1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 return ISD::FADD; 377 case ISD::VECREDUCE_FMUL: 378 case ISD::VECREDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 return ISD::ADD; 382 case ISD::VECREDUCE_MUL: 383 return ISD::MUL; 384 case ISD::VECREDUCE_AND: 385 return ISD::AND; 386 case ISD::VECREDUCE_OR: 387 return ISD::OR; 388 case ISD::VECREDUCE_XOR: 389 return ISD::XOR; 390 case ISD::VECREDUCE_SMAX: 391 return ISD::SMAX; 392 case ISD::VECREDUCE_SMIN: 393 return ISD::SMIN; 394 case ISD::VECREDUCE_UMAX: 395 return ISD::UMAX; 396 case ISD::VECREDUCE_UMIN: 397 return ISD::UMIN; 398 case ISD::VECREDUCE_FMAX: 399 return ISD::FMAXNUM; 400 case ISD::VECREDUCE_FMIN: 401 return ISD::FMINNUM; 402 } 403 } 404 405 bool ISD::isVPOpcode(unsigned Opcode) { 406 switch (Opcode) { 407 default: 408 return false; 409 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 410 case ISD::VPSD: \ 411 return true; 412 #include "llvm/IR/VPIntrinsics.def" 413 } 414 } 415 416 bool ISD::isVPBinaryOp(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 break; 420 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 421 #define VP_PROPERTY_BINARYOP return true; 422 #define END_REGISTER_VP_SDNODE(VPSD) break; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 return false; 426 } 427 428 bool ISD::isVPReduction(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 /// The operand position of the vector mask. 441 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 442 switch (Opcode) { 443 default: 444 return None; 445 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 446 case ISD::VPSD: \ 447 return MASKPOS; 448 #include "llvm/IR/VPIntrinsics.def" 449 } 450 } 451 452 /// The operand position of the explicit vector length parameter. 453 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 458 case ISD::VPSD: \ 459 return EVLPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 465 switch (ExtType) { 466 case ISD::EXTLOAD: 467 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 468 case ISD::SEXTLOAD: 469 return ISD::SIGN_EXTEND; 470 case ISD::ZEXTLOAD: 471 return ISD::ZERO_EXTEND; 472 default: 473 break; 474 } 475 476 llvm_unreachable("Invalid LoadExtType"); 477 } 478 479 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 480 // To perform this operation, we just need to swap the L and G bits of the 481 // operation. 482 unsigned OldL = (Operation >> 2) & 1; 483 unsigned OldG = (Operation >> 1) & 1; 484 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 485 (OldL << 1) | // New G bit 486 (OldG << 2)); // New L bit. 487 } 488 489 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 490 unsigned Operation = Op; 491 if (isIntegerLike) 492 Operation ^= 7; // Flip L, G, E bits, but not U. 493 else 494 Operation ^= 15; // Flip all of the condition bits. 495 496 if (Operation > ISD::SETTRUE2) 497 Operation &= ~8; // Don't let N and U bits get set. 498 499 return ISD::CondCode(Operation); 500 } 501 502 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 503 return getSetCCInverseImpl(Op, Type.isInteger()); 504 } 505 506 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 507 bool isIntegerLike) { 508 return getSetCCInverseImpl(Op, isIntegerLike); 509 } 510 511 /// For an integer comparison, return 1 if the comparison is a signed operation 512 /// and 2 if the result is an unsigned comparison. Return zero if the operation 513 /// does not depend on the sign of the input (setne and seteq). 514 static int isSignedOp(ISD::CondCode Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Illegal integer setcc operation!"); 517 case ISD::SETEQ: 518 case ISD::SETNE: return 0; 519 case ISD::SETLT: 520 case ISD::SETLE: 521 case ISD::SETGT: 522 case ISD::SETGE: return 1; 523 case ISD::SETULT: 524 case ISD::SETULE: 525 case ISD::SETUGT: 526 case ISD::SETUGE: return 2; 527 } 528 } 529 530 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 531 EVT Type) { 532 bool IsInteger = Type.isInteger(); 533 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 534 // Cannot fold a signed integer setcc with an unsigned integer setcc. 535 return ISD::SETCC_INVALID; 536 537 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 538 539 // If the N and U bits get set, then the resultant comparison DOES suddenly 540 // care about orderedness, and it is true when ordered. 541 if (Op > ISD::SETTRUE2) 542 Op &= ~16; // Clear the U bit if the N bit is set. 543 544 // Canonicalize illegal integer setcc's. 545 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 546 Op = ISD::SETNE; 547 548 return ISD::CondCode(Op); 549 } 550 551 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 552 EVT Type) { 553 bool IsInteger = Type.isInteger(); 554 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 555 // Cannot fold a signed setcc with an unsigned setcc. 556 return ISD::SETCC_INVALID; 557 558 // Combine all of the condition bits. 559 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 560 561 // Canonicalize illegal integer setcc's. 562 if (IsInteger) { 563 switch (Result) { 564 default: break; 565 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 566 case ISD::SETOEQ: // SETEQ & SETU[LG]E 567 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 568 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 569 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 570 } 571 } 572 573 return Result; 574 } 575 576 //===----------------------------------------------------------------------===// 577 // SDNode Profile Support 578 //===----------------------------------------------------------------------===// 579 580 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 581 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 582 ID.AddInteger(OpC); 583 } 584 585 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 586 /// solely with their pointer. 587 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 588 ID.AddPointer(VTList.VTs); 589 } 590 591 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 592 static void AddNodeIDOperands(FoldingSetNodeID &ID, 593 ArrayRef<SDValue> Ops) { 594 for (auto& Op : Ops) { 595 ID.AddPointer(Op.getNode()); 596 ID.AddInteger(Op.getResNo()); 597 } 598 } 599 600 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 601 static void AddNodeIDOperands(FoldingSetNodeID &ID, 602 ArrayRef<SDUse> Ops) { 603 for (auto& Op : Ops) { 604 ID.AddPointer(Op.getNode()); 605 ID.AddInteger(Op.getResNo()); 606 } 607 } 608 609 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 610 SDVTList VTList, ArrayRef<SDValue> OpList) { 611 AddNodeIDOpcode(ID, OpC); 612 AddNodeIDValueTypes(ID, VTList); 613 AddNodeIDOperands(ID, OpList); 614 } 615 616 /// If this is an SDNode with special info, add this info to the NodeID data. 617 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 618 switch (N->getOpcode()) { 619 case ISD::TargetExternalSymbol: 620 case ISD::ExternalSymbol: 621 case ISD::MCSymbol: 622 llvm_unreachable("Should only be used on nodes with operands"); 623 default: break; // Normal nodes don't need extra info. 624 case ISD::TargetConstant: 625 case ISD::Constant: { 626 const ConstantSDNode *C = cast<ConstantSDNode>(N); 627 ID.AddPointer(C->getConstantIntValue()); 628 ID.AddBoolean(C->isOpaque()); 629 break; 630 } 631 case ISD::TargetConstantFP: 632 case ISD::ConstantFP: 633 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 634 break; 635 case ISD::TargetGlobalAddress: 636 case ISD::GlobalAddress: 637 case ISD::TargetGlobalTLSAddress: 638 case ISD::GlobalTLSAddress: { 639 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 640 ID.AddPointer(GA->getGlobal()); 641 ID.AddInteger(GA->getOffset()); 642 ID.AddInteger(GA->getTargetFlags()); 643 break; 644 } 645 case ISD::BasicBlock: 646 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 647 break; 648 case ISD::Register: 649 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 650 break; 651 case ISD::RegisterMask: 652 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 653 break; 654 case ISD::SRCVALUE: 655 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 656 break; 657 case ISD::FrameIndex: 658 case ISD::TargetFrameIndex: 659 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 660 break; 661 case ISD::LIFETIME_START: 662 case ISD::LIFETIME_END: 663 if (cast<LifetimeSDNode>(N)->hasOffset()) { 664 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 665 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 666 } 667 break; 668 case ISD::PSEUDO_PROBE: 669 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 670 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 671 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 672 break; 673 case ISD::JumpTable: 674 case ISD::TargetJumpTable: 675 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 676 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 677 break; 678 case ISD::ConstantPool: 679 case ISD::TargetConstantPool: { 680 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 681 ID.AddInteger(CP->getAlign().value()); 682 ID.AddInteger(CP->getOffset()); 683 if (CP->isMachineConstantPoolEntry()) 684 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 685 else 686 ID.AddPointer(CP->getConstVal()); 687 ID.AddInteger(CP->getTargetFlags()); 688 break; 689 } 690 case ISD::TargetIndex: { 691 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 692 ID.AddInteger(TI->getIndex()); 693 ID.AddInteger(TI->getOffset()); 694 ID.AddInteger(TI->getTargetFlags()); 695 break; 696 } 697 case ISD::LOAD: { 698 const LoadSDNode *LD = cast<LoadSDNode>(N); 699 ID.AddInteger(LD->getMemoryVT().getRawBits()); 700 ID.AddInteger(LD->getRawSubclassData()); 701 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 702 break; 703 } 704 case ISD::STORE: { 705 const StoreSDNode *ST = cast<StoreSDNode>(N); 706 ID.AddInteger(ST->getMemoryVT().getRawBits()); 707 ID.AddInteger(ST->getRawSubclassData()); 708 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 709 break; 710 } 711 case ISD::VP_LOAD: { 712 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 713 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 714 ID.AddInteger(ELD->getRawSubclassData()); 715 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 716 break; 717 } 718 case ISD::VP_STORE: { 719 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 720 ID.AddInteger(EST->getMemoryVT().getRawBits()); 721 ID.AddInteger(EST->getRawSubclassData()); 722 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 723 break; 724 } 725 case ISD::VP_GATHER: { 726 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 727 ID.AddInteger(EG->getMemoryVT().getRawBits()); 728 ID.AddInteger(EG->getRawSubclassData()); 729 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 730 break; 731 } 732 case ISD::VP_SCATTER: { 733 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 734 ID.AddInteger(ES->getMemoryVT().getRawBits()); 735 ID.AddInteger(ES->getRawSubclassData()); 736 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 737 break; 738 } 739 case ISD::MLOAD: { 740 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 741 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 742 ID.AddInteger(MLD->getRawSubclassData()); 743 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 744 break; 745 } 746 case ISD::MSTORE: { 747 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 748 ID.AddInteger(MST->getMemoryVT().getRawBits()); 749 ID.AddInteger(MST->getRawSubclassData()); 750 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 751 break; 752 } 753 case ISD::MGATHER: { 754 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 755 ID.AddInteger(MG->getMemoryVT().getRawBits()); 756 ID.AddInteger(MG->getRawSubclassData()); 757 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 758 break; 759 } 760 case ISD::MSCATTER: { 761 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 762 ID.AddInteger(MS->getMemoryVT().getRawBits()); 763 ID.AddInteger(MS->getRawSubclassData()); 764 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 765 break; 766 } 767 case ISD::ATOMIC_CMP_SWAP: 768 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 769 case ISD::ATOMIC_SWAP: 770 case ISD::ATOMIC_LOAD_ADD: 771 case ISD::ATOMIC_LOAD_SUB: 772 case ISD::ATOMIC_LOAD_AND: 773 case ISD::ATOMIC_LOAD_CLR: 774 case ISD::ATOMIC_LOAD_OR: 775 case ISD::ATOMIC_LOAD_XOR: 776 case ISD::ATOMIC_LOAD_NAND: 777 case ISD::ATOMIC_LOAD_MIN: 778 case ISD::ATOMIC_LOAD_MAX: 779 case ISD::ATOMIC_LOAD_UMIN: 780 case ISD::ATOMIC_LOAD_UMAX: 781 case ISD::ATOMIC_LOAD: 782 case ISD::ATOMIC_STORE: { 783 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 784 ID.AddInteger(AT->getMemoryVT().getRawBits()); 785 ID.AddInteger(AT->getRawSubclassData()); 786 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 787 break; 788 } 789 case ISD::PREFETCH: { 790 const MemSDNode *PF = cast<MemSDNode>(N); 791 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 792 break; 793 } 794 case ISD::VECTOR_SHUFFLE: { 795 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 796 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 797 i != e; ++i) 798 ID.AddInteger(SVN->getMaskElt(i)); 799 break; 800 } 801 case ISD::TargetBlockAddress: 802 case ISD::BlockAddress: { 803 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 804 ID.AddPointer(BA->getBlockAddress()); 805 ID.AddInteger(BA->getOffset()); 806 ID.AddInteger(BA->getTargetFlags()); 807 break; 808 } 809 } // end switch (N->getOpcode()) 810 811 // Target specific memory nodes could also have address spaces to check. 812 if (N->isTargetMemoryOpcode()) 813 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 814 } 815 816 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 817 /// data. 818 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 819 AddNodeIDOpcode(ID, N->getOpcode()); 820 // Add the return value info. 821 AddNodeIDValueTypes(ID, N->getVTList()); 822 // Add the operand info. 823 AddNodeIDOperands(ID, N->ops()); 824 825 // Handle SDNode leafs with special info. 826 AddNodeIDCustom(ID, N); 827 } 828 829 //===----------------------------------------------------------------------===// 830 // SelectionDAG Class 831 //===----------------------------------------------------------------------===// 832 833 /// doNotCSE - Return true if CSE should not be performed for this node. 834 static bool doNotCSE(SDNode *N) { 835 if (N->getValueType(0) == MVT::Glue) 836 return true; // Never CSE anything that produces a flag. 837 838 switch (N->getOpcode()) { 839 default: break; 840 case ISD::HANDLENODE: 841 case ISD::EH_LABEL: 842 return true; // Never CSE these nodes. 843 } 844 845 // Check that remaining values produced are not flags. 846 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 847 if (N->getValueType(i) == MVT::Glue) 848 return true; // Never CSE anything that produces a flag. 849 850 return false; 851 } 852 853 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 854 /// SelectionDAG. 855 void SelectionDAG::RemoveDeadNodes() { 856 // Create a dummy node (which is not added to allnodes), that adds a reference 857 // to the root node, preventing it from being deleted. 858 HandleSDNode Dummy(getRoot()); 859 860 SmallVector<SDNode*, 128> DeadNodes; 861 862 // Add all obviously-dead nodes to the DeadNodes worklist. 863 for (SDNode &Node : allnodes()) 864 if (Node.use_empty()) 865 DeadNodes.push_back(&Node); 866 867 RemoveDeadNodes(DeadNodes); 868 869 // If the root changed (e.g. it was a dead load, update the root). 870 setRoot(Dummy.getValue()); 871 } 872 873 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 874 /// given list, and any nodes that become unreachable as a result. 875 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 876 877 // Process the worklist, deleting the nodes and adding their uses to the 878 // worklist. 879 while (!DeadNodes.empty()) { 880 SDNode *N = DeadNodes.pop_back_val(); 881 // Skip to next node if we've already managed to delete the node. This could 882 // happen if replacing a node causes a node previously added to the node to 883 // be deleted. 884 if (N->getOpcode() == ISD::DELETED_NODE) 885 continue; 886 887 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 888 DUL->NodeDeleted(N, nullptr); 889 890 // Take the node out of the appropriate CSE map. 891 RemoveNodeFromCSEMaps(N); 892 893 // Next, brutally remove the operand list. This is safe to do, as there are 894 // no cycles in the graph. 895 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 896 SDUse &Use = *I++; 897 SDNode *Operand = Use.getNode(); 898 Use.set(SDValue()); 899 900 // Now that we removed this operand, see if there are no uses of it left. 901 if (Operand->use_empty()) 902 DeadNodes.push_back(Operand); 903 } 904 905 DeallocateNode(N); 906 } 907 } 908 909 void SelectionDAG::RemoveDeadNode(SDNode *N){ 910 SmallVector<SDNode*, 16> DeadNodes(1, N); 911 912 // Create a dummy node that adds a reference to the root node, preventing 913 // it from being deleted. (This matters if the root is an operand of the 914 // dead node.) 915 HandleSDNode Dummy(getRoot()); 916 917 RemoveDeadNodes(DeadNodes); 918 } 919 920 void SelectionDAG::DeleteNode(SDNode *N) { 921 // First take this out of the appropriate CSE map. 922 RemoveNodeFromCSEMaps(N); 923 924 // Finally, remove uses due to operands of this node, remove from the 925 // AllNodes list, and delete the node. 926 DeleteNodeNotInCSEMaps(N); 927 } 928 929 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 930 assert(N->getIterator() != AllNodes.begin() && 931 "Cannot delete the entry node!"); 932 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 933 934 // Drop all of the operands and decrement used node's use counts. 935 N->DropOperands(); 936 937 DeallocateNode(N); 938 } 939 940 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 941 assert(!(V->isVariadic() && isParameter)); 942 if (isParameter) 943 ByvalParmDbgValues.push_back(V); 944 else 945 DbgValues.push_back(V); 946 for (const SDNode *Node : V->getSDNodes()) 947 if (Node) 948 DbgValMap[Node].push_back(V); 949 } 950 951 void SDDbgInfo::erase(const SDNode *Node) { 952 DbgValMapType::iterator I = DbgValMap.find(Node); 953 if (I == DbgValMap.end()) 954 return; 955 for (auto &Val: I->second) 956 Val->setIsInvalidated(); 957 DbgValMap.erase(I); 958 } 959 960 void SelectionDAG::DeallocateNode(SDNode *N) { 961 // If we have operands, deallocate them. 962 removeOperands(N); 963 964 NodeAllocator.Deallocate(AllNodes.remove(N)); 965 966 // Set the opcode to DELETED_NODE to help catch bugs when node 967 // memory is reallocated. 968 // FIXME: There are places in SDag that have grown a dependency on the opcode 969 // value in the released node. 970 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 971 N->NodeType = ISD::DELETED_NODE; 972 973 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 974 // them and forget about that node. 975 DbgInfo->erase(N); 976 } 977 978 #ifndef NDEBUG 979 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 980 static void VerifySDNode(SDNode *N) { 981 switch (N->getOpcode()) { 982 default: 983 break; 984 case ISD::BUILD_PAIR: { 985 EVT VT = N->getValueType(0); 986 assert(N->getNumValues() == 1 && "Too many results!"); 987 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 988 "Wrong return type!"); 989 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 990 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 991 "Mismatched operand types!"); 992 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 993 "Wrong operand type!"); 994 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 995 "Wrong return type size"); 996 break; 997 } 998 case ISD::BUILD_VECTOR: { 999 assert(N->getNumValues() == 1 && "Too many results!"); 1000 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1001 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1002 "Wrong number of operands!"); 1003 EVT EltVT = N->getValueType(0).getVectorElementType(); 1004 for (const SDUse &Op : N->ops()) { 1005 assert((Op.getValueType() == EltVT || 1006 (EltVT.isInteger() && Op.getValueType().isInteger() && 1007 EltVT.bitsLE(Op.getValueType()))) && 1008 "Wrong operand type!"); 1009 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1010 "Operands must all have the same type"); 1011 } 1012 break; 1013 } 1014 } 1015 } 1016 #endif // NDEBUG 1017 1018 /// Insert a newly allocated node into the DAG. 1019 /// 1020 /// Handles insertion into the all nodes list and CSE map, as well as 1021 /// verification and other common operations when a new node is allocated. 1022 void SelectionDAG::InsertNode(SDNode *N) { 1023 AllNodes.push_back(N); 1024 #ifndef NDEBUG 1025 N->PersistentId = NextPersistentId++; 1026 VerifySDNode(N); 1027 #endif 1028 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1029 DUL->NodeInserted(N); 1030 } 1031 1032 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1033 /// correspond to it. This is useful when we're about to delete or repurpose 1034 /// the node. We don't want future request for structurally identical nodes 1035 /// to return N anymore. 1036 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1037 bool Erased = false; 1038 switch (N->getOpcode()) { 1039 case ISD::HANDLENODE: return false; // noop. 1040 case ISD::CONDCODE: 1041 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1042 "Cond code doesn't exist!"); 1043 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1044 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1045 break; 1046 case ISD::ExternalSymbol: 1047 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1048 break; 1049 case ISD::TargetExternalSymbol: { 1050 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1051 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1052 ESN->getSymbol(), ESN->getTargetFlags())); 1053 break; 1054 } 1055 case ISD::MCSymbol: { 1056 auto *MCSN = cast<MCSymbolSDNode>(N); 1057 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1058 break; 1059 } 1060 case ISD::VALUETYPE: { 1061 EVT VT = cast<VTSDNode>(N)->getVT(); 1062 if (VT.isExtended()) { 1063 Erased = ExtendedValueTypeNodes.erase(VT); 1064 } else { 1065 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1066 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1067 } 1068 break; 1069 } 1070 default: 1071 // Remove it from the CSE Map. 1072 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1073 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1074 Erased = CSEMap.RemoveNode(N); 1075 break; 1076 } 1077 #ifndef NDEBUG 1078 // Verify that the node was actually in one of the CSE maps, unless it has a 1079 // flag result (which cannot be CSE'd) or is one of the special cases that are 1080 // not subject to CSE. 1081 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1082 !N->isMachineOpcode() && !doNotCSE(N)) { 1083 N->dump(this); 1084 dbgs() << "\n"; 1085 llvm_unreachable("Node is not in map!"); 1086 } 1087 #endif 1088 return Erased; 1089 } 1090 1091 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1092 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1093 /// node already exists, in which case transfer all its users to the existing 1094 /// node. This transfer can potentially trigger recursive merging. 1095 void 1096 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1097 // For node types that aren't CSE'd, just act as if no identical node 1098 // already exists. 1099 if (!doNotCSE(N)) { 1100 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1101 if (Existing != N) { 1102 // If there was already an existing matching node, use ReplaceAllUsesWith 1103 // to replace the dead one with the existing one. This can cause 1104 // recursive merging of other unrelated nodes down the line. 1105 ReplaceAllUsesWith(N, Existing); 1106 1107 // N is now dead. Inform the listeners and delete it. 1108 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1109 DUL->NodeDeleted(N, Existing); 1110 DeleteNodeNotInCSEMaps(N); 1111 return; 1112 } 1113 } 1114 1115 // If the node doesn't already exist, we updated it. Inform listeners. 1116 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1117 DUL->NodeUpdated(N); 1118 } 1119 1120 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1121 /// were replaced with those specified. If this node is never memoized, 1122 /// return null, otherwise return a pointer to the slot it would take. If a 1123 /// node already exists with these operands, the slot will be non-null. 1124 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1125 void *&InsertPos) { 1126 if (doNotCSE(N)) 1127 return nullptr; 1128 1129 SDValue Ops[] = { Op }; 1130 FoldingSetNodeID ID; 1131 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1132 AddNodeIDCustom(ID, N); 1133 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1134 if (Node) 1135 Node->intersectFlagsWith(N->getFlags()); 1136 return Node; 1137 } 1138 1139 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1140 /// were replaced with those specified. If this node is never memoized, 1141 /// return null, otherwise return a pointer to the slot it would take. If a 1142 /// node already exists with these operands, the slot will be non-null. 1143 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1144 SDValue Op1, SDValue Op2, 1145 void *&InsertPos) { 1146 if (doNotCSE(N)) 1147 return nullptr; 1148 1149 SDValue Ops[] = { Op1, Op2 }; 1150 FoldingSetNodeID ID; 1151 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1152 AddNodeIDCustom(ID, N); 1153 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1154 if (Node) 1155 Node->intersectFlagsWith(N->getFlags()); 1156 return Node; 1157 } 1158 1159 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1160 /// were replaced with those specified. If this node is never memoized, 1161 /// return null, otherwise return a pointer to the slot it would take. If a 1162 /// node already exists with these operands, the slot will be non-null. 1163 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1164 void *&InsertPos) { 1165 if (doNotCSE(N)) 1166 return nullptr; 1167 1168 FoldingSetNodeID ID; 1169 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1170 AddNodeIDCustom(ID, N); 1171 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1172 if (Node) 1173 Node->intersectFlagsWith(N->getFlags()); 1174 return Node; 1175 } 1176 1177 Align SelectionDAG::getEVTAlign(EVT VT) const { 1178 Type *Ty = VT == MVT::iPTR ? 1179 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1180 VT.getTypeForEVT(*getContext()); 1181 1182 return getDataLayout().getABITypeAlign(Ty); 1183 } 1184 1185 // EntryNode could meaningfully have debug info if we can find it... 1186 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1187 : TM(tm), OptLevel(OL), 1188 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1189 Root(getEntryNode()) { 1190 InsertNode(&EntryNode); 1191 DbgInfo = new SDDbgInfo(); 1192 } 1193 1194 void SelectionDAG::init(MachineFunction &NewMF, 1195 OptimizationRemarkEmitter &NewORE, 1196 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1197 LegacyDivergenceAnalysis * Divergence, 1198 ProfileSummaryInfo *PSIin, 1199 BlockFrequencyInfo *BFIin) { 1200 MF = &NewMF; 1201 SDAGISelPass = PassPtr; 1202 ORE = &NewORE; 1203 TLI = getSubtarget().getTargetLowering(); 1204 TSI = getSubtarget().getSelectionDAGInfo(); 1205 LibInfo = LibraryInfo; 1206 Context = &MF->getFunction().getContext(); 1207 DA = Divergence; 1208 PSI = PSIin; 1209 BFI = BFIin; 1210 } 1211 1212 SelectionDAG::~SelectionDAG() { 1213 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1214 allnodes_clear(); 1215 OperandRecycler.clear(OperandAllocator); 1216 delete DbgInfo; 1217 } 1218 1219 bool SelectionDAG::shouldOptForSize() const { 1220 return MF->getFunction().hasOptSize() || 1221 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1222 } 1223 1224 void SelectionDAG::allnodes_clear() { 1225 assert(&*AllNodes.begin() == &EntryNode); 1226 AllNodes.remove(AllNodes.begin()); 1227 while (!AllNodes.empty()) 1228 DeallocateNode(&AllNodes.front()); 1229 #ifndef NDEBUG 1230 NextPersistentId = 0; 1231 #endif 1232 } 1233 1234 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1235 void *&InsertPos) { 1236 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1237 if (N) { 1238 switch (N->getOpcode()) { 1239 default: break; 1240 case ISD::Constant: 1241 case ISD::ConstantFP: 1242 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1243 "debug location. Use another overload."); 1244 } 1245 } 1246 return N; 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 const SDLoc &DL, void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 case ISD::Constant: 1255 case ISD::ConstantFP: 1256 // Erase debug location from the node if the node is used at several 1257 // different places. Do not propagate one location to all uses as it 1258 // will cause a worse single stepping debugging experience. 1259 if (N->getDebugLoc() != DL.getDebugLoc()) 1260 N->setDebugLoc(DebugLoc()); 1261 break; 1262 default: 1263 // When the node's point of use is located earlier in the instruction 1264 // sequence than its prior point of use, update its debug info to the 1265 // earlier location. 1266 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1267 N->setDebugLoc(DL.getDebugLoc()); 1268 break; 1269 } 1270 } 1271 return N; 1272 } 1273 1274 void SelectionDAG::clear() { 1275 allnodes_clear(); 1276 OperandRecycler.clear(OperandAllocator); 1277 OperandAllocator.Reset(); 1278 CSEMap.clear(); 1279 1280 ExtendedValueTypeNodes.clear(); 1281 ExternalSymbols.clear(); 1282 TargetExternalSymbols.clear(); 1283 MCSymbols.clear(); 1284 SDCallSiteDbgInfo.clear(); 1285 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1286 static_cast<CondCodeSDNode*>(nullptr)); 1287 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1288 static_cast<SDNode*>(nullptr)); 1289 1290 EntryNode.UseList = nullptr; 1291 InsertNode(&EntryNode); 1292 Root = getEntryNode(); 1293 DbgInfo->clear(); 1294 } 1295 1296 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1297 return VT.bitsGT(Op.getValueType()) 1298 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1299 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1300 } 1301 1302 std::pair<SDValue, SDValue> 1303 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1304 const SDLoc &DL, EVT VT) { 1305 assert(!VT.bitsEq(Op.getValueType()) && 1306 "Strict no-op FP extend/round not allowed."); 1307 SDValue Res = 1308 VT.bitsGT(Op.getValueType()) 1309 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1310 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1311 {Chain, Op, getIntPtrConstant(0, DL)}); 1312 1313 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1314 } 1315 1316 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1317 return VT.bitsGT(Op.getValueType()) ? 1318 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1319 getNode(ISD::TRUNCATE, DL, VT, Op); 1320 } 1321 1322 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1323 return VT.bitsGT(Op.getValueType()) ? 1324 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1325 getNode(ISD::TRUNCATE, DL, VT, Op); 1326 } 1327 1328 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1329 return VT.bitsGT(Op.getValueType()) ? 1330 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1331 getNode(ISD::TRUNCATE, DL, VT, Op); 1332 } 1333 1334 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1335 EVT OpVT) { 1336 if (VT.bitsLE(Op.getValueType())) 1337 return getNode(ISD::TRUNCATE, SL, VT, Op); 1338 1339 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1340 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1344 EVT OpVT = Op.getValueType(); 1345 assert(VT.isInteger() && OpVT.isInteger() && 1346 "Cannot getZeroExtendInReg FP types"); 1347 assert(VT.isVector() == OpVT.isVector() && 1348 "getZeroExtendInReg type should be vector iff the operand " 1349 "type is vector!"); 1350 assert((!VT.isVector() || 1351 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1352 "Vector element counts must match in getZeroExtendInReg"); 1353 assert(VT.bitsLE(OpVT) && "Not extending!"); 1354 if (OpVT == VT) 1355 return Op; 1356 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1357 VT.getScalarSizeInBits()); 1358 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1359 } 1360 1361 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 // Only unsigned pointer semantics are supported right now. In the future this 1363 // might delegate to TLI to check pointer signedness. 1364 return getZExtOrTrunc(Op, DL, VT); 1365 } 1366 1367 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1368 // Only unsigned pointer semantics are supported right now. In the future this 1369 // might delegate to TLI to check pointer signedness. 1370 return getZeroExtendInReg(Op, DL, VT); 1371 } 1372 1373 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1374 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1375 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1376 } 1377 1378 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1379 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1380 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1381 } 1382 1383 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1384 EVT OpVT) { 1385 if (!V) 1386 return getConstant(0, DL, VT); 1387 1388 switch (TLI->getBooleanContents(OpVT)) { 1389 case TargetLowering::ZeroOrOneBooleanContent: 1390 case TargetLowering::UndefinedBooleanContent: 1391 return getConstant(1, DL, VT); 1392 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1393 return getAllOnesConstant(DL, VT); 1394 } 1395 llvm_unreachable("Unexpected boolean content enum!"); 1396 } 1397 1398 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1399 bool isT, bool isO) { 1400 EVT EltVT = VT.getScalarType(); 1401 assert((EltVT.getSizeInBits() >= 64 || 1402 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1403 "getConstant with a uint64_t value that doesn't fit in the type!"); 1404 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1405 } 1406 1407 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1408 bool isT, bool isO) { 1409 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1410 } 1411 1412 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1413 EVT VT, bool isT, bool isO) { 1414 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1415 1416 EVT EltVT = VT.getScalarType(); 1417 const ConstantInt *Elt = &Val; 1418 1419 // In some cases the vector type is legal but the element type is illegal and 1420 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1421 // inserted value (the type does not need to match the vector element type). 1422 // Any extra bits introduced will be truncated away. 1423 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1424 TargetLowering::TypePromoteInteger) { 1425 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1426 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1427 Elt = ConstantInt::get(*getContext(), NewVal); 1428 } 1429 // In other cases the element type is illegal and needs to be expanded, for 1430 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1431 // the value into n parts and use a vector type with n-times the elements. 1432 // Then bitcast to the type requested. 1433 // Legalizing constants too early makes the DAGCombiner's job harder so we 1434 // only legalize if the DAG tells us we must produce legal types. 1435 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1436 TLI->getTypeAction(*getContext(), EltVT) == 1437 TargetLowering::TypeExpandInteger) { 1438 const APInt &NewVal = Elt->getValue(); 1439 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1440 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1441 1442 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1443 if (VT.isScalableVector()) { 1444 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1445 "Can only handle an even split!"); 1446 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1447 1448 SmallVector<SDValue, 2> ScalarParts; 1449 for (unsigned i = 0; i != Parts; ++i) 1450 ScalarParts.push_back(getConstant( 1451 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1452 ViaEltVT, isT, isO)); 1453 1454 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1455 } 1456 1457 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1458 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1459 1460 // Check the temporary vector is the correct size. If this fails then 1461 // getTypeToTransformTo() probably returned a type whose size (in bits) 1462 // isn't a power-of-2 factor of the requested type size. 1463 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1464 1465 SmallVector<SDValue, 2> EltParts; 1466 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1467 EltParts.push_back(getConstant( 1468 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1469 ViaEltVT, isT, isO)); 1470 1471 // EltParts is currently in little endian order. If we actually want 1472 // big-endian order then reverse it now. 1473 if (getDataLayout().isBigEndian()) 1474 std::reverse(EltParts.begin(), EltParts.end()); 1475 1476 // The elements must be reversed when the element order is different 1477 // to the endianness of the elements (because the BITCAST is itself a 1478 // vector shuffle in this situation). However, we do not need any code to 1479 // perform this reversal because getConstant() is producing a vector 1480 // splat. 1481 // This situation occurs in MIPS MSA. 1482 1483 SmallVector<SDValue, 8> Ops; 1484 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1485 llvm::append_range(Ops, EltParts); 1486 1487 SDValue V = 1488 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1489 return V; 1490 } 1491 1492 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1493 "APInt size does not match type size!"); 1494 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1495 FoldingSetNodeID ID; 1496 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1497 ID.AddPointer(Elt); 1498 ID.AddBoolean(isO); 1499 void *IP = nullptr; 1500 SDNode *N = nullptr; 1501 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1502 if (!VT.isVector()) 1503 return SDValue(N, 0); 1504 1505 if (!N) { 1506 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1507 CSEMap.InsertNode(N, IP); 1508 InsertNode(N); 1509 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1510 } 1511 1512 SDValue Result(N, 0); 1513 if (VT.isScalableVector()) 1514 Result = getSplatVector(VT, DL, Result); 1515 else if (VT.isVector()) 1516 Result = getSplatBuildVector(VT, DL, Result); 1517 1518 return Result; 1519 } 1520 1521 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1522 bool isTarget) { 1523 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1524 } 1525 1526 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1527 const SDLoc &DL, bool LegalTypes) { 1528 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1529 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1530 return getConstant(Val, DL, ShiftVT); 1531 } 1532 1533 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1534 bool isTarget) { 1535 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1536 } 1537 1538 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1539 bool isTarget) { 1540 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1541 } 1542 1543 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1544 EVT VT, bool isTarget) { 1545 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1546 1547 EVT EltVT = VT.getScalarType(); 1548 1549 // Do the map lookup using the actual bit pattern for the floating point 1550 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1551 // we don't have issues with SNANs. 1552 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1553 FoldingSetNodeID ID; 1554 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1555 ID.AddPointer(&V); 1556 void *IP = nullptr; 1557 SDNode *N = nullptr; 1558 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1559 if (!VT.isVector()) 1560 return SDValue(N, 0); 1561 1562 if (!N) { 1563 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1564 CSEMap.InsertNode(N, IP); 1565 InsertNode(N); 1566 } 1567 1568 SDValue Result(N, 0); 1569 if (VT.isScalableVector()) 1570 Result = getSplatVector(VT, DL, Result); 1571 else if (VT.isVector()) 1572 Result = getSplatBuildVector(VT, DL, Result); 1573 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1574 return Result; 1575 } 1576 1577 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1578 bool isTarget) { 1579 EVT EltVT = VT.getScalarType(); 1580 if (EltVT == MVT::f32) 1581 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1582 if (EltVT == MVT::f64) 1583 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1584 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1585 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1586 bool Ignored; 1587 APFloat APF = APFloat(Val); 1588 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1589 &Ignored); 1590 return getConstantFP(APF, DL, VT, isTarget); 1591 } 1592 llvm_unreachable("Unsupported type in getConstantFP"); 1593 } 1594 1595 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1596 EVT VT, int64_t Offset, bool isTargetGA, 1597 unsigned TargetFlags) { 1598 assert((TargetFlags == 0 || isTargetGA) && 1599 "Cannot set target flags on target-independent globals"); 1600 1601 // Truncate (with sign-extension) the offset value to the pointer size. 1602 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1603 if (BitWidth < 64) 1604 Offset = SignExtend64(Offset, BitWidth); 1605 1606 unsigned Opc; 1607 if (GV->isThreadLocal()) 1608 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1609 else 1610 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1611 1612 FoldingSetNodeID ID; 1613 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1614 ID.AddPointer(GV); 1615 ID.AddInteger(Offset); 1616 ID.AddInteger(TargetFlags); 1617 void *IP = nullptr; 1618 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1619 return SDValue(E, 0); 1620 1621 auto *N = newSDNode<GlobalAddressSDNode>( 1622 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1623 CSEMap.InsertNode(N, IP); 1624 InsertNode(N); 1625 return SDValue(N, 0); 1626 } 1627 1628 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1629 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1630 FoldingSetNodeID ID; 1631 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1632 ID.AddInteger(FI); 1633 void *IP = nullptr; 1634 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1635 return SDValue(E, 0); 1636 1637 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1644 unsigned TargetFlags) { 1645 assert((TargetFlags == 0 || isTarget) && 1646 "Cannot set target flags on target-independent jump tables"); 1647 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1650 ID.AddInteger(JTI); 1651 ID.AddInteger(TargetFlags); 1652 void *IP = nullptr; 1653 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1654 return SDValue(E, 0); 1655 1656 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1657 CSEMap.InsertNode(N, IP); 1658 InsertNode(N); 1659 return SDValue(N, 0); 1660 } 1661 1662 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1663 MaybeAlign Alignment, int Offset, 1664 bool isTarget, unsigned TargetFlags) { 1665 assert((TargetFlags == 0 || isTarget) && 1666 "Cannot set target flags on target-independent globals"); 1667 if (!Alignment) 1668 Alignment = shouldOptForSize() 1669 ? getDataLayout().getABITypeAlign(C->getType()) 1670 : getDataLayout().getPrefTypeAlign(C->getType()); 1671 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1672 FoldingSetNodeID ID; 1673 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1674 ID.AddInteger(Alignment->value()); 1675 ID.AddInteger(Offset); 1676 ID.AddPointer(C); 1677 ID.AddInteger(TargetFlags); 1678 void *IP = nullptr; 1679 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1680 return SDValue(E, 0); 1681 1682 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1683 TargetFlags); 1684 CSEMap.InsertNode(N, IP); 1685 InsertNode(N); 1686 SDValue V = SDValue(N, 0); 1687 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1688 return V; 1689 } 1690 1691 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1692 MaybeAlign Alignment, int Offset, 1693 bool isTarget, unsigned TargetFlags) { 1694 assert((TargetFlags == 0 || isTarget) && 1695 "Cannot set target flags on target-independent globals"); 1696 if (!Alignment) 1697 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1698 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(Alignment->value()); 1702 ID.AddInteger(Offset); 1703 C->addSelectionDAGCSEId(ID); 1704 ID.AddInteger(TargetFlags); 1705 void *IP = nullptr; 1706 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1707 return SDValue(E, 0); 1708 1709 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1710 TargetFlags); 1711 CSEMap.InsertNode(N, IP); 1712 InsertNode(N); 1713 return SDValue(N, 0); 1714 } 1715 1716 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1717 unsigned TargetFlags) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1720 ID.AddInteger(Index); 1721 ID.AddInteger(Offset); 1722 ID.AddInteger(TargetFlags); 1723 void *IP = nullptr; 1724 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1725 return SDValue(E, 0); 1726 1727 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1728 CSEMap.InsertNode(N, IP); 1729 InsertNode(N); 1730 return SDValue(N, 0); 1731 } 1732 1733 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1734 FoldingSetNodeID ID; 1735 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1736 ID.AddPointer(MBB); 1737 void *IP = nullptr; 1738 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1739 return SDValue(E, 0); 1740 1741 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1742 CSEMap.InsertNode(N, IP); 1743 InsertNode(N); 1744 return SDValue(N, 0); 1745 } 1746 1747 SDValue SelectionDAG::getValueType(EVT VT) { 1748 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1749 ValueTypeNodes.size()) 1750 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1751 1752 SDNode *&N = VT.isExtended() ? 1753 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1754 1755 if (N) return SDValue(N, 0); 1756 N = newSDNode<VTSDNode>(VT); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1762 SDNode *&N = ExternalSymbols[Sym]; 1763 if (N) return SDValue(N, 0); 1764 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1765 InsertNode(N); 1766 return SDValue(N, 0); 1767 } 1768 1769 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1770 SDNode *&N = MCSymbols[Sym]; 1771 if (N) 1772 return SDValue(N, 0); 1773 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1774 InsertNode(N); 1775 return SDValue(N, 0); 1776 } 1777 1778 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1779 unsigned TargetFlags) { 1780 SDNode *&N = 1781 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1782 if (N) return SDValue(N, 0); 1783 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1784 InsertNode(N); 1785 return SDValue(N, 0); 1786 } 1787 1788 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1789 if ((unsigned)Cond >= CondCodeNodes.size()) 1790 CondCodeNodes.resize(Cond+1); 1791 1792 if (!CondCodeNodes[Cond]) { 1793 auto *N = newSDNode<CondCodeSDNode>(Cond); 1794 CondCodeNodes[Cond] = N; 1795 InsertNode(N); 1796 } 1797 1798 return SDValue(CondCodeNodes[Cond], 0); 1799 } 1800 1801 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1802 APInt One(ResVT.getScalarSizeInBits(), 1); 1803 return getStepVector(DL, ResVT, One); 1804 } 1805 1806 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1807 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1808 if (ResVT.isScalableVector()) 1809 return getNode( 1810 ISD::STEP_VECTOR, DL, ResVT, 1811 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1812 1813 SmallVector<SDValue, 16> OpsStepConstants; 1814 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1815 OpsStepConstants.push_back( 1816 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1817 return getBuildVector(ResVT, DL, OpsStepConstants); 1818 } 1819 1820 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1821 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1822 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1823 std::swap(N1, N2); 1824 ShuffleVectorSDNode::commuteMask(M); 1825 } 1826 1827 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1828 SDValue N2, ArrayRef<int> Mask) { 1829 assert(VT.getVectorNumElements() == Mask.size() && 1830 "Must have the same number of vector elements as mask elements!"); 1831 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1832 "Invalid VECTOR_SHUFFLE"); 1833 1834 // Canonicalize shuffle undef, undef -> undef 1835 if (N1.isUndef() && N2.isUndef()) 1836 return getUNDEF(VT); 1837 1838 // Validate that all indices in Mask are within the range of the elements 1839 // input to the shuffle. 1840 int NElts = Mask.size(); 1841 assert(llvm::all_of(Mask, 1842 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1843 "Index out of range"); 1844 1845 // Copy the mask so we can do any needed cleanup. 1846 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1847 1848 // Canonicalize shuffle v, v -> v, undef 1849 if (N1 == N2) { 1850 N2 = getUNDEF(VT); 1851 for (int i = 0; i != NElts; ++i) 1852 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1853 } 1854 1855 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1856 if (N1.isUndef()) 1857 commuteShuffle(N1, N2, MaskVec); 1858 1859 if (TLI->hasVectorBlend()) { 1860 // If shuffling a splat, try to blend the splat instead. We do this here so 1861 // that even when this arises during lowering we don't have to re-handle it. 1862 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1863 BitVector UndefElements; 1864 SDValue Splat = BV->getSplatValue(&UndefElements); 1865 if (!Splat) 1866 return; 1867 1868 for (int i = 0; i < NElts; ++i) { 1869 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1870 continue; 1871 1872 // If this input comes from undef, mark it as such. 1873 if (UndefElements[MaskVec[i] - Offset]) { 1874 MaskVec[i] = -1; 1875 continue; 1876 } 1877 1878 // If we can blend a non-undef lane, use that instead. 1879 if (!UndefElements[i]) 1880 MaskVec[i] = i + Offset; 1881 } 1882 }; 1883 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1884 BlendSplat(N1BV, 0); 1885 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1886 BlendSplat(N2BV, NElts); 1887 } 1888 1889 // Canonicalize all index into lhs, -> shuffle lhs, undef 1890 // Canonicalize all index into rhs, -> shuffle rhs, undef 1891 bool AllLHS = true, AllRHS = true; 1892 bool N2Undef = N2.isUndef(); 1893 for (int i = 0; i != NElts; ++i) { 1894 if (MaskVec[i] >= NElts) { 1895 if (N2Undef) 1896 MaskVec[i] = -1; 1897 else 1898 AllLHS = false; 1899 } else if (MaskVec[i] >= 0) { 1900 AllRHS = false; 1901 } 1902 } 1903 if (AllLHS && AllRHS) 1904 return getUNDEF(VT); 1905 if (AllLHS && !N2Undef) 1906 N2 = getUNDEF(VT); 1907 if (AllRHS) { 1908 N1 = getUNDEF(VT); 1909 commuteShuffle(N1, N2, MaskVec); 1910 } 1911 // Reset our undef status after accounting for the mask. 1912 N2Undef = N2.isUndef(); 1913 // Re-check whether both sides ended up undef. 1914 if (N1.isUndef() && N2Undef) 1915 return getUNDEF(VT); 1916 1917 // If Identity shuffle return that node. 1918 bool Identity = true, AllSame = true; 1919 for (int i = 0; i != NElts; ++i) { 1920 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1921 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1922 } 1923 if (Identity && NElts) 1924 return N1; 1925 1926 // Shuffling a constant splat doesn't change the result. 1927 if (N2Undef) { 1928 SDValue V = N1; 1929 1930 // Look through any bitcasts. We check that these don't change the number 1931 // (and size) of elements and just changes their types. 1932 while (V.getOpcode() == ISD::BITCAST) 1933 V = V->getOperand(0); 1934 1935 // A splat should always show up as a build vector node. 1936 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1937 BitVector UndefElements; 1938 SDValue Splat = BV->getSplatValue(&UndefElements); 1939 // If this is a splat of an undef, shuffling it is also undef. 1940 if (Splat && Splat.isUndef()) 1941 return getUNDEF(VT); 1942 1943 bool SameNumElts = 1944 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1945 1946 // We only have a splat which can skip shuffles if there is a splatted 1947 // value and no undef lanes rearranged by the shuffle. 1948 if (Splat && UndefElements.none()) { 1949 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1950 // number of elements match or the value splatted is a zero constant. 1951 if (SameNumElts) 1952 return N1; 1953 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1954 if (C->isZero()) 1955 return N1; 1956 } 1957 1958 // If the shuffle itself creates a splat, build the vector directly. 1959 if (AllSame && SameNumElts) { 1960 EVT BuildVT = BV->getValueType(0); 1961 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1962 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1963 1964 // We may have jumped through bitcasts, so the type of the 1965 // BUILD_VECTOR may not match the type of the shuffle. 1966 if (BuildVT != VT) 1967 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1968 return NewBV; 1969 } 1970 } 1971 } 1972 1973 FoldingSetNodeID ID; 1974 SDValue Ops[2] = { N1, N2 }; 1975 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1976 for (int i = 0; i != NElts; ++i) 1977 ID.AddInteger(MaskVec[i]); 1978 1979 void* IP = nullptr; 1980 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1981 return SDValue(E, 0); 1982 1983 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1984 // SDNode doesn't have access to it. This memory will be "leaked" when 1985 // the node is deallocated, but recovered when the NodeAllocator is released. 1986 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1987 llvm::copy(MaskVec, MaskAlloc); 1988 1989 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1990 dl.getDebugLoc(), MaskAlloc); 1991 createOperands(N, Ops); 1992 1993 CSEMap.InsertNode(N, IP); 1994 InsertNode(N); 1995 SDValue V = SDValue(N, 0); 1996 NewSDValueDbgMsg(V, "Creating new node: ", this); 1997 return V; 1998 } 1999 2000 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2001 EVT VT = SV.getValueType(0); 2002 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2003 ShuffleVectorSDNode::commuteMask(MaskVec); 2004 2005 SDValue Op0 = SV.getOperand(0); 2006 SDValue Op1 = SV.getOperand(1); 2007 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2008 } 2009 2010 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2011 FoldingSetNodeID ID; 2012 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2013 ID.AddInteger(RegNo); 2014 void *IP = nullptr; 2015 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2016 return SDValue(E, 0); 2017 2018 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2019 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2028 ID.AddPointer(RegMask); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2034 CSEMap.InsertNode(N, IP); 2035 InsertNode(N); 2036 return SDValue(N, 0); 2037 } 2038 2039 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2040 MCSymbol *Label) { 2041 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2042 } 2043 2044 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2045 SDValue Root, MCSymbol *Label) { 2046 FoldingSetNodeID ID; 2047 SDValue Ops[] = { Root }; 2048 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2049 ID.AddPointer(Label); 2050 void *IP = nullptr; 2051 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2052 return SDValue(E, 0); 2053 2054 auto *N = 2055 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2056 createOperands(N, Ops); 2057 2058 CSEMap.InsertNode(N, IP); 2059 InsertNode(N); 2060 return SDValue(N, 0); 2061 } 2062 2063 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2064 int64_t Offset, bool isTarget, 2065 unsigned TargetFlags) { 2066 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2067 2068 FoldingSetNodeID ID; 2069 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2070 ID.AddPointer(BA); 2071 ID.AddInteger(Offset); 2072 ID.AddInteger(TargetFlags); 2073 void *IP = nullptr; 2074 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2075 return SDValue(E, 0); 2076 2077 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2078 CSEMap.InsertNode(N, IP); 2079 InsertNode(N); 2080 return SDValue(N, 0); 2081 } 2082 2083 SDValue SelectionDAG::getSrcValue(const Value *V) { 2084 FoldingSetNodeID ID; 2085 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2086 ID.AddPointer(V); 2087 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<SrcValueSDNode>(V); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2101 ID.AddPointer(MD); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<MDNodeSDNode>(MD); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2114 if (VT == V.getValueType()) 2115 return V; 2116 2117 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2118 } 2119 2120 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2121 unsigned SrcAS, unsigned DestAS) { 2122 SDValue Ops[] = {Ptr}; 2123 FoldingSetNodeID ID; 2124 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2125 ID.AddInteger(SrcAS); 2126 ID.AddInteger(DestAS); 2127 2128 void *IP = nullptr; 2129 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2130 return SDValue(E, 0); 2131 2132 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2133 VT, SrcAS, DestAS); 2134 createOperands(N, Ops); 2135 2136 CSEMap.InsertNode(N, IP); 2137 InsertNode(N); 2138 return SDValue(N, 0); 2139 } 2140 2141 SDValue SelectionDAG::getFreeze(SDValue V) { 2142 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2143 } 2144 2145 /// getShiftAmountOperand - Return the specified value casted to 2146 /// the target's desired shift amount type. 2147 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2148 EVT OpTy = Op.getValueType(); 2149 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2150 if (OpTy == ShTy || OpTy.isVector()) return Op; 2151 2152 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2153 } 2154 2155 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2156 SDLoc dl(Node); 2157 const TargetLowering &TLI = getTargetLoweringInfo(); 2158 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2159 EVT VT = Node->getValueType(0); 2160 SDValue Tmp1 = Node->getOperand(0); 2161 SDValue Tmp2 = Node->getOperand(1); 2162 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2163 2164 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2165 Tmp2, MachinePointerInfo(V)); 2166 SDValue VAList = VAListLoad; 2167 2168 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2169 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2170 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2171 2172 VAList = 2173 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2174 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2175 } 2176 2177 // Increment the pointer, VAList, to the next vaarg 2178 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2179 getConstant(getDataLayout().getTypeAllocSize( 2180 VT.getTypeForEVT(*getContext())), 2181 dl, VAList.getValueType())); 2182 // Store the incremented VAList to the legalized pointer 2183 Tmp1 = 2184 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2185 // Load the actual argument out of the pointer VAList 2186 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2187 } 2188 2189 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2190 SDLoc dl(Node); 2191 const TargetLowering &TLI = getTargetLoweringInfo(); 2192 // This defaults to loading a pointer from the input and storing it to the 2193 // output, returning the chain. 2194 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2195 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2196 SDValue Tmp1 = 2197 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2198 Node->getOperand(2), MachinePointerInfo(VS)); 2199 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2200 MachinePointerInfo(VD)); 2201 } 2202 2203 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2204 const DataLayout &DL = getDataLayout(); 2205 Type *Ty = VT.getTypeForEVT(*getContext()); 2206 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2207 2208 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2209 return RedAlign; 2210 2211 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2212 const Align StackAlign = TFI->getStackAlign(); 2213 2214 // See if we can choose a smaller ABI alignment in cases where it's an 2215 // illegal vector type that will get broken down. 2216 if (RedAlign > StackAlign) { 2217 EVT IntermediateVT; 2218 MVT RegisterVT; 2219 unsigned NumIntermediates; 2220 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2221 NumIntermediates, RegisterVT); 2222 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2223 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2224 if (RedAlign2 < RedAlign) 2225 RedAlign = RedAlign2; 2226 } 2227 2228 return RedAlign; 2229 } 2230 2231 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2232 MachineFrameInfo &MFI = MF->getFrameInfo(); 2233 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2234 int StackID = 0; 2235 if (Bytes.isScalable()) 2236 StackID = TFI->getStackIDForScalableVectors(); 2237 // The stack id gives an indication of whether the object is scalable or 2238 // not, so it's safe to pass in the minimum size here. 2239 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2240 false, nullptr, StackID); 2241 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2242 } 2243 2244 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2245 Type *Ty = VT.getTypeForEVT(*getContext()); 2246 Align StackAlign = 2247 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2248 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2249 } 2250 2251 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2252 TypeSize VT1Size = VT1.getStoreSize(); 2253 TypeSize VT2Size = VT2.getStoreSize(); 2254 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2255 "Don't know how to choose the maximum size when creating a stack " 2256 "temporary"); 2257 TypeSize Bytes = 2258 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2259 2260 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2261 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2262 const DataLayout &DL = getDataLayout(); 2263 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2264 return CreateStackTemporary(Bytes, Align); 2265 } 2266 2267 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2268 ISD::CondCode Cond, const SDLoc &dl) { 2269 EVT OpVT = N1.getValueType(); 2270 2271 // These setcc operations always fold. 2272 switch (Cond) { 2273 default: break; 2274 case ISD::SETFALSE: 2275 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2276 case ISD::SETTRUE: 2277 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2278 2279 case ISD::SETOEQ: 2280 case ISD::SETOGT: 2281 case ISD::SETOGE: 2282 case ISD::SETOLT: 2283 case ISD::SETOLE: 2284 case ISD::SETONE: 2285 case ISD::SETO: 2286 case ISD::SETUO: 2287 case ISD::SETUEQ: 2288 case ISD::SETUNE: 2289 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2290 break; 2291 } 2292 2293 if (OpVT.isInteger()) { 2294 // For EQ and NE, we can always pick a value for the undef to make the 2295 // predicate pass or fail, so we can return undef. 2296 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2297 // icmp eq/ne X, undef -> undef. 2298 if ((N1.isUndef() || N2.isUndef()) && 2299 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2300 return getUNDEF(VT); 2301 2302 // If both operands are undef, we can return undef for int comparison. 2303 // icmp undef, undef -> undef. 2304 if (N1.isUndef() && N2.isUndef()) 2305 return getUNDEF(VT); 2306 2307 // icmp X, X -> true/false 2308 // icmp X, undef -> true/false because undef could be X. 2309 if (N1 == N2) 2310 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2311 } 2312 2313 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2314 const APInt &C2 = N2C->getAPIntValue(); 2315 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2316 const APInt &C1 = N1C->getAPIntValue(); 2317 2318 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2319 dl, VT, OpVT); 2320 } 2321 } 2322 2323 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2324 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2325 2326 if (N1CFP && N2CFP) { 2327 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2328 switch (Cond) { 2329 default: break; 2330 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2331 return getUNDEF(VT); 2332 LLVM_FALLTHROUGH; 2333 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2334 OpVT); 2335 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2336 return getUNDEF(VT); 2337 LLVM_FALLTHROUGH; 2338 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2339 R==APFloat::cmpLessThan, dl, VT, 2340 OpVT); 2341 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2342 return getUNDEF(VT); 2343 LLVM_FALLTHROUGH; 2344 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2345 OpVT); 2346 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2347 return getUNDEF(VT); 2348 LLVM_FALLTHROUGH; 2349 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2350 VT, OpVT); 2351 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2352 return getUNDEF(VT); 2353 LLVM_FALLTHROUGH; 2354 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2355 R==APFloat::cmpEqual, dl, VT, 2356 OpVT); 2357 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2358 return getUNDEF(VT); 2359 LLVM_FALLTHROUGH; 2360 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2361 R==APFloat::cmpEqual, dl, VT, OpVT); 2362 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2363 OpVT); 2364 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2365 OpVT); 2366 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2367 R==APFloat::cmpEqual, dl, VT, 2368 OpVT); 2369 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2370 OpVT); 2371 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2372 R==APFloat::cmpLessThan, dl, VT, 2373 OpVT); 2374 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2375 R==APFloat::cmpUnordered, dl, VT, 2376 OpVT); 2377 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2378 VT, OpVT); 2379 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2380 OpVT); 2381 } 2382 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2383 // Ensure that the constant occurs on the RHS. 2384 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2385 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2386 return SDValue(); 2387 return getSetCC(dl, VT, N2, N1, SwappedCond); 2388 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2389 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2390 // If an operand is known to be a nan (or undef that could be a nan), we can 2391 // fold it. 2392 // Choosing NaN for the undef will always make unordered comparison succeed 2393 // and ordered comparison fails. 2394 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2395 switch (ISD::getUnorderedFlavor(Cond)) { 2396 default: 2397 llvm_unreachable("Unknown flavor!"); 2398 case 0: // Known false. 2399 return getBoolConstant(false, dl, VT, OpVT); 2400 case 1: // Known true. 2401 return getBoolConstant(true, dl, VT, OpVT); 2402 case 2: // Undefined. 2403 return getUNDEF(VT); 2404 } 2405 } 2406 2407 // Could not fold it. 2408 return SDValue(); 2409 } 2410 2411 /// See if the specified operand can be simplified with the knowledge that only 2412 /// the bits specified by DemandedBits are used. 2413 /// TODO: really we should be making this into the DAG equivalent of 2414 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2415 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2416 EVT VT = V.getValueType(); 2417 2418 if (VT.isScalableVector()) 2419 return SDValue(); 2420 2421 APInt DemandedElts = VT.isVector() 2422 ? APInt::getAllOnes(VT.getVectorNumElements()) 2423 : APInt(1, 1); 2424 return GetDemandedBits(V, DemandedBits, DemandedElts); 2425 } 2426 2427 /// See if the specified operand can be simplified with the knowledge that only 2428 /// the bits specified by DemandedBits are used in the elements specified by 2429 /// DemandedElts. 2430 /// TODO: really we should be making this into the DAG equivalent of 2431 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2432 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2433 const APInt &DemandedElts) { 2434 switch (V.getOpcode()) { 2435 default: 2436 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2437 *this, 0); 2438 case ISD::Constant: { 2439 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2440 APInt NewVal = CVal & DemandedBits; 2441 if (NewVal != CVal) 2442 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2443 break; 2444 } 2445 case ISD::SRL: 2446 // Only look at single-use SRLs. 2447 if (!V.getNode()->hasOneUse()) 2448 break; 2449 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2450 // See if we can recursively simplify the LHS. 2451 unsigned Amt = RHSC->getZExtValue(); 2452 2453 // Watch out for shift count overflow though. 2454 if (Amt >= DemandedBits.getBitWidth()) 2455 break; 2456 APInt SrcDemandedBits = DemandedBits << Amt; 2457 if (SDValue SimplifyLHS = 2458 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2459 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2460 V.getOperand(1)); 2461 } 2462 break; 2463 } 2464 return SDValue(); 2465 } 2466 2467 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2468 /// use this predicate to simplify operations downstream. 2469 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2470 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2471 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2472 } 2473 2474 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2475 /// this predicate to simplify operations downstream. Mask is known to be zero 2476 /// for bits that V cannot have. 2477 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2478 unsigned Depth) const { 2479 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2480 } 2481 2482 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2483 /// DemandedElts. We use this predicate to simplify operations downstream. 2484 /// Mask is known to be zero for bits that V cannot have. 2485 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2486 const APInt &DemandedElts, 2487 unsigned Depth) const { 2488 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2489 } 2490 2491 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2492 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2495 } 2496 2497 /// isSplatValue - Return true if the vector V has the same value 2498 /// across all DemandedElts. For scalable vectors it does not make 2499 /// sense to specify which elements are demanded or undefined, therefore 2500 /// they are simply ignored. 2501 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2502 APInt &UndefElts, unsigned Depth) { 2503 EVT VT = V.getValueType(); 2504 assert(VT.isVector() && "Vector type expected"); 2505 2506 if (!VT.isScalableVector() && !DemandedElts) 2507 return false; // No demanded elts, better to assume we don't know anything. 2508 2509 if (Depth >= MaxRecursionDepth) 2510 return false; // Limit search depth. 2511 2512 // Deal with some common cases here that work for both fixed and scalable 2513 // vector types. 2514 switch (V.getOpcode()) { 2515 case ISD::SPLAT_VECTOR: 2516 UndefElts = V.getOperand(0).isUndef() 2517 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2518 : APInt(DemandedElts.getBitWidth(), 0); 2519 return true; 2520 case ISD::ADD: 2521 case ISD::SUB: 2522 case ISD::AND: 2523 case ISD::XOR: 2524 case ISD::OR: { 2525 APInt UndefLHS, UndefRHS; 2526 SDValue LHS = V.getOperand(0); 2527 SDValue RHS = V.getOperand(1); 2528 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2529 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2530 UndefElts = UndefLHS | UndefRHS; 2531 return true; 2532 } 2533 return false; 2534 } 2535 case ISD::ABS: 2536 case ISD::TRUNCATE: 2537 case ISD::SIGN_EXTEND: 2538 case ISD::ZERO_EXTEND: 2539 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2540 } 2541 2542 // We don't support other cases than those above for scalable vectors at 2543 // the moment. 2544 if (VT.isScalableVector()) 2545 return false; 2546 2547 unsigned NumElts = VT.getVectorNumElements(); 2548 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2549 UndefElts = APInt::getZero(NumElts); 2550 2551 switch (V.getOpcode()) { 2552 case ISD::BUILD_VECTOR: { 2553 SDValue Scl; 2554 for (unsigned i = 0; i != NumElts; ++i) { 2555 SDValue Op = V.getOperand(i); 2556 if (Op.isUndef()) { 2557 UndefElts.setBit(i); 2558 continue; 2559 } 2560 if (!DemandedElts[i]) 2561 continue; 2562 if (Scl && Scl != Op) 2563 return false; 2564 Scl = Op; 2565 } 2566 return true; 2567 } 2568 case ISD::VECTOR_SHUFFLE: { 2569 // Check if this is a shuffle node doing a splat. 2570 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2571 int SplatIndex = -1; 2572 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2573 for (int i = 0; i != (int)NumElts; ++i) { 2574 int M = Mask[i]; 2575 if (M < 0) { 2576 UndefElts.setBit(i); 2577 continue; 2578 } 2579 if (!DemandedElts[i]) 2580 continue; 2581 if (0 <= SplatIndex && SplatIndex != M) 2582 return false; 2583 SplatIndex = M; 2584 } 2585 return true; 2586 } 2587 case ISD::EXTRACT_SUBVECTOR: { 2588 // Offset the demanded elts by the subvector index. 2589 SDValue Src = V.getOperand(0); 2590 // We don't support scalable vectors at the moment. 2591 if (Src.getValueType().isScalableVector()) 2592 return false; 2593 uint64_t Idx = V.getConstantOperandVal(1); 2594 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2595 APInt UndefSrcElts; 2596 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2597 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2598 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2599 return true; 2600 } 2601 break; 2602 } 2603 } 2604 2605 return false; 2606 } 2607 2608 /// Helper wrapper to main isSplatValue function. 2609 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2610 EVT VT = V.getValueType(); 2611 assert(VT.isVector() && "Vector type expected"); 2612 2613 APInt UndefElts; 2614 APInt DemandedElts; 2615 2616 // For now we don't support this with scalable vectors. 2617 if (!VT.isScalableVector()) 2618 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2619 return isSplatValue(V, DemandedElts, UndefElts) && 2620 (AllowUndefs || !UndefElts); 2621 } 2622 2623 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2624 V = peekThroughExtractSubvectors(V); 2625 2626 EVT VT = V.getValueType(); 2627 unsigned Opcode = V.getOpcode(); 2628 switch (Opcode) { 2629 default: { 2630 APInt UndefElts; 2631 APInt DemandedElts; 2632 2633 if (!VT.isScalableVector()) 2634 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2635 2636 if (isSplatValue(V, DemandedElts, UndefElts)) { 2637 if (VT.isScalableVector()) { 2638 // DemandedElts and UndefElts are ignored for scalable vectors, since 2639 // the only supported cases are SPLAT_VECTOR nodes. 2640 SplatIdx = 0; 2641 } else { 2642 // Handle case where all demanded elements are UNDEF. 2643 if (DemandedElts.isSubsetOf(UndefElts)) { 2644 SplatIdx = 0; 2645 return getUNDEF(VT); 2646 } 2647 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2648 } 2649 return V; 2650 } 2651 break; 2652 } 2653 case ISD::SPLAT_VECTOR: 2654 SplatIdx = 0; 2655 return V; 2656 case ISD::VECTOR_SHUFFLE: { 2657 if (VT.isScalableVector()) 2658 return SDValue(); 2659 2660 // Check if this is a shuffle node doing a splat. 2661 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2662 // getTargetVShiftNode currently struggles without the splat source. 2663 auto *SVN = cast<ShuffleVectorSDNode>(V); 2664 if (!SVN->isSplat()) 2665 break; 2666 int Idx = SVN->getSplatIndex(); 2667 int NumElts = V.getValueType().getVectorNumElements(); 2668 SplatIdx = Idx % NumElts; 2669 return V.getOperand(Idx / NumElts); 2670 } 2671 } 2672 2673 return SDValue(); 2674 } 2675 2676 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2677 int SplatIdx; 2678 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2679 EVT SVT = SrcVector.getValueType().getScalarType(); 2680 EVT LegalSVT = SVT; 2681 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2682 if (!SVT.isInteger()) 2683 return SDValue(); 2684 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2685 if (LegalSVT.bitsLT(SVT)) 2686 return SDValue(); 2687 } 2688 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2689 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2690 } 2691 return SDValue(); 2692 } 2693 2694 const APInt * 2695 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2696 const APInt &DemandedElts) const { 2697 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2698 V.getOpcode() == ISD::SRA) && 2699 "Unknown shift node"); 2700 unsigned BitWidth = V.getScalarValueSizeInBits(); 2701 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2702 // Shifting more than the bitwidth is not valid. 2703 const APInt &ShAmt = SA->getAPIntValue(); 2704 if (ShAmt.ult(BitWidth)) 2705 return &ShAmt; 2706 } 2707 return nullptr; 2708 } 2709 2710 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2711 SDValue V, const APInt &DemandedElts) const { 2712 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2713 V.getOpcode() == ISD::SRA) && 2714 "Unknown shift node"); 2715 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2716 return ValidAmt; 2717 unsigned BitWidth = V.getScalarValueSizeInBits(); 2718 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2719 if (!BV) 2720 return nullptr; 2721 const APInt *MinShAmt = nullptr; 2722 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2723 if (!DemandedElts[i]) 2724 continue; 2725 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2726 if (!SA) 2727 return nullptr; 2728 // Shifting more than the bitwidth is not valid. 2729 const APInt &ShAmt = SA->getAPIntValue(); 2730 if (ShAmt.uge(BitWidth)) 2731 return nullptr; 2732 if (MinShAmt && MinShAmt->ule(ShAmt)) 2733 continue; 2734 MinShAmt = &ShAmt; 2735 } 2736 return MinShAmt; 2737 } 2738 2739 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2740 SDValue V, const APInt &DemandedElts) const { 2741 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2742 V.getOpcode() == ISD::SRA) && 2743 "Unknown shift node"); 2744 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2745 return ValidAmt; 2746 unsigned BitWidth = V.getScalarValueSizeInBits(); 2747 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2748 if (!BV) 2749 return nullptr; 2750 const APInt *MaxShAmt = nullptr; 2751 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2752 if (!DemandedElts[i]) 2753 continue; 2754 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2755 if (!SA) 2756 return nullptr; 2757 // Shifting more than the bitwidth is not valid. 2758 const APInt &ShAmt = SA->getAPIntValue(); 2759 if (ShAmt.uge(BitWidth)) 2760 return nullptr; 2761 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2762 continue; 2763 MaxShAmt = &ShAmt; 2764 } 2765 return MaxShAmt; 2766 } 2767 2768 /// Determine which bits of Op are known to be either zero or one and return 2769 /// them in Known. For vectors, the known bits are those that are shared by 2770 /// every vector element. 2771 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2772 EVT VT = Op.getValueType(); 2773 2774 // TOOD: Until we have a plan for how to represent demanded elements for 2775 // scalable vectors, we can just bail out for now. 2776 if (Op.getValueType().isScalableVector()) { 2777 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2778 return KnownBits(BitWidth); 2779 } 2780 2781 APInt DemandedElts = VT.isVector() 2782 ? APInt::getAllOnes(VT.getVectorNumElements()) 2783 : APInt(1, 1); 2784 return computeKnownBits(Op, DemandedElts, Depth); 2785 } 2786 2787 /// Determine which bits of Op are known to be either zero or one and return 2788 /// them in Known. The DemandedElts argument allows us to only collect the known 2789 /// bits that are shared by the requested vector elements. 2790 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2791 unsigned Depth) const { 2792 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2793 2794 KnownBits Known(BitWidth); // Don't know anything. 2795 2796 // TOOD: Until we have a plan for how to represent demanded elements for 2797 // scalable vectors, we can just bail out for now. 2798 if (Op.getValueType().isScalableVector()) 2799 return Known; 2800 2801 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2802 // We know all of the bits for a constant! 2803 return KnownBits::makeConstant(C->getAPIntValue()); 2804 } 2805 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2806 // We know all of the bits for a constant fp! 2807 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2808 } 2809 2810 if (Depth >= MaxRecursionDepth) 2811 return Known; // Limit search depth. 2812 2813 KnownBits Known2; 2814 unsigned NumElts = DemandedElts.getBitWidth(); 2815 assert((!Op.getValueType().isVector() || 2816 NumElts == Op.getValueType().getVectorNumElements()) && 2817 "Unexpected vector size"); 2818 2819 if (!DemandedElts) 2820 return Known; // No demanded elts, better to assume we don't know anything. 2821 2822 unsigned Opcode = Op.getOpcode(); 2823 switch (Opcode) { 2824 case ISD::BUILD_VECTOR: 2825 // Collect the known bits that are shared by every demanded vector element. 2826 Known.Zero.setAllBits(); Known.One.setAllBits(); 2827 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2828 if (!DemandedElts[i]) 2829 continue; 2830 2831 SDValue SrcOp = Op.getOperand(i); 2832 Known2 = computeKnownBits(SrcOp, Depth + 1); 2833 2834 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2835 if (SrcOp.getValueSizeInBits() != BitWidth) { 2836 assert(SrcOp.getValueSizeInBits() > BitWidth && 2837 "Expected BUILD_VECTOR implicit truncation"); 2838 Known2 = Known2.trunc(BitWidth); 2839 } 2840 2841 // Known bits are the values that are shared by every demanded element. 2842 Known = KnownBits::commonBits(Known, Known2); 2843 2844 // If we don't know any bits, early out. 2845 if (Known.isUnknown()) 2846 break; 2847 } 2848 break; 2849 case ISD::VECTOR_SHUFFLE: { 2850 // Collect the known bits that are shared by every vector element referenced 2851 // by the shuffle. 2852 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2853 Known.Zero.setAllBits(); Known.One.setAllBits(); 2854 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2855 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2856 for (unsigned i = 0; i != NumElts; ++i) { 2857 if (!DemandedElts[i]) 2858 continue; 2859 2860 int M = SVN->getMaskElt(i); 2861 if (M < 0) { 2862 // For UNDEF elements, we don't know anything about the common state of 2863 // the shuffle result. 2864 Known.resetAll(); 2865 DemandedLHS.clearAllBits(); 2866 DemandedRHS.clearAllBits(); 2867 break; 2868 } 2869 2870 if ((unsigned)M < NumElts) 2871 DemandedLHS.setBit((unsigned)M % NumElts); 2872 else 2873 DemandedRHS.setBit((unsigned)M % NumElts); 2874 } 2875 // Known bits are the values that are shared by every demanded element. 2876 if (!!DemandedLHS) { 2877 SDValue LHS = Op.getOperand(0); 2878 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2879 Known = KnownBits::commonBits(Known, Known2); 2880 } 2881 // If we don't know any bits, early out. 2882 if (Known.isUnknown()) 2883 break; 2884 if (!!DemandedRHS) { 2885 SDValue RHS = Op.getOperand(1); 2886 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2887 Known = KnownBits::commonBits(Known, Known2); 2888 } 2889 break; 2890 } 2891 case ISD::CONCAT_VECTORS: { 2892 // Split DemandedElts and test each of the demanded subvectors. 2893 Known.Zero.setAllBits(); Known.One.setAllBits(); 2894 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2895 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2896 unsigned NumSubVectors = Op.getNumOperands(); 2897 for (unsigned i = 0; i != NumSubVectors; ++i) { 2898 APInt DemandedSub = 2899 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2900 if (!!DemandedSub) { 2901 SDValue Sub = Op.getOperand(i); 2902 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2903 Known = KnownBits::commonBits(Known, Known2); 2904 } 2905 // If we don't know any bits, early out. 2906 if (Known.isUnknown()) 2907 break; 2908 } 2909 break; 2910 } 2911 case ISD::INSERT_SUBVECTOR: { 2912 // Demand any elements from the subvector and the remainder from the src its 2913 // inserted into. 2914 SDValue Src = Op.getOperand(0); 2915 SDValue Sub = Op.getOperand(1); 2916 uint64_t Idx = Op.getConstantOperandVal(2); 2917 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2918 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2919 APInt DemandedSrcElts = DemandedElts; 2920 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2921 2922 Known.One.setAllBits(); 2923 Known.Zero.setAllBits(); 2924 if (!!DemandedSubElts) { 2925 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2926 if (Known.isUnknown()) 2927 break; // early-out. 2928 } 2929 if (!!DemandedSrcElts) { 2930 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2931 Known = KnownBits::commonBits(Known, Known2); 2932 } 2933 break; 2934 } 2935 case ISD::EXTRACT_SUBVECTOR: { 2936 // Offset the demanded elts by the subvector index. 2937 SDValue Src = Op.getOperand(0); 2938 // Bail until we can represent demanded elements for scalable vectors. 2939 if (Src.getValueType().isScalableVector()) 2940 break; 2941 uint64_t Idx = Op.getConstantOperandVal(1); 2942 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2943 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2944 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2945 break; 2946 } 2947 case ISD::SCALAR_TO_VECTOR: { 2948 // We know about scalar_to_vector as much as we know about it source, 2949 // which becomes the first element of otherwise unknown vector. 2950 if (DemandedElts != 1) 2951 break; 2952 2953 SDValue N0 = Op.getOperand(0); 2954 Known = computeKnownBits(N0, Depth + 1); 2955 if (N0.getValueSizeInBits() != BitWidth) 2956 Known = Known.trunc(BitWidth); 2957 2958 break; 2959 } 2960 case ISD::BITCAST: { 2961 SDValue N0 = Op.getOperand(0); 2962 EVT SubVT = N0.getValueType(); 2963 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2964 2965 // Ignore bitcasts from unsupported types. 2966 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2967 break; 2968 2969 // Fast handling of 'identity' bitcasts. 2970 if (BitWidth == SubBitWidth) { 2971 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2972 break; 2973 } 2974 2975 bool IsLE = getDataLayout().isLittleEndian(); 2976 2977 // Bitcast 'small element' vector to 'large element' scalar/vector. 2978 if ((BitWidth % SubBitWidth) == 0) { 2979 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2980 2981 // Collect known bits for the (larger) output by collecting the known 2982 // bits from each set of sub elements and shift these into place. 2983 // We need to separately call computeKnownBits for each set of 2984 // sub elements as the knownbits for each is likely to be different. 2985 unsigned SubScale = BitWidth / SubBitWidth; 2986 APInt SubDemandedElts(NumElts * SubScale, 0); 2987 for (unsigned i = 0; i != NumElts; ++i) 2988 if (DemandedElts[i]) 2989 SubDemandedElts.setBit(i * SubScale); 2990 2991 for (unsigned i = 0; i != SubScale; ++i) { 2992 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2993 Depth + 1); 2994 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2995 Known.insertBits(Known2, SubBitWidth * Shifts); 2996 } 2997 } 2998 2999 // Bitcast 'large element' scalar/vector to 'small element' vector. 3000 if ((SubBitWidth % BitWidth) == 0) { 3001 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3002 3003 // Collect known bits for the (smaller) output by collecting the known 3004 // bits from the overlapping larger input elements and extracting the 3005 // sub sections we actually care about. 3006 unsigned SubScale = SubBitWidth / BitWidth; 3007 APInt SubDemandedElts = 3008 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3009 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3010 3011 Known.Zero.setAllBits(); Known.One.setAllBits(); 3012 for (unsigned i = 0; i != NumElts; ++i) 3013 if (DemandedElts[i]) { 3014 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3015 unsigned Offset = (Shifts % SubScale) * BitWidth; 3016 Known = KnownBits::commonBits(Known, 3017 Known2.extractBits(BitWidth, Offset)); 3018 // If we don't know any bits, early out. 3019 if (Known.isUnknown()) 3020 break; 3021 } 3022 } 3023 break; 3024 } 3025 case ISD::AND: 3026 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3027 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3028 3029 Known &= Known2; 3030 break; 3031 case ISD::OR: 3032 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3033 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3034 3035 Known |= Known2; 3036 break; 3037 case ISD::XOR: 3038 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3039 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3040 3041 Known ^= Known2; 3042 break; 3043 case ISD::MUL: { 3044 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3045 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3046 Known = KnownBits::mul(Known, Known2); 3047 break; 3048 } 3049 case ISD::MULHU: { 3050 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3051 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3052 Known = KnownBits::mulhu(Known, Known2); 3053 break; 3054 } 3055 case ISD::MULHS: { 3056 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3057 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3058 Known = KnownBits::mulhs(Known, Known2); 3059 break; 3060 } 3061 case ISD::UMUL_LOHI: { 3062 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3063 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3064 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3065 if (Op.getResNo() == 0) 3066 Known = KnownBits::mul(Known, Known2); 3067 else 3068 Known = KnownBits::mulhu(Known, Known2); 3069 break; 3070 } 3071 case ISD::SMUL_LOHI: { 3072 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3073 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3074 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3075 if (Op.getResNo() == 0) 3076 Known = KnownBits::mul(Known, Known2); 3077 else 3078 Known = KnownBits::mulhs(Known, Known2); 3079 break; 3080 } 3081 case ISD::UDIV: { 3082 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3083 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3084 Known = KnownBits::udiv(Known, Known2); 3085 break; 3086 } 3087 case ISD::SELECT: 3088 case ISD::VSELECT: 3089 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3090 // If we don't know any bits, early out. 3091 if (Known.isUnknown()) 3092 break; 3093 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3094 3095 // Only known if known in both the LHS and RHS. 3096 Known = KnownBits::commonBits(Known, Known2); 3097 break; 3098 case ISD::SELECT_CC: 3099 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3100 // If we don't know any bits, early out. 3101 if (Known.isUnknown()) 3102 break; 3103 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3104 3105 // Only known if known in both the LHS and RHS. 3106 Known = KnownBits::commonBits(Known, Known2); 3107 break; 3108 case ISD::SMULO: 3109 case ISD::UMULO: 3110 if (Op.getResNo() != 1) 3111 break; 3112 // The boolean result conforms to getBooleanContents. 3113 // If we know the result of a setcc has the top bits zero, use this info. 3114 // We know that we have an integer-based boolean since these operations 3115 // are only available for integer. 3116 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3117 TargetLowering::ZeroOrOneBooleanContent && 3118 BitWidth > 1) 3119 Known.Zero.setBitsFrom(1); 3120 break; 3121 case ISD::SETCC: 3122 case ISD::STRICT_FSETCC: 3123 case ISD::STRICT_FSETCCS: { 3124 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3125 // If we know the result of a setcc has the top bits zero, use this info. 3126 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3127 TargetLowering::ZeroOrOneBooleanContent && 3128 BitWidth > 1) 3129 Known.Zero.setBitsFrom(1); 3130 break; 3131 } 3132 case ISD::SHL: 3133 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3134 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3135 Known = KnownBits::shl(Known, Known2); 3136 3137 // Minimum shift low bits are known zero. 3138 if (const APInt *ShMinAmt = 3139 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3140 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3141 break; 3142 case ISD::SRL: 3143 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3144 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3145 Known = KnownBits::lshr(Known, Known2); 3146 3147 // Minimum shift high bits are known zero. 3148 if (const APInt *ShMinAmt = 3149 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3150 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3151 break; 3152 case ISD::SRA: 3153 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3154 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3155 Known = KnownBits::ashr(Known, Known2); 3156 // TODO: Add minimum shift high known sign bits. 3157 break; 3158 case ISD::FSHL: 3159 case ISD::FSHR: 3160 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3161 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3162 3163 // For fshl, 0-shift returns the 1st arg. 3164 // For fshr, 0-shift returns the 2nd arg. 3165 if (Amt == 0) { 3166 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3167 DemandedElts, Depth + 1); 3168 break; 3169 } 3170 3171 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3172 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3173 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3174 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3175 if (Opcode == ISD::FSHL) { 3176 Known.One <<= Amt; 3177 Known.Zero <<= Amt; 3178 Known2.One.lshrInPlace(BitWidth - Amt); 3179 Known2.Zero.lshrInPlace(BitWidth - Amt); 3180 } else { 3181 Known.One <<= BitWidth - Amt; 3182 Known.Zero <<= BitWidth - Amt; 3183 Known2.One.lshrInPlace(Amt); 3184 Known2.Zero.lshrInPlace(Amt); 3185 } 3186 Known.One |= Known2.One; 3187 Known.Zero |= Known2.Zero; 3188 } 3189 break; 3190 case ISD::SIGN_EXTEND_INREG: { 3191 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3192 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3193 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3194 break; 3195 } 3196 case ISD::CTTZ: 3197 case ISD::CTTZ_ZERO_UNDEF: { 3198 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3199 // If we have a known 1, its position is our upper bound. 3200 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3201 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3202 Known.Zero.setBitsFrom(LowBits); 3203 break; 3204 } 3205 case ISD::CTLZ: 3206 case ISD::CTLZ_ZERO_UNDEF: { 3207 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3208 // If we have a known 1, its position is our upper bound. 3209 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3210 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3211 Known.Zero.setBitsFrom(LowBits); 3212 break; 3213 } 3214 case ISD::CTPOP: { 3215 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3216 // If we know some of the bits are zero, they can't be one. 3217 unsigned PossibleOnes = Known2.countMaxPopulation(); 3218 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3219 break; 3220 } 3221 case ISD::PARITY: { 3222 // Parity returns 0 everywhere but the LSB. 3223 Known.Zero.setBitsFrom(1); 3224 break; 3225 } 3226 case ISD::LOAD: { 3227 LoadSDNode *LD = cast<LoadSDNode>(Op); 3228 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3229 if (ISD::isNON_EXTLoad(LD) && Cst) { 3230 // Determine any common known bits from the loaded constant pool value. 3231 Type *CstTy = Cst->getType(); 3232 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3233 // If its a vector splat, then we can (quickly) reuse the scalar path. 3234 // NOTE: We assume all elements match and none are UNDEF. 3235 if (CstTy->isVectorTy()) { 3236 if (const Constant *Splat = Cst->getSplatValue()) { 3237 Cst = Splat; 3238 CstTy = Cst->getType(); 3239 } 3240 } 3241 // TODO - do we need to handle different bitwidths? 3242 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3243 // Iterate across all vector elements finding common known bits. 3244 Known.One.setAllBits(); 3245 Known.Zero.setAllBits(); 3246 for (unsigned i = 0; i != NumElts; ++i) { 3247 if (!DemandedElts[i]) 3248 continue; 3249 if (Constant *Elt = Cst->getAggregateElement(i)) { 3250 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3251 const APInt &Value = CInt->getValue(); 3252 Known.One &= Value; 3253 Known.Zero &= ~Value; 3254 continue; 3255 } 3256 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3257 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3258 Known.One &= Value; 3259 Known.Zero &= ~Value; 3260 continue; 3261 } 3262 } 3263 Known.One.clearAllBits(); 3264 Known.Zero.clearAllBits(); 3265 break; 3266 } 3267 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3268 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3269 Known = KnownBits::makeConstant(CInt->getValue()); 3270 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3271 Known = 3272 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3273 } 3274 } 3275 } 3276 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3277 // If this is a ZEXTLoad and we are looking at the loaded value. 3278 EVT VT = LD->getMemoryVT(); 3279 unsigned MemBits = VT.getScalarSizeInBits(); 3280 Known.Zero.setBitsFrom(MemBits); 3281 } else if (const MDNode *Ranges = LD->getRanges()) { 3282 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3283 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3284 } 3285 break; 3286 } 3287 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3288 EVT InVT = Op.getOperand(0).getValueType(); 3289 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3290 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3291 Known = Known.zext(BitWidth); 3292 break; 3293 } 3294 case ISD::ZERO_EXTEND: { 3295 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3296 Known = Known.zext(BitWidth); 3297 break; 3298 } 3299 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3300 EVT InVT = Op.getOperand(0).getValueType(); 3301 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3302 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3303 // If the sign bit is known to be zero or one, then sext will extend 3304 // it to the top bits, else it will just zext. 3305 Known = Known.sext(BitWidth); 3306 break; 3307 } 3308 case ISD::SIGN_EXTEND: { 3309 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3310 // If the sign bit is known to be zero or one, then sext will extend 3311 // it to the top bits, else it will just zext. 3312 Known = Known.sext(BitWidth); 3313 break; 3314 } 3315 case ISD::ANY_EXTEND_VECTOR_INREG: { 3316 EVT InVT = Op.getOperand(0).getValueType(); 3317 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3318 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3319 Known = Known.anyext(BitWidth); 3320 break; 3321 } 3322 case ISD::ANY_EXTEND: { 3323 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3324 Known = Known.anyext(BitWidth); 3325 break; 3326 } 3327 case ISD::TRUNCATE: { 3328 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3329 Known = Known.trunc(BitWidth); 3330 break; 3331 } 3332 case ISD::AssertZext: { 3333 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3334 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3335 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3336 Known.Zero |= (~InMask); 3337 Known.One &= (~Known.Zero); 3338 break; 3339 } 3340 case ISD::AssertAlign: { 3341 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3342 assert(LogOfAlign != 0); 3343 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3344 // well as clearing one bits. 3345 Known.Zero.setLowBits(LogOfAlign); 3346 Known.One.clearLowBits(LogOfAlign); 3347 break; 3348 } 3349 case ISD::FGETSIGN: 3350 // All bits are zero except the low bit. 3351 Known.Zero.setBitsFrom(1); 3352 break; 3353 case ISD::USUBO: 3354 case ISD::SSUBO: 3355 if (Op.getResNo() == 1) { 3356 // If we know the result of a setcc has the top bits zero, use this info. 3357 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3358 TargetLowering::ZeroOrOneBooleanContent && 3359 BitWidth > 1) 3360 Known.Zero.setBitsFrom(1); 3361 break; 3362 } 3363 LLVM_FALLTHROUGH; 3364 case ISD::SUB: 3365 case ISD::SUBC: { 3366 assert(Op.getResNo() == 0 && 3367 "We only compute knownbits for the difference here."); 3368 3369 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3370 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3371 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3372 Known, Known2); 3373 break; 3374 } 3375 case ISD::UADDO: 3376 case ISD::SADDO: 3377 case ISD::ADDCARRY: 3378 if (Op.getResNo() == 1) { 3379 // If we know the result of a setcc has the top bits zero, use this info. 3380 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3381 TargetLowering::ZeroOrOneBooleanContent && 3382 BitWidth > 1) 3383 Known.Zero.setBitsFrom(1); 3384 break; 3385 } 3386 LLVM_FALLTHROUGH; 3387 case ISD::ADD: 3388 case ISD::ADDC: 3389 case ISD::ADDE: { 3390 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3391 3392 // With ADDE and ADDCARRY, a carry bit may be added in. 3393 KnownBits Carry(1); 3394 if (Opcode == ISD::ADDE) 3395 // Can't track carry from glue, set carry to unknown. 3396 Carry.resetAll(); 3397 else if (Opcode == ISD::ADDCARRY) 3398 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3399 // the trouble (how often will we find a known carry bit). And I haven't 3400 // tested this very much yet, but something like this might work: 3401 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3402 // Carry = Carry.zextOrTrunc(1, false); 3403 Carry.resetAll(); 3404 else 3405 Carry.setAllZero(); 3406 3407 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3408 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3409 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3410 break; 3411 } 3412 case ISD::SREM: { 3413 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3414 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3415 Known = KnownBits::srem(Known, Known2); 3416 break; 3417 } 3418 case ISD::UREM: { 3419 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3420 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3421 Known = KnownBits::urem(Known, Known2); 3422 break; 3423 } 3424 case ISD::EXTRACT_ELEMENT: { 3425 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3426 const unsigned Index = Op.getConstantOperandVal(1); 3427 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3428 3429 // Remove low part of known bits mask 3430 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3431 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3432 3433 // Remove high part of known bit mask 3434 Known = Known.trunc(EltBitWidth); 3435 break; 3436 } 3437 case ISD::EXTRACT_VECTOR_ELT: { 3438 SDValue InVec = Op.getOperand(0); 3439 SDValue EltNo = Op.getOperand(1); 3440 EVT VecVT = InVec.getValueType(); 3441 // computeKnownBits not yet implemented for scalable vectors. 3442 if (VecVT.isScalableVector()) 3443 break; 3444 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3445 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3446 3447 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3448 // anything about the extended bits. 3449 if (BitWidth > EltBitWidth) 3450 Known = Known.trunc(EltBitWidth); 3451 3452 // If we know the element index, just demand that vector element, else for 3453 // an unknown element index, ignore DemandedElts and demand them all. 3454 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3455 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3456 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3457 DemandedSrcElts = 3458 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3459 3460 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3461 if (BitWidth > EltBitWidth) 3462 Known = Known.anyext(BitWidth); 3463 break; 3464 } 3465 case ISD::INSERT_VECTOR_ELT: { 3466 // If we know the element index, split the demand between the 3467 // source vector and the inserted element, otherwise assume we need 3468 // the original demanded vector elements and the value. 3469 SDValue InVec = Op.getOperand(0); 3470 SDValue InVal = Op.getOperand(1); 3471 SDValue EltNo = Op.getOperand(2); 3472 bool DemandedVal = true; 3473 APInt DemandedVecElts = DemandedElts; 3474 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3475 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3476 unsigned EltIdx = CEltNo->getZExtValue(); 3477 DemandedVal = !!DemandedElts[EltIdx]; 3478 DemandedVecElts.clearBit(EltIdx); 3479 } 3480 Known.One.setAllBits(); 3481 Known.Zero.setAllBits(); 3482 if (DemandedVal) { 3483 Known2 = computeKnownBits(InVal, Depth + 1); 3484 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3485 } 3486 if (!!DemandedVecElts) { 3487 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3488 Known = KnownBits::commonBits(Known, Known2); 3489 } 3490 break; 3491 } 3492 case ISD::BITREVERSE: { 3493 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3494 Known = Known2.reverseBits(); 3495 break; 3496 } 3497 case ISD::BSWAP: { 3498 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3499 Known = Known2.byteSwap(); 3500 break; 3501 } 3502 case ISD::ABS: { 3503 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3504 Known = Known2.abs(); 3505 break; 3506 } 3507 case ISD::USUBSAT: { 3508 // The result of usubsat will never be larger than the LHS. 3509 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3510 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3511 break; 3512 } 3513 case ISD::UMIN: { 3514 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3515 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3516 Known = KnownBits::umin(Known, Known2); 3517 break; 3518 } 3519 case ISD::UMAX: { 3520 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3521 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3522 Known = KnownBits::umax(Known, Known2); 3523 break; 3524 } 3525 case ISD::SMIN: 3526 case ISD::SMAX: { 3527 // If we have a clamp pattern, we know that the number of sign bits will be 3528 // the minimum of the clamp min/max range. 3529 bool IsMax = (Opcode == ISD::SMAX); 3530 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3531 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3532 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3533 CstHigh = 3534 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3535 if (CstLow && CstHigh) { 3536 if (!IsMax) 3537 std::swap(CstLow, CstHigh); 3538 3539 const APInt &ValueLow = CstLow->getAPIntValue(); 3540 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3541 if (ValueLow.sle(ValueHigh)) { 3542 unsigned LowSignBits = ValueLow.getNumSignBits(); 3543 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3544 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3545 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3546 Known.One.setHighBits(MinSignBits); 3547 break; 3548 } 3549 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3550 Known.Zero.setHighBits(MinSignBits); 3551 break; 3552 } 3553 } 3554 } 3555 3556 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3557 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3558 if (IsMax) 3559 Known = KnownBits::smax(Known, Known2); 3560 else 3561 Known = KnownBits::smin(Known, Known2); 3562 break; 3563 } 3564 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3565 if (Op.getResNo() == 1) { 3566 // The boolean result conforms to getBooleanContents. 3567 // If we know the result of a setcc has the top bits zero, use this info. 3568 // We know that we have an integer-based boolean since these operations 3569 // are only available for integer. 3570 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3571 TargetLowering::ZeroOrOneBooleanContent && 3572 BitWidth > 1) 3573 Known.Zero.setBitsFrom(1); 3574 break; 3575 } 3576 LLVM_FALLTHROUGH; 3577 case ISD::ATOMIC_CMP_SWAP: 3578 case ISD::ATOMIC_SWAP: 3579 case ISD::ATOMIC_LOAD_ADD: 3580 case ISD::ATOMIC_LOAD_SUB: 3581 case ISD::ATOMIC_LOAD_AND: 3582 case ISD::ATOMIC_LOAD_CLR: 3583 case ISD::ATOMIC_LOAD_OR: 3584 case ISD::ATOMIC_LOAD_XOR: 3585 case ISD::ATOMIC_LOAD_NAND: 3586 case ISD::ATOMIC_LOAD_MIN: 3587 case ISD::ATOMIC_LOAD_MAX: 3588 case ISD::ATOMIC_LOAD_UMIN: 3589 case ISD::ATOMIC_LOAD_UMAX: 3590 case ISD::ATOMIC_LOAD: { 3591 unsigned MemBits = 3592 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3593 // If we are looking at the loaded value. 3594 if (Op.getResNo() == 0) { 3595 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3596 Known.Zero.setBitsFrom(MemBits); 3597 } 3598 break; 3599 } 3600 case ISD::FrameIndex: 3601 case ISD::TargetFrameIndex: 3602 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3603 Known, getMachineFunction()); 3604 break; 3605 3606 default: 3607 if (Opcode < ISD::BUILTIN_OP_END) 3608 break; 3609 LLVM_FALLTHROUGH; 3610 case ISD::INTRINSIC_WO_CHAIN: 3611 case ISD::INTRINSIC_W_CHAIN: 3612 case ISD::INTRINSIC_VOID: 3613 // Allow the target to implement this method for its nodes. 3614 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3615 break; 3616 } 3617 3618 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3619 return Known; 3620 } 3621 3622 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3623 SDValue N1) const { 3624 // X + 0 never overflow 3625 if (isNullConstant(N1)) 3626 return OFK_Never; 3627 3628 KnownBits N1Known = computeKnownBits(N1); 3629 if (N1Known.Zero.getBoolValue()) { 3630 KnownBits N0Known = computeKnownBits(N0); 3631 3632 bool overflow; 3633 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3634 if (!overflow) 3635 return OFK_Never; 3636 } 3637 3638 // mulhi + 1 never overflow 3639 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3640 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3641 return OFK_Never; 3642 3643 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3644 KnownBits N0Known = computeKnownBits(N0); 3645 3646 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3647 return OFK_Never; 3648 } 3649 3650 return OFK_Sometime; 3651 } 3652 3653 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3654 EVT OpVT = Val.getValueType(); 3655 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3656 3657 // Is the constant a known power of 2? 3658 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3659 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3660 3661 // A left-shift of a constant one will have exactly one bit set because 3662 // shifting the bit off the end is undefined. 3663 if (Val.getOpcode() == ISD::SHL) { 3664 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3665 if (C && C->getAPIntValue() == 1) 3666 return true; 3667 } 3668 3669 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3670 // one bit set. 3671 if (Val.getOpcode() == ISD::SRL) { 3672 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3673 if (C && C->getAPIntValue().isSignMask()) 3674 return true; 3675 } 3676 3677 // Are all operands of a build vector constant powers of two? 3678 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3679 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3680 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3681 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3682 return false; 3683 })) 3684 return true; 3685 3686 // Is the operand of a splat vector a constant power of two? 3687 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3688 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3689 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3690 return true; 3691 3692 // More could be done here, though the above checks are enough 3693 // to handle some common cases. 3694 3695 // Fall back to computeKnownBits to catch other known cases. 3696 KnownBits Known = computeKnownBits(Val); 3697 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3698 } 3699 3700 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3701 EVT VT = Op.getValueType(); 3702 3703 // TODO: Assume we don't know anything for now. 3704 if (VT.isScalableVector()) 3705 return 1; 3706 3707 APInt DemandedElts = VT.isVector() 3708 ? APInt::getAllOnes(VT.getVectorNumElements()) 3709 : APInt(1, 1); 3710 return ComputeNumSignBits(Op, DemandedElts, Depth); 3711 } 3712 3713 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3714 unsigned Depth) const { 3715 EVT VT = Op.getValueType(); 3716 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3717 unsigned VTBits = VT.getScalarSizeInBits(); 3718 unsigned NumElts = DemandedElts.getBitWidth(); 3719 unsigned Tmp, Tmp2; 3720 unsigned FirstAnswer = 1; 3721 3722 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3723 const APInt &Val = C->getAPIntValue(); 3724 return Val.getNumSignBits(); 3725 } 3726 3727 if (Depth >= MaxRecursionDepth) 3728 return 1; // Limit search depth. 3729 3730 if (!DemandedElts || VT.isScalableVector()) 3731 return 1; // No demanded elts, better to assume we don't know anything. 3732 3733 unsigned Opcode = Op.getOpcode(); 3734 switch (Opcode) { 3735 default: break; 3736 case ISD::AssertSext: 3737 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3738 return VTBits-Tmp+1; 3739 case ISD::AssertZext: 3740 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3741 return VTBits-Tmp; 3742 3743 case ISD::BUILD_VECTOR: 3744 Tmp = VTBits; 3745 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3746 if (!DemandedElts[i]) 3747 continue; 3748 3749 SDValue SrcOp = Op.getOperand(i); 3750 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3751 3752 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3753 if (SrcOp.getValueSizeInBits() != VTBits) { 3754 assert(SrcOp.getValueSizeInBits() > VTBits && 3755 "Expected BUILD_VECTOR implicit truncation"); 3756 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3757 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3758 } 3759 Tmp = std::min(Tmp, Tmp2); 3760 } 3761 return Tmp; 3762 3763 case ISD::VECTOR_SHUFFLE: { 3764 // Collect the minimum number of sign bits that are shared by every vector 3765 // element referenced by the shuffle. 3766 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3767 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3768 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3769 for (unsigned i = 0; i != NumElts; ++i) { 3770 int M = SVN->getMaskElt(i); 3771 if (!DemandedElts[i]) 3772 continue; 3773 // For UNDEF elements, we don't know anything about the common state of 3774 // the shuffle result. 3775 if (M < 0) 3776 return 1; 3777 if ((unsigned)M < NumElts) 3778 DemandedLHS.setBit((unsigned)M % NumElts); 3779 else 3780 DemandedRHS.setBit((unsigned)M % NumElts); 3781 } 3782 Tmp = std::numeric_limits<unsigned>::max(); 3783 if (!!DemandedLHS) 3784 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3785 if (!!DemandedRHS) { 3786 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3787 Tmp = std::min(Tmp, Tmp2); 3788 } 3789 // If we don't know anything, early out and try computeKnownBits fall-back. 3790 if (Tmp == 1) 3791 break; 3792 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3793 return Tmp; 3794 } 3795 3796 case ISD::BITCAST: { 3797 SDValue N0 = Op.getOperand(0); 3798 EVT SrcVT = N0.getValueType(); 3799 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3800 3801 // Ignore bitcasts from unsupported types.. 3802 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3803 break; 3804 3805 // Fast handling of 'identity' bitcasts. 3806 if (VTBits == SrcBits) 3807 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3808 3809 bool IsLE = getDataLayout().isLittleEndian(); 3810 3811 // Bitcast 'large element' scalar/vector to 'small element' vector. 3812 if ((SrcBits % VTBits) == 0) { 3813 assert(VT.isVector() && "Expected bitcast to vector"); 3814 3815 unsigned Scale = SrcBits / VTBits; 3816 APInt SrcDemandedElts = 3817 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3818 3819 // Fast case - sign splat can be simply split across the small elements. 3820 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3821 if (Tmp == SrcBits) 3822 return VTBits; 3823 3824 // Slow case - determine how far the sign extends into each sub-element. 3825 Tmp2 = VTBits; 3826 for (unsigned i = 0; i != NumElts; ++i) 3827 if (DemandedElts[i]) { 3828 unsigned SubOffset = i % Scale; 3829 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3830 SubOffset = SubOffset * VTBits; 3831 if (Tmp <= SubOffset) 3832 return 1; 3833 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3834 } 3835 return Tmp2; 3836 } 3837 break; 3838 } 3839 3840 case ISD::SIGN_EXTEND: 3841 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3842 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3843 case ISD::SIGN_EXTEND_INREG: 3844 // Max of the input and what this extends. 3845 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3846 Tmp = VTBits-Tmp+1; 3847 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3848 return std::max(Tmp, Tmp2); 3849 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3850 SDValue Src = Op.getOperand(0); 3851 EVT SrcVT = Src.getValueType(); 3852 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3853 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3854 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3855 } 3856 case ISD::SRA: 3857 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3858 // SRA X, C -> adds C sign bits. 3859 if (const APInt *ShAmt = 3860 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3861 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3862 return Tmp; 3863 case ISD::SHL: 3864 if (const APInt *ShAmt = 3865 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3866 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3867 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3868 if (ShAmt->ult(Tmp)) 3869 return Tmp - ShAmt->getZExtValue(); 3870 } 3871 break; 3872 case ISD::AND: 3873 case ISD::OR: 3874 case ISD::XOR: // NOT is handled here. 3875 // Logical binary ops preserve the number of sign bits at the worst. 3876 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3877 if (Tmp != 1) { 3878 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3879 FirstAnswer = std::min(Tmp, Tmp2); 3880 // We computed what we know about the sign bits as our first 3881 // answer. Now proceed to the generic code that uses 3882 // computeKnownBits, and pick whichever answer is better. 3883 } 3884 break; 3885 3886 case ISD::SELECT: 3887 case ISD::VSELECT: 3888 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3889 if (Tmp == 1) return 1; // Early out. 3890 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3891 return std::min(Tmp, Tmp2); 3892 case ISD::SELECT_CC: 3893 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3894 if (Tmp == 1) return 1; // Early out. 3895 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3896 return std::min(Tmp, Tmp2); 3897 3898 case ISD::SMIN: 3899 case ISD::SMAX: { 3900 // If we have a clamp pattern, we know that the number of sign bits will be 3901 // the minimum of the clamp min/max range. 3902 bool IsMax = (Opcode == ISD::SMAX); 3903 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3904 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3905 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3906 CstHigh = 3907 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3908 if (CstLow && CstHigh) { 3909 if (!IsMax) 3910 std::swap(CstLow, CstHigh); 3911 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3912 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3913 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3914 return std::min(Tmp, Tmp2); 3915 } 3916 } 3917 3918 // Fallback - just get the minimum number of sign bits of the operands. 3919 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3920 if (Tmp == 1) 3921 return 1; // Early out. 3922 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3923 return std::min(Tmp, Tmp2); 3924 } 3925 case ISD::UMIN: 3926 case ISD::UMAX: 3927 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3928 if (Tmp == 1) 3929 return 1; // Early out. 3930 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3931 return std::min(Tmp, Tmp2); 3932 case ISD::SADDO: 3933 case ISD::UADDO: 3934 case ISD::SSUBO: 3935 case ISD::USUBO: 3936 case ISD::SMULO: 3937 case ISD::UMULO: 3938 if (Op.getResNo() != 1) 3939 break; 3940 // The boolean result conforms to getBooleanContents. Fall through. 3941 // If setcc returns 0/-1, all bits are sign bits. 3942 // We know that we have an integer-based boolean since these operations 3943 // are only available for integer. 3944 if (TLI->getBooleanContents(VT.isVector(), false) == 3945 TargetLowering::ZeroOrNegativeOneBooleanContent) 3946 return VTBits; 3947 break; 3948 case ISD::SETCC: 3949 case ISD::STRICT_FSETCC: 3950 case ISD::STRICT_FSETCCS: { 3951 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3952 // If setcc returns 0/-1, all bits are sign bits. 3953 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3954 TargetLowering::ZeroOrNegativeOneBooleanContent) 3955 return VTBits; 3956 break; 3957 } 3958 case ISD::ROTL: 3959 case ISD::ROTR: 3960 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3961 3962 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3963 if (Tmp == VTBits) 3964 return VTBits; 3965 3966 if (ConstantSDNode *C = 3967 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3968 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3969 3970 // Handle rotate right by N like a rotate left by 32-N. 3971 if (Opcode == ISD::ROTR) 3972 RotAmt = (VTBits - RotAmt) % VTBits; 3973 3974 // If we aren't rotating out all of the known-in sign bits, return the 3975 // number that are left. This handles rotl(sext(x), 1) for example. 3976 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3977 } 3978 break; 3979 case ISD::ADD: 3980 case ISD::ADDC: 3981 // Add can have at most one carry bit. Thus we know that the output 3982 // is, at worst, one more bit than the inputs. 3983 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3984 if (Tmp == 1) return 1; // Early out. 3985 3986 // Special case decrementing a value (ADD X, -1): 3987 if (ConstantSDNode *CRHS = 3988 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3989 if (CRHS->isAllOnes()) { 3990 KnownBits Known = 3991 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3992 3993 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3994 // sign bits set. 3995 if ((Known.Zero | 1).isAllOnes()) 3996 return VTBits; 3997 3998 // If we are subtracting one from a positive number, there is no carry 3999 // out of the result. 4000 if (Known.isNonNegative()) 4001 return Tmp; 4002 } 4003 4004 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4005 if (Tmp2 == 1) return 1; // Early out. 4006 return std::min(Tmp, Tmp2) - 1; 4007 case ISD::SUB: 4008 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4009 if (Tmp2 == 1) return 1; // Early out. 4010 4011 // Handle NEG. 4012 if (ConstantSDNode *CLHS = 4013 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4014 if (CLHS->isZero()) { 4015 KnownBits Known = 4016 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4017 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4018 // sign bits set. 4019 if ((Known.Zero | 1).isAllOnes()) 4020 return VTBits; 4021 4022 // If the input is known to be positive (the sign bit is known clear), 4023 // the output of the NEG has the same number of sign bits as the input. 4024 if (Known.isNonNegative()) 4025 return Tmp2; 4026 4027 // Otherwise, we treat this like a SUB. 4028 } 4029 4030 // Sub can have at most one carry bit. Thus we know that the output 4031 // is, at worst, one more bit than the inputs. 4032 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4033 if (Tmp == 1) return 1; // Early out. 4034 return std::min(Tmp, Tmp2) - 1; 4035 case ISD::MUL: { 4036 // The output of the Mul can be at most twice the valid bits in the inputs. 4037 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4038 if (SignBitsOp0 == 1) 4039 break; 4040 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4041 if (SignBitsOp1 == 1) 4042 break; 4043 unsigned OutValidBits = 4044 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4045 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4046 } 4047 case ISD::SREM: 4048 // The sign bit is the LHS's sign bit, except when the result of the 4049 // remainder is zero. The magnitude of the result should be less than or 4050 // equal to the magnitude of the LHS. Therefore, the result should have 4051 // at least as many sign bits as the left hand side. 4052 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4053 case ISD::TRUNCATE: { 4054 // Check if the sign bits of source go down as far as the truncated value. 4055 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4056 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4057 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4058 return NumSrcSignBits - (NumSrcBits - VTBits); 4059 break; 4060 } 4061 case ISD::EXTRACT_ELEMENT: { 4062 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4063 const int BitWidth = Op.getValueSizeInBits(); 4064 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4065 4066 // Get reverse index (starting from 1), Op1 value indexes elements from 4067 // little end. Sign starts at big end. 4068 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4069 4070 // If the sign portion ends in our element the subtraction gives correct 4071 // result. Otherwise it gives either negative or > bitwidth result 4072 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4073 } 4074 case ISD::INSERT_VECTOR_ELT: { 4075 // If we know the element index, split the demand between the 4076 // source vector and the inserted element, otherwise assume we need 4077 // the original demanded vector elements and the value. 4078 SDValue InVec = Op.getOperand(0); 4079 SDValue InVal = Op.getOperand(1); 4080 SDValue EltNo = Op.getOperand(2); 4081 bool DemandedVal = true; 4082 APInt DemandedVecElts = DemandedElts; 4083 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4084 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4085 unsigned EltIdx = CEltNo->getZExtValue(); 4086 DemandedVal = !!DemandedElts[EltIdx]; 4087 DemandedVecElts.clearBit(EltIdx); 4088 } 4089 Tmp = std::numeric_limits<unsigned>::max(); 4090 if (DemandedVal) { 4091 // TODO - handle implicit truncation of inserted elements. 4092 if (InVal.getScalarValueSizeInBits() != VTBits) 4093 break; 4094 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4095 Tmp = std::min(Tmp, Tmp2); 4096 } 4097 if (!!DemandedVecElts) { 4098 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4099 Tmp = std::min(Tmp, Tmp2); 4100 } 4101 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4102 return Tmp; 4103 } 4104 case ISD::EXTRACT_VECTOR_ELT: { 4105 SDValue InVec = Op.getOperand(0); 4106 SDValue EltNo = Op.getOperand(1); 4107 EVT VecVT = InVec.getValueType(); 4108 // ComputeNumSignBits not yet implemented for scalable vectors. 4109 if (VecVT.isScalableVector()) 4110 break; 4111 const unsigned BitWidth = Op.getValueSizeInBits(); 4112 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4113 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4114 4115 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4116 // anything about sign bits. But if the sizes match we can derive knowledge 4117 // about sign bits from the vector operand. 4118 if (BitWidth != EltBitWidth) 4119 break; 4120 4121 // If we know the element index, just demand that vector element, else for 4122 // an unknown element index, ignore DemandedElts and demand them all. 4123 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4124 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4125 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4126 DemandedSrcElts = 4127 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4128 4129 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4130 } 4131 case ISD::EXTRACT_SUBVECTOR: { 4132 // Offset the demanded elts by the subvector index. 4133 SDValue Src = Op.getOperand(0); 4134 // Bail until we can represent demanded elements for scalable vectors. 4135 if (Src.getValueType().isScalableVector()) 4136 break; 4137 uint64_t Idx = Op.getConstantOperandVal(1); 4138 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4139 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4140 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4141 } 4142 case ISD::CONCAT_VECTORS: { 4143 // Determine the minimum number of sign bits across all demanded 4144 // elts of the input vectors. Early out if the result is already 1. 4145 Tmp = std::numeric_limits<unsigned>::max(); 4146 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4147 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4148 unsigned NumSubVectors = Op.getNumOperands(); 4149 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4150 APInt DemandedSub = 4151 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4152 if (!DemandedSub) 4153 continue; 4154 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4155 Tmp = std::min(Tmp, Tmp2); 4156 } 4157 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4158 return Tmp; 4159 } 4160 case ISD::INSERT_SUBVECTOR: { 4161 // Demand any elements from the subvector and the remainder from the src its 4162 // inserted into. 4163 SDValue Src = Op.getOperand(0); 4164 SDValue Sub = Op.getOperand(1); 4165 uint64_t Idx = Op.getConstantOperandVal(2); 4166 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4167 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4168 APInt DemandedSrcElts = DemandedElts; 4169 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4170 4171 Tmp = std::numeric_limits<unsigned>::max(); 4172 if (!!DemandedSubElts) { 4173 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4174 if (Tmp == 1) 4175 return 1; // early-out 4176 } 4177 if (!!DemandedSrcElts) { 4178 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4179 Tmp = std::min(Tmp, Tmp2); 4180 } 4181 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4182 return Tmp; 4183 } 4184 case ISD::ATOMIC_CMP_SWAP: 4185 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4186 case ISD::ATOMIC_SWAP: 4187 case ISD::ATOMIC_LOAD_ADD: 4188 case ISD::ATOMIC_LOAD_SUB: 4189 case ISD::ATOMIC_LOAD_AND: 4190 case ISD::ATOMIC_LOAD_CLR: 4191 case ISD::ATOMIC_LOAD_OR: 4192 case ISD::ATOMIC_LOAD_XOR: 4193 case ISD::ATOMIC_LOAD_NAND: 4194 case ISD::ATOMIC_LOAD_MIN: 4195 case ISD::ATOMIC_LOAD_MAX: 4196 case ISD::ATOMIC_LOAD_UMIN: 4197 case ISD::ATOMIC_LOAD_UMAX: 4198 case ISD::ATOMIC_LOAD: { 4199 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4200 // If we are looking at the loaded value. 4201 if (Op.getResNo() == 0) { 4202 if (Tmp == VTBits) 4203 return 1; // early-out 4204 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4205 return VTBits - Tmp + 1; 4206 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4207 return VTBits - Tmp; 4208 } 4209 break; 4210 } 4211 } 4212 4213 // If we are looking at the loaded value of the SDNode. 4214 if (Op.getResNo() == 0) { 4215 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4216 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4217 unsigned ExtType = LD->getExtensionType(); 4218 switch (ExtType) { 4219 default: break; 4220 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4221 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4222 return VTBits - Tmp + 1; 4223 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4224 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4225 return VTBits - Tmp; 4226 case ISD::NON_EXTLOAD: 4227 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4228 // We only need to handle vectors - computeKnownBits should handle 4229 // scalar cases. 4230 Type *CstTy = Cst->getType(); 4231 if (CstTy->isVectorTy() && 4232 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4233 Tmp = VTBits; 4234 for (unsigned i = 0; i != NumElts; ++i) { 4235 if (!DemandedElts[i]) 4236 continue; 4237 if (Constant *Elt = Cst->getAggregateElement(i)) { 4238 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4239 const APInt &Value = CInt->getValue(); 4240 Tmp = std::min(Tmp, Value.getNumSignBits()); 4241 continue; 4242 } 4243 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4244 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4245 Tmp = std::min(Tmp, Value.getNumSignBits()); 4246 continue; 4247 } 4248 } 4249 // Unknown type. Conservatively assume no bits match sign bit. 4250 return 1; 4251 } 4252 return Tmp; 4253 } 4254 } 4255 break; 4256 } 4257 } 4258 } 4259 4260 // Allow the target to implement this method for its nodes. 4261 if (Opcode >= ISD::BUILTIN_OP_END || 4262 Opcode == ISD::INTRINSIC_WO_CHAIN || 4263 Opcode == ISD::INTRINSIC_W_CHAIN || 4264 Opcode == ISD::INTRINSIC_VOID) { 4265 unsigned NumBits = 4266 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4267 if (NumBits > 1) 4268 FirstAnswer = std::max(FirstAnswer, NumBits); 4269 } 4270 4271 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4272 // use this information. 4273 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4274 4275 APInt Mask; 4276 if (Known.isNonNegative()) { // sign bit is 0 4277 Mask = Known.Zero; 4278 } else if (Known.isNegative()) { // sign bit is 1; 4279 Mask = Known.One; 4280 } else { 4281 // Nothing known. 4282 return FirstAnswer; 4283 } 4284 4285 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4286 // the number of identical bits in the top of the input value. 4287 Mask <<= Mask.getBitWidth()-VTBits; 4288 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4289 } 4290 4291 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, unsigned Depth) const { 4292 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4293 return Op.getScalarValueSizeInBits() - SignBits + 1; 4294 } 4295 4296 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, 4297 const APInt &DemandedElts, 4298 unsigned Depth) const { 4299 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4300 return Op.getScalarValueSizeInBits() - SignBits + 1; 4301 } 4302 4303 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4304 unsigned Depth) const { 4305 // Early out for FREEZE. 4306 if (Op.getOpcode() == ISD::FREEZE) 4307 return true; 4308 4309 // TODO: Assume we don't know anything for now. 4310 EVT VT = Op.getValueType(); 4311 if (VT.isScalableVector()) 4312 return false; 4313 4314 APInt DemandedElts = VT.isVector() 4315 ? APInt::getAllOnes(VT.getVectorNumElements()) 4316 : APInt(1, 1); 4317 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4318 } 4319 4320 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4321 const APInt &DemandedElts, 4322 bool PoisonOnly, 4323 unsigned Depth) const { 4324 unsigned Opcode = Op.getOpcode(); 4325 4326 // Early out for FREEZE. 4327 if (Opcode == ISD::FREEZE) 4328 return true; 4329 4330 if (Depth >= MaxRecursionDepth) 4331 return false; // Limit search depth. 4332 4333 if (isIntOrFPConstant(Op)) 4334 return true; 4335 4336 switch (Opcode) { 4337 case ISD::UNDEF: 4338 return PoisonOnly; 4339 4340 case ISD::BUILD_VECTOR: 4341 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4342 // this shouldn't affect the result. 4343 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4344 if (!DemandedElts[i]) 4345 continue; 4346 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4347 Depth + 1)) 4348 return false; 4349 } 4350 return true; 4351 4352 // TODO: Search for noundef attributes from library functions. 4353 4354 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4355 4356 default: 4357 // Allow the target to implement this method for its nodes. 4358 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4359 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4360 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4361 Op, DemandedElts, *this, PoisonOnly, Depth); 4362 break; 4363 } 4364 4365 return false; 4366 } 4367 4368 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4369 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4370 !isa<ConstantSDNode>(Op.getOperand(1))) 4371 return false; 4372 4373 if (Op.getOpcode() == ISD::OR && 4374 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4375 return false; 4376 4377 return true; 4378 } 4379 4380 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4381 // If we're told that NaNs won't happen, assume they won't. 4382 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4383 return true; 4384 4385 if (Depth >= MaxRecursionDepth) 4386 return false; // Limit search depth. 4387 4388 // TODO: Handle vectors. 4389 // If the value is a constant, we can obviously see if it is a NaN or not. 4390 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4391 return !C->getValueAPF().isNaN() || 4392 (SNaN && !C->getValueAPF().isSignaling()); 4393 } 4394 4395 unsigned Opcode = Op.getOpcode(); 4396 switch (Opcode) { 4397 case ISD::FADD: 4398 case ISD::FSUB: 4399 case ISD::FMUL: 4400 case ISD::FDIV: 4401 case ISD::FREM: 4402 case ISD::FSIN: 4403 case ISD::FCOS: { 4404 if (SNaN) 4405 return true; 4406 // TODO: Need isKnownNeverInfinity 4407 return false; 4408 } 4409 case ISD::FCANONICALIZE: 4410 case ISD::FEXP: 4411 case ISD::FEXP2: 4412 case ISD::FTRUNC: 4413 case ISD::FFLOOR: 4414 case ISD::FCEIL: 4415 case ISD::FROUND: 4416 case ISD::FROUNDEVEN: 4417 case ISD::FRINT: 4418 case ISD::FNEARBYINT: { 4419 if (SNaN) 4420 return true; 4421 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4422 } 4423 case ISD::FABS: 4424 case ISD::FNEG: 4425 case ISD::FCOPYSIGN: { 4426 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4427 } 4428 case ISD::SELECT: 4429 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4430 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4431 case ISD::FP_EXTEND: 4432 case ISD::FP_ROUND: { 4433 if (SNaN) 4434 return true; 4435 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4436 } 4437 case ISD::SINT_TO_FP: 4438 case ISD::UINT_TO_FP: 4439 return true; 4440 case ISD::FMA: 4441 case ISD::FMAD: { 4442 if (SNaN) 4443 return true; 4444 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4445 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4446 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4447 } 4448 case ISD::FSQRT: // Need is known positive 4449 case ISD::FLOG: 4450 case ISD::FLOG2: 4451 case ISD::FLOG10: 4452 case ISD::FPOWI: 4453 case ISD::FPOW: { 4454 if (SNaN) 4455 return true; 4456 // TODO: Refine on operand 4457 return false; 4458 } 4459 case ISD::FMINNUM: 4460 case ISD::FMAXNUM: { 4461 // Only one needs to be known not-nan, since it will be returned if the 4462 // other ends up being one. 4463 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4464 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4465 } 4466 case ISD::FMINNUM_IEEE: 4467 case ISD::FMAXNUM_IEEE: { 4468 if (SNaN) 4469 return true; 4470 // This can return a NaN if either operand is an sNaN, or if both operands 4471 // are NaN. 4472 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4473 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4474 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4475 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4476 } 4477 case ISD::FMINIMUM: 4478 case ISD::FMAXIMUM: { 4479 // TODO: Does this quiet or return the origina NaN as-is? 4480 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4481 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4482 } 4483 case ISD::EXTRACT_VECTOR_ELT: { 4484 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4485 } 4486 default: 4487 if (Opcode >= ISD::BUILTIN_OP_END || 4488 Opcode == ISD::INTRINSIC_WO_CHAIN || 4489 Opcode == ISD::INTRINSIC_W_CHAIN || 4490 Opcode == ISD::INTRINSIC_VOID) { 4491 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4492 } 4493 4494 return false; 4495 } 4496 } 4497 4498 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4499 assert(Op.getValueType().isFloatingPoint() && 4500 "Floating point type expected"); 4501 4502 // If the value is a constant, we can obviously see if it is a zero or not. 4503 // TODO: Add BuildVector support. 4504 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4505 return !C->isZero(); 4506 return false; 4507 } 4508 4509 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4510 assert(!Op.getValueType().isFloatingPoint() && 4511 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4512 4513 // If the value is a constant, we can obviously see if it is a zero or not. 4514 if (ISD::matchUnaryPredicate(Op, 4515 [](ConstantSDNode *C) { return !C->isZero(); })) 4516 return true; 4517 4518 // TODO: Recognize more cases here. 4519 switch (Op.getOpcode()) { 4520 default: break; 4521 case ISD::OR: 4522 if (isKnownNeverZero(Op.getOperand(1)) || 4523 isKnownNeverZero(Op.getOperand(0))) 4524 return true; 4525 break; 4526 } 4527 4528 return false; 4529 } 4530 4531 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4532 // Check the obvious case. 4533 if (A == B) return true; 4534 4535 // For for negative and positive zero. 4536 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4537 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4538 if (CA->isZero() && CB->isZero()) return true; 4539 4540 // Otherwise they may not be equal. 4541 return false; 4542 } 4543 4544 // FIXME: unify with llvm::haveNoCommonBitsSet. 4545 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4546 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4547 assert(A.getValueType() == B.getValueType() && 4548 "Values must have the same type"); 4549 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4550 computeKnownBits(B)); 4551 } 4552 4553 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4554 SelectionDAG &DAG) { 4555 if (cast<ConstantSDNode>(Step)->isZero()) 4556 return DAG.getConstant(0, DL, VT); 4557 4558 return SDValue(); 4559 } 4560 4561 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4562 ArrayRef<SDValue> Ops, 4563 SelectionDAG &DAG) { 4564 int NumOps = Ops.size(); 4565 assert(NumOps != 0 && "Can't build an empty vector!"); 4566 assert(!VT.isScalableVector() && 4567 "BUILD_VECTOR cannot be used with scalable types"); 4568 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4569 "Incorrect element count in BUILD_VECTOR!"); 4570 4571 // BUILD_VECTOR of UNDEFs is UNDEF. 4572 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4573 return DAG.getUNDEF(VT); 4574 4575 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4576 SDValue IdentitySrc; 4577 bool IsIdentity = true; 4578 for (int i = 0; i != NumOps; ++i) { 4579 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4580 Ops[i].getOperand(0).getValueType() != VT || 4581 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4582 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4583 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4584 IsIdentity = false; 4585 break; 4586 } 4587 IdentitySrc = Ops[i].getOperand(0); 4588 } 4589 if (IsIdentity) 4590 return IdentitySrc; 4591 4592 return SDValue(); 4593 } 4594 4595 /// Try to simplify vector concatenation to an input value, undef, or build 4596 /// vector. 4597 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4598 ArrayRef<SDValue> Ops, 4599 SelectionDAG &DAG) { 4600 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4601 assert(llvm::all_of(Ops, 4602 [Ops](SDValue Op) { 4603 return Ops[0].getValueType() == Op.getValueType(); 4604 }) && 4605 "Concatenation of vectors with inconsistent value types!"); 4606 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4607 VT.getVectorElementCount() && 4608 "Incorrect element count in vector concatenation!"); 4609 4610 if (Ops.size() == 1) 4611 return Ops[0]; 4612 4613 // Concat of UNDEFs is UNDEF. 4614 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4615 return DAG.getUNDEF(VT); 4616 4617 // Scan the operands and look for extract operations from a single source 4618 // that correspond to insertion at the same location via this concatenation: 4619 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4620 SDValue IdentitySrc; 4621 bool IsIdentity = true; 4622 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4623 SDValue Op = Ops[i]; 4624 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4625 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4626 Op.getOperand(0).getValueType() != VT || 4627 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4628 Op.getConstantOperandVal(1) != IdentityIndex) { 4629 IsIdentity = false; 4630 break; 4631 } 4632 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4633 "Unexpected identity source vector for concat of extracts"); 4634 IdentitySrc = Op.getOperand(0); 4635 } 4636 if (IsIdentity) { 4637 assert(IdentitySrc && "Failed to set source vector of extracts"); 4638 return IdentitySrc; 4639 } 4640 4641 // The code below this point is only designed to work for fixed width 4642 // vectors, so we bail out for now. 4643 if (VT.isScalableVector()) 4644 return SDValue(); 4645 4646 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4647 // simplified to one big BUILD_VECTOR. 4648 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4649 EVT SVT = VT.getScalarType(); 4650 SmallVector<SDValue, 16> Elts; 4651 for (SDValue Op : Ops) { 4652 EVT OpVT = Op.getValueType(); 4653 if (Op.isUndef()) 4654 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4655 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4656 Elts.append(Op->op_begin(), Op->op_end()); 4657 else 4658 return SDValue(); 4659 } 4660 4661 // BUILD_VECTOR requires all inputs to be of the same type, find the 4662 // maximum type and extend them all. 4663 for (SDValue Op : Elts) 4664 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4665 4666 if (SVT.bitsGT(VT.getScalarType())) { 4667 for (SDValue &Op : Elts) { 4668 if (Op.isUndef()) 4669 Op = DAG.getUNDEF(SVT); 4670 else 4671 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4672 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4673 : DAG.getSExtOrTrunc(Op, DL, SVT); 4674 } 4675 } 4676 4677 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4678 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4679 return V; 4680 } 4681 4682 /// Gets or creates the specified node. 4683 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4684 FoldingSetNodeID ID; 4685 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4686 void *IP = nullptr; 4687 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4688 return SDValue(E, 0); 4689 4690 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4691 getVTList(VT)); 4692 CSEMap.InsertNode(N, IP); 4693 4694 InsertNode(N); 4695 SDValue V = SDValue(N, 0); 4696 NewSDValueDbgMsg(V, "Creating new node: ", this); 4697 return V; 4698 } 4699 4700 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4701 SDValue Operand) { 4702 SDNodeFlags Flags; 4703 if (Inserter) 4704 Flags = Inserter->getFlags(); 4705 return getNode(Opcode, DL, VT, Operand, Flags); 4706 } 4707 4708 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4709 SDValue Operand, const SDNodeFlags Flags) { 4710 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4711 "Operand is DELETED_NODE!"); 4712 // Constant fold unary operations with an integer constant operand. Even 4713 // opaque constant will be folded, because the folding of unary operations 4714 // doesn't create new constants with different values. Nevertheless, the 4715 // opaque flag is preserved during folding to prevent future folding with 4716 // other constants. 4717 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4718 const APInt &Val = C->getAPIntValue(); 4719 switch (Opcode) { 4720 default: break; 4721 case ISD::SIGN_EXTEND: 4722 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4723 C->isTargetOpcode(), C->isOpaque()); 4724 case ISD::TRUNCATE: 4725 if (C->isOpaque()) 4726 break; 4727 LLVM_FALLTHROUGH; 4728 case ISD::ZERO_EXTEND: 4729 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4730 C->isTargetOpcode(), C->isOpaque()); 4731 case ISD::ANY_EXTEND: 4732 // Some targets like RISCV prefer to sign extend some types. 4733 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4734 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4735 C->isTargetOpcode(), C->isOpaque()); 4736 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4737 C->isTargetOpcode(), C->isOpaque()); 4738 case ISD::UINT_TO_FP: 4739 case ISD::SINT_TO_FP: { 4740 APFloat apf(EVTToAPFloatSemantics(VT), 4741 APInt::getZero(VT.getSizeInBits())); 4742 (void)apf.convertFromAPInt(Val, 4743 Opcode==ISD::SINT_TO_FP, 4744 APFloat::rmNearestTiesToEven); 4745 return getConstantFP(apf, DL, VT); 4746 } 4747 case ISD::BITCAST: 4748 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4749 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4750 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4751 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4752 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4753 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4754 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4755 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4756 break; 4757 case ISD::ABS: 4758 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4759 C->isOpaque()); 4760 case ISD::BITREVERSE: 4761 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4762 C->isOpaque()); 4763 case ISD::BSWAP: 4764 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4765 C->isOpaque()); 4766 case ISD::CTPOP: 4767 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4768 C->isOpaque()); 4769 case ISD::CTLZ: 4770 case ISD::CTLZ_ZERO_UNDEF: 4771 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4772 C->isOpaque()); 4773 case ISD::CTTZ: 4774 case ISD::CTTZ_ZERO_UNDEF: 4775 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4776 C->isOpaque()); 4777 case ISD::FP16_TO_FP: { 4778 bool Ignored; 4779 APFloat FPV(APFloat::IEEEhalf(), 4780 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4781 4782 // This can return overflow, underflow, or inexact; we don't care. 4783 // FIXME need to be more flexible about rounding mode. 4784 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4785 APFloat::rmNearestTiesToEven, &Ignored); 4786 return getConstantFP(FPV, DL, VT); 4787 } 4788 case ISD::STEP_VECTOR: { 4789 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4790 return V; 4791 break; 4792 } 4793 } 4794 } 4795 4796 // Constant fold unary operations with a floating point constant operand. 4797 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4798 APFloat V = C->getValueAPF(); // make copy 4799 switch (Opcode) { 4800 case ISD::FNEG: 4801 V.changeSign(); 4802 return getConstantFP(V, DL, VT); 4803 case ISD::FABS: 4804 V.clearSign(); 4805 return getConstantFP(V, DL, VT); 4806 case ISD::FCEIL: { 4807 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4808 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4809 return getConstantFP(V, DL, VT); 4810 break; 4811 } 4812 case ISD::FTRUNC: { 4813 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4814 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4815 return getConstantFP(V, DL, VT); 4816 break; 4817 } 4818 case ISD::FFLOOR: { 4819 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4820 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4821 return getConstantFP(V, DL, VT); 4822 break; 4823 } 4824 case ISD::FP_EXTEND: { 4825 bool ignored; 4826 // This can return overflow, underflow, or inexact; we don't care. 4827 // FIXME need to be more flexible about rounding mode. 4828 (void)V.convert(EVTToAPFloatSemantics(VT), 4829 APFloat::rmNearestTiesToEven, &ignored); 4830 return getConstantFP(V, DL, VT); 4831 } 4832 case ISD::FP_TO_SINT: 4833 case ISD::FP_TO_UINT: { 4834 bool ignored; 4835 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4836 // FIXME need to be more flexible about rounding mode. 4837 APFloat::opStatus s = 4838 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4839 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4840 break; 4841 return getConstant(IntVal, DL, VT); 4842 } 4843 case ISD::BITCAST: 4844 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4845 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4846 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4847 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4848 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4849 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4850 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4851 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4852 break; 4853 case ISD::FP_TO_FP16: { 4854 bool Ignored; 4855 // This can return overflow, underflow, or inexact; we don't care. 4856 // FIXME need to be more flexible about rounding mode. 4857 (void)V.convert(APFloat::IEEEhalf(), 4858 APFloat::rmNearestTiesToEven, &Ignored); 4859 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4860 } 4861 } 4862 } 4863 4864 // Constant fold unary operations with a vector integer or float operand. 4865 switch (Opcode) { 4866 default: 4867 // FIXME: Entirely reasonable to perform folding of other unary 4868 // operations here as the need arises. 4869 break; 4870 case ISD::FNEG: 4871 case ISD::FABS: 4872 case ISD::FCEIL: 4873 case ISD::FTRUNC: 4874 case ISD::FFLOOR: 4875 case ISD::FP_EXTEND: 4876 case ISD::FP_TO_SINT: 4877 case ISD::FP_TO_UINT: 4878 case ISD::TRUNCATE: 4879 case ISD::ANY_EXTEND: 4880 case ISD::ZERO_EXTEND: 4881 case ISD::SIGN_EXTEND: 4882 case ISD::UINT_TO_FP: 4883 case ISD::SINT_TO_FP: 4884 case ISD::ABS: 4885 case ISD::BITREVERSE: 4886 case ISD::BSWAP: 4887 case ISD::CTLZ: 4888 case ISD::CTLZ_ZERO_UNDEF: 4889 case ISD::CTTZ: 4890 case ISD::CTTZ_ZERO_UNDEF: 4891 case ISD::CTPOP: { 4892 SDValue Ops = {Operand}; 4893 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4894 return Fold; 4895 } 4896 } 4897 4898 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4899 switch (Opcode) { 4900 case ISD::STEP_VECTOR: 4901 assert(VT.isScalableVector() && 4902 "STEP_VECTOR can only be used with scalable types"); 4903 assert(OpOpcode == ISD::TargetConstant && 4904 VT.getVectorElementType() == Operand.getValueType() && 4905 "Unexpected step operand"); 4906 break; 4907 case ISD::FREEZE: 4908 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4909 break; 4910 case ISD::TokenFactor: 4911 case ISD::MERGE_VALUES: 4912 case ISD::CONCAT_VECTORS: 4913 return Operand; // Factor, merge or concat of one node? No need. 4914 case ISD::BUILD_VECTOR: { 4915 // Attempt to simplify BUILD_VECTOR. 4916 SDValue Ops[] = {Operand}; 4917 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4918 return V; 4919 break; 4920 } 4921 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4922 case ISD::FP_EXTEND: 4923 assert(VT.isFloatingPoint() && 4924 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4925 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4926 assert((!VT.isVector() || 4927 VT.getVectorElementCount() == 4928 Operand.getValueType().getVectorElementCount()) && 4929 "Vector element count mismatch!"); 4930 assert(Operand.getValueType().bitsLT(VT) && 4931 "Invalid fpext node, dst < src!"); 4932 if (Operand.isUndef()) 4933 return getUNDEF(VT); 4934 break; 4935 case ISD::FP_TO_SINT: 4936 case ISD::FP_TO_UINT: 4937 if (Operand.isUndef()) 4938 return getUNDEF(VT); 4939 break; 4940 case ISD::SINT_TO_FP: 4941 case ISD::UINT_TO_FP: 4942 // [us]itofp(undef) = 0, because the result value is bounded. 4943 if (Operand.isUndef()) 4944 return getConstantFP(0.0, DL, VT); 4945 break; 4946 case ISD::SIGN_EXTEND: 4947 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4948 "Invalid SIGN_EXTEND!"); 4949 assert(VT.isVector() == Operand.getValueType().isVector() && 4950 "SIGN_EXTEND result type type should be vector iff the operand " 4951 "type is vector!"); 4952 if (Operand.getValueType() == VT) return Operand; // noop extension 4953 assert((!VT.isVector() || 4954 VT.getVectorElementCount() == 4955 Operand.getValueType().getVectorElementCount()) && 4956 "Vector element count mismatch!"); 4957 assert(Operand.getValueType().bitsLT(VT) && 4958 "Invalid sext node, dst < src!"); 4959 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4960 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4961 if (OpOpcode == ISD::UNDEF) 4962 // sext(undef) = 0, because the top bits will all be the same. 4963 return getConstant(0, DL, VT); 4964 break; 4965 case ISD::ZERO_EXTEND: 4966 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4967 "Invalid ZERO_EXTEND!"); 4968 assert(VT.isVector() == Operand.getValueType().isVector() && 4969 "ZERO_EXTEND result type type should be vector iff the operand " 4970 "type is vector!"); 4971 if (Operand.getValueType() == VT) return Operand; // noop extension 4972 assert((!VT.isVector() || 4973 VT.getVectorElementCount() == 4974 Operand.getValueType().getVectorElementCount()) && 4975 "Vector element count mismatch!"); 4976 assert(Operand.getValueType().bitsLT(VT) && 4977 "Invalid zext node, dst < src!"); 4978 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4979 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4980 if (OpOpcode == ISD::UNDEF) 4981 // zext(undef) = 0, because the top bits will be zero. 4982 return getConstant(0, DL, VT); 4983 break; 4984 case ISD::ANY_EXTEND: 4985 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4986 "Invalid ANY_EXTEND!"); 4987 assert(VT.isVector() == Operand.getValueType().isVector() && 4988 "ANY_EXTEND result type type should be vector iff the operand " 4989 "type is vector!"); 4990 if (Operand.getValueType() == VT) return Operand; // noop extension 4991 assert((!VT.isVector() || 4992 VT.getVectorElementCount() == 4993 Operand.getValueType().getVectorElementCount()) && 4994 "Vector element count mismatch!"); 4995 assert(Operand.getValueType().bitsLT(VT) && 4996 "Invalid anyext node, dst < src!"); 4997 4998 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4999 OpOpcode == ISD::ANY_EXTEND) 5000 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5001 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5002 if (OpOpcode == ISD::UNDEF) 5003 return getUNDEF(VT); 5004 5005 // (ext (trunc x)) -> x 5006 if (OpOpcode == ISD::TRUNCATE) { 5007 SDValue OpOp = Operand.getOperand(0); 5008 if (OpOp.getValueType() == VT) { 5009 transferDbgValues(Operand, OpOp); 5010 return OpOp; 5011 } 5012 } 5013 break; 5014 case ISD::TRUNCATE: 5015 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5016 "Invalid TRUNCATE!"); 5017 assert(VT.isVector() == Operand.getValueType().isVector() && 5018 "TRUNCATE result type type should be vector iff the operand " 5019 "type is vector!"); 5020 if (Operand.getValueType() == VT) return Operand; // noop truncate 5021 assert((!VT.isVector() || 5022 VT.getVectorElementCount() == 5023 Operand.getValueType().getVectorElementCount()) && 5024 "Vector element count mismatch!"); 5025 assert(Operand.getValueType().bitsGT(VT) && 5026 "Invalid truncate node, src < dst!"); 5027 if (OpOpcode == ISD::TRUNCATE) 5028 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5029 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5030 OpOpcode == ISD::ANY_EXTEND) { 5031 // If the source is smaller than the dest, we still need an extend. 5032 if (Operand.getOperand(0).getValueType().getScalarType() 5033 .bitsLT(VT.getScalarType())) 5034 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5035 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5036 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5037 return Operand.getOperand(0); 5038 } 5039 if (OpOpcode == ISD::UNDEF) 5040 return getUNDEF(VT); 5041 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5042 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5043 break; 5044 case ISD::ANY_EXTEND_VECTOR_INREG: 5045 case ISD::ZERO_EXTEND_VECTOR_INREG: 5046 case ISD::SIGN_EXTEND_VECTOR_INREG: 5047 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5048 assert(Operand.getValueType().bitsLE(VT) && 5049 "The input must be the same size or smaller than the result."); 5050 assert(VT.getVectorMinNumElements() < 5051 Operand.getValueType().getVectorMinNumElements() && 5052 "The destination vector type must have fewer lanes than the input."); 5053 break; 5054 case ISD::ABS: 5055 assert(VT.isInteger() && VT == Operand.getValueType() && 5056 "Invalid ABS!"); 5057 if (OpOpcode == ISD::UNDEF) 5058 return getUNDEF(VT); 5059 break; 5060 case ISD::BSWAP: 5061 assert(VT.isInteger() && VT == Operand.getValueType() && 5062 "Invalid BSWAP!"); 5063 assert((VT.getScalarSizeInBits() % 16 == 0) && 5064 "BSWAP types must be a multiple of 16 bits!"); 5065 if (OpOpcode == ISD::UNDEF) 5066 return getUNDEF(VT); 5067 break; 5068 case ISD::BITREVERSE: 5069 assert(VT.isInteger() && VT == Operand.getValueType() && 5070 "Invalid BITREVERSE!"); 5071 if (OpOpcode == ISD::UNDEF) 5072 return getUNDEF(VT); 5073 break; 5074 case ISD::BITCAST: 5075 // Basic sanity checking. 5076 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5077 "Cannot BITCAST between types of different sizes!"); 5078 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5079 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5080 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5081 if (OpOpcode == ISD::UNDEF) 5082 return getUNDEF(VT); 5083 break; 5084 case ISD::SCALAR_TO_VECTOR: 5085 assert(VT.isVector() && !Operand.getValueType().isVector() && 5086 (VT.getVectorElementType() == Operand.getValueType() || 5087 (VT.getVectorElementType().isInteger() && 5088 Operand.getValueType().isInteger() && 5089 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5090 "Illegal SCALAR_TO_VECTOR node!"); 5091 if (OpOpcode == ISD::UNDEF) 5092 return getUNDEF(VT); 5093 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5094 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5095 isa<ConstantSDNode>(Operand.getOperand(1)) && 5096 Operand.getConstantOperandVal(1) == 0 && 5097 Operand.getOperand(0).getValueType() == VT) 5098 return Operand.getOperand(0); 5099 break; 5100 case ISD::FNEG: 5101 // Negation of an unknown bag of bits is still completely undefined. 5102 if (OpOpcode == ISD::UNDEF) 5103 return getUNDEF(VT); 5104 5105 if (OpOpcode == ISD::FNEG) // --X -> X 5106 return Operand.getOperand(0); 5107 break; 5108 case ISD::FABS: 5109 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5110 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5111 break; 5112 case ISD::VSCALE: 5113 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5114 break; 5115 case ISD::CTPOP: 5116 if (Operand.getValueType().getScalarType() == MVT::i1) 5117 return Operand; 5118 break; 5119 case ISD::CTLZ: 5120 case ISD::CTTZ: 5121 if (Operand.getValueType().getScalarType() == MVT::i1) 5122 return getNOT(DL, Operand, Operand.getValueType()); 5123 break; 5124 case ISD::VECREDUCE_SMIN: 5125 case ISD::VECREDUCE_UMAX: 5126 if (Operand.getValueType().getScalarType() == MVT::i1) 5127 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5128 break; 5129 case ISD::VECREDUCE_SMAX: 5130 case ISD::VECREDUCE_UMIN: 5131 if (Operand.getValueType().getScalarType() == MVT::i1) 5132 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5133 break; 5134 } 5135 5136 SDNode *N; 5137 SDVTList VTs = getVTList(VT); 5138 SDValue Ops[] = {Operand}; 5139 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5140 FoldingSetNodeID ID; 5141 AddNodeIDNode(ID, Opcode, VTs, Ops); 5142 void *IP = nullptr; 5143 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5144 E->intersectFlagsWith(Flags); 5145 return SDValue(E, 0); 5146 } 5147 5148 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5149 N->setFlags(Flags); 5150 createOperands(N, Ops); 5151 CSEMap.InsertNode(N, IP); 5152 } else { 5153 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5154 createOperands(N, Ops); 5155 } 5156 5157 InsertNode(N); 5158 SDValue V = SDValue(N, 0); 5159 NewSDValueDbgMsg(V, "Creating new node: ", this); 5160 return V; 5161 } 5162 5163 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5164 const APInt &C2) { 5165 switch (Opcode) { 5166 case ISD::ADD: return C1 + C2; 5167 case ISD::SUB: return C1 - C2; 5168 case ISD::MUL: return C1 * C2; 5169 case ISD::AND: return C1 & C2; 5170 case ISD::OR: return C1 | C2; 5171 case ISD::XOR: return C1 ^ C2; 5172 case ISD::SHL: return C1 << C2; 5173 case ISD::SRL: return C1.lshr(C2); 5174 case ISD::SRA: return C1.ashr(C2); 5175 case ISD::ROTL: return C1.rotl(C2); 5176 case ISD::ROTR: return C1.rotr(C2); 5177 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5178 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5179 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5180 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5181 case ISD::SADDSAT: return C1.sadd_sat(C2); 5182 case ISD::UADDSAT: return C1.uadd_sat(C2); 5183 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5184 case ISD::USUBSAT: return C1.usub_sat(C2); 5185 case ISD::UDIV: 5186 if (!C2.getBoolValue()) 5187 break; 5188 return C1.udiv(C2); 5189 case ISD::UREM: 5190 if (!C2.getBoolValue()) 5191 break; 5192 return C1.urem(C2); 5193 case ISD::SDIV: 5194 if (!C2.getBoolValue()) 5195 break; 5196 return C1.sdiv(C2); 5197 case ISD::SREM: 5198 if (!C2.getBoolValue()) 5199 break; 5200 return C1.srem(C2); 5201 case ISD::MULHS: { 5202 unsigned FullWidth = C1.getBitWidth() * 2; 5203 APInt C1Ext = C1.sext(FullWidth); 5204 APInt C2Ext = C2.sext(FullWidth); 5205 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5206 } 5207 case ISD::MULHU: { 5208 unsigned FullWidth = C1.getBitWidth() * 2; 5209 APInt C1Ext = C1.zext(FullWidth); 5210 APInt C2Ext = C2.zext(FullWidth); 5211 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5212 } 5213 } 5214 return llvm::None; 5215 } 5216 5217 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5218 const GlobalAddressSDNode *GA, 5219 const SDNode *N2) { 5220 if (GA->getOpcode() != ISD::GlobalAddress) 5221 return SDValue(); 5222 if (!TLI->isOffsetFoldingLegal(GA)) 5223 return SDValue(); 5224 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5225 if (!C2) 5226 return SDValue(); 5227 int64_t Offset = C2->getSExtValue(); 5228 switch (Opcode) { 5229 case ISD::ADD: break; 5230 case ISD::SUB: Offset = -uint64_t(Offset); break; 5231 default: return SDValue(); 5232 } 5233 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5234 GA->getOffset() + uint64_t(Offset)); 5235 } 5236 5237 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5238 switch (Opcode) { 5239 case ISD::SDIV: 5240 case ISD::UDIV: 5241 case ISD::SREM: 5242 case ISD::UREM: { 5243 // If a divisor is zero/undef or any element of a divisor vector is 5244 // zero/undef, the whole op is undef. 5245 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5246 SDValue Divisor = Ops[1]; 5247 if (Divisor.isUndef() || isNullConstant(Divisor)) 5248 return true; 5249 5250 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5251 llvm::any_of(Divisor->op_values(), 5252 [](SDValue V) { return V.isUndef() || 5253 isNullConstant(V); }); 5254 // TODO: Handle signed overflow. 5255 } 5256 // TODO: Handle oversized shifts. 5257 default: 5258 return false; 5259 } 5260 } 5261 5262 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5263 EVT VT, ArrayRef<SDValue> Ops) { 5264 // If the opcode is a target-specific ISD node, there's nothing we can 5265 // do here and the operand rules may not line up with the below, so 5266 // bail early. 5267 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5268 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5269 // foldCONCAT_VECTORS in getNode before this is called. 5270 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5271 return SDValue(); 5272 5273 unsigned NumOps = Ops.size(); 5274 if (NumOps == 0) 5275 return SDValue(); 5276 5277 if (isUndef(Opcode, Ops)) 5278 return getUNDEF(VT); 5279 5280 // Handle the case of two scalars. 5281 if (NumOps == 2) { 5282 // TODO: Move foldConstantFPMath here? 5283 5284 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5285 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5286 if (C1->isOpaque() || C2->isOpaque()) 5287 return SDValue(); 5288 5289 Optional<APInt> FoldAttempt = 5290 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5291 if (!FoldAttempt) 5292 return SDValue(); 5293 5294 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5295 assert((!Folded || !VT.isVector()) && 5296 "Can't fold vectors ops with scalar operands"); 5297 return Folded; 5298 } 5299 } 5300 5301 // fold (add Sym, c) -> Sym+c 5302 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5303 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5304 if (TLI->isCommutativeBinOp(Opcode)) 5305 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5306 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5307 } 5308 5309 // This is for vector folding only from here on. 5310 if (!VT.isVector()) 5311 return SDValue(); 5312 5313 ElementCount NumElts = VT.getVectorElementCount(); 5314 5315 // See if we can fold through bitcasted integer ops. 5316 // TODO: Can we handle undef elements? 5317 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5318 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5319 Ops[0].getOpcode() == ISD::BITCAST && 5320 Ops[1].getOpcode() == ISD::BITCAST) { 5321 SDValue N1 = peekThroughBitcasts(Ops[0]); 5322 SDValue N2 = peekThroughBitcasts(Ops[1]); 5323 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5324 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5325 EVT BVVT = N1.getValueType(); 5326 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5327 bool IsLE = getDataLayout().isLittleEndian(); 5328 unsigned EltBits = VT.getScalarSizeInBits(); 5329 SmallVector<APInt> RawBits1, RawBits2; 5330 BitVector UndefElts1, UndefElts2; 5331 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5332 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5333 UndefElts1.none() && UndefElts2.none()) { 5334 SmallVector<APInt> RawBits; 5335 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5336 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5337 if (!Fold) 5338 break; 5339 RawBits.push_back(Fold.getValue()); 5340 } 5341 if (RawBits.size() == NumElts.getFixedValue()) { 5342 // We have constant folded, but we need to cast this again back to 5343 // the original (possibly legalized) type. 5344 SmallVector<APInt> DstBits; 5345 BitVector DstUndefs; 5346 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5347 DstBits, RawBits, DstUndefs, 5348 BitVector(RawBits.size(), false)); 5349 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5350 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5351 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5352 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5353 if (DstUndefs[I]) 5354 continue; 5355 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5356 } 5357 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5358 } 5359 } 5360 } 5361 } 5362 5363 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5364 return !Op.getValueType().isVector() || 5365 Op.getValueType().getVectorElementCount() == NumElts; 5366 }; 5367 5368 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5369 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5370 Op.getOpcode() == ISD::BUILD_VECTOR || 5371 Op.getOpcode() == ISD::SPLAT_VECTOR; 5372 }; 5373 5374 // All operands must be vector types with the same number of elements as 5375 // the result type and must be either UNDEF or a build/splat vector 5376 // or UNDEF scalars. 5377 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5378 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5379 return SDValue(); 5380 5381 // If we are comparing vectors, then the result needs to be a i1 boolean 5382 // that is then sign-extended back to the legal result type. 5383 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5384 5385 // Find legal integer scalar type for constant promotion and 5386 // ensure that its scalar size is at least as large as source. 5387 EVT LegalSVT = VT.getScalarType(); 5388 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5389 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5390 if (LegalSVT.bitsLT(VT.getScalarType())) 5391 return SDValue(); 5392 } 5393 5394 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5395 // only have one operand to check. For fixed-length vector types we may have 5396 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5397 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5398 5399 // Constant fold each scalar lane separately. 5400 SmallVector<SDValue, 4> ScalarResults; 5401 for (unsigned I = 0; I != NumVectorElts; I++) { 5402 SmallVector<SDValue, 4> ScalarOps; 5403 for (SDValue Op : Ops) { 5404 EVT InSVT = Op.getValueType().getScalarType(); 5405 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5406 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5407 if (Op.isUndef()) 5408 ScalarOps.push_back(getUNDEF(InSVT)); 5409 else 5410 ScalarOps.push_back(Op); 5411 continue; 5412 } 5413 5414 SDValue ScalarOp = 5415 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5416 EVT ScalarVT = ScalarOp.getValueType(); 5417 5418 // Build vector (integer) scalar operands may need implicit 5419 // truncation - do this before constant folding. 5420 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5421 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5422 5423 ScalarOps.push_back(ScalarOp); 5424 } 5425 5426 // Constant fold the scalar operands. 5427 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5428 5429 // Legalize the (integer) scalar constant if necessary. 5430 if (LegalSVT != SVT) 5431 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5432 5433 // Scalar folding only succeeded if the result is a constant or UNDEF. 5434 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5435 ScalarResult.getOpcode() != ISD::ConstantFP) 5436 return SDValue(); 5437 ScalarResults.push_back(ScalarResult); 5438 } 5439 5440 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5441 : getBuildVector(VT, DL, ScalarResults); 5442 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5443 return V; 5444 } 5445 5446 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5447 EVT VT, SDValue N1, SDValue N2) { 5448 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5449 // should. That will require dealing with a potentially non-default 5450 // rounding mode, checking the "opStatus" return value from the APFloat 5451 // math calculations, and possibly other variations. 5452 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5453 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5454 if (N1CFP && N2CFP) { 5455 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5456 switch (Opcode) { 5457 case ISD::FADD: 5458 C1.add(C2, APFloat::rmNearestTiesToEven); 5459 return getConstantFP(C1, DL, VT); 5460 case ISD::FSUB: 5461 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5462 return getConstantFP(C1, DL, VT); 5463 case ISD::FMUL: 5464 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5465 return getConstantFP(C1, DL, VT); 5466 case ISD::FDIV: 5467 C1.divide(C2, APFloat::rmNearestTiesToEven); 5468 return getConstantFP(C1, DL, VT); 5469 case ISD::FREM: 5470 C1.mod(C2); 5471 return getConstantFP(C1, DL, VT); 5472 case ISD::FCOPYSIGN: 5473 C1.copySign(C2); 5474 return getConstantFP(C1, DL, VT); 5475 default: break; 5476 } 5477 } 5478 if (N1CFP && Opcode == ISD::FP_ROUND) { 5479 APFloat C1 = N1CFP->getValueAPF(); // make copy 5480 bool Unused; 5481 // This can return overflow, underflow, or inexact; we don't care. 5482 // FIXME need to be more flexible about rounding mode. 5483 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5484 &Unused); 5485 return getConstantFP(C1, DL, VT); 5486 } 5487 5488 switch (Opcode) { 5489 case ISD::FSUB: 5490 // -0.0 - undef --> undef (consistent with "fneg undef") 5491 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5492 return getUNDEF(VT); 5493 LLVM_FALLTHROUGH; 5494 5495 case ISD::FADD: 5496 case ISD::FMUL: 5497 case ISD::FDIV: 5498 case ISD::FREM: 5499 // If both operands are undef, the result is undef. If 1 operand is undef, 5500 // the result is NaN. This should match the behavior of the IR optimizer. 5501 if (N1.isUndef() && N2.isUndef()) 5502 return getUNDEF(VT); 5503 if (N1.isUndef() || N2.isUndef()) 5504 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5505 } 5506 return SDValue(); 5507 } 5508 5509 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5510 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5511 5512 // There's no need to assert on a byte-aligned pointer. All pointers are at 5513 // least byte aligned. 5514 if (A == Align(1)) 5515 return Val; 5516 5517 FoldingSetNodeID ID; 5518 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5519 ID.AddInteger(A.value()); 5520 5521 void *IP = nullptr; 5522 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5523 return SDValue(E, 0); 5524 5525 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5526 Val.getValueType(), A); 5527 createOperands(N, {Val}); 5528 5529 CSEMap.InsertNode(N, IP); 5530 InsertNode(N); 5531 5532 SDValue V(N, 0); 5533 NewSDValueDbgMsg(V, "Creating new node: ", this); 5534 return V; 5535 } 5536 5537 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5538 SDValue N1, SDValue N2) { 5539 SDNodeFlags Flags; 5540 if (Inserter) 5541 Flags = Inserter->getFlags(); 5542 return getNode(Opcode, DL, VT, N1, N2, Flags); 5543 } 5544 5545 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5546 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5547 assert(N1.getOpcode() != ISD::DELETED_NODE && 5548 N2.getOpcode() != ISD::DELETED_NODE && 5549 "Operand is DELETED_NODE!"); 5550 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5551 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5552 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5553 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5554 5555 // Canonicalize constant to RHS if commutative. 5556 if (TLI->isCommutativeBinOp(Opcode)) { 5557 if (N1C && !N2C) { 5558 std::swap(N1C, N2C); 5559 std::swap(N1, N2); 5560 } else if (N1CFP && !N2CFP) { 5561 std::swap(N1CFP, N2CFP); 5562 std::swap(N1, N2); 5563 } 5564 } 5565 5566 switch (Opcode) { 5567 default: break; 5568 case ISD::TokenFactor: 5569 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5570 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5571 // Fold trivial token factors. 5572 if (N1.getOpcode() == ISD::EntryToken) return N2; 5573 if (N2.getOpcode() == ISD::EntryToken) return N1; 5574 if (N1 == N2) return N1; 5575 break; 5576 case ISD::BUILD_VECTOR: { 5577 // Attempt to simplify BUILD_VECTOR. 5578 SDValue Ops[] = {N1, N2}; 5579 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5580 return V; 5581 break; 5582 } 5583 case ISD::CONCAT_VECTORS: { 5584 SDValue Ops[] = {N1, N2}; 5585 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5586 return V; 5587 break; 5588 } 5589 case ISD::AND: 5590 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5591 assert(N1.getValueType() == N2.getValueType() && 5592 N1.getValueType() == VT && "Binary operator types must match!"); 5593 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5594 // worth handling here. 5595 if (N2C && N2C->isZero()) 5596 return N2; 5597 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5598 return N1; 5599 break; 5600 case ISD::OR: 5601 case ISD::XOR: 5602 case ISD::ADD: 5603 case ISD::SUB: 5604 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5605 assert(N1.getValueType() == N2.getValueType() && 5606 N1.getValueType() == VT && "Binary operator types must match!"); 5607 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5608 // it's worth handling here. 5609 if (N2C && N2C->isZero()) 5610 return N1; 5611 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5612 VT.getVectorElementType() == MVT::i1) 5613 return getNode(ISD::XOR, DL, VT, N1, N2); 5614 break; 5615 case ISD::MUL: 5616 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5617 assert(N1.getValueType() == N2.getValueType() && 5618 N1.getValueType() == VT && "Binary operator types must match!"); 5619 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5620 return getNode(ISD::AND, DL, VT, N1, N2); 5621 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5622 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5623 const APInt &N2CImm = N2C->getAPIntValue(); 5624 return getVScale(DL, VT, MulImm * N2CImm); 5625 } 5626 break; 5627 case ISD::UDIV: 5628 case ISD::UREM: 5629 case ISD::MULHU: 5630 case ISD::MULHS: 5631 case ISD::SDIV: 5632 case ISD::SREM: 5633 case ISD::SADDSAT: 5634 case ISD::SSUBSAT: 5635 case ISD::UADDSAT: 5636 case ISD::USUBSAT: 5637 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5638 assert(N1.getValueType() == N2.getValueType() && 5639 N1.getValueType() == VT && "Binary operator types must match!"); 5640 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5641 // fold (add_sat x, y) -> (or x, y) for bool types. 5642 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5643 return getNode(ISD::OR, DL, VT, N1, N2); 5644 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5645 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5646 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5647 } 5648 break; 5649 case ISD::SMIN: 5650 case ISD::UMAX: 5651 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5652 assert(N1.getValueType() == N2.getValueType() && 5653 N1.getValueType() == VT && "Binary operator types must match!"); 5654 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5655 return getNode(ISD::OR, DL, VT, N1, N2); 5656 break; 5657 case ISD::SMAX: 5658 case ISD::UMIN: 5659 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5660 assert(N1.getValueType() == N2.getValueType() && 5661 N1.getValueType() == VT && "Binary operator types must match!"); 5662 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5663 return getNode(ISD::AND, DL, VT, N1, N2); 5664 break; 5665 case ISD::FADD: 5666 case ISD::FSUB: 5667 case ISD::FMUL: 5668 case ISD::FDIV: 5669 case ISD::FREM: 5670 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5671 assert(N1.getValueType() == N2.getValueType() && 5672 N1.getValueType() == VT && "Binary operator types must match!"); 5673 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5674 return V; 5675 break; 5676 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5677 assert(N1.getValueType() == VT && 5678 N1.getValueType().isFloatingPoint() && 5679 N2.getValueType().isFloatingPoint() && 5680 "Invalid FCOPYSIGN!"); 5681 break; 5682 case ISD::SHL: 5683 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5684 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5685 const APInt &ShiftImm = N2C->getAPIntValue(); 5686 return getVScale(DL, VT, MulImm << ShiftImm); 5687 } 5688 LLVM_FALLTHROUGH; 5689 case ISD::SRA: 5690 case ISD::SRL: 5691 if (SDValue V = simplifyShift(N1, N2)) 5692 return V; 5693 LLVM_FALLTHROUGH; 5694 case ISD::ROTL: 5695 case ISD::ROTR: 5696 assert(VT == N1.getValueType() && 5697 "Shift operators return type must be the same as their first arg"); 5698 assert(VT.isInteger() && N2.getValueType().isInteger() && 5699 "Shifts only work on integers"); 5700 assert((!VT.isVector() || VT == N2.getValueType()) && 5701 "Vector shift amounts must be in the same as their first arg"); 5702 // Verify that the shift amount VT is big enough to hold valid shift 5703 // amounts. This catches things like trying to shift an i1024 value by an 5704 // i8, which is easy to fall into in generic code that uses 5705 // TLI.getShiftAmount(). 5706 assert(N2.getValueType().getScalarSizeInBits() >= 5707 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5708 "Invalid use of small shift amount with oversized value!"); 5709 5710 // Always fold shifts of i1 values so the code generator doesn't need to 5711 // handle them. Since we know the size of the shift has to be less than the 5712 // size of the value, the shift/rotate count is guaranteed to be zero. 5713 if (VT == MVT::i1) 5714 return N1; 5715 if (N2C && N2C->isZero()) 5716 return N1; 5717 break; 5718 case ISD::FP_ROUND: 5719 assert(VT.isFloatingPoint() && 5720 N1.getValueType().isFloatingPoint() && 5721 VT.bitsLE(N1.getValueType()) && 5722 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5723 "Invalid FP_ROUND!"); 5724 if (N1.getValueType() == VT) return N1; // noop conversion. 5725 break; 5726 case ISD::AssertSext: 5727 case ISD::AssertZext: { 5728 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5729 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5730 assert(VT.isInteger() && EVT.isInteger() && 5731 "Cannot *_EXTEND_INREG FP types"); 5732 assert(!EVT.isVector() && 5733 "AssertSExt/AssertZExt type should be the vector element type " 5734 "rather than the vector type!"); 5735 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5736 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5737 break; 5738 } 5739 case ISD::SIGN_EXTEND_INREG: { 5740 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5741 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5742 assert(VT.isInteger() && EVT.isInteger() && 5743 "Cannot *_EXTEND_INREG FP types"); 5744 assert(EVT.isVector() == VT.isVector() && 5745 "SIGN_EXTEND_INREG type should be vector iff the operand " 5746 "type is vector!"); 5747 assert((!EVT.isVector() || 5748 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5749 "Vector element counts must match in SIGN_EXTEND_INREG"); 5750 assert(EVT.bitsLE(VT) && "Not extending!"); 5751 if (EVT == VT) return N1; // Not actually extending 5752 5753 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5754 unsigned FromBits = EVT.getScalarSizeInBits(); 5755 Val <<= Val.getBitWidth() - FromBits; 5756 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5757 return getConstant(Val, DL, ConstantVT); 5758 }; 5759 5760 if (N1C) { 5761 const APInt &Val = N1C->getAPIntValue(); 5762 return SignExtendInReg(Val, VT); 5763 } 5764 5765 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5766 SmallVector<SDValue, 8> Ops; 5767 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5768 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5769 SDValue Op = N1.getOperand(i); 5770 if (Op.isUndef()) { 5771 Ops.push_back(getUNDEF(OpVT)); 5772 continue; 5773 } 5774 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5775 APInt Val = C->getAPIntValue(); 5776 Ops.push_back(SignExtendInReg(Val, OpVT)); 5777 } 5778 return getBuildVector(VT, DL, Ops); 5779 } 5780 break; 5781 } 5782 case ISD::FP_TO_SINT_SAT: 5783 case ISD::FP_TO_UINT_SAT: { 5784 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5785 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5786 assert(N1.getValueType().isVector() == VT.isVector() && 5787 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5788 "vector!"); 5789 assert((!VT.isVector() || VT.getVectorNumElements() == 5790 N1.getValueType().getVectorNumElements()) && 5791 "Vector element counts must match in FP_TO_*INT_SAT"); 5792 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5793 "Type to saturate to must be a scalar."); 5794 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5795 "Not extending!"); 5796 break; 5797 } 5798 case ISD::EXTRACT_VECTOR_ELT: 5799 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5800 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5801 element type of the vector."); 5802 5803 // Extract from an undefined value or using an undefined index is undefined. 5804 if (N1.isUndef() || N2.isUndef()) 5805 return getUNDEF(VT); 5806 5807 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5808 // vectors. For scalable vectors we will provide appropriate support for 5809 // dealing with arbitrary indices. 5810 if (N2C && N1.getValueType().isFixedLengthVector() && 5811 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5812 return getUNDEF(VT); 5813 5814 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5815 // expanding copies of large vectors from registers. This only works for 5816 // fixed length vectors, since we need to know the exact number of 5817 // elements. 5818 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5819 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5820 unsigned Factor = 5821 N1.getOperand(0).getValueType().getVectorNumElements(); 5822 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5823 N1.getOperand(N2C->getZExtValue() / Factor), 5824 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5825 } 5826 5827 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5828 // lowering is expanding large vector constants. 5829 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5830 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5831 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5832 N1.getValueType().isFixedLengthVector()) && 5833 "BUILD_VECTOR used for scalable vectors"); 5834 unsigned Index = 5835 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5836 SDValue Elt = N1.getOperand(Index); 5837 5838 if (VT != Elt.getValueType()) 5839 // If the vector element type is not legal, the BUILD_VECTOR operands 5840 // are promoted and implicitly truncated, and the result implicitly 5841 // extended. Make that explicit here. 5842 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5843 5844 return Elt; 5845 } 5846 5847 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5848 // operations are lowered to scalars. 5849 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5850 // If the indices are the same, return the inserted element else 5851 // if the indices are known different, extract the element from 5852 // the original vector. 5853 SDValue N1Op2 = N1.getOperand(2); 5854 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5855 5856 if (N1Op2C && N2C) { 5857 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5858 if (VT == N1.getOperand(1).getValueType()) 5859 return N1.getOperand(1); 5860 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5861 } 5862 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5863 } 5864 } 5865 5866 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5867 // when vector types are scalarized and v1iX is legal. 5868 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5869 // Here we are completely ignoring the extract element index (N2), 5870 // which is fine for fixed width vectors, since any index other than 0 5871 // is undefined anyway. However, this cannot be ignored for scalable 5872 // vectors - in theory we could support this, but we don't want to do this 5873 // without a profitability check. 5874 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5875 N1.getValueType().isFixedLengthVector() && 5876 N1.getValueType().getVectorNumElements() == 1) { 5877 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5878 N1.getOperand(1)); 5879 } 5880 break; 5881 case ISD::EXTRACT_ELEMENT: 5882 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5883 assert(!N1.getValueType().isVector() && !VT.isVector() && 5884 (N1.getValueType().isInteger() == VT.isInteger()) && 5885 N1.getValueType() != VT && 5886 "Wrong types for EXTRACT_ELEMENT!"); 5887 5888 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5889 // 64-bit integers into 32-bit parts. Instead of building the extract of 5890 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5891 if (N1.getOpcode() == ISD::BUILD_PAIR) 5892 return N1.getOperand(N2C->getZExtValue()); 5893 5894 // EXTRACT_ELEMENT of a constant int is also very common. 5895 if (N1C) { 5896 unsigned ElementSize = VT.getSizeInBits(); 5897 unsigned Shift = ElementSize * N2C->getZExtValue(); 5898 const APInt &Val = N1C->getAPIntValue(); 5899 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5900 } 5901 break; 5902 case ISD::EXTRACT_SUBVECTOR: { 5903 EVT N1VT = N1.getValueType(); 5904 assert(VT.isVector() && N1VT.isVector() && 5905 "Extract subvector VTs must be vectors!"); 5906 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5907 "Extract subvector VTs must have the same element type!"); 5908 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5909 "Cannot extract a scalable vector from a fixed length vector!"); 5910 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5911 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5912 "Extract subvector must be from larger vector to smaller vector!"); 5913 assert(N2C && "Extract subvector index must be a constant"); 5914 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5915 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5916 N1VT.getVectorMinNumElements()) && 5917 "Extract subvector overflow!"); 5918 assert(N2C->getAPIntValue().getBitWidth() == 5919 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5920 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5921 5922 // Trivial extraction. 5923 if (VT == N1VT) 5924 return N1; 5925 5926 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5927 if (N1.isUndef()) 5928 return getUNDEF(VT); 5929 5930 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5931 // the concat have the same type as the extract. 5932 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5933 VT == N1.getOperand(0).getValueType()) { 5934 unsigned Factor = VT.getVectorMinNumElements(); 5935 return N1.getOperand(N2C->getZExtValue() / Factor); 5936 } 5937 5938 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5939 // during shuffle legalization. 5940 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5941 VT == N1.getOperand(1).getValueType()) 5942 return N1.getOperand(1); 5943 break; 5944 } 5945 } 5946 5947 // Perform trivial constant folding. 5948 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5949 return SV; 5950 5951 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5952 return V; 5953 5954 // Canonicalize an UNDEF to the RHS, even over a constant. 5955 if (N1.isUndef()) { 5956 if (TLI->isCommutativeBinOp(Opcode)) { 5957 std::swap(N1, N2); 5958 } else { 5959 switch (Opcode) { 5960 case ISD::SIGN_EXTEND_INREG: 5961 case ISD::SUB: 5962 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5963 case ISD::UDIV: 5964 case ISD::SDIV: 5965 case ISD::UREM: 5966 case ISD::SREM: 5967 case ISD::SSUBSAT: 5968 case ISD::USUBSAT: 5969 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5970 } 5971 } 5972 } 5973 5974 // Fold a bunch of operators when the RHS is undef. 5975 if (N2.isUndef()) { 5976 switch (Opcode) { 5977 case ISD::XOR: 5978 if (N1.isUndef()) 5979 // Handle undef ^ undef -> 0 special case. This is a common 5980 // idiom (misuse). 5981 return getConstant(0, DL, VT); 5982 LLVM_FALLTHROUGH; 5983 case ISD::ADD: 5984 case ISD::SUB: 5985 case ISD::UDIV: 5986 case ISD::SDIV: 5987 case ISD::UREM: 5988 case ISD::SREM: 5989 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5990 case ISD::MUL: 5991 case ISD::AND: 5992 case ISD::SSUBSAT: 5993 case ISD::USUBSAT: 5994 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5995 case ISD::OR: 5996 case ISD::SADDSAT: 5997 case ISD::UADDSAT: 5998 return getAllOnesConstant(DL, VT); 5999 } 6000 } 6001 6002 // Memoize this node if possible. 6003 SDNode *N; 6004 SDVTList VTs = getVTList(VT); 6005 SDValue Ops[] = {N1, N2}; 6006 if (VT != MVT::Glue) { 6007 FoldingSetNodeID ID; 6008 AddNodeIDNode(ID, Opcode, VTs, Ops); 6009 void *IP = nullptr; 6010 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6011 E->intersectFlagsWith(Flags); 6012 return SDValue(E, 0); 6013 } 6014 6015 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6016 N->setFlags(Flags); 6017 createOperands(N, Ops); 6018 CSEMap.InsertNode(N, IP); 6019 } else { 6020 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6021 createOperands(N, Ops); 6022 } 6023 6024 InsertNode(N); 6025 SDValue V = SDValue(N, 0); 6026 NewSDValueDbgMsg(V, "Creating new node: ", this); 6027 return V; 6028 } 6029 6030 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6031 SDValue N1, SDValue N2, SDValue N3) { 6032 SDNodeFlags Flags; 6033 if (Inserter) 6034 Flags = Inserter->getFlags(); 6035 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6036 } 6037 6038 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6039 SDValue N1, SDValue N2, SDValue N3, 6040 const SDNodeFlags Flags) { 6041 assert(N1.getOpcode() != ISD::DELETED_NODE && 6042 N2.getOpcode() != ISD::DELETED_NODE && 6043 N3.getOpcode() != ISD::DELETED_NODE && 6044 "Operand is DELETED_NODE!"); 6045 // Perform various simplifications. 6046 switch (Opcode) { 6047 case ISD::FMA: { 6048 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6049 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6050 N3.getValueType() == VT && "FMA types must match!"); 6051 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6052 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6053 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6054 if (N1CFP && N2CFP && N3CFP) { 6055 APFloat V1 = N1CFP->getValueAPF(); 6056 const APFloat &V2 = N2CFP->getValueAPF(); 6057 const APFloat &V3 = N3CFP->getValueAPF(); 6058 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6059 return getConstantFP(V1, DL, VT); 6060 } 6061 break; 6062 } 6063 case ISD::BUILD_VECTOR: { 6064 // Attempt to simplify BUILD_VECTOR. 6065 SDValue Ops[] = {N1, N2, N3}; 6066 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6067 return V; 6068 break; 6069 } 6070 case ISD::CONCAT_VECTORS: { 6071 SDValue Ops[] = {N1, N2, N3}; 6072 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6073 return V; 6074 break; 6075 } 6076 case ISD::SETCC: { 6077 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6078 assert(N1.getValueType() == N2.getValueType() && 6079 "SETCC operands must have the same type!"); 6080 assert(VT.isVector() == N1.getValueType().isVector() && 6081 "SETCC type should be vector iff the operand type is vector!"); 6082 assert((!VT.isVector() || VT.getVectorElementCount() == 6083 N1.getValueType().getVectorElementCount()) && 6084 "SETCC vector element counts must match!"); 6085 // Use FoldSetCC to simplify SETCC's. 6086 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6087 return V; 6088 // Vector constant folding. 6089 SDValue Ops[] = {N1, N2, N3}; 6090 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6091 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6092 return V; 6093 } 6094 break; 6095 } 6096 case ISD::SELECT: 6097 case ISD::VSELECT: 6098 if (SDValue V = simplifySelect(N1, N2, N3)) 6099 return V; 6100 break; 6101 case ISD::VECTOR_SHUFFLE: 6102 llvm_unreachable("should use getVectorShuffle constructor!"); 6103 case ISD::VECTOR_SPLICE: { 6104 if (cast<ConstantSDNode>(N3)->isNullValue()) 6105 return N1; 6106 break; 6107 } 6108 case ISD::INSERT_VECTOR_ELT: { 6109 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6110 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6111 // for scalable vectors where we will generate appropriate code to 6112 // deal with out-of-bounds cases correctly. 6113 if (N3C && N1.getValueType().isFixedLengthVector() && 6114 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6115 return getUNDEF(VT); 6116 6117 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6118 if (N3.isUndef()) 6119 return getUNDEF(VT); 6120 6121 // If the inserted element is an UNDEF, just use the input vector. 6122 if (N2.isUndef()) 6123 return N1; 6124 6125 break; 6126 } 6127 case ISD::INSERT_SUBVECTOR: { 6128 // Inserting undef into undef is still undef. 6129 if (N1.isUndef() && N2.isUndef()) 6130 return getUNDEF(VT); 6131 6132 EVT N2VT = N2.getValueType(); 6133 assert(VT == N1.getValueType() && 6134 "Dest and insert subvector source types must match!"); 6135 assert(VT.isVector() && N2VT.isVector() && 6136 "Insert subvector VTs must be vectors!"); 6137 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6138 "Cannot insert a scalable vector into a fixed length vector!"); 6139 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6140 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6141 "Insert subvector must be from smaller vector to larger vector!"); 6142 assert(isa<ConstantSDNode>(N3) && 6143 "Insert subvector index must be constant"); 6144 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6145 (N2VT.getVectorMinNumElements() + 6146 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6147 VT.getVectorMinNumElements()) && 6148 "Insert subvector overflow!"); 6149 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6150 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6151 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6152 6153 // Trivial insertion. 6154 if (VT == N2VT) 6155 return N2; 6156 6157 // If this is an insert of an extracted vector into an undef vector, we 6158 // can just use the input to the extract. 6159 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6160 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6161 return N2.getOperand(0); 6162 break; 6163 } 6164 case ISD::BITCAST: 6165 // Fold bit_convert nodes from a type to themselves. 6166 if (N1.getValueType() == VT) 6167 return N1; 6168 break; 6169 } 6170 6171 // Memoize node if it doesn't produce a flag. 6172 SDNode *N; 6173 SDVTList VTs = getVTList(VT); 6174 SDValue Ops[] = {N1, N2, N3}; 6175 if (VT != MVT::Glue) { 6176 FoldingSetNodeID ID; 6177 AddNodeIDNode(ID, Opcode, VTs, Ops); 6178 void *IP = nullptr; 6179 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6180 E->intersectFlagsWith(Flags); 6181 return SDValue(E, 0); 6182 } 6183 6184 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6185 N->setFlags(Flags); 6186 createOperands(N, Ops); 6187 CSEMap.InsertNode(N, IP); 6188 } else { 6189 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6190 createOperands(N, Ops); 6191 } 6192 6193 InsertNode(N); 6194 SDValue V = SDValue(N, 0); 6195 NewSDValueDbgMsg(V, "Creating new node: ", this); 6196 return V; 6197 } 6198 6199 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6200 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6201 SDValue Ops[] = { N1, N2, N3, N4 }; 6202 return getNode(Opcode, DL, VT, Ops); 6203 } 6204 6205 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6206 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6207 SDValue N5) { 6208 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6209 return getNode(Opcode, DL, VT, Ops); 6210 } 6211 6212 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6213 /// the incoming stack arguments to be loaded from the stack. 6214 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6215 SmallVector<SDValue, 8> ArgChains; 6216 6217 // Include the original chain at the beginning of the list. When this is 6218 // used by target LowerCall hooks, this helps legalize find the 6219 // CALLSEQ_BEGIN node. 6220 ArgChains.push_back(Chain); 6221 6222 // Add a chain value for each stack argument. 6223 for (SDNode *U : getEntryNode().getNode()->uses()) 6224 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6225 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6226 if (FI->getIndex() < 0) 6227 ArgChains.push_back(SDValue(L, 1)); 6228 6229 // Build a tokenfactor for all the chains. 6230 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6231 } 6232 6233 /// getMemsetValue - Vectorized representation of the memset value 6234 /// operand. 6235 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6236 const SDLoc &dl) { 6237 assert(!Value.isUndef()); 6238 6239 unsigned NumBits = VT.getScalarSizeInBits(); 6240 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6241 assert(C->getAPIntValue().getBitWidth() == 8); 6242 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6243 if (VT.isInteger()) { 6244 bool IsOpaque = VT.getSizeInBits() > 64 || 6245 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6246 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6247 } 6248 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6249 VT); 6250 } 6251 6252 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6253 EVT IntVT = VT.getScalarType(); 6254 if (!IntVT.isInteger()) 6255 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6256 6257 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6258 if (NumBits > 8) { 6259 // Use a multiplication with 0x010101... to extend the input to the 6260 // required length. 6261 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6262 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6263 DAG.getConstant(Magic, dl, IntVT)); 6264 } 6265 6266 if (VT != Value.getValueType() && !VT.isInteger()) 6267 Value = DAG.getBitcast(VT.getScalarType(), Value); 6268 if (VT != Value.getValueType()) 6269 Value = DAG.getSplatBuildVector(VT, dl, Value); 6270 6271 return Value; 6272 } 6273 6274 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6275 /// used when a memcpy is turned into a memset when the source is a constant 6276 /// string ptr. 6277 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6278 const TargetLowering &TLI, 6279 const ConstantDataArraySlice &Slice) { 6280 // Handle vector with all elements zero. 6281 if (Slice.Array == nullptr) { 6282 if (VT.isInteger()) 6283 return DAG.getConstant(0, dl, VT); 6284 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6285 return DAG.getConstantFP(0.0, dl, VT); 6286 if (VT.isVector()) { 6287 unsigned NumElts = VT.getVectorNumElements(); 6288 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6289 return DAG.getNode(ISD::BITCAST, dl, VT, 6290 DAG.getConstant(0, dl, 6291 EVT::getVectorVT(*DAG.getContext(), 6292 EltVT, NumElts))); 6293 } 6294 llvm_unreachable("Expected type!"); 6295 } 6296 6297 assert(!VT.isVector() && "Can't handle vector type here!"); 6298 unsigned NumVTBits = VT.getSizeInBits(); 6299 unsigned NumVTBytes = NumVTBits / 8; 6300 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6301 6302 APInt Val(NumVTBits, 0); 6303 if (DAG.getDataLayout().isLittleEndian()) { 6304 for (unsigned i = 0; i != NumBytes; ++i) 6305 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6306 } else { 6307 for (unsigned i = 0; i != NumBytes; ++i) 6308 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6309 } 6310 6311 // If the "cost" of materializing the integer immediate is less than the cost 6312 // of a load, then it is cost effective to turn the load into the immediate. 6313 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6314 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6315 return DAG.getConstant(Val, dl, VT); 6316 return SDValue(nullptr, 0); 6317 } 6318 6319 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6320 const SDLoc &DL, 6321 const SDNodeFlags Flags) { 6322 EVT VT = Base.getValueType(); 6323 SDValue Index; 6324 6325 if (Offset.isScalable()) 6326 Index = getVScale(DL, Base.getValueType(), 6327 APInt(Base.getValueSizeInBits().getFixedSize(), 6328 Offset.getKnownMinSize())); 6329 else 6330 Index = getConstant(Offset.getFixedSize(), DL, VT); 6331 6332 return getMemBasePlusOffset(Base, Index, DL, Flags); 6333 } 6334 6335 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6336 const SDLoc &DL, 6337 const SDNodeFlags Flags) { 6338 assert(Offset.getValueType().isInteger()); 6339 EVT BasePtrVT = Ptr.getValueType(); 6340 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6341 } 6342 6343 /// Returns true if memcpy source is constant data. 6344 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6345 uint64_t SrcDelta = 0; 6346 GlobalAddressSDNode *G = nullptr; 6347 if (Src.getOpcode() == ISD::GlobalAddress) 6348 G = cast<GlobalAddressSDNode>(Src); 6349 else if (Src.getOpcode() == ISD::ADD && 6350 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6351 Src.getOperand(1).getOpcode() == ISD::Constant) { 6352 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6353 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6354 } 6355 if (!G) 6356 return false; 6357 6358 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6359 SrcDelta + G->getOffset()); 6360 } 6361 6362 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6363 SelectionDAG &DAG) { 6364 // On Darwin, -Os means optimize for size without hurting performance, so 6365 // only really optimize for size when -Oz (MinSize) is used. 6366 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6367 return MF.getFunction().hasMinSize(); 6368 return DAG.shouldOptForSize(); 6369 } 6370 6371 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6372 SmallVector<SDValue, 32> &OutChains, unsigned From, 6373 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6374 SmallVector<SDValue, 16> &OutStoreChains) { 6375 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6376 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6377 SmallVector<SDValue, 16> GluedLoadChains; 6378 for (unsigned i = From; i < To; ++i) { 6379 OutChains.push_back(OutLoadChains[i]); 6380 GluedLoadChains.push_back(OutLoadChains[i]); 6381 } 6382 6383 // Chain for all loads. 6384 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6385 GluedLoadChains); 6386 6387 for (unsigned i = From; i < To; ++i) { 6388 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6389 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6390 ST->getBasePtr(), ST->getMemoryVT(), 6391 ST->getMemOperand()); 6392 OutChains.push_back(NewStore); 6393 } 6394 } 6395 6396 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6397 SDValue Chain, SDValue Dst, SDValue Src, 6398 uint64_t Size, Align Alignment, 6399 bool isVol, bool AlwaysInline, 6400 MachinePointerInfo DstPtrInfo, 6401 MachinePointerInfo SrcPtrInfo, 6402 const AAMDNodes &AAInfo) { 6403 // Turn a memcpy of undef to nop. 6404 // FIXME: We need to honor volatile even is Src is undef. 6405 if (Src.isUndef()) 6406 return Chain; 6407 6408 // Expand memcpy to a series of load and store ops if the size operand falls 6409 // below a certain threshold. 6410 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6411 // rather than maybe a humongous number of loads and stores. 6412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6413 const DataLayout &DL = DAG.getDataLayout(); 6414 LLVMContext &C = *DAG.getContext(); 6415 std::vector<EVT> MemOps; 6416 bool DstAlignCanChange = false; 6417 MachineFunction &MF = DAG.getMachineFunction(); 6418 MachineFrameInfo &MFI = MF.getFrameInfo(); 6419 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6420 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6421 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6422 DstAlignCanChange = true; 6423 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6424 if (!SrcAlign || Alignment > *SrcAlign) 6425 SrcAlign = Alignment; 6426 assert(SrcAlign && "SrcAlign must be set"); 6427 ConstantDataArraySlice Slice; 6428 // If marked as volatile, perform a copy even when marked as constant. 6429 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6430 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6431 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6432 const MemOp Op = isZeroConstant 6433 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6434 /*IsZeroMemset*/ true, isVol) 6435 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6436 *SrcAlign, isVol, CopyFromConstant); 6437 if (!TLI.findOptimalMemOpLowering( 6438 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6439 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6440 return SDValue(); 6441 6442 if (DstAlignCanChange) { 6443 Type *Ty = MemOps[0].getTypeForEVT(C); 6444 Align NewAlign = DL.getABITypeAlign(Ty); 6445 6446 // Don't promote to an alignment that would require dynamic stack 6447 // realignment. 6448 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6449 if (!TRI->hasStackRealignment(MF)) 6450 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6451 NewAlign = NewAlign / 2; 6452 6453 if (NewAlign > Alignment) { 6454 // Give the stack frame object a larger alignment if needed. 6455 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6456 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6457 Alignment = NewAlign; 6458 } 6459 } 6460 6461 // Prepare AAInfo for loads/stores after lowering this memcpy. 6462 AAMDNodes NewAAInfo = AAInfo; 6463 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6464 6465 MachineMemOperand::Flags MMOFlags = 6466 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6467 SmallVector<SDValue, 16> OutLoadChains; 6468 SmallVector<SDValue, 16> OutStoreChains; 6469 SmallVector<SDValue, 32> OutChains; 6470 unsigned NumMemOps = MemOps.size(); 6471 uint64_t SrcOff = 0, DstOff = 0; 6472 for (unsigned i = 0; i != NumMemOps; ++i) { 6473 EVT VT = MemOps[i]; 6474 unsigned VTSize = VT.getSizeInBits() / 8; 6475 SDValue Value, Store; 6476 6477 if (VTSize > Size) { 6478 // Issuing an unaligned load / store pair that overlaps with the previous 6479 // pair. Adjust the offset accordingly. 6480 assert(i == NumMemOps-1 && i != 0); 6481 SrcOff -= VTSize - Size; 6482 DstOff -= VTSize - Size; 6483 } 6484 6485 if (CopyFromConstant && 6486 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6487 // It's unlikely a store of a vector immediate can be done in a single 6488 // instruction. It would require a load from a constantpool first. 6489 // We only handle zero vectors here. 6490 // FIXME: Handle other cases where store of vector immediate is done in 6491 // a single instruction. 6492 ConstantDataArraySlice SubSlice; 6493 if (SrcOff < Slice.Length) { 6494 SubSlice = Slice; 6495 SubSlice.move(SrcOff); 6496 } else { 6497 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6498 SubSlice.Array = nullptr; 6499 SubSlice.Offset = 0; 6500 SubSlice.Length = VTSize; 6501 } 6502 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6503 if (Value.getNode()) { 6504 Store = DAG.getStore( 6505 Chain, dl, Value, 6506 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6507 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6508 OutChains.push_back(Store); 6509 } 6510 } 6511 6512 if (!Store.getNode()) { 6513 // The type might not be legal for the target. This should only happen 6514 // if the type is smaller than a legal type, as on PPC, so the right 6515 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6516 // to Load/Store if NVT==VT. 6517 // FIXME does the case above also need this? 6518 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6519 assert(NVT.bitsGE(VT)); 6520 6521 bool isDereferenceable = 6522 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6523 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6524 if (isDereferenceable) 6525 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6526 6527 Value = DAG.getExtLoad( 6528 ISD::EXTLOAD, dl, NVT, Chain, 6529 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6530 SrcPtrInfo.getWithOffset(SrcOff), VT, 6531 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6532 OutLoadChains.push_back(Value.getValue(1)); 6533 6534 Store = DAG.getTruncStore( 6535 Chain, dl, Value, 6536 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6537 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6538 OutStoreChains.push_back(Store); 6539 } 6540 SrcOff += VTSize; 6541 DstOff += VTSize; 6542 Size -= VTSize; 6543 } 6544 6545 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6546 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6547 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6548 6549 if (NumLdStInMemcpy) { 6550 // It may be that memcpy might be converted to memset if it's memcpy 6551 // of constants. In such a case, we won't have loads and stores, but 6552 // just stores. In the absence of loads, there is nothing to gang up. 6553 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6554 // If target does not care, just leave as it. 6555 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6556 OutChains.push_back(OutLoadChains[i]); 6557 OutChains.push_back(OutStoreChains[i]); 6558 } 6559 } else { 6560 // Ld/St less than/equal limit set by target. 6561 if (NumLdStInMemcpy <= GluedLdStLimit) { 6562 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6563 NumLdStInMemcpy, OutLoadChains, 6564 OutStoreChains); 6565 } else { 6566 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6567 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6568 unsigned GlueIter = 0; 6569 6570 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6571 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6572 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6573 6574 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6575 OutLoadChains, OutStoreChains); 6576 GlueIter += GluedLdStLimit; 6577 } 6578 6579 // Residual ld/st. 6580 if (RemainingLdStInMemcpy) { 6581 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6582 RemainingLdStInMemcpy, OutLoadChains, 6583 OutStoreChains); 6584 } 6585 } 6586 } 6587 } 6588 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6589 } 6590 6591 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6592 SDValue Chain, SDValue Dst, SDValue Src, 6593 uint64_t Size, Align Alignment, 6594 bool isVol, bool AlwaysInline, 6595 MachinePointerInfo DstPtrInfo, 6596 MachinePointerInfo SrcPtrInfo, 6597 const AAMDNodes &AAInfo) { 6598 // Turn a memmove of undef to nop. 6599 // FIXME: We need to honor volatile even is Src is undef. 6600 if (Src.isUndef()) 6601 return Chain; 6602 6603 // Expand memmove to a series of load and store ops if the size operand falls 6604 // below a certain threshold. 6605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6606 const DataLayout &DL = DAG.getDataLayout(); 6607 LLVMContext &C = *DAG.getContext(); 6608 std::vector<EVT> MemOps; 6609 bool DstAlignCanChange = false; 6610 MachineFunction &MF = DAG.getMachineFunction(); 6611 MachineFrameInfo &MFI = MF.getFrameInfo(); 6612 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6613 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6614 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6615 DstAlignCanChange = true; 6616 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6617 if (!SrcAlign || Alignment > *SrcAlign) 6618 SrcAlign = Alignment; 6619 assert(SrcAlign && "SrcAlign must be set"); 6620 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6621 if (!TLI.findOptimalMemOpLowering( 6622 MemOps, Limit, 6623 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6624 /*IsVolatile*/ true), 6625 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6626 MF.getFunction().getAttributes())) 6627 return SDValue(); 6628 6629 if (DstAlignCanChange) { 6630 Type *Ty = MemOps[0].getTypeForEVT(C); 6631 Align NewAlign = DL.getABITypeAlign(Ty); 6632 if (NewAlign > Alignment) { 6633 // Give the stack frame object a larger alignment if needed. 6634 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6635 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6636 Alignment = NewAlign; 6637 } 6638 } 6639 6640 // Prepare AAInfo for loads/stores after lowering this memmove. 6641 AAMDNodes NewAAInfo = AAInfo; 6642 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6643 6644 MachineMemOperand::Flags MMOFlags = 6645 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6646 uint64_t SrcOff = 0, DstOff = 0; 6647 SmallVector<SDValue, 8> LoadValues; 6648 SmallVector<SDValue, 8> LoadChains; 6649 SmallVector<SDValue, 8> OutChains; 6650 unsigned NumMemOps = MemOps.size(); 6651 for (unsigned i = 0; i < NumMemOps; i++) { 6652 EVT VT = MemOps[i]; 6653 unsigned VTSize = VT.getSizeInBits() / 8; 6654 SDValue Value; 6655 6656 bool isDereferenceable = 6657 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6658 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6659 if (isDereferenceable) 6660 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6661 6662 Value = DAG.getLoad( 6663 VT, dl, Chain, 6664 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6665 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6666 LoadValues.push_back(Value); 6667 LoadChains.push_back(Value.getValue(1)); 6668 SrcOff += VTSize; 6669 } 6670 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6671 OutChains.clear(); 6672 for (unsigned i = 0; i < NumMemOps; i++) { 6673 EVT VT = MemOps[i]; 6674 unsigned VTSize = VT.getSizeInBits() / 8; 6675 SDValue Store; 6676 6677 Store = DAG.getStore( 6678 Chain, dl, LoadValues[i], 6679 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6680 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6681 OutChains.push_back(Store); 6682 DstOff += VTSize; 6683 } 6684 6685 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6686 } 6687 6688 /// Lower the call to 'memset' intrinsic function into a series of store 6689 /// operations. 6690 /// 6691 /// \param DAG Selection DAG where lowered code is placed. 6692 /// \param dl Link to corresponding IR location. 6693 /// \param Chain Control flow dependency. 6694 /// \param Dst Pointer to destination memory location. 6695 /// \param Src Value of byte to write into the memory. 6696 /// \param Size Number of bytes to write. 6697 /// \param Alignment Alignment of the destination in bytes. 6698 /// \param isVol True if destination is volatile. 6699 /// \param DstPtrInfo IR information on the memory pointer. 6700 /// \returns New head in the control flow, if lowering was successful, empty 6701 /// SDValue otherwise. 6702 /// 6703 /// The function tries to replace 'llvm.memset' intrinsic with several store 6704 /// operations and value calculation code. This is usually profitable for small 6705 /// memory size. 6706 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6707 SDValue Chain, SDValue Dst, SDValue Src, 6708 uint64_t Size, Align Alignment, bool isVol, 6709 MachinePointerInfo DstPtrInfo, 6710 const AAMDNodes &AAInfo) { 6711 // Turn a memset of undef to nop. 6712 // FIXME: We need to honor volatile even is Src is undef. 6713 if (Src.isUndef()) 6714 return Chain; 6715 6716 // Expand memset to a series of load/store ops if the size operand 6717 // falls below a certain threshold. 6718 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6719 std::vector<EVT> MemOps; 6720 bool DstAlignCanChange = false; 6721 MachineFunction &MF = DAG.getMachineFunction(); 6722 MachineFrameInfo &MFI = MF.getFrameInfo(); 6723 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6724 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6725 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6726 DstAlignCanChange = true; 6727 bool IsZeroVal = 6728 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6729 if (!TLI.findOptimalMemOpLowering( 6730 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6731 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6732 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6733 return SDValue(); 6734 6735 if (DstAlignCanChange) { 6736 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6737 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6738 if (NewAlign > Alignment) { 6739 // Give the stack frame object a larger alignment if needed. 6740 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6741 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6742 Alignment = NewAlign; 6743 } 6744 } 6745 6746 SmallVector<SDValue, 8> OutChains; 6747 uint64_t DstOff = 0; 6748 unsigned NumMemOps = MemOps.size(); 6749 6750 // Find the largest store and generate the bit pattern for it. 6751 EVT LargestVT = MemOps[0]; 6752 for (unsigned i = 1; i < NumMemOps; i++) 6753 if (MemOps[i].bitsGT(LargestVT)) 6754 LargestVT = MemOps[i]; 6755 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6756 6757 // Prepare AAInfo for loads/stores after lowering this memset. 6758 AAMDNodes NewAAInfo = AAInfo; 6759 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6760 6761 for (unsigned i = 0; i < NumMemOps; i++) { 6762 EVT VT = MemOps[i]; 6763 unsigned VTSize = VT.getSizeInBits() / 8; 6764 if (VTSize > Size) { 6765 // Issuing an unaligned load / store pair that overlaps with the previous 6766 // pair. Adjust the offset accordingly. 6767 assert(i == NumMemOps-1 && i != 0); 6768 DstOff -= VTSize - Size; 6769 } 6770 6771 // If this store is smaller than the largest store see whether we can get 6772 // the smaller value for free with a truncate. 6773 SDValue Value = MemSetValue; 6774 if (VT.bitsLT(LargestVT)) { 6775 if (!LargestVT.isVector() && !VT.isVector() && 6776 TLI.isTruncateFree(LargestVT, VT)) 6777 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6778 else 6779 Value = getMemsetValue(Src, VT, DAG, dl); 6780 } 6781 assert(Value.getValueType() == VT && "Value with wrong type."); 6782 SDValue Store = DAG.getStore( 6783 Chain, dl, Value, 6784 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6785 DstPtrInfo.getWithOffset(DstOff), Alignment, 6786 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6787 NewAAInfo); 6788 OutChains.push_back(Store); 6789 DstOff += VT.getSizeInBits() / 8; 6790 Size -= VTSize; 6791 } 6792 6793 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6794 } 6795 6796 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6797 unsigned AS) { 6798 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6799 // pointer operands can be losslessly bitcasted to pointers of address space 0 6800 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6801 report_fatal_error("cannot lower memory intrinsic in address space " + 6802 Twine(AS)); 6803 } 6804 } 6805 6806 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6807 SDValue Src, SDValue Size, Align Alignment, 6808 bool isVol, bool AlwaysInline, bool isTailCall, 6809 MachinePointerInfo DstPtrInfo, 6810 MachinePointerInfo SrcPtrInfo, 6811 const AAMDNodes &AAInfo) { 6812 // Check to see if we should lower the memcpy to loads and stores first. 6813 // For cases within the target-specified limits, this is the best choice. 6814 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6815 if (ConstantSize) { 6816 // Memcpy with size zero? Just return the original chain. 6817 if (ConstantSize->isZero()) 6818 return Chain; 6819 6820 SDValue Result = getMemcpyLoadsAndStores( 6821 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6822 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6823 if (Result.getNode()) 6824 return Result; 6825 } 6826 6827 // Then check to see if we should lower the memcpy with target-specific 6828 // code. If the target chooses to do this, this is the next best. 6829 if (TSI) { 6830 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6831 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6832 DstPtrInfo, SrcPtrInfo); 6833 if (Result.getNode()) 6834 return Result; 6835 } 6836 6837 // If we really need inline code and the target declined to provide it, 6838 // use a (potentially long) sequence of loads and stores. 6839 if (AlwaysInline) { 6840 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6841 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6842 ConstantSize->getZExtValue(), Alignment, 6843 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6844 } 6845 6846 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6847 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6848 6849 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6850 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6851 // respect volatile, so they may do things like read or write memory 6852 // beyond the given memory regions. But fixing this isn't easy, and most 6853 // people don't care. 6854 6855 // Emit a library call. 6856 TargetLowering::ArgListTy Args; 6857 TargetLowering::ArgListEntry Entry; 6858 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6859 Entry.Node = Dst; Args.push_back(Entry); 6860 Entry.Node = Src; Args.push_back(Entry); 6861 6862 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6863 Entry.Node = Size; Args.push_back(Entry); 6864 // FIXME: pass in SDLoc 6865 TargetLowering::CallLoweringInfo CLI(*this); 6866 CLI.setDebugLoc(dl) 6867 .setChain(Chain) 6868 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6869 Dst.getValueType().getTypeForEVT(*getContext()), 6870 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6871 TLI->getPointerTy(getDataLayout())), 6872 std::move(Args)) 6873 .setDiscardResult() 6874 .setTailCall(isTailCall); 6875 6876 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6877 return CallResult.second; 6878 } 6879 6880 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6881 SDValue Dst, unsigned DstAlign, 6882 SDValue Src, unsigned SrcAlign, 6883 SDValue Size, Type *SizeTy, 6884 unsigned ElemSz, bool isTailCall, 6885 MachinePointerInfo DstPtrInfo, 6886 MachinePointerInfo SrcPtrInfo) { 6887 // Emit a library call. 6888 TargetLowering::ArgListTy Args; 6889 TargetLowering::ArgListEntry Entry; 6890 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6891 Entry.Node = Dst; 6892 Args.push_back(Entry); 6893 6894 Entry.Node = Src; 6895 Args.push_back(Entry); 6896 6897 Entry.Ty = SizeTy; 6898 Entry.Node = Size; 6899 Args.push_back(Entry); 6900 6901 RTLIB::Libcall LibraryCall = 6902 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6903 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6904 report_fatal_error("Unsupported element size"); 6905 6906 TargetLowering::CallLoweringInfo CLI(*this); 6907 CLI.setDebugLoc(dl) 6908 .setChain(Chain) 6909 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6910 Type::getVoidTy(*getContext()), 6911 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6912 TLI->getPointerTy(getDataLayout())), 6913 std::move(Args)) 6914 .setDiscardResult() 6915 .setTailCall(isTailCall); 6916 6917 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6918 return CallResult.second; 6919 } 6920 6921 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6922 SDValue Src, SDValue Size, Align Alignment, 6923 bool isVol, bool isTailCall, 6924 MachinePointerInfo DstPtrInfo, 6925 MachinePointerInfo SrcPtrInfo, 6926 const AAMDNodes &AAInfo) { 6927 // Check to see if we should lower the memmove to loads and stores first. 6928 // For cases within the target-specified limits, this is the best choice. 6929 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6930 if (ConstantSize) { 6931 // Memmove with size zero? Just return the original chain. 6932 if (ConstantSize->isZero()) 6933 return Chain; 6934 6935 SDValue Result = getMemmoveLoadsAndStores( 6936 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6937 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6938 if (Result.getNode()) 6939 return Result; 6940 } 6941 6942 // Then check to see if we should lower the memmove with target-specific 6943 // code. If the target chooses to do this, this is the next best. 6944 if (TSI) { 6945 SDValue Result = 6946 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6947 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6948 if (Result.getNode()) 6949 return Result; 6950 } 6951 6952 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6953 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6954 6955 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6956 // not be safe. See memcpy above for more details. 6957 6958 // Emit a library call. 6959 TargetLowering::ArgListTy Args; 6960 TargetLowering::ArgListEntry Entry; 6961 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6962 Entry.Node = Dst; Args.push_back(Entry); 6963 Entry.Node = Src; Args.push_back(Entry); 6964 6965 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6966 Entry.Node = Size; Args.push_back(Entry); 6967 // FIXME: pass in SDLoc 6968 TargetLowering::CallLoweringInfo CLI(*this); 6969 CLI.setDebugLoc(dl) 6970 .setChain(Chain) 6971 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6972 Dst.getValueType().getTypeForEVT(*getContext()), 6973 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6974 TLI->getPointerTy(getDataLayout())), 6975 std::move(Args)) 6976 .setDiscardResult() 6977 .setTailCall(isTailCall); 6978 6979 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6980 return CallResult.second; 6981 } 6982 6983 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6984 SDValue Dst, unsigned DstAlign, 6985 SDValue Src, unsigned SrcAlign, 6986 SDValue Size, Type *SizeTy, 6987 unsigned ElemSz, bool isTailCall, 6988 MachinePointerInfo DstPtrInfo, 6989 MachinePointerInfo SrcPtrInfo) { 6990 // Emit a library call. 6991 TargetLowering::ArgListTy Args; 6992 TargetLowering::ArgListEntry Entry; 6993 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6994 Entry.Node = Dst; 6995 Args.push_back(Entry); 6996 6997 Entry.Node = Src; 6998 Args.push_back(Entry); 6999 7000 Entry.Ty = SizeTy; 7001 Entry.Node = Size; 7002 Args.push_back(Entry); 7003 7004 RTLIB::Libcall LibraryCall = 7005 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7006 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7007 report_fatal_error("Unsupported element size"); 7008 7009 TargetLowering::CallLoweringInfo CLI(*this); 7010 CLI.setDebugLoc(dl) 7011 .setChain(Chain) 7012 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7013 Type::getVoidTy(*getContext()), 7014 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7015 TLI->getPointerTy(getDataLayout())), 7016 std::move(Args)) 7017 .setDiscardResult() 7018 .setTailCall(isTailCall); 7019 7020 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7021 return CallResult.second; 7022 } 7023 7024 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7025 SDValue Src, SDValue Size, Align Alignment, 7026 bool isVol, bool isTailCall, 7027 MachinePointerInfo DstPtrInfo, 7028 const AAMDNodes &AAInfo) { 7029 // Check to see if we should lower the memset to stores first. 7030 // For cases within the target-specified limits, this is the best choice. 7031 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7032 if (ConstantSize) { 7033 // Memset with size zero? Just return the original chain. 7034 if (ConstantSize->isZero()) 7035 return Chain; 7036 7037 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7038 ConstantSize->getZExtValue(), Alignment, 7039 isVol, DstPtrInfo, AAInfo); 7040 7041 if (Result.getNode()) 7042 return Result; 7043 } 7044 7045 // Then check to see if we should lower the memset with target-specific 7046 // code. If the target chooses to do this, this is the next best. 7047 if (TSI) { 7048 SDValue Result = TSI->EmitTargetCodeForMemset( 7049 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7050 if (Result.getNode()) 7051 return Result; 7052 } 7053 7054 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7055 7056 // Emit a library call. 7057 TargetLowering::ArgListTy Args; 7058 TargetLowering::ArgListEntry Entry; 7059 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7060 Args.push_back(Entry); 7061 Entry.Node = Src; 7062 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7063 Args.push_back(Entry); 7064 Entry.Node = Size; 7065 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7066 Args.push_back(Entry); 7067 7068 // FIXME: pass in SDLoc 7069 TargetLowering::CallLoweringInfo CLI(*this); 7070 CLI.setDebugLoc(dl) 7071 .setChain(Chain) 7072 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7073 Dst.getValueType().getTypeForEVT(*getContext()), 7074 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7075 TLI->getPointerTy(getDataLayout())), 7076 std::move(Args)) 7077 .setDiscardResult() 7078 .setTailCall(isTailCall); 7079 7080 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7081 return CallResult.second; 7082 } 7083 7084 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7085 SDValue Dst, unsigned DstAlign, 7086 SDValue Value, SDValue Size, Type *SizeTy, 7087 unsigned ElemSz, bool isTailCall, 7088 MachinePointerInfo DstPtrInfo) { 7089 // Emit a library call. 7090 TargetLowering::ArgListTy Args; 7091 TargetLowering::ArgListEntry Entry; 7092 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7093 Entry.Node = Dst; 7094 Args.push_back(Entry); 7095 7096 Entry.Ty = Type::getInt8Ty(*getContext()); 7097 Entry.Node = Value; 7098 Args.push_back(Entry); 7099 7100 Entry.Ty = SizeTy; 7101 Entry.Node = Size; 7102 Args.push_back(Entry); 7103 7104 RTLIB::Libcall LibraryCall = 7105 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7106 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7107 report_fatal_error("Unsupported element size"); 7108 7109 TargetLowering::CallLoweringInfo CLI(*this); 7110 CLI.setDebugLoc(dl) 7111 .setChain(Chain) 7112 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7113 Type::getVoidTy(*getContext()), 7114 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7115 TLI->getPointerTy(getDataLayout())), 7116 std::move(Args)) 7117 .setDiscardResult() 7118 .setTailCall(isTailCall); 7119 7120 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7121 return CallResult.second; 7122 } 7123 7124 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7125 SDVTList VTList, ArrayRef<SDValue> Ops, 7126 MachineMemOperand *MMO) { 7127 FoldingSetNodeID ID; 7128 ID.AddInteger(MemVT.getRawBits()); 7129 AddNodeIDNode(ID, Opcode, VTList, Ops); 7130 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7131 void* IP = nullptr; 7132 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7133 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7134 return SDValue(E, 0); 7135 } 7136 7137 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7138 VTList, MemVT, MMO); 7139 createOperands(N, Ops); 7140 7141 CSEMap.InsertNode(N, IP); 7142 InsertNode(N); 7143 return SDValue(N, 0); 7144 } 7145 7146 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7147 EVT MemVT, SDVTList VTs, SDValue Chain, 7148 SDValue Ptr, SDValue Cmp, SDValue Swp, 7149 MachineMemOperand *MMO) { 7150 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7151 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7152 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7153 7154 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7155 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7156 } 7157 7158 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7159 SDValue Chain, SDValue Ptr, SDValue Val, 7160 MachineMemOperand *MMO) { 7161 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7162 Opcode == ISD::ATOMIC_LOAD_SUB || 7163 Opcode == ISD::ATOMIC_LOAD_AND || 7164 Opcode == ISD::ATOMIC_LOAD_CLR || 7165 Opcode == ISD::ATOMIC_LOAD_OR || 7166 Opcode == ISD::ATOMIC_LOAD_XOR || 7167 Opcode == ISD::ATOMIC_LOAD_NAND || 7168 Opcode == ISD::ATOMIC_LOAD_MIN || 7169 Opcode == ISD::ATOMIC_LOAD_MAX || 7170 Opcode == ISD::ATOMIC_LOAD_UMIN || 7171 Opcode == ISD::ATOMIC_LOAD_UMAX || 7172 Opcode == ISD::ATOMIC_LOAD_FADD || 7173 Opcode == ISD::ATOMIC_LOAD_FSUB || 7174 Opcode == ISD::ATOMIC_SWAP || 7175 Opcode == ISD::ATOMIC_STORE) && 7176 "Invalid Atomic Op"); 7177 7178 EVT VT = Val.getValueType(); 7179 7180 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7181 getVTList(VT, MVT::Other); 7182 SDValue Ops[] = {Chain, Ptr, Val}; 7183 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7184 } 7185 7186 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7187 EVT VT, SDValue Chain, SDValue Ptr, 7188 MachineMemOperand *MMO) { 7189 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7190 7191 SDVTList VTs = getVTList(VT, MVT::Other); 7192 SDValue Ops[] = {Chain, Ptr}; 7193 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7194 } 7195 7196 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7197 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7198 if (Ops.size() == 1) 7199 return Ops[0]; 7200 7201 SmallVector<EVT, 4> VTs; 7202 VTs.reserve(Ops.size()); 7203 for (const SDValue &Op : Ops) 7204 VTs.push_back(Op.getValueType()); 7205 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7206 } 7207 7208 SDValue SelectionDAG::getMemIntrinsicNode( 7209 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7210 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7211 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7212 if (!Size && MemVT.isScalableVector()) 7213 Size = MemoryLocation::UnknownSize; 7214 else if (!Size) 7215 Size = MemVT.getStoreSize(); 7216 7217 MachineFunction &MF = getMachineFunction(); 7218 MachineMemOperand *MMO = 7219 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7220 7221 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7222 } 7223 7224 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7225 SDVTList VTList, 7226 ArrayRef<SDValue> Ops, EVT MemVT, 7227 MachineMemOperand *MMO) { 7228 assert((Opcode == ISD::INTRINSIC_VOID || 7229 Opcode == ISD::INTRINSIC_W_CHAIN || 7230 Opcode == ISD::PREFETCH || 7231 ((int)Opcode <= std::numeric_limits<int>::max() && 7232 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7233 "Opcode is not a memory-accessing opcode!"); 7234 7235 // Memoize the node unless it returns a flag. 7236 MemIntrinsicSDNode *N; 7237 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7238 FoldingSetNodeID ID; 7239 AddNodeIDNode(ID, Opcode, VTList, Ops); 7240 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7241 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7242 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7243 void *IP = nullptr; 7244 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7245 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7246 return SDValue(E, 0); 7247 } 7248 7249 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7250 VTList, MemVT, MMO); 7251 createOperands(N, Ops); 7252 7253 CSEMap.InsertNode(N, IP); 7254 } else { 7255 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7256 VTList, MemVT, MMO); 7257 createOperands(N, Ops); 7258 } 7259 InsertNode(N); 7260 SDValue V(N, 0); 7261 NewSDValueDbgMsg(V, "Creating new node: ", this); 7262 return V; 7263 } 7264 7265 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7266 SDValue Chain, int FrameIndex, 7267 int64_t Size, int64_t Offset) { 7268 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7269 const auto VTs = getVTList(MVT::Other); 7270 SDValue Ops[2] = { 7271 Chain, 7272 getFrameIndex(FrameIndex, 7273 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7274 true)}; 7275 7276 FoldingSetNodeID ID; 7277 AddNodeIDNode(ID, Opcode, VTs, Ops); 7278 ID.AddInteger(FrameIndex); 7279 ID.AddInteger(Size); 7280 ID.AddInteger(Offset); 7281 void *IP = nullptr; 7282 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7283 return SDValue(E, 0); 7284 7285 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7286 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7287 createOperands(N, Ops); 7288 CSEMap.InsertNode(N, IP); 7289 InsertNode(N); 7290 SDValue V(N, 0); 7291 NewSDValueDbgMsg(V, "Creating new node: ", this); 7292 return V; 7293 } 7294 7295 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7296 uint64_t Guid, uint64_t Index, 7297 uint32_t Attr) { 7298 const unsigned Opcode = ISD::PSEUDO_PROBE; 7299 const auto VTs = getVTList(MVT::Other); 7300 SDValue Ops[] = {Chain}; 7301 FoldingSetNodeID ID; 7302 AddNodeIDNode(ID, Opcode, VTs, Ops); 7303 ID.AddInteger(Guid); 7304 ID.AddInteger(Index); 7305 void *IP = nullptr; 7306 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7307 return SDValue(E, 0); 7308 7309 auto *N = newSDNode<PseudoProbeSDNode>( 7310 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7311 createOperands(N, Ops); 7312 CSEMap.InsertNode(N, IP); 7313 InsertNode(N); 7314 SDValue V(N, 0); 7315 NewSDValueDbgMsg(V, "Creating new node: ", this); 7316 return V; 7317 } 7318 7319 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7320 /// MachinePointerInfo record from it. This is particularly useful because the 7321 /// code generator has many cases where it doesn't bother passing in a 7322 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7323 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7324 SelectionDAG &DAG, SDValue Ptr, 7325 int64_t Offset = 0) { 7326 // If this is FI+Offset, we can model it. 7327 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7328 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7329 FI->getIndex(), Offset); 7330 7331 // If this is (FI+Offset1)+Offset2, we can model it. 7332 if (Ptr.getOpcode() != ISD::ADD || 7333 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7334 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7335 return Info; 7336 7337 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7338 return MachinePointerInfo::getFixedStack( 7339 DAG.getMachineFunction(), FI, 7340 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7341 } 7342 7343 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7344 /// MachinePointerInfo record from it. This is particularly useful because the 7345 /// code generator has many cases where it doesn't bother passing in a 7346 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7347 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7348 SelectionDAG &DAG, SDValue Ptr, 7349 SDValue OffsetOp) { 7350 // If the 'Offset' value isn't a constant, we can't handle this. 7351 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7352 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7353 if (OffsetOp.isUndef()) 7354 return InferPointerInfo(Info, DAG, Ptr); 7355 return Info; 7356 } 7357 7358 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7359 EVT VT, const SDLoc &dl, SDValue Chain, 7360 SDValue Ptr, SDValue Offset, 7361 MachinePointerInfo PtrInfo, EVT MemVT, 7362 Align Alignment, 7363 MachineMemOperand::Flags MMOFlags, 7364 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7365 assert(Chain.getValueType() == MVT::Other && 7366 "Invalid chain type"); 7367 7368 MMOFlags |= MachineMemOperand::MOLoad; 7369 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7370 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7371 // clients. 7372 if (PtrInfo.V.isNull()) 7373 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7374 7375 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7376 MachineFunction &MF = getMachineFunction(); 7377 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7378 Alignment, AAInfo, Ranges); 7379 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7380 } 7381 7382 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7383 EVT VT, const SDLoc &dl, SDValue Chain, 7384 SDValue Ptr, SDValue Offset, EVT MemVT, 7385 MachineMemOperand *MMO) { 7386 if (VT == MemVT) { 7387 ExtType = ISD::NON_EXTLOAD; 7388 } else if (ExtType == ISD::NON_EXTLOAD) { 7389 assert(VT == MemVT && "Non-extending load from different memory type!"); 7390 } else { 7391 // Extending load. 7392 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7393 "Should only be an extending load, not truncating!"); 7394 assert(VT.isInteger() == MemVT.isInteger() && 7395 "Cannot convert from FP to Int or Int -> FP!"); 7396 assert(VT.isVector() == MemVT.isVector() && 7397 "Cannot use an ext load to convert to or from a vector!"); 7398 assert((!VT.isVector() || 7399 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7400 "Cannot use an ext load to change the number of vector elements!"); 7401 } 7402 7403 bool Indexed = AM != ISD::UNINDEXED; 7404 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7405 7406 SDVTList VTs = Indexed ? 7407 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7408 SDValue Ops[] = { Chain, Ptr, Offset }; 7409 FoldingSetNodeID ID; 7410 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7411 ID.AddInteger(MemVT.getRawBits()); 7412 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7413 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7414 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7415 void *IP = nullptr; 7416 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7417 cast<LoadSDNode>(E)->refineAlignment(MMO); 7418 return SDValue(E, 0); 7419 } 7420 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7421 ExtType, MemVT, MMO); 7422 createOperands(N, Ops); 7423 7424 CSEMap.InsertNode(N, IP); 7425 InsertNode(N); 7426 SDValue V(N, 0); 7427 NewSDValueDbgMsg(V, "Creating new node: ", this); 7428 return V; 7429 } 7430 7431 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7432 SDValue Ptr, MachinePointerInfo PtrInfo, 7433 MaybeAlign Alignment, 7434 MachineMemOperand::Flags MMOFlags, 7435 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7436 SDValue Undef = getUNDEF(Ptr.getValueType()); 7437 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7438 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7439 } 7440 7441 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7442 SDValue Ptr, MachineMemOperand *MMO) { 7443 SDValue Undef = getUNDEF(Ptr.getValueType()); 7444 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7445 VT, MMO); 7446 } 7447 7448 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7449 EVT VT, SDValue Chain, SDValue Ptr, 7450 MachinePointerInfo PtrInfo, EVT MemVT, 7451 MaybeAlign Alignment, 7452 MachineMemOperand::Flags MMOFlags, 7453 const AAMDNodes &AAInfo) { 7454 SDValue Undef = getUNDEF(Ptr.getValueType()); 7455 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7456 MemVT, Alignment, MMOFlags, AAInfo); 7457 } 7458 7459 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7460 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7461 MachineMemOperand *MMO) { 7462 SDValue Undef = getUNDEF(Ptr.getValueType()); 7463 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7464 MemVT, MMO); 7465 } 7466 7467 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7468 SDValue Base, SDValue Offset, 7469 ISD::MemIndexedMode AM) { 7470 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7471 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7472 // Don't propagate the invariant or dereferenceable flags. 7473 auto MMOFlags = 7474 LD->getMemOperand()->getFlags() & 7475 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7476 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7477 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7478 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7479 } 7480 7481 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7482 SDValue Ptr, MachinePointerInfo PtrInfo, 7483 Align Alignment, 7484 MachineMemOperand::Flags MMOFlags, 7485 const AAMDNodes &AAInfo) { 7486 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7487 7488 MMOFlags |= MachineMemOperand::MOStore; 7489 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7490 7491 if (PtrInfo.V.isNull()) 7492 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7493 7494 MachineFunction &MF = getMachineFunction(); 7495 uint64_t Size = 7496 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7497 MachineMemOperand *MMO = 7498 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7499 return getStore(Chain, dl, Val, Ptr, MMO); 7500 } 7501 7502 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7503 SDValue Ptr, MachineMemOperand *MMO) { 7504 assert(Chain.getValueType() == MVT::Other && 7505 "Invalid chain type"); 7506 EVT VT = Val.getValueType(); 7507 SDVTList VTs = getVTList(MVT::Other); 7508 SDValue Undef = getUNDEF(Ptr.getValueType()); 7509 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7510 FoldingSetNodeID ID; 7511 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7512 ID.AddInteger(VT.getRawBits()); 7513 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7514 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7515 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7516 void *IP = nullptr; 7517 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7518 cast<StoreSDNode>(E)->refineAlignment(MMO); 7519 return SDValue(E, 0); 7520 } 7521 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7522 ISD::UNINDEXED, false, VT, MMO); 7523 createOperands(N, Ops); 7524 7525 CSEMap.InsertNode(N, IP); 7526 InsertNode(N); 7527 SDValue V(N, 0); 7528 NewSDValueDbgMsg(V, "Creating new node: ", this); 7529 return V; 7530 } 7531 7532 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7533 SDValue Ptr, MachinePointerInfo PtrInfo, 7534 EVT SVT, Align Alignment, 7535 MachineMemOperand::Flags MMOFlags, 7536 const AAMDNodes &AAInfo) { 7537 assert(Chain.getValueType() == MVT::Other && 7538 "Invalid chain type"); 7539 7540 MMOFlags |= MachineMemOperand::MOStore; 7541 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7542 7543 if (PtrInfo.V.isNull()) 7544 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7545 7546 MachineFunction &MF = getMachineFunction(); 7547 MachineMemOperand *MMO = MF.getMachineMemOperand( 7548 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7549 Alignment, AAInfo); 7550 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7551 } 7552 7553 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7554 SDValue Ptr, EVT SVT, 7555 MachineMemOperand *MMO) { 7556 EVT VT = Val.getValueType(); 7557 7558 assert(Chain.getValueType() == MVT::Other && 7559 "Invalid chain type"); 7560 if (VT == SVT) 7561 return getStore(Chain, dl, Val, Ptr, MMO); 7562 7563 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7564 "Should only be a truncating store, not extending!"); 7565 assert(VT.isInteger() == SVT.isInteger() && 7566 "Can't do FP-INT conversion!"); 7567 assert(VT.isVector() == SVT.isVector() && 7568 "Cannot use trunc store to convert to or from a vector!"); 7569 assert((!VT.isVector() || 7570 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7571 "Cannot use trunc store to change the number of vector elements!"); 7572 7573 SDVTList VTs = getVTList(MVT::Other); 7574 SDValue Undef = getUNDEF(Ptr.getValueType()); 7575 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7576 FoldingSetNodeID ID; 7577 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7578 ID.AddInteger(SVT.getRawBits()); 7579 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7580 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7581 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7582 void *IP = nullptr; 7583 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7584 cast<StoreSDNode>(E)->refineAlignment(MMO); 7585 return SDValue(E, 0); 7586 } 7587 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7588 ISD::UNINDEXED, true, SVT, MMO); 7589 createOperands(N, Ops); 7590 7591 CSEMap.InsertNode(N, IP); 7592 InsertNode(N); 7593 SDValue V(N, 0); 7594 NewSDValueDbgMsg(V, "Creating new node: ", this); 7595 return V; 7596 } 7597 7598 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7599 SDValue Base, SDValue Offset, 7600 ISD::MemIndexedMode AM) { 7601 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7602 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7603 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7604 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7605 FoldingSetNodeID ID; 7606 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7607 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7608 ID.AddInteger(ST->getRawSubclassData()); 7609 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7610 void *IP = nullptr; 7611 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7612 return SDValue(E, 0); 7613 7614 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7615 ST->isTruncatingStore(), ST->getMemoryVT(), 7616 ST->getMemOperand()); 7617 createOperands(N, Ops); 7618 7619 CSEMap.InsertNode(N, IP); 7620 InsertNode(N); 7621 SDValue V(N, 0); 7622 NewSDValueDbgMsg(V, "Creating new node: ", this); 7623 return V; 7624 } 7625 7626 SDValue SelectionDAG::getLoadVP( 7627 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7628 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7629 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7630 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7631 const MDNode *Ranges, bool IsExpanding) { 7632 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7633 7634 MMOFlags |= MachineMemOperand::MOLoad; 7635 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7636 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7637 // clients. 7638 if (PtrInfo.V.isNull()) 7639 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7640 7641 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7642 MachineFunction &MF = getMachineFunction(); 7643 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7644 Alignment, AAInfo, Ranges); 7645 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7646 MMO, IsExpanding); 7647 } 7648 7649 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7650 ISD::LoadExtType ExtType, EVT VT, 7651 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7652 SDValue Offset, SDValue Mask, SDValue EVL, 7653 EVT MemVT, MachineMemOperand *MMO, 7654 bool IsExpanding) { 7655 if (VT == MemVT) { 7656 ExtType = ISD::NON_EXTLOAD; 7657 } else if (ExtType == ISD::NON_EXTLOAD) { 7658 assert(VT == MemVT && "Non-extending load from different memory type!"); 7659 } else { 7660 // Extending load. 7661 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7662 "Should only be an extending load, not truncating!"); 7663 assert(VT.isInteger() == MemVT.isInteger() && 7664 "Cannot convert from FP to Int or Int -> FP!"); 7665 assert(VT.isVector() == MemVT.isVector() && 7666 "Cannot use an ext load to convert to or from a vector!"); 7667 assert((!VT.isVector() || 7668 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7669 "Cannot use an ext load to change the number of vector elements!"); 7670 } 7671 7672 bool Indexed = AM != ISD::UNINDEXED; 7673 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7674 7675 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7676 : getVTList(VT, MVT::Other); 7677 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7678 FoldingSetNodeID ID; 7679 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7680 ID.AddInteger(VT.getRawBits()); 7681 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7682 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7683 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7684 void *IP = nullptr; 7685 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7686 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7687 return SDValue(E, 0); 7688 } 7689 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7690 ExtType, IsExpanding, MemVT, MMO); 7691 createOperands(N, Ops); 7692 7693 CSEMap.InsertNode(N, IP); 7694 InsertNode(N); 7695 SDValue V(N, 0); 7696 NewSDValueDbgMsg(V, "Creating new node: ", this); 7697 return V; 7698 } 7699 7700 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7701 SDValue Ptr, SDValue Mask, SDValue EVL, 7702 MachinePointerInfo PtrInfo, 7703 MaybeAlign Alignment, 7704 MachineMemOperand::Flags MMOFlags, 7705 const AAMDNodes &AAInfo, const MDNode *Ranges, 7706 bool IsExpanding) { 7707 SDValue Undef = getUNDEF(Ptr.getValueType()); 7708 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7709 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7710 IsExpanding); 7711 } 7712 7713 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7714 SDValue Ptr, SDValue Mask, SDValue EVL, 7715 MachineMemOperand *MMO, bool IsExpanding) { 7716 SDValue Undef = getUNDEF(Ptr.getValueType()); 7717 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7718 Mask, EVL, VT, MMO, IsExpanding); 7719 } 7720 7721 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7722 EVT VT, SDValue Chain, SDValue Ptr, 7723 SDValue Mask, SDValue EVL, 7724 MachinePointerInfo PtrInfo, EVT MemVT, 7725 MaybeAlign Alignment, 7726 MachineMemOperand::Flags MMOFlags, 7727 const AAMDNodes &AAInfo, bool IsExpanding) { 7728 SDValue Undef = getUNDEF(Ptr.getValueType()); 7729 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7730 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7731 IsExpanding); 7732 } 7733 7734 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7735 EVT VT, SDValue Chain, SDValue Ptr, 7736 SDValue Mask, SDValue EVL, EVT MemVT, 7737 MachineMemOperand *MMO, bool IsExpanding) { 7738 SDValue Undef = getUNDEF(Ptr.getValueType()); 7739 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7740 EVL, MemVT, MMO, IsExpanding); 7741 } 7742 7743 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7744 SDValue Base, SDValue Offset, 7745 ISD::MemIndexedMode AM) { 7746 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7747 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7748 // Don't propagate the invariant or dereferenceable flags. 7749 auto MMOFlags = 7750 LD->getMemOperand()->getFlags() & 7751 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7752 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7753 LD->getChain(), Base, Offset, LD->getMask(), 7754 LD->getVectorLength(), LD->getPointerInfo(), 7755 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7756 nullptr, LD->isExpandingLoad()); 7757 } 7758 7759 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7760 SDValue Ptr, SDValue Mask, SDValue EVL, 7761 MachinePointerInfo PtrInfo, Align Alignment, 7762 MachineMemOperand::Flags MMOFlags, 7763 const AAMDNodes &AAInfo, bool IsCompressing) { 7764 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7765 7766 MMOFlags |= MachineMemOperand::MOStore; 7767 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7768 7769 if (PtrInfo.V.isNull()) 7770 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7771 7772 MachineFunction &MF = getMachineFunction(); 7773 uint64_t Size = 7774 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7775 MachineMemOperand *MMO = 7776 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7777 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7778 } 7779 7780 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7781 SDValue Ptr, SDValue Mask, SDValue EVL, 7782 MachineMemOperand *MMO, bool IsCompressing) { 7783 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7784 EVT VT = Val.getValueType(); 7785 SDVTList VTs = getVTList(MVT::Other); 7786 SDValue Undef = getUNDEF(Ptr.getValueType()); 7787 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7788 FoldingSetNodeID ID; 7789 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7790 ID.AddInteger(VT.getRawBits()); 7791 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7792 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7793 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7794 void *IP = nullptr; 7795 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7796 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7797 return SDValue(E, 0); 7798 } 7799 auto *N = 7800 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7801 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7802 createOperands(N, Ops); 7803 7804 CSEMap.InsertNode(N, IP); 7805 InsertNode(N); 7806 SDValue V(N, 0); 7807 NewSDValueDbgMsg(V, "Creating new node: ", this); 7808 return V; 7809 } 7810 7811 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7812 SDValue Val, SDValue Ptr, SDValue Mask, 7813 SDValue EVL, MachinePointerInfo PtrInfo, 7814 EVT SVT, Align Alignment, 7815 MachineMemOperand::Flags MMOFlags, 7816 const AAMDNodes &AAInfo, 7817 bool IsCompressing) { 7818 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7819 7820 MMOFlags |= MachineMemOperand::MOStore; 7821 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7822 7823 if (PtrInfo.V.isNull()) 7824 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7825 7826 MachineFunction &MF = getMachineFunction(); 7827 MachineMemOperand *MMO = MF.getMachineMemOperand( 7828 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7829 Alignment, AAInfo); 7830 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7831 IsCompressing); 7832 } 7833 7834 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7835 SDValue Val, SDValue Ptr, SDValue Mask, 7836 SDValue EVL, EVT SVT, 7837 MachineMemOperand *MMO, 7838 bool IsCompressing) { 7839 EVT VT = Val.getValueType(); 7840 7841 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7842 if (VT == SVT) 7843 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7844 7845 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7846 "Should only be a truncating store, not extending!"); 7847 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7848 assert(VT.isVector() == SVT.isVector() && 7849 "Cannot use trunc store to convert to or from a vector!"); 7850 assert((!VT.isVector() || 7851 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7852 "Cannot use trunc store to change the number of vector elements!"); 7853 7854 SDVTList VTs = getVTList(MVT::Other); 7855 SDValue Undef = getUNDEF(Ptr.getValueType()); 7856 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7857 FoldingSetNodeID ID; 7858 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7859 ID.AddInteger(SVT.getRawBits()); 7860 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7861 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7862 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7863 void *IP = nullptr; 7864 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7865 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7866 return SDValue(E, 0); 7867 } 7868 auto *N = 7869 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7870 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7871 createOperands(N, Ops); 7872 7873 CSEMap.InsertNode(N, IP); 7874 InsertNode(N); 7875 SDValue V(N, 0); 7876 NewSDValueDbgMsg(V, "Creating new node: ", this); 7877 return V; 7878 } 7879 7880 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7881 SDValue Base, SDValue Offset, 7882 ISD::MemIndexedMode AM) { 7883 auto *ST = cast<VPStoreSDNode>(OrigStore); 7884 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7885 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7886 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7887 Offset, ST->getMask(), ST->getVectorLength()}; 7888 FoldingSetNodeID ID; 7889 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7890 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7891 ID.AddInteger(ST->getRawSubclassData()); 7892 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7893 void *IP = nullptr; 7894 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7895 return SDValue(E, 0); 7896 7897 auto *N = newSDNode<VPStoreSDNode>( 7898 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7899 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7900 createOperands(N, Ops); 7901 7902 CSEMap.InsertNode(N, IP); 7903 InsertNode(N); 7904 SDValue V(N, 0); 7905 NewSDValueDbgMsg(V, "Creating new node: ", this); 7906 return V; 7907 } 7908 7909 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7910 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7911 ISD::MemIndexType IndexType) { 7912 assert(Ops.size() == 6 && "Incompatible number of operands"); 7913 7914 FoldingSetNodeID ID; 7915 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7916 ID.AddInteger(VT.getRawBits()); 7917 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7918 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7919 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7920 void *IP = nullptr; 7921 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7922 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7923 return SDValue(E, 0); 7924 } 7925 7926 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7927 VT, MMO, IndexType); 7928 createOperands(N, Ops); 7929 7930 assert(N->getMask().getValueType().getVectorElementCount() == 7931 N->getValueType(0).getVectorElementCount() && 7932 "Vector width mismatch between mask and data"); 7933 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7934 N->getValueType(0).getVectorElementCount().isScalable() && 7935 "Scalable flags of index and data do not match"); 7936 assert(ElementCount::isKnownGE( 7937 N->getIndex().getValueType().getVectorElementCount(), 7938 N->getValueType(0).getVectorElementCount()) && 7939 "Vector width mismatch between index and data"); 7940 assert(isa<ConstantSDNode>(N->getScale()) && 7941 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7942 "Scale should be a constant power of 2"); 7943 7944 CSEMap.InsertNode(N, IP); 7945 InsertNode(N); 7946 SDValue V(N, 0); 7947 NewSDValueDbgMsg(V, "Creating new node: ", this); 7948 return V; 7949 } 7950 7951 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7952 ArrayRef<SDValue> Ops, 7953 MachineMemOperand *MMO, 7954 ISD::MemIndexType IndexType) { 7955 assert(Ops.size() == 7 && "Incompatible number of operands"); 7956 7957 FoldingSetNodeID ID; 7958 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7959 ID.AddInteger(VT.getRawBits()); 7960 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 7961 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7962 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7963 void *IP = nullptr; 7964 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7965 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 7966 return SDValue(E, 0); 7967 } 7968 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7969 VT, MMO, IndexType); 7970 createOperands(N, Ops); 7971 7972 assert(N->getMask().getValueType().getVectorElementCount() == 7973 N->getValue().getValueType().getVectorElementCount() && 7974 "Vector width mismatch between mask and data"); 7975 assert( 7976 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7977 N->getValue().getValueType().getVectorElementCount().isScalable() && 7978 "Scalable flags of index and data do not match"); 7979 assert(ElementCount::isKnownGE( 7980 N->getIndex().getValueType().getVectorElementCount(), 7981 N->getValue().getValueType().getVectorElementCount()) && 7982 "Vector width mismatch between index and data"); 7983 assert(isa<ConstantSDNode>(N->getScale()) && 7984 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7985 "Scale should be a constant power of 2"); 7986 7987 CSEMap.InsertNode(N, IP); 7988 InsertNode(N); 7989 SDValue V(N, 0); 7990 NewSDValueDbgMsg(V, "Creating new node: ", this); 7991 return V; 7992 } 7993 7994 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7995 SDValue Base, SDValue Offset, SDValue Mask, 7996 SDValue PassThru, EVT MemVT, 7997 MachineMemOperand *MMO, 7998 ISD::MemIndexedMode AM, 7999 ISD::LoadExtType ExtTy, bool isExpanding) { 8000 bool Indexed = AM != ISD::UNINDEXED; 8001 assert((Indexed || Offset.isUndef()) && 8002 "Unindexed masked load with an offset!"); 8003 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8004 : getVTList(VT, MVT::Other); 8005 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8006 FoldingSetNodeID ID; 8007 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8008 ID.AddInteger(MemVT.getRawBits()); 8009 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8010 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8011 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8012 void *IP = nullptr; 8013 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8014 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8015 return SDValue(E, 0); 8016 } 8017 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8018 AM, ExtTy, isExpanding, MemVT, MMO); 8019 createOperands(N, Ops); 8020 8021 CSEMap.InsertNode(N, IP); 8022 InsertNode(N); 8023 SDValue V(N, 0); 8024 NewSDValueDbgMsg(V, "Creating new node: ", this); 8025 return V; 8026 } 8027 8028 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8029 SDValue Base, SDValue Offset, 8030 ISD::MemIndexedMode AM) { 8031 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8032 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8033 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8034 Offset, LD->getMask(), LD->getPassThru(), 8035 LD->getMemoryVT(), LD->getMemOperand(), AM, 8036 LD->getExtensionType(), LD->isExpandingLoad()); 8037 } 8038 8039 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8040 SDValue Val, SDValue Base, SDValue Offset, 8041 SDValue Mask, EVT MemVT, 8042 MachineMemOperand *MMO, 8043 ISD::MemIndexedMode AM, bool IsTruncating, 8044 bool IsCompressing) { 8045 assert(Chain.getValueType() == MVT::Other && 8046 "Invalid chain type"); 8047 bool Indexed = AM != ISD::UNINDEXED; 8048 assert((Indexed || Offset.isUndef()) && 8049 "Unindexed masked store with an offset!"); 8050 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8051 : getVTList(MVT::Other); 8052 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8053 FoldingSetNodeID ID; 8054 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8055 ID.AddInteger(MemVT.getRawBits()); 8056 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8057 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8058 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8059 void *IP = nullptr; 8060 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8061 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8062 return SDValue(E, 0); 8063 } 8064 auto *N = 8065 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8066 IsTruncating, IsCompressing, MemVT, MMO); 8067 createOperands(N, Ops); 8068 8069 CSEMap.InsertNode(N, IP); 8070 InsertNode(N); 8071 SDValue V(N, 0); 8072 NewSDValueDbgMsg(V, "Creating new node: ", this); 8073 return V; 8074 } 8075 8076 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8077 SDValue Base, SDValue Offset, 8078 ISD::MemIndexedMode AM) { 8079 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8080 assert(ST->getOffset().isUndef() && 8081 "Masked store is already a indexed store!"); 8082 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8083 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8084 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8085 } 8086 8087 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8088 ArrayRef<SDValue> Ops, 8089 MachineMemOperand *MMO, 8090 ISD::MemIndexType IndexType, 8091 ISD::LoadExtType ExtTy) { 8092 assert(Ops.size() == 6 && "Incompatible number of operands"); 8093 8094 FoldingSetNodeID ID; 8095 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8096 ID.AddInteger(MemVT.getRawBits()); 8097 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8098 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8099 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8100 void *IP = nullptr; 8101 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8102 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8103 return SDValue(E, 0); 8104 } 8105 8106 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8107 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8108 VTs, MemVT, MMO, IndexType, ExtTy); 8109 createOperands(N, Ops); 8110 8111 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8112 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8113 assert(N->getMask().getValueType().getVectorElementCount() == 8114 N->getValueType(0).getVectorElementCount() && 8115 "Vector width mismatch between mask and data"); 8116 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8117 N->getValueType(0).getVectorElementCount().isScalable() && 8118 "Scalable flags of index and data do not match"); 8119 assert(ElementCount::isKnownGE( 8120 N->getIndex().getValueType().getVectorElementCount(), 8121 N->getValueType(0).getVectorElementCount()) && 8122 "Vector width mismatch between index and data"); 8123 assert(isa<ConstantSDNode>(N->getScale()) && 8124 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8125 "Scale should be a constant power of 2"); 8126 8127 CSEMap.InsertNode(N, IP); 8128 InsertNode(N); 8129 SDValue V(N, 0); 8130 NewSDValueDbgMsg(V, "Creating new node: ", this); 8131 return V; 8132 } 8133 8134 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8135 ArrayRef<SDValue> Ops, 8136 MachineMemOperand *MMO, 8137 ISD::MemIndexType IndexType, 8138 bool IsTrunc) { 8139 assert(Ops.size() == 6 && "Incompatible number of operands"); 8140 8141 FoldingSetNodeID ID; 8142 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8143 ID.AddInteger(MemVT.getRawBits()); 8144 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8145 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8146 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8147 void *IP = nullptr; 8148 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8149 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8150 return SDValue(E, 0); 8151 } 8152 8153 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8154 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8155 VTs, MemVT, MMO, IndexType, IsTrunc); 8156 createOperands(N, Ops); 8157 8158 assert(N->getMask().getValueType().getVectorElementCount() == 8159 N->getValue().getValueType().getVectorElementCount() && 8160 "Vector width mismatch between mask and data"); 8161 assert( 8162 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8163 N->getValue().getValueType().getVectorElementCount().isScalable() && 8164 "Scalable flags of index and data do not match"); 8165 assert(ElementCount::isKnownGE( 8166 N->getIndex().getValueType().getVectorElementCount(), 8167 N->getValue().getValueType().getVectorElementCount()) && 8168 "Vector width mismatch between index and data"); 8169 assert(isa<ConstantSDNode>(N->getScale()) && 8170 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8171 "Scale should be a constant power of 2"); 8172 8173 CSEMap.InsertNode(N, IP); 8174 InsertNode(N); 8175 SDValue V(N, 0); 8176 NewSDValueDbgMsg(V, "Creating new node: ", this); 8177 return V; 8178 } 8179 8180 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8181 // select undef, T, F --> T (if T is a constant), otherwise F 8182 // select, ?, undef, F --> F 8183 // select, ?, T, undef --> T 8184 if (Cond.isUndef()) 8185 return isConstantValueOfAnyType(T) ? T : F; 8186 if (T.isUndef()) 8187 return F; 8188 if (F.isUndef()) 8189 return T; 8190 8191 // select true, T, F --> T 8192 // select false, T, F --> F 8193 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8194 return CondC->isZero() ? F : T; 8195 8196 // TODO: This should simplify VSELECT with constant condition using something 8197 // like this (but check boolean contents to be complete?): 8198 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8199 // return T; 8200 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8201 // return F; 8202 8203 // select ?, T, T --> T 8204 if (T == F) 8205 return T; 8206 8207 return SDValue(); 8208 } 8209 8210 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8211 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8212 if (X.isUndef()) 8213 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8214 // shift X, undef --> undef (because it may shift by the bitwidth) 8215 if (Y.isUndef()) 8216 return getUNDEF(X.getValueType()); 8217 8218 // shift 0, Y --> 0 8219 // shift X, 0 --> X 8220 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8221 return X; 8222 8223 // shift X, C >= bitwidth(X) --> undef 8224 // All vector elements must be too big (or undef) to avoid partial undefs. 8225 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8226 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8227 }; 8228 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8229 return getUNDEF(X.getValueType()); 8230 8231 return SDValue(); 8232 } 8233 8234 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8235 SDNodeFlags Flags) { 8236 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8237 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8238 // operation is poison. That result can be relaxed to undef. 8239 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8240 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8241 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8242 (YC && YC->getValueAPF().isNaN()); 8243 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8244 (YC && YC->getValueAPF().isInfinity()); 8245 8246 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8247 return getUNDEF(X.getValueType()); 8248 8249 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8250 return getUNDEF(X.getValueType()); 8251 8252 if (!YC) 8253 return SDValue(); 8254 8255 // X + -0.0 --> X 8256 if (Opcode == ISD::FADD) 8257 if (YC->getValueAPF().isNegZero()) 8258 return X; 8259 8260 // X - +0.0 --> X 8261 if (Opcode == ISD::FSUB) 8262 if (YC->getValueAPF().isPosZero()) 8263 return X; 8264 8265 // X * 1.0 --> X 8266 // X / 1.0 --> X 8267 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8268 if (YC->getValueAPF().isExactlyValue(1.0)) 8269 return X; 8270 8271 // X * 0.0 --> 0.0 8272 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8273 if (YC->getValueAPF().isZero()) 8274 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8275 8276 return SDValue(); 8277 } 8278 8279 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8280 SDValue Ptr, SDValue SV, unsigned Align) { 8281 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8282 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8283 } 8284 8285 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8286 ArrayRef<SDUse> Ops) { 8287 switch (Ops.size()) { 8288 case 0: return getNode(Opcode, DL, VT); 8289 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8290 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8291 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8292 default: break; 8293 } 8294 8295 // Copy from an SDUse array into an SDValue array for use with 8296 // the regular getNode logic. 8297 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8298 return getNode(Opcode, DL, VT, NewOps); 8299 } 8300 8301 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8302 ArrayRef<SDValue> Ops) { 8303 SDNodeFlags Flags; 8304 if (Inserter) 8305 Flags = Inserter->getFlags(); 8306 return getNode(Opcode, DL, VT, Ops, Flags); 8307 } 8308 8309 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8310 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8311 unsigned NumOps = Ops.size(); 8312 switch (NumOps) { 8313 case 0: return getNode(Opcode, DL, VT); 8314 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8315 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8316 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8317 default: break; 8318 } 8319 8320 #ifndef NDEBUG 8321 for (auto &Op : Ops) 8322 assert(Op.getOpcode() != ISD::DELETED_NODE && 8323 "Operand is DELETED_NODE!"); 8324 #endif 8325 8326 switch (Opcode) { 8327 default: break; 8328 case ISD::BUILD_VECTOR: 8329 // Attempt to simplify BUILD_VECTOR. 8330 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8331 return V; 8332 break; 8333 case ISD::CONCAT_VECTORS: 8334 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8335 return V; 8336 break; 8337 case ISD::SELECT_CC: 8338 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8339 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8340 "LHS and RHS of condition must have same type!"); 8341 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8342 "True and False arms of SelectCC must have same type!"); 8343 assert(Ops[2].getValueType() == VT && 8344 "select_cc node must be of same type as true and false value!"); 8345 break; 8346 case ISD::BR_CC: 8347 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8348 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8349 "LHS/RHS of comparison should match types!"); 8350 break; 8351 } 8352 8353 // Memoize nodes. 8354 SDNode *N; 8355 SDVTList VTs = getVTList(VT); 8356 8357 if (VT != MVT::Glue) { 8358 FoldingSetNodeID ID; 8359 AddNodeIDNode(ID, Opcode, VTs, Ops); 8360 void *IP = nullptr; 8361 8362 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8363 return SDValue(E, 0); 8364 8365 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8366 createOperands(N, Ops); 8367 8368 CSEMap.InsertNode(N, IP); 8369 } else { 8370 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8371 createOperands(N, Ops); 8372 } 8373 8374 N->setFlags(Flags); 8375 InsertNode(N); 8376 SDValue V(N, 0); 8377 NewSDValueDbgMsg(V, "Creating new node: ", this); 8378 return V; 8379 } 8380 8381 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8382 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8383 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8384 } 8385 8386 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8387 ArrayRef<SDValue> Ops) { 8388 SDNodeFlags Flags; 8389 if (Inserter) 8390 Flags = Inserter->getFlags(); 8391 return getNode(Opcode, DL, VTList, Ops, Flags); 8392 } 8393 8394 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8395 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8396 if (VTList.NumVTs == 1) 8397 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8398 8399 #ifndef NDEBUG 8400 for (auto &Op : Ops) 8401 assert(Op.getOpcode() != ISD::DELETED_NODE && 8402 "Operand is DELETED_NODE!"); 8403 #endif 8404 8405 switch (Opcode) { 8406 case ISD::STRICT_FP_EXTEND: 8407 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8408 "Invalid STRICT_FP_EXTEND!"); 8409 assert(VTList.VTs[0].isFloatingPoint() && 8410 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8411 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8412 "STRICT_FP_EXTEND result type should be vector iff the operand " 8413 "type is vector!"); 8414 assert((!VTList.VTs[0].isVector() || 8415 VTList.VTs[0].getVectorNumElements() == 8416 Ops[1].getValueType().getVectorNumElements()) && 8417 "Vector element count mismatch!"); 8418 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8419 "Invalid fpext node, dst <= src!"); 8420 break; 8421 case ISD::STRICT_FP_ROUND: 8422 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8423 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8424 "STRICT_FP_ROUND result type should be vector iff the operand " 8425 "type is vector!"); 8426 assert((!VTList.VTs[0].isVector() || 8427 VTList.VTs[0].getVectorNumElements() == 8428 Ops[1].getValueType().getVectorNumElements()) && 8429 "Vector element count mismatch!"); 8430 assert(VTList.VTs[0].isFloatingPoint() && 8431 Ops[1].getValueType().isFloatingPoint() && 8432 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8433 isa<ConstantSDNode>(Ops[2]) && 8434 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8435 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8436 "Invalid STRICT_FP_ROUND!"); 8437 break; 8438 #if 0 8439 // FIXME: figure out how to safely handle things like 8440 // int foo(int x) { return 1 << (x & 255); } 8441 // int bar() { return foo(256); } 8442 case ISD::SRA_PARTS: 8443 case ISD::SRL_PARTS: 8444 case ISD::SHL_PARTS: 8445 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8446 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8447 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8448 else if (N3.getOpcode() == ISD::AND) 8449 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8450 // If the and is only masking out bits that cannot effect the shift, 8451 // eliminate the and. 8452 unsigned NumBits = VT.getScalarSizeInBits()*2; 8453 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8454 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8455 } 8456 break; 8457 #endif 8458 } 8459 8460 // Memoize the node unless it returns a flag. 8461 SDNode *N; 8462 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8463 FoldingSetNodeID ID; 8464 AddNodeIDNode(ID, Opcode, VTList, Ops); 8465 void *IP = nullptr; 8466 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8467 return SDValue(E, 0); 8468 8469 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8470 createOperands(N, Ops); 8471 CSEMap.InsertNode(N, IP); 8472 } else { 8473 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8474 createOperands(N, Ops); 8475 } 8476 8477 N->setFlags(Flags); 8478 InsertNode(N); 8479 SDValue V(N, 0); 8480 NewSDValueDbgMsg(V, "Creating new node: ", this); 8481 return V; 8482 } 8483 8484 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8485 SDVTList VTList) { 8486 return getNode(Opcode, DL, VTList, None); 8487 } 8488 8489 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8490 SDValue N1) { 8491 SDValue Ops[] = { N1 }; 8492 return getNode(Opcode, DL, VTList, Ops); 8493 } 8494 8495 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8496 SDValue N1, SDValue N2) { 8497 SDValue Ops[] = { N1, N2 }; 8498 return getNode(Opcode, DL, VTList, Ops); 8499 } 8500 8501 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8502 SDValue N1, SDValue N2, SDValue N3) { 8503 SDValue Ops[] = { N1, N2, N3 }; 8504 return getNode(Opcode, DL, VTList, Ops); 8505 } 8506 8507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8508 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8509 SDValue Ops[] = { N1, N2, N3, N4 }; 8510 return getNode(Opcode, DL, VTList, Ops); 8511 } 8512 8513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8514 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8515 SDValue N5) { 8516 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8517 return getNode(Opcode, DL, VTList, Ops); 8518 } 8519 8520 SDVTList SelectionDAG::getVTList(EVT VT) { 8521 return makeVTList(SDNode::getValueTypeList(VT), 1); 8522 } 8523 8524 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8525 FoldingSetNodeID ID; 8526 ID.AddInteger(2U); 8527 ID.AddInteger(VT1.getRawBits()); 8528 ID.AddInteger(VT2.getRawBits()); 8529 8530 void *IP = nullptr; 8531 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8532 if (!Result) { 8533 EVT *Array = Allocator.Allocate<EVT>(2); 8534 Array[0] = VT1; 8535 Array[1] = VT2; 8536 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8537 VTListMap.InsertNode(Result, IP); 8538 } 8539 return Result->getSDVTList(); 8540 } 8541 8542 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8543 FoldingSetNodeID ID; 8544 ID.AddInteger(3U); 8545 ID.AddInteger(VT1.getRawBits()); 8546 ID.AddInteger(VT2.getRawBits()); 8547 ID.AddInteger(VT3.getRawBits()); 8548 8549 void *IP = nullptr; 8550 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8551 if (!Result) { 8552 EVT *Array = Allocator.Allocate<EVT>(3); 8553 Array[0] = VT1; 8554 Array[1] = VT2; 8555 Array[2] = VT3; 8556 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8557 VTListMap.InsertNode(Result, IP); 8558 } 8559 return Result->getSDVTList(); 8560 } 8561 8562 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8563 FoldingSetNodeID ID; 8564 ID.AddInteger(4U); 8565 ID.AddInteger(VT1.getRawBits()); 8566 ID.AddInteger(VT2.getRawBits()); 8567 ID.AddInteger(VT3.getRawBits()); 8568 ID.AddInteger(VT4.getRawBits()); 8569 8570 void *IP = nullptr; 8571 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8572 if (!Result) { 8573 EVT *Array = Allocator.Allocate<EVT>(4); 8574 Array[0] = VT1; 8575 Array[1] = VT2; 8576 Array[2] = VT3; 8577 Array[3] = VT4; 8578 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8579 VTListMap.InsertNode(Result, IP); 8580 } 8581 return Result->getSDVTList(); 8582 } 8583 8584 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8585 unsigned NumVTs = VTs.size(); 8586 FoldingSetNodeID ID; 8587 ID.AddInteger(NumVTs); 8588 for (unsigned index = 0; index < NumVTs; index++) { 8589 ID.AddInteger(VTs[index].getRawBits()); 8590 } 8591 8592 void *IP = nullptr; 8593 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8594 if (!Result) { 8595 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8596 llvm::copy(VTs, Array); 8597 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8598 VTListMap.InsertNode(Result, IP); 8599 } 8600 return Result->getSDVTList(); 8601 } 8602 8603 8604 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8605 /// specified operands. If the resultant node already exists in the DAG, 8606 /// this does not modify the specified node, instead it returns the node that 8607 /// already exists. If the resultant node does not exist in the DAG, the 8608 /// input node is returned. As a degenerate case, if you specify the same 8609 /// input operands as the node already has, the input node is returned. 8610 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8611 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8612 8613 // Check to see if there is no change. 8614 if (Op == N->getOperand(0)) return N; 8615 8616 // See if the modified node already exists. 8617 void *InsertPos = nullptr; 8618 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8619 return Existing; 8620 8621 // Nope it doesn't. Remove the node from its current place in the maps. 8622 if (InsertPos) 8623 if (!RemoveNodeFromCSEMaps(N)) 8624 InsertPos = nullptr; 8625 8626 // Now we update the operands. 8627 N->OperandList[0].set(Op); 8628 8629 updateDivergence(N); 8630 // If this gets put into a CSE map, add it. 8631 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8632 return N; 8633 } 8634 8635 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8636 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8637 8638 // Check to see if there is no change. 8639 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8640 return N; // No operands changed, just return the input node. 8641 8642 // See if the modified node already exists. 8643 void *InsertPos = nullptr; 8644 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8645 return Existing; 8646 8647 // Nope it doesn't. Remove the node from its current place in the maps. 8648 if (InsertPos) 8649 if (!RemoveNodeFromCSEMaps(N)) 8650 InsertPos = nullptr; 8651 8652 // Now we update the operands. 8653 if (N->OperandList[0] != Op1) 8654 N->OperandList[0].set(Op1); 8655 if (N->OperandList[1] != Op2) 8656 N->OperandList[1].set(Op2); 8657 8658 updateDivergence(N); 8659 // If this gets put into a CSE map, add it. 8660 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8661 return N; 8662 } 8663 8664 SDNode *SelectionDAG:: 8665 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8666 SDValue Ops[] = { Op1, Op2, Op3 }; 8667 return UpdateNodeOperands(N, Ops); 8668 } 8669 8670 SDNode *SelectionDAG:: 8671 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8672 SDValue Op3, SDValue Op4) { 8673 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8674 return UpdateNodeOperands(N, Ops); 8675 } 8676 8677 SDNode *SelectionDAG:: 8678 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8679 SDValue Op3, SDValue Op4, SDValue Op5) { 8680 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8681 return UpdateNodeOperands(N, Ops); 8682 } 8683 8684 SDNode *SelectionDAG:: 8685 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8686 unsigned NumOps = Ops.size(); 8687 assert(N->getNumOperands() == NumOps && 8688 "Update with wrong number of operands"); 8689 8690 // If no operands changed just return the input node. 8691 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8692 return N; 8693 8694 // See if the modified node already exists. 8695 void *InsertPos = nullptr; 8696 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8697 return Existing; 8698 8699 // Nope it doesn't. Remove the node from its current place in the maps. 8700 if (InsertPos) 8701 if (!RemoveNodeFromCSEMaps(N)) 8702 InsertPos = nullptr; 8703 8704 // Now we update the operands. 8705 for (unsigned i = 0; i != NumOps; ++i) 8706 if (N->OperandList[i] != Ops[i]) 8707 N->OperandList[i].set(Ops[i]); 8708 8709 updateDivergence(N); 8710 // If this gets put into a CSE map, add it. 8711 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8712 return N; 8713 } 8714 8715 /// DropOperands - Release the operands and set this node to have 8716 /// zero operands. 8717 void SDNode::DropOperands() { 8718 // Unlike the code in MorphNodeTo that does this, we don't need to 8719 // watch for dead nodes here. 8720 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8721 SDUse &Use = *I++; 8722 Use.set(SDValue()); 8723 } 8724 } 8725 8726 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8727 ArrayRef<MachineMemOperand *> NewMemRefs) { 8728 if (NewMemRefs.empty()) { 8729 N->clearMemRefs(); 8730 return; 8731 } 8732 8733 // Check if we can avoid allocating by storing a single reference directly. 8734 if (NewMemRefs.size() == 1) { 8735 N->MemRefs = NewMemRefs[0]; 8736 N->NumMemRefs = 1; 8737 return; 8738 } 8739 8740 MachineMemOperand **MemRefsBuffer = 8741 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8742 llvm::copy(NewMemRefs, MemRefsBuffer); 8743 N->MemRefs = MemRefsBuffer; 8744 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8745 } 8746 8747 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8748 /// machine opcode. 8749 /// 8750 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8751 EVT VT) { 8752 SDVTList VTs = getVTList(VT); 8753 return SelectNodeTo(N, MachineOpc, VTs, None); 8754 } 8755 8756 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8757 EVT VT, SDValue Op1) { 8758 SDVTList VTs = getVTList(VT); 8759 SDValue Ops[] = { Op1 }; 8760 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8761 } 8762 8763 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8764 EVT VT, SDValue Op1, 8765 SDValue Op2) { 8766 SDVTList VTs = getVTList(VT); 8767 SDValue Ops[] = { Op1, Op2 }; 8768 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8769 } 8770 8771 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8772 EVT VT, SDValue Op1, 8773 SDValue Op2, SDValue Op3) { 8774 SDVTList VTs = getVTList(VT); 8775 SDValue Ops[] = { Op1, Op2, Op3 }; 8776 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8777 } 8778 8779 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8780 EVT VT, ArrayRef<SDValue> Ops) { 8781 SDVTList VTs = getVTList(VT); 8782 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8783 } 8784 8785 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8786 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8787 SDVTList VTs = getVTList(VT1, VT2); 8788 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8789 } 8790 8791 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8792 EVT VT1, EVT VT2) { 8793 SDVTList VTs = getVTList(VT1, VT2); 8794 return SelectNodeTo(N, MachineOpc, VTs, None); 8795 } 8796 8797 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8798 EVT VT1, EVT VT2, EVT VT3, 8799 ArrayRef<SDValue> Ops) { 8800 SDVTList VTs = getVTList(VT1, VT2, VT3); 8801 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8802 } 8803 8804 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8805 EVT VT1, EVT VT2, 8806 SDValue Op1, SDValue Op2) { 8807 SDVTList VTs = getVTList(VT1, VT2); 8808 SDValue Ops[] = { Op1, Op2 }; 8809 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8810 } 8811 8812 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8813 SDVTList VTs,ArrayRef<SDValue> Ops) { 8814 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8815 // Reset the NodeID to -1. 8816 New->setNodeId(-1); 8817 if (New != N) { 8818 ReplaceAllUsesWith(N, New); 8819 RemoveDeadNode(N); 8820 } 8821 return New; 8822 } 8823 8824 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8825 /// the line number information on the merged node since it is not possible to 8826 /// preserve the information that operation is associated with multiple lines. 8827 /// This will make the debugger working better at -O0, were there is a higher 8828 /// probability having other instructions associated with that line. 8829 /// 8830 /// For IROrder, we keep the smaller of the two 8831 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8832 DebugLoc NLoc = N->getDebugLoc(); 8833 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8834 N->setDebugLoc(DebugLoc()); 8835 } 8836 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8837 N->setIROrder(Order); 8838 return N; 8839 } 8840 8841 /// MorphNodeTo - This *mutates* the specified node to have the specified 8842 /// return type, opcode, and operands. 8843 /// 8844 /// Note that MorphNodeTo returns the resultant node. If there is already a 8845 /// node of the specified opcode and operands, it returns that node instead of 8846 /// the current one. Note that the SDLoc need not be the same. 8847 /// 8848 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8849 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8850 /// node, and because it doesn't require CSE recalculation for any of 8851 /// the node's users. 8852 /// 8853 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8854 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8855 /// the legalizer which maintain worklists that would need to be updated when 8856 /// deleting things. 8857 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8858 SDVTList VTs, ArrayRef<SDValue> Ops) { 8859 // If an identical node already exists, use it. 8860 void *IP = nullptr; 8861 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8862 FoldingSetNodeID ID; 8863 AddNodeIDNode(ID, Opc, VTs, Ops); 8864 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8865 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8866 } 8867 8868 if (!RemoveNodeFromCSEMaps(N)) 8869 IP = nullptr; 8870 8871 // Start the morphing. 8872 N->NodeType = Opc; 8873 N->ValueList = VTs.VTs; 8874 N->NumValues = VTs.NumVTs; 8875 8876 // Clear the operands list, updating used nodes to remove this from their 8877 // use list. Keep track of any operands that become dead as a result. 8878 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8879 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8880 SDUse &Use = *I++; 8881 SDNode *Used = Use.getNode(); 8882 Use.set(SDValue()); 8883 if (Used->use_empty()) 8884 DeadNodeSet.insert(Used); 8885 } 8886 8887 // For MachineNode, initialize the memory references information. 8888 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8889 MN->clearMemRefs(); 8890 8891 // Swap for an appropriately sized array from the recycler. 8892 removeOperands(N); 8893 createOperands(N, Ops); 8894 8895 // Delete any nodes that are still dead after adding the uses for the 8896 // new operands. 8897 if (!DeadNodeSet.empty()) { 8898 SmallVector<SDNode *, 16> DeadNodes; 8899 for (SDNode *N : DeadNodeSet) 8900 if (N->use_empty()) 8901 DeadNodes.push_back(N); 8902 RemoveDeadNodes(DeadNodes); 8903 } 8904 8905 if (IP) 8906 CSEMap.InsertNode(N, IP); // Memoize the new node. 8907 return N; 8908 } 8909 8910 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8911 unsigned OrigOpc = Node->getOpcode(); 8912 unsigned NewOpc; 8913 switch (OrigOpc) { 8914 default: 8915 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8916 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8917 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8918 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8919 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8920 #include "llvm/IR/ConstrainedOps.def" 8921 } 8922 8923 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8924 8925 // We're taking this node out of the chain, so we need to re-link things. 8926 SDValue InputChain = Node->getOperand(0); 8927 SDValue OutputChain = SDValue(Node, 1); 8928 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8929 8930 SmallVector<SDValue, 3> Ops; 8931 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8932 Ops.push_back(Node->getOperand(i)); 8933 8934 SDVTList VTs = getVTList(Node->getValueType(0)); 8935 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8936 8937 // MorphNodeTo can operate in two ways: if an existing node with the 8938 // specified operands exists, it can just return it. Otherwise, it 8939 // updates the node in place to have the requested operands. 8940 if (Res == Node) { 8941 // If we updated the node in place, reset the node ID. To the isel, 8942 // this should be just like a newly allocated machine node. 8943 Res->setNodeId(-1); 8944 } else { 8945 ReplaceAllUsesWith(Node, Res); 8946 RemoveDeadNode(Node); 8947 } 8948 8949 return Res; 8950 } 8951 8952 /// getMachineNode - These are used for target selectors to create a new node 8953 /// with specified return type(s), MachineInstr opcode, and operands. 8954 /// 8955 /// Note that getMachineNode returns the resultant node. If there is already a 8956 /// node of the specified opcode and operands, it returns that node instead of 8957 /// the current one. 8958 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8959 EVT VT) { 8960 SDVTList VTs = getVTList(VT); 8961 return getMachineNode(Opcode, dl, VTs, None); 8962 } 8963 8964 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8965 EVT VT, SDValue Op1) { 8966 SDVTList VTs = getVTList(VT); 8967 SDValue Ops[] = { Op1 }; 8968 return getMachineNode(Opcode, dl, VTs, Ops); 8969 } 8970 8971 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8972 EVT VT, SDValue Op1, SDValue Op2) { 8973 SDVTList VTs = getVTList(VT); 8974 SDValue Ops[] = { Op1, Op2 }; 8975 return getMachineNode(Opcode, dl, VTs, Ops); 8976 } 8977 8978 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8979 EVT VT, SDValue Op1, SDValue Op2, 8980 SDValue Op3) { 8981 SDVTList VTs = getVTList(VT); 8982 SDValue Ops[] = { Op1, Op2, Op3 }; 8983 return getMachineNode(Opcode, dl, VTs, Ops); 8984 } 8985 8986 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8987 EVT VT, ArrayRef<SDValue> Ops) { 8988 SDVTList VTs = getVTList(VT); 8989 return getMachineNode(Opcode, dl, VTs, Ops); 8990 } 8991 8992 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8993 EVT VT1, EVT VT2, SDValue Op1, 8994 SDValue Op2) { 8995 SDVTList VTs = getVTList(VT1, VT2); 8996 SDValue Ops[] = { Op1, Op2 }; 8997 return getMachineNode(Opcode, dl, VTs, Ops); 8998 } 8999 9000 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9001 EVT VT1, EVT VT2, SDValue Op1, 9002 SDValue Op2, SDValue Op3) { 9003 SDVTList VTs = getVTList(VT1, VT2); 9004 SDValue Ops[] = { Op1, Op2, Op3 }; 9005 return getMachineNode(Opcode, dl, VTs, Ops); 9006 } 9007 9008 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9009 EVT VT1, EVT VT2, 9010 ArrayRef<SDValue> Ops) { 9011 SDVTList VTs = getVTList(VT1, VT2); 9012 return getMachineNode(Opcode, dl, VTs, Ops); 9013 } 9014 9015 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9016 EVT VT1, EVT VT2, EVT VT3, 9017 SDValue Op1, SDValue Op2) { 9018 SDVTList VTs = getVTList(VT1, VT2, VT3); 9019 SDValue Ops[] = { Op1, Op2 }; 9020 return getMachineNode(Opcode, dl, VTs, Ops); 9021 } 9022 9023 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9024 EVT VT1, EVT VT2, EVT VT3, 9025 SDValue Op1, SDValue Op2, 9026 SDValue Op3) { 9027 SDVTList VTs = getVTList(VT1, VT2, VT3); 9028 SDValue Ops[] = { Op1, Op2, Op3 }; 9029 return getMachineNode(Opcode, dl, VTs, Ops); 9030 } 9031 9032 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9033 EVT VT1, EVT VT2, EVT VT3, 9034 ArrayRef<SDValue> Ops) { 9035 SDVTList VTs = getVTList(VT1, VT2, VT3); 9036 return getMachineNode(Opcode, dl, VTs, Ops); 9037 } 9038 9039 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9040 ArrayRef<EVT> ResultTys, 9041 ArrayRef<SDValue> Ops) { 9042 SDVTList VTs = getVTList(ResultTys); 9043 return getMachineNode(Opcode, dl, VTs, Ops); 9044 } 9045 9046 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9047 SDVTList VTs, 9048 ArrayRef<SDValue> Ops) { 9049 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9050 MachineSDNode *N; 9051 void *IP = nullptr; 9052 9053 if (DoCSE) { 9054 FoldingSetNodeID ID; 9055 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9056 IP = nullptr; 9057 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9058 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9059 } 9060 } 9061 9062 // Allocate a new MachineSDNode. 9063 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9064 createOperands(N, Ops); 9065 9066 if (DoCSE) 9067 CSEMap.InsertNode(N, IP); 9068 9069 InsertNode(N); 9070 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9071 return N; 9072 } 9073 9074 /// getTargetExtractSubreg - A convenience function for creating 9075 /// TargetOpcode::EXTRACT_SUBREG nodes. 9076 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9077 SDValue Operand) { 9078 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9079 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9080 VT, Operand, SRIdxVal); 9081 return SDValue(Subreg, 0); 9082 } 9083 9084 /// getTargetInsertSubreg - A convenience function for creating 9085 /// TargetOpcode::INSERT_SUBREG nodes. 9086 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9087 SDValue Operand, SDValue Subreg) { 9088 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9089 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9090 VT, Operand, Subreg, SRIdxVal); 9091 return SDValue(Result, 0); 9092 } 9093 9094 /// getNodeIfExists - Get the specified node if it's already available, or 9095 /// else return NULL. 9096 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9097 ArrayRef<SDValue> Ops) { 9098 SDNodeFlags Flags; 9099 if (Inserter) 9100 Flags = Inserter->getFlags(); 9101 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9102 } 9103 9104 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9105 ArrayRef<SDValue> Ops, 9106 const SDNodeFlags Flags) { 9107 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9108 FoldingSetNodeID ID; 9109 AddNodeIDNode(ID, Opcode, VTList, Ops); 9110 void *IP = nullptr; 9111 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9112 E->intersectFlagsWith(Flags); 9113 return E; 9114 } 9115 } 9116 return nullptr; 9117 } 9118 9119 /// doesNodeExist - Check if a node exists without modifying its flags. 9120 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9121 ArrayRef<SDValue> Ops) { 9122 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9123 FoldingSetNodeID ID; 9124 AddNodeIDNode(ID, Opcode, VTList, Ops); 9125 void *IP = nullptr; 9126 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9127 return true; 9128 } 9129 return false; 9130 } 9131 9132 /// getDbgValue - Creates a SDDbgValue node. 9133 /// 9134 /// SDNode 9135 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9136 SDNode *N, unsigned R, bool IsIndirect, 9137 const DebugLoc &DL, unsigned O) { 9138 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9139 "Expected inlined-at fields to agree"); 9140 return new (DbgInfo->getAlloc()) 9141 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9142 {}, IsIndirect, DL, O, 9143 /*IsVariadic=*/false); 9144 } 9145 9146 /// Constant 9147 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9148 DIExpression *Expr, 9149 const Value *C, 9150 const DebugLoc &DL, unsigned O) { 9151 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9152 "Expected inlined-at fields to agree"); 9153 return new (DbgInfo->getAlloc()) 9154 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9155 /*IsIndirect=*/false, DL, O, 9156 /*IsVariadic=*/false); 9157 } 9158 9159 /// FrameIndex 9160 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9161 DIExpression *Expr, unsigned FI, 9162 bool IsIndirect, 9163 const DebugLoc &DL, 9164 unsigned O) { 9165 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9166 "Expected inlined-at fields to agree"); 9167 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9168 } 9169 9170 /// FrameIndex with dependencies 9171 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9172 DIExpression *Expr, unsigned FI, 9173 ArrayRef<SDNode *> Dependencies, 9174 bool IsIndirect, 9175 const DebugLoc &DL, 9176 unsigned O) { 9177 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9178 "Expected inlined-at fields to agree"); 9179 return new (DbgInfo->getAlloc()) 9180 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9181 Dependencies, IsIndirect, DL, O, 9182 /*IsVariadic=*/false); 9183 } 9184 9185 /// VReg 9186 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9187 unsigned VReg, bool IsIndirect, 9188 const DebugLoc &DL, unsigned O) { 9189 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9190 "Expected inlined-at fields to agree"); 9191 return new (DbgInfo->getAlloc()) 9192 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9193 {}, IsIndirect, DL, O, 9194 /*IsVariadic=*/false); 9195 } 9196 9197 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9198 ArrayRef<SDDbgOperand> Locs, 9199 ArrayRef<SDNode *> Dependencies, 9200 bool IsIndirect, const DebugLoc &DL, 9201 unsigned O, bool IsVariadic) { 9202 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9203 "Expected inlined-at fields to agree"); 9204 return new (DbgInfo->getAlloc()) 9205 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9206 DL, O, IsVariadic); 9207 } 9208 9209 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9210 unsigned OffsetInBits, unsigned SizeInBits, 9211 bool InvalidateDbg) { 9212 SDNode *FromNode = From.getNode(); 9213 SDNode *ToNode = To.getNode(); 9214 assert(FromNode && ToNode && "Can't modify dbg values"); 9215 9216 // PR35338 9217 // TODO: assert(From != To && "Redundant dbg value transfer"); 9218 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9219 if (From == To || FromNode == ToNode) 9220 return; 9221 9222 if (!FromNode->getHasDebugValue()) 9223 return; 9224 9225 SDDbgOperand FromLocOp = 9226 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9227 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9228 9229 SmallVector<SDDbgValue *, 2> ClonedDVs; 9230 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9231 if (Dbg->isInvalidated()) 9232 continue; 9233 9234 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9235 9236 // Create a new location ops vector that is equal to the old vector, but 9237 // with each instance of FromLocOp replaced with ToLocOp. 9238 bool Changed = false; 9239 auto NewLocOps = Dbg->copyLocationOps(); 9240 std::replace_if( 9241 NewLocOps.begin(), NewLocOps.end(), 9242 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9243 bool Match = Op == FromLocOp; 9244 Changed |= Match; 9245 return Match; 9246 }, 9247 ToLocOp); 9248 // Ignore this SDDbgValue if we didn't find a matching location. 9249 if (!Changed) 9250 continue; 9251 9252 DIVariable *Var = Dbg->getVariable(); 9253 auto *Expr = Dbg->getExpression(); 9254 // If a fragment is requested, update the expression. 9255 if (SizeInBits) { 9256 // When splitting a larger (e.g., sign-extended) value whose 9257 // lower bits are described with an SDDbgValue, do not attempt 9258 // to transfer the SDDbgValue to the upper bits. 9259 if (auto FI = Expr->getFragmentInfo()) 9260 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9261 continue; 9262 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9263 SizeInBits); 9264 if (!Fragment) 9265 continue; 9266 Expr = *Fragment; 9267 } 9268 9269 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9270 // Clone the SDDbgValue and move it to To. 9271 SDDbgValue *Clone = getDbgValueList( 9272 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9273 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9274 Dbg->isVariadic()); 9275 ClonedDVs.push_back(Clone); 9276 9277 if (InvalidateDbg) { 9278 // Invalidate value and indicate the SDDbgValue should not be emitted. 9279 Dbg->setIsInvalidated(); 9280 Dbg->setIsEmitted(); 9281 } 9282 } 9283 9284 for (SDDbgValue *Dbg : ClonedDVs) { 9285 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9286 "Transferred DbgValues should depend on the new SDNode"); 9287 AddDbgValue(Dbg, false); 9288 } 9289 } 9290 9291 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9292 if (!N.getHasDebugValue()) 9293 return; 9294 9295 SmallVector<SDDbgValue *, 2> ClonedDVs; 9296 for (auto DV : GetDbgValues(&N)) { 9297 if (DV->isInvalidated()) 9298 continue; 9299 switch (N.getOpcode()) { 9300 default: 9301 break; 9302 case ISD::ADD: 9303 SDValue N0 = N.getOperand(0); 9304 SDValue N1 = N.getOperand(1); 9305 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9306 isConstantIntBuildVectorOrConstantInt(N1)) { 9307 uint64_t Offset = N.getConstantOperandVal(1); 9308 9309 // Rewrite an ADD constant node into a DIExpression. Since we are 9310 // performing arithmetic to compute the variable's *value* in the 9311 // DIExpression, we need to mark the expression with a 9312 // DW_OP_stack_value. 9313 auto *DIExpr = DV->getExpression(); 9314 auto NewLocOps = DV->copyLocationOps(); 9315 bool Changed = false; 9316 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9317 // We're not given a ResNo to compare against because the whole 9318 // node is going away. We know that any ISD::ADD only has one 9319 // result, so we can assume any node match is using the result. 9320 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9321 NewLocOps[i].getSDNode() != &N) 9322 continue; 9323 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9324 SmallVector<uint64_t, 3> ExprOps; 9325 DIExpression::appendOffset(ExprOps, Offset); 9326 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9327 Changed = true; 9328 } 9329 (void)Changed; 9330 assert(Changed && "Salvage target doesn't use N"); 9331 9332 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9333 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9334 NewLocOps, AdditionalDependencies, 9335 DV->isIndirect(), DV->getDebugLoc(), 9336 DV->getOrder(), DV->isVariadic()); 9337 ClonedDVs.push_back(Clone); 9338 DV->setIsInvalidated(); 9339 DV->setIsEmitted(); 9340 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9341 N0.getNode()->dumprFull(this); 9342 dbgs() << " into " << *DIExpr << '\n'); 9343 } 9344 } 9345 } 9346 9347 for (SDDbgValue *Dbg : ClonedDVs) { 9348 assert(!Dbg->getSDNodes().empty() && 9349 "Salvaged DbgValue should depend on a new SDNode"); 9350 AddDbgValue(Dbg, false); 9351 } 9352 } 9353 9354 /// Creates a SDDbgLabel node. 9355 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9356 const DebugLoc &DL, unsigned O) { 9357 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9358 "Expected inlined-at fields to agree"); 9359 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9360 } 9361 9362 namespace { 9363 9364 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9365 /// pointed to by a use iterator is deleted, increment the use iterator 9366 /// so that it doesn't dangle. 9367 /// 9368 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9369 SDNode::use_iterator &UI; 9370 SDNode::use_iterator &UE; 9371 9372 void NodeDeleted(SDNode *N, SDNode *E) override { 9373 // Increment the iterator as needed. 9374 while (UI != UE && N == *UI) 9375 ++UI; 9376 } 9377 9378 public: 9379 RAUWUpdateListener(SelectionDAG &d, 9380 SDNode::use_iterator &ui, 9381 SDNode::use_iterator &ue) 9382 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9383 }; 9384 9385 } // end anonymous namespace 9386 9387 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9388 /// This can cause recursive merging of nodes in the DAG. 9389 /// 9390 /// This version assumes From has a single result value. 9391 /// 9392 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9393 SDNode *From = FromN.getNode(); 9394 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9395 "Cannot replace with this method!"); 9396 assert(From != To.getNode() && "Cannot replace uses of with self"); 9397 9398 // Preserve Debug Values 9399 transferDbgValues(FromN, To); 9400 9401 // Iterate over all the existing uses of From. New uses will be added 9402 // to the beginning of the use list, which we avoid visiting. 9403 // This specifically avoids visiting uses of From that arise while the 9404 // replacement is happening, because any such uses would be the result 9405 // of CSE: If an existing node looks like From after one of its operands 9406 // is replaced by To, we don't want to replace of all its users with To 9407 // too. See PR3018 for more info. 9408 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9409 RAUWUpdateListener Listener(*this, UI, UE); 9410 while (UI != UE) { 9411 SDNode *User = *UI; 9412 9413 // This node is about to morph, remove its old self from the CSE maps. 9414 RemoveNodeFromCSEMaps(User); 9415 9416 // A user can appear in a use list multiple times, and when this 9417 // happens the uses are usually next to each other in the list. 9418 // To help reduce the number of CSE recomputations, process all 9419 // the uses of this user that we can find this way. 9420 do { 9421 SDUse &Use = UI.getUse(); 9422 ++UI; 9423 Use.set(To); 9424 if (To->isDivergent() != From->isDivergent()) 9425 updateDivergence(User); 9426 } while (UI != UE && *UI == User); 9427 // Now that we have modified User, add it back to the CSE maps. If it 9428 // already exists there, recursively merge the results together. 9429 AddModifiedNodeToCSEMaps(User); 9430 } 9431 9432 // If we just RAUW'd the root, take note. 9433 if (FromN == getRoot()) 9434 setRoot(To); 9435 } 9436 9437 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9438 /// This can cause recursive merging of nodes in the DAG. 9439 /// 9440 /// This version assumes that for each value of From, there is a 9441 /// corresponding value in To in the same position with the same type. 9442 /// 9443 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9444 #ifndef NDEBUG 9445 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9446 assert((!From->hasAnyUseOfValue(i) || 9447 From->getValueType(i) == To->getValueType(i)) && 9448 "Cannot use this version of ReplaceAllUsesWith!"); 9449 #endif 9450 9451 // Handle the trivial case. 9452 if (From == To) 9453 return; 9454 9455 // Preserve Debug Info. Only do this if there's a use. 9456 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9457 if (From->hasAnyUseOfValue(i)) { 9458 assert((i < To->getNumValues()) && "Invalid To location"); 9459 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9460 } 9461 9462 // Iterate over just the existing users of From. See the comments in 9463 // the ReplaceAllUsesWith above. 9464 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9465 RAUWUpdateListener Listener(*this, UI, UE); 9466 while (UI != UE) { 9467 SDNode *User = *UI; 9468 9469 // This node is about to morph, remove its old self from the CSE maps. 9470 RemoveNodeFromCSEMaps(User); 9471 9472 // A user can appear in a use list multiple times, and when this 9473 // happens the uses are usually next to each other in the list. 9474 // To help reduce the number of CSE recomputations, process all 9475 // the uses of this user that we can find this way. 9476 do { 9477 SDUse &Use = UI.getUse(); 9478 ++UI; 9479 Use.setNode(To); 9480 if (To->isDivergent() != From->isDivergent()) 9481 updateDivergence(User); 9482 } while (UI != UE && *UI == User); 9483 9484 // Now that we have modified User, add it back to the CSE maps. If it 9485 // already exists there, recursively merge the results together. 9486 AddModifiedNodeToCSEMaps(User); 9487 } 9488 9489 // If we just RAUW'd the root, take note. 9490 if (From == getRoot().getNode()) 9491 setRoot(SDValue(To, getRoot().getResNo())); 9492 } 9493 9494 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9495 /// This can cause recursive merging of nodes in the DAG. 9496 /// 9497 /// This version can replace From with any result values. To must match the 9498 /// number and types of values returned by From. 9499 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9500 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9501 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9502 9503 // Preserve Debug Info. 9504 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9505 transferDbgValues(SDValue(From, i), To[i]); 9506 9507 // Iterate over just the existing users of From. See the comments in 9508 // the ReplaceAllUsesWith above. 9509 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9510 RAUWUpdateListener Listener(*this, UI, UE); 9511 while (UI != UE) { 9512 SDNode *User = *UI; 9513 9514 // This node is about to morph, remove its old self from the CSE maps. 9515 RemoveNodeFromCSEMaps(User); 9516 9517 // A user can appear in a use list multiple times, and when this happens the 9518 // uses are usually next to each other in the list. To help reduce the 9519 // number of CSE and divergence recomputations, process all the uses of this 9520 // user that we can find this way. 9521 bool To_IsDivergent = false; 9522 do { 9523 SDUse &Use = UI.getUse(); 9524 const SDValue &ToOp = To[Use.getResNo()]; 9525 ++UI; 9526 Use.set(ToOp); 9527 To_IsDivergent |= ToOp->isDivergent(); 9528 } while (UI != UE && *UI == User); 9529 9530 if (To_IsDivergent != From->isDivergent()) 9531 updateDivergence(User); 9532 9533 // Now that we have modified User, add it back to the CSE maps. If it 9534 // already exists there, recursively merge the results together. 9535 AddModifiedNodeToCSEMaps(User); 9536 } 9537 9538 // If we just RAUW'd the root, take note. 9539 if (From == getRoot().getNode()) 9540 setRoot(SDValue(To[getRoot().getResNo()])); 9541 } 9542 9543 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9544 /// uses of other values produced by From.getNode() alone. The Deleted 9545 /// vector is handled the same way as for ReplaceAllUsesWith. 9546 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9547 // Handle the really simple, really trivial case efficiently. 9548 if (From == To) return; 9549 9550 // Handle the simple, trivial, case efficiently. 9551 if (From.getNode()->getNumValues() == 1) { 9552 ReplaceAllUsesWith(From, To); 9553 return; 9554 } 9555 9556 // Preserve Debug Info. 9557 transferDbgValues(From, To); 9558 9559 // Iterate over just the existing users of From. See the comments in 9560 // the ReplaceAllUsesWith above. 9561 SDNode::use_iterator UI = From.getNode()->use_begin(), 9562 UE = From.getNode()->use_end(); 9563 RAUWUpdateListener Listener(*this, UI, UE); 9564 while (UI != UE) { 9565 SDNode *User = *UI; 9566 bool UserRemovedFromCSEMaps = false; 9567 9568 // A user can appear in a use list multiple times, and when this 9569 // happens the uses are usually next to each other in the list. 9570 // To help reduce the number of CSE recomputations, process all 9571 // the uses of this user that we can find this way. 9572 do { 9573 SDUse &Use = UI.getUse(); 9574 9575 // Skip uses of different values from the same node. 9576 if (Use.getResNo() != From.getResNo()) { 9577 ++UI; 9578 continue; 9579 } 9580 9581 // If this node hasn't been modified yet, it's still in the CSE maps, 9582 // so remove its old self from the CSE maps. 9583 if (!UserRemovedFromCSEMaps) { 9584 RemoveNodeFromCSEMaps(User); 9585 UserRemovedFromCSEMaps = true; 9586 } 9587 9588 ++UI; 9589 Use.set(To); 9590 if (To->isDivergent() != From->isDivergent()) 9591 updateDivergence(User); 9592 } while (UI != UE && *UI == User); 9593 // We are iterating over all uses of the From node, so if a use 9594 // doesn't use the specific value, no changes are made. 9595 if (!UserRemovedFromCSEMaps) 9596 continue; 9597 9598 // Now that we have modified User, add it back to the CSE maps. If it 9599 // already exists there, recursively merge the results together. 9600 AddModifiedNodeToCSEMaps(User); 9601 } 9602 9603 // If we just RAUW'd the root, take note. 9604 if (From == getRoot()) 9605 setRoot(To); 9606 } 9607 9608 namespace { 9609 9610 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9611 /// to record information about a use. 9612 struct UseMemo { 9613 SDNode *User; 9614 unsigned Index; 9615 SDUse *Use; 9616 }; 9617 9618 /// operator< - Sort Memos by User. 9619 bool operator<(const UseMemo &L, const UseMemo &R) { 9620 return (intptr_t)L.User < (intptr_t)R.User; 9621 } 9622 9623 } // end anonymous namespace 9624 9625 bool SelectionDAG::calculateDivergence(SDNode *N) { 9626 if (TLI->isSDNodeAlwaysUniform(N)) { 9627 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9628 "Conflicting divergence information!"); 9629 return false; 9630 } 9631 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9632 return true; 9633 for (auto &Op : N->ops()) { 9634 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9635 return true; 9636 } 9637 return false; 9638 } 9639 9640 void SelectionDAG::updateDivergence(SDNode *N) { 9641 SmallVector<SDNode *, 16> Worklist(1, N); 9642 do { 9643 N = Worklist.pop_back_val(); 9644 bool IsDivergent = calculateDivergence(N); 9645 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9646 N->SDNodeBits.IsDivergent = IsDivergent; 9647 llvm::append_range(Worklist, N->uses()); 9648 } 9649 } while (!Worklist.empty()); 9650 } 9651 9652 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9653 DenseMap<SDNode *, unsigned> Degree; 9654 Order.reserve(AllNodes.size()); 9655 for (auto &N : allnodes()) { 9656 unsigned NOps = N.getNumOperands(); 9657 Degree[&N] = NOps; 9658 if (0 == NOps) 9659 Order.push_back(&N); 9660 } 9661 for (size_t I = 0; I != Order.size(); ++I) { 9662 SDNode *N = Order[I]; 9663 for (auto U : N->uses()) { 9664 unsigned &UnsortedOps = Degree[U]; 9665 if (0 == --UnsortedOps) 9666 Order.push_back(U); 9667 } 9668 } 9669 } 9670 9671 #ifndef NDEBUG 9672 void SelectionDAG::VerifyDAGDivergence() { 9673 std::vector<SDNode *> TopoOrder; 9674 CreateTopologicalOrder(TopoOrder); 9675 for (auto *N : TopoOrder) { 9676 assert(calculateDivergence(N) == N->isDivergent() && 9677 "Divergence bit inconsistency detected"); 9678 } 9679 } 9680 #endif 9681 9682 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9683 /// uses of other values produced by From.getNode() alone. The same value 9684 /// may appear in both the From and To list. The Deleted vector is 9685 /// handled the same way as for ReplaceAllUsesWith. 9686 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9687 const SDValue *To, 9688 unsigned Num){ 9689 // Handle the simple, trivial case efficiently. 9690 if (Num == 1) 9691 return ReplaceAllUsesOfValueWith(*From, *To); 9692 9693 transferDbgValues(*From, *To); 9694 9695 // Read up all the uses and make records of them. This helps 9696 // processing new uses that are introduced during the 9697 // replacement process. 9698 SmallVector<UseMemo, 4> Uses; 9699 for (unsigned i = 0; i != Num; ++i) { 9700 unsigned FromResNo = From[i].getResNo(); 9701 SDNode *FromNode = From[i].getNode(); 9702 for (SDNode::use_iterator UI = FromNode->use_begin(), 9703 E = FromNode->use_end(); UI != E; ++UI) { 9704 SDUse &Use = UI.getUse(); 9705 if (Use.getResNo() == FromResNo) { 9706 UseMemo Memo = { *UI, i, &Use }; 9707 Uses.push_back(Memo); 9708 } 9709 } 9710 } 9711 9712 // Sort the uses, so that all the uses from a given User are together. 9713 llvm::sort(Uses); 9714 9715 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9716 UseIndex != UseIndexEnd; ) { 9717 // We know that this user uses some value of From. If it is the right 9718 // value, update it. 9719 SDNode *User = Uses[UseIndex].User; 9720 9721 // This node is about to morph, remove its old self from the CSE maps. 9722 RemoveNodeFromCSEMaps(User); 9723 9724 // The Uses array is sorted, so all the uses for a given User 9725 // are next to each other in the list. 9726 // To help reduce the number of CSE recomputations, process all 9727 // the uses of this user that we can find this way. 9728 do { 9729 unsigned i = Uses[UseIndex].Index; 9730 SDUse &Use = *Uses[UseIndex].Use; 9731 ++UseIndex; 9732 9733 Use.set(To[i]); 9734 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9735 9736 // Now that we have modified User, add it back to the CSE maps. If it 9737 // already exists there, recursively merge the results together. 9738 AddModifiedNodeToCSEMaps(User); 9739 } 9740 } 9741 9742 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9743 /// based on their topological order. It returns the maximum id and a vector 9744 /// of the SDNodes* in assigned order by reference. 9745 unsigned SelectionDAG::AssignTopologicalOrder() { 9746 unsigned DAGSize = 0; 9747 9748 // SortedPos tracks the progress of the algorithm. Nodes before it are 9749 // sorted, nodes after it are unsorted. When the algorithm completes 9750 // it is at the end of the list. 9751 allnodes_iterator SortedPos = allnodes_begin(); 9752 9753 // Visit all the nodes. Move nodes with no operands to the front of 9754 // the list immediately. Annotate nodes that do have operands with their 9755 // operand count. Before we do this, the Node Id fields of the nodes 9756 // may contain arbitrary values. After, the Node Id fields for nodes 9757 // before SortedPos will contain the topological sort index, and the 9758 // Node Id fields for nodes At SortedPos and after will contain the 9759 // count of outstanding operands. 9760 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9761 checkForCycles(&N, this); 9762 unsigned Degree = N.getNumOperands(); 9763 if (Degree == 0) { 9764 // A node with no uses, add it to the result array immediately. 9765 N.setNodeId(DAGSize++); 9766 allnodes_iterator Q(&N); 9767 if (Q != SortedPos) 9768 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9769 assert(SortedPos != AllNodes.end() && "Overran node list"); 9770 ++SortedPos; 9771 } else { 9772 // Temporarily use the Node Id as scratch space for the degree count. 9773 N.setNodeId(Degree); 9774 } 9775 } 9776 9777 // Visit all the nodes. As we iterate, move nodes into sorted order, 9778 // such that by the time the end is reached all nodes will be sorted. 9779 for (SDNode &Node : allnodes()) { 9780 SDNode *N = &Node; 9781 checkForCycles(N, this); 9782 // N is in sorted position, so all its uses have one less operand 9783 // that needs to be sorted. 9784 for (SDNode *P : N->uses()) { 9785 unsigned Degree = P->getNodeId(); 9786 assert(Degree != 0 && "Invalid node degree"); 9787 --Degree; 9788 if (Degree == 0) { 9789 // All of P's operands are sorted, so P may sorted now. 9790 P->setNodeId(DAGSize++); 9791 if (P->getIterator() != SortedPos) 9792 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9793 assert(SortedPos != AllNodes.end() && "Overran node list"); 9794 ++SortedPos; 9795 } else { 9796 // Update P's outstanding operand count. 9797 P->setNodeId(Degree); 9798 } 9799 } 9800 if (Node.getIterator() == SortedPos) { 9801 #ifndef NDEBUG 9802 allnodes_iterator I(N); 9803 SDNode *S = &*++I; 9804 dbgs() << "Overran sorted position:\n"; 9805 S->dumprFull(this); dbgs() << "\n"; 9806 dbgs() << "Checking if this is due to cycles\n"; 9807 checkForCycles(this, true); 9808 #endif 9809 llvm_unreachable(nullptr); 9810 } 9811 } 9812 9813 assert(SortedPos == AllNodes.end() && 9814 "Topological sort incomplete!"); 9815 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9816 "First node in topological sort is not the entry token!"); 9817 assert(AllNodes.front().getNodeId() == 0 && 9818 "First node in topological sort has non-zero id!"); 9819 assert(AllNodes.front().getNumOperands() == 0 && 9820 "First node in topological sort has operands!"); 9821 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9822 "Last node in topologic sort has unexpected id!"); 9823 assert(AllNodes.back().use_empty() && 9824 "Last node in topologic sort has users!"); 9825 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9826 return DAGSize; 9827 } 9828 9829 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9830 /// value is produced by SD. 9831 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9832 for (SDNode *SD : DB->getSDNodes()) { 9833 if (!SD) 9834 continue; 9835 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9836 SD->setHasDebugValue(true); 9837 } 9838 DbgInfo->add(DB, isParameter); 9839 } 9840 9841 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9842 9843 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9844 SDValue NewMemOpChain) { 9845 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9846 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9847 // The new memory operation must have the same position as the old load in 9848 // terms of memory dependency. Create a TokenFactor for the old load and new 9849 // memory operation and update uses of the old load's output chain to use that 9850 // TokenFactor. 9851 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9852 return NewMemOpChain; 9853 9854 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9855 OldChain, NewMemOpChain); 9856 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9857 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9858 return TokenFactor; 9859 } 9860 9861 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9862 SDValue NewMemOp) { 9863 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9864 SDValue OldChain = SDValue(OldLoad, 1); 9865 SDValue NewMemOpChain = NewMemOp.getValue(1); 9866 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9867 } 9868 9869 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9870 Function **OutFunction) { 9871 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9872 9873 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9874 auto *Module = MF->getFunction().getParent(); 9875 auto *Function = Module->getFunction(Symbol); 9876 9877 if (OutFunction != nullptr) 9878 *OutFunction = Function; 9879 9880 if (Function != nullptr) { 9881 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9882 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9883 } 9884 9885 std::string ErrorStr; 9886 raw_string_ostream ErrorFormatter(ErrorStr); 9887 ErrorFormatter << "Undefined external symbol "; 9888 ErrorFormatter << '"' << Symbol << '"'; 9889 report_fatal_error(Twine(ErrorFormatter.str())); 9890 } 9891 9892 //===----------------------------------------------------------------------===// 9893 // SDNode Class 9894 //===----------------------------------------------------------------------===// 9895 9896 bool llvm::isNullConstant(SDValue V) { 9897 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9898 return Const != nullptr && Const->isZero(); 9899 } 9900 9901 bool llvm::isNullFPConstant(SDValue V) { 9902 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9903 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9904 } 9905 9906 bool llvm::isAllOnesConstant(SDValue V) { 9907 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9908 return Const != nullptr && Const->isAllOnes(); 9909 } 9910 9911 bool llvm::isOneConstant(SDValue V) { 9912 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9913 return Const != nullptr && Const->isOne(); 9914 } 9915 9916 SDValue llvm::peekThroughBitcasts(SDValue V) { 9917 while (V.getOpcode() == ISD::BITCAST) 9918 V = V.getOperand(0); 9919 return V; 9920 } 9921 9922 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9923 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9924 V = V.getOperand(0); 9925 return V; 9926 } 9927 9928 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9929 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9930 V = V.getOperand(0); 9931 return V; 9932 } 9933 9934 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9935 if (V.getOpcode() != ISD::XOR) 9936 return false; 9937 V = peekThroughBitcasts(V.getOperand(1)); 9938 unsigned NumBits = V.getScalarValueSizeInBits(); 9939 ConstantSDNode *C = 9940 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9941 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9942 } 9943 9944 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9945 bool AllowTruncation) { 9946 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9947 return CN; 9948 9949 // SplatVectors can truncate their operands. Ignore that case here unless 9950 // AllowTruncation is set. 9951 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9952 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9953 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9954 EVT CVT = CN->getValueType(0); 9955 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9956 if (AllowTruncation || CVT == VecEltVT) 9957 return CN; 9958 } 9959 } 9960 9961 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9962 BitVector UndefElements; 9963 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9964 9965 // BuildVectors can truncate their operands. Ignore that case here unless 9966 // AllowTruncation is set. 9967 if (CN && (UndefElements.none() || AllowUndefs)) { 9968 EVT CVT = CN->getValueType(0); 9969 EVT NSVT = N.getValueType().getScalarType(); 9970 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9971 if (AllowTruncation || (CVT == NSVT)) 9972 return CN; 9973 } 9974 } 9975 9976 return nullptr; 9977 } 9978 9979 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9980 bool AllowUndefs, 9981 bool AllowTruncation) { 9982 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9983 return CN; 9984 9985 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9986 BitVector UndefElements; 9987 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9988 9989 // BuildVectors can truncate their operands. Ignore that case here unless 9990 // AllowTruncation is set. 9991 if (CN && (UndefElements.none() || AllowUndefs)) { 9992 EVT CVT = CN->getValueType(0); 9993 EVT NSVT = N.getValueType().getScalarType(); 9994 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9995 if (AllowTruncation || (CVT == NSVT)) 9996 return CN; 9997 } 9998 } 9999 10000 return nullptr; 10001 } 10002 10003 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10004 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10005 return CN; 10006 10007 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10008 BitVector UndefElements; 10009 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10010 if (CN && (UndefElements.none() || AllowUndefs)) 10011 return CN; 10012 } 10013 10014 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10015 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10016 return CN; 10017 10018 return nullptr; 10019 } 10020 10021 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10022 const APInt &DemandedElts, 10023 bool AllowUndefs) { 10024 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10025 return CN; 10026 10027 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10028 BitVector UndefElements; 10029 ConstantFPSDNode *CN = 10030 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10031 if (CN && (UndefElements.none() || AllowUndefs)) 10032 return CN; 10033 } 10034 10035 return nullptr; 10036 } 10037 10038 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10039 // TODO: may want to use peekThroughBitcast() here. 10040 ConstantSDNode *C = 10041 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10042 return C && C->isZero(); 10043 } 10044 10045 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10046 // TODO: may want to use peekThroughBitcast() here. 10047 unsigned BitWidth = N.getScalarValueSizeInBits(); 10048 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10049 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10050 } 10051 10052 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10053 N = peekThroughBitcasts(N); 10054 unsigned BitWidth = N.getScalarValueSizeInBits(); 10055 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10056 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10057 } 10058 10059 HandleSDNode::~HandleSDNode() { 10060 DropOperands(); 10061 } 10062 10063 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10064 const DebugLoc &DL, 10065 const GlobalValue *GA, EVT VT, 10066 int64_t o, unsigned TF) 10067 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10068 TheGlobal = GA; 10069 } 10070 10071 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10072 EVT VT, unsigned SrcAS, 10073 unsigned DestAS) 10074 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10075 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10076 10077 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10078 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10079 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10080 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10081 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10082 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10083 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10084 10085 // We check here that the size of the memory operand fits within the size of 10086 // the MMO. This is because the MMO might indicate only a possible address 10087 // range instead of specifying the affected memory addresses precisely. 10088 // TODO: Make MachineMemOperands aware of scalable vectors. 10089 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10090 "Size mismatch!"); 10091 } 10092 10093 /// Profile - Gather unique data for the node. 10094 /// 10095 void SDNode::Profile(FoldingSetNodeID &ID) const { 10096 AddNodeIDNode(ID, this); 10097 } 10098 10099 namespace { 10100 10101 struct EVTArray { 10102 std::vector<EVT> VTs; 10103 10104 EVTArray() { 10105 VTs.reserve(MVT::VALUETYPE_SIZE); 10106 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10107 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10108 } 10109 }; 10110 10111 } // end anonymous namespace 10112 10113 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10114 static ManagedStatic<EVTArray> SimpleVTArray; 10115 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10116 10117 /// getValueTypeList - Return a pointer to the specified value type. 10118 /// 10119 const EVT *SDNode::getValueTypeList(EVT VT) { 10120 if (VT.isExtended()) { 10121 sys::SmartScopedLock<true> Lock(*VTMutex); 10122 return &(*EVTs->insert(VT).first); 10123 } 10124 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10125 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10126 } 10127 10128 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10129 /// indicated value. This method ignores uses of other values defined by this 10130 /// operation. 10131 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10132 assert(Value < getNumValues() && "Bad value!"); 10133 10134 // TODO: Only iterate over uses of a given value of the node 10135 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10136 if (UI.getUse().getResNo() == Value) { 10137 if (NUses == 0) 10138 return false; 10139 --NUses; 10140 } 10141 } 10142 10143 // Found exactly the right number of uses? 10144 return NUses == 0; 10145 } 10146 10147 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10148 /// value. This method ignores uses of other values defined by this operation. 10149 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10150 assert(Value < getNumValues() && "Bad value!"); 10151 10152 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10153 if (UI.getUse().getResNo() == Value) 10154 return true; 10155 10156 return false; 10157 } 10158 10159 /// isOnlyUserOf - Return true if this node is the only use of N. 10160 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10161 bool Seen = false; 10162 for (const SDNode *User : N->uses()) { 10163 if (User == this) 10164 Seen = true; 10165 else 10166 return false; 10167 } 10168 10169 return Seen; 10170 } 10171 10172 /// Return true if the only users of N are contained in Nodes. 10173 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10174 bool Seen = false; 10175 for (const SDNode *User : N->uses()) { 10176 if (llvm::is_contained(Nodes, User)) 10177 Seen = true; 10178 else 10179 return false; 10180 } 10181 10182 return Seen; 10183 } 10184 10185 /// isOperand - Return true if this node is an operand of N. 10186 bool SDValue::isOperandOf(const SDNode *N) const { 10187 return is_contained(N->op_values(), *this); 10188 } 10189 10190 bool SDNode::isOperandOf(const SDNode *N) const { 10191 return any_of(N->op_values(), 10192 [this](SDValue Op) { return this == Op.getNode(); }); 10193 } 10194 10195 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10196 /// be a chain) reaches the specified operand without crossing any 10197 /// side-effecting instructions on any chain path. In practice, this looks 10198 /// through token factors and non-volatile loads. In order to remain efficient, 10199 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10200 /// 10201 /// Note that we only need to examine chains when we're searching for 10202 /// side-effects; SelectionDAG requires that all side-effects are represented 10203 /// by chains, even if another operand would force a specific ordering. This 10204 /// constraint is necessary to allow transformations like splitting loads. 10205 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10206 unsigned Depth) const { 10207 if (*this == Dest) return true; 10208 10209 // Don't search too deeply, we just want to be able to see through 10210 // TokenFactor's etc. 10211 if (Depth == 0) return false; 10212 10213 // If this is a token factor, all inputs to the TF happen in parallel. 10214 if (getOpcode() == ISD::TokenFactor) { 10215 // First, try a shallow search. 10216 if (is_contained((*this)->ops(), Dest)) { 10217 // We found the chain we want as an operand of this TokenFactor. 10218 // Essentially, we reach the chain without side-effects if we could 10219 // serialize the TokenFactor into a simple chain of operations with 10220 // Dest as the last operation. This is automatically true if the 10221 // chain has one use: there are no other ordering constraints. 10222 // If the chain has more than one use, we give up: some other 10223 // use of Dest might force a side-effect between Dest and the current 10224 // node. 10225 if (Dest.hasOneUse()) 10226 return true; 10227 } 10228 // Next, try a deep search: check whether every operand of the TokenFactor 10229 // reaches Dest. 10230 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10231 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10232 }); 10233 } 10234 10235 // Loads don't have side effects, look through them. 10236 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10237 if (Ld->isUnordered()) 10238 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10239 } 10240 return false; 10241 } 10242 10243 bool SDNode::hasPredecessor(const SDNode *N) const { 10244 SmallPtrSet<const SDNode *, 32> Visited; 10245 SmallVector<const SDNode *, 16> Worklist; 10246 Worklist.push_back(this); 10247 return hasPredecessorHelper(N, Visited, Worklist); 10248 } 10249 10250 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10251 this->Flags.intersectWith(Flags); 10252 } 10253 10254 SDValue 10255 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10256 ArrayRef<ISD::NodeType> CandidateBinOps, 10257 bool AllowPartials) { 10258 // The pattern must end in an extract from index 0. 10259 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10260 !isNullConstant(Extract->getOperand(1))) 10261 return SDValue(); 10262 10263 // Match against one of the candidate binary ops. 10264 SDValue Op = Extract->getOperand(0); 10265 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10266 return Op.getOpcode() == unsigned(BinOp); 10267 })) 10268 return SDValue(); 10269 10270 // Floating-point reductions may require relaxed constraints on the final step 10271 // of the reduction because they may reorder intermediate operations. 10272 unsigned CandidateBinOp = Op.getOpcode(); 10273 if (Op.getValueType().isFloatingPoint()) { 10274 SDNodeFlags Flags = Op->getFlags(); 10275 switch (CandidateBinOp) { 10276 case ISD::FADD: 10277 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10278 return SDValue(); 10279 break; 10280 default: 10281 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10282 } 10283 } 10284 10285 // Matching failed - attempt to see if we did enough stages that a partial 10286 // reduction from a subvector is possible. 10287 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10288 if (!AllowPartials || !Op) 10289 return SDValue(); 10290 EVT OpVT = Op.getValueType(); 10291 EVT OpSVT = OpVT.getScalarType(); 10292 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10293 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10294 return SDValue(); 10295 BinOp = (ISD::NodeType)CandidateBinOp; 10296 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10297 getVectorIdxConstant(0, SDLoc(Op))); 10298 }; 10299 10300 // At each stage, we're looking for something that looks like: 10301 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10302 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10303 // i32 undef, i32 undef, i32 undef, i32 undef> 10304 // %a = binop <8 x i32> %op, %s 10305 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10306 // we expect something like: 10307 // <4,5,6,7,u,u,u,u> 10308 // <2,3,u,u,u,u,u,u> 10309 // <1,u,u,u,u,u,u,u> 10310 // While a partial reduction match would be: 10311 // <2,3,u,u,u,u,u,u> 10312 // <1,u,u,u,u,u,u,u> 10313 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10314 SDValue PrevOp; 10315 for (unsigned i = 0; i < Stages; ++i) { 10316 unsigned MaskEnd = (1 << i); 10317 10318 if (Op.getOpcode() != CandidateBinOp) 10319 return PartialReduction(PrevOp, MaskEnd); 10320 10321 SDValue Op0 = Op.getOperand(0); 10322 SDValue Op1 = Op.getOperand(1); 10323 10324 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10325 if (Shuffle) { 10326 Op = Op1; 10327 } else { 10328 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10329 Op = Op0; 10330 } 10331 10332 // The first operand of the shuffle should be the same as the other operand 10333 // of the binop. 10334 if (!Shuffle || Shuffle->getOperand(0) != Op) 10335 return PartialReduction(PrevOp, MaskEnd); 10336 10337 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10338 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10339 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10340 return PartialReduction(PrevOp, MaskEnd); 10341 10342 PrevOp = Op; 10343 } 10344 10345 // Handle subvector reductions, which tend to appear after the shuffle 10346 // reduction stages. 10347 while (Op.getOpcode() == CandidateBinOp) { 10348 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10349 SDValue Op0 = Op.getOperand(0); 10350 SDValue Op1 = Op.getOperand(1); 10351 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10352 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10353 Op0.getOperand(0) != Op1.getOperand(0)) 10354 break; 10355 SDValue Src = Op0.getOperand(0); 10356 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10357 if (NumSrcElts != (2 * NumElts)) 10358 break; 10359 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10360 Op1.getConstantOperandAPInt(1) == NumElts) && 10361 !(Op1.getConstantOperandAPInt(1) == 0 && 10362 Op0.getConstantOperandAPInt(1) == NumElts)) 10363 break; 10364 Op = Src; 10365 } 10366 10367 BinOp = (ISD::NodeType)CandidateBinOp; 10368 return Op; 10369 } 10370 10371 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10372 assert(N->getNumValues() == 1 && 10373 "Can't unroll a vector with multiple results!"); 10374 10375 EVT VT = N->getValueType(0); 10376 unsigned NE = VT.getVectorNumElements(); 10377 EVT EltVT = VT.getVectorElementType(); 10378 SDLoc dl(N); 10379 10380 SmallVector<SDValue, 8> Scalars; 10381 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10382 10383 // If ResNE is 0, fully unroll the vector op. 10384 if (ResNE == 0) 10385 ResNE = NE; 10386 else if (NE > ResNE) 10387 NE = ResNE; 10388 10389 unsigned i; 10390 for (i= 0; i != NE; ++i) { 10391 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10392 SDValue Operand = N->getOperand(j); 10393 EVT OperandVT = Operand.getValueType(); 10394 if (OperandVT.isVector()) { 10395 // A vector operand; extract a single element. 10396 EVT OperandEltVT = OperandVT.getVectorElementType(); 10397 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10398 Operand, getVectorIdxConstant(i, dl)); 10399 } else { 10400 // A scalar operand; just use it as is. 10401 Operands[j] = Operand; 10402 } 10403 } 10404 10405 switch (N->getOpcode()) { 10406 default: { 10407 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10408 N->getFlags())); 10409 break; 10410 } 10411 case ISD::VSELECT: 10412 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10413 break; 10414 case ISD::SHL: 10415 case ISD::SRA: 10416 case ISD::SRL: 10417 case ISD::ROTL: 10418 case ISD::ROTR: 10419 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10420 getShiftAmountOperand(Operands[0].getValueType(), 10421 Operands[1]))); 10422 break; 10423 case ISD::SIGN_EXTEND_INREG: { 10424 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10425 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10426 Operands[0], 10427 getValueType(ExtVT))); 10428 } 10429 } 10430 } 10431 10432 for (; i < ResNE; ++i) 10433 Scalars.push_back(getUNDEF(EltVT)); 10434 10435 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10436 return getBuildVector(VecVT, dl, Scalars); 10437 } 10438 10439 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10440 SDNode *N, unsigned ResNE) { 10441 unsigned Opcode = N->getOpcode(); 10442 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10443 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10444 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10445 "Expected an overflow opcode"); 10446 10447 EVT ResVT = N->getValueType(0); 10448 EVT OvVT = N->getValueType(1); 10449 EVT ResEltVT = ResVT.getVectorElementType(); 10450 EVT OvEltVT = OvVT.getVectorElementType(); 10451 SDLoc dl(N); 10452 10453 // If ResNE is 0, fully unroll the vector op. 10454 unsigned NE = ResVT.getVectorNumElements(); 10455 if (ResNE == 0) 10456 ResNE = NE; 10457 else if (NE > ResNE) 10458 NE = ResNE; 10459 10460 SmallVector<SDValue, 8> LHSScalars; 10461 SmallVector<SDValue, 8> RHSScalars; 10462 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10463 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10464 10465 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10466 SDVTList VTs = getVTList(ResEltVT, SVT); 10467 SmallVector<SDValue, 8> ResScalars; 10468 SmallVector<SDValue, 8> OvScalars; 10469 for (unsigned i = 0; i < NE; ++i) { 10470 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10471 SDValue Ov = 10472 getSelect(dl, OvEltVT, Res.getValue(1), 10473 getBoolConstant(true, dl, OvEltVT, ResVT), 10474 getConstant(0, dl, OvEltVT)); 10475 10476 ResScalars.push_back(Res); 10477 OvScalars.push_back(Ov); 10478 } 10479 10480 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10481 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10482 10483 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10484 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10485 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10486 getBuildVector(NewOvVT, dl, OvScalars)); 10487 } 10488 10489 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10490 LoadSDNode *Base, 10491 unsigned Bytes, 10492 int Dist) const { 10493 if (LD->isVolatile() || Base->isVolatile()) 10494 return false; 10495 // TODO: probably too restrictive for atomics, revisit 10496 if (!LD->isSimple()) 10497 return false; 10498 if (LD->isIndexed() || Base->isIndexed()) 10499 return false; 10500 if (LD->getChain() != Base->getChain()) 10501 return false; 10502 EVT VT = LD->getValueType(0); 10503 if (VT.getSizeInBits() / 8 != Bytes) 10504 return false; 10505 10506 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10507 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10508 10509 int64_t Offset = 0; 10510 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10511 return (Dist * Bytes == Offset); 10512 return false; 10513 } 10514 10515 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10516 /// if it cannot be inferred. 10517 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10518 // If this is a GlobalAddress + cst, return the alignment. 10519 const GlobalValue *GV = nullptr; 10520 int64_t GVOffset = 0; 10521 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10522 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10523 KnownBits Known(PtrWidth); 10524 llvm::computeKnownBits(GV, Known, getDataLayout()); 10525 unsigned AlignBits = Known.countMinTrailingZeros(); 10526 if (AlignBits) 10527 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10528 } 10529 10530 // If this is a direct reference to a stack slot, use information about the 10531 // stack slot's alignment. 10532 int FrameIdx = INT_MIN; 10533 int64_t FrameOffset = 0; 10534 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10535 FrameIdx = FI->getIndex(); 10536 } else if (isBaseWithConstantOffset(Ptr) && 10537 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10538 // Handle FI+Cst 10539 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10540 FrameOffset = Ptr.getConstantOperandVal(1); 10541 } 10542 10543 if (FrameIdx != INT_MIN) { 10544 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10545 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10546 } 10547 10548 return None; 10549 } 10550 10551 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10552 /// which is split (or expanded) into two not necessarily identical pieces. 10553 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10554 // Currently all types are split in half. 10555 EVT LoVT, HiVT; 10556 if (!VT.isVector()) 10557 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10558 else 10559 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10560 10561 return std::make_pair(LoVT, HiVT); 10562 } 10563 10564 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10565 /// type, dependent on an enveloping VT that has been split into two identical 10566 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10567 std::pair<EVT, EVT> 10568 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10569 bool *HiIsEmpty) const { 10570 EVT EltTp = VT.getVectorElementType(); 10571 // Examples: 10572 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10573 // custom VL=9 with enveloping VL=8/8 yields 8/1 10574 // custom VL=10 with enveloping VL=8/8 yields 8/2 10575 // etc. 10576 ElementCount VTNumElts = VT.getVectorElementCount(); 10577 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10578 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10579 "Mixing fixed width and scalable vectors when enveloping a type"); 10580 EVT LoVT, HiVT; 10581 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10582 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10583 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10584 *HiIsEmpty = false; 10585 } else { 10586 // Flag that hi type has zero storage size, but return split envelop type 10587 // (this would be easier if vector types with zero elements were allowed). 10588 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10589 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10590 *HiIsEmpty = true; 10591 } 10592 return std::make_pair(LoVT, HiVT); 10593 } 10594 10595 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10596 /// low/high part. 10597 std::pair<SDValue, SDValue> 10598 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10599 const EVT &HiVT) { 10600 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10601 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10602 "Splitting vector with an invalid mixture of fixed and scalable " 10603 "vector types"); 10604 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10605 N.getValueType().getVectorMinNumElements() && 10606 "More vector elements requested than available!"); 10607 SDValue Lo, Hi; 10608 Lo = 10609 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10610 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10611 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10612 // IDX with the runtime scaling factor of the result vector type. For 10613 // fixed-width result vectors, that runtime scaling factor is 1. 10614 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10615 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10616 return std::make_pair(Lo, Hi); 10617 } 10618 10619 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10620 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10621 EVT VT = N.getValueType(); 10622 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10623 NextPowerOf2(VT.getVectorNumElements())); 10624 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10625 getVectorIdxConstant(0, DL)); 10626 } 10627 10628 void SelectionDAG::ExtractVectorElements(SDValue Op, 10629 SmallVectorImpl<SDValue> &Args, 10630 unsigned Start, unsigned Count, 10631 EVT EltVT) { 10632 EVT VT = Op.getValueType(); 10633 if (Count == 0) 10634 Count = VT.getVectorNumElements(); 10635 if (EltVT == EVT()) 10636 EltVT = VT.getVectorElementType(); 10637 SDLoc SL(Op); 10638 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10639 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10640 getVectorIdxConstant(i, SL))); 10641 } 10642 } 10643 10644 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10645 unsigned GlobalAddressSDNode::getAddressSpace() const { 10646 return getGlobal()->getType()->getAddressSpace(); 10647 } 10648 10649 Type *ConstantPoolSDNode::getType() const { 10650 if (isMachineConstantPoolEntry()) 10651 return Val.MachineCPVal->getType(); 10652 return Val.ConstVal->getType(); 10653 } 10654 10655 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10656 unsigned &SplatBitSize, 10657 bool &HasAnyUndefs, 10658 unsigned MinSplatBits, 10659 bool IsBigEndian) const { 10660 EVT VT = getValueType(0); 10661 assert(VT.isVector() && "Expected a vector type"); 10662 unsigned VecWidth = VT.getSizeInBits(); 10663 if (MinSplatBits > VecWidth) 10664 return false; 10665 10666 // FIXME: The widths are based on this node's type, but build vectors can 10667 // truncate their operands. 10668 SplatValue = APInt(VecWidth, 0); 10669 SplatUndef = APInt(VecWidth, 0); 10670 10671 // Get the bits. Bits with undefined values (when the corresponding element 10672 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10673 // in SplatValue. If any of the values are not constant, give up and return 10674 // false. 10675 unsigned int NumOps = getNumOperands(); 10676 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10677 unsigned EltWidth = VT.getScalarSizeInBits(); 10678 10679 for (unsigned j = 0; j < NumOps; ++j) { 10680 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10681 SDValue OpVal = getOperand(i); 10682 unsigned BitPos = j * EltWidth; 10683 10684 if (OpVal.isUndef()) 10685 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10686 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10687 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10688 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10689 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10690 else 10691 return false; 10692 } 10693 10694 // The build_vector is all constants or undefs. Find the smallest element 10695 // size that splats the vector. 10696 HasAnyUndefs = (SplatUndef != 0); 10697 10698 // FIXME: This does not work for vectors with elements less than 8 bits. 10699 while (VecWidth > 8) { 10700 unsigned HalfSize = VecWidth / 2; 10701 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10702 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10703 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10704 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10705 10706 // If the two halves do not match (ignoring undef bits), stop here. 10707 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10708 MinSplatBits > HalfSize) 10709 break; 10710 10711 SplatValue = HighValue | LowValue; 10712 SplatUndef = HighUndef & LowUndef; 10713 10714 VecWidth = HalfSize; 10715 } 10716 10717 SplatBitSize = VecWidth; 10718 return true; 10719 } 10720 10721 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10722 BitVector *UndefElements) const { 10723 unsigned NumOps = getNumOperands(); 10724 if (UndefElements) { 10725 UndefElements->clear(); 10726 UndefElements->resize(NumOps); 10727 } 10728 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10729 if (!DemandedElts) 10730 return SDValue(); 10731 SDValue Splatted; 10732 for (unsigned i = 0; i != NumOps; ++i) { 10733 if (!DemandedElts[i]) 10734 continue; 10735 SDValue Op = getOperand(i); 10736 if (Op.isUndef()) { 10737 if (UndefElements) 10738 (*UndefElements)[i] = true; 10739 } else if (!Splatted) { 10740 Splatted = Op; 10741 } else if (Splatted != Op) { 10742 return SDValue(); 10743 } 10744 } 10745 10746 if (!Splatted) { 10747 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10748 assert(getOperand(FirstDemandedIdx).isUndef() && 10749 "Can only have a splat without a constant for all undefs."); 10750 return getOperand(FirstDemandedIdx); 10751 } 10752 10753 return Splatted; 10754 } 10755 10756 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10757 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10758 return getSplatValue(DemandedElts, UndefElements); 10759 } 10760 10761 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10762 SmallVectorImpl<SDValue> &Sequence, 10763 BitVector *UndefElements) const { 10764 unsigned NumOps = getNumOperands(); 10765 Sequence.clear(); 10766 if (UndefElements) { 10767 UndefElements->clear(); 10768 UndefElements->resize(NumOps); 10769 } 10770 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10771 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10772 return false; 10773 10774 // Set the undefs even if we don't find a sequence (like getSplatValue). 10775 if (UndefElements) 10776 for (unsigned I = 0; I != NumOps; ++I) 10777 if (DemandedElts[I] && getOperand(I).isUndef()) 10778 (*UndefElements)[I] = true; 10779 10780 // Iteratively widen the sequence length looking for repetitions. 10781 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10782 Sequence.append(SeqLen, SDValue()); 10783 for (unsigned I = 0; I != NumOps; ++I) { 10784 if (!DemandedElts[I]) 10785 continue; 10786 SDValue &SeqOp = Sequence[I % SeqLen]; 10787 SDValue Op = getOperand(I); 10788 if (Op.isUndef()) { 10789 if (!SeqOp) 10790 SeqOp = Op; 10791 continue; 10792 } 10793 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10794 Sequence.clear(); 10795 break; 10796 } 10797 SeqOp = Op; 10798 } 10799 if (!Sequence.empty()) 10800 return true; 10801 } 10802 10803 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10804 return false; 10805 } 10806 10807 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10808 BitVector *UndefElements) const { 10809 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10810 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10811 } 10812 10813 ConstantSDNode * 10814 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10815 BitVector *UndefElements) const { 10816 return dyn_cast_or_null<ConstantSDNode>( 10817 getSplatValue(DemandedElts, UndefElements)); 10818 } 10819 10820 ConstantSDNode * 10821 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10822 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10823 } 10824 10825 ConstantFPSDNode * 10826 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10827 BitVector *UndefElements) const { 10828 return dyn_cast_or_null<ConstantFPSDNode>( 10829 getSplatValue(DemandedElts, UndefElements)); 10830 } 10831 10832 ConstantFPSDNode * 10833 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10834 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10835 } 10836 10837 int32_t 10838 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10839 uint32_t BitWidth) const { 10840 if (ConstantFPSDNode *CN = 10841 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10842 bool IsExact; 10843 APSInt IntVal(BitWidth); 10844 const APFloat &APF = CN->getValueAPF(); 10845 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10846 APFloat::opOK || 10847 !IsExact) 10848 return -1; 10849 10850 return IntVal.exactLogBase2(); 10851 } 10852 return -1; 10853 } 10854 10855 bool BuildVectorSDNode::getConstantRawBits( 10856 bool IsLittleEndian, unsigned DstEltSizeInBits, 10857 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10858 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10859 if (!isConstant()) 10860 return false; 10861 10862 unsigned NumSrcOps = getNumOperands(); 10863 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10864 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10865 "Invalid bitcast scale"); 10866 10867 // Extract raw src bits. 10868 SmallVector<APInt> SrcBitElements(NumSrcOps, 10869 APInt::getNullValue(SrcEltSizeInBits)); 10870 BitVector SrcUndeElements(NumSrcOps, false); 10871 10872 for (unsigned I = 0; I != NumSrcOps; ++I) { 10873 SDValue Op = getOperand(I); 10874 if (Op.isUndef()) { 10875 SrcUndeElements.set(I); 10876 continue; 10877 } 10878 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10879 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10880 assert((CInt || CFP) && "Unknown constant"); 10881 SrcBitElements[I] = 10882 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10883 : CFP->getValueAPF().bitcastToAPInt(); 10884 } 10885 10886 // Recast to dst width. 10887 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10888 SrcBitElements, UndefElements, SrcUndeElements); 10889 return true; 10890 } 10891 10892 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10893 unsigned DstEltSizeInBits, 10894 SmallVectorImpl<APInt> &DstBitElements, 10895 ArrayRef<APInt> SrcBitElements, 10896 BitVector &DstUndefElements, 10897 const BitVector &SrcUndefElements) { 10898 unsigned NumSrcOps = SrcBitElements.size(); 10899 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10900 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10901 "Invalid bitcast scale"); 10902 assert(NumSrcOps == SrcUndefElements.size() && 10903 "Vector size mismatch"); 10904 10905 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10906 DstUndefElements.clear(); 10907 DstUndefElements.resize(NumDstOps, false); 10908 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10909 10910 // Concatenate src elements constant bits together into dst element. 10911 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10912 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10913 for (unsigned I = 0; I != NumDstOps; ++I) { 10914 DstUndefElements.set(I); 10915 APInt &DstBits = DstBitElements[I]; 10916 for (unsigned J = 0; J != Scale; ++J) { 10917 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10918 if (SrcUndefElements[Idx]) 10919 continue; 10920 DstUndefElements.reset(I); 10921 const APInt &SrcBits = SrcBitElements[Idx]; 10922 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10923 "Illegal constant bitwidths"); 10924 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10925 } 10926 } 10927 return; 10928 } 10929 10930 // Split src element constant bits into dst elements. 10931 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10932 for (unsigned I = 0; I != NumSrcOps; ++I) { 10933 if (SrcUndefElements[I]) { 10934 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10935 continue; 10936 } 10937 const APInt &SrcBits = SrcBitElements[I]; 10938 for (unsigned J = 0; J != Scale; ++J) { 10939 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10940 APInt &DstBits = DstBitElements[Idx]; 10941 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 10942 } 10943 } 10944 } 10945 10946 bool BuildVectorSDNode::isConstant() const { 10947 for (const SDValue &Op : op_values()) { 10948 unsigned Opc = Op.getOpcode(); 10949 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10950 return false; 10951 } 10952 return true; 10953 } 10954 10955 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10956 // Find the first non-undef value in the shuffle mask. 10957 unsigned i, e; 10958 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10959 /* search */; 10960 10961 // If all elements are undefined, this shuffle can be considered a splat 10962 // (although it should eventually get simplified away completely). 10963 if (i == e) 10964 return true; 10965 10966 // Make sure all remaining elements are either undef or the same as the first 10967 // non-undef value. 10968 for (int Idx = Mask[i]; i != e; ++i) 10969 if (Mask[i] >= 0 && Mask[i] != Idx) 10970 return false; 10971 return true; 10972 } 10973 10974 // Returns the SDNode if it is a constant integer BuildVector 10975 // or constant integer. 10976 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10977 if (isa<ConstantSDNode>(N)) 10978 return N.getNode(); 10979 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10980 return N.getNode(); 10981 // Treat a GlobalAddress supporting constant offset folding as a 10982 // constant integer. 10983 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10984 if (GA->getOpcode() == ISD::GlobalAddress && 10985 TLI->isOffsetFoldingLegal(GA)) 10986 return GA; 10987 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10988 isa<ConstantSDNode>(N.getOperand(0))) 10989 return N.getNode(); 10990 return nullptr; 10991 } 10992 10993 // Returns the SDNode if it is a constant float BuildVector 10994 // or constant float. 10995 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10996 if (isa<ConstantFPSDNode>(N)) 10997 return N.getNode(); 10998 10999 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11000 return N.getNode(); 11001 11002 return nullptr; 11003 } 11004 11005 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11006 assert(!Node->OperandList && "Node already has operands"); 11007 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11008 "too many operands to fit into SDNode"); 11009 SDUse *Ops = OperandRecycler.allocate( 11010 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11011 11012 bool IsDivergent = false; 11013 for (unsigned I = 0; I != Vals.size(); ++I) { 11014 Ops[I].setUser(Node); 11015 Ops[I].setInitial(Vals[I]); 11016 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11017 IsDivergent |= Ops[I].getNode()->isDivergent(); 11018 } 11019 Node->NumOperands = Vals.size(); 11020 Node->OperandList = Ops; 11021 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11022 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11023 Node->SDNodeBits.IsDivergent = IsDivergent; 11024 } 11025 checkForCycles(Node); 11026 } 11027 11028 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11029 SmallVectorImpl<SDValue> &Vals) { 11030 size_t Limit = SDNode::getMaxNumOperands(); 11031 while (Vals.size() > Limit) { 11032 unsigned SliceIdx = Vals.size() - Limit; 11033 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11034 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11035 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11036 Vals.emplace_back(NewTF); 11037 } 11038 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11039 } 11040 11041 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11042 EVT VT, SDNodeFlags Flags) { 11043 switch (Opcode) { 11044 default: 11045 return SDValue(); 11046 case ISD::ADD: 11047 case ISD::OR: 11048 case ISD::XOR: 11049 case ISD::UMAX: 11050 return getConstant(0, DL, VT); 11051 case ISD::MUL: 11052 return getConstant(1, DL, VT); 11053 case ISD::AND: 11054 case ISD::UMIN: 11055 return getAllOnesConstant(DL, VT); 11056 case ISD::SMAX: 11057 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11058 case ISD::SMIN: 11059 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11060 case ISD::FADD: 11061 return getConstantFP(-0.0, DL, VT); 11062 case ISD::FMUL: 11063 return getConstantFP(1.0, DL, VT); 11064 case ISD::FMINNUM: 11065 case ISD::FMAXNUM: { 11066 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11067 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11068 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11069 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11070 APFloat::getLargest(Semantics); 11071 if (Opcode == ISD::FMAXNUM) 11072 NeutralAF.changeSign(); 11073 11074 return getConstantFP(NeutralAF, DL, VT); 11075 } 11076 } 11077 } 11078 11079 #ifndef NDEBUG 11080 static void checkForCyclesHelper(const SDNode *N, 11081 SmallPtrSetImpl<const SDNode*> &Visited, 11082 SmallPtrSetImpl<const SDNode*> &Checked, 11083 const llvm::SelectionDAG *DAG) { 11084 // If this node has already been checked, don't check it again. 11085 if (Checked.count(N)) 11086 return; 11087 11088 // If a node has already been visited on this depth-first walk, reject it as 11089 // a cycle. 11090 if (!Visited.insert(N).second) { 11091 errs() << "Detected cycle in SelectionDAG\n"; 11092 dbgs() << "Offending node:\n"; 11093 N->dumprFull(DAG); dbgs() << "\n"; 11094 abort(); 11095 } 11096 11097 for (const SDValue &Op : N->op_values()) 11098 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11099 11100 Checked.insert(N); 11101 Visited.erase(N); 11102 } 11103 #endif 11104 11105 void llvm::checkForCycles(const llvm::SDNode *N, 11106 const llvm::SelectionDAG *DAG, 11107 bool force) { 11108 #ifndef NDEBUG 11109 bool check = force; 11110 #ifdef EXPENSIVE_CHECKS 11111 check = true; 11112 #endif // EXPENSIVE_CHECKS 11113 if (check) { 11114 assert(N && "Checking nonexistent SDNode"); 11115 SmallPtrSet<const SDNode*, 32> visited; 11116 SmallPtrSet<const SDNode*, 32> checked; 11117 checkForCyclesHelper(N, visited, checked, DAG); 11118 } 11119 #endif // !NDEBUG 11120 } 11121 11122 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11123 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11124 } 11125