flags = Inserter->getFlags(); 5716 return getNode(Opcode, DL, VT, N1, N2, Flags); 5717 } 5718 5719 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5720 SDValue &N2) const { 5721 if (!TLI->isCommutativeBinOp(Opcode)) 5722 return; 5723 5724 // Canonicalize: 5725 // binop(const, nonconst) -> binop(nonconst, const) 5726 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5727 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5728 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5729 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5730 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5731 std::swap(N1, N2); 5732 5733 // Canonicalize: 5734 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5735 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5736 N2.getOpcode() == ISD::STEP_VECTOR) 5737 std::swap(N1, N2); 5738 } 5739 5740 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5741 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5742 assert(N1.getOpcode() != ISD::DELETED_NODE && 5743 N2.getOpcode() != ISD::DELETED_NODE && 5744 "Operand is DELETED_NODE!"); 5745 5746 canonicalizeCommutativeBinop(Opcode, N1, N2); 5747 5748 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5749 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5750 5751 // Don't allow undefs in vector splats - we might be returning N2 when folding 5752 // to zero etc. 5753 ConstantSDNode *N2CV = 5754 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5755 5756 switch (Opcode) { 5757 default: break; 5758 case ISD::TokenFactor: 5759 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5760 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5761 // Fold trivial token factors. 5762 if (N1.getOpcode() == ISD::EntryToken) return N2; 5763 if (N2.getOpcode() == ISD::EntryToken) return N1; 5764 if (N1 == N2) return N1; 5765 break; 5766 case ISD::BUILD_VECTOR: { 5767 // Attempt to simplify BUILD_VECTOR. 5768 SDValue Ops[] = {N1, N2}; 5769 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5770 return V; 5771 break; 5772 } 5773 case ISD::CONCAT_VECTORS: { 5774 SDValue Ops[] = {N1, N2}; 5775 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5776 return V; 5777 break; 5778 } 5779 case ISD::AND: 5780 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5781 assert(N1.getValueType() == N2.getValueType() && 5782 N1.getValueType() == VT && "Binary operator types must match!"); 5783 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5784 // worth handling here. 5785 if (N2CV && N2CV->isZero()) 5786 return N2; 5787 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5788 return N1; 5789 break; 5790 case ISD::OR: 5791 case ISD::XOR: 5792 case ISD::ADD: 5793 case ISD::SUB: 5794 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5795 assert(N1.getValueType() == N2.getValueType() && 5796 N1.getValueType() == VT && "Binary operator types must match!"); 5797 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5798 // it's worth handling here. 5799 if (N2CV && N2CV->isZero()) 5800 return N1; 5801 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5802 VT.getVectorElementType() == MVT::i1) 5803 return getNode(ISD::XOR, DL, VT, N1, N2); 5804 break; 5805 case ISD::MUL: 5806 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5807 assert(N1.getValueType() == N2.getValueType() && 5808 N1.getValueType() == VT && "Binary operator types must match!"); 5809 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5810 return getNode(ISD::AND, DL, VT, N1, N2); 5811 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5812 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5813 const APInt &N2CImm = N2C->getAPIntValue(); 5814 return getVScale(DL, VT, MulImm * N2CImm); 5815 } 5816 break; 5817 case ISD::UDIV: 5818 case ISD::UREM: 5819 case ISD::MULHU: 5820 case ISD::MULHS: 5821 case ISD::SDIV: 5822 case ISD::SREM: 5823 case ISD::SADDSAT: 5824 case ISD::SSUBSAT: 5825 case ISD::UADDSAT: 5826 case ISD::USUBSAT: 5827 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5828 assert(N1.getValueType() == N2.getValueType() && 5829 N1.getValueType() == VT && "Binary operator types must match!"); 5830 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5831 // fold (add_sat x, y) -> (or x, y) for bool types. 5832 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5833 return getNode(ISD::OR, DL, VT, N1, N2); 5834 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5835 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5836 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5837 } 5838 break; 5839 case ISD::SMIN: 5840 case ISD::UMAX: 5841 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5842 assert(N1.getValueType() == N2.getValueType() && 5843 N1.getValueType() == VT && "Binary operator types must match!"); 5844 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5845 return getNode(ISD::OR, DL, VT, N1, N2); 5846 break; 5847 case ISD::SMAX: 5848 case ISD::UMIN: 5849 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5850 assert(N1.getValueType() == N2.getValueType() && 5851 N1.getValueType() == VT && "Binary operator types must match!"); 5852 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5853 return getNode(ISD::AND, DL, VT, N1, N2); 5854 break; 5855 case ISD::FADD: 5856 case ISD::FSUB: 5857 case ISD::FMUL: 5858 case ISD::FDIV: 5859 case ISD::FREM: 5860 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5861 assert(N1.getValueType() == N2.getValueType() && 5862 N1.getValueType() == VT && "Binary operator types must match!"); 5863 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5864 return V; 5865 break; 5866 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5867 assert(N1.getValueType() == VT && 5868 N1.getValueType().isFloatingPoint() && 5869 N2.getValueType().isFloatingPoint() && 5870 "Invalid FCOPYSIGN!"); 5871 break; 5872 case ISD::SHL: 5873 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5874 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5875 const APInt &ShiftImm = N2C->getAPIntValue(); 5876 return getVScale(DL, VT, MulImm << ShiftImm); 5877 } 5878 LLVM_FALLTHROUGH; 5879 case ISD::SRA: 5880 case ISD::SRL: 5881 if (SDValue V = simplifyShift(N1, N2)) 5882 return V; 5883 LLVM_FALLTHROUGH; 5884 case ISD::ROTL: 5885 case ISD::ROTR: 5886 assert(VT == N1.getValueType() && 5887 "Shift operators return type must be the same as their first arg"); 5888 assert(VT.isInteger() && N2.getValueType().isInteger() && 5889 "Shifts only work on integers"); 5890 assert((!VT.isVector() || VT == N2.getValueType()) && 5891 "Vector shift amounts must be in the same as their first arg"); 5892 // Verify that the shift amount VT is big enough to hold valid shift 5893 // amounts. This catches things like trying to shift an i1024 value by an 5894 // i8, which is easy to fall into in generic code that uses 5895 // TLI.getShiftAmount(). 5896 assert(N2.getValueType().getScalarSizeInBits() >= 5897 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5898 "Invalid use of small shift amount with oversized value!"); 5899 5900 // Always fold shifts of i1 values so the code generator doesn't need to 5901 // handle them. Since we know the size of the shift has to be less than the 5902 // size of the value, the shift/rotate count is guaranteed to be zero. 5903 if (VT == MVT::i1) 5904 return N1; 5905 if (N2CV && N2CV->isZero()) 5906 return N1; 5907 break; 5908 case ISD::FP_ROUND: 5909 assert(VT.isFloatingPoint() && 5910 N1.getValueType().isFloatingPoint() && 5911 VT.bitsLE(N1.getValueType()) && 5912 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5913 "Invalid FP_ROUND!"); 5914 if (N1.getValueType() == VT) return N1; // noop conversion. 5915 break; 5916 case ISD::AssertSext: 5917 case ISD::AssertZext: { 5918 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5919 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5920 assert(VT.isInteger() && EVT.isInteger() && 5921 "Cannot *_EXTEND_INREG FP types"); 5922 assert(!EVT.isVector() && 5923 "AssertSExt/AssertZExt type should be the vector element type " 5924 "rather than the vector type!"); 5925 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5926 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5927 break; 5928 } 5929 case ISD::SIGN_EXTEND_INREG: { 5930 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5931 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5932 assert(VT.isInteger() && EVT.isInteger() && 5933 "Cannot *_EXTEND_INREG FP types"); 5934 assert(EVT.isVector() == VT.isVector() && 5935 "SIGN_EXTEND_INREG type should be vector iff the operand " 5936 "type is vector!"); 5937 assert((!EVT.isVector() || 5938 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5939 "Vector element counts must match in SIGN_EXTEND_INREG"); 5940 assert(EVT.bitsLE(VT) && "Not extending!"); 5941 if (EVT == VT) return N1; // Not actually extending 5942 5943 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5944 unsigned FromBits = EVT.getScalarSizeInBits(); 5945 Val <<= Val.getBitWidth() - FromBits; 5946 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5947 return getConstant(Val, DL, ConstantVT); 5948 }; 5949 5950 if (N1C) { 5951 const APInt &Val = N1C->getAPIntValue(); 5952 return SignExtendInReg(Val, VT); 5953 } 5954 5955 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5956 SmallVector<SDValue, 8> Ops; 5957 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5958 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5959 SDValue Op = N1.getOperand(i); 5960 if (Op.isUndef()) { 5961 Ops.push_back(getUNDEF(OpVT)); 5962 continue; 5963 } 5964 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5965 APInt Val = C->getAPIntValue(); 5966 Ops.push_back(SignExtendInReg(Val, OpVT)); 5967 } 5968 return getBuildVector(VT, DL, Ops); 5969 } 5970 break; 5971 } 5972 case ISD::FP_TO_SINT_SAT: 5973 case ISD::FP_TO_UINT_SAT: { 5974 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5975 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5976 assert(N1.getValueType().isVector() == VT.isVector() && 5977 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5978 "vector!"); 5979 assert((!VT.isVector() || VT.getVectorNumElements() == 5980 N1.getValueType().getVectorNumElements()) && 5981 "Vector element counts must match in FP_TO_*INT_SAT"); 5982 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5983 "Type to saturate to must be a scalar."); 5984 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5985 "Not extending!"); 5986 break; 5987 } 5988 case ISD::EXTRACT_VECTOR_ELT: 5989 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5990 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5991 element type of the vector."); 5992 5993 // Extract from an undefined value or using an undefined index is undefined. 5994 if (N1.isUndef() || N2.isUndef()) 5995 return getUNDEF(VT); 5996 5997 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5998 // vectors. For scalable vectors we will provide appropriate support for 5999 // dealing with arbitrary indices. 6000 if (N2C && N1.getValueType().isFixedLengthVector() && 6001 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6002 return getUNDEF(VT); 6003 6004 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6005 // expanding copies of large vectors from registers. This only works for 6006 // fixed length vectors, since we need to know the exact number of 6007 // elements. 6008 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6009 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6010 unsigned Factor = 6011 N1.getOperand(0).getValueType().getVectorNumElements(); 6012 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6013 N1.getOperand(N2C->getZExtValue() / Factor), 6014 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6015 } 6016 6017 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6018 // lowering is expanding large vector constants. 6019 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6020 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6021 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6022 N1.getValueType().isFixedLengthVector()) && 6023 "BUILD_VECTOR used for scalable vectors"); 6024 unsigned Index = 6025 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6026 SDValue Elt = N1.getOperand(Index); 6027 6028 if (VT != Elt.getValueType()) 6029 // If the vector element type is not legal, the BUILD_VECTOR operands 6030 // are promoted and implicitly truncated, and the result implicitly 6031 // extended. Make that explicit here. 6032 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6033 6034 return Elt; 6035 } 6036 6037 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6038 // operations are lowered to scalars. 6039 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6040 // If the indices are the same, return the inserted element else 6041 // if the indices are known different, extract the element from 6042 // the original vector. 6043 SDValue N1Op2 = N1.getOperand(2); 6044 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6045 6046 if (N1Op2C && N2C) { 6047 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6048 if (VT == N1.getOperand(1).getValueType()) 6049 return N1.getOperand(1); 6050 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6051 } 6052 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6053 } 6054 } 6055 6056 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6057 // when vector types are scalarized and v1iX is legal. 6058 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6059 // Here we are completely ignoring the extract element index (N2), 6060 // which is fine for fixed width vectors, since any index other than 0 6061 // is undefined anyway. However, this cannot be ignored for scalable 6062 // vectors - in theory we could support this, but we don't want to do this 6063 // without a profitability check. 6064 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6065 N1.getValueType().isFixedLengthVector() && 6066 N1.getValueType().getVectorNumElements() == 1) { 6067 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6068 N1.getOperand(1)); 6069 } 6070 break; 6071 case ISD::EXTRACT_ELEMENT: 6072 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6073 assert(!N1.getValueType().isVector() && !VT.isVector() && 6074 (N1.getValueType().isInteger() == VT.isInteger()) && 6075 N1.getValueType() != VT && 6076 "Wrong types for EXTRACT_ELEMENT!"); 6077 6078 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6079 // 64-bit integers into 32-bit parts. Instead of building the extract of 6080 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6081 if (N1.getOpcode() == ISD::BUILD_PAIR) 6082 return N1.getOperand(N2C->getZExtValue()); 6083 6084 // EXTRACT_ELEMENT of a constant int is also very common. 6085 if (N1C) { 6086 unsigned ElementSize = VT.getSizeInBits(); 6087 unsigned Shift = ElementSize * N2C->getZExtValue(); 6088 const APInt &Val = N1C->getAPIntValue(); 6089 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6090 } 6091 break; 6092 case ISD::EXTRACT_SUBVECTOR: { 6093 EVT N1VT = N1.getValueType(); 6094 assert(VT.isVector() && N1VT.isVector() && 6095 "Extract subvector VTs must be vectors!"); 6096 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6097 "Extract subvector VTs must have the same element type!"); 6098 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6099 "Cannot extract a scalable vector from a fixed length vector!"); 6100 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6101 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6102 "Extract subvector must be from larger vector to smaller vector!"); 6103 assert(N2C && "Extract subvector index must be a constant"); 6104 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6105 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6106 N1VT.getVectorMinNumElements()) && 6107 "Extract subvector overflow!"); 6108 assert(N2C->getAPIntValue().getBitWidth() == 6109 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6110 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6111 6112 // Trivial extraction. 6113 if (VT == N1VT) 6114 return N1; 6115 6116 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6117 if (N1.isUndef()) 6118 return getUNDEF(VT); 6119 6120 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6121 // the concat have the same type as the extract. 6122 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6123 VT == N1.getOperand(0).getValueType()) { 6124 unsigned Factor = VT.getVectorMinNumElements(); 6125 return N1.getOperand(N2C->getZExtValue() / Factor); 6126 } 6127 6128 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6129 // during shuffle legalization. 6130 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6131 VT == N1.getOperand(1).getValueType()) 6132 return N1.getOperand(1); 6133 break; 6134 } 6135 } 6136 6137 // Perform trivial constant folding. 6138 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6139 return SV; 6140 6141 // Canonicalize an UNDEF to the RHS, even over a constant. 6142 if (N1.isUndef()) { 6143 if (TLI->isCommutativeBinOp(Opcode)) { 6144 std::swap(N1, N2); 6145 } else { 6146 switch (Opcode) { 6147 case ISD::SIGN_EXTEND_INREG: 6148 case ISD::SUB: 6149 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6150 case ISD::UDIV: 6151 case ISD::SDIV: 6152 case ISD::UREM: 6153 case ISD::SREM: 6154 case ISD::SSUBSAT: 6155 case ISD::USUBSAT: 6156 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6157 } 6158 } 6159 } 6160 6161 // Fold a bunch of operators when the RHS is undef. 6162 if (N2.isUndef()) { 6163 switch (Opcode) { 6164 case ISD::XOR: 6165 if (N1.isUndef()) 6166 // Handle undef ^ undef -> 0 special case. This is a common 6167 // idiom (misuse). 6168 return getConstant(0, DL, VT); 6169 LLVM_FALLTHROUGH; 6170 case ISD::ADD: 6171 case ISD::SUB: 6172 case ISD::UDIV: 6173 case ISD::SDIV: 6174 case ISD::UREM: 6175 case ISD::SREM: 6176 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6177 case ISD::MUL: 6178 case ISD::AND: 6179 case ISD::SSUBSAT: 6180 case ISD::USUBSAT: 6181 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6182 case ISD::OR: 6183 case ISD::SADDSAT: 6184 case ISD::UADDSAT: 6185 return getAllOnesConstant(DL, VT); 6186 } 6187 } 6188 6189 // Memoize this node if possible. 6190 SDNode *N; 6191 SDVTList VTs = getVTList(VT); 6192 SDValue Ops[] = {N1, N2}; 6193 if (VT != MVT::Glue) { 6194 FoldingSetNodeID ID; 6195 AddNodeIDNode(ID, Opcode, VTs, Ops); 6196 void *IP = nullptr; 6197 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6198 E->intersectFlagsWith(Flags); 6199 return SDValue(E, 0); 6200 } 6201 6202 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6203 N->setFlags(Flags); 6204 createOperands(N, Ops); 6205 CSEMap.InsertNode(N, IP); 6206 } else { 6207 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6208 createOperands(N, Ops); 6209 } 6210 6211 InsertNode(N); 6212 SDValue V = SDValue(N, 0); 6213 NewSDValueDbgMsg(V, "Creating new node: ", this); 6214 return V; 6215 } 6216 6217 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6218 SDValue N1, SDValue N2, SDValue N3) { 6219 SDNodeFlags Flags; 6220 if (Inserter) 6221 Flags = Inserter->getFlags(); 6222 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6223 } 6224 6225 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6226 SDValue N1, SDValue N2, SDValue N3, 6227 const SDNodeFlags Flags) { 6228 assert(N1.getOpcode() != ISD::DELETED_NODE && 6229 N2.getOpcode() != ISD::DELETED_NODE && 6230 N3.getOpcode() != ISD::DELETED_NODE && 6231 "Operand is DELETED_NODE!"); 6232 // Perform various simplifications. 6233 switch (Opcode) { 6234 case ISD::FMA: { 6235 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6236 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6237 N3.getValueType() == VT && "FMA types must match!"); 6238 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6239 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6240 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6241 if (N1CFP && N2CFP && N3CFP) { 6242 APFloat V1 = N1CFP->getValueAPF(); 6243 const APFloat &V2 = N2CFP->getValueAPF(); 6244 const APFloat &V3 = N3CFP->getValueAPF(); 6245 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6246 return getConstantFP(V1, DL, VT); 6247 } 6248 break; 6249 } 6250 case ISD::BUILD_VECTOR: { 6251 // Attempt to simplify BUILD_VECTOR. 6252 SDValue Ops[] = {N1, N2, N3}; 6253 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6254 return V; 6255 break; 6256 } 6257 case ISD::CONCAT_VECTORS: { 6258 SDValue Ops[] = {N1, N2, N3}; 6259 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6260 return V; 6261 break; 6262 } 6263 case ISD::SETCC: { 6264 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6265 assert(N1.getValueType() == N2.getValueType() && 6266 "SETCC operands must have the same type!"); 6267 assert(VT.isVector() == N1.getValueType().isVector() && 6268 "SETCC type should be vector iff the operand type is vector!"); 6269 assert((!VT.isVector() || VT.getVectorElementCount() == 6270 N1.getValueType().getVectorElementCount()) && 6271 "SETCC vector element counts must match!"); 6272 // Use FoldSetCC to simplify SETCC's. 6273 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6274 return V; 6275 // Vector constant folding. 6276 SDValue Ops[] = {N1, N2, N3}; 6277 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6278 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6279 return V; 6280 } 6281 break; 6282 } 6283 case ISD::SELECT: 6284 case ISD::VSELECT: 6285 if (SDValue V = simplifySelect(N1, N2, N3)) 6286 return V; 6287 break; 6288 case ISD::VECTOR_SHUFFLE: 6289 llvm_unreachable("should use getVectorShuffle constructor!"); 6290 case ISD::VECTOR_SPLICE: { 6291 if (cast<ConstantSDNode>(N3)->isNullValue()) 6292 return N1; 6293 break; 6294 } 6295 case ISD::INSERT_VECTOR_ELT: { 6296 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6297 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6298 // for scalable vectors where we will generate appropriate code to 6299 // deal with out-of-bounds cases correctly. 6300 if (N3C && N1.getValueType().isFixedLengthVector() && 6301 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6302 return getUNDEF(VT); 6303 6304 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6305 if (N3.isUndef()) 6306 return getUNDEF(VT); 6307 6308 // If the inserted element is an UNDEF, just use the input vector. 6309 if (N2.isUndef()) 6310 return N1; 6311 6312 break; 6313 } 6314 case ISD::INSERT_SUBVECTOR: { 6315 // Inserting undef into undef is still undef. 6316 if (N1.isUndef() && N2.isUndef()) 6317 return getUNDEF(VT); 6318 6319 EVT N2VT = N2.getValueType(); 6320 assert(VT == N1.getValueType() && 6321 "Dest and insert subvector source types must match!"); 6322 assert(VT.isVector() && N2VT.isVector() && 6323 "Insert subvector VTs must be vectors!"); 6324 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6325 "Cannot insert a scalable vector into a fixed length vector!"); 6326 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6327 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6328 "Insert subvector must be from smaller vector to larger vector!"); 6329 assert(isa<ConstantSDNode>(N3) && 6330 "Insert subvector index must be constant"); 6331 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6332 (N2VT.getVectorMinNumElements() + 6333 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6334 VT.getVectorMinNumElements()) && 6335 "Insert subvector overflow!"); 6336 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6337 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6338 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6339 6340 // Trivial insertion. 6341 if (VT == N2VT) 6342 return N2; 6343 6344 // If this is an insert of an extracted vector into an undef vector, we 6345 // can just use the input to the extract. 6346 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6347 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6348 return N2.getOperand(0); 6349 break; 6350 } 6351 case ISD::BITCAST: 6352 // Fold bit_convert nodes from a type to themselves. 6353 if (N1.getValueType() == VT) 6354 return N1; 6355 break; 6356 } 6357 6358 // Memoize node if it doesn't produce a flag. 6359 SDNode *N; 6360 SDVTList VTs = getVTList(VT); 6361 SDValue Ops[] = {N1, N2, N3}; 6362 if (VT != MVT::Glue) { 6363 FoldingSetNodeID ID; 6364 AddNodeIDNode(ID, Opcode, VTs, Ops); 6365 void *IP = nullptr; 6366 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6367 E->intersectFlagsWith(Flags); 6368 return SDValue(E, 0); 6369 } 6370 6371 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6372 N->setFlags(Flags); 6373 createOperands(N, Ops); 6374 CSEMap.InsertNode(N, IP); 6375 } else { 6376 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6377 createOperands(N, Ops); 6378 } 6379 6380 InsertNode(N); 6381 SDValue V = SDValue(N, 0); 6382 NewSDValueDbgMsg(V, "Creating new node: ", this); 6383 return V; 6384 } 6385 6386 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6387 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6388 SDValue Ops[] = { N1, N2, N3, N4 }; 6389 return getNode(Opcode, DL, VT, Ops); 6390 } 6391 6392 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6393 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6394 SDValue N5) { 6395 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6396 return getNode(Opcode, DL, VT, Ops); 6397 } 6398 6399 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6400 /// the incoming stack arguments to be loaded from the stack. 6401 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6402 SmallVector<SDValue, 8> ArgChains; 6403 6404 // Include the original chain at the beginning of the list. When this is 6405 // used by target LowerCall hooks, this helps legalize find the 6406 // CALLSEQ_BEGIN node. 6407 ArgChains.push_back(Chain); 6408 6409 // Add a chain value for each stack argument. 6410 for (SDNode *U : getEntryNode().getNode()->uses()) 6411 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6412 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6413 if (FI->getIndex() < 0) 6414 ArgChains.push_back(SDValue(L, 1)); 6415 6416 // Build a tokenfactor for all the chains. 6417 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6418 } 6419 6420 /// getMemsetValue - Vectorized representation of the memset value 6421 /// operand. 6422 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6423 const SDLoc &dl) { 6424 assert(!Value.isUndef()); 6425 6426 unsigned NumBits = VT.getScalarSizeInBits(); 6427 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6428 assert(C->getAPIntValue().getBitWidth() == 8); 6429 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6430 if (VT.isInteger()) { 6431 bool IsOpaque = VT.getSizeInBits() > 64 || 6432 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6433 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6434 } 6435 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6436 VT); 6437 } 6438 6439 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6440 EVT IntVT = VT.getScalarType(); 6441 if (!IntVT.isInteger()) 6442 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6443 6444 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6445 if (NumBits > 8) { 6446 // Use a multiplication with 0x010101... to extend the input to the 6447 // required length. 6448 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6449 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6450 DAG.getConstant(Magic, dl, IntVT)); 6451 } 6452 6453 if (VT != Value.getValueType() && !VT.isInteger()) 6454 Value = DAG.getBitcast(VT.getScalarType(), Value); 6455 if (VT != Value.getValueType()) 6456 Value = DAG.getSplatBuildVector(VT, dl, Value); 6457 6458 return Value; 6459 } 6460 6461 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6462 /// used when a memcpy is turned into a memset when the source is a constant 6463 /// string ptr. 6464 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6465 const TargetLowering &TLI, 6466 const ConstantDataArraySlice &Slice) { 6467 // Handle vector with all elements zero. 6468 if (Slice.Array == nullptr) { 6469 if (VT.isInteger()) 6470 return DAG.getConstant(0, dl, VT); 6471 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6472 return DAG.getConstantFP(0.0, dl, VT); 6473 if (VT.isVector()) { 6474 unsigned NumElts = VT.getVectorNumElements(); 6475 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6476 return DAG.getNode(ISD::BITCAST, dl, VT, 6477 DAG.getConstant(0, dl, 6478 EVT::getVectorVT(*DAG.getContext(), 6479 EltVT, NumElts))); 6480 } 6481 llvm_unreachable("Expected type!"); 6482 } 6483 6484 assert(!VT.isVector() && "Can't handle vector type here!"); 6485 unsigned NumVTBits = VT.getSizeInBits(); 6486 unsigned NumVTBytes = NumVTBits / 8; 6487 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6488 6489 APInt Val(NumVTBits, 0); 6490 if (DAG.getDataLayout().isLittleEndian()) { 6491 for (unsigned i = 0; i != NumBytes; ++i) 6492 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6493 } else { 6494 for (unsigned i = 0; i != NumBytes; ++i) 6495 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6496 } 6497 6498 // If the "cost" of materializing the integer immediate is less than the cost 6499 // of a load, then it is cost effective to turn the load into the immediate. 6500 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6501 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6502 return DAG.getConstant(Val, dl, VT); 6503 return SDValue(); 6504 } 6505 6506 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6507 const SDLoc &DL, 6508 const SDNodeFlags Flags) { 6509 EVT VT = Base.getValueType(); 6510 SDValue Index; 6511 6512 if (Offset.isScalable()) 6513 Index = getVScale(DL, Base.getValueType(), 6514 APInt(Base.getValueSizeInBits().getFixedSize(), 6515 Offset.getKnownMinSize())); 6516 else 6517 Index = getConstant(Offset.getFixedSize(), DL, VT); 6518 6519 return getMemBasePlusOffset(Base, Index, DL, Flags); 6520 } 6521 6522 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6523 const SDLoc &DL, 6524 const SDNodeFlags Flags) { 6525 assert(Offset.getValueType().isInteger()); 6526 EVT BasePtrVT = Ptr.getValueType(); 6527 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6528 } 6529 6530 /// Returns true if memcpy source is constant data. 6531 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6532 uint64_t SrcDelta = 0; 6533 GlobalAddressSDNode *G = nullptr; 6534 if (Src.getOpcode() == ISD::GlobalAddress) 6535 G = cast<GlobalAddressSDNode>(Src); 6536 else if (Src.getOpcode() == ISD::ADD && 6537 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6538 Src.getOperand(1).getOpcode() == ISD::Constant) { 6539 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6540 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6541 } 6542 if (!G) 6543 return false; 6544 6545 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6546 SrcDelta + G->getOffset()); 6547 } 6548 6549 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6550 SelectionDAG &DAG) { 6551 // On Darwin, -Os means optimize for size without hurting performance, so 6552 // only really optimize for size when -Oz (MinSize) is used. 6553 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6554 return MF.getFunction().hasMinSize(); 6555 return DAG.shouldOptForSize(); 6556 } 6557 6558 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6559 SmallVector<SDValue, 32> &OutChains, unsigned From, 6560 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6561 SmallVector<SDValue, 16> &OutStoreChains) { 6562 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6563 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6564 SmallVector<SDValue, 16> GluedLoadChains; 6565 for (unsigned i = From; i < To; ++i) { 6566 OutChains.push_back(OutLoadChains[i]); 6567 GluedLoadChains.push_back(OutLoadChains[i]); 6568 } 6569 6570 // Chain for all loads. 6571 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6572 GluedLoadChains); 6573 6574 for (unsigned i = From; i < To; ++i) { 6575 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6576 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6577 ST->getBasePtr(), ST->getMemoryVT(), 6578 ST->getMemOperand()); 6579 OutChains.push_back(NewStore); 6580 } 6581 } 6582 6583 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6584 SDValue Chain, SDValue Dst, SDValue Src, 6585 uint64_t Size, Align Alignment, 6586 bool isVol, bool AlwaysInline, 6587 MachinePointerInfo DstPtrInfo, 6588 MachinePointerInfo SrcPtrInfo, 6589 const AAMDNodes &AAInfo) { 6590 // Turn a memcpy of undef to nop. 6591 // FIXME: We need to honor volatile even is Src is undef. 6592 if (Src.isUndef()) 6593 return Chain; 6594 6595 // Expand memcpy to a series of load and store ops if the size operand falls 6596 // below a certain threshold. 6597 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6598 // rather than maybe a humongous number of loads and stores. 6599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6600 const DataLayout &DL = DAG.getDataLayout(); 6601 LLVMContext &C = *DAG.getContext(); 6602 std::vector<EVT> MemOps; 6603 bool DstAlignCanChange = false; 6604 MachineFunction &MF = DAG.getMachineFunction(); 6605 MachineFrameInfo &MFI = MF.getFrameInfo(); 6606 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6607 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6608 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6609 DstAlignCanChange = true; 6610 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6611 if (!SrcAlign || Alignment > *SrcAlign) 6612 SrcAlign = Alignment; 6613 assert(SrcAlign && "SrcAlign must be set"); 6614 ConstantDataArraySlice Slice; 6615 // If marked as volatile, perform a copy even when marked as constant. 6616 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6617 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6618 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6619 const MemOp Op = isZeroConstant 6620 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6621 /*IsZeroMemset*/ true, isVol) 6622 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6623 *SrcAlign, isVol, CopyFromConstant); 6624 if (!TLI.findOptimalMemOpLowering( 6625 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6626 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6627 return SDValue(); 6628 6629 if (DstAlignCanChange) { 6630 Type *Ty = MemOps[0].getTypeForEVT(C); 6631 Align NewAlign = DL.getABITypeAlign(Ty); 6632 6633 // Don't promote to an alignment that would require dynamic stack 6634 // realignment. 6635 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6636 if (!TRI->hasStackRealignment(MF)) 6637 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6638 NewAlign = NewAlign / 2; 6639 6640 if (NewAlign > Alignment) { 6641 // Give the stack frame object a larger alignment if needed. 6642 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6643 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6644 Alignment = NewAlign; 6645 } 6646 } 6647 6648 // Prepare AAInfo for loads/stores after lowering this memcpy. 6649 AAMDNodes NewAAInfo = AAInfo; 6650 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6651 6652 MachineMemOperand::Flags MMOFlags = 6653 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6654 SmallVector<SDValue, 16> OutLoadChains; 6655 SmallVector<SDValue, 16> OutStoreChains; 6656 SmallVector<SDValue, 32> OutChains; 6657 unsigned NumMemOps = MemOps.size(); 6658 uint64_t SrcOff = 0, DstOff = 0; 6659 for (unsigned i = 0; i != NumMemOps; ++i) { 6660 EVT VT = MemOps[i]; 6661 unsigned VTSize = VT.getSizeInBits() / 8; 6662 SDValue Value, Store; 6663 6664 if (VTSize > Size) { 6665 // Issuing an unaligned load / store pair that overlaps with the previous 6666 // pair. Adjust the offset accordingly. 6667 assert(i == NumMemOps-1 && i != 0); 6668 SrcOff -= VTSize - Size; 6669 DstOff -= VTSize - Size; 6670 } 6671 6672 if (CopyFromConstant && 6673 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6674 // It's unlikely a store of a vector immediate can be done in a single 6675 // instruction. It would require a load from a constantpool first. 6676 // We only handle zero vectors here. 6677 // FIXME: Handle other cases where store of vector immediate is done in 6678 // a single instruction. 6679 ConstantDataArraySlice SubSlice; 6680 if (SrcOff < Slice.Length) { 6681 SubSlice = Slice; 6682 SubSlice.move(SrcOff); 6683 } else { 6684 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6685 SubSlice.Array = nullptr; 6686 SubSlice.Offset = 0; 6687 SubSlice.Length = VTSize; 6688 } 6689 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6690 if (Value.getNode()) { 6691 Store = DAG.getStore( 6692 Chain, dl, Value, 6693 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6694 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6695 OutChains.push_back(Store); 6696 } 6697 } 6698 6699 if (!Store.getNode()) { 6700 // The type might not be legal for the target. This should only happen 6701 // if the type is smaller than a legal type, as on PPC, so the right 6702 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6703 // to Load/Store if NVT==VT. 6704 // FIXME does the case above also need this? 6705 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6706 assert(NVT.bitsGE(VT)); 6707 6708 bool isDereferenceable = 6709 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6710 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6711 if (isDereferenceable) 6712 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6713 6714 Value = DAG.getExtLoad( 6715 ISD::EXTLOAD, dl, NVT, Chain, 6716 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6717 SrcPtrInfo.getWithOffset(SrcOff), VT, 6718 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6719 OutLoadChains.push_back(Value.getValue(1)); 6720 6721 Store = DAG.getTruncStore( 6722 Chain, dl, Value, 6723 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6724 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6725 OutStoreChains.push_back(Store); 6726 } 6727 SrcOff += VTSize; 6728 DstOff += VTSize; 6729 Size -= VTSize; 6730 } 6731 6732 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6733 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6734 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6735 6736 if (NumLdStInMemcpy) { 6737 // It may be that memcpy might be converted to memset if it's memcpy 6738 // of constants. In such a case, we won't have loads and stores, but 6739 // just stores. In the absence of loads, there is nothing to gang up. 6740 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6741 // If target does not care, just leave as it. 6742 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6743 OutChains.push_back(OutLoadChains[i]); 6744 OutChains.push_back(OutStoreChains[i]); 6745 } 6746 } else { 6747 // Ld/St less than/equal limit set by target. 6748 if (NumLdStInMemcpy <= GluedLdStLimit) { 6749 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6750 NumLdStInMemcpy, OutLoadChains, 6751 OutStoreChains); 6752 } else { 6753 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6754 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6755 unsigned GlueIter = 0; 6756 6757 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6758 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6759 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6760 6761 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6762 OutLoadChains, OutStoreChains); 6763 GlueIter += GluedLdStLimit; 6764 } 6765 6766 // Residual ld/st. 6767 if (RemainingLdStInMemcpy) { 6768 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6769 RemainingLdStInMemcpy, OutLoadChains, 6770 OutStoreChains); 6771 } 6772 } 6773 } 6774 } 6775 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6776 } 6777 6778 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6779 SDValue Chain, SDValue Dst, SDValue Src, 6780 uint64_t Size, Align Alignment, 6781 bool isVol, bool AlwaysInline, 6782 MachinePointerInfo DstPtrInfo, 6783 MachinePointerInfo SrcPtrInfo, 6784 const AAMDNodes &AAInfo) { 6785 // Turn a memmove of undef to nop. 6786 // FIXME: We need to honor volatile even is Src is undef. 6787 if (Src.isUndef()) 6788 return Chain; 6789 6790 // Expand memmove to a series of load and store ops if the size operand falls 6791 // below a certain threshold. 6792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6793 const DataLayout &DL = DAG.getDataLayout(); 6794 LLVMContext &C = *DAG.getContext(); 6795 std::vector<EVT> MemOps; 6796 bool DstAlignCanChange = false; 6797 MachineFunction &MF = DAG.getMachineFunction(); 6798 MachineFrameInfo &MFI = MF.getFrameInfo(); 6799 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6800 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6801 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6802 DstAlignCanChange = true; 6803 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6804 if (!SrcAlign || Alignment > *SrcAlign) 6805 SrcAlign = Alignment; 6806 assert(SrcAlign && "SrcAlign must be set"); 6807 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6808 if (!TLI.findOptimalMemOpLowering( 6809 MemOps, Limit, 6810 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6811 /*IsVolatile*/ true), 6812 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6813 MF.getFunction().getAttributes())) 6814 return SDValue(); 6815 6816 if (DstAlignCanChange) { 6817 Type *Ty = MemOps[0].getTypeForEVT(C); 6818 Align NewAlign = DL.getABITypeAlign(Ty); 6819 if (NewAlign > Alignment) { 6820 // Give the stack frame object a larger alignment if needed. 6821 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6822 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6823 Alignment = NewAlign; 6824 } 6825 } 6826 6827 // Prepare AAInfo for loads/stores after lowering this memmove. 6828 AAMDNodes NewAAInfo = AAInfo; 6829 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6830 6831 MachineMemOperand::Flags MMOFlags = 6832 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6833 uint64_t SrcOff = 0, DstOff = 0; 6834 SmallVector<SDValue, 8> LoadValues; 6835 SmallVector<SDValue, 8> LoadChains; 6836 SmallVector<SDValue, 8> OutChains; 6837 unsigned NumMemOps = MemOps.size(); 6838 for (unsigned i = 0; i < NumMemOps; i++) { 6839 EVT VT = MemOps[i]; 6840 unsigned VTSize = VT.getSizeInBits() / 8; 6841 SDValue Value; 6842 6843 bool isDereferenceable = 6844 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6845 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6846 if (isDereferenceable) 6847 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6848 6849 Value = DAG.getLoad( 6850 VT, dl, Chain, 6851 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6852 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6853 LoadValues.push_back(Value); 6854 LoadChains.push_back(Value.getValue(1)); 6855 SrcOff += VTSize; 6856 } 6857 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6858 OutChains.clear(); 6859 for (unsigned i = 0; i < NumMemOps; i++) { 6860 EVT VT = MemOps[i]; 6861 unsigned VTSize = VT.getSizeInBits() / 8; 6862 SDValue Store; 6863 6864 Store = DAG.getStore( 6865 Chain, dl, LoadValues[i], 6866 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6867 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6868 OutChains.push_back(Store); 6869 DstOff += VTSize; 6870 } 6871 6872 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6873 } 6874 6875 /// Lower the call to 'memset' intrinsic function into a series of store 6876 /// operations. 6877 /// 6878 /// \param DAG Selection DAG where lowered code is placed. 6879 /// \param dl Link to corresponding IR location. 6880 /// \param Chain Control flow dependency. 6881 /// \param Dst Pointer to destination memory location. 6882 /// \param Src Value of byte to write into the memory. 6883 /// \param Size Number of bytes to write. 6884 /// \param Alignment Alignment of the destination in bytes. 6885 /// \param isVol True if destination is volatile. 6886 /// \param DstPtrInfo IR information on the memory pointer. 6887 /// \returns New head in the control flow, if lowering was successful, empty 6888 /// SDValue otherwise. 6889 /// 6890 /// The function tries to replace 'llvm.memset' intrinsic with several store 6891 /// operations and value calculation code. This is usually profitable for small 6892 /// memory size. 6893 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6894 SDValue Chain, SDValue Dst, SDValue Src, 6895 uint64_t Size, Align Alignment, bool isVol, 6896 MachinePointerInfo DstPtrInfo, 6897 const AAMDNodes &AAInfo) { 6898 // Turn a memset of undef to nop. 6899 // FIXME: We need to honor volatile even is Src is undef. 6900 if (Src.isUndef()) 6901 return Chain; 6902 6903 // Expand memset to a series of load/store ops if the size operand 6904 // falls below a certain threshold. 6905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6906 std::vector<EVT> MemOps; 6907 bool DstAlignCanChange = false; 6908 MachineFunction &MF = DAG.getMachineFunction(); 6909 MachineFrameInfo &MFI = MF.getFrameInfo(); 6910 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6911 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6912 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6913 DstAlignCanChange = true; 6914 bool IsZeroVal = 6915 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6916 if (!TLI.findOptimalMemOpLowering( 6917 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6918 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6919 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6920 return SDValue(); 6921 6922 if (DstAlignCanChange) { 6923 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6924 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6925 if (NewAlign > Alignment) { 6926 // Give the stack frame object a larger alignment if needed. 6927 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6928 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6929 Alignment = NewAlign; 6930 } 6931 } 6932 6933 SmallVector<SDValue, 8> OutChains; 6934 uint64_t DstOff = 0; 6935 unsigned NumMemOps = MemOps.size(); 6936 6937 // Find the largest store and generate the bit pattern for it. 6938 EVT LargestVT = MemOps[0]; 6939 for (unsigned i = 1; i < NumMemOps; i++) 6940 if (MemOps[i].bitsGT(LargestVT)) 6941 LargestVT = MemOps[i]; 6942 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6943 6944 // Prepare AAInfo for loads/stores after lowering this memset. 6945 AAMDNodes NewAAInfo = AAInfo; 6946 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6947 6948 for (unsigned i = 0; i < NumMemOps; i++) { 6949 EVT VT = MemOps[i]; 6950 unsigned VTSize = VT.getSizeInBits() / 8; 6951 if (VTSize > Size) { 6952 // Issuing an unaligned load / store pair that overlaps with the previous 6953 // pair. Adjust the offset accordingly. 6954 assert(i == NumMemOps-1 && i != 0); 6955 DstOff -= VTSize - Size; 6956 } 6957 6958 // If this store is smaller than the largest store see whether we can get 6959 // the smaller value for free with a truncate. 6960 SDValue Value = MemSetValue; 6961 if (VT.bitsLT(LargestVT)) { 6962 if (!LargestVT.isVector() && !VT.isVector() && 6963 TLI.isTruncateFree(LargestVT, VT)) 6964 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6965 else 6966 Value = getMemsetValue(Src, VT, DAG, dl); 6967 } 6968 assert(Value.getValueType() == VT && "Value with wrong type."); 6969 SDValue Store = DAG.getStore( 6970 Chain, dl, Value, 6971 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6972 DstPtrInfo.getWithOffset(DstOff), Alignment, 6973 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6974 NewAAInfo); 6975 OutChains.push_back(Store); 6976 DstOff += VT.getSizeInBits() / 8; 6977 Size -= VTSize; 6978 } 6979 6980 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6981 } 6982 6983 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6984 unsigned AS) { 6985 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6986 // pointer operands can be losslessly bitcasted to pointers of address space 0 6987 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6988 report_fatal_error("cannot lower memory intrinsic in address space " + 6989 Twine(AS)); 6990 } 6991 } 6992 6993 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6994 SDValue Src, SDValue Size, Align Alignment, 6995 bool isVol, bool AlwaysInline, bool isTailCall, 6996 MachinePointerInfo DstPtrInfo, 6997 MachinePointerInfo SrcPtrInfo, 6998 const AAMDNodes &AAInfo) { 6999 // Check to see if we should lower the memcpy to loads and stores first. 7000 // For cases within the target-specified limits, this is the best choice. 7001 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7002 if (ConstantSize) { 7003 // Memcpy with size zero? Just return the original chain. 7004 if (ConstantSize->isZero()) 7005 return Chain; 7006 7007 SDValue Result = getMemcpyLoadsAndStores( 7008 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7009 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7010 if (Result.getNode()) 7011 return Result; 7012 } 7013 7014 // Then check to see if we should lower the memcpy with target-specific 7015 // code. If the target chooses to do this, this is the next best. 7016 if (TSI) { 7017 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7018 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7019 DstPtrInfo, SrcPtrInfo); 7020 if (Result.getNode()) 7021 return Result; 7022 } 7023 7024 // If we really need inline code and the target declined to provide it, 7025 // use a (potentially long) sequence of loads and stores. 7026 if (AlwaysInline) { 7027 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7028 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7029 ConstantSize->getZExtValue(), Alignment, 7030 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7031 } 7032 7033 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7034 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7035 7036 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7037 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7038 // respect volatile, so they may do things like read or write memory 7039 // beyond the given memory regions. But fixing this isn't easy, and most 7040 // people don't care. 7041 7042 // Emit a library call. 7043 TargetLowering::ArgListTy Args; 7044 TargetLowering::ArgListEntry Entry; 7045 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7046 Entry.Node = Dst; Args.push_back(Entry); 7047 Entry.Node = Src; Args.push_back(Entry); 7048 7049 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7050 Entry.Node = Size; Args.push_back(Entry); 7051 // FIXME: pass in SDLoc 7052 TargetLowering::CallLoweringInfo CLI(*this); 7053 CLI.setDebugLoc(dl) 7054 .setChain(Chain) 7055 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7056 Dst.getValueType().getTypeForEVT(*getContext()), 7057 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7058 TLI->getPointerTy(getDataLayout())), 7059 std::move(Args)) 7060 .setDiscardResult() 7061 .setTailCall(isTailCall); 7062 7063 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7064 return CallResult.second; 7065 } 7066 7067 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7068 SDValue Dst, unsigned DstAlign, 7069 SDValue Src, unsigned SrcAlign, 7070 SDValue Size, Type *SizeTy, 7071 unsigned ElemSz, bool isTailCall, 7072 MachinePointerInfo DstPtrInfo, 7073 MachinePointerInfo SrcPtrInfo) { 7074 // Emit a library call. 7075 TargetLowering::ArgListTy Args; 7076 TargetLowering::ArgListEntry Entry; 7077 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7078 Entry.Node = Dst; 7079 Args.push_back(Entry); 7080 7081 Entry.Node = Src; 7082 Args.push_back(Entry); 7083 7084 Entry.Ty = SizeTy; 7085 Entry.Node = Size; 7086 Args.push_back(Entry); 7087 7088 RTLIB::Libcall LibraryCall = 7089 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7090 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7091 report_fatal_error("Unsupported element size"); 7092 7093 TargetLowering::CallLoweringInfo CLI(*this); 7094 CLI.setDebugLoc(dl) 7095 .setChain(Chain) 7096 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7097 Type::getVoidTy(*getContext()), 7098 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7099 TLI->getPointerTy(getDataLayout())), 7100 std::move(Args)) 7101 .setDiscardResult() 7102 .setTailCall(isTailCall); 7103 7104 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7105 return CallResult.second; 7106 } 7107 7108 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7109 SDValue Src, SDValue Size, Align Alignment, 7110 bool isVol, bool isTailCall, 7111 MachinePointerInfo DstPtrInfo, 7112 MachinePointerInfo SrcPtrInfo, 7113 const AAMDNodes &AAInfo) { 7114 // Check to see if we should lower the memmove to loads and stores first. 7115 // For cases within the target-specified limits, this is the best choice. 7116 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7117 if (ConstantSize) { 7118 // Memmove with size zero? Just return the original chain. 7119 if (ConstantSize->isZero()) 7120 return Chain; 7121 7122 SDValue Result = getMemmoveLoadsAndStores( 7123 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7124 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7125 if (Result.getNode()) 7126 return Result; 7127 } 7128 7129 // Then check to see if we should lower the memmove with target-specific 7130 // code. If the target chooses to do this, this is the next best. 7131 if (TSI) { 7132 SDValue Result = 7133 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7134 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7135 if (Result.getNode()) 7136 return Result; 7137 } 7138 7139 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7140 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7141 7142 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7143 // not be safe. See memcpy above for more details. 7144 7145 // Emit a library call. 7146 TargetLowering::ArgListTy Args; 7147 TargetLowering::ArgListEntry Entry; 7148 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7149 Entry.Node = Dst; Args.push_back(Entry); 7150 Entry.Node = Src; Args.push_back(Entry); 7151 7152 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7153 Entry.Node = Size; Args.push_back(Entry); 7154 // FIXME: pass in SDLoc 7155 TargetLowering::CallLoweringInfo CLI(*this); 7156 CLI.setDebugLoc(dl) 7157 .setChain(Chain) 7158 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7159 Dst.getValueType().getTypeForEVT(*getContext()), 7160 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7161 TLI->getPointerTy(getDataLayout())), 7162 std::move(Args)) 7163 .setDiscardResult() 7164 .setTailCall(isTailCall); 7165 7166 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7167 return CallResult.second; 7168 } 7169 7170 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7171 SDValue Dst, unsigned DstAlign, 7172 SDValue Src, unsigned SrcAlign, 7173 SDValue Size, Type *SizeTy, 7174 unsigned ElemSz, bool isTailCall, 7175 MachinePointerInfo DstPtrInfo, 7176 MachinePointerInfo SrcPtrInfo) { 7177 // Emit a library call. 7178 TargetLowering::ArgListTy Args; 7179 TargetLowering::ArgListEntry Entry; 7180 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7181 Entry.Node = Dst; 7182 Args.push_back(Entry); 7183 7184 Entry.Node = Src; 7185 Args.push_back(Entry); 7186 7187 Entry.Ty = SizeTy; 7188 Entry.Node = Size; 7189 Args.push_back(Entry); 7190 7191 RTLIB::Libcall LibraryCall = 7192 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7193 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7194 report_fatal_error("Unsupported element size"); 7195 7196 TargetLowering::CallLoweringInfo CLI(*this); 7197 CLI.setDebugLoc(dl) 7198 .setChain(Chain) 7199 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7200 Type::getVoidTy(*getContext()), 7201 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7202 TLI->getPointerTy(getDataLayout())), 7203 std::move(Args)) 7204 .setDiscardResult() 7205 .setTailCall(isTailCall); 7206 7207 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7208 return CallResult.second; 7209 } 7210 7211 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7212 SDValue Src, SDValue Size, Align Alignment, 7213 bool isVol, bool isTailCall, 7214 MachinePointerInfo DstPtrInfo, 7215 const AAMDNodes &AAInfo) { 7216 // Check to see if we should lower the memset to stores first. 7217 // For cases within the target-specified limits, this is the best choice. 7218 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7219 if (ConstantSize) { 7220 // Memset with size zero? Just return the original chain. 7221 if (ConstantSize->isZero()) 7222 return Chain; 7223 7224 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7225 ConstantSize->getZExtValue(), Alignment, 7226 isVol, DstPtrInfo, AAInfo); 7227 7228 if (Result.getNode()) 7229 return Result; 7230 } 7231 7232 // Then check to see if we should lower the memset with target-specific 7233 // code. If the target chooses to do this, this is the next best. 7234 if (TSI) { 7235 SDValue Result = TSI->EmitTargetCodeForMemset( 7236 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7237 if (Result.getNode()) 7238 return Result; 7239 } 7240 7241 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7242 7243 // Emit a library call. 7244 TargetLowering::ArgListTy Args; 7245 TargetLowering::ArgListEntry Entry; 7246 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7247 Args.push_back(Entry); 7248 Entry.Node = Src; 7249 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7250 Args.push_back(Entry); 7251 Entry.Node = Size; 7252 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7253 Args.push_back(Entry); 7254 7255 // FIXME: pass in SDLoc 7256 TargetLowering::CallLoweringInfo CLI(*this); 7257 CLI.setDebugLoc(dl) 7258 .setChain(Chain) 7259 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7260 Dst.getValueType().getTypeForEVT(*getContext()), 7261 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7262 TLI->getPointerTy(getDataLayout())), 7263 std::move(Args)) 7264 .setDiscardResult() 7265 .setTailCall(isTailCall); 7266 7267 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7268 return CallResult.second; 7269 } 7270 7271 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7272 SDValue Dst, unsigned DstAlign, 7273 SDValue Value, SDValue Size, Type *SizeTy, 7274 unsigned ElemSz, bool isTailCall, 7275 MachinePointerInfo DstPtrInfo) { 7276 // Emit a library call. 7277 TargetLowering::ArgListTy Args; 7278 TargetLowering::ArgListEntry Entry; 7279 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7280 Entry.Node = Dst; 7281 Args.push_back(Entry); 7282 7283 Entry.Ty = Type::getInt8Ty(*getContext()); 7284 Entry.Node = Value; 7285 Args.push_back(Entry); 7286 7287 Entry.Ty = SizeTy; 7288 Entry.Node = Size; 7289 Args.push_back(Entry); 7290 7291 RTLIB::Libcall LibraryCall = 7292 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7293 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7294 report_fatal_error("Unsupported element size"); 7295 7296 TargetLowering::CallLoweringInfo CLI(*this); 7297 CLI.setDebugLoc(dl) 7298 .setChain(Chain) 7299 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7300 Type::getVoidTy(*getContext()), 7301 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7302 TLI->getPointerTy(getDataLayout())), 7303 std::move(Args)) 7304 .setDiscardResult() 7305 .setTailCall(isTailCall); 7306 7307 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7308 return CallResult.second; 7309 } 7310 7311 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7312 SDVTList VTList, ArrayRef<SDValue> Ops, 7313 MachineMemOperand *MMO) { 7314 FoldingSetNodeID ID; 7315 ID.AddInteger(MemVT.getRawBits()); 7316 AddNodeIDNode(ID, Opcode, VTList, Ops); 7317 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7318 void* IP = nullptr; 7319 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7320 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7321 return SDValue(E, 0); 7322 } 7323 7324 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7325 VTList, MemVT, MMO); 7326 createOperands(N, Ops); 7327 7328 CSEMap.InsertNode(N, IP); 7329 InsertNode(N); 7330 return SDValue(N, 0); 7331 } 7332 7333 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7334 EVT MemVT, SDVTList VTs, SDValue Chain, 7335 SDValue Ptr, SDValue Cmp, SDValue Swp, 7336 MachineMemOperand *MMO) { 7337 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7338 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7339 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7340 7341 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7342 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7343 } 7344 7345 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7346 SDValue Chain, SDValue Ptr, SDValue Val, 7347 MachineMemOperand *MMO) { 7348 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7349 Opcode == ISD::ATOMIC_LOAD_SUB || 7350 Opcode == ISD::ATOMIC_LOAD_AND || 7351 Opcode == ISD::ATOMIC_LOAD_CLR || 7352 Opcode == ISD::ATOMIC_LOAD_OR || 7353 Opcode == ISD::ATOMIC_LOAD_XOR || 7354 Opcode == ISD::ATOMIC_LOAD_NAND || 7355 Opcode == ISD::ATOMIC_LOAD_MIN || 7356 Opcode == ISD::ATOMIC_LOAD_MAX || 7357 Opcode == ISD::ATOMIC_LOAD_UMIN || 7358 Opcode == ISD::ATOMIC_LOAD_UMAX || 7359 Opcode == ISD::ATOMIC_LOAD_FADD || 7360 Opcode == ISD::ATOMIC_LOAD_FSUB || 7361 Opcode == ISD::ATOMIC_SWAP || 7362 Opcode == ISD::ATOMIC_STORE) && 7363 "Invalid Atomic Op"); 7364 7365 EVT VT = Val.getValueType(); 7366 7367 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7368 getVTList(VT, MVT::Other); 7369 SDValue Ops[] = {Chain, Ptr, Val}; 7370 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7371 } 7372 7373 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7374 EVT VT, SDValue Chain, SDValue Ptr, 7375 MachineMemOperand *MMO) { 7376 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7377 7378 SDVTList VTs = getVTList(VT, MVT::Other); 7379 SDValue Ops[] = {Chain, Ptr}; 7380 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7381 } 7382 7383 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7384 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7385 if (Ops.size() == 1) 7386 return Ops[0]; 7387 7388 SmallVector<EVT, 4> VTs; 7389 VTs.reserve(Ops.size()); 7390 for (const SDValue &Op : Ops) 7391 VTs.push_back(Op.getValueType()); 7392 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7393 } 7394 7395 SDValue SelectionDAG::getMemIntrinsicNode( 7396 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7397 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7398 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7399 if (!Size && MemVT.isScalableVector()) 7400 Size = MemoryLocation::UnknownSize; 7401 else if (!Size) 7402 Size = MemVT.getStoreSize(); 7403 7404 MachineFunction &MF = getMachineFunction(); 7405 MachineMemOperand *MMO = 7406 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7407 7408 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7409 } 7410 7411 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7412 SDVTList VTList, 7413 ArrayRef<SDValue> Ops, EVT MemVT, 7414 MachineMemOperand *MMO) { 7415 assert((Opcode == ISD::INTRINSIC_VOID || 7416 Opcode == ISD::INTRINSIC_W_CHAIN || 7417 Opcode == ISD::PREFETCH || 7418 ((int)Opcode <= std::numeric_limits<int>::max() && 7419 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7420 "Opcode is not a memory-accessing opcode!"); 7421 7422 // Memoize the node unless it returns a flag. 7423 MemIntrinsicSDNode *N; 7424 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7425 FoldingSetNodeID ID; 7426 AddNodeIDNode(ID, Opcode, VTList, Ops); 7427 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7428 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7429 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7430 void *IP = nullptr; 7431 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7432 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7433 return SDValue(E, 0); 7434 } 7435 7436 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7437 VTList, MemVT, MMO); 7438 createOperands(N, Ops); 7439 7440 CSEMap.InsertNode(N, IP); 7441 } else { 7442 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7443 VTList, MemVT, MMO); 7444 createOperands(N, Ops); 7445 } 7446 InsertNode(N); 7447 SDValue V(N, 0); 7448 NewSDValueDbgMsg(V, "Creating new node: ", this); 7449 return V; 7450 } 7451 7452 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7453 SDValue Chain, int FrameIndex, 7454 int64_t Size, int64_t Offset) { 7455 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7456 const auto VTs = getVTList(MVT::Other); 7457 SDValue Ops[2] = { 7458 Chain, 7459 getFrameIndex(FrameIndex, 7460 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7461 true)}; 7462 7463 FoldingSetNodeID ID; 7464 AddNodeIDNode(ID, Opcode, VTs, Ops); 7465 ID.AddInteger(FrameIndex); 7466 ID.AddInteger(Size); 7467 ID.AddInteger(Offset); 7468 void *IP = nullptr; 7469 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7470 return SDValue(E, 0); 7471 7472 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7473 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7474 createOperands(N, Ops); 7475 CSEMap.InsertNode(N, IP); 7476 InsertNode(N); 7477 SDValue V(N, 0); 7478 NewSDValueDbgMsg(V, "Creating new node: ", this); 7479 return V; 7480 } 7481 7482 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7483 uint64_t Guid, uint64_t Index, 7484 uint32_t Attr) { 7485 const unsigned Opcode = ISD::PSEUDO_PROBE; 7486 const auto VTs = getVTList(MVT::Other); 7487 SDValue Ops[] = {Chain}; 7488 FoldingSetNodeID ID; 7489 AddNodeIDNode(ID, Opcode, VTs, Ops); 7490 ID.AddInteger(Guid); 7491 ID.AddInteger(Index); 7492 void *IP = nullptr; 7493 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7494 return SDValue(E, 0); 7495 7496 auto *N = newSDNode<PseudoProbeSDNode>( 7497 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7498 createOperands(N, Ops); 7499 CSEMap.InsertNode(N, IP); 7500 InsertNode(N); 7501 SDValue V(N, 0); 7502 NewSDValueDbgMsg(V, "Creating new node: ", this); 7503 return V; 7504 } 7505 7506 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7507 /// MachinePointerInfo record from it. This is particularly useful because the 7508 /// code generator has many cases where it doesn't bother passing in a 7509 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7510 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7511 SelectionDAG &DAG, SDValue Ptr, 7512 int64_t Offset = 0) { 7513 // If this is FI+Offset, we can model it. 7514 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7515 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7516 FI->getIndex(), Offset); 7517 7518 // If this is (FI+Offset1)+Offset2, we can model it. 7519 if (Ptr.getOpcode() != ISD::ADD || 7520 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7521 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7522 return Info; 7523 7524 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7525 return MachinePointerInfo::getFixedStack( 7526 DAG.getMachineFunction(), FI, 7527 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7528 } 7529 7530 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7531 /// MachinePointerInfo record from it. This is particularly useful because the 7532 /// code generator has many cases where it doesn't bother passing in a 7533 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7534 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7535 SelectionDAG &DAG, SDValue Ptr, 7536 SDValue OffsetOp) { 7537 // If the 'Offset' value isn't a constant, we can't handle this. 7538 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7539 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7540 if (OffsetOp.isUndef()) 7541 return InferPointerInfo(Info, DAG, Ptr); 7542 return Info; 7543 } 7544 7545 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7546 EVT VT, const SDLoc &dl, SDValue Chain, 7547 SDValue Ptr, SDValue Offset, 7548 MachinePointerInfo PtrInfo, EVT MemVT, 7549 Align Alignment, 7550 MachineMemOperand::Flags MMOFlags, 7551 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7552 assert(Chain.getValueType() == MVT::Other && 7553 "Invalid chain type"); 7554 7555 MMOFlags |= MachineMemOperand::MOLoad; 7556 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7557 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7558 // clients. 7559 if (PtrInfo.V.isNull()) 7560 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7561 7562 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7563 MachineFunction &MF = getMachineFunction(); 7564 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7565 Alignment, AAInfo, Ranges); 7566 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7567 } 7568 7569 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7570 EVT VT, const SDLoc &dl, SDValue Chain, 7571 SDValue Ptr, SDValue Offset, EVT MemVT, 7572 MachineMemOperand *MMO) { 7573 if (VT == MemVT) { 7574 ExtType = ISD::NON_EXTLOAD; 7575 } else if (ExtType == ISD::NON_EXTLOAD) { 7576 assert(VT == MemVT && "Non-extending load from different memory type!"); 7577 } else { 7578 // Extending load. 7579 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7580 "Should only be an extending load, not truncating!"); 7581 assert(VT.isInteger() == MemVT.isInteger() && 7582 "Cannot convert from FP to Int or Int -> FP!"); 7583 assert(VT.isVector() == MemVT.isVector() && 7584 "Cannot use an ext load to convert to or from a vector!"); 7585 assert((!VT.isVector() || 7586 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7587 "Cannot use an ext load to change the number of vector elements!"); 7588 } 7589 7590 bool Indexed = AM != ISD::UNINDEXED; 7591 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7592 7593 SDVTList VTs = Indexed ? 7594 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7595 SDValue Ops[] = { Chain, Ptr, Offset }; 7596 FoldingSetNodeID ID; 7597 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7598 ID.AddInteger(MemVT.getRawBits()); 7599 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7600 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7601 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7602 void *IP = nullptr; 7603 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7604 cast<LoadSDNode>(E)->refineAlignment(MMO); 7605 return SDValue(E, 0); 7606 } 7607 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7608 ExtType, MemVT, MMO); 7609 createOperands(N, Ops); 7610 7611 CSEMap.InsertNode(N, IP); 7612 InsertNode(N); 7613 SDValue V(N, 0); 7614 NewSDValueDbgMsg(V, "Creating new node: ", this); 7615 return V; 7616 } 7617 7618 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7619 SDValue Ptr, MachinePointerInfo PtrInfo, 7620 MaybeAlign Alignment, 7621 MachineMemOperand::Flags MMOFlags, 7622 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7623 SDValue Undef = getUNDEF(Ptr.getValueType()); 7624 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7625 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7626 } 7627 7628 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7629 SDValue Ptr, MachineMemOperand *MMO) { 7630 SDValue Undef = getUNDEF(Ptr.getValueType()); 7631 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7632 VT, MMO); 7633 } 7634 7635 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7636 EVT VT, SDValue Chain, SDValue Ptr, 7637 MachinePointerInfo PtrInfo, EVT MemVT, 7638 MaybeAlign Alignment, 7639 MachineMemOperand::Flags MMOFlags, 7640 const AAMDNodes &AAInfo) { 7641 SDValue Undef = getUNDEF(Ptr.getValueType()); 7642 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7643 MemVT, Alignment, MMOFlags, AAInfo); 7644 } 7645 7646 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7647 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7648 MachineMemOperand *MMO) { 7649 SDValue Undef = getUNDEF(Ptr.getValueType()); 7650 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7651 MemVT, MMO); 7652 } 7653 7654 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7655 SDValue Base, SDValue Offset, 7656 ISD::MemIndexedMode AM) { 7657 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7658 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7659 // Don't propagate the invariant or dereferenceable flags. 7660 auto MMOFlags = 7661 LD->getMemOperand()->getFlags() & 7662 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7663 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7664 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7665 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7666 } 7667 7668 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7669 SDValue Ptr, MachinePointerInfo PtrInfo, 7670 Align Alignment, 7671 MachineMemOperand::Flags MMOFlags, 7672 const AAMDNodes &AAInfo) { 7673 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7674 7675 MMOFlags |= MachineMemOperand::MOStore; 7676 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7677 7678 if (PtrInfo.V.isNull()) 7679 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7680 7681 MachineFunction &MF = getMachineFunction(); 7682 uint64_t Size = 7683 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7684 MachineMemOperand *MMO = 7685 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7686 return getStore(Chain, dl, Val, Ptr, MMO); 7687 } 7688 7689 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7690 SDValue Ptr, MachineMemOperand *MMO) { 7691 assert(Chain.getValueType() == MVT::Other && 7692 "Invalid chain type"); 7693 EVT VT = Val.getValueType(); 7694 SDVTList VTs = getVTList(MVT::Other); 7695 SDValue Undef = getUNDEF(Ptr.getValueType()); 7696 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7697 FoldingSetNodeID ID; 7698 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7699 ID.AddInteger(VT.getRawBits()); 7700 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7701 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7702 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7703 void *IP = nullptr; 7704 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7705 cast<StoreSDNode>(E)->refineAlignment(MMO); 7706 return SDValue(E, 0); 7707 } 7708 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7709 ISD::UNINDEXED, false, VT, MMO); 7710 createOperands(N, Ops); 7711 7712 CSEMap.InsertNode(N, IP); 7713 InsertNode(N); 7714 SDValue V(N, 0); 7715 NewSDValueDbgMsg(V, "Creating new node: ", this); 7716 return V; 7717 } 7718 7719 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7720 SDValue Ptr, MachinePointerInfo PtrInfo, 7721 EVT SVT, Align Alignment, 7722 MachineMemOperand::Flags MMOFlags, 7723 const AAMDNodes &AAInfo) { 7724 assert(Chain.getValueType() == MVT::Other && 7725 "Invalid chain type"); 7726 7727 MMOFlags |= MachineMemOperand::MOStore; 7728 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7729 7730 if (PtrInfo.V.isNull()) 7731 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7732 7733 MachineFunction &MF = getMachineFunction(); 7734 MachineMemOperand *MMO = MF.getMachineMemOperand( 7735 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7736 Alignment, AAInfo); 7737 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7738 } 7739 7740 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7741 SDValue Ptr, EVT SVT, 7742 MachineMemOperand *MMO) { 7743 EVT VT = Val.getValueType(); 7744 7745 assert(Chain.getValueType() == MVT::Other && 7746 "Invalid chain type"); 7747 if (VT == SVT) 7748 return getStore(Chain, dl, Val, Ptr, MMO); 7749 7750 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7751 "Should only be a truncating store, not extending!"); 7752 assert(VT.isInteger() == SVT.isInteger() && 7753 "Can't do FP-INT conversion!"); 7754 assert(VT.isVector() == SVT.isVector() && 7755 "Cannot use trunc store to convert to or from a vector!"); 7756 assert((!VT.isVector() || 7757 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7758 "Cannot use trunc store to change the number of vector elements!"); 7759 7760 SDVTList VTs = getVTList(MVT::Other); 7761 SDValue Undef = getUNDEF(Ptr.getValueType()); 7762 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7763 FoldingSetNodeID ID; 7764 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7765 ID.AddInteger(SVT.getRawBits()); 7766 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7767 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7768 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7769 void *IP = nullptr; 7770 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7771 cast<StoreSDNode>(E)->refineAlignment(MMO); 7772 return SDValue(E, 0); 7773 } 7774 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7775 ISD::UNINDEXED, true, SVT, MMO); 7776 createOperands(N, Ops); 7777 7778 CSEMap.InsertNode(N, IP); 7779 InsertNode(N); 7780 SDValue V(N, 0); 7781 NewSDValueDbgMsg(V, "Creating new node: ", this); 7782 return V; 7783 } 7784 7785 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7786 SDValue Base, SDValue Offset, 7787 ISD::MemIndexedMode AM) { 7788 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7789 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7790 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7791 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7792 FoldingSetNodeID ID; 7793 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7794 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7795 ID.AddInteger(ST->getRawSubclassData()); 7796 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7797 void *IP = nullptr; 7798 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7799 return SDValue(E, 0); 7800 7801 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7802 ST->isTruncatingStore(), ST->getMemoryVT(), 7803 ST->getMemOperand()); 7804 createOperands(N, Ops); 7805 7806 CSEMap.InsertNode(N, IP); 7807 InsertNode(N); 7808 SDValue V(N, 0); 7809 NewSDValueDbgMsg(V, "Creating new node: ", this); 7810 return V; 7811 } 7812 7813 SDValue SelectionDAG::getLoadVP( 7814 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7815 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7816 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7817 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7818 const MDNode *Ranges, bool IsExpanding) { 7819 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7820 7821 MMOFlags |= MachineMemOperand::MOLoad; 7822 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7823 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7824 // clients. 7825 if (PtrInfo.V.isNull()) 7826 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7827 7828 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7829 MachineFunction &MF = getMachineFunction(); 7830 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7831 Alignment, AAInfo, Ranges); 7832 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7833 MMO, IsExpanding); 7834 } 7835 7836 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7837 ISD::LoadExtType ExtType, EVT VT, 7838 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7839 SDValue Offset, SDValue Mask, SDValue EVL, 7840 EVT MemVT, MachineMemOperand *MMO, 7841 bool IsExpanding) { 7842 bool Indexed = AM != ISD::UNINDEXED; 7843 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7844 7845 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7846 : getVTList(VT, MVT::Other); 7847 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7848 FoldingSetNodeID ID; 7849 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7850 ID.AddInteger(VT.getRawBits()); 7851 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7852 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7853 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7854 void *IP = nullptr; 7855 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7856 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7857 return SDValue(E, 0); 7858 } 7859 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7860 ExtType, IsExpanding, MemVT, MMO); 7861 createOperands(N, Ops); 7862 7863 CSEMap.InsertNode(N, IP); 7864 InsertNode(N); 7865 SDValue V(N, 0); 7866 NewSDValueDbgMsg(V, "Creating new node: ", this); 7867 return V; 7868 } 7869 7870 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7871 SDValue Ptr, SDValue Mask, SDValue EVL, 7872 MachinePointerInfo PtrInfo, 7873 MaybeAlign Alignment, 7874 MachineMemOperand::Flags MMOFlags, 7875 const AAMDNodes &AAInfo, const MDNode *Ranges, 7876 bool IsExpanding) { 7877 SDValue Undef = getUNDEF(Ptr.getValueType()); 7878 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7879 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7880 IsExpanding); 7881 } 7882 7883 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7884 SDValue Ptr, SDValue Mask, SDValue EVL, 7885 MachineMemOperand *MMO, bool IsExpanding) { 7886 SDValue Undef = getUNDEF(Ptr.getValueType()); 7887 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7888 Mask, EVL, VT, MMO, IsExpanding); 7889 } 7890 7891 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7892 EVT VT, SDValue Chain, SDValue Ptr, 7893 SDValue Mask, SDValue EVL, 7894 MachinePointerInfo PtrInfo, EVT MemVT, 7895 MaybeAlign Alignment, 7896 MachineMemOperand::Flags MMOFlags, 7897 const AAMDNodes &AAInfo, bool IsExpanding) { 7898 SDValue Undef = getUNDEF(Ptr.getValueType()); 7899 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7900 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7901 IsExpanding); 7902 } 7903 7904 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7905 EVT VT, SDValue Chain, SDValue Ptr, 7906 SDValue Mask, SDValue EVL, EVT MemVT, 7907 MachineMemOperand *MMO, bool IsExpanding) { 7908 SDValue Undef = getUNDEF(Ptr.getValueType()); 7909 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7910 EVL, MemVT, MMO, IsExpanding); 7911 } 7912 7913 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7914 SDValue Base, SDValue Offset, 7915 ISD::MemIndexedMode AM) { 7916 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7917 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7918 // Don't propagate the invariant or dereferenceable flags. 7919 auto MMOFlags = 7920 LD->getMemOperand()->getFlags() & 7921 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7922 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7923 LD->getChain(), Base, Offset, LD->getMask(), 7924 LD->getVectorLength(), LD->getPointerInfo(), 7925 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7926 nullptr, LD->isExpandingLoad()); 7927 } 7928 7929 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7930 SDValue Ptr, SDValue Offset, SDValue Mask, 7931 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 7932 ISD::MemIndexedMode AM, bool IsTruncating, 7933 bool IsCompressing) { 7934 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7935 bool Indexed = AM != ISD::UNINDEXED; 7936 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 7937 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 7938 : getVTList(MVT::Other); 7939 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 7940 FoldingSetNodeID ID; 7941 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7942 ID.AddInteger(MemVT.getRawBits()); 7943 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7944 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7945 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7946 void *IP = nullptr; 7947 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7948 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7949 return SDValue(E, 0); 7950 } 7951 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7952 IsTruncating, IsCompressing, MemVT, MMO); 7953 createOperands(N, Ops); 7954 7955 CSEMap.InsertNode(N, IP); 7956 InsertNode(N); 7957 SDValue V(N, 0); 7958 NewSDValueDbgMsg(V, "Creating new node: ", this); 7959 return V; 7960 } 7961 7962 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7963 SDValue Val, SDValue Ptr, SDValue Mask, 7964 SDValue EVL, MachinePointerInfo PtrInfo, 7965 EVT SVT, Align Alignment, 7966 MachineMemOperand::Flags MMOFlags, 7967 const AAMDNodes &AAInfo, 7968 bool IsCompressing) { 7969 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7970 7971 MMOFlags |= MachineMemOperand::MOStore; 7972 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7973 7974 if (PtrInfo.V.isNull()) 7975 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7976 7977 MachineFunction &MF = getMachineFunction(); 7978 MachineMemOperand *MMO = MF.getMachineMemOperand( 7979 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7980 Alignment, AAInfo); 7981 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7982 IsCompressing); 7983 } 7984 7985 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7986 SDValue Val, SDValue Ptr, SDValue Mask, 7987 SDValue EVL, EVT SVT, 7988 MachineMemOperand *MMO, 7989 bool IsCompressing) { 7990 EVT VT = Val.getValueType(); 7991 7992 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7993 if (VT == SVT) 7994 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 7995 EVL, VT, MMO, ISD::UNINDEXED, 7996 /*IsTruncating*/ false, IsCompressing); 7997 7998 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7999 "Should only be a truncating store, not extending!"); 8000 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8001 assert(VT.isVector() == SVT.isVector() && 8002 "Cannot use trunc store to convert to or from a vector!"); 8003 assert((!VT.isVector() || 8004 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8005 "Cannot use trunc store to change the number of vector elements!"); 8006 8007 SDVTList VTs = getVTList(MVT::Other); 8008 SDValue Undef = getUNDEF(Ptr.getValueType()); 8009 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8010 FoldingSetNodeID ID; 8011 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8012 ID.AddInteger(SVT.getRawBits()); 8013 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8014 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8015 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8016 void *IP = nullptr; 8017 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8018 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8019 return SDValue(E, 0); 8020 } 8021 auto *N = 8022 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8023 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8024 createOperands(N, Ops); 8025 8026 CSEMap.InsertNode(N, IP); 8027 InsertNode(N); 8028 SDValue V(N, 0); 8029 NewSDValueDbgMsg(V, "Creating new node: ", this); 8030 return V; 8031 } 8032 8033 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8034 SDValue Base, SDValue Offset, 8035 ISD::MemIndexedMode AM) { 8036 auto *ST = cast<VPStoreSDNode>(OrigStore); 8037 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8038 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8039 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8040 Offset, ST->getMask(), ST->getVectorLength()}; 8041 FoldingSetNodeID ID; 8042 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8043 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8044 ID.AddInteger(ST->getRawSubclassData()); 8045 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8046 void *IP = nullptr; 8047 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8048 return SDValue(E, 0); 8049 8050 auto *N = newSDNode<VPStoreSDNode>( 8051 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8052 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8053 createOperands(N, Ops); 8054 8055 CSEMap.InsertNode(N, IP); 8056 InsertNode(N); 8057 SDValue V(N, 0); 8058 NewSDValueDbgMsg(V, "Creating new node: ", this); 8059 return V; 8060 } 8061 8062 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8063 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8064 ISD::MemIndexType IndexType) { 8065 assert(Ops.size() == 6 && "Incompatible number of operands"); 8066 8067 FoldingSetNodeID ID; 8068 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8069 ID.AddInteger(VT.getRawBits()); 8070 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8071 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8072 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8073 void *IP = nullptr; 8074 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8075 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8076 return SDValue(E, 0); 8077 } 8078 8079 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8080 VT, MMO, IndexType); 8081 createOperands(N, Ops); 8082 8083 assert(N->getMask().getValueType().getVectorElementCount() == 8084 N->getValueType(0).getVectorElementCount() && 8085 "Vector width mismatch between mask and data"); 8086 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8087 N->getValueType(0).getVectorElementCount().isScalable() && 8088 "Scalable flags of index and data do not match"); 8089 assert(ElementCount::isKnownGE( 8090 N->getIndex().getValueType().getVectorElementCount(), 8091 N->getValueType(0).getVectorElementCount()) && 8092 "Vector width mismatch between index and data"); 8093 assert(isa<ConstantSDNode>(N->getScale()) && 8094 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8095 "Scale should be a constant power of 2"); 8096 8097 CSEMap.InsertNode(N, IP); 8098 InsertNode(N); 8099 SDValue V(N, 0); 8100 NewSDValueDbgMsg(V, "Creating new node: ", this); 8101 return V; 8102 } 8103 8104 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8105 ArrayRef<SDValue> Ops, 8106 MachineMemOperand *MMO, 8107 ISD::MemIndexType IndexType) { 8108 assert(Ops.size() == 7 && "Incompatible number of operands"); 8109 8110 FoldingSetNodeID ID; 8111 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8112 ID.AddInteger(VT.getRawBits()); 8113 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8114 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8115 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8116 void *IP = nullptr; 8117 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8118 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8119 return SDValue(E, 0); 8120 } 8121 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8122 VT, MMO, IndexType); 8123 createOperands(N, Ops); 8124 8125 assert(N->getMask().getValueType().getVectorElementCount() == 8126 N->getValue().getValueType().getVectorElementCount() && 8127 "Vector width mismatch between mask and data"); 8128 assert( 8129 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8130 N->getValue().getValueType().getVectorElementCount().isScalable() && 8131 "Scalable flags of index and data do not match"); 8132 assert(ElementCount::isKnownGE( 8133 N->getIndex().getValueType().getVectorElementCount(), 8134 N->getValue().getValueType().getVectorElementCount()) && 8135 "Vector width mismatch between index and data"); 8136 assert(isa<ConstantSDNode>(N->getScale()) && 8137 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8138 "Scale should be a constant power of 2"); 8139 8140 CSEMap.InsertNode(N, IP); 8141 InsertNode(N); 8142 SDValue V(N, 0); 8143 NewSDValueDbgMsg(V, "Creating new node: ", this); 8144 return V; 8145 } 8146 8147 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8148 SDValue Base, SDValue Offset, SDValue Mask, 8149 SDValue PassThru, EVT MemVT, 8150 MachineMemOperand *MMO, 8151 ISD::MemIndexedMode AM, 8152 ISD::LoadExtType ExtTy, bool isExpanding) { 8153 bool Indexed = AM != ISD::UNINDEXED; 8154 assert((Indexed || Offset.isUndef()) && 8155 "Unindexed masked load with an offset!"); 8156 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8157 : getVTList(VT, MVT::Other); 8158 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8159 FoldingSetNodeID ID; 8160 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8161 ID.AddInteger(MemVT.getRawBits()); 8162 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8163 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8164 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8165 void *IP = nullptr; 8166 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8167 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8168 return SDValue(E, 0); 8169 } 8170 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8171 AM, ExtTy, isExpanding, MemVT, MMO); 8172 createOperands(N, Ops); 8173 8174 CSEMap.InsertNode(N, IP); 8175 InsertNode(N); 8176 SDValue V(N, 0); 8177 NewSDValueDbgMsg(V, "Creating new node: ", this); 8178 return V; 8179 } 8180 8181 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8182 SDValue Base, SDValue Offset, 8183 ISD::MemIndexedMode AM) { 8184 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8185 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8186 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8187 Offset, LD->getMask(), LD->getPassThru(), 8188 LD->getMemoryVT(), LD->getMemOperand(), AM, 8189 LD->getExtensionType(), LD->isExpandingLoad()); 8190 } 8191 8192 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8193 SDValue Val, SDValue Base, SDValue Offset, 8194 SDValue Mask, EVT MemVT, 8195 MachineMemOperand *MMO, 8196 ISD::MemIndexedMode AM, bool IsTruncating, 8197 bool IsCompressing) { 8198 assert(Chain.getValueType() == MVT::Other && 8199 "Invalid chain type"); 8200 bool Indexed = AM != ISD::UNINDEXED; 8201 assert((Indexed || Offset.isUndef()) && 8202 "Unindexed masked store with an offset!"); 8203 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8204 : getVTList(MVT::Other); 8205 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8206 FoldingSetNodeID ID; 8207 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8208 ID.AddInteger(MemVT.getRawBits()); 8209 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8210 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8211 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8212 void *IP = nullptr; 8213 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8214 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8215 return SDValue(E, 0); 8216 } 8217 auto *N = 8218 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8219 IsTruncating, IsCompressing, MemVT, MMO); 8220 createOperands(N, Ops); 8221 8222 CSEMap.InsertNode(N, IP); 8223 InsertNode(N); 8224 SDValue V(N, 0); 8225 NewSDValueDbgMsg(V, "Creating new node: ", this); 8226 return V; 8227 } 8228 8229 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8230 SDValue Base, SDValue Offset, 8231 ISD::MemIndexedMode AM) { 8232 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8233 assert(ST->getOffset().isUndef() && 8234 "Masked store is already a indexed store!"); 8235 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8236 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8237 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8238 } 8239 8240 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8241 ArrayRef<SDValue> Ops, 8242 MachineMemOperand *MMO, 8243 ISD::MemIndexType IndexType, 8244 ISD::LoadExtType ExtTy) { 8245 assert(Ops.size() == 6 && "Incompatible number of operands"); 8246 8247 FoldingSetNodeID ID; 8248 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8249 ID.AddInteger(MemVT.getRawBits()); 8250 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8251 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8252 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8253 void *IP = nullptr; 8254 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8255 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8256 return SDValue(E, 0); 8257 } 8258 8259 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8260 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8261 VTs, MemVT, MMO, IndexType, ExtTy); 8262 createOperands(N, Ops); 8263 8264 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8265 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8266 assert(N->getMask().getValueType().getVectorElementCount() == 8267 N->getValueType(0).getVectorElementCount() && 8268 "Vector width mismatch between mask and data"); 8269 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8270 N->getValueType(0).getVectorElementCount().isScalable() && 8271 "Scalable flags of index and data do not match"); 8272 assert(ElementCount::isKnownGE( 8273 N->getIndex().getValueType().getVectorElementCount(), 8274 N->getValueType(0).getVectorElementCount()) && 8275 "Vector width mismatch between index and data"); 8276 assert(isa<ConstantSDNode>(N->getScale()) && 8277 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8278 "Scale should be a constant power of 2"); 8279 8280 CSEMap.InsertNode(N, IP); 8281 InsertNode(N); 8282 SDValue V(N, 0); 8283 NewSDValueDbgMsg(V, "Creating new node: ", this); 8284 return V; 8285 } 8286 8287 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8288 ArrayRef<SDValue> Ops, 8289 MachineMemOperand *MMO, 8290 ISD::MemIndexType IndexType, 8291 bool IsTrunc) { 8292 assert(Ops.size() == 6 && "Incompatible number of operands"); 8293 8294 FoldingSetNodeID ID; 8295 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8296 ID.AddInteger(MemVT.getRawBits()); 8297 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8298 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8299 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8300 void *IP = nullptr; 8301 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8302 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8303 return SDValue(E, 0); 8304 } 8305 8306 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8307 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8308 VTs, MemVT, MMO, IndexType, IsTrunc); 8309 createOperands(N, Ops); 8310 8311 assert(N->getMask().getValueType().getVectorElementCount() == 8312 N->getValue().getValueType().getVectorElementCount() && 8313 "Vector width mismatch between mask and data"); 8314 assert( 8315 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8316 N->getValue().getValueType().getVectorElementCount().isScalable() && 8317 "Scalable flags of index and data do not match"); 8318 assert(ElementCount::isKnownGE( 8319 N->getIndex().getValueType().getVectorElementCount(), 8320 N->getValue().getValueType().getVectorElementCount()) && 8321 "Vector width mismatch between index and data"); 8322 assert(isa<ConstantSDNode>(N->getScale()) && 8323 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8324 "Scale should be a constant power of 2"); 8325 8326 CSEMap.InsertNode(N, IP); 8327 InsertNode(N); 8328 SDValue V(N, 0); 8329 NewSDValueDbgMsg(V, "Creating new node: ", this); 8330 return V; 8331 } 8332 8333 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8334 // select undef, T, F --> T (if T is a constant), otherwise F 8335 // select, ?, undef, F --> F 8336 // select, ?, T, undef --> T 8337 if (Cond.isUndef()) 8338 return isConstantValueOfAnyType(T) ? T : F; 8339 if (T.isUndef()) 8340 return F; 8341 if (F.isUndef()) 8342 return T; 8343 8344 // select true, T, F --> T 8345 // select false, T, F --> F 8346 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8347 return CondC->isZero() ? F : T; 8348 8349 // TODO: This should simplify VSELECT with constant condition using something 8350 // like this (but check boolean contents to be complete?): 8351 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8352 // return T; 8353 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8354 // return F; 8355 8356 // select ?, T, T --> T 8357 if (T == F) 8358 return T; 8359 8360 return SDValue(); 8361 } 8362 8363 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8364 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8365 if (X.isUndef()) 8366 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8367 // shift X, undef --> undef (because it may shift by the bitwidth) 8368 if (Y.isUndef()) 8369 return getUNDEF(X.getValueType()); 8370 8371 // shift 0, Y --> 0 8372 // shift X, 0 --> X 8373 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8374 return X; 8375 8376 // shift X, C >= bitwidth(X) --> undef 8377 // All vector elements must be too big (or undef) to avoid partial undefs. 8378 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8379 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8380 }; 8381 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8382 return getUNDEF(X.getValueType()); 8383 8384 return SDValue(); 8385 } 8386 8387 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8388 SDNodeFlags Flags) { 8389 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8390 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8391 // operation is poison. That result can be relaxed to undef. 8392 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8393 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8394 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8395 (YC && YC->getValueAPF().isNaN()); 8396 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8397 (YC && YC->getValueAPF().isInfinity()); 8398 8399 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8400 return getUNDEF(X.getValueType()); 8401 8402 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8403 return getUNDEF(X.getValueType()); 8404 8405 if (!YC) 8406 return SDValue(); 8407 8408 // X + -0.0 --> X 8409 if (Opcode == ISD::FADD) 8410 if (YC->getValueAPF().isNegZero()) 8411 return X; 8412 8413 // X - +0.0 --> X 8414 if (Opcode == ISD::FSUB) 8415 if (YC->getValueAPF().isPosZero()) 8416 return X; 8417 8418 // X * 1.0 --> X 8419 // X / 1.0 --> X 8420 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8421 if (YC->getValueAPF().isExactlyValue(1.0)) 8422 return X; 8423 8424 // X * 0.0 --> 0.0 8425 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8426 if (YC->getValueAPF().isZero()) 8427 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8428 8429 return SDValue(); 8430 } 8431 8432 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8433 SDValue Ptr, SDValue SV, unsigned Align) { 8434 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8435 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8436 } 8437 8438 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8439 ArrayRef<SDUse> Ops) { 8440 switch (Ops.size()) { 8441 case 0: return getNode(Opcode, DL, VT); 8442 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8443 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8444 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8445 default: break; 8446 } 8447 8448 // Copy from an SDUse array into an SDValue array for use with 8449 // the regular getNode logic. 8450 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8451 return getNode(Opcode, DL, VT, NewOps); 8452 } 8453 8454 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8455 ArrayRef<SDValue> Ops) { 8456 SDNodeFlags Flags; 8457 if (Inserter) 8458 Flags = Inserter->getFlags(); 8459 return getNode(Opcode, DL, VT, Ops, Flags); 8460 } 8461 8462 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8463 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8464 unsigned NumOps = Ops.size(); 8465 switch (NumOps) { 8466 case 0: return getNode(Opcode, DL, VT); 8467 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8468 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8469 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8470 default: break; 8471 } 8472 8473 #ifndef NDEBUG 8474 for (auto &Op : Ops) 8475 assert(Op.getOpcode() != ISD::DELETED_NODE && 8476 "Operand is DELETED_NODE!"); 8477 #endif 8478 8479 switch (Opcode) { 8480 default: break; 8481 case ISD::BUILD_VECTOR: 8482 // Attempt to simplify BUILD_VECTOR. 8483 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8484 return V; 8485 break; 8486 case ISD::CONCAT_VECTORS: 8487 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8488 return V; 8489 break; 8490 case ISD::SELECT_CC: 8491 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8492 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8493 "LHS and RHS of condition must have same type!"); 8494 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8495 "True and False arms of SelectCC must have same type!"); 8496 assert(Ops[2].getValueType() == VT && 8497 "select_cc node must be of same type as true and false value!"); 8498 break; 8499 case ISD::BR_CC: 8500 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8501 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8502 "LHS/RHS of comparison should match types!"); 8503 break; 8504 } 8505 8506 // Memoize nodes. 8507 SDNode *N; 8508 SDVTList VTs = getVTList(VT); 8509 8510 if (VT != MVT::Glue) { 8511 FoldingSetNodeID ID; 8512 AddNodeIDNode(ID, Opcode, VTs, Ops); 8513 void *IP = nullptr; 8514 8515 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8516 return SDValue(E, 0); 8517 8518 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8519 createOperands(N, Ops); 8520 8521 CSEMap.InsertNode(N, IP); 8522 } else { 8523 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8524 createOperands(N, Ops); 8525 } 8526 8527 N->setFlags(Flags); 8528 InsertNode(N); 8529 SDValue V(N, 0); 8530 NewSDValueDbgMsg(V, "Creating new node: ", this); 8531 return V; 8532 } 8533 8534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8535 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8536 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8537 } 8538 8539 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8540 ArrayRef<SDValue> Ops) { 8541 SDNodeFlags Flags; 8542 if (Inserter) 8543 Flags = Inserter->getFlags(); 8544 return getNode(Opcode, DL, VTList, Ops, Flags); 8545 } 8546 8547 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8548 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8549 if (VTList.NumVTs == 1) 8550 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8551 8552 #ifndef NDEBUG 8553 for (auto &Op : Ops) 8554 assert(Op.getOpcode() != ISD::DELETED_NODE && 8555 "Operand is DELETED_NODE!"); 8556 #endif 8557 8558 switch (Opcode) { 8559 case ISD::STRICT_FP_EXTEND: 8560 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8561 "Invalid STRICT_FP_EXTEND!"); 8562 assert(VTList.VTs[0].isFloatingPoint() && 8563 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8564 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8565 "STRICT_FP_EXTEND result type should be vector iff the operand " 8566 "type is vector!"); 8567 assert((!VTList.VTs[0].isVector() || 8568 VTList.VTs[0].getVectorNumElements() == 8569 Ops[1].getValueType().getVectorNumElements()) && 8570 "Vector element count mismatch!"); 8571 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8572 "Invalid fpext node, dst <= src!"); 8573 break; 8574 case ISD::STRICT_FP_ROUND: 8575 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8576 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8577 "STRICT_FP_ROUND result type should be vector iff the operand " 8578 "type is vector!"); 8579 assert((!VTList.VTs[0].isVector() || 8580 VTList.VTs[0].getVectorNumElements() == 8581 Ops[1].getValueType().getVectorNumElements()) && 8582 "Vector element count mismatch!"); 8583 assert(VTList.VTs[0].isFloatingPoint() && 8584 Ops[1].getValueType().isFloatingPoint() && 8585 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8586 isa<ConstantSDNode>(Ops[2]) && 8587 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8588 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8589 "Invalid STRICT_FP_ROUND!"); 8590 break; 8591 #if 0 8592 // FIXME: figure out how to safely handle things like 8593 // int foo(int x) { return 1 << (x & 255); } 8594 // int bar() { return foo(256); } 8595 case ISD::SRA_PARTS: 8596 case ISD::SRL_PARTS: 8597 case ISD::SHL_PARTS: 8598 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8599 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8600 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8601 else if (N3.getOpcode() == ISD::AND) 8602 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8603 // If the and is only masking out bits that cannot effect the shift, 8604 // eliminate the and. 8605 unsigned NumBits = VT.getScalarSizeInBits()*2; 8606 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8607 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8608 } 8609 break; 8610 #endif 8611 } 8612 8613 // Memoize the node unless it returns a flag. 8614 SDNode *N; 8615 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8616 FoldingSetNodeID ID; 8617 AddNodeIDNode(ID, Opcode, VTList, Ops); 8618 void *IP = nullptr; 8619 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8620 return SDValue(E, 0); 8621 8622 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8623 createOperands(N, Ops); 8624 CSEMap.InsertNode(N, IP); 8625 } else { 8626 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8627 createOperands(N, Ops); 8628 } 8629 8630 N->setFlags(Flags); 8631 InsertNode(N); 8632 SDValue V(N, 0); 8633 NewSDValueDbgMsg(V, "Creating new node: ", this); 8634 return V; 8635 } 8636 8637 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8638 SDVTList VTList) { 8639 return getNode(Opcode, DL, VTList, None); 8640 } 8641 8642 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8643 SDValue N1) { 8644 SDValue Ops[] = { N1 }; 8645 return getNode(Opcode, DL, VTList, Ops); 8646 } 8647 8648 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8649 SDValue N1, SDValue N2) { 8650 SDValue Ops[] = { N1, N2 }; 8651 return getNode(Opcode, DL, VTList, Ops); 8652 } 8653 8654 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8655 SDValue N1, SDValue N2, SDValue N3) { 8656 SDValue Ops[] = { N1, N2, N3 }; 8657 return getNode(Opcode, DL, VTList, Ops); 8658 } 8659 8660 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8661 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8662 SDValue Ops[] = { N1, N2, N3, N4 }; 8663 return getNode(Opcode, DL, VTList, Ops); 8664 } 8665 8666 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8667 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8668 SDValue N5) { 8669 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8670 return getNode(Opcode, DL, VTList, Ops); 8671 } 8672 8673 SDVTList SelectionDAG::getVTList(EVT VT) { 8674 return makeVTList(SDNode::getValueTypeList(VT), 1); 8675 } 8676 8677 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8678 FoldingSetNodeID ID; 8679 ID.AddInteger(2U); 8680 ID.AddInteger(VT1.getRawBits()); 8681 ID.AddInteger(VT2.getRawBits()); 8682 8683 void *IP = nullptr; 8684 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8685 if (!Result) { 8686 EVT *Array = Allocator.Allocate<EVT>(2); 8687 Array[0] = VT1; 8688 Array[1] = VT2; 8689 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8690 VTListMap.InsertNode(Result, IP); 8691 } 8692 return Result->getSDVTList(); 8693 } 8694 8695 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8696 FoldingSetNodeID ID; 8697 ID.AddInteger(3U); 8698 ID.AddInteger(VT1.getRawBits()); 8699 ID.AddInteger(VT2.getRawBits()); 8700 ID.AddInteger(VT3.getRawBits()); 8701 8702 void *IP = nullptr; 8703 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8704 if (!Result) { 8705 EVT *Array = Allocator.Allocate<EVT>(3); 8706 Array[0] = VT1; 8707 Array[1] = VT2; 8708 Array[2] = VT3; 8709 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8710 VTListMap.InsertNode(Result, IP); 8711 } 8712 return Result->getSDVTList(); 8713 } 8714 8715 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8716 FoldingSetNodeID ID; 8717 ID.AddInteger(4U); 8718 ID.AddInteger(VT1.getRawBits()); 8719 ID.AddInteger(VT2.getRawBits()); 8720 ID.AddInteger(VT3.getRawBits()); 8721 ID.AddInteger(VT4.getRawBits()); 8722 8723 void *IP = nullptr; 8724 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8725 if (!Result) { 8726 EVT *Array = Allocator.Allocate<EVT>(4); 8727 Array[0] = VT1; 8728 Array[1] = VT2; 8729 Array[2] = VT3; 8730 Array[3] = VT4; 8731 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8732 VTListMap.InsertNode(Result, IP); 8733 } 8734 return Result->getSDVTList(); 8735 } 8736 8737 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8738 unsigned NumVTs = VTs.size(); 8739 FoldingSetNodeID ID; 8740 ID.AddInteger(NumVTs); 8741 for (unsigned index = 0; index < NumVTs; index++) { 8742 ID.AddInteger(VTs[index].getRawBits()); 8743 } 8744 8745 void *IP = nullptr; 8746 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8747 if (!Result) { 8748 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8749 llvm::copy(VTs, Array); 8750 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8751 VTListMap.InsertNode(Result, IP); 8752 } 8753 return Result->getSDVTList(); 8754 } 8755 8756 8757 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8758 /// specified operands. If the resultant node already exists in the DAG, 8759 /// this does not modify the specified node, instead it returns the node that 8760 /// already exists. If the resultant node does not exist in the DAG, the 8761 /// input node is returned. As a degenerate case, if you specify the same 8762 /// input operands as the node already has, the input node is returned. 8763 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8764 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8765 8766 // Check to see if there is no change. 8767 if (Op == N->getOperand(0)) return N; 8768 8769 // See if the modified node already exists. 8770 void *InsertPos = nullptr; 8771 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8772 return Existing; 8773 8774 // Nope it doesn't. Remove the node from its current place in the maps. 8775 if (InsertPos) 8776 if (!RemoveNodeFromCSEMaps(N)) 8777 InsertPos = nullptr; 8778 8779 // Now we update the operands. 8780 N->OperandList[0].set(Op); 8781 8782 updateDivergence(N); 8783 // If this gets put into a CSE map, add it. 8784 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8785 return N; 8786 } 8787 8788 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8789 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8790 8791 // Check to see if there is no change. 8792 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8793 return N; // No operands changed, just return the input node. 8794 8795 // See if the modified node already exists. 8796 void *InsertPos = nullptr; 8797 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8798 return Existing; 8799 8800 // Nope it doesn't. Remove the node from its current place in the maps. 8801 if (InsertPos) 8802 if (!RemoveNodeFromCSEMaps(N)) 8803 InsertPos = nullptr; 8804 8805 // Now we update the operands. 8806 if (N->OperandList[0] != Op1) 8807 N->OperandList[0].set(Op1); 8808 if (N->OperandList[1] != Op2) 8809 N->OperandList[1].set(Op2); 8810 8811 updateDivergence(N); 8812 // If this gets put into a CSE map, add it. 8813 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8814 return N; 8815 } 8816 8817 SDNode *SelectionDAG:: 8818 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8819 SDValue Ops[] = { Op1, Op2, Op3 }; 8820 return UpdateNodeOperands(N, Ops); 8821 } 8822 8823 SDNode *SelectionDAG:: 8824 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8825 SDValue Op3, SDValue Op4) { 8826 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8827 return UpdateNodeOperands(N, Ops); 8828 } 8829 8830 SDNode *SelectionDAG:: 8831 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8832 SDValue Op3, SDValue Op4, SDValue Op5) { 8833 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8834 return UpdateNodeOperands(N, Ops); 8835 } 8836 8837 SDNode *SelectionDAG:: 8838 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8839 unsigned NumOps = Ops.size(); 8840 assert(N->getNumOperands() == NumOps && 8841 "Update with wrong number of operands"); 8842 8843 // If no operands changed just return the input node. 8844 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8845 return N; 8846 8847 // See if the modified node already exists. 8848 void *InsertPos = nullptr; 8849 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8850 return Existing; 8851 8852 // Nope it doesn't. Remove the node from its current place in the maps. 8853 if (InsertPos) 8854 if (!RemoveNodeFromCSEMaps(N)) 8855 InsertPos = nullptr; 8856 8857 // Now we update the operands. 8858 for (unsigned i = 0; i != NumOps; ++i) 8859 if (N->OperandList[i] != Ops[i]) 8860 N->OperandList[i].set(Ops[i]); 8861 8862 updateDivergence(N); 8863 // If this gets put into a CSE map, add it. 8864 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8865 return N; 8866 } 8867 8868 /// DropOperands - Release the operands and set this node to have 8869 /// zero operands. 8870 void SDNode::DropOperands() { 8871 // Unlike the code in MorphNodeTo that does this, we don't need to 8872 // watch for dead nodes here. 8873 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8874 SDUse &Use = *I++; 8875 Use.set(SDValue()); 8876 } 8877 } 8878 8879 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8880 ArrayRef<MachineMemOperand *> NewMemRefs) { 8881 if (NewMemRefs.empty()) { 8882 N->clearMemRefs(); 8883 return; 8884 } 8885 8886 // Check if we can avoid allocating by storing a single reference directly. 8887 if (NewMemRefs.size() == 1) { 8888 N->MemRefs = NewMemRefs[0]; 8889 N->NumMemRefs = 1; 8890 return; 8891 } 8892 8893 MachineMemOperand **MemRefsBuffer = 8894 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8895 llvm::copy(NewMemRefs, MemRefsBuffer); 8896 N->MemRefs = MemRefsBuffer; 8897 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8898 } 8899 8900 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8901 /// machine opcode. 8902 /// 8903 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8904 EVT VT) { 8905 SDVTList VTs = getVTList(VT); 8906 return SelectNodeTo(N, MachineOpc, VTs, None); 8907 } 8908 8909 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8910 EVT VT, SDValue Op1) { 8911 SDVTList VTs = getVTList(VT); 8912 SDValue Ops[] = { Op1 }; 8913 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8914 } 8915 8916 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8917 EVT VT, SDValue Op1, 8918 SDValue Op2) { 8919 SDVTList VTs = getVTList(VT); 8920 SDValue Ops[] = { Op1, Op2 }; 8921 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8922 } 8923 8924 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8925 EVT VT, SDValue Op1, 8926 SDValue Op2, SDValue Op3) { 8927 SDVTList VTs = getVTList(VT); 8928 SDValue Ops[] = { Op1, Op2, Op3 }; 8929 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8930 } 8931 8932 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8933 EVT VT, ArrayRef<SDValue> Ops) { 8934 SDVTList VTs = getVTList(VT); 8935 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8936 } 8937 8938 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8939 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8940 SDVTList VTs = getVTList(VT1, VT2); 8941 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8942 } 8943 8944 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8945 EVT VT1, EVT VT2) { 8946 SDVTList VTs = getVTList(VT1, VT2); 8947 return SelectNodeTo(N, MachineOpc, VTs, None); 8948 } 8949 8950 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8951 EVT VT1, EVT VT2, EVT VT3, 8952 ArrayRef<SDValue> Ops) { 8953 SDVTList VTs = getVTList(VT1, VT2, VT3); 8954 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8955 } 8956 8957 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8958 EVT VT1, EVT VT2, 8959 SDValue Op1, SDValue Op2) { 8960 SDVTList VTs = getVTList(VT1, VT2); 8961 SDValue Ops[] = { Op1, Op2 }; 8962 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8963 } 8964 8965 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8966 SDVTList VTs,ArrayRef<SDValue> Ops) { 8967 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8968 // Reset the NodeID to -1. 8969 New->setNodeId(-1); 8970 if (New != N) { 8971 ReplaceAllUsesWith(N, New); 8972 RemoveDeadNode(N); 8973 } 8974 return New; 8975 } 8976 8977 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8978 /// the line number information on the merged node since it is not possible to 8979 /// preserve the information that operation is associated with multiple lines. 8980 /// This will make the debugger working better at -O0, were there is a higher 8981 /// probability having other instructions associated with that line. 8982 /// 8983 /// For IROrder, we keep the smaller of the two 8984 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8985 DebugLoc NLoc = N->getDebugLoc(); 8986 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8987 N->setDebugLoc(DebugLoc()); 8988 } 8989 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8990 N->setIROrder(Order); 8991 return N; 8992 } 8993 8994 /// MorphNodeTo - This *mutates* the specified node to have the specified 8995 /// return type, opcode, and operands. 8996 /// 8997 /// Note that MorphNodeTo returns the resultant node. If there is already a 8998 /// node of the specified opcode and operands, it returns that node instead of 8999 /// the current one. Note that the SDLoc need not be the same. 9000 /// 9001 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9002 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9003 /// node, and because it doesn't require CSE recalculation for any of 9004 /// the node's users. 9005 /// 9006 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9007 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9008 /// the legalizer which maintain worklists that would need to be updated when 9009 /// deleting things. 9010 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9011 SDVTList VTs, ArrayRef<SDValue> Ops) { 9012 // If an identical node already exists, use it. 9013 void *IP = nullptr; 9014 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9015 FoldingSetNodeID ID; 9016 AddNodeIDNode(ID, Opc, VTs, Ops); 9017 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9018 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9019 } 9020 9021 if (!RemoveNodeFromCSEMaps(N)) 9022 IP = nullptr; 9023 9024 // Start the morphing. 9025 N->NodeType = Opc; 9026 N->ValueList = VTs.VTs; 9027 N->NumValues = VTs.NumVTs; 9028 9029 // Clear the operands list, updating used nodes to remove this from their 9030 // use list. Keep track of any operands that become dead as a result. 9031 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9032 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9033 SDUse &Use = *I++; 9034 SDNode *Used = Use.getNode(); 9035 Use.set(SDValue()); 9036 if (Used->use_empty()) 9037 DeadNodeSet.insert(Used); 9038 } 9039 9040 // For MachineNode, initialize the memory references information. 9041 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9042 MN->clearMemRefs(); 9043 9044 // Swap for an appropriately sized array from the recycler. 9045 removeOperands(N); 9046 createOperands(N, Ops); 9047 9048 // Delete any nodes that are still dead after adding the uses for the 9049 // new operands. 9050 if (!DeadNodeSet.empty()) { 9051 SmallVector<SDNode *, 16> DeadNodes; 9052 for (SDNode *N : DeadNodeSet) 9053 if (N->use_empty()) 9054 DeadNodes.push_back(N); 9055 RemoveDeadNodes(DeadNodes); 9056 } 9057 9058 if (IP) 9059 CSEMap.InsertNode(N, IP); // Memoize the new node. 9060 return N; 9061 } 9062 9063 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9064 unsigned OrigOpc = Node->getOpcode(); 9065 unsigned NewOpc; 9066 switch (OrigOpc) { 9067 default: 9068 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9069 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9070 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9071 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9072 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9073 #include "llvm/IR/ConstrainedOps.def" 9074 } 9075 9076 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9077 9078 // We're taking this node out of the chain, so we need to re-link things. 9079 SDValue InputChain = Node->getOperand(0); 9080 SDValue OutputChain = SDValue(Node, 1); 9081 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9082 9083 SmallVector<SDValue, 3> Ops; 9084 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9085 Ops.push_back(Node->getOperand(i)); 9086 9087 SDVTList VTs = getVTList(Node->getValueType(0)); 9088 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9089 9090 // MorphNodeTo can operate in two ways: if an existing node with the 9091 // specified operands exists, it can just return it. Otherwise, it 9092 // updates the node in place to have the requested operands. 9093 if (Res == Node) { 9094 // If we updated the node in place, reset the node ID. To the isel, 9095 // this should be just like a newly allocated machine node. 9096 Res->setNodeId(-1); 9097 } else { 9098 ReplaceAllUsesWith(Node, Res); 9099 RemoveDeadNode(Node); 9100 } 9101 9102 return Res; 9103 } 9104 9105 /// getMachineNode - These are used for target selectors to create a new node 9106 /// with specified return type(s), MachineInstr opcode, and operands. 9107 /// 9108 /// Note that getMachineNode returns the resultant node. If there is already a 9109 /// node of the specified opcode and operands, it returns that node instead of 9110 /// the current one. 9111 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9112 EVT VT) { 9113 SDVTList VTs = getVTList(VT); 9114 return getMachineNode(Opcode, dl, VTs, None); 9115 } 9116 9117 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9118 EVT VT, SDValue Op1) { 9119 SDVTList VTs = getVTList(VT); 9120 SDValue Ops[] = { Op1 }; 9121 return getMachineNode(Opcode, dl, VTs, Ops); 9122 } 9123 9124 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9125 EVT VT, SDValue Op1, SDValue Op2) { 9126 SDVTList VTs = getVTList(VT); 9127 SDValue Ops[] = { Op1, Op2 }; 9128 return getMachineNode(Opcode, dl, VTs, Ops); 9129 } 9130 9131 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9132 EVT VT, SDValue Op1, SDValue Op2, 9133 SDValue Op3) { 9134 SDVTList VTs = getVTList(VT); 9135 SDValue Ops[] = { Op1, Op2, Op3 }; 9136 return getMachineNode(Opcode, dl, VTs, Ops); 9137 } 9138 9139 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9140 EVT VT, ArrayRef<SDValue> Ops) { 9141 SDVTList VTs = getVTList(VT); 9142 return getMachineNode(Opcode, dl, VTs, Ops); 9143 } 9144 9145 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9146 EVT VT1, EVT VT2, SDValue Op1, 9147 SDValue Op2) { 9148 SDVTList VTs = getVTList(VT1, VT2); 9149 SDValue Ops[] = { Op1, Op2 }; 9150 return getMachineNode(Opcode, dl, VTs, Ops); 9151 } 9152 9153 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9154 EVT VT1, EVT VT2, SDValue Op1, 9155 SDValue Op2, SDValue Op3) { 9156 SDVTList VTs = getVTList(VT1, VT2); 9157 SDValue Ops[] = { Op1, Op2, Op3 }; 9158 return getMachineNode(Opcode, dl, VTs, Ops); 9159 } 9160 9161 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9162 EVT VT1, EVT VT2, 9163 ArrayRef<SDValue> Ops) { 9164 SDVTList VTs = getVTList(VT1, VT2); 9165 return getMachineNode(Opcode, dl, VTs, Ops); 9166 } 9167 9168 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9169 EVT VT1, EVT VT2, EVT VT3, 9170 SDValue Op1, SDValue Op2) { 9171 SDVTList VTs = getVTList(VT1, VT2, VT3); 9172 SDValue Ops[] = { Op1, Op2 }; 9173 return getMachineNode(Opcode, dl, VTs, Ops); 9174 } 9175 9176 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9177 EVT VT1, EVT VT2, EVT VT3, 9178 SDValue Op1, SDValue Op2, 9179 SDValue Op3) { 9180 SDVTList VTs = getVTList(VT1, VT2, VT3); 9181 SDValue Ops[] = { Op1, Op2, Op3 }; 9182 return getMachineNode(Opcode, dl, VTs, Ops); 9183 } 9184 9185 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9186 EVT VT1, EVT VT2, EVT VT3, 9187 ArrayRef<SDValue> Ops) { 9188 SDVTList VTs = getVTList(VT1, VT2, VT3); 9189 return getMachineNode(Opcode, dl, VTs, Ops); 9190 } 9191 9192 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9193 ArrayRef<EVT> ResultTys, 9194 ArrayRef<SDValue> Ops) { 9195 SDVTList VTs = getVTList(ResultTys); 9196 return getMachineNode(Opcode, dl, VTs, Ops); 9197 } 9198 9199 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9200 SDVTList VTs, 9201 ArrayRef<SDValue> Ops) { 9202 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9203 MachineSDNode *N; 9204 void *IP = nullptr; 9205 9206 if (DoCSE) { 9207 FoldingSetNodeID ID; 9208 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9209 IP = nullptr; 9210 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9211 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9212 } 9213 } 9214 9215 // Allocate a new MachineSDNode. 9216 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9217 createOperands(N, Ops); 9218 9219 if (DoCSE) 9220 CSEMap.InsertNode(N, IP); 9221 9222 InsertNode(N); 9223 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9224 return N; 9225 } 9226 9227 /// getTargetExtractSubreg - A convenience function for creating 9228 /// TargetOpcode::EXTRACT_SUBREG nodes. 9229 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9230 SDValue Operand) { 9231 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9232 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9233 VT, Operand, SRIdxVal); 9234 return SDValue(Subreg, 0); 9235 } 9236 9237 /// getTargetInsertSubreg - A convenience function for creating 9238 /// TargetOpcode::INSERT_SUBREG nodes. 9239 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9240 SDValue Operand, SDValue Subreg) { 9241 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9242 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9243 VT, Operand, Subreg, SRIdxVal); 9244 return SDValue(Result, 0); 9245 } 9246 9247 /// getNodeIfExists - Get the specified node if it's already available, or 9248 /// else return NULL. 9249 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9250 ArrayRef<SDValue> Ops) { 9251 SDNodeFlags Flags; 9252 if (Inserter) 9253 Flags = Inserter->getFlags(); 9254 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9255 } 9256 9257 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9258 ArrayRef<SDValue> Ops, 9259 const SDNodeFlags Flags) { 9260 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9261 FoldingSetNodeID ID; 9262 AddNodeIDNode(ID, Opcode, VTList, Ops); 9263 void *IP = nullptr; 9264 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9265 E->intersectFlagsWith(Flags); 9266 return E; 9267 } 9268 } 9269 return nullptr; 9270 } 9271 9272 /// doesNodeExist - Check if a node exists without modifying its flags. 9273 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9274 ArrayRef<SDValue> Ops) { 9275 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9276 FoldingSetNodeID ID; 9277 AddNodeIDNode(ID, Opcode, VTList, Ops); 9278 void *IP = nullptr; 9279 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9280 return true; 9281 } 9282 return false; 9283 } 9284 9285 /// getDbgValue - Creates a SDDbgValue node. 9286 /// 9287 /// SDNode 9288 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9289 SDNode *N, unsigned R, bool IsIndirect, 9290 const DebugLoc &DL, unsigned O) { 9291 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9292 "Expected inlined-at fields to agree"); 9293 return new (DbgInfo->getAlloc()) 9294 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9295 {}, IsIndirect, DL, O, 9296 /*IsVariadic=*/false); 9297 } 9298 9299 /// Constant 9300 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9301 DIExpression *Expr, 9302 const Value *C, 9303 const DebugLoc &DL, unsigned O) { 9304 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9305 "Expected inlined-at fields to agree"); 9306 return new (DbgInfo->getAlloc()) 9307 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9308 /*IsIndirect=*/false, DL, O, 9309 /*IsVariadic=*/false); 9310 } 9311 9312 /// FrameIndex 9313 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9314 DIExpression *Expr, unsigned FI, 9315 bool IsIndirect, 9316 const DebugLoc &DL, 9317 unsigned O) { 9318 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9319 "Expected inlined-at fields to agree"); 9320 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9321 } 9322 9323 /// FrameIndex with dependencies 9324 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9325 DIExpression *Expr, unsigned FI, 9326 ArrayRef<SDNode *> Dependencies, 9327 bool IsIndirect, 9328 const DebugLoc &DL, 9329 unsigned O) { 9330 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9331 "Expected inlined-at fields to agree"); 9332 return new (DbgInfo->getAlloc()) 9333 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9334 Dependencies, IsIndirect, DL, O, 9335 /*IsVariadic=*/false); 9336 } 9337 9338 /// VReg 9339 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9340 unsigned VReg, bool IsIndirect, 9341 const DebugLoc &DL, unsigned O) { 9342 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9343 "Expected inlined-at fields to agree"); 9344 return new (DbgInfo->getAlloc()) 9345 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9346 {}, IsIndirect, DL, O, 9347 /*IsVariadic=*/false); 9348 } 9349 9350 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9351 ArrayRef<SDDbgOperand> Locs, 9352 ArrayRef<SDNode *> Dependencies, 9353 bool IsIndirect, const DebugLoc &DL, 9354 unsigned O, bool IsVariadic) { 9355 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9356 "Expected inlined-at fields to agree"); 9357 return new (DbgInfo->getAlloc()) 9358 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9359 DL, O, IsVariadic); 9360 } 9361 9362 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9363 unsigned OffsetInBits, unsigned SizeInBits, 9364 bool InvalidateDbg) { 9365 SDNode *FromNode = From.getNode(); 9366 SDNode *ToNode = To.getNode(); 9367 assert(FromNode && ToNode && "Can't modify dbg values"); 9368 9369 // PR35338 9370 // TODO: assert(From != To && "Redundant dbg value transfer"); 9371 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9372 if (From == To || FromNode == ToNode) 9373 return; 9374 9375 if (!FromNode->getHasDebugValue()) 9376 return; 9377 9378 SDDbgOperand FromLocOp = 9379 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9380 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9381 9382 SmallVector<SDDbgValue *, 2> ClonedDVs; 9383 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9384 if (Dbg->isInvalidated()) 9385 continue; 9386 9387 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9388 9389 // Create a new location ops vector that is equal to the old vector, but 9390 // with each instance of FromLocOp replaced with ToLocOp. 9391 bool Changed = false; 9392 auto NewLocOps = Dbg->copyLocationOps(); 9393 std::replace_if( 9394 NewLocOps.begin(), NewLocOps.end(), 9395 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9396 bool Match = Op == FromLocOp; 9397 Changed |= Match; 9398 return Match; 9399 }, 9400 ToLocOp); 9401 // Ignore this SDDbgValue if we didn't find a matching location. 9402 if (!Changed) 9403 continue; 9404 9405 DIVariable *Var = Dbg->getVariable(); 9406 auto *Expr = Dbg->getExpression(); 9407 // If a fragment is requested, update the expression. 9408 if (SizeInBits) { 9409 // When splitting a larger (e.g., sign-extended) value whose 9410 // lower bits are described with an SDDbgValue, do not attempt 9411 // to transfer the SDDbgValue to the upper bits. 9412 if (auto FI = Expr->getFragmentInfo()) 9413 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9414 continue; 9415 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9416 SizeInBits); 9417 if (!Fragment) 9418 continue; 9419 Expr = *Fragment; 9420 } 9421 9422 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9423 // Clone the SDDbgValue and move it to To. 9424 SDDbgValue *Clone = getDbgValueList( 9425 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9426 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9427 Dbg->isVariadic()); 9428 ClonedDVs.push_back(Clone); 9429 9430 if (InvalidateDbg) { 9431 // Invalidate value and indicate the SDDbgValue should not be emitted. 9432 Dbg->setIsInvalidated(); 9433 Dbg->setIsEmitted(); 9434 } 9435 } 9436 9437 for (SDDbgValue *Dbg : ClonedDVs) { 9438 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9439 "Transferred DbgValues should depend on the new SDNode"); 9440 AddDbgValue(Dbg, false); 9441 } 9442 } 9443 9444 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9445 if (!N.getHasDebugValue()) 9446 return; 9447 9448 SmallVector<SDDbgValue *, 2> ClonedDVs; 9449 for (auto DV : GetDbgValues(&N)) { 9450 if (DV->isInvalidated()) 9451 continue; 9452 switch (N.getOpcode()) { 9453 default: 9454 break; 9455 case ISD::ADD: 9456 SDValue N0 = N.getOperand(0); 9457 SDValue N1 = N.getOperand(1); 9458 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9459 isConstantIntBuildVectorOrConstantInt(N1)) { 9460 uint64_t Offset = N.getConstantOperandVal(1); 9461 9462 // Rewrite an ADD constant node into a DIExpression. Since we are 9463 // performing arithmetic to compute the variable's *value* in the 9464 // DIExpression, we need to mark the expression with a 9465 // DW_OP_stack_value. 9466 auto *DIExpr = DV->getExpression(); 9467 auto NewLocOps = DV->copyLocationOps(); 9468 bool Changed = false; 9469 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9470 // We're not given a ResNo to compare against because the whole 9471 // node is going away. We know that any ISD::ADD only has one 9472 // result, so we can assume any node match is using the result. 9473 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9474 NewLocOps[i].getSDNode() != &N) 9475 continue; 9476 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9477 SmallVector<uint64_t, 3> ExprOps; 9478 DIExpression::appendOffset(ExprOps, Offset); 9479 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9480 Changed = true; 9481 } 9482 (void)Changed; 9483 assert(Changed && "Salvage target doesn't use N"); 9484 9485 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9486 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9487 NewLocOps, AdditionalDependencies, 9488 DV->isIndirect(), DV->getDebugLoc(), 9489 DV->getOrder(), DV->isVariadic()); 9490 ClonedDVs.push_back(Clone); 9491 DV->setIsInvalidated(); 9492 DV->setIsEmitted(); 9493 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9494 N0.getNode()->dumprFull(this); 9495 dbgs() << " into " << *DIExpr << '\n'); 9496 } 9497 } 9498 } 9499 9500 for (SDDbgValue *Dbg : ClonedDVs) { 9501 assert(!Dbg->getSDNodes().empty() && 9502 "Salvaged DbgValue should depend on a new SDNode"); 9503 AddDbgValue(Dbg, false); 9504 } 9505 } 9506 9507 /// Creates a SDDbgLabel node. 9508 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9509 const DebugLoc &DL, unsigned O) { 9510 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9511 "Expected inlined-at fields to agree"); 9512 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9513 } 9514 9515 namespace { 9516 9517 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9518 /// pointed to by a use iterator is deleted, increment the use iterator 9519 /// so that it doesn't dangle. 9520 /// 9521 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9522 SDNode::use_iterator &UI; 9523 SDNode::use_iterator &UE; 9524 9525 void NodeDeleted(SDNode *N, SDNode *E) override { 9526 // Increment the iterator as needed. 9527 while (UI != UE && N == *UI) 9528 ++UI; 9529 } 9530 9531 public: 9532 RAUWUpdateListener(SelectionDAG &d, 9533 SDNode::use_iterator &ui, 9534 SDNode::use_iterator &ue) 9535 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9536 }; 9537 9538 } // end anonymous namespace 9539 9540 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9541 /// This can cause recursive merging of nodes in the DAG. 9542 /// 9543 /// This version assumes From has a single result value. 9544 /// 9545 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9546 SDNode *From = FromN.getNode(); 9547 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9548 "Cannot replace with this method!"); 9549 assert(From != To.getNode() && "Cannot replace uses of with self"); 9550 9551 // Preserve Debug Values 9552 transferDbgValues(FromN, To); 9553 9554 // Iterate over all the existing uses of From. New uses will be added 9555 // to the beginning of the use list, which we avoid visiting. 9556 // This specifically avoids visiting uses of From that arise while the 9557 // replacement is happening, because any such uses would be the result 9558 // of CSE: If an existing node looks like From after one of its operands 9559 // is replaced by To, we don't want to replace of all its users with To 9560 // too. See PR3018 for more info. 9561 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9562 RAUWUpdateListener Listener(*this, UI, UE); 9563 while (UI != UE) { 9564 SDNode *User = *UI; 9565 9566 // This node is about to morph, remove its old self from the CSE maps. 9567 RemoveNodeFromCSEMaps(User); 9568 9569 // A user can appear in a use list multiple times, and when this 9570 // happens the uses are usually next to each other in the list. 9571 // To help reduce the number of CSE recomputations, process all 9572 // the uses of this user that we can find this way. 9573 do { 9574 SDUse &Use = UI.getUse(); 9575 ++UI; 9576 Use.set(To); 9577 if (To->isDivergent() != From->isDivergent()) 9578 updateDivergence(User); 9579 } while (UI != UE && *UI == User); 9580 // Now that we have modified User, add it back to the CSE maps. If it 9581 // already exists there, recursively merge the results together. 9582 AddModifiedNodeToCSEMaps(User); 9583 } 9584 9585 // If we just RAUW'd the root, take note. 9586 if (FromN == getRoot()) 9587 setRoot(To); 9588 } 9589 9590 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9591 /// This can cause recursive merging of nodes in the DAG. 9592 /// 9593 /// This version assumes that for each value of From, there is a 9594 /// corresponding value in To in the same position with the same type. 9595 /// 9596 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9597 #ifndef NDEBUG 9598 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9599 assert((!From->hasAnyUseOfValue(i) || 9600 From->getValueType(i) == To->getValueType(i)) && 9601 "Cannot use this version of ReplaceAllUsesWith!"); 9602 #endif 9603 9604 // Handle the trivial case. 9605 if (From == To) 9606 return; 9607 9608 // Preserve Debug Info. Only do this if there's a use. 9609 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9610 if (From->hasAnyUseOfValue(i)) { 9611 assert((i < To->getNumValues()) && "Invalid To location"); 9612 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9613 } 9614 9615 // Iterate over just the existing users of From. See the comments in 9616 // the ReplaceAllUsesWith above. 9617 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9618 RAUWUpdateListener Listener(*this, UI, UE); 9619 while (UI != UE) { 9620 SDNode *User = *UI; 9621 9622 // This node is about to morph, remove its old self from the CSE maps. 9623 RemoveNodeFromCSEMaps(User); 9624 9625 // A user can appear in a use list multiple times, and when this 9626 // happens the uses are usually next to each other in the list. 9627 // To help reduce the number of CSE recomputations, process all 9628 // the uses of this user that we can find this way. 9629 do { 9630 SDUse &Use = UI.getUse(); 9631 ++UI; 9632 Use.setNode(To); 9633 if (To->isDivergent() != From->isDivergent()) 9634 updateDivergence(User); 9635 } while (UI != UE && *UI == User); 9636 9637 // Now that we have modified User, add it back to the CSE maps. If it 9638 // already exists there, recursively merge the results together. 9639 AddModifiedNodeToCSEMaps(User); 9640 } 9641 9642 // If we just RAUW'd the root, take note. 9643 if (From == getRoot().getNode()) 9644 setRoot(SDValue(To, getRoot().getResNo())); 9645 } 9646 9647 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9648 /// This can cause recursive merging of nodes in the DAG. 9649 /// 9650 /// This version can replace From with any result values. To must match the 9651 /// number and types of values returned by From. 9652 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9653 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9654 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9655 9656 // Preserve Debug Info. 9657 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9658 transferDbgValues(SDValue(From, i), To[i]); 9659 9660 // Iterate over just the existing users of From. See the comments in 9661 // the ReplaceAllUsesWith above. 9662 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9663 RAUWUpdateListener Listener(*this, UI, UE); 9664 while (UI != UE) { 9665 SDNode *User = *UI; 9666 9667 // This node is about to morph, remove its old self from the CSE maps. 9668 RemoveNodeFromCSEMaps(User); 9669 9670 // A user can appear in a use list multiple times, and when this happens the 9671 // uses are usually next to each other in the list. To help reduce the 9672 // number of CSE and divergence recomputations, process all the uses of this 9673 // user that we can find this way. 9674 bool To_IsDivergent = false; 9675 do { 9676 SDUse &Use = UI.getUse(); 9677 const SDValue &ToOp = To[Use.getResNo()]; 9678 ++UI; 9679 Use.set(ToOp); 9680 To_IsDivergent |= ToOp->isDivergent(); 9681 } while (UI != UE && *UI == User); 9682 9683 if (To_IsDivergent != From->isDivergent()) 9684 updateDivergence(User); 9685 9686 // Now that we have modified User, add it back to the CSE maps. If it 9687 // already exists there, recursively merge the results together. 9688 AddModifiedNodeToCSEMaps(User); 9689 } 9690 9691 // If we just RAUW'd the root, take note. 9692 if (From == getRoot().getNode()) 9693 setRoot(SDValue(To[getRoot().getResNo()])); 9694 } 9695 9696 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9697 /// uses of other values produced by From.getNode() alone. The Deleted 9698 /// vector is handled the same way as for ReplaceAllUsesWith. 9699 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9700 // Handle the really simple, really trivial case efficiently. 9701 if (From == To) return; 9702 9703 // Handle the simple, trivial, case efficiently. 9704 if (From.getNode()->getNumValues() == 1) { 9705 ReplaceAllUsesWith(From, To); 9706 return; 9707 } 9708 9709 // Preserve Debug Info. 9710 transferDbgValues(From, To); 9711 9712 // Iterate over just the existing users of From. See the comments in 9713 // the ReplaceAllUsesWith above. 9714 SDNode::use_iterator UI = From.getNode()->use_begin(), 9715 UE = From.getNode()->use_end(); 9716 RAUWUpdateListener Listener(*this, UI, UE); 9717 while (UI != UE) { 9718 SDNode *User = *UI; 9719 bool UserRemovedFromCSEMaps = false; 9720 9721 // A user can appear in a use list multiple times, and when this 9722 // happens the uses are usually next to each other in the list. 9723 // To help reduce the number of CSE recomputations, process all 9724 // the uses of this user that we can find this way. 9725 do { 9726 SDUse &Use = UI.getUse(); 9727 9728 // Skip uses of different values from the same node. 9729 if (Use.getResNo() != From.getResNo()) { 9730 ++UI; 9731 continue; 9732 } 9733 9734 // If this node hasn't been modified yet, it's still in the CSE maps, 9735 // so remove its old self from the CSE maps. 9736 if (!UserRemovedFromCSEMaps) { 9737 RemoveNodeFromCSEMaps(User); 9738 UserRemovedFromCSEMaps = true; 9739 } 9740 9741 ++UI; 9742 Use.set(To); 9743 if (To->isDivergent() != From->isDivergent()) 9744 updateDivergence(User); 9745 } while (UI != UE && *UI == User); 9746 // We are iterating over all uses of the From node, so if a use 9747 // doesn't use the specific value, no changes are made. 9748 if (!UserRemovedFromCSEMaps) 9749 continue; 9750 9751 // Now that we have modified User, add it back to the CSE maps. If it 9752 // already exists there, recursively merge the results together. 9753 AddModifiedNodeToCSEMaps(User); 9754 } 9755 9756 // If we just RAUW'd the root, take note. 9757 if (From == getRoot()) 9758 setRoot(To); 9759 } 9760 9761 namespace { 9762 9763 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9764 /// to record information about a use. 9765 struct UseMemo { 9766 SDNode *User; 9767 unsigned Index; 9768 SDUse *Use; 9769 }; 9770 9771 /// operator< - Sort Memos by User. 9772 bool operator<(const UseMemo &L, const UseMemo &R) { 9773 return (intptr_t)L.User < (intptr_t)R.User; 9774 } 9775 9776 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 9777 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 9778 /// the node already has been taken care of recursively. 9779 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 9780 SmallVector<UseMemo, 4> &Uses; 9781 9782 void NodeDeleted(SDNode *N, SDNode *E) override { 9783 for (UseMemo &Memo : Uses) 9784 if (Memo.User == N) 9785 Memo.User = nullptr; 9786 } 9787 9788 public: 9789 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 9790 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 9791 }; 9792 9793 } // end anonymous namespace 9794 9795 bool SelectionDAG::calculateDivergence(SDNode *N) { 9796 if (TLI->isSDNodeAlwaysUniform(N)) { 9797 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9798 "Conflicting divergence information!"); 9799 return false; 9800 } 9801 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9802 return true; 9803 for (auto &Op : N->ops()) { 9804 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9805 return true; 9806 } 9807 return false; 9808 } 9809 9810 void SelectionDAG::updateDivergence(SDNode *N) { 9811 SmallVector<SDNode *, 16> Worklist(1, N); 9812 do { 9813 N = Worklist.pop_back_val(); 9814 bool IsDivergent = calculateDivergence(N); 9815 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9816 N->SDNodeBits.IsDivergent = IsDivergent; 9817 llvm::append_range(Worklist, N->uses()); 9818 } 9819 } while (!Worklist.empty()); 9820 } 9821 9822 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9823 DenseMap<SDNode *, unsigned> Degree; 9824 Order.reserve(AllNodes.size()); 9825 for (auto &N : allnodes()) { 9826 unsigned NOps = N.getNumOperands(); 9827 Degree[&N] = NOps; 9828 if (0 == NOps) 9829 Order.push_back(&N); 9830 } 9831 for (size_t I = 0; I != Order.size(); ++I) { 9832 SDNode *N = Order[I]; 9833 for (auto U : N->uses()) { 9834 unsigned &UnsortedOps = Degree[U]; 9835 if (0 == --UnsortedOps) 9836 Order.push_back(U); 9837 } 9838 } 9839 } 9840 9841 #ifndef NDEBUG 9842 void SelectionDAG::VerifyDAGDivergence() { 9843 std::vector<SDNode *> TopoOrder; 9844 CreateTopologicalOrder(TopoOrder); 9845 for (auto *N : TopoOrder) { 9846 assert(calculateDivergence(N) == N->isDivergent() && 9847 "Divergence bit inconsistency detected"); 9848 } 9849 } 9850 #endif 9851 9852 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9853 /// uses of other values produced by From.getNode() alone. The same value 9854 /// may appear in both the From and To list. The Deleted vector is 9855 /// handled the same way as for ReplaceAllUsesWith. 9856 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9857 const SDValue *To, 9858 unsigned Num){ 9859 // Handle the simple, trivial case efficiently. 9860 if (Num == 1) 9861 return ReplaceAllUsesOfValueWith(*From, *To); 9862 9863 transferDbgValues(*From, *To); 9864 9865 // Read up all the uses and make records of them. This helps 9866 // processing new uses that are introduced during the 9867 // replacement process. 9868 SmallVector<UseMemo, 4> Uses; 9869 for (unsigned i = 0; i != Num; ++i) { 9870 unsigned FromResNo = From[i].getResNo(); 9871 SDNode *FromNode = From[i].getNode(); 9872 for (SDNode::use_iterator UI = FromNode->use_begin(), 9873 E = FromNode->use_end(); UI != E; ++UI) { 9874 SDUse &Use = UI.getUse(); 9875 if (Use.getResNo() == FromResNo) { 9876 UseMemo Memo = { *UI, i, &Use }; 9877 Uses.push_back(Memo); 9878 } 9879 } 9880 } 9881 9882 // Sort the uses, so that all the uses from a given User are together. 9883 llvm::sort(Uses); 9884 RAUOVWUpdateListener Listener(*this, Uses); 9885 9886 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9887 UseIndex != UseIndexEnd; ) { 9888 // We know that this user uses some value of From. If it is the right 9889 // value, update it. 9890 SDNode *User = Uses[UseIndex].User; 9891 // If the node has been deleted by recursive CSE updates when updating 9892 // another node, then just skip this entry. 9893 if (User == nullptr) { 9894 ++UseIndex; 9895 continue; 9896 } 9897 9898 // This node is about to morph, remove its old self from the CSE maps. 9899 RemoveNodeFromCSEMaps(User); 9900 9901 // The Uses array is sorted, so all the uses for a given User 9902 // are next to each other in the list. 9903 // To help reduce the number of CSE recomputations, process all 9904 // the uses of this user that we can find this way. 9905 do { 9906 unsigned i = Uses[UseIndex].Index; 9907 SDUse &Use = *Uses[UseIndex].Use; 9908 ++UseIndex; 9909 9910 Use.set(To[i]); 9911 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9912 9913 // Now that we have modified User, add it back to the CSE maps. If it 9914 // already exists there, recursively merge the results together. 9915 AddModifiedNodeToCSEMaps(User); 9916 } 9917 } 9918 9919 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9920 /// based on their topological order. It returns the maximum id and a vector 9921 /// of the SDNodes* in assigned order by reference. 9922 unsigned SelectionDAG::AssignTopologicalOrder() { 9923 unsigned DAGSize = 0; 9924 9925 // SortedPos tracks the progress of the algorithm. Nodes before it are 9926 // sorted, nodes after it are unsorted. When the algorithm completes 9927 // it is at the end of the list. 9928 allnodes_iterator SortedPos = allnodes_begin(); 9929 9930 // Visit all the nodes. Move nodes with no operands to the front of 9931 // the list immediately. Annotate nodes that do have operands with their 9932 // operand count. Before we do this, the Node Id fields of the nodes 9933 // may contain arbitrary values. After, the Node Id fields for nodes 9934 // before SortedPos will contain the topological sort index, and the 9935 // Node Id fields for nodes At SortedPos and after will contain the 9936 // count of outstanding operands. 9937 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9938 checkForCycles(&N, this); 9939 unsigned Degree = N.getNumOperands(); 9940 if (Degree == 0) { 9941 // A node with no uses, add it to the result array immediately. 9942 N.setNodeId(DAGSize++); 9943 allnodes_iterator Q(&N); 9944 if (Q != SortedPos) 9945 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9946 assert(SortedPos != AllNodes.end() && "Overran node list"); 9947 ++SortedPos; 9948 } else { 9949 // Temporarily use the Node Id as scratch space for the degree count. 9950 N.setNodeId(Degree); 9951 } 9952 } 9953 9954 // Visit all the nodes. As we iterate, move nodes into sorted order, 9955 // such that by the time the end is reached all nodes will be sorted. 9956 for (SDNode &Node : allnodes()) { 9957 SDNode *N = &Node; 9958 checkForCycles(N, this); 9959 // N is in sorted position, so all its uses have one less operand 9960 // that needs to be sorted. 9961 for (SDNode *P : N->uses()) { 9962 unsigned Degree = P->getNodeId(); 9963 assert(Degree != 0 && "Invalid node degree"); 9964 --Degree; 9965 if (Degree == 0) { 9966 // All of P's operands are sorted, so P may sorted now. 9967 P->setNodeId(DAGSize++); 9968 if (P->getIterator() != SortedPos) 9969 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9970 assert(SortedPos != AllNodes.end() && "Overran node list"); 9971 ++SortedPos; 9972 } else { 9973 // Update P's outstanding operand count. 9974 P->setNodeId(Degree); 9975 } 9976 } 9977 if (Node.getIterator() == SortedPos) { 9978 #ifndef NDEBUG 9979 allnodes_iterator I(N); 9980 SDNode *S = &*++I; 9981 dbgs() << "Overran sorted position:\n"; 9982 S->dumprFull(this); dbgs() << "\n"; 9983 dbgs() << "Checking if this is due to cycles\n"; 9984 checkForCycles(this, true); 9985 #endif 9986 llvm_unreachable(nullptr); 9987 } 9988 } 9989 9990 assert(SortedPos == AllNodes.end() && 9991 "Topological sort incomplete!"); 9992 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9993 "First node in topological sort is not the entry token!"); 9994 assert(AllNodes.front().getNodeId() == 0 && 9995 "First node in topological sort has non-zero id!"); 9996 assert(AllNodes.front().getNumOperands() == 0 && 9997 "First node in topological sort has operands!"); 9998 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9999 "Last node in topologic sort has unexpected id!"); 10000 assert(AllNodes.back().use_empty() && 10001 "Last node in topologic sort has users!"); 10002 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10003 return DAGSize; 10004 } 10005 10006 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10007 /// value is produced by SD. 10008 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10009 for (SDNode *SD : DB->getSDNodes()) { 10010 if (!SD) 10011 continue; 10012 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10013 SD->setHasDebugValue(true); 10014 } 10015 DbgInfo->add(DB, isParameter); 10016 } 10017 10018 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10019 10020 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10021 SDValue NewMemOpChain) { 10022 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10023 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10024 // The new memory operation must have the same position as the old load in 10025 // terms of memory dependency. Create a TokenFactor for the old load and new 10026 // memory operation and update uses of the old load's output chain to use that 10027 // TokenFactor. 10028 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10029 return NewMemOpChain; 10030 10031 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10032 OldChain, NewMemOpChain); 10033 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10034 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10035 return TokenFactor; 10036 } 10037 10038 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10039 SDValue NewMemOp) { 10040 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10041 SDValue OldChain = SDValue(OldLoad, 1); 10042 SDValue NewMemOpChain = NewMemOp.getValue(1); 10043 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10044 } 10045 10046 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10047 Function **OutFunction) { 10048 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10049 10050 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10051 auto *Module = MF->getFunction().getParent(); 10052 auto *Function = Module->getFunction(Symbol); 10053 10054 if (OutFunction != nullptr) 10055 *OutFunction = Function; 10056 10057 if (Function != nullptr) { 10058 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10059 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10060 } 10061 10062 std::string ErrorStr; 10063 raw_string_ostream ErrorFormatter(ErrorStr); 10064 ErrorFormatter << "Undefined external symbol "; 10065 ErrorFormatter << '"' << Symbol << '"'; 10066 report_fatal_error(Twine(ErrorFormatter.str())); 10067 } 10068 10069 //===----------------------------------------------------------------------===// 10070 // SDNode Class 10071 //===----------------------------------------------------------------------===// 10072 10073 bool llvm::isNullConstant(SDValue V) { 10074 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10075 return Const != nullptr && Const->isZero(); 10076 } 10077 10078 bool llvm::isNullFPConstant(SDValue V) { 10079 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10080 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10081 } 10082 10083 bool llvm::isAllOnesConstant(SDValue V) { 10084 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10085 return Const != nullptr && Const->isAllOnes(); 10086 } 10087 10088 bool llvm::isOneConstant(SDValue V) { 10089 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10090 return Const != nullptr && Const->isOne(); 10091 } 10092 10093 SDValue llvm::peekThroughBitcasts(SDValue V) { 10094 while (V.getOpcode() == ISD::BITCAST) 10095 V = V.getOperand(0); 10096 return V; 10097 } 10098 10099 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10100 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10101 V = V.getOperand(0); 10102 return V; 10103 } 10104 10105 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10106 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10107 V = V.getOperand(0); 10108 return V; 10109 } 10110 10111 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10112 if (V.getOpcode() != ISD::XOR) 10113 return false; 10114 V = peekThroughBitcasts(V.getOperand(1)); 10115 unsigned NumBits = V.getScalarValueSizeInBits(); 10116 ConstantSDNode *C = 10117 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10118 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10119 } 10120 10121 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10122 bool AllowTruncation) { 10123 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10124 return CN; 10125 10126 // SplatVectors can truncate their operands. Ignore that case here unless 10127 // AllowTruncation is set. 10128 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10129 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10130 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10131 EVT CVT = CN->getValueType(0); 10132 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10133 if (AllowTruncation || CVT == VecEltVT) 10134 return CN; 10135 } 10136 } 10137 10138 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10139 BitVector UndefElements; 10140 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10141 10142 // BuildVectors can truncate their operands. Ignore that case here unless 10143 // AllowTruncation is set. 10144 if (CN && (UndefElements.none() || AllowUndefs)) { 10145 EVT CVT = CN->getValueType(0); 10146 EVT NSVT = N.getValueType().getScalarType(); 10147 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10148 if (AllowTruncation || (CVT == NSVT)) 10149 return CN; 10150 } 10151 } 10152 10153 return nullptr; 10154 } 10155 10156 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10157 bool AllowUndefs, 10158 bool AllowTruncation) { 10159 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10160 return CN; 10161 10162 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10163 BitVector UndefElements; 10164 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10165 10166 // BuildVectors can truncate their operands. Ignore that case here unless 10167 // AllowTruncation is set. 10168 if (CN && (UndefElements.none() || AllowUndefs)) { 10169 EVT CVT = CN->getValueType(0); 10170 EVT NSVT = N.getValueType().getScalarType(); 10171 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10172 if (AllowTruncation || (CVT == NSVT)) 10173 return CN; 10174 } 10175 } 10176 10177 return nullptr; 10178 } 10179 10180 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10181 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10182 return CN; 10183 10184 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10185 BitVector UndefElements; 10186 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10187 if (CN && (UndefElements.none() || AllowUndefs)) 10188 return CN; 10189 } 10190 10191 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10192 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10193 return CN; 10194 10195 return nullptr; 10196 } 10197 10198 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10199 const APInt &DemandedElts, 10200 bool AllowUndefs) { 10201 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10202 return CN; 10203 10204 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10205 BitVector UndefElements; 10206 ConstantFPSDNode *CN = 10207 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10208 if (CN && (UndefElements.none() || AllowUndefs)) 10209 return CN; 10210 } 10211 10212 return nullptr; 10213 } 10214 10215 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10216 // TODO: may want to use peekThroughBitcast() here. 10217 ConstantSDNode *C = 10218 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10219 return C && C->isZero(); 10220 } 10221 10222 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10223 // TODO: may want to use peekThroughBitcast() here. 10224 unsigned BitWidth = N.getScalarValueSizeInBits(); 10225 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10226 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10227 } 10228 10229 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10230 N = peekThroughBitcasts(N); 10231 unsigned BitWidth = N.getScalarValueSizeInBits(); 10232 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10233 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10234 } 10235 10236 HandleSDNode::~HandleSDNode() { 10237 DropOperands(); 10238 } 10239 10240 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10241 const DebugLoc &DL, 10242 const GlobalValue *GA, EVT VT, 10243 int64_t o, unsigned TF) 10244 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10245 TheGlobal = GA; 10246 } 10247 10248 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10249 EVT VT, unsigned SrcAS, 10250 unsigned DestAS) 10251 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10252 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10253 10254 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10255 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10256 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10257 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10258 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10259 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10260 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10261 10262 // We check here that the size of the memory operand fits within the size of 10263 // the MMO. This is because the MMO might indicate only a possible address 10264 // range instead of specifying the affected memory addresses precisely. 10265 // TODO: Make MachineMemOperands aware of scalable vectors. 10266 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10267 "Size mismatch!"); 10268 } 10269 10270 /// Profile - Gather unique data for the node. 10271 /// 10272 void SDNode::Profile(FoldingSetNodeID &ID) const { 10273 AddNodeIDNode(ID, this); 10274 } 10275 10276 namespace { 10277 10278 struct EVTArray { 10279 std::vector<EVT> VTs; 10280 10281 EVTArray() { 10282 VTs.reserve(MVT::VALUETYPE_SIZE); 10283 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10284 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10285 } 10286 }; 10287 10288 } // end anonymous namespace 10289 10290 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10291 static ManagedStatic<EVTArray> SimpleVTArray; 10292 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10293 10294 /// getValueTypeList - Return a pointer to the specified value type. 10295 /// 10296 const EVT *SDNode::getValueTypeList(EVT VT) { 10297 if (VT.isExtended()) { 10298 sys::SmartScopedLock<true> Lock(*VTMutex); 10299 return &(*EVTs->insert(VT).first); 10300 } 10301 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10302 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10303 } 10304 10305 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10306 /// indicated value. This method ignores uses of other values defined by this 10307 /// operation. 10308 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10309 assert(Value < getNumValues() && "Bad value!"); 10310 10311 // TODO: Only iterate over uses of a given value of the node 10312 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10313 if (UI.getUse().getResNo() == Value) { 10314 if (NUses == 0) 10315 return false; 10316 --NUses; 10317 } 10318 } 10319 10320 // Found exactly the right number of uses? 10321 return NUses == 0; 10322 } 10323 10324 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10325 /// value. This method ignores uses of other values defined by this operation. 10326 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10327 assert(Value < getNumValues() && "Bad value!"); 10328 10329 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10330 if (UI.getUse().getResNo() == Value) 10331 return true; 10332 10333 return false; 10334 } 10335 10336 /// isOnlyUserOf - Return true if this node is the only use of N. 10337 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10338 bool Seen = false; 10339 for (const SDNode *User : N->uses()) { 10340 if (User == this) 10341 Seen = true; 10342 else 10343 return false; 10344 } 10345 10346 return Seen; 10347 } 10348 10349 /// Return true if the only users of N are contained in Nodes. 10350 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10351 bool Seen = false; 10352 for (const SDNode *User : N->uses()) { 10353 if (llvm::is_contained(Nodes, User)) 10354 Seen = true; 10355 else 10356 return false; 10357 } 10358 10359 return Seen; 10360 } 10361 10362 /// isOperand - Return true if this node is an operand of N. 10363 bool SDValue::isOperandOf(const SDNode *N) const { 10364 return is_contained(N->op_values(), *this); 10365 } 10366 10367 bool SDNode::isOperandOf(const SDNode *N) const { 10368 return any_of(N->op_values(), 10369 [this](SDValue Op) { return this == Op.getNode(); }); 10370 } 10371 10372 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10373 /// be a chain) reaches the specified operand without crossing any 10374 /// side-effecting instructions on any chain path. In practice, this looks 10375 /// through token factors and non-volatile loads. In order to remain efficient, 10376 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10377 /// 10378 /// Note that we only need to examine chains when we're searching for 10379 /// side-effects; SelectionDAG requires that all side-effects are represented 10380 /// by chains, even if another operand would force a specific ordering. This 10381 /// constraint is necessary to allow transformations like splitting loads. 10382 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10383 unsigned Depth) const { 10384 if (*this == Dest) return true; 10385 10386 // Don't search too deeply, we just want to be able to see through 10387 // TokenFactor's etc. 10388 if (Depth == 0) return false; 10389 10390 // If this is a token factor, all inputs to the TF happen in parallel. 10391 if (getOpcode() == ISD::TokenFactor) { 10392 // First, try a shallow search. 10393 if (is_contained((*this)->ops(), Dest)) { 10394 // We found the chain we want as an operand of this TokenFactor. 10395 // Essentially, we reach the chain without side-effects if we could 10396 // serialize the TokenFactor into a simple chain of operations with 10397 // Dest as the last operation. This is automatically true if the 10398 // chain has one use: there are no other ordering constraints. 10399 // If the chain has more than one use, we give up: some other 10400 // use of Dest might force a side-effect between Dest and the current 10401 // node. 10402 if (Dest.hasOneUse()) 10403 return true; 10404 } 10405 // Next, try a deep search: check whether every operand of the TokenFactor 10406 // reaches Dest. 10407 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10408 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10409 }); 10410 } 10411 10412 // Loads don't have side effects, look through them. 10413 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10414 if (Ld->isUnordered()) 10415 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10416 } 10417 return false; 10418 } 10419 10420 bool SDNode::hasPredecessor(const SDNode *N) const { 10421 SmallPtrSet<const SDNode *, 32> Visited; 10422 SmallVector<const SDNode *, 16> Worklist; 10423 Worklist.push_back(this); 10424 return hasPredecessorHelper(N, Visited, Worklist); 10425 } 10426 10427 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10428 this->Flags.intersectWith(Flags); 10429 } 10430 10431 SDValue 10432 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10433 ArrayRef<ISD::NodeType> CandidateBinOps, 10434 bool AllowPartials) { 10435 // The pattern must end in an extract from index 0. 10436 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10437 !isNullConstant(Extract->getOperand(1))) 10438 return SDValue(); 10439 10440 // Match against one of the candidate binary ops. 10441 SDValue Op = Extract->getOperand(0); 10442 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10443 return Op.getOpcode() == unsigned(BinOp); 10444 })) 10445 return SDValue(); 10446 10447 // Floating-point reductions may require relaxed constraints on the final step 10448 // of the reduction because they may reorder intermediate operations. 10449 unsigned CandidateBinOp = Op.getOpcode(); 10450 if (Op.getValueType().isFloatingPoint()) { 10451 SDNodeFlags Flags = Op->getFlags(); 10452 switch (CandidateBinOp) { 10453 case ISD::FADD: 10454 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10455 return SDValue(); 10456 break; 10457 default: 10458 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10459 } 10460 } 10461 10462 // Matching failed - attempt to see if we did enough stages that a partial 10463 // reduction from a subvector is possible. 10464 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10465 if (!AllowPartials || !Op) 10466 return SDValue(); 10467 EVT OpVT = Op.getValueType(); 10468 EVT OpSVT = OpVT.getScalarType(); 10469 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10470 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10471 return SDValue(); 10472 BinOp = (ISD::NodeType)CandidateBinOp; 10473 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10474 getVectorIdxConstant(0, SDLoc(Op))); 10475 }; 10476 10477 // At each stage, we're looking for something that looks like: 10478 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10479 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10480 // i32 undef, i32 undef, i32 undef, i32 undef> 10481 // %a = binop <8 x i32> %op, %s 10482 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10483 // we expect something like: 10484 // <4,5,6,7,u,u,u,u> 10485 // <2,3,u,u,u,u,u,u> 10486 // <1,u,u,u,u,u,u,u> 10487 // While a partial reduction match would be: 10488 // <2,3,u,u,u,u,u,u> 10489 // <1,u,u,u,u,u,u,u> 10490 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10491 SDValue PrevOp; 10492 for (unsigned i = 0; i < Stages; ++i) { 10493 unsigned MaskEnd = (1 << i); 10494 10495 if (Op.getOpcode() != CandidateBinOp) 10496 return PartialReduction(PrevOp, MaskEnd); 10497 10498 SDValue Op0 = Op.getOperand(0); 10499 SDValue Op1 = Op.getOperand(1); 10500 10501 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10502 if (Shuffle) { 10503 Op = Op1; 10504 } else { 10505 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10506 Op = Op0; 10507 } 10508 10509 // The first operand of the shuffle should be the same as the other operand 10510 // of the binop. 10511 if (!Shuffle || Shuffle->getOperand(0) != Op) 10512 return PartialReduction(PrevOp, MaskEnd); 10513 10514 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10515 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10516 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10517 return PartialReduction(PrevOp, MaskEnd); 10518 10519 PrevOp = Op; 10520 } 10521 10522 // Handle subvector reductions, which tend to appear after the shuffle 10523 // reduction stages. 10524 while (Op.getOpcode() == CandidateBinOp) { 10525 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10526 SDValue Op0 = Op.getOperand(0); 10527 SDValue Op1 = Op.getOperand(1); 10528 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10529 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10530 Op0.getOperand(0) != Op1.getOperand(0)) 10531 break; 10532 SDValue Src = Op0.getOperand(0); 10533 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10534 if (NumSrcElts != (2 * NumElts)) 10535 break; 10536 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10537 Op1.getConstantOperandAPInt(1) == NumElts) && 10538 !(Op1.getConstantOperandAPInt(1) == 0 && 10539 Op0.getConstantOperandAPInt(1) == NumElts)) 10540 break; 10541 Op = Src; 10542 } 10543 10544 BinOp = (ISD::NodeType)CandidateBinOp; 10545 return Op; 10546 } 10547 10548 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10549 assert(N->getNumValues() == 1 && 10550 "Can't unroll a vector with multiple results!"); 10551 10552 EVT VT = N->getValueType(0); 10553 unsigned NE = VT.getVectorNumElements(); 10554 EVT EltVT = VT.getVectorElementType(); 10555 SDLoc dl(N); 10556 10557 SmallVector<SDValue, 8> Scalars; 10558 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10559 10560 // If ResNE is 0, fully unroll the vector op. 10561 if (ResNE == 0) 10562 ResNE = NE; 10563 else if (NE > ResNE) 10564 NE = ResNE; 10565 10566 unsigned i; 10567 for (i= 0; i != NE; ++i) { 10568 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10569 SDValue Operand = N->getOperand(j); 10570 EVT OperandVT = Operand.getValueType(); 10571 if (OperandVT.isVector()) { 10572 // A vector operand; extract a single element. 10573 EVT OperandEltVT = OperandVT.getVectorElementType(); 10574 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10575 Operand, getVectorIdxConstant(i, dl)); 10576 } else { 10577 // A scalar operand; just use it as is. 10578 Operands[j] = Operand; 10579 } 10580 } 10581 10582 switch (N->getOpcode()) { 10583 default: { 10584 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10585 N->getFlags())); 10586 break; 10587 } 10588 case ISD::VSELECT: 10589 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10590 break; 10591 case ISD::SHL: 10592 case ISD::SRA: 10593 case ISD::SRL: 10594 case ISD::ROTL: 10595 case ISD::ROTR: 10596 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10597 getShiftAmountOperand(Operands[0].getValueType(), 10598 Operands[1]))); 10599 break; 10600 case ISD::SIGN_EXTEND_INREG: { 10601 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10602 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10603 Operands[0], 10604 getValueType(ExtVT))); 10605 } 10606 } 10607 } 10608 10609 for (; i < ResNE; ++i) 10610 Scalars.push_back(getUNDEF(EltVT)); 10611 10612 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10613 return getBuildVector(VecVT, dl, Scalars); 10614 } 10615 10616 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10617 SDNode *N, unsigned ResNE) { 10618 unsigned Opcode = N->getOpcode(); 10619 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10620 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10621 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10622 "Expected an overflow opcode"); 10623 10624 EVT ResVT = N->getValueType(0); 10625 EVT OvVT = N->getValueType(1); 10626 EVT ResEltVT = ResVT.getVectorElementType(); 10627 EVT OvEltVT = OvVT.getVectorElementType(); 10628 SDLoc dl(N); 10629 10630 // If ResNE is 0, fully unroll the vector op. 10631 unsigned NE = ResVT.getVectorNumElements(); 10632 if (ResNE == 0) 10633 ResNE = NE; 10634 else if (NE > ResNE) 10635 NE = ResNE; 10636 10637 SmallVector<SDValue, 8> LHSScalars; 10638 SmallVector<SDValue, 8> RHSScalars; 10639 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10640 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10641 10642 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10643 SDVTList VTs = getVTList(ResEltVT, SVT); 10644 SmallVector<SDValue, 8> ResScalars; 10645 SmallVector<SDValue, 8> OvScalars; 10646 for (unsigned i = 0; i < NE; ++i) { 10647 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10648 SDValue Ov = 10649 getSelect(dl, OvEltVT, Res.getValue(1), 10650 getBoolConstant(true, dl, OvEltVT, ResVT), 10651 getConstant(0, dl, OvEltVT)); 10652 10653 ResScalars.push_back(Res); 10654 OvScalars.push_back(Ov); 10655 } 10656 10657 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10658 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10659 10660 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10661 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10662 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10663 getBuildVector(NewOvVT, dl, OvScalars)); 10664 } 10665 10666 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10667 LoadSDNode *Base, 10668 unsigned Bytes, 10669 int Dist) const { 10670 if (LD->isVolatile() || Base->isVolatile()) 10671 return false; 10672 // TODO: probably too restrictive for atomics, revisit 10673 if (!LD->isSimple()) 10674 return false; 10675 if (LD->isIndexed() || Base->isIndexed()) 10676 return false; 10677 if (LD->getChain() != Base->getChain()) 10678 return false; 10679 EVT VT = LD->getValueType(0); 10680 if (VT.getSizeInBits() / 8 != Bytes) 10681 return false; 10682 10683 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10684 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10685 10686 int64_t Offset = 0; 10687 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10688 return (Dist * Bytes == Offset); 10689 return false; 10690 } 10691 10692 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10693 /// if it cannot be inferred. 10694 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10695 // If this is a GlobalAddress + cst, return the alignment. 10696 const GlobalValue *GV = nullptr; 10697 int64_t GVOffset = 0; 10698 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10699 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10700 KnownBits Known(PtrWidth); 10701 llvm::computeKnownBits(GV, Known, getDataLayout()); 10702 unsigned AlignBits = Known.countMinTrailingZeros(); 10703 if (AlignBits) 10704 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10705 } 10706 10707 // If this is a direct reference to a stack slot, use information about the 10708 // stack slot's alignment. 10709 int FrameIdx = INT_MIN; 10710 int64_t FrameOffset = 0; 10711 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10712 FrameIdx = FI->getIndex(); 10713 } else if (isBaseWithConstantOffset(Ptr) && 10714 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10715 // Handle FI+Cst 10716 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10717 FrameOffset = Ptr.getConstantOperandVal(1); 10718 } 10719 10720 if (FrameIdx != INT_MIN) { 10721 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10722 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10723 } 10724 10725 return None; 10726 } 10727 10728 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10729 /// which is split (or expanded) into two not necessarily identical pieces. 10730 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10731 // Currently all types are split in half. 10732 EVT LoVT, HiVT; 10733 if (!VT.isVector()) 10734 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10735 else 10736 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10737 10738 return std::make_pair(LoVT, HiVT); 10739 } 10740 10741 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10742 /// type, dependent on an enveloping VT that has been split into two identical 10743 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10744 std::pair<EVT, EVT> 10745 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10746 bool *HiIsEmpty) const { 10747 EVT EltTp = VT.getVectorElementType(); 10748 // Examples: 10749 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10750 // custom VL=9 with enveloping VL=8/8 yields 8/1 10751 // custom VL=10 with enveloping VL=8/8 yields 8/2 10752 // etc. 10753 ElementCount VTNumElts = VT.getVectorElementCount(); 10754 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10755 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10756 "Mixing fixed width and scalable vectors when enveloping a type"); 10757 EVT LoVT, HiVT; 10758 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10759 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10760 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10761 *HiIsEmpty = false; 10762 } else { 10763 // Flag that hi type has zero storage size, but return split envelop type 10764 // (this would be easier if vector types with zero elements were allowed). 10765 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10766 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10767 *HiIsEmpty = true; 10768 } 10769 return std::make_pair(LoVT, HiVT); 10770 } 10771 10772 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10773 /// low/high part. 10774 std::pair<SDValue, SDValue> 10775 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10776 const EVT &HiVT) { 10777 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10778 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10779 "Splitting vector with an invalid mixture of fixed and scalable " 10780 "vector types"); 10781 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10782 N.getValueType().getVectorMinNumElements() && 10783 "More vector elements requested than available!"); 10784 SDValue Lo, Hi; 10785 Lo = 10786 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10787 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10788 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10789 // IDX with the runtime scaling factor of the result vector type. For 10790 // fixed-width result vectors, that runtime scaling factor is 1. 10791 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10792 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10793 return std::make_pair(Lo, Hi); 10794 } 10795 10796 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 10797 const SDLoc &DL) { 10798 // Split the vector length parameter. 10799 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 10800 EVT VT = N.getValueType(); 10801 assert(VecVT.getVectorElementCount().isKnownEven() && 10802 "Expecting the mask to be an evenly-sized vector"); 10803 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 10804 SDValue HalfNumElts = 10805 VecVT.isFixedLengthVector() 10806 ? getConstant(HalfMinNumElts, DL, VT) 10807 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 10808 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 10809 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 10810 return std::make_pair(Lo, Hi); 10811 } 10812 10813 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10814 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10815 EVT VT = N.getValueType(); 10816 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10817 NextPowerOf2(VT.getVectorNumElements())); 10818 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10819 getVectorIdxConstant(0, DL)); 10820 } 10821 10822 void SelectionDAG::ExtractVectorElements(SDValue Op, 10823 SmallVectorImpl<SDValue> &Args, 10824 unsigned Start, unsigned Count, 10825 EVT EltVT) { 10826 EVT VT = Op.getValueType(); 10827 if (Count == 0) 10828 Count = VT.getVectorNumElements(); 10829 if (EltVT == EVT()) 10830 EltVT = VT.getVectorElementType(); 10831 SDLoc SL(Op); 10832 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10833 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10834 getVectorIdxConstant(i, SL))); 10835 } 10836 } 10837 10838 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10839 unsigned GlobalAddressSDNode::getAddressSpace() const { 10840 return getGlobal()->getType()->getAddressSpace(); 10841 } 10842 10843 Type *ConstantPoolSDNode::getType() const { 10844 if (isMachineConstantPoolEntry()) 10845 return Val.MachineCPVal->getType(); 10846 return Val.ConstVal->getType(); 10847 } 10848 10849 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10850 unsigned &SplatBitSize, 10851 bool &HasAnyUndefs, 10852 unsigned MinSplatBits, 10853 bool IsBigEndian) const { 10854 EVT VT = getValueType(0); 10855 assert(VT.isVector() && "Expected a vector type"); 10856 unsigned VecWidth = VT.getSizeInBits(); 10857 if (MinSplatBits > VecWidth) 10858 return false; 10859 10860 // FIXME: The widths are based on this node's type, but build vectors can 10861 // truncate their operands. 10862 SplatValue = APInt(VecWidth, 0); 10863 SplatUndef = APInt(VecWidth, 0); 10864 10865 // Get the bits. Bits with undefined values (when the corresponding element 10866 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10867 // in SplatValue. If any of the values are not constant, give up and return 10868 // false. 10869 unsigned int NumOps = getNumOperands(); 10870 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10871 unsigned EltWidth = VT.getScalarSizeInBits(); 10872 10873 for (unsigned j = 0; j < NumOps; ++j) { 10874 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10875 SDValue OpVal = getOperand(i); 10876 unsigned BitPos = j * EltWidth; 10877 10878 if (OpVal.isUndef()) 10879 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10880 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10881 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10882 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10883 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10884 else 10885 return false; 10886 } 10887 10888 // The build_vector is all constants or undefs. Find the smallest element 10889 // size that splats the vector. 10890 HasAnyUndefs = (SplatUndef != 0); 10891 10892 // FIXME: This does not work for vectors with elements less than 8 bits. 10893 while (VecWidth > 8) { 10894 unsigned HalfSize = VecWidth / 2; 10895 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10896 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10897 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10898 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10899 10900 // If the two halves do not match (ignoring undef bits), stop here. 10901 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10902 MinSplatBits > HalfSize) 10903 break; 10904 10905 SplatValue = HighValue | LowValue; 10906 SplatUndef = HighUndef & LowUndef; 10907 10908 VecWidth = HalfSize; 10909 } 10910 10911 SplatBitSize = VecWidth; 10912 return true; 10913 } 10914 10915 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10916 BitVector *UndefElements) const { 10917 unsigned NumOps = getNumOperands(); 10918 if (UndefElements) { 10919 UndefElements->clear(); 10920 UndefElements->resize(NumOps); 10921 } 10922 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10923 if (!DemandedElts) 10924 return SDValue(); 10925 SDValue Splatted; 10926 for (unsigned i = 0; i != NumOps; ++i) { 10927 if (!DemandedElts[i]) 10928 continue; 10929 SDValue Op = getOperand(i); 10930 if (Op.isUndef()) { 10931 if (UndefElements) 10932 (*UndefElements)[i] = true; 10933 } else if (!Splatted) { 10934 Splatted = Op; 10935 } else if (Splatted != Op) { 10936 return SDValue(); 10937 } 10938 } 10939 10940 if (!Splatted) { 10941 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10942 assert(getOperand(FirstDemandedIdx).isUndef() && 10943 "Can only have a splat without a constant for all undefs."); 10944 return getOperand(FirstDemandedIdx); 10945 } 10946 10947 return Splatted; 10948 } 10949 10950 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10951 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10952 return getSplatValue(DemandedElts, UndefElements); 10953 } 10954 10955 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10956 SmallVectorImpl<SDValue> &Sequence, 10957 BitVector *UndefElements) const { 10958 unsigned NumOps = getNumOperands(); 10959 Sequence.clear(); 10960 if (UndefElements) { 10961 UndefElements->clear(); 10962 UndefElements->resize(NumOps); 10963 } 10964 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10965 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10966 return false; 10967 10968 // Set the undefs even if we don't find a sequence (like getSplatValue). 10969 if (UndefElements) 10970 for (unsigned I = 0; I != NumOps; ++I) 10971 if (DemandedElts[I] && getOperand(I).isUndef()) 10972 (*UndefElements)[I] = true; 10973 10974 // Iteratively widen the sequence length looking for repetitions. 10975 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10976 Sequence.append(SeqLen, SDValue()); 10977 for (unsigned I = 0; I != NumOps; ++I) { 10978 if (!DemandedElts[I]) 10979 continue; 10980 SDValue &SeqOp = Sequence[I % SeqLen]; 10981 SDValue Op = getOperand(I); 10982 if (Op.isUndef()) { 10983 if (!SeqOp) 10984 SeqOp = Op; 10985 continue; 10986 } 10987 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10988 Sequence.clear(); 10989 break; 10990 } 10991 SeqOp = Op; 10992 } 10993 if (!Sequence.empty()) 10994 return true; 10995 } 10996 10997 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10998 return false; 10999 } 11000 11001 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11002 BitVector *UndefElements) const { 11003 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11004 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11005 } 11006 11007 ConstantSDNode * 11008 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11009 BitVector *UndefElements) const { 11010 return dyn_cast_or_null<ConstantSDNode>( 11011 getSplatValue(DemandedElts, UndefElements)); 11012 } 11013 11014 ConstantSDNode * 11015 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11016 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11017 } 11018 11019 ConstantFPSDNode * 11020 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11021 BitVector *UndefElements) const { 11022 return dyn_cast_or_null<ConstantFPSDNode>( 11023 getSplatValue(DemandedElts, UndefElements)); 11024 } 11025 11026 ConstantFPSDNode * 11027 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11028 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11029 } 11030 11031 int32_t 11032 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11033 uint32_t BitWidth) const { 11034 if (ConstantFPSDNode *CN = 11035 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11036 bool IsExact; 11037 APSInt IntVal(BitWidth); 11038 const APFloat &APF = CN->getValueAPF(); 11039 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11040 APFloat::opOK || 11041 !IsExact) 11042 return -1; 11043 11044 return IntVal.exactLogBase2(); 11045 } 11046 return -1; 11047 } 11048 11049 bool BuildVectorSDNode::getConstantRawBits( 11050 bool IsLittleEndian, unsigned DstEltSizeInBits, 11051 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11052 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11053 if (!isConstant()) 11054 return false; 11055 11056 unsigned NumSrcOps = getNumOperands(); 11057 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11058 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11059 "Invalid bitcast scale"); 11060 11061 // Extract raw src bits. 11062 SmallVector<APInt> SrcBitElements(NumSrcOps, 11063 APInt::getNullValue(SrcEltSizeInBits)); 11064 BitVector SrcUndeElements(NumSrcOps, false); 11065 11066 for (unsigned I = 0; I != NumSrcOps; ++I) { 11067 SDValue Op = getOperand(I); 11068 if (Op.isUndef()) { 11069 SrcUndeElements.set(I); 11070 continue; 11071 } 11072 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11073 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11074 assert((CInt || CFP) && "Unknown constant"); 11075 SrcBitElements[I] = 11076 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 11077 : CFP->getValueAPF().bitcastToAPInt(); 11078 } 11079 11080 // Recast to dst width. 11081 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11082 SrcBitElements, UndefElements, SrcUndeElements); 11083 return true; 11084 } 11085 11086 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11087 unsigned DstEltSizeInBits, 11088 SmallVectorImpl<APInt> &DstBitElements, 11089 ArrayRef<APInt> SrcBitElements, 11090 BitVector &DstUndefElements, 11091 const BitVector &SrcUndefElements) { 11092 unsigned NumSrcOps = SrcBitElements.size(); 11093 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11094 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11095 "Invalid bitcast scale"); 11096 assert(NumSrcOps == SrcUndefElements.size() && 11097 "Vector size mismatch"); 11098 11099 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11100 DstUndefElements.clear(); 11101 DstUndefElements.resize(NumDstOps, false); 11102 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11103 11104 // Concatenate src elements constant bits together into dst element. 11105 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11106 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11107 for (unsigned I = 0; I != NumDstOps; ++I) { 11108 DstUndefElements.set(I); 11109 APInt &DstBits = DstBitElements[I]; 11110 for (unsigned J = 0; J != Scale; ++J) { 11111 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11112 if (SrcUndefElements[Idx]) 11113 continue; 11114 DstUndefElements.reset(I); 11115 const APInt &SrcBits = SrcBitElements[Idx]; 11116 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11117 "Illegal constant bitwidths"); 11118 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11119 } 11120 } 11121 return; 11122 } 11123 11124 // Split src element constant bits into dst elements. 11125 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11126 for (unsigned I = 0; I != NumSrcOps; ++I) { 11127 if (SrcUndefElements[I]) { 11128 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11129 continue; 11130 } 11131 const APInt &SrcBits = SrcBitElements[I]; 11132 for (unsigned J = 0; J != Scale; ++J) { 11133 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11134 APInt &DstBits = DstBitElements[Idx]; 11135 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11136 } 11137 } 11138 } 11139 11140 bool BuildVectorSDNode::isConstant() const { 11141 for (const SDValue &Op : op_values()) { 11142 unsigned Opc = Op.getOpcode(); 11143 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11144 return false; 11145 } 11146 return true; 11147 } 11148 11149 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11150 // Find the first non-undef value in the shuffle mask. 11151 unsigned i, e; 11152 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11153 /* search */; 11154 11155 // If all elements are undefined, this shuffle can be considered a splat 11156 // (although it should eventually get simplified away completely). 11157 if (i == e) 11158 return true; 11159 11160 // Make sure all remaining elements are either undef or the same as the first 11161 // non-undef value. 11162 for (int Idx = Mask[i]; i != e; ++i) 11163 if (Mask[i] >= 0 && Mask[i] != Idx) 11164 return false; 11165 return true; 11166 } 11167 11168 // Returns the SDNode if it is a constant integer BuildVector 11169 // or constant integer. 11170 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11171 if (isa<ConstantSDNode>(N)) 11172 return N.getNode(); 11173 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11174 return N.getNode(); 11175 // Treat a GlobalAddress supporting constant offset folding as a 11176 // constant integer. 11177 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11178 if (GA->getOpcode() == ISD::GlobalAddress && 11179 TLI->isOffsetFoldingLegal(GA)) 11180 return GA; 11181 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11182 isa<ConstantSDNode>(N.getOperand(0))) 11183 return N.getNode(); 11184 return nullptr; 11185 } 11186 11187 // Returns the SDNode if it is a constant float BuildVector 11188 // or constant float. 11189 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11190 if (isa<ConstantFPSDNode>(N)) 11191 return N.getNode(); 11192 11193 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11194 return N.getNode(); 11195 11196 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11197 isa<ConstantFPSDNode>(N.getOperand(0))) 11198 return N.getNode(); 11199 11200 return nullptr; 11201 } 11202 11203 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11204 assert(!Node->OperandList && "Node already has operands"); 11205 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11206 "too many operands to fit into SDNode"); 11207 SDUse *Ops = OperandRecycler.allocate( 11208 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11209 11210 bool IsDivergent = false; 11211 for (unsigned I = 0; I != Vals.size(); ++I) { 11212 Ops[I].setUser(Node); 11213 Ops[I].setInitial(Vals[I]); 11214 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11215 IsDivergent |= Ops[I].getNode()->isDivergent(); 11216 } 11217 Node->NumOperands = Vals.size(); 11218 Node->OperandList = Ops; 11219 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11220 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11221 Node->SDNodeBits.IsDivergent = IsDivergent; 11222 } 11223 checkForCycles(Node); 11224 } 11225 11226 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11227 SmallVectorImpl<SDValue> &Vals) { 11228 size_t Limit = SDNode::getMaxNumOperands(); 11229 while (Vals.size() > Limit) { 11230 unsigned SliceIdx = Vals.size() - Limit; 11231 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11232 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11233 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11234 Vals.emplace_back(NewTF); 11235 } 11236 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11237 } 11238 11239 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11240 EVT VT, SDNodeFlags Flags) { 11241 switch (Opcode) { 11242 default: 11243 return SDValue(); 11244 case ISD::ADD: 11245 case ISD::OR: 11246 case ISD::XOR: 11247 case ISD::UMAX: 11248 return getConstant(0, DL, VT); 11249 case ISD::MUL: 11250 return getConstant(1, DL, VT); 11251 case ISD::AND: 11252 case ISD::UMIN: 11253 return getAllOnesConstant(DL, VT); 11254 case ISD::SMAX: 11255 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11256 case ISD::SMIN: 11257 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11258 case ISD::FADD: 11259 return getConstantFP(-0.0, DL, VT); 11260 case ISD::FMUL: 11261 return getConstantFP(1.0, DL, VT); 11262 case ISD::FMINNUM: 11263 case ISD::FMAXNUM: { 11264 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11265 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11266 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11267 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11268 APFloat::getLargest(Semantics); 11269 if (Opcode == ISD::FMAXNUM) 11270 NeutralAF.changeSign(); 11271 11272 return getConstantFP(NeutralAF, DL, VT); 11273 } 11274 } 11275 } 11276 11277 #ifndef NDEBUG 11278 static void checkForCyclesHelper(const SDNode *N, 11279 SmallPtrSetImpl<const SDNode*> &Visited, 11280 SmallPtrSetImpl<const SDNode*> &Checked, 11281 const llvm::SelectionDAG *DAG) { 11282 // If this node has already been checked, don't check it again. 11283 if (Checked.count(N)) 11284 return; 11285 11286 // If a node has already been visited on this depth-first walk, reject it as 11287 // a cycle. 11288 if (!Visited.insert(N).second) { 11289 errs() << "Detected cycle in SelectionDAG\n"; 11290 dbgs() << "Offending node:\n"; 11291 N->dumprFull(DAG); dbgs() << "\n"; 11292 abort(); 11293 } 11294 11295 for (const SDValue &Op : N->op_values()) 11296 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11297 11298 Checked.insert(N); 11299 Visited.erase(N); 11300 } 11301 #endif 11302 11303 void llvm::checkForCycles(const llvm::SDNode *N, 11304 const llvm::SelectionDAG *DAG, 11305 bool force) { 11306 #ifndef NDEBUG 11307 bool check = force; 11308 #ifdef EXPENSIVE_CHECKS 11309 check = true; 11310 #endif // EXPENSIVE_CHECKS 11311 if (check) { 11312 assert(N && "Checking nonexistent SDNode"); 11313 SmallPtrSet<const SDNode*, 32> visited; 11314 SmallPtrSet<const SDNode*, 32> checked; 11315 checkForCyclesHelper(N, visited, checked, DAG); 11316 } 11317 #endif // !NDEBUG 11318 } 11319 11320 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11321 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11322 } 11323