1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/APSInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/IR/Constant.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CodeGen.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/KnownBits.h" 58 #include "llvm/Support/ManagedStatic.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/Mutex.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/Target/TargetOptions.h" 65 #include "llvm/Target/TargetRegisterInfo.h" 66 #include "llvm/Target/TargetSubtargetInfo.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <cstdlib> 71 #include <limits> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 /// makeVTList - Return an instance of the SDVTList struct initialized with the 80 /// specified members. 81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 82 SDVTList Res = {VTs, NumVTs}; 83 return Res; 84 } 85 86 // Default null implementations of the callbacks. 87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 89 90 #define DEBUG_TYPE "selectiondag" 91 92 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 93 DEBUG( 94 dbgs() << Msg; 95 V.getNode()->dump(G); 96 ); 97 } 98 99 //===----------------------------------------------------------------------===// 100 // ConstantFPSDNode Class 101 //===----------------------------------------------------------------------===// 102 103 /// isExactlyValue - We don't rely on operator== working on double values, as 104 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 105 /// As such, this method can be used to do an exact bit-for-bit comparison of 106 /// two floating point values. 107 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 108 return getValueAPF().bitwiseIsEqual(V); 109 } 110 111 bool ConstantFPSDNode::isValueValidForType(EVT VT, 112 const APFloat& Val) { 113 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 114 115 // convert modifies in place, so make a copy. 116 APFloat Val2 = APFloat(Val); 117 bool losesInfo; 118 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 119 APFloat::rmNearestTiesToEven, 120 &losesInfo); 121 return !losesInfo; 122 } 123 124 //===----------------------------------------------------------------------===// 125 // ISD Namespace 126 //===----------------------------------------------------------------------===// 127 128 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 129 auto *BV = dyn_cast<BuildVectorSDNode>(N); 130 if (!BV) 131 return false; 132 133 APInt SplatUndef; 134 unsigned SplatBitSize; 135 bool HasUndefs; 136 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 137 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 138 EltSize) && 139 EltSize == SplatBitSize; 140 } 141 142 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 143 // specializations of the more general isConstantSplatVector()? 144 145 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 146 // Look through a bit convert. 147 while (N->getOpcode() == ISD::BITCAST) 148 N = N->getOperand(0).getNode(); 149 150 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 151 152 unsigned i = 0, e = N->getNumOperands(); 153 154 // Skip over all of the undef values. 155 while (i != e && N->getOperand(i).isUndef()) 156 ++i; 157 158 // Do not accept an all-undef vector. 159 if (i == e) return false; 160 161 // Do not accept build_vectors that aren't all constants or which have non-~0 162 // elements. We have to be a bit careful here, as the type of the constant 163 // may not be the same as the type of the vector elements due to type 164 // legalization (the elements are promoted to a legal type for the target and 165 // a vector of a type may be legal when the base element type is not). 166 // We only want to check enough bits to cover the vector elements, because 167 // we care if the resultant vector is all ones, not whether the individual 168 // constants are. 169 SDValue NotZero = N->getOperand(i); 170 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 171 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 172 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 173 return false; 174 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 175 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 176 return false; 177 } else 178 return false; 179 180 // Okay, we have at least one ~0 value, check to see if the rest match or are 181 // undefs. Even with the above element type twiddling, this should be OK, as 182 // the same type legalization should have applied to all the elements. 183 for (++i; i != e; ++i) 184 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 185 return false; 186 return true; 187 } 188 189 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 190 // Look through a bit convert. 191 while (N->getOpcode() == ISD::BITCAST) 192 N = N->getOperand(0).getNode(); 193 194 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 195 196 bool IsAllUndef = true; 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 IsAllUndef = false; 201 // Do not accept build_vectors that aren't all constants or which have non-0 202 // elements. We have to be a bit careful here, as the type of the constant 203 // may not be the same as the type of the vector elements due to type 204 // legalization (the elements are promoted to a legal type for the target 205 // and a vector of a type may be legal when the base element type is not). 206 // We only want to check enough bits to cover the vector elements, because 207 // we care if the resultant vector is all zeros, not whether the individual 208 // constants are. 209 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 210 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 211 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 212 return false; 213 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 214 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 215 return false; 216 } else 217 return false; 218 } 219 220 // Do not accept an all-undef vector. 221 if (IsAllUndef) 222 return false; 223 return true; 224 } 225 226 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 227 if (N->getOpcode() != ISD::BUILD_VECTOR) 228 return false; 229 230 for (const SDValue &Op : N->op_values()) { 231 if (Op.isUndef()) 232 continue; 233 if (!isa<ConstantSDNode>(Op)) 234 return false; 235 } 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantFPSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::allOperandsUndef(const SDNode *N) { 253 // Return false if the node has no operands. 254 // This is "logically inconsistent" with the definition of "all" but 255 // is probably the desired behavior. 256 if (N->getNumOperands() == 0) 257 return false; 258 259 for (const SDValue &Op : N->op_values()) 260 if (!Op.isUndef()) 261 return false; 262 263 return true; 264 } 265 266 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 267 switch (ExtType) { 268 case ISD::EXTLOAD: 269 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 270 case ISD::SEXTLOAD: 271 return ISD::SIGN_EXTEND; 272 case ISD::ZEXTLOAD: 273 return ISD::ZERO_EXTEND; 274 default: 275 break; 276 } 277 278 llvm_unreachable("Invalid LoadExtType"); 279 } 280 281 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 282 // To perform this operation, we just need to swap the L and G bits of the 283 // operation. 284 unsigned OldL = (Operation >> 2) & 1; 285 unsigned OldG = (Operation >> 1) & 1; 286 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 287 (OldL << 1) | // New G bit 288 (OldG << 2)); // New L bit. 289 } 290 291 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 292 unsigned Operation = Op; 293 if (isInteger) 294 Operation ^= 7; // Flip L, G, E bits, but not U. 295 else 296 Operation ^= 15; // Flip all of the condition bits. 297 298 if (Operation > ISD::SETTRUE2) 299 Operation &= ~8; // Don't let N and U bits get set. 300 301 return ISD::CondCode(Operation); 302 } 303 304 /// For an integer comparison, return 1 if the comparison is a signed operation 305 /// and 2 if the result is an unsigned comparison. Return zero if the operation 306 /// does not depend on the sign of the input (setne and seteq). 307 static int isSignedOp(ISD::CondCode Opcode) { 308 switch (Opcode) { 309 default: llvm_unreachable("Illegal integer setcc operation!"); 310 case ISD::SETEQ: 311 case ISD::SETNE: return 0; 312 case ISD::SETLT: 313 case ISD::SETLE: 314 case ISD::SETGT: 315 case ISD::SETGE: return 1; 316 case ISD::SETULT: 317 case ISD::SETULE: 318 case ISD::SETUGT: 319 case ISD::SETUGE: return 2; 320 } 321 } 322 323 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 324 bool IsInteger) { 325 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 326 // Cannot fold a signed integer setcc with an unsigned integer setcc. 327 return ISD::SETCC_INVALID; 328 329 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 330 331 // If the N and U bits get set, then the resultant comparison DOES suddenly 332 // care about orderedness, and it is true when ordered. 333 if (Op > ISD::SETTRUE2) 334 Op &= ~16; // Clear the U bit if the N bit is set. 335 336 // Canonicalize illegal integer setcc's. 337 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 338 Op = ISD::SETNE; 339 340 return ISD::CondCode(Op); 341 } 342 343 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 344 bool IsInteger) { 345 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 346 // Cannot fold a signed setcc with an unsigned setcc. 347 return ISD::SETCC_INVALID; 348 349 // Combine all of the condition bits. 350 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 351 352 // Canonicalize illegal integer setcc's. 353 if (IsInteger) { 354 switch (Result) { 355 default: break; 356 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 357 case ISD::SETOEQ: // SETEQ & SETU[LG]E 358 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 359 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 360 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 361 } 362 } 363 364 return Result; 365 } 366 367 //===----------------------------------------------------------------------===// 368 // SDNode Profile Support 369 //===----------------------------------------------------------------------===// 370 371 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 372 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 373 ID.AddInteger(OpC); 374 } 375 376 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 377 /// solely with their pointer. 378 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 379 ID.AddPointer(VTList.VTs); 380 } 381 382 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 383 static void AddNodeIDOperands(FoldingSetNodeID &ID, 384 ArrayRef<SDValue> Ops) { 385 for (auto& Op : Ops) { 386 ID.AddPointer(Op.getNode()); 387 ID.AddInteger(Op.getResNo()); 388 } 389 } 390 391 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 392 static void AddNodeIDOperands(FoldingSetNodeID &ID, 393 ArrayRef<SDUse> Ops) { 394 for (auto& Op : Ops) { 395 ID.AddPointer(Op.getNode()); 396 ID.AddInteger(Op.getResNo()); 397 } 398 } 399 400 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 401 SDVTList VTList, ArrayRef<SDValue> OpList) { 402 AddNodeIDOpcode(ID, OpC); 403 AddNodeIDValueTypes(ID, VTList); 404 AddNodeIDOperands(ID, OpList); 405 } 406 407 /// If this is an SDNode with special info, add this info to the NodeID data. 408 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 409 switch (N->getOpcode()) { 410 case ISD::TargetExternalSymbol: 411 case ISD::ExternalSymbol: 412 case ISD::MCSymbol: 413 llvm_unreachable("Should only be used on nodes with operands"); 414 default: break; // Normal nodes don't need extra info. 415 case ISD::TargetConstant: 416 case ISD::Constant: { 417 const ConstantSDNode *C = cast<ConstantSDNode>(N); 418 ID.AddPointer(C->getConstantIntValue()); 419 ID.AddBoolean(C->isOpaque()); 420 break; 421 } 422 case ISD::TargetConstantFP: 423 case ISD::ConstantFP: 424 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 425 break; 426 case ISD::TargetGlobalAddress: 427 case ISD::GlobalAddress: 428 case ISD::TargetGlobalTLSAddress: 429 case ISD::GlobalTLSAddress: { 430 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 431 ID.AddPointer(GA->getGlobal()); 432 ID.AddInteger(GA->getOffset()); 433 ID.AddInteger(GA->getTargetFlags()); 434 break; 435 } 436 case ISD::BasicBlock: 437 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 438 break; 439 case ISD::Register: 440 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 441 break; 442 case ISD::RegisterMask: 443 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 444 break; 445 case ISD::SRCVALUE: 446 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 447 break; 448 case ISD::FrameIndex: 449 case ISD::TargetFrameIndex: 450 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 451 break; 452 case ISD::JumpTable: 453 case ISD::TargetJumpTable: 454 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 455 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 456 break; 457 case ISD::ConstantPool: 458 case ISD::TargetConstantPool: { 459 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 460 ID.AddInteger(CP->getAlignment()); 461 ID.AddInteger(CP->getOffset()); 462 if (CP->isMachineConstantPoolEntry()) 463 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 464 else 465 ID.AddPointer(CP->getConstVal()); 466 ID.AddInteger(CP->getTargetFlags()); 467 break; 468 } 469 case ISD::TargetIndex: { 470 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 471 ID.AddInteger(TI->getIndex()); 472 ID.AddInteger(TI->getOffset()); 473 ID.AddInteger(TI->getTargetFlags()); 474 break; 475 } 476 case ISD::LOAD: { 477 const LoadSDNode *LD = cast<LoadSDNode>(N); 478 ID.AddInteger(LD->getMemoryVT().getRawBits()); 479 ID.AddInteger(LD->getRawSubclassData()); 480 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 481 break; 482 } 483 case ISD::STORE: { 484 const StoreSDNode *ST = cast<StoreSDNode>(N); 485 ID.AddInteger(ST->getMemoryVT().getRawBits()); 486 ID.AddInteger(ST->getRawSubclassData()); 487 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 488 break; 489 } 490 case ISD::ATOMIC_CMP_SWAP: 491 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 492 case ISD::ATOMIC_SWAP: 493 case ISD::ATOMIC_LOAD_ADD: 494 case ISD::ATOMIC_LOAD_SUB: 495 case ISD::ATOMIC_LOAD_AND: 496 case ISD::ATOMIC_LOAD_OR: 497 case ISD::ATOMIC_LOAD_XOR: 498 case ISD::ATOMIC_LOAD_NAND: 499 case ISD::ATOMIC_LOAD_MIN: 500 case ISD::ATOMIC_LOAD_MAX: 501 case ISD::ATOMIC_LOAD_UMIN: 502 case ISD::ATOMIC_LOAD_UMAX: 503 case ISD::ATOMIC_LOAD: 504 case ISD::ATOMIC_STORE: { 505 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 506 ID.AddInteger(AT->getMemoryVT().getRawBits()); 507 ID.AddInteger(AT->getRawSubclassData()); 508 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 509 break; 510 } 511 case ISD::PREFETCH: { 512 const MemSDNode *PF = cast<MemSDNode>(N); 513 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 514 break; 515 } 516 case ISD::VECTOR_SHUFFLE: { 517 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 518 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 519 i != e; ++i) 520 ID.AddInteger(SVN->getMaskElt(i)); 521 break; 522 } 523 case ISD::TargetBlockAddress: 524 case ISD::BlockAddress: { 525 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 526 ID.AddPointer(BA->getBlockAddress()); 527 ID.AddInteger(BA->getOffset()); 528 ID.AddInteger(BA->getTargetFlags()); 529 break; 530 } 531 } // end switch (N->getOpcode()) 532 533 // Target specific memory nodes could also have address spaces to check. 534 if (N->isTargetMemoryOpcode()) 535 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 536 } 537 538 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 539 /// data. 540 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 541 AddNodeIDOpcode(ID, N->getOpcode()); 542 // Add the return value info. 543 AddNodeIDValueTypes(ID, N->getVTList()); 544 // Add the operand info. 545 AddNodeIDOperands(ID, N->ops()); 546 547 // Handle SDNode leafs with special info. 548 AddNodeIDCustom(ID, N); 549 } 550 551 //===----------------------------------------------------------------------===// 552 // SelectionDAG Class 553 //===----------------------------------------------------------------------===// 554 555 /// doNotCSE - Return true if CSE should not be performed for this node. 556 static bool doNotCSE(SDNode *N) { 557 if (N->getValueType(0) == MVT::Glue) 558 return true; // Never CSE anything that produces a flag. 559 560 switch (N->getOpcode()) { 561 default: break; 562 case ISD::HANDLENODE: 563 case ISD::EH_LABEL: 564 return true; // Never CSE these nodes. 565 } 566 567 // Check that remaining values produced are not flags. 568 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 569 if (N->getValueType(i) == MVT::Glue) 570 return true; // Never CSE anything that produces a flag. 571 572 return false; 573 } 574 575 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 576 /// SelectionDAG. 577 void SelectionDAG::RemoveDeadNodes() { 578 // Create a dummy node (which is not added to allnodes), that adds a reference 579 // to the root node, preventing it from being deleted. 580 HandleSDNode Dummy(getRoot()); 581 582 SmallVector<SDNode*, 128> DeadNodes; 583 584 // Add all obviously-dead nodes to the DeadNodes worklist. 585 for (SDNode &Node : allnodes()) 586 if (Node.use_empty()) 587 DeadNodes.push_back(&Node); 588 589 RemoveDeadNodes(DeadNodes); 590 591 // If the root changed (e.g. it was a dead load, update the root). 592 setRoot(Dummy.getValue()); 593 } 594 595 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 596 /// given list, and any nodes that become unreachable as a result. 597 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 598 599 // Process the worklist, deleting the nodes and adding their uses to the 600 // worklist. 601 while (!DeadNodes.empty()) { 602 SDNode *N = DeadNodes.pop_back_val(); 603 // Skip to next node if we've already managed to delete the node. This could 604 // happen if replacing a node causes a node previously added to the node to 605 // be deleted. 606 if (N->getOpcode() == ISD::DELETED_NODE) 607 continue; 608 609 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 610 DUL->NodeDeleted(N, nullptr); 611 612 // Take the node out of the appropriate CSE map. 613 RemoveNodeFromCSEMaps(N); 614 615 // Next, brutally remove the operand list. This is safe to do, as there are 616 // no cycles in the graph. 617 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 618 SDUse &Use = *I++; 619 SDNode *Operand = Use.getNode(); 620 Use.set(SDValue()); 621 622 // Now that we removed this operand, see if there are no uses of it left. 623 if (Operand->use_empty()) 624 DeadNodes.push_back(Operand); 625 } 626 627 DeallocateNode(N); 628 } 629 } 630 631 void SelectionDAG::RemoveDeadNode(SDNode *N){ 632 SmallVector<SDNode*, 16> DeadNodes(1, N); 633 634 // Create a dummy node that adds a reference to the root node, preventing 635 // it from being deleted. (This matters if the root is an operand of the 636 // dead node.) 637 HandleSDNode Dummy(getRoot()); 638 639 RemoveDeadNodes(DeadNodes); 640 } 641 642 void SelectionDAG::DeleteNode(SDNode *N) { 643 // First take this out of the appropriate CSE map. 644 RemoveNodeFromCSEMaps(N); 645 646 // Finally, remove uses due to operands of this node, remove from the 647 // AllNodes list, and delete the node. 648 DeleteNodeNotInCSEMaps(N); 649 } 650 651 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 652 assert(N->getIterator() != AllNodes.begin() && 653 "Cannot delete the entry node!"); 654 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 655 656 // Drop all of the operands and decrement used node's use counts. 657 N->DropOperands(); 658 659 DeallocateNode(N); 660 } 661 662 void SDDbgInfo::erase(const SDNode *Node) { 663 DbgValMapType::iterator I = DbgValMap.find(Node); 664 if (I == DbgValMap.end()) 665 return; 666 for (auto &Val: I->second) 667 Val->setIsInvalidated(); 668 DbgValMap.erase(I); 669 } 670 671 void SelectionDAG::DeallocateNode(SDNode *N) { 672 // If we have operands, deallocate them. 673 removeOperands(N); 674 675 NodeAllocator.Deallocate(AllNodes.remove(N)); 676 677 // Set the opcode to DELETED_NODE to help catch bugs when node 678 // memory is reallocated. 679 // FIXME: There are places in SDag that have grown a dependency on the opcode 680 // value in the released node. 681 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 682 N->NodeType = ISD::DELETED_NODE; 683 684 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 685 // them and forget about that node. 686 DbgInfo->erase(N); 687 } 688 689 #ifndef NDEBUG 690 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 691 static void VerifySDNode(SDNode *N) { 692 switch (N->getOpcode()) { 693 default: 694 break; 695 case ISD::BUILD_PAIR: { 696 EVT VT = N->getValueType(0); 697 assert(N->getNumValues() == 1 && "Too many results!"); 698 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 699 "Wrong return type!"); 700 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 701 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 702 "Mismatched operand types!"); 703 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 704 "Wrong operand type!"); 705 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 706 "Wrong return type size"); 707 break; 708 } 709 case ISD::BUILD_VECTOR: { 710 assert(N->getNumValues() == 1 && "Too many results!"); 711 assert(N->getValueType(0).isVector() && "Wrong return type!"); 712 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 713 "Wrong number of operands!"); 714 EVT EltVT = N->getValueType(0).getVectorElementType(); 715 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 716 assert((I->getValueType() == EltVT || 717 (EltVT.isInteger() && I->getValueType().isInteger() && 718 EltVT.bitsLE(I->getValueType()))) && 719 "Wrong operand type!"); 720 assert(I->getValueType() == N->getOperand(0).getValueType() && 721 "Operands must all have the same type"); 722 } 723 break; 724 } 725 } 726 } 727 #endif // NDEBUG 728 729 /// \brief Insert a newly allocated node into the DAG. 730 /// 731 /// Handles insertion into the all nodes list and CSE map, as well as 732 /// verification and other common operations when a new node is allocated. 733 void SelectionDAG::InsertNode(SDNode *N) { 734 AllNodes.push_back(N); 735 #ifndef NDEBUG 736 N->PersistentId = NextPersistentId++; 737 VerifySDNode(N); 738 #endif 739 } 740 741 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 742 /// correspond to it. This is useful when we're about to delete or repurpose 743 /// the node. We don't want future request for structurally identical nodes 744 /// to return N anymore. 745 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 746 bool Erased = false; 747 switch (N->getOpcode()) { 748 case ISD::HANDLENODE: return false; // noop. 749 case ISD::CONDCODE: 750 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 751 "Cond code doesn't exist!"); 752 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 753 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 754 break; 755 case ISD::ExternalSymbol: 756 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 757 break; 758 case ISD::TargetExternalSymbol: { 759 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 760 Erased = TargetExternalSymbols.erase( 761 std::pair<std::string,unsigned char>(ESN->getSymbol(), 762 ESN->getTargetFlags())); 763 break; 764 } 765 case ISD::MCSymbol: { 766 auto *MCSN = cast<MCSymbolSDNode>(N); 767 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 768 break; 769 } 770 case ISD::VALUETYPE: { 771 EVT VT = cast<VTSDNode>(N)->getVT(); 772 if (VT.isExtended()) { 773 Erased = ExtendedValueTypeNodes.erase(VT); 774 } else { 775 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 776 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 777 } 778 break; 779 } 780 default: 781 // Remove it from the CSE Map. 782 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 783 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 784 Erased = CSEMap.RemoveNode(N); 785 break; 786 } 787 #ifndef NDEBUG 788 // Verify that the node was actually in one of the CSE maps, unless it has a 789 // flag result (which cannot be CSE'd) or is one of the special cases that are 790 // not subject to CSE. 791 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 792 !N->isMachineOpcode() && !doNotCSE(N)) { 793 N->dump(this); 794 dbgs() << "\n"; 795 llvm_unreachable("Node is not in map!"); 796 } 797 #endif 798 return Erased; 799 } 800 801 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 802 /// maps and modified in place. Add it back to the CSE maps, unless an identical 803 /// node already exists, in which case transfer all its users to the existing 804 /// node. This transfer can potentially trigger recursive merging. 805 void 806 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 807 // For node types that aren't CSE'd, just act as if no identical node 808 // already exists. 809 if (!doNotCSE(N)) { 810 SDNode *Existing = CSEMap.GetOrInsertNode(N); 811 if (Existing != N) { 812 // If there was already an existing matching node, use ReplaceAllUsesWith 813 // to replace the dead one with the existing one. This can cause 814 // recursive merging of other unrelated nodes down the line. 815 ReplaceAllUsesWith(N, Existing); 816 817 // N is now dead. Inform the listeners and delete it. 818 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 819 DUL->NodeDeleted(N, Existing); 820 DeleteNodeNotInCSEMaps(N); 821 return; 822 } 823 } 824 825 // If the node doesn't already exist, we updated it. Inform listeners. 826 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 827 DUL->NodeUpdated(N); 828 } 829 830 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 831 /// were replaced with those specified. If this node is never memoized, 832 /// return null, otherwise return a pointer to the slot it would take. If a 833 /// node already exists with these operands, the slot will be non-null. 834 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 835 void *&InsertPos) { 836 if (doNotCSE(N)) 837 return nullptr; 838 839 SDValue Ops[] = { Op }; 840 FoldingSetNodeID ID; 841 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 842 AddNodeIDCustom(ID, N); 843 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 844 if (Node) 845 Node->intersectFlagsWith(N->getFlags()); 846 return Node; 847 } 848 849 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 850 /// were replaced with those specified. If this node is never memoized, 851 /// return null, otherwise return a pointer to the slot it would take. If a 852 /// node already exists with these operands, the slot will be non-null. 853 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 854 SDValue Op1, SDValue Op2, 855 void *&InsertPos) { 856 if (doNotCSE(N)) 857 return nullptr; 858 859 SDValue Ops[] = { Op1, Op2 }; 860 FoldingSetNodeID ID; 861 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 862 AddNodeIDCustom(ID, N); 863 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 864 if (Node) 865 Node->intersectFlagsWith(N->getFlags()); 866 return Node; 867 } 868 869 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 870 /// were replaced with those specified. If this node is never memoized, 871 /// return null, otherwise return a pointer to the slot it would take. If a 872 /// node already exists with these operands, the slot will be non-null. 873 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 874 void *&InsertPos) { 875 if (doNotCSE(N)) 876 return nullptr; 877 878 FoldingSetNodeID ID; 879 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 880 AddNodeIDCustom(ID, N); 881 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 882 if (Node) 883 Node->intersectFlagsWith(N->getFlags()); 884 return Node; 885 } 886 887 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 888 Type *Ty = VT == MVT::iPTR ? 889 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 890 VT.getTypeForEVT(*getContext()); 891 892 return getDataLayout().getABITypeAlignment(Ty); 893 } 894 895 // EntryNode could meaningfully have debug info if we can find it... 896 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 897 : TM(tm), OptLevel(OL), 898 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 899 Root(getEntryNode()) { 900 InsertNode(&EntryNode); 901 DbgInfo = new SDDbgInfo(); 902 } 903 904 void SelectionDAG::init(MachineFunction &NewMF, 905 OptimizationRemarkEmitter &NewORE, 906 Pass *PassPtr) { 907 MF = &NewMF; 908 SDAGISelPass = PassPtr; 909 ORE = &NewORE; 910 TLI = getSubtarget().getTargetLowering(); 911 TSI = getSubtarget().getSelectionDAGInfo(); 912 Context = &MF->getFunction()->getContext(); 913 } 914 915 SelectionDAG::~SelectionDAG() { 916 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 917 allnodes_clear(); 918 OperandRecycler.clear(OperandAllocator); 919 delete DbgInfo; 920 } 921 922 void SelectionDAG::allnodes_clear() { 923 assert(&*AllNodes.begin() == &EntryNode); 924 AllNodes.remove(AllNodes.begin()); 925 while (!AllNodes.empty()) 926 DeallocateNode(&AllNodes.front()); 927 #ifndef NDEBUG 928 NextPersistentId = 0; 929 #endif 930 } 931 932 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 933 void *&InsertPos) { 934 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 935 if (N) { 936 switch (N->getOpcode()) { 937 default: break; 938 case ISD::Constant: 939 case ISD::ConstantFP: 940 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 941 "debug location. Use another overload."); 942 } 943 } 944 return N; 945 } 946 947 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 948 const SDLoc &DL, void *&InsertPos) { 949 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 950 if (N) { 951 switch (N->getOpcode()) { 952 case ISD::Constant: 953 case ISD::ConstantFP: 954 // Erase debug location from the node if the node is used at several 955 // different places. Do not propagate one location to all uses as it 956 // will cause a worse single stepping debugging experience. 957 if (N->getDebugLoc() != DL.getDebugLoc()) 958 N->setDebugLoc(DebugLoc()); 959 break; 960 default: 961 // When the node's point of use is located earlier in the instruction 962 // sequence than its prior point of use, update its debug info to the 963 // earlier location. 964 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 965 N->setDebugLoc(DL.getDebugLoc()); 966 break; 967 } 968 } 969 return N; 970 } 971 972 void SelectionDAG::clear() { 973 allnodes_clear(); 974 OperandRecycler.clear(OperandAllocator); 975 OperandAllocator.Reset(); 976 CSEMap.clear(); 977 978 ExtendedValueTypeNodes.clear(); 979 ExternalSymbols.clear(); 980 TargetExternalSymbols.clear(); 981 MCSymbols.clear(); 982 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 983 static_cast<CondCodeSDNode*>(nullptr)); 984 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 985 static_cast<SDNode*>(nullptr)); 986 987 EntryNode.UseList = nullptr; 988 InsertNode(&EntryNode); 989 Root = getEntryNode(); 990 DbgInfo->clear(); 991 } 992 993 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 994 return VT.bitsGT(Op.getValueType()) 995 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 996 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 997 } 998 999 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1000 return VT.bitsGT(Op.getValueType()) ? 1001 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1002 getNode(ISD::TRUNCATE, DL, VT, Op); 1003 } 1004 1005 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1006 return VT.bitsGT(Op.getValueType()) ? 1007 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1008 getNode(ISD::TRUNCATE, DL, VT, Op); 1009 } 1010 1011 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1012 return VT.bitsGT(Op.getValueType()) ? 1013 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1014 getNode(ISD::TRUNCATE, DL, VT, Op); 1015 } 1016 1017 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1018 EVT OpVT) { 1019 if (VT.bitsLE(Op.getValueType())) 1020 return getNode(ISD::TRUNCATE, SL, VT, Op); 1021 1022 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1023 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1024 } 1025 1026 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1027 assert(!VT.isVector() && 1028 "getZeroExtendInReg should use the vector element type instead of " 1029 "the vector type!"); 1030 if (Op.getValueType().getScalarType() == VT) return Op; 1031 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1032 APInt Imm = APInt::getLowBitsSet(BitWidth, 1033 VT.getSizeInBits()); 1034 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1035 getConstant(Imm, DL, Op.getValueType())); 1036 } 1037 1038 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1039 EVT VT) { 1040 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1041 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1042 "The sizes of the input and result must match in order to perform the " 1043 "extend in-register."); 1044 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1045 "The destination vector type must have fewer lanes than the input."); 1046 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1047 } 1048 1049 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1050 EVT VT) { 1051 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1052 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1053 "The sizes of the input and result must match in order to perform the " 1054 "extend in-register."); 1055 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1056 "The destination vector type must have fewer lanes than the input."); 1057 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1058 } 1059 1060 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1061 EVT VT) { 1062 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1063 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1064 "The sizes of the input and result must match in order to perform the " 1065 "extend in-register."); 1066 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1067 "The destination vector type must have fewer lanes than the input."); 1068 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1069 } 1070 1071 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1072 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1073 EVT EltVT = VT.getScalarType(); 1074 SDValue NegOne = 1075 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1076 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1077 } 1078 1079 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1080 EVT EltVT = VT.getScalarType(); 1081 SDValue TrueValue; 1082 switch (TLI->getBooleanContents(VT)) { 1083 case TargetLowering::ZeroOrOneBooleanContent: 1084 case TargetLowering::UndefinedBooleanContent: 1085 TrueValue = getConstant(1, DL, VT); 1086 break; 1087 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1088 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1089 VT); 1090 break; 1091 } 1092 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1093 } 1094 1095 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1096 bool isT, bool isO) { 1097 EVT EltVT = VT.getScalarType(); 1098 assert((EltVT.getSizeInBits() >= 64 || 1099 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1100 "getConstant with a uint64_t value that doesn't fit in the type!"); 1101 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1102 } 1103 1104 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1105 bool isT, bool isO) { 1106 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1107 } 1108 1109 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1110 EVT VT, bool isT, bool isO) { 1111 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1112 1113 EVT EltVT = VT.getScalarType(); 1114 const ConstantInt *Elt = &Val; 1115 1116 // In some cases the vector type is legal but the element type is illegal and 1117 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1118 // inserted value (the type does not need to match the vector element type). 1119 // Any extra bits introduced will be truncated away. 1120 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1121 TargetLowering::TypePromoteInteger) { 1122 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1123 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1124 Elt = ConstantInt::get(*getContext(), NewVal); 1125 } 1126 // In other cases the element type is illegal and needs to be expanded, for 1127 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1128 // the value into n parts and use a vector type with n-times the elements. 1129 // Then bitcast to the type requested. 1130 // Legalizing constants too early makes the DAGCombiner's job harder so we 1131 // only legalize if the DAG tells us we must produce legal types. 1132 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1133 TLI->getTypeAction(*getContext(), EltVT) == 1134 TargetLowering::TypeExpandInteger) { 1135 const APInt &NewVal = Elt->getValue(); 1136 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1137 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1138 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1139 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1140 1141 // Check the temporary vector is the correct size. If this fails then 1142 // getTypeToTransformTo() probably returned a type whose size (in bits) 1143 // isn't a power-of-2 factor of the requested type size. 1144 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1145 1146 SmallVector<SDValue, 2> EltParts; 1147 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1148 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1149 .zextOrTrunc(ViaEltSizeInBits), DL, 1150 ViaEltVT, isT, isO)); 1151 } 1152 1153 // EltParts is currently in little endian order. If we actually want 1154 // big-endian order then reverse it now. 1155 if (getDataLayout().isBigEndian()) 1156 std::reverse(EltParts.begin(), EltParts.end()); 1157 1158 // The elements must be reversed when the element order is different 1159 // to the endianness of the elements (because the BITCAST is itself a 1160 // vector shuffle in this situation). However, we do not need any code to 1161 // perform this reversal because getConstant() is producing a vector 1162 // splat. 1163 // This situation occurs in MIPS MSA. 1164 1165 SmallVector<SDValue, 8> Ops; 1166 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1167 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1168 1169 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1170 NewSDValueDbgMsg(V, "Creating constant: ", this); 1171 return V; 1172 } 1173 1174 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1175 "APInt size does not match type size!"); 1176 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1177 FoldingSetNodeID ID; 1178 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1179 ID.AddPointer(Elt); 1180 ID.AddBoolean(isO); 1181 void *IP = nullptr; 1182 SDNode *N = nullptr; 1183 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1184 if (!VT.isVector()) 1185 return SDValue(N, 0); 1186 1187 if (!N) { 1188 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1189 CSEMap.InsertNode(N, IP); 1190 InsertNode(N); 1191 } 1192 1193 SDValue Result(N, 0); 1194 if (VT.isVector()) 1195 Result = getSplatBuildVector(VT, DL, Result); 1196 1197 NewSDValueDbgMsg(Result, "Creating constant: ", this); 1198 return Result; 1199 } 1200 1201 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1202 bool isTarget) { 1203 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1204 } 1205 1206 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1207 bool isTarget) { 1208 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1209 } 1210 1211 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1212 EVT VT, bool isTarget) { 1213 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1214 1215 EVT EltVT = VT.getScalarType(); 1216 1217 // Do the map lookup using the actual bit pattern for the floating point 1218 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1219 // we don't have issues with SNANs. 1220 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1221 FoldingSetNodeID ID; 1222 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1223 ID.AddPointer(&V); 1224 void *IP = nullptr; 1225 SDNode *N = nullptr; 1226 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1227 if (!VT.isVector()) 1228 return SDValue(N, 0); 1229 1230 if (!N) { 1231 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1232 CSEMap.InsertNode(N, IP); 1233 InsertNode(N); 1234 } 1235 1236 SDValue Result(N, 0); 1237 if (VT.isVector()) 1238 Result = getSplatBuildVector(VT, DL, Result); 1239 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1240 return Result; 1241 } 1242 1243 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1244 bool isTarget) { 1245 EVT EltVT = VT.getScalarType(); 1246 if (EltVT == MVT::f32) 1247 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1248 else if (EltVT == MVT::f64) 1249 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1250 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1251 EltVT == MVT::f16) { 1252 bool Ignored; 1253 APFloat APF = APFloat(Val); 1254 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1255 &Ignored); 1256 return getConstantFP(APF, DL, VT, isTarget); 1257 } else 1258 llvm_unreachable("Unsupported type in getConstantFP"); 1259 } 1260 1261 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1262 EVT VT, int64_t Offset, bool isTargetGA, 1263 unsigned char TargetFlags) { 1264 assert((TargetFlags == 0 || isTargetGA) && 1265 "Cannot set target flags on target-independent globals"); 1266 1267 // Truncate (with sign-extension) the offset value to the pointer size. 1268 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1269 if (BitWidth < 64) 1270 Offset = SignExtend64(Offset, BitWidth); 1271 1272 unsigned Opc; 1273 if (GV->isThreadLocal()) 1274 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1275 else 1276 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1277 1278 FoldingSetNodeID ID; 1279 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1280 ID.AddPointer(GV); 1281 ID.AddInteger(Offset); 1282 ID.AddInteger(TargetFlags); 1283 void *IP = nullptr; 1284 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1285 return SDValue(E, 0); 1286 1287 auto *N = newSDNode<GlobalAddressSDNode>( 1288 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1289 CSEMap.InsertNode(N, IP); 1290 InsertNode(N); 1291 return SDValue(N, 0); 1292 } 1293 1294 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1295 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1296 FoldingSetNodeID ID; 1297 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1298 ID.AddInteger(FI); 1299 void *IP = nullptr; 1300 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1301 return SDValue(E, 0); 1302 1303 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1304 CSEMap.InsertNode(N, IP); 1305 InsertNode(N); 1306 return SDValue(N, 0); 1307 } 1308 1309 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1310 unsigned char TargetFlags) { 1311 assert((TargetFlags == 0 || isTarget) && 1312 "Cannot set target flags on target-independent jump tables"); 1313 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1314 FoldingSetNodeID ID; 1315 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1316 ID.AddInteger(JTI); 1317 ID.AddInteger(TargetFlags); 1318 void *IP = nullptr; 1319 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1320 return SDValue(E, 0); 1321 1322 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1323 CSEMap.InsertNode(N, IP); 1324 InsertNode(N); 1325 return SDValue(N, 0); 1326 } 1327 1328 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1329 unsigned Alignment, int Offset, 1330 bool isTarget, 1331 unsigned char TargetFlags) { 1332 assert((TargetFlags == 0 || isTarget) && 1333 "Cannot set target flags on target-independent globals"); 1334 if (Alignment == 0) 1335 Alignment = MF->getFunction()->optForSize() 1336 ? getDataLayout().getABITypeAlignment(C->getType()) 1337 : getDataLayout().getPrefTypeAlignment(C->getType()); 1338 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1339 FoldingSetNodeID ID; 1340 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1341 ID.AddInteger(Alignment); 1342 ID.AddInteger(Offset); 1343 ID.AddPointer(C); 1344 ID.AddInteger(TargetFlags); 1345 void *IP = nullptr; 1346 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1347 return SDValue(E, 0); 1348 1349 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1350 TargetFlags); 1351 CSEMap.InsertNode(N, IP); 1352 InsertNode(N); 1353 return SDValue(N, 0); 1354 } 1355 1356 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1357 unsigned Alignment, int Offset, 1358 bool isTarget, 1359 unsigned char TargetFlags) { 1360 assert((TargetFlags == 0 || isTarget) && 1361 "Cannot set target flags on target-independent globals"); 1362 if (Alignment == 0) 1363 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1364 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1365 FoldingSetNodeID ID; 1366 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1367 ID.AddInteger(Alignment); 1368 ID.AddInteger(Offset); 1369 C->addSelectionDAGCSEId(ID); 1370 ID.AddInteger(TargetFlags); 1371 void *IP = nullptr; 1372 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1373 return SDValue(E, 0); 1374 1375 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1376 TargetFlags); 1377 CSEMap.InsertNode(N, IP); 1378 InsertNode(N); 1379 return SDValue(N, 0); 1380 } 1381 1382 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1383 unsigned char TargetFlags) { 1384 FoldingSetNodeID ID; 1385 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1386 ID.AddInteger(Index); 1387 ID.AddInteger(Offset); 1388 ID.AddInteger(TargetFlags); 1389 void *IP = nullptr; 1390 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1391 return SDValue(E, 0); 1392 1393 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1394 CSEMap.InsertNode(N, IP); 1395 InsertNode(N); 1396 return SDValue(N, 0); 1397 } 1398 1399 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1400 FoldingSetNodeID ID; 1401 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1402 ID.AddPointer(MBB); 1403 void *IP = nullptr; 1404 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1405 return SDValue(E, 0); 1406 1407 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1408 CSEMap.InsertNode(N, IP); 1409 InsertNode(N); 1410 return SDValue(N, 0); 1411 } 1412 1413 SDValue SelectionDAG::getValueType(EVT VT) { 1414 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1415 ValueTypeNodes.size()) 1416 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1417 1418 SDNode *&N = VT.isExtended() ? 1419 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1420 1421 if (N) return SDValue(N, 0); 1422 N = newSDNode<VTSDNode>(VT); 1423 InsertNode(N); 1424 return SDValue(N, 0); 1425 } 1426 1427 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1428 SDNode *&N = ExternalSymbols[Sym]; 1429 if (N) return SDValue(N, 0); 1430 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1431 InsertNode(N); 1432 return SDValue(N, 0); 1433 } 1434 1435 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1436 SDNode *&N = MCSymbols[Sym]; 1437 if (N) 1438 return SDValue(N, 0); 1439 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1440 InsertNode(N); 1441 return SDValue(N, 0); 1442 } 1443 1444 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1445 unsigned char TargetFlags) { 1446 SDNode *&N = 1447 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1448 TargetFlags)]; 1449 if (N) return SDValue(N, 0); 1450 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1451 InsertNode(N); 1452 return SDValue(N, 0); 1453 } 1454 1455 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1456 if ((unsigned)Cond >= CondCodeNodes.size()) 1457 CondCodeNodes.resize(Cond+1); 1458 1459 if (!CondCodeNodes[Cond]) { 1460 auto *N = newSDNode<CondCodeSDNode>(Cond); 1461 CondCodeNodes[Cond] = N; 1462 InsertNode(N); 1463 } 1464 1465 return SDValue(CondCodeNodes[Cond], 0); 1466 } 1467 1468 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1469 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1470 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1471 std::swap(N1, N2); 1472 ShuffleVectorSDNode::commuteMask(M); 1473 } 1474 1475 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1476 SDValue N2, ArrayRef<int> Mask) { 1477 assert(VT.getVectorNumElements() == Mask.size() && 1478 "Must have the same number of vector elements as mask elements!"); 1479 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1480 "Invalid VECTOR_SHUFFLE"); 1481 1482 // Canonicalize shuffle undef, undef -> undef 1483 if (N1.isUndef() && N2.isUndef()) 1484 return getUNDEF(VT); 1485 1486 // Validate that all indices in Mask are within the range of the elements 1487 // input to the shuffle. 1488 int NElts = Mask.size(); 1489 assert(llvm::all_of(Mask, 1490 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1491 "Index out of range"); 1492 1493 // Copy the mask so we can do any needed cleanup. 1494 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1495 1496 // Canonicalize shuffle v, v -> v, undef 1497 if (N1 == N2) { 1498 N2 = getUNDEF(VT); 1499 for (int i = 0; i != NElts; ++i) 1500 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1501 } 1502 1503 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1504 if (N1.isUndef()) 1505 commuteShuffle(N1, N2, MaskVec); 1506 1507 // If shuffling a splat, try to blend the splat instead. We do this here so 1508 // that even when this arises during lowering we don't have to re-handle it. 1509 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1510 BitVector UndefElements; 1511 SDValue Splat = BV->getSplatValue(&UndefElements); 1512 if (!Splat) 1513 return; 1514 1515 for (int i = 0; i < NElts; ++i) { 1516 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1517 continue; 1518 1519 // If this input comes from undef, mark it as such. 1520 if (UndefElements[MaskVec[i] - Offset]) { 1521 MaskVec[i] = -1; 1522 continue; 1523 } 1524 1525 // If we can blend a non-undef lane, use that instead. 1526 if (!UndefElements[i]) 1527 MaskVec[i] = i + Offset; 1528 } 1529 }; 1530 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1531 BlendSplat(N1BV, 0); 1532 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1533 BlendSplat(N2BV, NElts); 1534 1535 // Canonicalize all index into lhs, -> shuffle lhs, undef 1536 // Canonicalize all index into rhs, -> shuffle rhs, undef 1537 bool AllLHS = true, AllRHS = true; 1538 bool N2Undef = N2.isUndef(); 1539 for (int i = 0; i != NElts; ++i) { 1540 if (MaskVec[i] >= NElts) { 1541 if (N2Undef) 1542 MaskVec[i] = -1; 1543 else 1544 AllLHS = false; 1545 } else if (MaskVec[i] >= 0) { 1546 AllRHS = false; 1547 } 1548 } 1549 if (AllLHS && AllRHS) 1550 return getUNDEF(VT); 1551 if (AllLHS && !N2Undef) 1552 N2 = getUNDEF(VT); 1553 if (AllRHS) { 1554 N1 = getUNDEF(VT); 1555 commuteShuffle(N1, N2, MaskVec); 1556 } 1557 // Reset our undef status after accounting for the mask. 1558 N2Undef = N2.isUndef(); 1559 // Re-check whether both sides ended up undef. 1560 if (N1.isUndef() && N2Undef) 1561 return getUNDEF(VT); 1562 1563 // If Identity shuffle return that node. 1564 bool Identity = true, AllSame = true; 1565 for (int i = 0; i != NElts; ++i) { 1566 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1567 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1568 } 1569 if (Identity && NElts) 1570 return N1; 1571 1572 // Shuffling a constant splat doesn't change the result. 1573 if (N2Undef) { 1574 SDValue V = N1; 1575 1576 // Look through any bitcasts. We check that these don't change the number 1577 // (and size) of elements and just changes their types. 1578 while (V.getOpcode() == ISD::BITCAST) 1579 V = V->getOperand(0); 1580 1581 // A splat should always show up as a build vector node. 1582 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1583 BitVector UndefElements; 1584 SDValue Splat = BV->getSplatValue(&UndefElements); 1585 // If this is a splat of an undef, shuffling it is also undef. 1586 if (Splat && Splat.isUndef()) 1587 return getUNDEF(VT); 1588 1589 bool SameNumElts = 1590 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1591 1592 // We only have a splat which can skip shuffles if there is a splatted 1593 // value and no undef lanes rearranged by the shuffle. 1594 if (Splat && UndefElements.none()) { 1595 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1596 // number of elements match or the value splatted is a zero constant. 1597 if (SameNumElts) 1598 return N1; 1599 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1600 if (C->isNullValue()) 1601 return N1; 1602 } 1603 1604 // If the shuffle itself creates a splat, build the vector directly. 1605 if (AllSame && SameNumElts) { 1606 EVT BuildVT = BV->getValueType(0); 1607 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1608 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1609 1610 // We may have jumped through bitcasts, so the type of the 1611 // BUILD_VECTOR may not match the type of the shuffle. 1612 if (BuildVT != VT) 1613 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1614 return NewBV; 1615 } 1616 } 1617 } 1618 1619 FoldingSetNodeID ID; 1620 SDValue Ops[2] = { N1, N2 }; 1621 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1622 for (int i = 0; i != NElts; ++i) 1623 ID.AddInteger(MaskVec[i]); 1624 1625 void* IP = nullptr; 1626 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1627 return SDValue(E, 0); 1628 1629 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1630 // SDNode doesn't have access to it. This memory will be "leaked" when 1631 // the node is deallocated, but recovered when the NodeAllocator is released. 1632 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1633 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1634 1635 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1636 dl.getDebugLoc(), MaskAlloc); 1637 createOperands(N, Ops); 1638 1639 CSEMap.InsertNode(N, IP); 1640 InsertNode(N); 1641 return SDValue(N, 0); 1642 } 1643 1644 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1645 MVT VT = SV.getSimpleValueType(0); 1646 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1647 ShuffleVectorSDNode::commuteMask(MaskVec); 1648 1649 SDValue Op0 = SV.getOperand(0); 1650 SDValue Op1 = SV.getOperand(1); 1651 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1652 } 1653 1654 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1655 FoldingSetNodeID ID; 1656 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1657 ID.AddInteger(RegNo); 1658 void *IP = nullptr; 1659 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1660 return SDValue(E, 0); 1661 1662 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1663 CSEMap.InsertNode(N, IP); 1664 InsertNode(N); 1665 return SDValue(N, 0); 1666 } 1667 1668 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1669 FoldingSetNodeID ID; 1670 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1671 ID.AddPointer(RegMask); 1672 void *IP = nullptr; 1673 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1674 return SDValue(E, 0); 1675 1676 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1677 CSEMap.InsertNode(N, IP); 1678 InsertNode(N); 1679 return SDValue(N, 0); 1680 } 1681 1682 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1683 MCSymbol *Label) { 1684 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1685 } 1686 1687 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1688 SDValue Root, MCSymbol *Label) { 1689 FoldingSetNodeID ID; 1690 SDValue Ops[] = { Root }; 1691 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1692 ID.AddPointer(Label); 1693 void *IP = nullptr; 1694 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1695 return SDValue(E, 0); 1696 1697 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1698 createOperands(N, Ops); 1699 1700 CSEMap.InsertNode(N, IP); 1701 InsertNode(N); 1702 return SDValue(N, 0); 1703 } 1704 1705 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1706 int64_t Offset, 1707 bool isTarget, 1708 unsigned char TargetFlags) { 1709 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1710 1711 FoldingSetNodeID ID; 1712 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1713 ID.AddPointer(BA); 1714 ID.AddInteger(Offset); 1715 ID.AddInteger(TargetFlags); 1716 void *IP = nullptr; 1717 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1718 return SDValue(E, 0); 1719 1720 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1721 CSEMap.InsertNode(N, IP); 1722 InsertNode(N); 1723 return SDValue(N, 0); 1724 } 1725 1726 SDValue SelectionDAG::getSrcValue(const Value *V) { 1727 assert((!V || V->getType()->isPointerTy()) && 1728 "SrcValue is not a pointer?"); 1729 1730 FoldingSetNodeID ID; 1731 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1732 ID.AddPointer(V); 1733 1734 void *IP = nullptr; 1735 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1736 return SDValue(E, 0); 1737 1738 auto *N = newSDNode<SrcValueSDNode>(V); 1739 CSEMap.InsertNode(N, IP); 1740 InsertNode(N); 1741 return SDValue(N, 0); 1742 } 1743 1744 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1745 FoldingSetNodeID ID; 1746 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1747 ID.AddPointer(MD); 1748 1749 void *IP = nullptr; 1750 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1751 return SDValue(E, 0); 1752 1753 auto *N = newSDNode<MDNodeSDNode>(MD); 1754 CSEMap.InsertNode(N, IP); 1755 InsertNode(N); 1756 return SDValue(N, 0); 1757 } 1758 1759 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1760 if (VT == V.getValueType()) 1761 return V; 1762 1763 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1764 } 1765 1766 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1767 unsigned SrcAS, unsigned DestAS) { 1768 SDValue Ops[] = {Ptr}; 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1771 ID.AddInteger(SrcAS); 1772 ID.AddInteger(DestAS); 1773 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1779 VT, SrcAS, DestAS); 1780 createOperands(N, Ops); 1781 1782 CSEMap.InsertNode(N, IP); 1783 InsertNode(N); 1784 return SDValue(N, 0); 1785 } 1786 1787 /// getShiftAmountOperand - Return the specified value casted to 1788 /// the target's desired shift amount type. 1789 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1790 EVT OpTy = Op.getValueType(); 1791 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1792 if (OpTy == ShTy || OpTy.isVector()) return Op; 1793 1794 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1795 } 1796 1797 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1798 SDLoc dl(Node); 1799 const TargetLowering &TLI = getTargetLoweringInfo(); 1800 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1801 EVT VT = Node->getValueType(0); 1802 SDValue Tmp1 = Node->getOperand(0); 1803 SDValue Tmp2 = Node->getOperand(1); 1804 unsigned Align = Node->getConstantOperandVal(3); 1805 1806 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1807 Tmp2, MachinePointerInfo(V)); 1808 SDValue VAList = VAListLoad; 1809 1810 if (Align > TLI.getMinStackArgumentAlignment()) { 1811 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1812 1813 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1814 getConstant(Align - 1, dl, VAList.getValueType())); 1815 1816 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1817 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1818 } 1819 1820 // Increment the pointer, VAList, to the next vaarg 1821 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1822 getConstant(getDataLayout().getTypeAllocSize( 1823 VT.getTypeForEVT(*getContext())), 1824 dl, VAList.getValueType())); 1825 // Store the incremented VAList to the legalized pointer 1826 Tmp1 = 1827 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1828 // Load the actual argument out of the pointer VAList 1829 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1830 } 1831 1832 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1833 SDLoc dl(Node); 1834 const TargetLowering &TLI = getTargetLoweringInfo(); 1835 // This defaults to loading a pointer from the input and storing it to the 1836 // output, returning the chain. 1837 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1838 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1839 SDValue Tmp1 = 1840 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1841 Node->getOperand(2), MachinePointerInfo(VS)); 1842 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1843 MachinePointerInfo(VD)); 1844 } 1845 1846 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1847 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1848 unsigned ByteSize = VT.getStoreSize(); 1849 Type *Ty = VT.getTypeForEVT(*getContext()); 1850 unsigned StackAlign = 1851 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1852 1853 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1854 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1855 } 1856 1857 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1858 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1859 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1860 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1861 const DataLayout &DL = getDataLayout(); 1862 unsigned Align = 1863 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1864 1865 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1866 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1867 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1868 } 1869 1870 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1871 ISD::CondCode Cond, const SDLoc &dl) { 1872 // These setcc operations always fold. 1873 switch (Cond) { 1874 default: break; 1875 case ISD::SETFALSE: 1876 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1877 case ISD::SETTRUE: 1878 case ISD::SETTRUE2: { 1879 TargetLowering::BooleanContent Cnt = 1880 TLI->getBooleanContents(N1->getValueType(0)); 1881 return getConstant( 1882 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1883 VT); 1884 } 1885 1886 case ISD::SETOEQ: 1887 case ISD::SETOGT: 1888 case ISD::SETOGE: 1889 case ISD::SETOLT: 1890 case ISD::SETOLE: 1891 case ISD::SETONE: 1892 case ISD::SETO: 1893 case ISD::SETUO: 1894 case ISD::SETUEQ: 1895 case ISD::SETUNE: 1896 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1897 break; 1898 } 1899 1900 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1901 const APInt &C2 = N2C->getAPIntValue(); 1902 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1903 const APInt &C1 = N1C->getAPIntValue(); 1904 1905 switch (Cond) { 1906 default: llvm_unreachable("Unknown integer setcc!"); 1907 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1908 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1909 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1910 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1911 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1912 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1913 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1914 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1915 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1916 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1917 } 1918 } 1919 } 1920 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1921 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1922 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1923 switch (Cond) { 1924 default: break; 1925 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1926 return getUNDEF(VT); 1927 LLVM_FALLTHROUGH; 1928 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1929 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1930 return getUNDEF(VT); 1931 LLVM_FALLTHROUGH; 1932 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1933 R==APFloat::cmpLessThan, dl, VT); 1934 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1935 return getUNDEF(VT); 1936 LLVM_FALLTHROUGH; 1937 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1938 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1939 return getUNDEF(VT); 1940 LLVM_FALLTHROUGH; 1941 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1942 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1943 return getUNDEF(VT); 1944 LLVM_FALLTHROUGH; 1945 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1946 R==APFloat::cmpEqual, dl, VT); 1947 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1948 return getUNDEF(VT); 1949 LLVM_FALLTHROUGH; 1950 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1951 R==APFloat::cmpEqual, dl, VT); 1952 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1953 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1954 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1955 R==APFloat::cmpEqual, dl, VT); 1956 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1957 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1958 R==APFloat::cmpLessThan, dl, VT); 1959 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1960 R==APFloat::cmpUnordered, dl, VT); 1961 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1962 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1963 } 1964 } else { 1965 // Ensure that the constant occurs on the RHS. 1966 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1967 MVT CompVT = N1.getValueType().getSimpleVT(); 1968 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1969 return SDValue(); 1970 1971 return getSetCC(dl, VT, N2, N1, SwappedCond); 1972 } 1973 } 1974 1975 // Could not fold it. 1976 return SDValue(); 1977 } 1978 1979 /// See if the specified operand can be simplified with the knowledge that only 1980 /// the bits specified by Mask are used. 1981 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 1982 switch (V.getOpcode()) { 1983 default: 1984 break; 1985 case ISD::Constant: { 1986 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 1987 assert(CV && "Const value should be ConstSDNode."); 1988 const APInt &CVal = CV->getAPIntValue(); 1989 APInt NewVal = CVal & Mask; 1990 if (NewVal != CVal) 1991 return getConstant(NewVal, SDLoc(V), V.getValueType()); 1992 break; 1993 } 1994 case ISD::OR: 1995 case ISD::XOR: 1996 // If the LHS or RHS don't contribute bits to the or, drop them. 1997 if (MaskedValueIsZero(V.getOperand(0), Mask)) 1998 return V.getOperand(1); 1999 if (MaskedValueIsZero(V.getOperand(1), Mask)) 2000 return V.getOperand(0); 2001 break; 2002 case ISD::SRL: 2003 // Only look at single-use SRLs. 2004 if (!V.getNode()->hasOneUse()) 2005 break; 2006 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2007 // See if we can recursively simplify the LHS. 2008 unsigned Amt = RHSC->getZExtValue(); 2009 2010 // Watch out for shift count overflow though. 2011 if (Amt >= Mask.getBitWidth()) 2012 break; 2013 APInt NewMask = Mask << Amt; 2014 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 2015 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2016 V.getOperand(1)); 2017 } 2018 break; 2019 case ISD::AND: { 2020 // X & -1 -> X (ignoring bits which aren't demanded). 2021 ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); 2022 if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue())) 2023 return V.getOperand(0); 2024 break; 2025 } 2026 case ISD::ANY_EXTEND: { 2027 SDValue Src = V.getOperand(0); 2028 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2029 // Being conservative here - only peek through if we only demand bits in the 2030 // non-extended source (even though the extended bits are technically undef). 2031 if (Mask.getActiveBits() > SrcBitWidth) 2032 break; 2033 APInt SrcMask = Mask.trunc(SrcBitWidth); 2034 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) 2035 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2036 break; 2037 } 2038 } 2039 return SDValue(); 2040 } 2041 2042 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2043 /// use this predicate to simplify operations downstream. 2044 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2045 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2046 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2047 } 2048 2049 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2050 /// this predicate to simplify operations downstream. Mask is known to be zero 2051 /// for bits that V cannot have. 2052 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2053 unsigned Depth) const { 2054 KnownBits Known; 2055 computeKnownBits(Op, Known, Depth); 2056 return Mask.isSubsetOf(Known.Zero); 2057 } 2058 2059 /// Helper function that checks to see if a node is a constant or a 2060 /// build vector of splat constants at least within the demanded elts. 2061 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N, 2062 const APInt &DemandedElts) { 2063 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 2064 return CN; 2065 if (N.getOpcode() != ISD::BUILD_VECTOR) 2066 return nullptr; 2067 EVT VT = N.getValueType(); 2068 ConstantSDNode *Cst = nullptr; 2069 unsigned NumElts = VT.getVectorNumElements(); 2070 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size"); 2071 for (unsigned i = 0; i != NumElts; ++i) { 2072 if (!DemandedElts[i]) 2073 continue; 2074 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i)); 2075 if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) || 2076 C->getValueType(0) != VT.getScalarType()) 2077 return nullptr; 2078 Cst = C; 2079 } 2080 return Cst; 2081 } 2082 2083 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2084 /// is less than the element bit-width of the shift node, return it. 2085 static const APInt *getValidShiftAmountConstant(SDValue V) { 2086 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2087 // Shifting more than the bitwidth is not valid. 2088 const APInt &ShAmt = SA->getAPIntValue(); 2089 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2090 return &ShAmt; 2091 } 2092 return nullptr; 2093 } 2094 2095 /// Determine which bits of Op are known to be either zero or one and return 2096 /// them in Known. For vectors, the known bits are those that are shared by 2097 /// every vector element. 2098 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2099 unsigned Depth) const { 2100 EVT VT = Op.getValueType(); 2101 APInt DemandedElts = VT.isVector() 2102 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2103 : APInt(1, 1); 2104 computeKnownBits(Op, Known, DemandedElts, Depth); 2105 } 2106 2107 /// Determine which bits of Op are known to be either zero or one and return 2108 /// them in Known. The DemandedElts argument allows us to only collect the known 2109 /// bits that are shared by the requested vector elements. 2110 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2111 const APInt &DemandedElts, 2112 unsigned Depth) const { 2113 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2114 2115 Known = KnownBits(BitWidth); // Don't know anything. 2116 2117 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2118 // We know all of the bits for a constant! 2119 Known.One = C->getAPIntValue(); 2120 Known.Zero = ~Known.One; 2121 return; 2122 } 2123 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2124 // We know all of the bits for a constant fp! 2125 Known.One = C->getValueAPF().bitcastToAPInt(); 2126 Known.Zero = ~Known.One; 2127 return; 2128 } 2129 2130 if (Depth == 6) 2131 return; // Limit search depth. 2132 2133 KnownBits Known2; 2134 unsigned NumElts = DemandedElts.getBitWidth(); 2135 2136 if (!DemandedElts) 2137 return; // No demanded elts, better to assume we don't know anything. 2138 2139 unsigned Opcode = Op.getOpcode(); 2140 switch (Opcode) { 2141 case ISD::BUILD_VECTOR: 2142 // Collect the known bits that are shared by every demanded vector element. 2143 assert(NumElts == Op.getValueType().getVectorNumElements() && 2144 "Unexpected vector size"); 2145 Known.Zero.setAllBits(); Known.One.setAllBits(); 2146 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2147 if (!DemandedElts[i]) 2148 continue; 2149 2150 SDValue SrcOp = Op.getOperand(i); 2151 computeKnownBits(SrcOp, Known2, Depth + 1); 2152 2153 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2154 if (SrcOp.getValueSizeInBits() != BitWidth) { 2155 assert(SrcOp.getValueSizeInBits() > BitWidth && 2156 "Expected BUILD_VECTOR implicit truncation"); 2157 Known2 = Known2.trunc(BitWidth); 2158 } 2159 2160 // Known bits are the values that are shared by every demanded element. 2161 Known.One &= Known2.One; 2162 Known.Zero &= Known2.Zero; 2163 2164 // If we don't know any bits, early out. 2165 if (Known.isUnknown()) 2166 break; 2167 } 2168 break; 2169 case ISD::VECTOR_SHUFFLE: { 2170 // Collect the known bits that are shared by every vector element referenced 2171 // by the shuffle. 2172 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2173 Known.Zero.setAllBits(); Known.One.setAllBits(); 2174 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2175 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2176 for (unsigned i = 0; i != NumElts; ++i) { 2177 if (!DemandedElts[i]) 2178 continue; 2179 2180 int M = SVN->getMaskElt(i); 2181 if (M < 0) { 2182 // For UNDEF elements, we don't know anything about the common state of 2183 // the shuffle result. 2184 Known.resetAll(); 2185 DemandedLHS.clearAllBits(); 2186 DemandedRHS.clearAllBits(); 2187 break; 2188 } 2189 2190 if ((unsigned)M < NumElts) 2191 DemandedLHS.setBit((unsigned)M % NumElts); 2192 else 2193 DemandedRHS.setBit((unsigned)M % NumElts); 2194 } 2195 // Known bits are the values that are shared by every demanded element. 2196 if (!!DemandedLHS) { 2197 SDValue LHS = Op.getOperand(0); 2198 computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1); 2199 Known.One &= Known2.One; 2200 Known.Zero &= Known2.Zero; 2201 } 2202 // If we don't know any bits, early out. 2203 if (Known.isUnknown()) 2204 break; 2205 if (!!DemandedRHS) { 2206 SDValue RHS = Op.getOperand(1); 2207 computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1); 2208 Known.One &= Known2.One; 2209 Known.Zero &= Known2.Zero; 2210 } 2211 break; 2212 } 2213 case ISD::CONCAT_VECTORS: { 2214 // Split DemandedElts and test each of the demanded subvectors. 2215 Known.Zero.setAllBits(); Known.One.setAllBits(); 2216 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2217 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2218 unsigned NumSubVectors = Op.getNumOperands(); 2219 for (unsigned i = 0; i != NumSubVectors; ++i) { 2220 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2221 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2222 if (!!DemandedSub) { 2223 SDValue Sub = Op.getOperand(i); 2224 computeKnownBits(Sub, Known2, DemandedSub, Depth + 1); 2225 Known.One &= Known2.One; 2226 Known.Zero &= Known2.Zero; 2227 } 2228 // If we don't know any bits, early out. 2229 if (Known.isUnknown()) 2230 break; 2231 } 2232 break; 2233 } 2234 case ISD::INSERT_SUBVECTOR: { 2235 // If we know the element index, demand any elements from the subvector and 2236 // the remainder from the src its inserted into, otherwise demand them all. 2237 SDValue Src = Op.getOperand(0); 2238 SDValue Sub = Op.getOperand(1); 2239 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2240 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2241 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2242 Known.One.setAllBits(); 2243 Known.Zero.setAllBits(); 2244 uint64_t Idx = SubIdx->getZExtValue(); 2245 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2246 if (!!DemandedSubElts) { 2247 computeKnownBits(Sub, Known, DemandedSubElts, Depth + 1); 2248 if (Known.isUnknown()) 2249 break; // early-out. 2250 } 2251 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2252 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2253 if (!!DemandedSrcElts) { 2254 computeKnownBits(Src, Known2, DemandedSrcElts, Depth + 1); 2255 Known.One &= Known2.One; 2256 Known.Zero &= Known2.Zero; 2257 } 2258 } else { 2259 computeKnownBits(Sub, Known, Depth + 1); 2260 if (Known.isUnknown()) 2261 break; // early-out. 2262 computeKnownBits(Src, Known2, Depth + 1); 2263 Known.One &= Known2.One; 2264 Known.Zero &= Known2.Zero; 2265 } 2266 break; 2267 } 2268 case ISD::EXTRACT_SUBVECTOR: { 2269 // If we know the element index, just demand that subvector elements, 2270 // otherwise demand them all. 2271 SDValue Src = Op.getOperand(0); 2272 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2273 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2274 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2275 // Offset the demanded elts by the subvector index. 2276 uint64_t Idx = SubIdx->getZExtValue(); 2277 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2278 computeKnownBits(Src, Known, DemandedSrc, Depth + 1); 2279 } else { 2280 computeKnownBits(Src, Known, Depth + 1); 2281 } 2282 break; 2283 } 2284 case ISD::BITCAST: { 2285 SDValue N0 = Op.getOperand(0); 2286 EVT SubVT = N0.getValueType(); 2287 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2288 2289 // Ignore bitcasts from unsupported types. 2290 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2291 break; 2292 2293 // Fast handling of 'identity' bitcasts. 2294 if (BitWidth == SubBitWidth) { 2295 computeKnownBits(N0, Known, DemandedElts, Depth + 1); 2296 break; 2297 } 2298 2299 // Support big-endian targets when it becomes useful. 2300 bool IsLE = getDataLayout().isLittleEndian(); 2301 if (!IsLE) 2302 break; 2303 2304 // Bitcast 'small element' vector to 'large element' scalar/vector. 2305 if ((BitWidth % SubBitWidth) == 0) { 2306 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2307 2308 // Collect known bits for the (larger) output by collecting the known 2309 // bits from each set of sub elements and shift these into place. 2310 // We need to separately call computeKnownBits for each set of 2311 // sub elements as the knownbits for each is likely to be different. 2312 unsigned SubScale = BitWidth / SubBitWidth; 2313 APInt SubDemandedElts(NumElts * SubScale, 0); 2314 for (unsigned i = 0; i != NumElts; ++i) 2315 if (DemandedElts[i]) 2316 SubDemandedElts.setBit(i * SubScale); 2317 2318 for (unsigned i = 0; i != SubScale; ++i) { 2319 computeKnownBits(N0, Known2, SubDemandedElts.shl(i), 2320 Depth + 1); 2321 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i); 2322 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i); 2323 } 2324 } 2325 2326 // Bitcast 'large element' scalar/vector to 'small element' vector. 2327 if ((SubBitWidth % BitWidth) == 0) { 2328 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2329 2330 // Collect known bits for the (smaller) output by collecting the known 2331 // bits from the overlapping larger input elements and extracting the 2332 // sub sections we actually care about. 2333 unsigned SubScale = SubBitWidth / BitWidth; 2334 APInt SubDemandedElts(NumElts / SubScale, 0); 2335 for (unsigned i = 0; i != NumElts; ++i) 2336 if (DemandedElts[i]) 2337 SubDemandedElts.setBit(i / SubScale); 2338 2339 computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1); 2340 2341 Known.Zero.setAllBits(); Known.One.setAllBits(); 2342 for (unsigned i = 0; i != NumElts; ++i) 2343 if (DemandedElts[i]) { 2344 unsigned Offset = (i % SubScale) * BitWidth; 2345 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2346 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2347 // If we don't know any bits, early out. 2348 if (Known.isUnknown()) 2349 break; 2350 } 2351 } 2352 break; 2353 } 2354 case ISD::AND: 2355 // If either the LHS or the RHS are Zero, the result is zero. 2356 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2357 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2358 2359 // Output known-1 bits are only known if set in both the LHS & RHS. 2360 Known.One &= Known2.One; 2361 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2362 Known.Zero |= Known2.Zero; 2363 break; 2364 case ISD::OR: 2365 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2366 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2367 2368 // Output known-0 bits are only known if clear in both the LHS & RHS. 2369 Known.Zero &= Known2.Zero; 2370 // Output known-1 are known to be set if set in either the LHS | RHS. 2371 Known.One |= Known2.One; 2372 break; 2373 case ISD::XOR: { 2374 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2375 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2376 2377 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2378 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2379 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2380 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2381 Known.Zero = KnownZeroOut; 2382 break; 2383 } 2384 case ISD::MUL: { 2385 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2386 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2387 2388 // If low bits are zero in either operand, output low known-0 bits. 2389 // Also compute a conservative estimate for high known-0 bits. 2390 // More trickiness is possible, but this is sufficient for the 2391 // interesting case of alignment computation. 2392 unsigned TrailZ = Known.countMinTrailingZeros() + 2393 Known2.countMinTrailingZeros(); 2394 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2395 Known2.countMinLeadingZeros(), 2396 BitWidth) - BitWidth; 2397 2398 Known.resetAll(); 2399 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2400 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2401 break; 2402 } 2403 case ISD::UDIV: { 2404 // For the purposes of computing leading zeros we can conservatively 2405 // treat a udiv as a logical right shift by the power of 2 known to 2406 // be less than the denominator. 2407 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2408 unsigned LeadZ = Known2.countMinLeadingZeros(); 2409 2410 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2411 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2412 if (RHSMaxLeadingZeros != BitWidth) 2413 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2414 2415 Known.Zero.setHighBits(LeadZ); 2416 break; 2417 } 2418 case ISD::SELECT: 2419 case ISD::VSELECT: 2420 computeKnownBits(Op.getOperand(2), Known, DemandedElts, Depth+1); 2421 // If we don't know any bits, early out. 2422 if (Known.isUnknown()) 2423 break; 2424 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth+1); 2425 2426 // Only known if known in both the LHS and RHS. 2427 Known.One &= Known2.One; 2428 Known.Zero &= Known2.Zero; 2429 break; 2430 case ISD::SELECT_CC: 2431 computeKnownBits(Op.getOperand(3), Known, DemandedElts, Depth+1); 2432 // If we don't know any bits, early out. 2433 if (Known.isUnknown()) 2434 break; 2435 computeKnownBits(Op.getOperand(2), Known2, DemandedElts, Depth+1); 2436 2437 // Only known if known in both the LHS and RHS. 2438 Known.One &= Known2.One; 2439 Known.Zero &= Known2.Zero; 2440 break; 2441 case ISD::SMULO: 2442 case ISD::UMULO: 2443 if (Op.getResNo() != 1) 2444 break; 2445 // The boolean result conforms to getBooleanContents. 2446 // If we know the result of a setcc has the top bits zero, use this info. 2447 // We know that we have an integer-based boolean since these operations 2448 // are only available for integer. 2449 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2450 TargetLowering::ZeroOrOneBooleanContent && 2451 BitWidth > 1) 2452 Known.Zero.setBitsFrom(1); 2453 break; 2454 case ISD::SETCC: 2455 // If we know the result of a setcc has the top bits zero, use this info. 2456 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2457 TargetLowering::ZeroOrOneBooleanContent && 2458 BitWidth > 1) 2459 Known.Zero.setBitsFrom(1); 2460 break; 2461 case ISD::SHL: 2462 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2463 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2464 Known.Zero <<= *ShAmt; 2465 Known.One <<= *ShAmt; 2466 // Low bits are known zero. 2467 Known.Zero.setLowBits(ShAmt->getZExtValue()); 2468 } 2469 break; 2470 case ISD::SRL: 2471 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2472 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2473 Known.Zero.lshrInPlace(*ShAmt); 2474 Known.One.lshrInPlace(*ShAmt); 2475 // High bits are known zero. 2476 Known.Zero.setHighBits(ShAmt->getZExtValue()); 2477 } 2478 break; 2479 case ISD::SRA: 2480 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2481 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2482 // Sign extend known zero/one bit (else is unknown). 2483 Known.Zero.ashrInPlace(*ShAmt); 2484 Known.One.ashrInPlace(*ShAmt); 2485 } 2486 break; 2487 case ISD::SIGN_EXTEND_INREG: { 2488 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2489 unsigned EBits = EVT.getScalarSizeInBits(); 2490 2491 // Sign extension. Compute the demanded bits in the result that are not 2492 // present in the input. 2493 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2494 2495 APInt InSignMask = APInt::getSignMask(EBits); 2496 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2497 2498 // If the sign extended bits are demanded, we know that the sign 2499 // bit is demanded. 2500 InSignMask = InSignMask.zext(BitWidth); 2501 if (NewBits.getBoolValue()) 2502 InputDemandedBits |= InSignMask; 2503 2504 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2505 Known.One &= InputDemandedBits; 2506 Known.Zero &= InputDemandedBits; 2507 2508 // If the sign bit of the input is known set or clear, then we know the 2509 // top bits of the result. 2510 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2511 Known.Zero |= NewBits; 2512 Known.One &= ~NewBits; 2513 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2514 Known.One |= NewBits; 2515 Known.Zero &= ~NewBits; 2516 } else { // Input sign bit unknown 2517 Known.Zero &= ~NewBits; 2518 Known.One &= ~NewBits; 2519 } 2520 break; 2521 } 2522 case ISD::CTTZ: 2523 case ISD::CTTZ_ZERO_UNDEF: { 2524 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2525 // If we have a known 1, its position is our upper bound. 2526 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2527 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2528 Known.Zero.setBitsFrom(LowBits); 2529 break; 2530 } 2531 case ISD::CTLZ: 2532 case ISD::CTLZ_ZERO_UNDEF: { 2533 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2534 // If we have a known 1, its position is our upper bound. 2535 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2536 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2537 Known.Zero.setBitsFrom(LowBits); 2538 break; 2539 } 2540 case ISD::CTPOP: { 2541 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2542 // If we know some of the bits are zero, they can't be one. 2543 unsigned PossibleOnes = Known2.countMaxPopulation(); 2544 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2545 break; 2546 } 2547 case ISD::LOAD: { 2548 LoadSDNode *LD = cast<LoadSDNode>(Op); 2549 // If this is a ZEXTLoad and we are looking at the loaded value. 2550 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2551 EVT VT = LD->getMemoryVT(); 2552 unsigned MemBits = VT.getScalarSizeInBits(); 2553 Known.Zero.setBitsFrom(MemBits); 2554 } else if (const MDNode *Ranges = LD->getRanges()) { 2555 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2556 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2557 } 2558 break; 2559 } 2560 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2561 EVT InVT = Op.getOperand(0).getValueType(); 2562 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 2563 computeKnownBits(Op.getOperand(0), Known, InDemandedElts, Depth + 1); 2564 Known = Known.zext(BitWidth); 2565 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2566 break; 2567 } 2568 case ISD::ZERO_EXTEND: { 2569 EVT InVT = Op.getOperand(0).getValueType(); 2570 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2571 Known = Known.zext(BitWidth); 2572 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2573 break; 2574 } 2575 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2576 case ISD::SIGN_EXTEND: { 2577 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2578 // If the sign bit is known to be zero or one, then sext will extend 2579 // it to the top bits, else it will just zext. 2580 Known = Known.sext(BitWidth); 2581 break; 2582 } 2583 case ISD::ANY_EXTEND: { 2584 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2585 Known = Known.zext(BitWidth); 2586 break; 2587 } 2588 case ISD::TRUNCATE: { 2589 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2590 Known = Known.trunc(BitWidth); 2591 break; 2592 } 2593 case ISD::AssertZext: { 2594 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2595 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2596 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2597 Known.Zero |= (~InMask); 2598 Known.One &= (~Known.Zero); 2599 break; 2600 } 2601 case ISD::FGETSIGN: 2602 // All bits are zero except the low bit. 2603 Known.Zero.setBitsFrom(1); 2604 break; 2605 case ISD::USUBO: 2606 case ISD::SSUBO: 2607 if (Op.getResNo() == 1) { 2608 // If we know the result of a setcc has the top bits zero, use this info. 2609 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2610 TargetLowering::ZeroOrOneBooleanContent && 2611 BitWidth > 1) 2612 Known.Zero.setBitsFrom(1); 2613 break; 2614 } 2615 LLVM_FALLTHROUGH; 2616 case ISD::SUB: 2617 case ISD::SUBC: { 2618 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2619 // We know that the top bits of C-X are clear if X contains less bits 2620 // than C (i.e. no wrap-around can happen). For example, 20-X is 2621 // positive if we can prove that X is >= 0 and < 16. 2622 if (CLHS->getAPIntValue().isNonNegative()) { 2623 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2624 // NLZ can't be BitWidth with no sign bit 2625 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2626 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2627 Depth + 1); 2628 2629 // If all of the MaskV bits are known to be zero, then we know the 2630 // output top bits are zero, because we now know that the output is 2631 // from [0-C]. 2632 if ((Known2.Zero & MaskV) == MaskV) { 2633 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2634 // Top bits known zero. 2635 Known.Zero.setHighBits(NLZ2); 2636 } 2637 } 2638 } 2639 2640 // If low bits are know to be zero in both operands, then we know they are 2641 // going to be 0 in the result. Both addition and complement operations 2642 // preserve the low zero bits. 2643 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2644 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2645 if (KnownZeroLow == 0) 2646 break; 2647 2648 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2649 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2650 Known.Zero.setLowBits(KnownZeroLow); 2651 break; 2652 } 2653 case ISD::UADDO: 2654 case ISD::SADDO: 2655 case ISD::ADDCARRY: 2656 if (Op.getResNo() == 1) { 2657 // If we know the result of a setcc has the top bits zero, use this info. 2658 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2659 TargetLowering::ZeroOrOneBooleanContent && 2660 BitWidth > 1) 2661 Known.Zero.setBitsFrom(1); 2662 break; 2663 } 2664 LLVM_FALLTHROUGH; 2665 case ISD::ADD: 2666 case ISD::ADDC: 2667 case ISD::ADDE: { 2668 // Output known-0 bits are known if clear or set in both the low clear bits 2669 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2670 // low 3 bits clear. 2671 // Output known-0 bits are also known if the top bits of each input are 2672 // known to be clear. For example, if one input has the top 10 bits clear 2673 // and the other has the top 8 bits clear, we know the top 7 bits of the 2674 // output must be clear. 2675 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2676 unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); 2677 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2678 2679 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2680 Depth + 1); 2681 KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); 2682 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2683 2684 if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { 2685 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only 2686 // use this information if we know (at least) that the low two bits are 2687 // clear. We then return to the caller that the low bit is unknown but 2688 // that other bits are known zero. 2689 if (KnownZeroLow >= 2) 2690 Known.Zero.setBits(1, KnownZeroLow); 2691 break; 2692 } 2693 2694 Known.Zero.setLowBits(KnownZeroLow); 2695 if (KnownZeroHigh > 1) 2696 Known.Zero.setHighBits(KnownZeroHigh - 1); 2697 break; 2698 } 2699 case ISD::SREM: 2700 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2701 const APInt &RA = Rem->getAPIntValue().abs(); 2702 if (RA.isPowerOf2()) { 2703 APInt LowBits = RA - 1; 2704 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2705 2706 // The low bits of the first operand are unchanged by the srem. 2707 Known.Zero = Known2.Zero & LowBits; 2708 Known.One = Known2.One & LowBits; 2709 2710 // If the first operand is non-negative or has all low bits zero, then 2711 // the upper bits are all zero. 2712 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 2713 Known.Zero |= ~LowBits; 2714 2715 // If the first operand is negative and not all low bits are zero, then 2716 // the upper bits are all one. 2717 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 2718 Known.One |= ~LowBits; 2719 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 2720 } 2721 } 2722 break; 2723 case ISD::UREM: { 2724 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2725 const APInt &RA = Rem->getAPIntValue(); 2726 if (RA.isPowerOf2()) { 2727 APInt LowBits = (RA - 1); 2728 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2729 2730 // The upper bits are all zero, the lower ones are unchanged. 2731 Known.Zero = Known2.Zero | ~LowBits; 2732 Known.One = Known2.One & LowBits; 2733 break; 2734 } 2735 } 2736 2737 // Since the result is less than or equal to either operand, any leading 2738 // zero bits in either operand must also exist in the result. 2739 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2740 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2741 2742 uint32_t Leaders = 2743 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 2744 Known.resetAll(); 2745 Known.Zero.setHighBits(Leaders); 2746 break; 2747 } 2748 case ISD::EXTRACT_ELEMENT: { 2749 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2750 const unsigned Index = Op.getConstantOperandVal(1); 2751 const unsigned BitWidth = Op.getValueSizeInBits(); 2752 2753 // Remove low part of known bits mask 2754 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); 2755 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); 2756 2757 // Remove high part of known bit mask 2758 Known = Known.trunc(BitWidth); 2759 break; 2760 } 2761 case ISD::EXTRACT_VECTOR_ELT: { 2762 SDValue InVec = Op.getOperand(0); 2763 SDValue EltNo = Op.getOperand(1); 2764 EVT VecVT = InVec.getValueType(); 2765 const unsigned BitWidth = Op.getValueSizeInBits(); 2766 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2767 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2768 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2769 // anything about the extended bits. 2770 if (BitWidth > EltBitWidth) 2771 Known = Known.trunc(EltBitWidth); 2772 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2773 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2774 // If we know the element index, just demand that vector element. 2775 unsigned Idx = ConstEltNo->getZExtValue(); 2776 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2777 computeKnownBits(InVec, Known, DemandedElt, Depth + 1); 2778 } else { 2779 // Unknown element index, so ignore DemandedElts and demand them all. 2780 computeKnownBits(InVec, Known, Depth + 1); 2781 } 2782 if (BitWidth > EltBitWidth) 2783 Known = Known.zext(BitWidth); 2784 break; 2785 } 2786 case ISD::INSERT_VECTOR_ELT: { 2787 SDValue InVec = Op.getOperand(0); 2788 SDValue InVal = Op.getOperand(1); 2789 SDValue EltNo = Op.getOperand(2); 2790 2791 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2792 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2793 // If we know the element index, split the demand between the 2794 // source vector and the inserted element. 2795 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 2796 unsigned EltIdx = CEltNo->getZExtValue(); 2797 2798 // If we demand the inserted element then add its common known bits. 2799 if (DemandedElts[EltIdx]) { 2800 computeKnownBits(InVal, Known2, Depth + 1); 2801 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2802 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2803 } 2804 2805 // If we demand the source vector then add its common known bits, ensuring 2806 // that we don't demand the inserted element. 2807 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2808 if (!!VectorElts) { 2809 computeKnownBits(InVec, Known2, VectorElts, Depth + 1); 2810 Known.One &= Known2.One; 2811 Known.Zero &= Known2.Zero; 2812 } 2813 } else { 2814 // Unknown element index, so ignore DemandedElts and demand them all. 2815 computeKnownBits(InVec, Known, Depth + 1); 2816 computeKnownBits(InVal, Known2, Depth + 1); 2817 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2818 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2819 } 2820 break; 2821 } 2822 case ISD::BITREVERSE: { 2823 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2824 Known.Zero = Known2.Zero.reverseBits(); 2825 Known.One = Known2.One.reverseBits(); 2826 break; 2827 } 2828 case ISD::BSWAP: { 2829 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2830 Known.Zero = Known2.Zero.byteSwap(); 2831 Known.One = Known2.One.byteSwap(); 2832 break; 2833 } 2834 case ISD::ABS: { 2835 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2836 2837 // If the source's MSB is zero then we know the rest of the bits already. 2838 if (Known2.isNonNegative()) { 2839 Known.Zero = Known2.Zero; 2840 Known.One = Known2.One; 2841 break; 2842 } 2843 2844 // We only know that the absolute values's MSB will be zero iff there is 2845 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 2846 Known2.One.clearSignBit(); 2847 if (Known2.One.getBoolValue()) { 2848 Known.Zero = APInt::getSignMask(BitWidth); 2849 break; 2850 } 2851 break; 2852 } 2853 case ISD::UMIN: { 2854 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2855 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2856 2857 // UMIN - we know that the result will have the maximum of the 2858 // known zero leading bits of the inputs. 2859 unsigned LeadZero = Known.countMinLeadingZeros(); 2860 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 2861 2862 Known.Zero &= Known2.Zero; 2863 Known.One &= Known2.One; 2864 Known.Zero.setHighBits(LeadZero); 2865 break; 2866 } 2867 case ISD::UMAX: { 2868 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2869 Depth + 1); 2870 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2871 2872 // UMAX - we know that the result will have the maximum of the 2873 // known one leading bits of the inputs. 2874 unsigned LeadOne = Known.countMinLeadingOnes(); 2875 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 2876 2877 Known.Zero &= Known2.Zero; 2878 Known.One &= Known2.One; 2879 Known.One.setHighBits(LeadOne); 2880 break; 2881 } 2882 case ISD::SMIN: 2883 case ISD::SMAX: { 2884 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2885 Depth + 1); 2886 // If we don't know any bits, early out. 2887 if (Known.isUnknown()) 2888 break; 2889 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2890 Known.Zero &= Known2.Zero; 2891 Known.One &= Known2.One; 2892 break; 2893 } 2894 case ISD::FrameIndex: 2895 case ISD::TargetFrameIndex: 2896 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 2897 break; 2898 2899 default: 2900 if (Opcode < ISD::BUILTIN_OP_END) 2901 break; 2902 LLVM_FALLTHROUGH; 2903 case ISD::INTRINSIC_WO_CHAIN: 2904 case ISD::INTRINSIC_W_CHAIN: 2905 case ISD::INTRINSIC_VOID: 2906 // Allow the target to implement this method for its nodes. 2907 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 2908 break; 2909 } 2910 2911 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2912 } 2913 2914 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 2915 SDValue N1) const { 2916 // X + 0 never overflow 2917 if (isNullConstant(N1)) 2918 return OFK_Never; 2919 2920 KnownBits N1Known; 2921 computeKnownBits(N1, N1Known); 2922 if (N1Known.Zero.getBoolValue()) { 2923 KnownBits N0Known; 2924 computeKnownBits(N0, N0Known); 2925 2926 bool overflow; 2927 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 2928 if (!overflow) 2929 return OFK_Never; 2930 } 2931 2932 // mulhi + 1 never overflow 2933 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 2934 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 2935 return OFK_Never; 2936 2937 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 2938 KnownBits N0Known; 2939 computeKnownBits(N0, N0Known); 2940 2941 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 2942 return OFK_Never; 2943 } 2944 2945 return OFK_Sometime; 2946 } 2947 2948 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2949 EVT OpVT = Val.getValueType(); 2950 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2951 2952 // Is the constant a known power of 2? 2953 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 2954 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2955 2956 // A left-shift of a constant one will have exactly one bit set because 2957 // shifting the bit off the end is undefined. 2958 if (Val.getOpcode() == ISD::SHL) { 2959 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2960 if (C && C->getAPIntValue() == 1) 2961 return true; 2962 } 2963 2964 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2965 // one bit set. 2966 if (Val.getOpcode() == ISD::SRL) { 2967 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2968 if (C && C->getAPIntValue().isSignMask()) 2969 return true; 2970 } 2971 2972 // Are all operands of a build vector constant powers of two? 2973 if (Val.getOpcode() == ISD::BUILD_VECTOR) 2974 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 2975 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 2976 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2977 return false; 2978 })) 2979 return true; 2980 2981 // More could be done here, though the above checks are enough 2982 // to handle some common cases. 2983 2984 // Fall back to computeKnownBits to catch other known cases. 2985 KnownBits Known; 2986 computeKnownBits(Val, Known); 2987 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 2988 } 2989 2990 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2991 EVT VT = Op.getValueType(); 2992 APInt DemandedElts = VT.isVector() 2993 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2994 : APInt(1, 1); 2995 return ComputeNumSignBits(Op, DemandedElts, Depth); 2996 } 2997 2998 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 2999 unsigned Depth) const { 3000 EVT VT = Op.getValueType(); 3001 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3002 unsigned VTBits = VT.getScalarSizeInBits(); 3003 unsigned NumElts = DemandedElts.getBitWidth(); 3004 unsigned Tmp, Tmp2; 3005 unsigned FirstAnswer = 1; 3006 3007 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3008 const APInt &Val = C->getAPIntValue(); 3009 return Val.getNumSignBits(); 3010 } 3011 3012 if (Depth == 6) 3013 return 1; // Limit search depth. 3014 3015 if (!DemandedElts) 3016 return 1; // No demanded elts, better to assume we don't know anything. 3017 3018 switch (Op.getOpcode()) { 3019 default: break; 3020 case ISD::AssertSext: 3021 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3022 return VTBits-Tmp+1; 3023 case ISD::AssertZext: 3024 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3025 return VTBits-Tmp; 3026 3027 case ISD::BUILD_VECTOR: 3028 Tmp = VTBits; 3029 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3030 if (!DemandedElts[i]) 3031 continue; 3032 3033 SDValue SrcOp = Op.getOperand(i); 3034 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3035 3036 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3037 if (SrcOp.getValueSizeInBits() != VTBits) { 3038 assert(SrcOp.getValueSizeInBits() > VTBits && 3039 "Expected BUILD_VECTOR implicit truncation"); 3040 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3041 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3042 } 3043 Tmp = std::min(Tmp, Tmp2); 3044 } 3045 return Tmp; 3046 3047 case ISD::VECTOR_SHUFFLE: { 3048 // Collect the minimum number of sign bits that are shared by every vector 3049 // element referenced by the shuffle. 3050 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3051 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3052 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3053 for (unsigned i = 0; i != NumElts; ++i) { 3054 int M = SVN->getMaskElt(i); 3055 if (!DemandedElts[i]) 3056 continue; 3057 // For UNDEF elements, we don't know anything about the common state of 3058 // the shuffle result. 3059 if (M < 0) 3060 return 1; 3061 if ((unsigned)M < NumElts) 3062 DemandedLHS.setBit((unsigned)M % NumElts); 3063 else 3064 DemandedRHS.setBit((unsigned)M % NumElts); 3065 } 3066 Tmp = std::numeric_limits<unsigned>::max(); 3067 if (!!DemandedLHS) 3068 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3069 if (!!DemandedRHS) { 3070 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3071 Tmp = std::min(Tmp, Tmp2); 3072 } 3073 // If we don't know anything, early out and try computeKnownBits fall-back. 3074 if (Tmp == 1) 3075 break; 3076 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3077 return Tmp; 3078 } 3079 3080 case ISD::BITCAST: { 3081 SDValue N0 = Op.getOperand(0); 3082 EVT SrcVT = N0.getValueType(); 3083 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3084 3085 // Ignore bitcasts from unsupported types.. 3086 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3087 break; 3088 3089 // Fast handling of 'identity' bitcasts. 3090 if (VTBits == SrcBits) 3091 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3092 3093 // Bitcast 'large element' scalar/vector to 'small element' vector. 3094 // TODO: Handle cases other than 'sign splat' when we have a use case. 3095 // Requires handling of DemandedElts and Endianness. 3096 if ((SrcBits % VTBits) == 0) { 3097 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3098 Tmp = ComputeNumSignBits(N0, Depth + 1); 3099 if (Tmp == SrcBits) 3100 return VTBits; 3101 } 3102 break; 3103 } 3104 3105 case ISD::SIGN_EXTEND: 3106 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3107 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3108 case ISD::SIGN_EXTEND_INREG: 3109 // Max of the input and what this extends. 3110 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3111 Tmp = VTBits-Tmp+1; 3112 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3113 return std::max(Tmp, Tmp2); 3114 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3115 SDValue Src = Op.getOperand(0); 3116 EVT SrcVT = Src.getValueType(); 3117 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 3118 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3119 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3120 } 3121 3122 case ISD::SRA: 3123 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3124 // SRA X, C -> adds C sign bits. 3125 if (ConstantSDNode *C = 3126 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3127 APInt ShiftVal = C->getAPIntValue(); 3128 ShiftVal += Tmp; 3129 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3130 } 3131 return Tmp; 3132 case ISD::SHL: 3133 if (ConstantSDNode *C = 3134 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3135 // shl destroys sign bits. 3136 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3137 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3138 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3139 return Tmp - C->getZExtValue(); 3140 } 3141 break; 3142 case ISD::AND: 3143 case ISD::OR: 3144 case ISD::XOR: // NOT is handled here. 3145 // Logical binary ops preserve the number of sign bits at the worst. 3146 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3147 if (Tmp != 1) { 3148 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3149 FirstAnswer = std::min(Tmp, Tmp2); 3150 // We computed what we know about the sign bits as our first 3151 // answer. Now proceed to the generic code that uses 3152 // computeKnownBits, and pick whichever answer is better. 3153 } 3154 break; 3155 3156 case ISD::SELECT: 3157 case ISD::VSELECT: 3158 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3159 if (Tmp == 1) return 1; // Early out. 3160 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3161 return std::min(Tmp, Tmp2); 3162 case ISD::SELECT_CC: 3163 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3164 if (Tmp == 1) return 1; // Early out. 3165 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3166 return std::min(Tmp, Tmp2); 3167 3168 case ISD::SMIN: 3169 case ISD::SMAX: 3170 case ISD::UMIN: 3171 case ISD::UMAX: 3172 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3173 if (Tmp == 1) 3174 return 1; // Early out. 3175 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3176 return std::min(Tmp, Tmp2); 3177 case ISD::SADDO: 3178 case ISD::UADDO: 3179 case ISD::SSUBO: 3180 case ISD::USUBO: 3181 case ISD::SMULO: 3182 case ISD::UMULO: 3183 if (Op.getResNo() != 1) 3184 break; 3185 // The boolean result conforms to getBooleanContents. Fall through. 3186 // If setcc returns 0/-1, all bits are sign bits. 3187 // We know that we have an integer-based boolean since these operations 3188 // are only available for integer. 3189 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3190 TargetLowering::ZeroOrNegativeOneBooleanContent) 3191 return VTBits; 3192 break; 3193 case ISD::SETCC: 3194 // If setcc returns 0/-1, all bits are sign bits. 3195 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3196 TargetLowering::ZeroOrNegativeOneBooleanContent) 3197 return VTBits; 3198 break; 3199 case ISD::ROTL: 3200 case ISD::ROTR: 3201 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3202 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3203 3204 // Handle rotate right by N like a rotate left by 32-N. 3205 if (Op.getOpcode() == ISD::ROTR) 3206 RotAmt = (VTBits - RotAmt) % VTBits; 3207 3208 // If we aren't rotating out all of the known-in sign bits, return the 3209 // number that are left. This handles rotl(sext(x), 1) for example. 3210 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3211 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3212 } 3213 break; 3214 case ISD::ADD: 3215 case ISD::ADDC: 3216 // Add can have at most one carry bit. Thus we know that the output 3217 // is, at worst, one more bit than the inputs. 3218 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3219 if (Tmp == 1) return 1; // Early out. 3220 3221 // Special case decrementing a value (ADD X, -1): 3222 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3223 if (CRHS->isAllOnesValue()) { 3224 KnownBits Known; 3225 computeKnownBits(Op.getOperand(0), Known, Depth+1); 3226 3227 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3228 // sign bits set. 3229 if ((Known.Zero | 1).isAllOnesValue()) 3230 return VTBits; 3231 3232 // If we are subtracting one from a positive number, there is no carry 3233 // out of the result. 3234 if (Known.isNonNegative()) 3235 return Tmp; 3236 } 3237 3238 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3239 if (Tmp2 == 1) return 1; 3240 return std::min(Tmp, Tmp2)-1; 3241 3242 case ISD::SUB: 3243 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3244 if (Tmp2 == 1) return 1; 3245 3246 // Handle NEG. 3247 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3248 if (CLHS->isNullValue()) { 3249 KnownBits Known; 3250 computeKnownBits(Op.getOperand(1), Known, Depth+1); 3251 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3252 // sign bits set. 3253 if ((Known.Zero | 1).isAllOnesValue()) 3254 return VTBits; 3255 3256 // If the input is known to be positive (the sign bit is known clear), 3257 // the output of the NEG has the same number of sign bits as the input. 3258 if (Known.isNonNegative()) 3259 return Tmp2; 3260 3261 // Otherwise, we treat this like a SUB. 3262 } 3263 3264 // Sub can have at most one carry bit. Thus we know that the output 3265 // is, at worst, one more bit than the inputs. 3266 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3267 if (Tmp == 1) return 1; // Early out. 3268 return std::min(Tmp, Tmp2)-1; 3269 case ISD::TRUNCATE: { 3270 // Check if the sign bits of source go down as far as the truncated value. 3271 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3272 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3273 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3274 return NumSrcSignBits - (NumSrcBits - VTBits); 3275 break; 3276 } 3277 case ISD::EXTRACT_ELEMENT: { 3278 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3279 const int BitWidth = Op.getValueSizeInBits(); 3280 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3281 3282 // Get reverse index (starting from 1), Op1 value indexes elements from 3283 // little end. Sign starts at big end. 3284 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3285 3286 // If the sign portion ends in our element the subtraction gives correct 3287 // result. Otherwise it gives either negative or > bitwidth result 3288 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3289 } 3290 case ISD::INSERT_VECTOR_ELT: { 3291 SDValue InVec = Op.getOperand(0); 3292 SDValue InVal = Op.getOperand(1); 3293 SDValue EltNo = Op.getOperand(2); 3294 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 3295 3296 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3297 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3298 // If we know the element index, split the demand between the 3299 // source vector and the inserted element. 3300 unsigned EltIdx = CEltNo->getZExtValue(); 3301 3302 // If we demand the inserted element then get its sign bits. 3303 Tmp = std::numeric_limits<unsigned>::max(); 3304 if (DemandedElts[EltIdx]) { 3305 // TODO - handle implicit truncation of inserted elements. 3306 if (InVal.getScalarValueSizeInBits() != VTBits) 3307 break; 3308 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3309 } 3310 3311 // If we demand the source vector then get its sign bits, and determine 3312 // the minimum. 3313 APInt VectorElts = DemandedElts; 3314 VectorElts.clearBit(EltIdx); 3315 if (!!VectorElts) { 3316 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3317 Tmp = std::min(Tmp, Tmp2); 3318 } 3319 } else { 3320 // Unknown element index, so ignore DemandedElts and demand them all. 3321 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3322 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3323 Tmp = std::min(Tmp, Tmp2); 3324 } 3325 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3326 return Tmp; 3327 } 3328 case ISD::EXTRACT_VECTOR_ELT: { 3329 SDValue InVec = Op.getOperand(0); 3330 SDValue EltNo = Op.getOperand(1); 3331 EVT VecVT = InVec.getValueType(); 3332 const unsigned BitWidth = Op.getValueSizeInBits(); 3333 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3334 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3335 3336 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3337 // anything about sign bits. But if the sizes match we can derive knowledge 3338 // about sign bits from the vector operand. 3339 if (BitWidth != EltBitWidth) 3340 break; 3341 3342 // If we know the element index, just demand that vector element, else for 3343 // an unknown element index, ignore DemandedElts and demand them all. 3344 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3345 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3346 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3347 DemandedSrcElts = 3348 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3349 3350 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3351 } 3352 case ISD::EXTRACT_SUBVECTOR: { 3353 // If we know the element index, just demand that subvector elements, 3354 // otherwise demand them all. 3355 SDValue Src = Op.getOperand(0); 3356 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3357 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3358 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3359 // Offset the demanded elts by the subvector index. 3360 uint64_t Idx = SubIdx->getZExtValue(); 3361 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 3362 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3363 } 3364 return ComputeNumSignBits(Src, Depth + 1); 3365 } 3366 case ISD::CONCAT_VECTORS: 3367 // Determine the minimum number of sign bits across all demanded 3368 // elts of the input vectors. Early out if the result is already 1. 3369 Tmp = std::numeric_limits<unsigned>::max(); 3370 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3371 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3372 unsigned NumSubVectors = Op.getNumOperands(); 3373 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3374 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3375 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3376 if (!DemandedSub) 3377 continue; 3378 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3379 Tmp = std::min(Tmp, Tmp2); 3380 } 3381 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3382 return Tmp; 3383 } 3384 3385 // If we are looking at the loaded value of the SDNode. 3386 if (Op.getResNo() == 0) { 3387 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3388 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3389 unsigned ExtType = LD->getExtensionType(); 3390 switch (ExtType) { 3391 default: break; 3392 case ISD::SEXTLOAD: // '17' bits known 3393 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3394 return VTBits-Tmp+1; 3395 case ISD::ZEXTLOAD: // '16' bits known 3396 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3397 return VTBits-Tmp; 3398 } 3399 } 3400 } 3401 3402 // Allow the target to implement this method for its nodes. 3403 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3404 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3405 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3406 Op.getOpcode() == ISD::INTRINSIC_VOID) { 3407 unsigned NumBits = 3408 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3409 if (NumBits > 1) 3410 FirstAnswer = std::max(FirstAnswer, NumBits); 3411 } 3412 3413 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3414 // use this information. 3415 KnownBits Known; 3416 computeKnownBits(Op, Known, DemandedElts, Depth); 3417 3418 APInt Mask; 3419 if (Known.isNonNegative()) { // sign bit is 0 3420 Mask = Known.Zero; 3421 } else if (Known.isNegative()) { // sign bit is 1; 3422 Mask = Known.One; 3423 } else { 3424 // Nothing known. 3425 return FirstAnswer; 3426 } 3427 3428 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3429 // the number of identical bits in the top of the input value. 3430 Mask = ~Mask; 3431 Mask <<= Mask.getBitWidth()-VTBits; 3432 // Return # leading zeros. We use 'min' here in case Val was zero before 3433 // shifting. We don't want to return '64' as for an i32 "0". 3434 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3435 } 3436 3437 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3438 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3439 !isa<ConstantSDNode>(Op.getOperand(1))) 3440 return false; 3441 3442 if (Op.getOpcode() == ISD::OR && 3443 !MaskedValueIsZero(Op.getOperand(0), 3444 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3445 return false; 3446 3447 return true; 3448 } 3449 3450 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3451 // If we're told that NaNs won't happen, assume they won't. 3452 if (getTarget().Options.NoNaNsFPMath) 3453 return true; 3454 3455 if (Op->getFlags().hasNoNaNs()) 3456 return true; 3457 3458 // If the value is a constant, we can obviously see if it is a NaN or not. 3459 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3460 return !C->getValueAPF().isNaN(); 3461 3462 // TODO: Recognize more cases here. 3463 3464 return false; 3465 } 3466 3467 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3468 // If the value is a constant, we can obviously see if it is a zero or not. 3469 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3470 return !C->isZero(); 3471 3472 // TODO: Recognize more cases here. 3473 switch (Op.getOpcode()) { 3474 default: break; 3475 case ISD::OR: 3476 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3477 return !C->isNullValue(); 3478 break; 3479 } 3480 3481 return false; 3482 } 3483 3484 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3485 // Check the obvious case. 3486 if (A == B) return true; 3487 3488 // For for negative and positive zero. 3489 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3490 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3491 if (CA->isZero() && CB->isZero()) return true; 3492 3493 // Otherwise they may not be equal. 3494 return false; 3495 } 3496 3497 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3498 assert(A.getValueType() == B.getValueType() && 3499 "Values must have the same type"); 3500 KnownBits AKnown, BKnown; 3501 computeKnownBits(A, AKnown); 3502 computeKnownBits(B, BKnown); 3503 return (AKnown.Zero | BKnown.Zero).isAllOnesValue(); 3504 } 3505 3506 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3507 ArrayRef<SDValue> Ops, 3508 SelectionDAG &DAG) { 3509 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3510 assert(llvm::all_of(Ops, 3511 [Ops](SDValue Op) { 3512 return Ops[0].getValueType() == Op.getValueType(); 3513 }) && 3514 "Concatenation of vectors with inconsistent value types!"); 3515 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3516 VT.getVectorNumElements() && 3517 "Incorrect element count in vector concatenation!"); 3518 3519 if (Ops.size() == 1) 3520 return Ops[0]; 3521 3522 // Concat of UNDEFs is UNDEF. 3523 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3524 return DAG.getUNDEF(VT); 3525 3526 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3527 // simplified to one big BUILD_VECTOR. 3528 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3529 EVT SVT = VT.getScalarType(); 3530 SmallVector<SDValue, 16> Elts; 3531 for (SDValue Op : Ops) { 3532 EVT OpVT = Op.getValueType(); 3533 if (Op.isUndef()) 3534 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3535 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3536 Elts.append(Op->op_begin(), Op->op_end()); 3537 else 3538 return SDValue(); 3539 } 3540 3541 // BUILD_VECTOR requires all inputs to be of the same type, find the 3542 // maximum type and extend them all. 3543 for (SDValue Op : Elts) 3544 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3545 3546 if (SVT.bitsGT(VT.getScalarType())) 3547 for (SDValue &Op : Elts) 3548 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3549 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3550 : DAG.getSExtOrTrunc(Op, DL, SVT); 3551 3552 SDValue V = DAG.getBuildVector(VT, DL, Elts); 3553 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 3554 return V; 3555 } 3556 3557 /// Gets or creates the specified node. 3558 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3559 FoldingSetNodeID ID; 3560 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3561 void *IP = nullptr; 3562 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3563 return SDValue(E, 0); 3564 3565 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3566 getVTList(VT)); 3567 CSEMap.InsertNode(N, IP); 3568 3569 InsertNode(N); 3570 SDValue V = SDValue(N, 0); 3571 NewSDValueDbgMsg(V, "Creating new node: ", this); 3572 return V; 3573 } 3574 3575 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3576 SDValue Operand, const SDNodeFlags Flags) { 3577 // Constant fold unary operations with an integer constant operand. Even 3578 // opaque constant will be folded, because the folding of unary operations 3579 // doesn't create new constants with different values. Nevertheless, the 3580 // opaque flag is preserved during folding to prevent future folding with 3581 // other constants. 3582 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3583 const APInt &Val = C->getAPIntValue(); 3584 switch (Opcode) { 3585 default: break; 3586 case ISD::SIGN_EXTEND: 3587 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3588 C->isTargetOpcode(), C->isOpaque()); 3589 case ISD::ANY_EXTEND: 3590 case ISD::ZERO_EXTEND: 3591 case ISD::TRUNCATE: 3592 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3593 C->isTargetOpcode(), C->isOpaque()); 3594 case ISD::UINT_TO_FP: 3595 case ISD::SINT_TO_FP: { 3596 APFloat apf(EVTToAPFloatSemantics(VT), 3597 APInt::getNullValue(VT.getSizeInBits())); 3598 (void)apf.convertFromAPInt(Val, 3599 Opcode==ISD::SINT_TO_FP, 3600 APFloat::rmNearestTiesToEven); 3601 return getConstantFP(apf, DL, VT); 3602 } 3603 case ISD::BITCAST: 3604 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3605 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3606 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3607 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3608 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3609 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3610 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3611 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3612 break; 3613 case ISD::ABS: 3614 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 3615 C->isOpaque()); 3616 case ISD::BITREVERSE: 3617 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3618 C->isOpaque()); 3619 case ISD::BSWAP: 3620 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3621 C->isOpaque()); 3622 case ISD::CTPOP: 3623 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3624 C->isOpaque()); 3625 case ISD::CTLZ: 3626 case ISD::CTLZ_ZERO_UNDEF: 3627 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3628 C->isOpaque()); 3629 case ISD::CTTZ: 3630 case ISD::CTTZ_ZERO_UNDEF: 3631 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3632 C->isOpaque()); 3633 case ISD::FP16_TO_FP: { 3634 bool Ignored; 3635 APFloat FPV(APFloat::IEEEhalf(), 3636 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3637 3638 // This can return overflow, underflow, or inexact; we don't care. 3639 // FIXME need to be more flexible about rounding mode. 3640 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3641 APFloat::rmNearestTiesToEven, &Ignored); 3642 return getConstantFP(FPV, DL, VT); 3643 } 3644 } 3645 } 3646 3647 // Constant fold unary operations with a floating point constant operand. 3648 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3649 APFloat V = C->getValueAPF(); // make copy 3650 switch (Opcode) { 3651 case ISD::FNEG: 3652 V.changeSign(); 3653 return getConstantFP(V, DL, VT); 3654 case ISD::FABS: 3655 V.clearSign(); 3656 return getConstantFP(V, DL, VT); 3657 case ISD::FCEIL: { 3658 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3659 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3660 return getConstantFP(V, DL, VT); 3661 break; 3662 } 3663 case ISD::FTRUNC: { 3664 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3665 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3666 return getConstantFP(V, DL, VT); 3667 break; 3668 } 3669 case ISD::FFLOOR: { 3670 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3671 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3672 return getConstantFP(V, DL, VT); 3673 break; 3674 } 3675 case ISD::FP_EXTEND: { 3676 bool ignored; 3677 // This can return overflow, underflow, or inexact; we don't care. 3678 // FIXME need to be more flexible about rounding mode. 3679 (void)V.convert(EVTToAPFloatSemantics(VT), 3680 APFloat::rmNearestTiesToEven, &ignored); 3681 return getConstantFP(V, DL, VT); 3682 } 3683 case ISD::FP_TO_SINT: 3684 case ISD::FP_TO_UINT: { 3685 bool ignored; 3686 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 3687 // FIXME need to be more flexible about rounding mode. 3688 APFloat::opStatus s = 3689 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 3690 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 3691 break; 3692 return getConstant(IntVal, DL, VT); 3693 } 3694 case ISD::BITCAST: 3695 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3696 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3697 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3698 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3699 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3700 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3701 break; 3702 case ISD::FP_TO_FP16: { 3703 bool Ignored; 3704 // This can return overflow, underflow, or inexact; we don't care. 3705 // FIXME need to be more flexible about rounding mode. 3706 (void)V.convert(APFloat::IEEEhalf(), 3707 APFloat::rmNearestTiesToEven, &Ignored); 3708 return getConstant(V.bitcastToAPInt(), DL, VT); 3709 } 3710 } 3711 } 3712 3713 // Constant fold unary operations with a vector integer or float operand. 3714 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3715 if (BV->isConstant()) { 3716 switch (Opcode) { 3717 default: 3718 // FIXME: Entirely reasonable to perform folding of other unary 3719 // operations here as the need arises. 3720 break; 3721 case ISD::FNEG: 3722 case ISD::FABS: 3723 case ISD::FCEIL: 3724 case ISD::FTRUNC: 3725 case ISD::FFLOOR: 3726 case ISD::FP_EXTEND: 3727 case ISD::FP_TO_SINT: 3728 case ISD::FP_TO_UINT: 3729 case ISD::TRUNCATE: 3730 case ISD::UINT_TO_FP: 3731 case ISD::SINT_TO_FP: 3732 case ISD::ABS: 3733 case ISD::BITREVERSE: 3734 case ISD::BSWAP: 3735 case ISD::CTLZ: 3736 case ISD::CTLZ_ZERO_UNDEF: 3737 case ISD::CTTZ: 3738 case ISD::CTTZ_ZERO_UNDEF: 3739 case ISD::CTPOP: { 3740 SDValue Ops = { Operand }; 3741 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3742 return Fold; 3743 } 3744 } 3745 } 3746 } 3747 3748 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3749 switch (Opcode) { 3750 case ISD::TokenFactor: 3751 case ISD::MERGE_VALUES: 3752 case ISD::CONCAT_VECTORS: 3753 return Operand; // Factor, merge or concat of one node? No need. 3754 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3755 case ISD::FP_EXTEND: 3756 assert(VT.isFloatingPoint() && 3757 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3758 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3759 assert((!VT.isVector() || 3760 VT.getVectorNumElements() == 3761 Operand.getValueType().getVectorNumElements()) && 3762 "Vector element count mismatch!"); 3763 assert(Operand.getValueType().bitsLT(VT) && 3764 "Invalid fpext node, dst < src!"); 3765 if (Operand.isUndef()) 3766 return getUNDEF(VT); 3767 break; 3768 case ISD::SIGN_EXTEND: 3769 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3770 "Invalid SIGN_EXTEND!"); 3771 if (Operand.getValueType() == VT) return Operand; // noop extension 3772 assert((!VT.isVector() || 3773 VT.getVectorNumElements() == 3774 Operand.getValueType().getVectorNumElements()) && 3775 "Vector element count mismatch!"); 3776 assert(Operand.getValueType().bitsLT(VT) && 3777 "Invalid sext node, dst < src!"); 3778 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3779 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3780 else if (OpOpcode == ISD::UNDEF) 3781 // sext(undef) = 0, because the top bits will all be the same. 3782 return getConstant(0, DL, VT); 3783 break; 3784 case ISD::ZERO_EXTEND: 3785 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3786 "Invalid ZERO_EXTEND!"); 3787 if (Operand.getValueType() == VT) return Operand; // noop extension 3788 assert((!VT.isVector() || 3789 VT.getVectorNumElements() == 3790 Operand.getValueType().getVectorNumElements()) && 3791 "Vector element count mismatch!"); 3792 assert(Operand.getValueType().bitsLT(VT) && 3793 "Invalid zext node, dst < src!"); 3794 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3795 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 3796 else if (OpOpcode == ISD::UNDEF) 3797 // zext(undef) = 0, because the top bits will be zero. 3798 return getConstant(0, DL, VT); 3799 break; 3800 case ISD::ANY_EXTEND: 3801 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3802 "Invalid ANY_EXTEND!"); 3803 if (Operand.getValueType() == VT) return Operand; // noop extension 3804 assert((!VT.isVector() || 3805 VT.getVectorNumElements() == 3806 Operand.getValueType().getVectorNumElements()) && 3807 "Vector element count mismatch!"); 3808 assert(Operand.getValueType().bitsLT(VT) && 3809 "Invalid anyext node, dst < src!"); 3810 3811 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3812 OpOpcode == ISD::ANY_EXTEND) 3813 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3814 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3815 else if (OpOpcode == ISD::UNDEF) 3816 return getUNDEF(VT); 3817 3818 // (ext (trunx x)) -> x 3819 if (OpOpcode == ISD::TRUNCATE) { 3820 SDValue OpOp = Operand.getOperand(0); 3821 if (OpOp.getValueType() == VT) 3822 return OpOp; 3823 } 3824 break; 3825 case ISD::TRUNCATE: 3826 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3827 "Invalid TRUNCATE!"); 3828 if (Operand.getValueType() == VT) return Operand; // noop truncate 3829 assert((!VT.isVector() || 3830 VT.getVectorNumElements() == 3831 Operand.getValueType().getVectorNumElements()) && 3832 "Vector element count mismatch!"); 3833 assert(Operand.getValueType().bitsGT(VT) && 3834 "Invalid truncate node, src < dst!"); 3835 if (OpOpcode == ISD::TRUNCATE) 3836 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3837 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3838 OpOpcode == ISD::ANY_EXTEND) { 3839 // If the source is smaller than the dest, we still need an extend. 3840 if (Operand.getOperand(0).getValueType().getScalarType() 3841 .bitsLT(VT.getScalarType())) 3842 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3843 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 3844 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3845 return Operand.getOperand(0); 3846 } 3847 if (OpOpcode == ISD::UNDEF) 3848 return getUNDEF(VT); 3849 break; 3850 case ISD::ABS: 3851 assert(VT.isInteger() && VT == Operand.getValueType() && 3852 "Invalid ABS!"); 3853 if (OpOpcode == ISD::UNDEF) 3854 return getUNDEF(VT); 3855 break; 3856 case ISD::BSWAP: 3857 assert(VT.isInteger() && VT == Operand.getValueType() && 3858 "Invalid BSWAP!"); 3859 assert((VT.getScalarSizeInBits() % 16 == 0) && 3860 "BSWAP types must be a multiple of 16 bits!"); 3861 if (OpOpcode == ISD::UNDEF) 3862 return getUNDEF(VT); 3863 break; 3864 case ISD::BITREVERSE: 3865 assert(VT.isInteger() && VT == Operand.getValueType() && 3866 "Invalid BITREVERSE!"); 3867 if (OpOpcode == ISD::UNDEF) 3868 return getUNDEF(VT); 3869 break; 3870 case ISD::BITCAST: 3871 // Basic sanity checking. 3872 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3873 "Cannot BITCAST between types of different sizes!"); 3874 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3875 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3876 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3877 if (OpOpcode == ISD::UNDEF) 3878 return getUNDEF(VT); 3879 break; 3880 case ISD::SCALAR_TO_VECTOR: 3881 assert(VT.isVector() && !Operand.getValueType().isVector() && 3882 (VT.getVectorElementType() == Operand.getValueType() || 3883 (VT.getVectorElementType().isInteger() && 3884 Operand.getValueType().isInteger() && 3885 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3886 "Illegal SCALAR_TO_VECTOR node!"); 3887 if (OpOpcode == ISD::UNDEF) 3888 return getUNDEF(VT); 3889 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3890 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3891 isa<ConstantSDNode>(Operand.getOperand(1)) && 3892 Operand.getConstantOperandVal(1) == 0 && 3893 Operand.getOperand(0).getValueType() == VT) 3894 return Operand.getOperand(0); 3895 break; 3896 case ISD::FNEG: 3897 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3898 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3899 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3900 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 3901 Operand.getOperand(0), Operand.getNode()->getFlags()); 3902 if (OpOpcode == ISD::FNEG) // --X -> X 3903 return Operand.getOperand(0); 3904 break; 3905 case ISD::FABS: 3906 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3907 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 3908 break; 3909 } 3910 3911 SDNode *N; 3912 SDVTList VTs = getVTList(VT); 3913 SDValue Ops[] = {Operand}; 3914 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3915 FoldingSetNodeID ID; 3916 AddNodeIDNode(ID, Opcode, VTs, Ops); 3917 void *IP = nullptr; 3918 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 3919 E->intersectFlagsWith(Flags); 3920 return SDValue(E, 0); 3921 } 3922 3923 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3924 N->setFlags(Flags); 3925 createOperands(N, Ops); 3926 CSEMap.InsertNode(N, IP); 3927 } else { 3928 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3929 createOperands(N, Ops); 3930 } 3931 3932 InsertNode(N); 3933 SDValue V = SDValue(N, 0); 3934 NewSDValueDbgMsg(V, "Creating new node: ", this); 3935 return V; 3936 } 3937 3938 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3939 const APInt &C2) { 3940 switch (Opcode) { 3941 case ISD::ADD: return std::make_pair(C1 + C2, true); 3942 case ISD::SUB: return std::make_pair(C1 - C2, true); 3943 case ISD::MUL: return std::make_pair(C1 * C2, true); 3944 case ISD::AND: return std::make_pair(C1 & C2, true); 3945 case ISD::OR: return std::make_pair(C1 | C2, true); 3946 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3947 case ISD::SHL: return std::make_pair(C1 << C2, true); 3948 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3949 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3950 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3951 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3952 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3953 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3954 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3955 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3956 case ISD::UDIV: 3957 if (!C2.getBoolValue()) 3958 break; 3959 return std::make_pair(C1.udiv(C2), true); 3960 case ISD::UREM: 3961 if (!C2.getBoolValue()) 3962 break; 3963 return std::make_pair(C1.urem(C2), true); 3964 case ISD::SDIV: 3965 if (!C2.getBoolValue()) 3966 break; 3967 return std::make_pair(C1.sdiv(C2), true); 3968 case ISD::SREM: 3969 if (!C2.getBoolValue()) 3970 break; 3971 return std::make_pair(C1.srem(C2), true); 3972 } 3973 return std::make_pair(APInt(1, 0), false); 3974 } 3975 3976 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3977 EVT VT, const ConstantSDNode *Cst1, 3978 const ConstantSDNode *Cst2) { 3979 if (Cst1->isOpaque() || Cst2->isOpaque()) 3980 return SDValue(); 3981 3982 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3983 Cst2->getAPIntValue()); 3984 if (!Folded.second) 3985 return SDValue(); 3986 return getConstant(Folded.first, DL, VT); 3987 } 3988 3989 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3990 const GlobalAddressSDNode *GA, 3991 const SDNode *N2) { 3992 if (GA->getOpcode() != ISD::GlobalAddress) 3993 return SDValue(); 3994 if (!TLI->isOffsetFoldingLegal(GA)) 3995 return SDValue(); 3996 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3997 if (!Cst2) 3998 return SDValue(); 3999 int64_t Offset = Cst2->getSExtValue(); 4000 switch (Opcode) { 4001 case ISD::ADD: break; 4002 case ISD::SUB: Offset = -uint64_t(Offset); break; 4003 default: return SDValue(); 4004 } 4005 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 4006 GA->getOffset() + uint64_t(Offset)); 4007 } 4008 4009 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4010 switch (Opcode) { 4011 case ISD::SDIV: 4012 case ISD::UDIV: 4013 case ISD::SREM: 4014 case ISD::UREM: { 4015 // If a divisor is zero/undef or any element of a divisor vector is 4016 // zero/undef, the whole op is undef. 4017 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4018 SDValue Divisor = Ops[1]; 4019 if (Divisor.isUndef() || isNullConstant(Divisor)) 4020 return true; 4021 4022 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4023 llvm::any_of(Divisor->op_values(), 4024 [](SDValue V) { return V.isUndef() || 4025 isNullConstant(V); }); 4026 // TODO: Handle signed overflow. 4027 } 4028 // TODO: Handle oversized shifts. 4029 default: 4030 return false; 4031 } 4032 } 4033 4034 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4035 EVT VT, SDNode *Cst1, 4036 SDNode *Cst2) { 4037 // If the opcode is a target-specific ISD node, there's nothing we can 4038 // do here and the operand rules may not line up with the below, so 4039 // bail early. 4040 if (Opcode >= ISD::BUILTIN_OP_END) 4041 return SDValue(); 4042 4043 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 4044 return getUNDEF(VT); 4045 4046 // Handle the case of two scalars. 4047 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 4048 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 4049 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 4050 assert((!Folded || !VT.isVector()) && 4051 "Can't fold vectors ops with scalar operands"); 4052 return Folded; 4053 } 4054 } 4055 4056 // fold (add Sym, c) -> Sym+c 4057 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 4058 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 4059 if (TLI->isCommutativeBinOp(Opcode)) 4060 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 4061 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 4062 4063 // For vectors extract each constant element into Inputs so we can constant 4064 // fold them individually. 4065 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 4066 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 4067 if (!BV1 || !BV2) 4068 return SDValue(); 4069 4070 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 4071 4072 EVT SVT = VT.getScalarType(); 4073 EVT LegalSVT = SVT; 4074 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4075 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4076 if (LegalSVT.bitsLT(SVT)) 4077 return SDValue(); 4078 } 4079 SmallVector<SDValue, 4> Outputs; 4080 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 4081 SDValue V1 = BV1->getOperand(I); 4082 SDValue V2 = BV2->getOperand(I); 4083 4084 if (SVT.isInteger()) { 4085 if (V1->getValueType(0).bitsGT(SVT)) 4086 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4087 if (V2->getValueType(0).bitsGT(SVT)) 4088 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4089 } 4090 4091 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4092 return SDValue(); 4093 4094 // Fold one vector element. 4095 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4096 if (LegalSVT != SVT) 4097 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4098 4099 // Scalar folding only succeeded if the result is a constant or UNDEF. 4100 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4101 ScalarResult.getOpcode() != ISD::ConstantFP) 4102 return SDValue(); 4103 Outputs.push_back(ScalarResult); 4104 } 4105 4106 assert(VT.getVectorNumElements() == Outputs.size() && 4107 "Vector size mismatch!"); 4108 4109 // We may have a vector type but a scalar result. Create a splat. 4110 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4111 4112 // Build a big vector out of the scalar elements we generated. 4113 return getBuildVector(VT, SDLoc(), Outputs); 4114 } 4115 4116 // TODO: Merge with FoldConstantArithmetic 4117 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4118 const SDLoc &DL, EVT VT, 4119 ArrayRef<SDValue> Ops, 4120 const SDNodeFlags Flags) { 4121 // If the opcode is a target-specific ISD node, there's nothing we can 4122 // do here and the operand rules may not line up with the below, so 4123 // bail early. 4124 if (Opcode >= ISD::BUILTIN_OP_END) 4125 return SDValue(); 4126 4127 if (isUndef(Opcode, Ops)) 4128 return getUNDEF(VT); 4129 4130 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4131 if (!VT.isVector()) 4132 return SDValue(); 4133 4134 unsigned NumElts = VT.getVectorNumElements(); 4135 4136 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4137 return !Op.getValueType().isVector() || 4138 Op.getValueType().getVectorNumElements() == NumElts; 4139 }; 4140 4141 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4142 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4143 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4144 (BV && BV->isConstant()); 4145 }; 4146 4147 // All operands must be vector types with the same number of elements as 4148 // the result type and must be either UNDEF or a build vector of constant 4149 // or UNDEF scalars. 4150 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4151 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4152 return SDValue(); 4153 4154 // If we are comparing vectors, then the result needs to be a i1 boolean 4155 // that is then sign-extended back to the legal result type. 4156 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4157 4158 // Find legal integer scalar type for constant promotion and 4159 // ensure that its scalar size is at least as large as source. 4160 EVT LegalSVT = VT.getScalarType(); 4161 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4162 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4163 if (LegalSVT.bitsLT(VT.getScalarType())) 4164 return SDValue(); 4165 } 4166 4167 // Constant fold each scalar lane separately. 4168 SmallVector<SDValue, 4> ScalarResults; 4169 for (unsigned i = 0; i != NumElts; i++) { 4170 SmallVector<SDValue, 4> ScalarOps; 4171 for (SDValue Op : Ops) { 4172 EVT InSVT = Op.getValueType().getScalarType(); 4173 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4174 if (!InBV) { 4175 // We've checked that this is UNDEF or a constant of some kind. 4176 if (Op.isUndef()) 4177 ScalarOps.push_back(getUNDEF(InSVT)); 4178 else 4179 ScalarOps.push_back(Op); 4180 continue; 4181 } 4182 4183 SDValue ScalarOp = InBV->getOperand(i); 4184 EVT ScalarVT = ScalarOp.getValueType(); 4185 4186 // Build vector (integer) scalar operands may need implicit 4187 // truncation - do this before constant folding. 4188 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4189 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4190 4191 ScalarOps.push_back(ScalarOp); 4192 } 4193 4194 // Constant fold the scalar operands. 4195 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4196 4197 // Legalize the (integer) scalar constant if necessary. 4198 if (LegalSVT != SVT) 4199 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4200 4201 // Scalar folding only succeeded if the result is a constant or UNDEF. 4202 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4203 ScalarResult.getOpcode() != ISD::ConstantFP) 4204 return SDValue(); 4205 ScalarResults.push_back(ScalarResult); 4206 } 4207 4208 SDValue V = getBuildVector(VT, DL, ScalarResults); 4209 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4210 return V; 4211 } 4212 4213 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4214 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4215 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4216 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4217 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4218 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4219 4220 // Canonicalize constant to RHS if commutative. 4221 if (TLI->isCommutativeBinOp(Opcode)) { 4222 if (N1C && !N2C) { 4223 std::swap(N1C, N2C); 4224 std::swap(N1, N2); 4225 } else if (N1CFP && !N2CFP) { 4226 std::swap(N1CFP, N2CFP); 4227 std::swap(N1, N2); 4228 } 4229 } 4230 4231 switch (Opcode) { 4232 default: break; 4233 case ISD::TokenFactor: 4234 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4235 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4236 // Fold trivial token factors. 4237 if (N1.getOpcode() == ISD::EntryToken) return N2; 4238 if (N2.getOpcode() == ISD::EntryToken) return N1; 4239 if (N1 == N2) return N1; 4240 break; 4241 case ISD::CONCAT_VECTORS: { 4242 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4243 SDValue Ops[] = {N1, N2}; 4244 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4245 return V; 4246 break; 4247 } 4248 case ISD::AND: 4249 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4250 assert(N1.getValueType() == N2.getValueType() && 4251 N1.getValueType() == VT && "Binary operator types must match!"); 4252 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4253 // worth handling here. 4254 if (N2C && N2C->isNullValue()) 4255 return N2; 4256 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4257 return N1; 4258 break; 4259 case ISD::OR: 4260 case ISD::XOR: 4261 case ISD::ADD: 4262 case ISD::SUB: 4263 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4264 assert(N1.getValueType() == N2.getValueType() && 4265 N1.getValueType() == VT && "Binary operator types must match!"); 4266 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4267 // it's worth handling here. 4268 if (N2C && N2C->isNullValue()) 4269 return N1; 4270 break; 4271 case ISD::UDIV: 4272 case ISD::UREM: 4273 case ISD::MULHU: 4274 case ISD::MULHS: 4275 case ISD::MUL: 4276 case ISD::SDIV: 4277 case ISD::SREM: 4278 case ISD::SMIN: 4279 case ISD::SMAX: 4280 case ISD::UMIN: 4281 case ISD::UMAX: 4282 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4283 assert(N1.getValueType() == N2.getValueType() && 4284 N1.getValueType() == VT && "Binary operator types must match!"); 4285 break; 4286 case ISD::FADD: 4287 case ISD::FSUB: 4288 case ISD::FMUL: 4289 case ISD::FDIV: 4290 case ISD::FREM: 4291 if (getTarget().Options.UnsafeFPMath) { 4292 if (Opcode == ISD::FADD) { 4293 // x+0 --> x 4294 if (N2CFP && N2CFP->getValueAPF().isZero()) 4295 return N1; 4296 } else if (Opcode == ISD::FSUB) { 4297 // x-0 --> x 4298 if (N2CFP && N2CFP->getValueAPF().isZero()) 4299 return N1; 4300 } else if (Opcode == ISD::FMUL) { 4301 // x*0 --> 0 4302 if (N2CFP && N2CFP->isZero()) 4303 return N2; 4304 // x*1 --> x 4305 if (N2CFP && N2CFP->isExactlyValue(1.0)) 4306 return N1; 4307 } 4308 } 4309 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4310 assert(N1.getValueType() == N2.getValueType() && 4311 N1.getValueType() == VT && "Binary operator types must match!"); 4312 break; 4313 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4314 assert(N1.getValueType() == VT && 4315 N1.getValueType().isFloatingPoint() && 4316 N2.getValueType().isFloatingPoint() && 4317 "Invalid FCOPYSIGN!"); 4318 break; 4319 case ISD::SHL: 4320 case ISD::SRA: 4321 case ISD::SRL: 4322 case ISD::ROTL: 4323 case ISD::ROTR: 4324 assert(VT == N1.getValueType() && 4325 "Shift operators return type must be the same as their first arg"); 4326 assert(VT.isInteger() && N2.getValueType().isInteger() && 4327 "Shifts only work on integers"); 4328 assert((!VT.isVector() || VT == N2.getValueType()) && 4329 "Vector shift amounts must be in the same as their first arg"); 4330 // Verify that the shift amount VT is bit enough to hold valid shift 4331 // amounts. This catches things like trying to shift an i1024 value by an 4332 // i8, which is easy to fall into in generic code that uses 4333 // TLI.getShiftAmount(). 4334 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4335 "Invalid use of small shift amount with oversized value!"); 4336 4337 // Always fold shifts of i1 values so the code generator doesn't need to 4338 // handle them. Since we know the size of the shift has to be less than the 4339 // size of the value, the shift/rotate count is guaranteed to be zero. 4340 if (VT == MVT::i1) 4341 return N1; 4342 if (N2C && N2C->isNullValue()) 4343 return N1; 4344 break; 4345 case ISD::FP_ROUND_INREG: { 4346 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4347 assert(VT == N1.getValueType() && "Not an inreg round!"); 4348 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4349 "Cannot FP_ROUND_INREG integer types"); 4350 assert(EVT.isVector() == VT.isVector() && 4351 "FP_ROUND_INREG type should be vector iff the operand " 4352 "type is vector!"); 4353 assert((!EVT.isVector() || 4354 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4355 "Vector element counts must match in FP_ROUND_INREG"); 4356 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4357 (void)EVT; 4358 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4359 break; 4360 } 4361 case ISD::FP_ROUND: 4362 assert(VT.isFloatingPoint() && 4363 N1.getValueType().isFloatingPoint() && 4364 VT.bitsLE(N1.getValueType()) && 4365 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4366 "Invalid FP_ROUND!"); 4367 if (N1.getValueType() == VT) return N1; // noop conversion. 4368 break; 4369 case ISD::AssertSext: 4370 case ISD::AssertZext: { 4371 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4372 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4373 assert(VT.isInteger() && EVT.isInteger() && 4374 "Cannot *_EXTEND_INREG FP types"); 4375 assert(!EVT.isVector() && 4376 "AssertSExt/AssertZExt type should be the vector element type " 4377 "rather than the vector type!"); 4378 assert(EVT.bitsLE(VT) && "Not extending!"); 4379 if (VT == EVT) return N1; // noop assertion. 4380 break; 4381 } 4382 case ISD::SIGN_EXTEND_INREG: { 4383 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4384 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4385 assert(VT.isInteger() && EVT.isInteger() && 4386 "Cannot *_EXTEND_INREG FP types"); 4387 assert(EVT.isVector() == VT.isVector() && 4388 "SIGN_EXTEND_INREG type should be vector iff the operand " 4389 "type is vector!"); 4390 assert((!EVT.isVector() || 4391 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4392 "Vector element counts must match in SIGN_EXTEND_INREG"); 4393 assert(EVT.bitsLE(VT) && "Not extending!"); 4394 if (EVT == VT) return N1; // Not actually extending 4395 4396 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 4397 unsigned FromBits = EVT.getScalarSizeInBits(); 4398 Val <<= Val.getBitWidth() - FromBits; 4399 Val.ashrInPlace(Val.getBitWidth() - FromBits); 4400 return getConstant(Val, DL, ConstantVT); 4401 }; 4402 4403 if (N1C) { 4404 const APInt &Val = N1C->getAPIntValue(); 4405 return SignExtendInReg(Val, VT); 4406 } 4407 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4408 SmallVector<SDValue, 8> Ops; 4409 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 4410 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4411 SDValue Op = N1.getOperand(i); 4412 if (Op.isUndef()) { 4413 Ops.push_back(getUNDEF(OpVT)); 4414 continue; 4415 } 4416 ConstantSDNode *C = cast<ConstantSDNode>(Op); 4417 APInt Val = C->getAPIntValue(); 4418 Ops.push_back(SignExtendInReg(Val, OpVT)); 4419 } 4420 return getBuildVector(VT, DL, Ops); 4421 } 4422 break; 4423 } 4424 case ISD::EXTRACT_VECTOR_ELT: 4425 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4426 if (N1.isUndef()) 4427 return getUNDEF(VT); 4428 4429 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4430 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4431 return getUNDEF(VT); 4432 4433 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4434 // expanding copies of large vectors from registers. 4435 if (N2C && 4436 N1.getOpcode() == ISD::CONCAT_VECTORS && 4437 N1.getNumOperands() > 0) { 4438 unsigned Factor = 4439 N1.getOperand(0).getValueType().getVectorNumElements(); 4440 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4441 N1.getOperand(N2C->getZExtValue() / Factor), 4442 getConstant(N2C->getZExtValue() % Factor, DL, 4443 N2.getValueType())); 4444 } 4445 4446 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4447 // expanding large vector constants. 4448 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4449 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4450 4451 if (VT != Elt.getValueType()) 4452 // If the vector element type is not legal, the BUILD_VECTOR operands 4453 // are promoted and implicitly truncated, and the result implicitly 4454 // extended. Make that explicit here. 4455 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4456 4457 return Elt; 4458 } 4459 4460 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4461 // operations are lowered to scalars. 4462 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4463 // If the indices are the same, return the inserted element else 4464 // if the indices are known different, extract the element from 4465 // the original vector. 4466 SDValue N1Op2 = N1.getOperand(2); 4467 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4468 4469 if (N1Op2C && N2C) { 4470 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4471 if (VT == N1.getOperand(1).getValueType()) 4472 return N1.getOperand(1); 4473 else 4474 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4475 } 4476 4477 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4478 } 4479 } 4480 4481 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 4482 // when vector types are scalarized and v1iX is legal. 4483 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 4484 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 4485 N1.getValueType().getVectorNumElements() == 1) { 4486 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 4487 N1.getOperand(1)); 4488 } 4489 break; 4490 case ISD::EXTRACT_ELEMENT: 4491 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4492 assert(!N1.getValueType().isVector() && !VT.isVector() && 4493 (N1.getValueType().isInteger() == VT.isInteger()) && 4494 N1.getValueType() != VT && 4495 "Wrong types for EXTRACT_ELEMENT!"); 4496 4497 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4498 // 64-bit integers into 32-bit parts. Instead of building the extract of 4499 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4500 if (N1.getOpcode() == ISD::BUILD_PAIR) 4501 return N1.getOperand(N2C->getZExtValue()); 4502 4503 // EXTRACT_ELEMENT of a constant int is also very common. 4504 if (N1C) { 4505 unsigned ElementSize = VT.getSizeInBits(); 4506 unsigned Shift = ElementSize * N2C->getZExtValue(); 4507 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4508 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4509 } 4510 break; 4511 case ISD::EXTRACT_SUBVECTOR: 4512 if (VT.isSimple() && N1.getValueType().isSimple()) { 4513 assert(VT.isVector() && N1.getValueType().isVector() && 4514 "Extract subvector VTs must be a vectors!"); 4515 assert(VT.getVectorElementType() == 4516 N1.getValueType().getVectorElementType() && 4517 "Extract subvector VTs must have the same element type!"); 4518 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4519 "Extract subvector must be from larger vector to smaller vector!"); 4520 4521 if (N2C) { 4522 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4523 <= N1.getValueType().getVectorNumElements()) 4524 && "Extract subvector overflow!"); 4525 } 4526 4527 // Trivial extraction. 4528 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4529 return N1; 4530 4531 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4532 if (N1.isUndef()) 4533 return getUNDEF(VT); 4534 4535 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4536 // the concat have the same type as the extract. 4537 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4538 N1.getNumOperands() > 0 && 4539 VT == N1.getOperand(0).getValueType()) { 4540 unsigned Factor = VT.getVectorNumElements(); 4541 return N1.getOperand(N2C->getZExtValue() / Factor); 4542 } 4543 4544 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4545 // during shuffle legalization. 4546 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4547 VT == N1.getOperand(1).getValueType()) 4548 return N1.getOperand(1); 4549 } 4550 break; 4551 } 4552 4553 // Perform trivial constant folding. 4554 if (SDValue SV = 4555 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4556 return SV; 4557 4558 // Constant fold FP operations. 4559 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4560 if (N1CFP) { 4561 if (N2CFP) { 4562 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4563 APFloat::opStatus s; 4564 switch (Opcode) { 4565 case ISD::FADD: 4566 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4567 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4568 return getConstantFP(V1, DL, VT); 4569 break; 4570 case ISD::FSUB: 4571 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4572 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4573 return getConstantFP(V1, DL, VT); 4574 break; 4575 case ISD::FMUL: 4576 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4577 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4578 return getConstantFP(V1, DL, VT); 4579 break; 4580 case ISD::FDIV: 4581 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4582 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4583 s!=APFloat::opDivByZero)) { 4584 return getConstantFP(V1, DL, VT); 4585 } 4586 break; 4587 case ISD::FREM : 4588 s = V1.mod(V2); 4589 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4590 s!=APFloat::opDivByZero)) { 4591 return getConstantFP(V1, DL, VT); 4592 } 4593 break; 4594 case ISD::FCOPYSIGN: 4595 V1.copySign(V2); 4596 return getConstantFP(V1, DL, VT); 4597 default: break; 4598 } 4599 } 4600 4601 if (Opcode == ISD::FP_ROUND) { 4602 APFloat V = N1CFP->getValueAPF(); // make copy 4603 bool ignored; 4604 // This can return overflow, underflow, or inexact; we don't care. 4605 // FIXME need to be more flexible about rounding mode. 4606 (void)V.convert(EVTToAPFloatSemantics(VT), 4607 APFloat::rmNearestTiesToEven, &ignored); 4608 return getConstantFP(V, DL, VT); 4609 } 4610 } 4611 4612 // Canonicalize an UNDEF to the RHS, even over a constant. 4613 if (N1.isUndef()) { 4614 if (TLI->isCommutativeBinOp(Opcode)) { 4615 std::swap(N1, N2); 4616 } else { 4617 switch (Opcode) { 4618 case ISD::FP_ROUND_INREG: 4619 case ISD::SIGN_EXTEND_INREG: 4620 case ISD::SUB: 4621 case ISD::FSUB: 4622 case ISD::FDIV: 4623 case ISD::FREM: 4624 case ISD::SRA: 4625 return N1; // fold op(undef, arg2) -> undef 4626 case ISD::UDIV: 4627 case ISD::SDIV: 4628 case ISD::UREM: 4629 case ISD::SREM: 4630 case ISD::SRL: 4631 case ISD::SHL: 4632 if (!VT.isVector()) 4633 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4634 // For vectors, we can't easily build an all zero vector, just return 4635 // the LHS. 4636 return N2; 4637 } 4638 } 4639 } 4640 4641 // Fold a bunch of operators when the RHS is undef. 4642 if (N2.isUndef()) { 4643 switch (Opcode) { 4644 case ISD::XOR: 4645 if (N1.isUndef()) 4646 // Handle undef ^ undef -> 0 special case. This is a common 4647 // idiom (misuse). 4648 return getConstant(0, DL, VT); 4649 LLVM_FALLTHROUGH; 4650 case ISD::ADD: 4651 case ISD::ADDC: 4652 case ISD::ADDE: 4653 case ISD::SUB: 4654 case ISD::UDIV: 4655 case ISD::SDIV: 4656 case ISD::UREM: 4657 case ISD::SREM: 4658 return N2; // fold op(arg1, undef) -> undef 4659 case ISD::FADD: 4660 case ISD::FSUB: 4661 case ISD::FMUL: 4662 case ISD::FDIV: 4663 case ISD::FREM: 4664 if (getTarget().Options.UnsafeFPMath) 4665 return N2; 4666 break; 4667 case ISD::MUL: 4668 case ISD::AND: 4669 case ISD::SRL: 4670 case ISD::SHL: 4671 if (!VT.isVector()) 4672 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4673 // For vectors, we can't easily build an all zero vector, just return 4674 // the LHS. 4675 return N1; 4676 case ISD::OR: 4677 if (!VT.isVector()) 4678 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4679 // For vectors, we can't easily build an all one vector, just return 4680 // the LHS. 4681 return N1; 4682 case ISD::SRA: 4683 return N1; 4684 } 4685 } 4686 4687 // Memoize this node if possible. 4688 SDNode *N; 4689 SDVTList VTs = getVTList(VT); 4690 SDValue Ops[] = {N1, N2}; 4691 if (VT != MVT::Glue) { 4692 FoldingSetNodeID ID; 4693 AddNodeIDNode(ID, Opcode, VTs, Ops); 4694 void *IP = nullptr; 4695 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4696 E->intersectFlagsWith(Flags); 4697 return SDValue(E, 0); 4698 } 4699 4700 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4701 N->setFlags(Flags); 4702 createOperands(N, Ops); 4703 CSEMap.InsertNode(N, IP); 4704 } else { 4705 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4706 createOperands(N, Ops); 4707 } 4708 4709 InsertNode(N); 4710 SDValue V = SDValue(N, 0); 4711 NewSDValueDbgMsg(V, "Creating new node: ", this); 4712 return V; 4713 } 4714 4715 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4716 SDValue N1, SDValue N2, SDValue N3) { 4717 // Perform various simplifications. 4718 switch (Opcode) { 4719 case ISD::FMA: { 4720 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4721 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4722 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4723 if (N1CFP && N2CFP && N3CFP) { 4724 APFloat V1 = N1CFP->getValueAPF(); 4725 const APFloat &V2 = N2CFP->getValueAPF(); 4726 const APFloat &V3 = N3CFP->getValueAPF(); 4727 APFloat::opStatus s = 4728 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4729 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4730 return getConstantFP(V1, DL, VT); 4731 } 4732 break; 4733 } 4734 case ISD::CONCAT_VECTORS: { 4735 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4736 SDValue Ops[] = {N1, N2, N3}; 4737 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4738 return V; 4739 break; 4740 } 4741 case ISD::SETCC: { 4742 // Use FoldSetCC to simplify SETCC's. 4743 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4744 return V; 4745 // Vector constant folding. 4746 SDValue Ops[] = {N1, N2, N3}; 4747 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 4748 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 4749 return V; 4750 } 4751 break; 4752 } 4753 case ISD::SELECT: 4754 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4755 if (N1C->getZExtValue()) 4756 return N2; // select true, X, Y -> X 4757 return N3; // select false, X, Y -> Y 4758 } 4759 4760 if (N2 == N3) return N2; // select C, X, X -> X 4761 break; 4762 case ISD::VECTOR_SHUFFLE: 4763 llvm_unreachable("should use getVectorShuffle constructor!"); 4764 case ISD::INSERT_VECTOR_ELT: { 4765 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4766 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4767 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4768 return getUNDEF(VT); 4769 break; 4770 } 4771 case ISD::INSERT_SUBVECTOR: { 4772 SDValue Index = N3; 4773 if (VT.isSimple() && N1.getValueType().isSimple() 4774 && N2.getValueType().isSimple()) { 4775 assert(VT.isVector() && N1.getValueType().isVector() && 4776 N2.getValueType().isVector() && 4777 "Insert subvector VTs must be a vectors"); 4778 assert(VT == N1.getValueType() && 4779 "Dest and insert subvector source types must match!"); 4780 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4781 "Insert subvector must be from smaller vector to larger vector!"); 4782 if (isa<ConstantSDNode>(Index)) { 4783 assert((N2.getValueType().getVectorNumElements() + 4784 cast<ConstantSDNode>(Index)->getZExtValue() 4785 <= VT.getVectorNumElements()) 4786 && "Insert subvector overflow!"); 4787 } 4788 4789 // Trivial insertion. 4790 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4791 return N2; 4792 } 4793 break; 4794 } 4795 case ISD::BITCAST: 4796 // Fold bit_convert nodes from a type to themselves. 4797 if (N1.getValueType() == VT) 4798 return N1; 4799 break; 4800 } 4801 4802 // Memoize node if it doesn't produce a flag. 4803 SDNode *N; 4804 SDVTList VTs = getVTList(VT); 4805 SDValue Ops[] = {N1, N2, N3}; 4806 if (VT != MVT::Glue) { 4807 FoldingSetNodeID ID; 4808 AddNodeIDNode(ID, Opcode, VTs, Ops); 4809 void *IP = nullptr; 4810 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4811 return SDValue(E, 0); 4812 4813 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4814 createOperands(N, Ops); 4815 CSEMap.InsertNode(N, IP); 4816 } else { 4817 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4818 createOperands(N, Ops); 4819 } 4820 4821 InsertNode(N); 4822 SDValue V = SDValue(N, 0); 4823 NewSDValueDbgMsg(V, "Creating new node: ", this); 4824 return V; 4825 } 4826 4827 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4828 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4829 SDValue Ops[] = { N1, N2, N3, N4 }; 4830 return getNode(Opcode, DL, VT, Ops); 4831 } 4832 4833 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4834 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4835 SDValue N5) { 4836 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4837 return getNode(Opcode, DL, VT, Ops); 4838 } 4839 4840 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4841 /// the incoming stack arguments to be loaded from the stack. 4842 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4843 SmallVector<SDValue, 8> ArgChains; 4844 4845 // Include the original chain at the beginning of the list. When this is 4846 // used by target LowerCall hooks, this helps legalize find the 4847 // CALLSEQ_BEGIN node. 4848 ArgChains.push_back(Chain); 4849 4850 // Add a chain value for each stack argument. 4851 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4852 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4853 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4854 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4855 if (FI->getIndex() < 0) 4856 ArgChains.push_back(SDValue(L, 1)); 4857 4858 // Build a tokenfactor for all the chains. 4859 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4860 } 4861 4862 /// getMemsetValue - Vectorized representation of the memset value 4863 /// operand. 4864 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4865 const SDLoc &dl) { 4866 assert(!Value.isUndef()); 4867 4868 unsigned NumBits = VT.getScalarSizeInBits(); 4869 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4870 assert(C->getAPIntValue().getBitWidth() == 8); 4871 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4872 if (VT.isInteger()) 4873 return DAG.getConstant(Val, dl, VT); 4874 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4875 VT); 4876 } 4877 4878 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4879 EVT IntVT = VT.getScalarType(); 4880 if (!IntVT.isInteger()) 4881 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4882 4883 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4884 if (NumBits > 8) { 4885 // Use a multiplication with 0x010101... to extend the input to the 4886 // required length. 4887 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4888 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4889 DAG.getConstant(Magic, dl, IntVT)); 4890 } 4891 4892 if (VT != Value.getValueType() && !VT.isInteger()) 4893 Value = DAG.getBitcast(VT.getScalarType(), Value); 4894 if (VT != Value.getValueType()) 4895 Value = DAG.getSplatBuildVector(VT, dl, Value); 4896 4897 return Value; 4898 } 4899 4900 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4901 /// used when a memcpy is turned into a memset when the source is a constant 4902 /// string ptr. 4903 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4904 const TargetLowering &TLI, 4905 const ConstantDataArraySlice &Slice) { 4906 // Handle vector with all elements zero. 4907 if (Slice.Array == nullptr) { 4908 if (VT.isInteger()) 4909 return DAG.getConstant(0, dl, VT); 4910 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4911 return DAG.getConstantFP(0.0, dl, VT); 4912 else if (VT.isVector()) { 4913 unsigned NumElts = VT.getVectorNumElements(); 4914 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4915 return DAG.getNode(ISD::BITCAST, dl, VT, 4916 DAG.getConstant(0, dl, 4917 EVT::getVectorVT(*DAG.getContext(), 4918 EltVT, NumElts))); 4919 } else 4920 llvm_unreachable("Expected type!"); 4921 } 4922 4923 assert(!VT.isVector() && "Can't handle vector type here!"); 4924 unsigned NumVTBits = VT.getSizeInBits(); 4925 unsigned NumVTBytes = NumVTBits / 8; 4926 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 4927 4928 APInt Val(NumVTBits, 0); 4929 if (DAG.getDataLayout().isLittleEndian()) { 4930 for (unsigned i = 0; i != NumBytes; ++i) 4931 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 4932 } else { 4933 for (unsigned i = 0; i != NumBytes; ++i) 4934 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 4935 } 4936 4937 // If the "cost" of materializing the integer immediate is less than the cost 4938 // of a load, then it is cost effective to turn the load into the immediate. 4939 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4940 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4941 return DAG.getConstant(Val, dl, VT); 4942 return SDValue(nullptr, 0); 4943 } 4944 4945 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4946 const SDLoc &DL) { 4947 EVT VT = Base.getValueType(); 4948 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4949 } 4950 4951 /// Returns true if memcpy source is constant data. 4952 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 4953 uint64_t SrcDelta = 0; 4954 GlobalAddressSDNode *G = nullptr; 4955 if (Src.getOpcode() == ISD::GlobalAddress) 4956 G = cast<GlobalAddressSDNode>(Src); 4957 else if (Src.getOpcode() == ISD::ADD && 4958 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4959 Src.getOperand(1).getOpcode() == ISD::Constant) { 4960 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4961 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4962 } 4963 if (!G) 4964 return false; 4965 4966 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 4967 SrcDelta + G->getOffset()); 4968 } 4969 4970 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4971 /// Return true if the number of memory ops is below the threshold (Limit). 4972 /// It returns the types of the sequence of memory ops to perform 4973 /// memset / memcpy by reference. 4974 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4975 unsigned Limit, uint64_t Size, 4976 unsigned DstAlign, unsigned SrcAlign, 4977 bool IsMemset, 4978 bool ZeroMemset, 4979 bool MemcpyStrSrc, 4980 bool AllowOverlap, 4981 unsigned DstAS, unsigned SrcAS, 4982 SelectionDAG &DAG, 4983 const TargetLowering &TLI) { 4984 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4985 "Expecting memcpy / memset source to meet alignment requirement!"); 4986 // If 'SrcAlign' is zero, that means the memory operation does not need to 4987 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4988 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4989 // is the specified alignment of the memory operation. If it is zero, that 4990 // means it's possible to change the alignment of the destination. 4991 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4992 // not need to be loaded. 4993 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4994 IsMemset, ZeroMemset, MemcpyStrSrc, 4995 DAG.getMachineFunction()); 4996 4997 if (VT == MVT::Other) { 4998 // Use the largest integer type whose alignment constraints are satisfied. 4999 // We only need to check DstAlign here as SrcAlign is always greater or 5000 // equal to DstAlign (or zero). 5001 VT = MVT::i64; 5002 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 5003 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 5004 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 5005 assert(VT.isInteger()); 5006 5007 // Find the largest legal integer type. 5008 MVT LVT = MVT::i64; 5009 while (!TLI.isTypeLegal(LVT)) 5010 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 5011 assert(LVT.isInteger()); 5012 5013 // If the type we've chosen is larger than the largest legal integer type 5014 // then use that instead. 5015 if (VT.bitsGT(LVT)) 5016 VT = LVT; 5017 } 5018 5019 unsigned NumMemOps = 0; 5020 while (Size != 0) { 5021 unsigned VTSize = VT.getSizeInBits() / 8; 5022 while (VTSize > Size) { 5023 // For now, only use non-vector load / store's for the left-over pieces. 5024 EVT NewVT = VT; 5025 unsigned NewVTSize; 5026 5027 bool Found = false; 5028 if (VT.isVector() || VT.isFloatingPoint()) { 5029 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 5030 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 5031 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 5032 Found = true; 5033 else if (NewVT == MVT::i64 && 5034 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 5035 TLI.isSafeMemOpType(MVT::f64)) { 5036 // i64 is usually not legal on 32-bit targets, but f64 may be. 5037 NewVT = MVT::f64; 5038 Found = true; 5039 } 5040 } 5041 5042 if (!Found) { 5043 do { 5044 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 5045 if (NewVT == MVT::i8) 5046 break; 5047 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 5048 } 5049 NewVTSize = NewVT.getSizeInBits() / 8; 5050 5051 // If the new VT cannot cover all of the remaining bits, then consider 5052 // issuing a (or a pair of) unaligned and overlapping load / store. 5053 // FIXME: Only does this for 64-bit or more since we don't have proper 5054 // cost model for unaligned load / store. 5055 bool Fast; 5056 if (NumMemOps && AllowOverlap && 5057 VTSize >= 8 && NewVTSize < Size && 5058 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 5059 VTSize = Size; 5060 else { 5061 VT = NewVT; 5062 VTSize = NewVTSize; 5063 } 5064 } 5065 5066 if (++NumMemOps > Limit) 5067 return false; 5068 5069 MemOps.push_back(VT); 5070 Size -= VTSize; 5071 } 5072 5073 return true; 5074 } 5075 5076 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5077 // On Darwin, -Os means optimize for size without hurting performance, so 5078 // only really optimize for size when -Oz (MinSize) is used. 5079 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5080 return MF.getFunction()->optForMinSize(); 5081 return MF.getFunction()->optForSize(); 5082 } 5083 5084 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5085 SDValue Chain, SDValue Dst, SDValue Src, 5086 uint64_t Size, unsigned Align, 5087 bool isVol, bool AlwaysInline, 5088 MachinePointerInfo DstPtrInfo, 5089 MachinePointerInfo SrcPtrInfo) { 5090 // Turn a memcpy of undef to nop. 5091 if (Src.isUndef()) 5092 return Chain; 5093 5094 // Expand memcpy to a series of load and store ops if the size operand falls 5095 // below a certain threshold. 5096 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5097 // rather than maybe a humongous number of loads and stores. 5098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5099 const DataLayout &DL = DAG.getDataLayout(); 5100 LLVMContext &C = *DAG.getContext(); 5101 std::vector<EVT> MemOps; 5102 bool DstAlignCanChange = false; 5103 MachineFunction &MF = DAG.getMachineFunction(); 5104 MachineFrameInfo &MFI = MF.getFrameInfo(); 5105 bool OptSize = shouldLowerMemFuncForSize(MF); 5106 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5107 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5108 DstAlignCanChange = true; 5109 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5110 if (Align > SrcAlign) 5111 SrcAlign = Align; 5112 ConstantDataArraySlice Slice; 5113 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5114 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5115 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5116 5117 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5118 (DstAlignCanChange ? 0 : Align), 5119 (isZeroConstant ? 0 : SrcAlign), 5120 false, false, CopyFromConstant, true, 5121 DstPtrInfo.getAddrSpace(), 5122 SrcPtrInfo.getAddrSpace(), 5123 DAG, TLI)) 5124 return SDValue(); 5125 5126 if (DstAlignCanChange) { 5127 Type *Ty = MemOps[0].getTypeForEVT(C); 5128 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5129 5130 // Don't promote to an alignment that would require dynamic stack 5131 // realignment. 5132 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5133 if (!TRI->needsStackRealignment(MF)) 5134 while (NewAlign > Align && 5135 DL.exceedsNaturalStackAlignment(NewAlign)) 5136 NewAlign /= 2; 5137 5138 if (NewAlign > Align) { 5139 // Give the stack frame object a larger alignment if needed. 5140 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5141 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5142 Align = NewAlign; 5143 } 5144 } 5145 5146 MachineMemOperand::Flags MMOFlags = 5147 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5148 SmallVector<SDValue, 8> OutChains; 5149 unsigned NumMemOps = MemOps.size(); 5150 uint64_t SrcOff = 0, DstOff = 0; 5151 for (unsigned i = 0; i != NumMemOps; ++i) { 5152 EVT VT = MemOps[i]; 5153 unsigned VTSize = VT.getSizeInBits() / 8; 5154 SDValue Value, Store; 5155 5156 if (VTSize > Size) { 5157 // Issuing an unaligned load / store pair that overlaps with the previous 5158 // pair. Adjust the offset accordingly. 5159 assert(i == NumMemOps-1 && i != 0); 5160 SrcOff -= VTSize - Size; 5161 DstOff -= VTSize - Size; 5162 } 5163 5164 if (CopyFromConstant && 5165 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5166 // It's unlikely a store of a vector immediate can be done in a single 5167 // instruction. It would require a load from a constantpool first. 5168 // We only handle zero vectors here. 5169 // FIXME: Handle other cases where store of vector immediate is done in 5170 // a single instruction. 5171 ConstantDataArraySlice SubSlice; 5172 if (SrcOff < Slice.Length) { 5173 SubSlice = Slice; 5174 SubSlice.move(SrcOff); 5175 } else { 5176 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5177 SubSlice.Array = nullptr; 5178 SubSlice.Offset = 0; 5179 SubSlice.Length = VTSize; 5180 } 5181 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5182 if (Value.getNode()) 5183 Store = DAG.getStore(Chain, dl, Value, 5184 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5185 DstPtrInfo.getWithOffset(DstOff), Align, 5186 MMOFlags); 5187 } 5188 5189 if (!Store.getNode()) { 5190 // The type might not be legal for the target. This should only happen 5191 // if the type is smaller than a legal type, as on PPC, so the right 5192 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5193 // to Load/Store if NVT==VT. 5194 // FIXME does the case above also need this? 5195 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5196 assert(NVT.bitsGE(VT)); 5197 5198 bool isDereferenceable = 5199 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5200 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5201 if (isDereferenceable) 5202 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5203 5204 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5205 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5206 SrcPtrInfo.getWithOffset(SrcOff), VT, 5207 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5208 OutChains.push_back(Value.getValue(1)); 5209 Store = DAG.getTruncStore( 5210 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5211 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5212 } 5213 OutChains.push_back(Store); 5214 SrcOff += VTSize; 5215 DstOff += VTSize; 5216 Size -= VTSize; 5217 } 5218 5219 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5220 } 5221 5222 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5223 SDValue Chain, SDValue Dst, SDValue Src, 5224 uint64_t Size, unsigned Align, 5225 bool isVol, bool AlwaysInline, 5226 MachinePointerInfo DstPtrInfo, 5227 MachinePointerInfo SrcPtrInfo) { 5228 // Turn a memmove of undef to nop. 5229 if (Src.isUndef()) 5230 return Chain; 5231 5232 // Expand memmove to a series of load and store ops if the size operand falls 5233 // below a certain threshold. 5234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5235 const DataLayout &DL = DAG.getDataLayout(); 5236 LLVMContext &C = *DAG.getContext(); 5237 std::vector<EVT> MemOps; 5238 bool DstAlignCanChange = false; 5239 MachineFunction &MF = DAG.getMachineFunction(); 5240 MachineFrameInfo &MFI = MF.getFrameInfo(); 5241 bool OptSize = shouldLowerMemFuncForSize(MF); 5242 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5243 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5244 DstAlignCanChange = true; 5245 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5246 if (Align > SrcAlign) 5247 SrcAlign = Align; 5248 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5249 5250 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5251 (DstAlignCanChange ? 0 : Align), SrcAlign, 5252 false, false, false, false, 5253 DstPtrInfo.getAddrSpace(), 5254 SrcPtrInfo.getAddrSpace(), 5255 DAG, TLI)) 5256 return SDValue(); 5257 5258 if (DstAlignCanChange) { 5259 Type *Ty = MemOps[0].getTypeForEVT(C); 5260 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5261 if (NewAlign > Align) { 5262 // Give the stack frame object a larger alignment if needed. 5263 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5264 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5265 Align = NewAlign; 5266 } 5267 } 5268 5269 MachineMemOperand::Flags MMOFlags = 5270 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5271 uint64_t SrcOff = 0, DstOff = 0; 5272 SmallVector<SDValue, 8> LoadValues; 5273 SmallVector<SDValue, 8> LoadChains; 5274 SmallVector<SDValue, 8> OutChains; 5275 unsigned NumMemOps = MemOps.size(); 5276 for (unsigned i = 0; i < NumMemOps; i++) { 5277 EVT VT = MemOps[i]; 5278 unsigned VTSize = VT.getSizeInBits() / 8; 5279 SDValue Value; 5280 5281 bool isDereferenceable = 5282 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5283 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5284 if (isDereferenceable) 5285 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5286 5287 Value = 5288 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5289 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5290 LoadValues.push_back(Value); 5291 LoadChains.push_back(Value.getValue(1)); 5292 SrcOff += VTSize; 5293 } 5294 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5295 OutChains.clear(); 5296 for (unsigned i = 0; i < NumMemOps; i++) { 5297 EVT VT = MemOps[i]; 5298 unsigned VTSize = VT.getSizeInBits() / 8; 5299 SDValue Store; 5300 5301 Store = DAG.getStore(Chain, dl, LoadValues[i], 5302 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5303 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5304 OutChains.push_back(Store); 5305 DstOff += VTSize; 5306 } 5307 5308 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5309 } 5310 5311 /// \brief Lower the call to 'memset' intrinsic function into a series of store 5312 /// operations. 5313 /// 5314 /// \param DAG Selection DAG where lowered code is placed. 5315 /// \param dl Link to corresponding IR location. 5316 /// \param Chain Control flow dependency. 5317 /// \param Dst Pointer to destination memory location. 5318 /// \param Src Value of byte to write into the memory. 5319 /// \param Size Number of bytes to write. 5320 /// \param Align Alignment of the destination in bytes. 5321 /// \param isVol True if destination is volatile. 5322 /// \param DstPtrInfo IR information on the memory pointer. 5323 /// \returns New head in the control flow, if lowering was successful, empty 5324 /// SDValue otherwise. 5325 /// 5326 /// The function tries to replace 'llvm.memset' intrinsic with several store 5327 /// operations and value calculation code. This is usually profitable for small 5328 /// memory size. 5329 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5330 SDValue Chain, SDValue Dst, SDValue Src, 5331 uint64_t Size, unsigned Align, bool isVol, 5332 MachinePointerInfo DstPtrInfo) { 5333 // Turn a memset of undef to nop. 5334 if (Src.isUndef()) 5335 return Chain; 5336 5337 // Expand memset to a series of load/store ops if the size operand 5338 // falls below a certain threshold. 5339 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5340 std::vector<EVT> MemOps; 5341 bool DstAlignCanChange = false; 5342 MachineFunction &MF = DAG.getMachineFunction(); 5343 MachineFrameInfo &MFI = MF.getFrameInfo(); 5344 bool OptSize = shouldLowerMemFuncForSize(MF); 5345 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5346 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5347 DstAlignCanChange = true; 5348 bool IsZeroVal = 5349 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5350 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5351 Size, (DstAlignCanChange ? 0 : Align), 0, 5352 true, IsZeroVal, false, true, 5353 DstPtrInfo.getAddrSpace(), ~0u, 5354 DAG, TLI)) 5355 return SDValue(); 5356 5357 if (DstAlignCanChange) { 5358 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5359 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5360 if (NewAlign > Align) { 5361 // Give the stack frame object a larger alignment if needed. 5362 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5363 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5364 Align = NewAlign; 5365 } 5366 } 5367 5368 SmallVector<SDValue, 8> OutChains; 5369 uint64_t DstOff = 0; 5370 unsigned NumMemOps = MemOps.size(); 5371 5372 // Find the largest store and generate the bit pattern for it. 5373 EVT LargestVT = MemOps[0]; 5374 for (unsigned i = 1; i < NumMemOps; i++) 5375 if (MemOps[i].bitsGT(LargestVT)) 5376 LargestVT = MemOps[i]; 5377 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5378 5379 for (unsigned i = 0; i < NumMemOps; i++) { 5380 EVT VT = MemOps[i]; 5381 unsigned VTSize = VT.getSizeInBits() / 8; 5382 if (VTSize > Size) { 5383 // Issuing an unaligned load / store pair that overlaps with the previous 5384 // pair. Adjust the offset accordingly. 5385 assert(i == NumMemOps-1 && i != 0); 5386 DstOff -= VTSize - Size; 5387 } 5388 5389 // If this store is smaller than the largest store see whether we can get 5390 // the smaller value for free with a truncate. 5391 SDValue Value = MemSetValue; 5392 if (VT.bitsLT(LargestVT)) { 5393 if (!LargestVT.isVector() && !VT.isVector() && 5394 TLI.isTruncateFree(LargestVT, VT)) 5395 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5396 else 5397 Value = getMemsetValue(Src, VT, DAG, dl); 5398 } 5399 assert(Value.getValueType() == VT && "Value with wrong type."); 5400 SDValue Store = DAG.getStore( 5401 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5402 DstPtrInfo.getWithOffset(DstOff), Align, 5403 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5404 OutChains.push_back(Store); 5405 DstOff += VT.getSizeInBits() / 8; 5406 Size -= VTSize; 5407 } 5408 5409 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5410 } 5411 5412 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5413 unsigned AS) { 5414 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5415 // pointer operands can be losslessly bitcasted to pointers of address space 0 5416 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5417 report_fatal_error("cannot lower memory intrinsic in address space " + 5418 Twine(AS)); 5419 } 5420 } 5421 5422 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5423 SDValue Src, SDValue Size, unsigned Align, 5424 bool isVol, bool AlwaysInline, bool isTailCall, 5425 MachinePointerInfo DstPtrInfo, 5426 MachinePointerInfo SrcPtrInfo) { 5427 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5428 5429 // Check to see if we should lower the memcpy to loads and stores first. 5430 // For cases within the target-specified limits, this is the best choice. 5431 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5432 if (ConstantSize) { 5433 // Memcpy with size zero? Just return the original chain. 5434 if (ConstantSize->isNullValue()) 5435 return Chain; 5436 5437 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5438 ConstantSize->getZExtValue(),Align, 5439 isVol, false, DstPtrInfo, SrcPtrInfo); 5440 if (Result.getNode()) 5441 return Result; 5442 } 5443 5444 // Then check to see if we should lower the memcpy with target-specific 5445 // code. If the target chooses to do this, this is the next best. 5446 if (TSI) { 5447 SDValue Result = TSI->EmitTargetCodeForMemcpy( 5448 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 5449 DstPtrInfo, SrcPtrInfo); 5450 if (Result.getNode()) 5451 return Result; 5452 } 5453 5454 // If we really need inline code and the target declined to provide it, 5455 // use a (potentially long) sequence of loads and stores. 5456 if (AlwaysInline) { 5457 assert(ConstantSize && "AlwaysInline requires a constant size!"); 5458 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5459 ConstantSize->getZExtValue(), Align, isVol, 5460 true, DstPtrInfo, SrcPtrInfo); 5461 } 5462 5463 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5464 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5465 5466 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5467 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5468 // respect volatile, so they may do things like read or write memory 5469 // beyond the given memory regions. But fixing this isn't easy, and most 5470 // people don't care. 5471 5472 // Emit a library call. 5473 TargetLowering::ArgListTy Args; 5474 TargetLowering::ArgListEntry Entry; 5475 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5476 Entry.Node = Dst; Args.push_back(Entry); 5477 Entry.Node = Src; Args.push_back(Entry); 5478 Entry.Node = Size; Args.push_back(Entry); 5479 // FIXME: pass in SDLoc 5480 TargetLowering::CallLoweringInfo CLI(*this); 5481 CLI.setDebugLoc(dl) 5482 .setChain(Chain) 5483 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5484 Dst.getValueType().getTypeForEVT(*getContext()), 5485 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5486 TLI->getPointerTy(getDataLayout())), 5487 std::move(Args)) 5488 .setDiscardResult() 5489 .setTailCall(isTailCall); 5490 5491 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5492 return CallResult.second; 5493 } 5494 5495 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5496 SDValue Src, SDValue Size, unsigned Align, 5497 bool isVol, bool isTailCall, 5498 MachinePointerInfo DstPtrInfo, 5499 MachinePointerInfo SrcPtrInfo) { 5500 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5501 5502 // Check to see if we should lower the memmove to loads and stores first. 5503 // For cases within the target-specified limits, this is the best choice. 5504 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5505 if (ConstantSize) { 5506 // Memmove with size zero? Just return the original chain. 5507 if (ConstantSize->isNullValue()) 5508 return Chain; 5509 5510 SDValue Result = 5511 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5512 ConstantSize->getZExtValue(), Align, isVol, 5513 false, DstPtrInfo, SrcPtrInfo); 5514 if (Result.getNode()) 5515 return Result; 5516 } 5517 5518 // Then check to see if we should lower the memmove with target-specific 5519 // code. If the target chooses to do this, this is the next best. 5520 if (TSI) { 5521 SDValue Result = TSI->EmitTargetCodeForMemmove( 5522 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5523 if (Result.getNode()) 5524 return Result; 5525 } 5526 5527 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5528 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5529 5530 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5531 // not be safe. See memcpy above for more details. 5532 5533 // Emit a library call. 5534 TargetLowering::ArgListTy Args; 5535 TargetLowering::ArgListEntry Entry; 5536 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5537 Entry.Node = Dst; Args.push_back(Entry); 5538 Entry.Node = Src; Args.push_back(Entry); 5539 Entry.Node = Size; Args.push_back(Entry); 5540 // FIXME: pass in SDLoc 5541 TargetLowering::CallLoweringInfo CLI(*this); 5542 CLI.setDebugLoc(dl) 5543 .setChain(Chain) 5544 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5545 Dst.getValueType().getTypeForEVT(*getContext()), 5546 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5547 TLI->getPointerTy(getDataLayout())), 5548 std::move(Args)) 5549 .setDiscardResult() 5550 .setTailCall(isTailCall); 5551 5552 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5553 return CallResult.second; 5554 } 5555 5556 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5557 SDValue Src, SDValue Size, unsigned Align, 5558 bool isVol, bool isTailCall, 5559 MachinePointerInfo DstPtrInfo) { 5560 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5561 5562 // Check to see if we should lower the memset to stores first. 5563 // For cases within the target-specified limits, this is the best choice. 5564 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5565 if (ConstantSize) { 5566 // Memset with size zero? Just return the original chain. 5567 if (ConstantSize->isNullValue()) 5568 return Chain; 5569 5570 SDValue Result = 5571 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5572 Align, isVol, DstPtrInfo); 5573 5574 if (Result.getNode()) 5575 return Result; 5576 } 5577 5578 // Then check to see if we should lower the memset with target-specific 5579 // code. If the target chooses to do this, this is the next best. 5580 if (TSI) { 5581 SDValue Result = TSI->EmitTargetCodeForMemset( 5582 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5583 if (Result.getNode()) 5584 return Result; 5585 } 5586 5587 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5588 5589 // Emit a library call. 5590 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5591 TargetLowering::ArgListTy Args; 5592 TargetLowering::ArgListEntry Entry; 5593 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5594 Args.push_back(Entry); 5595 Entry.Node = Src; 5596 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5597 Args.push_back(Entry); 5598 Entry.Node = Size; 5599 Entry.Ty = IntPtrTy; 5600 Args.push_back(Entry); 5601 5602 // FIXME: pass in SDLoc 5603 TargetLowering::CallLoweringInfo CLI(*this); 5604 CLI.setDebugLoc(dl) 5605 .setChain(Chain) 5606 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5607 Dst.getValueType().getTypeForEVT(*getContext()), 5608 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5609 TLI->getPointerTy(getDataLayout())), 5610 std::move(Args)) 5611 .setDiscardResult() 5612 .setTailCall(isTailCall); 5613 5614 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5615 return CallResult.second; 5616 } 5617 5618 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5619 SDVTList VTList, ArrayRef<SDValue> Ops, 5620 MachineMemOperand *MMO) { 5621 FoldingSetNodeID ID; 5622 ID.AddInteger(MemVT.getRawBits()); 5623 AddNodeIDNode(ID, Opcode, VTList, Ops); 5624 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5625 void* IP = nullptr; 5626 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5627 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5628 return SDValue(E, 0); 5629 } 5630 5631 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5632 VTList, MemVT, MMO); 5633 createOperands(N, Ops); 5634 5635 CSEMap.InsertNode(N, IP); 5636 InsertNode(N); 5637 return SDValue(N, 0); 5638 } 5639 5640 SDValue SelectionDAG::getAtomicCmpSwap( 5641 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5642 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5643 unsigned Alignment, AtomicOrdering SuccessOrdering, 5644 AtomicOrdering FailureOrdering, SyncScope::ID SSID) { 5645 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5646 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5647 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5648 5649 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5650 Alignment = getEVTAlignment(MemVT); 5651 5652 MachineFunction &MF = getMachineFunction(); 5653 5654 // FIXME: Volatile isn't really correct; we should keep track of atomic 5655 // orderings in the memoperand. 5656 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5657 MachineMemOperand::MOStore; 5658 MachineMemOperand *MMO = 5659 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5660 AAMDNodes(), nullptr, SSID, SuccessOrdering, 5661 FailureOrdering); 5662 5663 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5664 } 5665 5666 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5667 EVT MemVT, SDVTList VTs, SDValue Chain, 5668 SDValue Ptr, SDValue Cmp, SDValue Swp, 5669 MachineMemOperand *MMO) { 5670 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5671 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5672 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5673 5674 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5675 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5676 } 5677 5678 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5679 SDValue Chain, SDValue Ptr, SDValue Val, 5680 const Value *PtrVal, unsigned Alignment, 5681 AtomicOrdering Ordering, 5682 SyncScope::ID SSID) { 5683 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5684 Alignment = getEVTAlignment(MemVT); 5685 5686 MachineFunction &MF = getMachineFunction(); 5687 // An atomic store does not load. An atomic load does not store. 5688 // (An atomicrmw obviously both loads and stores.) 5689 // For now, atomics are considered to be volatile always, and they are 5690 // chained as such. 5691 // FIXME: Volatile isn't really correct; we should keep track of atomic 5692 // orderings in the memoperand. 5693 auto Flags = MachineMemOperand::MOVolatile; 5694 if (Opcode != ISD::ATOMIC_STORE) 5695 Flags |= MachineMemOperand::MOLoad; 5696 if (Opcode != ISD::ATOMIC_LOAD) 5697 Flags |= MachineMemOperand::MOStore; 5698 5699 MachineMemOperand *MMO = 5700 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5701 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5702 nullptr, SSID, Ordering); 5703 5704 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5705 } 5706 5707 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5708 SDValue Chain, SDValue Ptr, SDValue Val, 5709 MachineMemOperand *MMO) { 5710 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5711 Opcode == ISD::ATOMIC_LOAD_SUB || 5712 Opcode == ISD::ATOMIC_LOAD_AND || 5713 Opcode == ISD::ATOMIC_LOAD_OR || 5714 Opcode == ISD::ATOMIC_LOAD_XOR || 5715 Opcode == ISD::ATOMIC_LOAD_NAND || 5716 Opcode == ISD::ATOMIC_LOAD_MIN || 5717 Opcode == ISD::ATOMIC_LOAD_MAX || 5718 Opcode == ISD::ATOMIC_LOAD_UMIN || 5719 Opcode == ISD::ATOMIC_LOAD_UMAX || 5720 Opcode == ISD::ATOMIC_SWAP || 5721 Opcode == ISD::ATOMIC_STORE) && 5722 "Invalid Atomic Op"); 5723 5724 EVT VT = Val.getValueType(); 5725 5726 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5727 getVTList(VT, MVT::Other); 5728 SDValue Ops[] = {Chain, Ptr, Val}; 5729 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5730 } 5731 5732 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5733 EVT VT, SDValue Chain, SDValue Ptr, 5734 MachineMemOperand *MMO) { 5735 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5736 5737 SDVTList VTs = getVTList(VT, MVT::Other); 5738 SDValue Ops[] = {Chain, Ptr}; 5739 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5740 } 5741 5742 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5743 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5744 if (Ops.size() == 1) 5745 return Ops[0]; 5746 5747 SmallVector<EVT, 4> VTs; 5748 VTs.reserve(Ops.size()); 5749 for (unsigned i = 0; i < Ops.size(); ++i) 5750 VTs.push_back(Ops[i].getValueType()); 5751 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5752 } 5753 5754 SDValue SelectionDAG::getMemIntrinsicNode( 5755 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5756 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 5757 bool ReadMem, bool WriteMem, unsigned Size) { 5758 if (Align == 0) // Ensure that codegen never sees alignment 0 5759 Align = getEVTAlignment(MemVT); 5760 5761 MachineFunction &MF = getMachineFunction(); 5762 auto Flags = MachineMemOperand::MONone; 5763 if (WriteMem) 5764 Flags |= MachineMemOperand::MOStore; 5765 if (ReadMem) 5766 Flags |= MachineMemOperand::MOLoad; 5767 if (Vol) 5768 Flags |= MachineMemOperand::MOVolatile; 5769 if (!Size) 5770 Size = MemVT.getStoreSize(); 5771 MachineMemOperand *MMO = 5772 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5773 5774 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5775 } 5776 5777 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5778 SDVTList VTList, 5779 ArrayRef<SDValue> Ops, EVT MemVT, 5780 MachineMemOperand *MMO) { 5781 assert((Opcode == ISD::INTRINSIC_VOID || 5782 Opcode == ISD::INTRINSIC_W_CHAIN || 5783 Opcode == ISD::PREFETCH || 5784 Opcode == ISD::LIFETIME_START || 5785 Opcode == ISD::LIFETIME_END || 5786 ((int)Opcode <= std::numeric_limits<int>::max() && 5787 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5788 "Opcode is not a memory-accessing opcode!"); 5789 5790 // Memoize the node unless it returns a flag. 5791 MemIntrinsicSDNode *N; 5792 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5793 FoldingSetNodeID ID; 5794 AddNodeIDNode(ID, Opcode, VTList, Ops); 5795 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 5796 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 5797 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5798 void *IP = nullptr; 5799 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5800 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5801 return SDValue(E, 0); 5802 } 5803 5804 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5805 VTList, MemVT, MMO); 5806 createOperands(N, Ops); 5807 5808 CSEMap.InsertNode(N, IP); 5809 } else { 5810 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5811 VTList, MemVT, MMO); 5812 createOperands(N, Ops); 5813 } 5814 InsertNode(N); 5815 return SDValue(N, 0); 5816 } 5817 5818 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5819 /// MachinePointerInfo record from it. This is particularly useful because the 5820 /// code generator has many cases where it doesn't bother passing in a 5821 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5822 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5823 int64_t Offset = 0) { 5824 // If this is FI+Offset, we can model it. 5825 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5826 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5827 FI->getIndex(), Offset); 5828 5829 // If this is (FI+Offset1)+Offset2, we can model it. 5830 if (Ptr.getOpcode() != ISD::ADD || 5831 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5832 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5833 return MachinePointerInfo(); 5834 5835 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5836 return MachinePointerInfo::getFixedStack( 5837 DAG.getMachineFunction(), FI, 5838 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5839 } 5840 5841 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5842 /// MachinePointerInfo record from it. This is particularly useful because the 5843 /// code generator has many cases where it doesn't bother passing in a 5844 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5845 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5846 SDValue OffsetOp) { 5847 // If the 'Offset' value isn't a constant, we can't handle this. 5848 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5849 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5850 if (OffsetOp.isUndef()) 5851 return InferPointerInfo(DAG, Ptr); 5852 return MachinePointerInfo(); 5853 } 5854 5855 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5856 EVT VT, const SDLoc &dl, SDValue Chain, 5857 SDValue Ptr, SDValue Offset, 5858 MachinePointerInfo PtrInfo, EVT MemVT, 5859 unsigned Alignment, 5860 MachineMemOperand::Flags MMOFlags, 5861 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5862 assert(Chain.getValueType() == MVT::Other && 5863 "Invalid chain type"); 5864 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5865 Alignment = getEVTAlignment(MemVT); 5866 5867 MMOFlags |= MachineMemOperand::MOLoad; 5868 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5869 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5870 // clients. 5871 if (PtrInfo.V.isNull()) 5872 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5873 5874 MachineFunction &MF = getMachineFunction(); 5875 MachineMemOperand *MMO = MF.getMachineMemOperand( 5876 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5877 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5878 } 5879 5880 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5881 EVT VT, const SDLoc &dl, SDValue Chain, 5882 SDValue Ptr, SDValue Offset, EVT MemVT, 5883 MachineMemOperand *MMO) { 5884 if (VT == MemVT) { 5885 ExtType = ISD::NON_EXTLOAD; 5886 } else if (ExtType == ISD::NON_EXTLOAD) { 5887 assert(VT == MemVT && "Non-extending load from different memory type!"); 5888 } else { 5889 // Extending load. 5890 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5891 "Should only be an extending load, not truncating!"); 5892 assert(VT.isInteger() == MemVT.isInteger() && 5893 "Cannot convert from FP to Int or Int -> FP!"); 5894 assert(VT.isVector() == MemVT.isVector() && 5895 "Cannot use an ext load to convert to or from a vector!"); 5896 assert((!VT.isVector() || 5897 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5898 "Cannot use an ext load to change the number of vector elements!"); 5899 } 5900 5901 bool Indexed = AM != ISD::UNINDEXED; 5902 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5903 5904 SDVTList VTs = Indexed ? 5905 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5906 SDValue Ops[] = { Chain, Ptr, Offset }; 5907 FoldingSetNodeID ID; 5908 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5909 ID.AddInteger(MemVT.getRawBits()); 5910 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5911 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5912 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5913 void *IP = nullptr; 5914 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5915 cast<LoadSDNode>(E)->refineAlignment(MMO); 5916 return SDValue(E, 0); 5917 } 5918 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5919 ExtType, MemVT, MMO); 5920 createOperands(N, Ops); 5921 5922 CSEMap.InsertNode(N, IP); 5923 InsertNode(N); 5924 return SDValue(N, 0); 5925 } 5926 5927 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5928 SDValue Ptr, MachinePointerInfo PtrInfo, 5929 unsigned Alignment, 5930 MachineMemOperand::Flags MMOFlags, 5931 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5932 SDValue Undef = getUNDEF(Ptr.getValueType()); 5933 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5934 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5935 } 5936 5937 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5938 SDValue Ptr, MachineMemOperand *MMO) { 5939 SDValue Undef = getUNDEF(Ptr.getValueType()); 5940 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5941 VT, MMO); 5942 } 5943 5944 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5945 EVT VT, SDValue Chain, SDValue Ptr, 5946 MachinePointerInfo PtrInfo, EVT MemVT, 5947 unsigned Alignment, 5948 MachineMemOperand::Flags MMOFlags, 5949 const AAMDNodes &AAInfo) { 5950 SDValue Undef = getUNDEF(Ptr.getValueType()); 5951 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5952 MemVT, Alignment, MMOFlags, AAInfo); 5953 } 5954 5955 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5956 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5957 MachineMemOperand *MMO) { 5958 SDValue Undef = getUNDEF(Ptr.getValueType()); 5959 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5960 MemVT, MMO); 5961 } 5962 5963 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5964 SDValue Base, SDValue Offset, 5965 ISD::MemIndexedMode AM) { 5966 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5967 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5968 // Don't propagate the invariant or dereferenceable flags. 5969 auto MMOFlags = 5970 LD->getMemOperand()->getFlags() & 5971 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5972 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5973 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5974 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 5975 LD->getAAInfo()); 5976 } 5977 5978 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5979 SDValue Ptr, MachinePointerInfo PtrInfo, 5980 unsigned Alignment, 5981 MachineMemOperand::Flags MMOFlags, 5982 const AAMDNodes &AAInfo) { 5983 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5984 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5985 Alignment = getEVTAlignment(Val.getValueType()); 5986 5987 MMOFlags |= MachineMemOperand::MOStore; 5988 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5989 5990 if (PtrInfo.V.isNull()) 5991 PtrInfo = InferPointerInfo(*this, Ptr); 5992 5993 MachineFunction &MF = getMachineFunction(); 5994 MachineMemOperand *MMO = MF.getMachineMemOperand( 5995 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 5996 return getStore(Chain, dl, Val, Ptr, MMO); 5997 } 5998 5999 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6000 SDValue Ptr, MachineMemOperand *MMO) { 6001 assert(Chain.getValueType() == MVT::Other && 6002 "Invalid chain type"); 6003 EVT VT = Val.getValueType(); 6004 SDVTList VTs = getVTList(MVT::Other); 6005 SDValue Undef = getUNDEF(Ptr.getValueType()); 6006 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6007 FoldingSetNodeID ID; 6008 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6009 ID.AddInteger(VT.getRawBits()); 6010 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6011 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6012 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6013 void *IP = nullptr; 6014 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6015 cast<StoreSDNode>(E)->refineAlignment(MMO); 6016 return SDValue(E, 0); 6017 } 6018 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6019 ISD::UNINDEXED, false, VT, MMO); 6020 createOperands(N, Ops); 6021 6022 CSEMap.InsertNode(N, IP); 6023 InsertNode(N); 6024 return SDValue(N, 0); 6025 } 6026 6027 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6028 SDValue Ptr, MachinePointerInfo PtrInfo, 6029 EVT SVT, unsigned Alignment, 6030 MachineMemOperand::Flags MMOFlags, 6031 const AAMDNodes &AAInfo) { 6032 assert(Chain.getValueType() == MVT::Other && 6033 "Invalid chain type"); 6034 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6035 Alignment = getEVTAlignment(SVT); 6036 6037 MMOFlags |= MachineMemOperand::MOStore; 6038 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6039 6040 if (PtrInfo.V.isNull()) 6041 PtrInfo = InferPointerInfo(*this, Ptr); 6042 6043 MachineFunction &MF = getMachineFunction(); 6044 MachineMemOperand *MMO = MF.getMachineMemOperand( 6045 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6046 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6047 } 6048 6049 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6050 SDValue Ptr, EVT SVT, 6051 MachineMemOperand *MMO) { 6052 EVT VT = Val.getValueType(); 6053 6054 assert(Chain.getValueType() == MVT::Other && 6055 "Invalid chain type"); 6056 if (VT == SVT) 6057 return getStore(Chain, dl, Val, Ptr, MMO); 6058 6059 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6060 "Should only be a truncating store, not extending!"); 6061 assert(VT.isInteger() == SVT.isInteger() && 6062 "Can't do FP-INT conversion!"); 6063 assert(VT.isVector() == SVT.isVector() && 6064 "Cannot use trunc store to convert to or from a vector!"); 6065 assert((!VT.isVector() || 6066 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6067 "Cannot use trunc store to change the number of vector elements!"); 6068 6069 SDVTList VTs = getVTList(MVT::Other); 6070 SDValue Undef = getUNDEF(Ptr.getValueType()); 6071 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6072 FoldingSetNodeID ID; 6073 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6074 ID.AddInteger(SVT.getRawBits()); 6075 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6076 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6077 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6078 void *IP = nullptr; 6079 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6080 cast<StoreSDNode>(E)->refineAlignment(MMO); 6081 return SDValue(E, 0); 6082 } 6083 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6084 ISD::UNINDEXED, true, SVT, MMO); 6085 createOperands(N, Ops); 6086 6087 CSEMap.InsertNode(N, IP); 6088 InsertNode(N); 6089 return SDValue(N, 0); 6090 } 6091 6092 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6093 SDValue Base, SDValue Offset, 6094 ISD::MemIndexedMode AM) { 6095 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6096 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6097 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6098 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6099 FoldingSetNodeID ID; 6100 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6101 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6102 ID.AddInteger(ST->getRawSubclassData()); 6103 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6104 void *IP = nullptr; 6105 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6106 return SDValue(E, 0); 6107 6108 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6109 ST->isTruncatingStore(), ST->getMemoryVT(), 6110 ST->getMemOperand()); 6111 createOperands(N, Ops); 6112 6113 CSEMap.InsertNode(N, IP); 6114 InsertNode(N); 6115 return SDValue(N, 0); 6116 } 6117 6118 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6119 SDValue Ptr, SDValue Mask, SDValue Src0, 6120 EVT MemVT, MachineMemOperand *MMO, 6121 ISD::LoadExtType ExtTy, bool isExpanding) { 6122 SDVTList VTs = getVTList(VT, MVT::Other); 6123 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 6124 FoldingSetNodeID ID; 6125 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6126 ID.AddInteger(VT.getRawBits()); 6127 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6128 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6129 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6130 void *IP = nullptr; 6131 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6132 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6133 return SDValue(E, 0); 6134 } 6135 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6136 ExtTy, isExpanding, MemVT, MMO); 6137 createOperands(N, Ops); 6138 6139 CSEMap.InsertNode(N, IP); 6140 InsertNode(N); 6141 return SDValue(N, 0); 6142 } 6143 6144 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6145 SDValue Val, SDValue Ptr, SDValue Mask, 6146 EVT MemVT, MachineMemOperand *MMO, 6147 bool IsTruncating, bool IsCompressing) { 6148 assert(Chain.getValueType() == MVT::Other && 6149 "Invalid chain type"); 6150 EVT VT = Val.getValueType(); 6151 SDVTList VTs = getVTList(MVT::Other); 6152 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 6153 FoldingSetNodeID ID; 6154 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6155 ID.AddInteger(VT.getRawBits()); 6156 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6157 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6158 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6159 void *IP = nullptr; 6160 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6161 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6162 return SDValue(E, 0); 6163 } 6164 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6165 IsTruncating, IsCompressing, MemVT, MMO); 6166 createOperands(N, Ops); 6167 6168 CSEMap.InsertNode(N, IP); 6169 InsertNode(N); 6170 return SDValue(N, 0); 6171 } 6172 6173 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6174 ArrayRef<SDValue> Ops, 6175 MachineMemOperand *MMO) { 6176 assert(Ops.size() == 5 && "Incompatible number of operands"); 6177 6178 FoldingSetNodeID ID; 6179 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6180 ID.AddInteger(VT.getRawBits()); 6181 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6182 dl.getIROrder(), VTs, VT, MMO)); 6183 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6184 void *IP = nullptr; 6185 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6186 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6187 return SDValue(E, 0); 6188 } 6189 6190 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6191 VTs, VT, MMO); 6192 createOperands(N, Ops); 6193 6194 assert(N->getValue().getValueType() == N->getValueType(0) && 6195 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6196 assert(N->getMask().getValueType().getVectorNumElements() == 6197 N->getValueType(0).getVectorNumElements() && 6198 "Vector width mismatch between mask and data"); 6199 assert(N->getIndex().getValueType().getVectorNumElements() == 6200 N->getValueType(0).getVectorNumElements() && 6201 "Vector width mismatch between index and data"); 6202 6203 CSEMap.InsertNode(N, IP); 6204 InsertNode(N); 6205 return SDValue(N, 0); 6206 } 6207 6208 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6209 ArrayRef<SDValue> Ops, 6210 MachineMemOperand *MMO) { 6211 assert(Ops.size() == 5 && "Incompatible number of operands"); 6212 6213 FoldingSetNodeID ID; 6214 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6215 ID.AddInteger(VT.getRawBits()); 6216 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6217 dl.getIROrder(), VTs, VT, MMO)); 6218 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6219 void *IP = nullptr; 6220 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6221 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6222 return SDValue(E, 0); 6223 } 6224 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6225 VTs, VT, MMO); 6226 createOperands(N, Ops); 6227 6228 assert(N->getMask().getValueType().getVectorNumElements() == 6229 N->getValue().getValueType().getVectorNumElements() && 6230 "Vector width mismatch between mask and data"); 6231 assert(N->getIndex().getValueType().getVectorNumElements() == 6232 N->getValue().getValueType().getVectorNumElements() && 6233 "Vector width mismatch between index and data"); 6234 6235 CSEMap.InsertNode(N, IP); 6236 InsertNode(N); 6237 return SDValue(N, 0); 6238 } 6239 6240 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 6241 SDValue Ptr, SDValue SV, unsigned Align) { 6242 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 6243 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 6244 } 6245 6246 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6247 ArrayRef<SDUse> Ops) { 6248 switch (Ops.size()) { 6249 case 0: return getNode(Opcode, DL, VT); 6250 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 6251 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 6252 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6253 default: break; 6254 } 6255 6256 // Copy from an SDUse array into an SDValue array for use with 6257 // the regular getNode logic. 6258 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 6259 return getNode(Opcode, DL, VT, NewOps); 6260 } 6261 6262 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6263 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 6264 unsigned NumOps = Ops.size(); 6265 switch (NumOps) { 6266 case 0: return getNode(Opcode, DL, VT); 6267 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 6268 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 6269 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6270 default: break; 6271 } 6272 6273 switch (Opcode) { 6274 default: break; 6275 case ISD::CONCAT_VECTORS: 6276 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 6277 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 6278 return V; 6279 break; 6280 case ISD::SELECT_CC: 6281 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 6282 assert(Ops[0].getValueType() == Ops[1].getValueType() && 6283 "LHS and RHS of condition must have same type!"); 6284 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6285 "True and False arms of SelectCC must have same type!"); 6286 assert(Ops[2].getValueType() == VT && 6287 "select_cc node must be of same type as true and false value!"); 6288 break; 6289 case ISD::BR_CC: 6290 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 6291 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6292 "LHS/RHS of comparison should match types!"); 6293 break; 6294 } 6295 6296 // Memoize nodes. 6297 SDNode *N; 6298 SDVTList VTs = getVTList(VT); 6299 6300 if (VT != MVT::Glue) { 6301 FoldingSetNodeID ID; 6302 AddNodeIDNode(ID, Opcode, VTs, Ops); 6303 void *IP = nullptr; 6304 6305 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6306 return SDValue(E, 0); 6307 6308 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6309 createOperands(N, Ops); 6310 6311 CSEMap.InsertNode(N, IP); 6312 } else { 6313 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6314 createOperands(N, Ops); 6315 } 6316 6317 InsertNode(N); 6318 return SDValue(N, 0); 6319 } 6320 6321 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6322 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 6323 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 6324 } 6325 6326 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6327 ArrayRef<SDValue> Ops) { 6328 if (VTList.NumVTs == 1) 6329 return getNode(Opcode, DL, VTList.VTs[0], Ops); 6330 6331 #if 0 6332 switch (Opcode) { 6333 // FIXME: figure out how to safely handle things like 6334 // int foo(int x) { return 1 << (x & 255); } 6335 // int bar() { return foo(256); } 6336 case ISD::SRA_PARTS: 6337 case ISD::SRL_PARTS: 6338 case ISD::SHL_PARTS: 6339 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 6340 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 6341 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6342 else if (N3.getOpcode() == ISD::AND) 6343 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 6344 // If the and is only masking out bits that cannot effect the shift, 6345 // eliminate the and. 6346 unsigned NumBits = VT.getScalarSizeInBits()*2; 6347 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 6348 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6349 } 6350 break; 6351 } 6352 #endif 6353 6354 // Memoize the node unless it returns a flag. 6355 SDNode *N; 6356 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6357 FoldingSetNodeID ID; 6358 AddNodeIDNode(ID, Opcode, VTList, Ops); 6359 void *IP = nullptr; 6360 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6361 return SDValue(E, 0); 6362 6363 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6364 createOperands(N, Ops); 6365 CSEMap.InsertNode(N, IP); 6366 } else { 6367 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6368 createOperands(N, Ops); 6369 } 6370 InsertNode(N); 6371 return SDValue(N, 0); 6372 } 6373 6374 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6375 SDVTList VTList) { 6376 return getNode(Opcode, DL, VTList, None); 6377 } 6378 6379 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6380 SDValue N1) { 6381 SDValue Ops[] = { N1 }; 6382 return getNode(Opcode, DL, VTList, Ops); 6383 } 6384 6385 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6386 SDValue N1, SDValue N2) { 6387 SDValue Ops[] = { N1, N2 }; 6388 return getNode(Opcode, DL, VTList, Ops); 6389 } 6390 6391 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6392 SDValue N1, SDValue N2, SDValue N3) { 6393 SDValue Ops[] = { N1, N2, N3 }; 6394 return getNode(Opcode, DL, VTList, Ops); 6395 } 6396 6397 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6398 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6399 SDValue Ops[] = { N1, N2, N3, N4 }; 6400 return getNode(Opcode, DL, VTList, Ops); 6401 } 6402 6403 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6404 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6405 SDValue N5) { 6406 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6407 return getNode(Opcode, DL, VTList, Ops); 6408 } 6409 6410 SDVTList SelectionDAG::getVTList(EVT VT) { 6411 return makeVTList(SDNode::getValueTypeList(VT), 1); 6412 } 6413 6414 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 6415 FoldingSetNodeID ID; 6416 ID.AddInteger(2U); 6417 ID.AddInteger(VT1.getRawBits()); 6418 ID.AddInteger(VT2.getRawBits()); 6419 6420 void *IP = nullptr; 6421 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6422 if (!Result) { 6423 EVT *Array = Allocator.Allocate<EVT>(2); 6424 Array[0] = VT1; 6425 Array[1] = VT2; 6426 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 6427 VTListMap.InsertNode(Result, IP); 6428 } 6429 return Result->getSDVTList(); 6430 } 6431 6432 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 6433 FoldingSetNodeID ID; 6434 ID.AddInteger(3U); 6435 ID.AddInteger(VT1.getRawBits()); 6436 ID.AddInteger(VT2.getRawBits()); 6437 ID.AddInteger(VT3.getRawBits()); 6438 6439 void *IP = nullptr; 6440 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6441 if (!Result) { 6442 EVT *Array = Allocator.Allocate<EVT>(3); 6443 Array[0] = VT1; 6444 Array[1] = VT2; 6445 Array[2] = VT3; 6446 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 6447 VTListMap.InsertNode(Result, IP); 6448 } 6449 return Result->getSDVTList(); 6450 } 6451 6452 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 6453 FoldingSetNodeID ID; 6454 ID.AddInteger(4U); 6455 ID.AddInteger(VT1.getRawBits()); 6456 ID.AddInteger(VT2.getRawBits()); 6457 ID.AddInteger(VT3.getRawBits()); 6458 ID.AddInteger(VT4.getRawBits()); 6459 6460 void *IP = nullptr; 6461 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6462 if (!Result) { 6463 EVT *Array = Allocator.Allocate<EVT>(4); 6464 Array[0] = VT1; 6465 Array[1] = VT2; 6466 Array[2] = VT3; 6467 Array[3] = VT4; 6468 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6469 VTListMap.InsertNode(Result, IP); 6470 } 6471 return Result->getSDVTList(); 6472 } 6473 6474 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6475 unsigned NumVTs = VTs.size(); 6476 FoldingSetNodeID ID; 6477 ID.AddInteger(NumVTs); 6478 for (unsigned index = 0; index < NumVTs; index++) { 6479 ID.AddInteger(VTs[index].getRawBits()); 6480 } 6481 6482 void *IP = nullptr; 6483 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6484 if (!Result) { 6485 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6486 std::copy(VTs.begin(), VTs.end(), Array); 6487 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6488 VTListMap.InsertNode(Result, IP); 6489 } 6490 return Result->getSDVTList(); 6491 } 6492 6493 6494 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6495 /// specified operands. If the resultant node already exists in the DAG, 6496 /// this does not modify the specified node, instead it returns the node that 6497 /// already exists. If the resultant node does not exist in the DAG, the 6498 /// input node is returned. As a degenerate case, if you specify the same 6499 /// input operands as the node already has, the input node is returned. 6500 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6501 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6502 6503 // Check to see if there is no change. 6504 if (Op == N->getOperand(0)) return N; 6505 6506 // See if the modified node already exists. 6507 void *InsertPos = nullptr; 6508 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6509 return Existing; 6510 6511 // Nope it doesn't. Remove the node from its current place in the maps. 6512 if (InsertPos) 6513 if (!RemoveNodeFromCSEMaps(N)) 6514 InsertPos = nullptr; 6515 6516 // Now we update the operands. 6517 N->OperandList[0].set(Op); 6518 6519 // If this gets put into a CSE map, add it. 6520 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6521 return N; 6522 } 6523 6524 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 6525 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 6526 6527 // Check to see if there is no change. 6528 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 6529 return N; // No operands changed, just return the input node. 6530 6531 // See if the modified node already exists. 6532 void *InsertPos = nullptr; 6533 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 6534 return Existing; 6535 6536 // Nope it doesn't. Remove the node from its current place in the maps. 6537 if (InsertPos) 6538 if (!RemoveNodeFromCSEMaps(N)) 6539 InsertPos = nullptr; 6540 6541 // Now we update the operands. 6542 if (N->OperandList[0] != Op1) 6543 N->OperandList[0].set(Op1); 6544 if (N->OperandList[1] != Op2) 6545 N->OperandList[1].set(Op2); 6546 6547 // If this gets put into a CSE map, add it. 6548 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6549 return N; 6550 } 6551 6552 SDNode *SelectionDAG:: 6553 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6554 SDValue Ops[] = { Op1, Op2, Op3 }; 6555 return UpdateNodeOperands(N, Ops); 6556 } 6557 6558 SDNode *SelectionDAG:: 6559 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6560 SDValue Op3, SDValue Op4) { 6561 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6562 return UpdateNodeOperands(N, Ops); 6563 } 6564 6565 SDNode *SelectionDAG:: 6566 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6567 SDValue Op3, SDValue Op4, SDValue Op5) { 6568 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6569 return UpdateNodeOperands(N, Ops); 6570 } 6571 6572 SDNode *SelectionDAG:: 6573 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6574 unsigned NumOps = Ops.size(); 6575 assert(N->getNumOperands() == NumOps && 6576 "Update with wrong number of operands"); 6577 6578 // If no operands changed just return the input node. 6579 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6580 return N; 6581 6582 // See if the modified node already exists. 6583 void *InsertPos = nullptr; 6584 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6585 return Existing; 6586 6587 // Nope it doesn't. Remove the node from its current place in the maps. 6588 if (InsertPos) 6589 if (!RemoveNodeFromCSEMaps(N)) 6590 InsertPos = nullptr; 6591 6592 // Now we update the operands. 6593 for (unsigned i = 0; i != NumOps; ++i) 6594 if (N->OperandList[i] != Ops[i]) 6595 N->OperandList[i].set(Ops[i]); 6596 6597 // If this gets put into a CSE map, add it. 6598 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6599 return N; 6600 } 6601 6602 /// DropOperands - Release the operands and set this node to have 6603 /// zero operands. 6604 void SDNode::DropOperands() { 6605 // Unlike the code in MorphNodeTo that does this, we don't need to 6606 // watch for dead nodes here. 6607 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6608 SDUse &Use = *I++; 6609 Use.set(SDValue()); 6610 } 6611 } 6612 6613 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6614 /// machine opcode. 6615 /// 6616 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6617 EVT VT) { 6618 SDVTList VTs = getVTList(VT); 6619 return SelectNodeTo(N, MachineOpc, VTs, None); 6620 } 6621 6622 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6623 EVT VT, SDValue Op1) { 6624 SDVTList VTs = getVTList(VT); 6625 SDValue Ops[] = { Op1 }; 6626 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6627 } 6628 6629 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6630 EVT VT, SDValue Op1, 6631 SDValue Op2) { 6632 SDVTList VTs = getVTList(VT); 6633 SDValue Ops[] = { Op1, Op2 }; 6634 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6635 } 6636 6637 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6638 EVT VT, SDValue Op1, 6639 SDValue Op2, SDValue Op3) { 6640 SDVTList VTs = getVTList(VT); 6641 SDValue Ops[] = { Op1, Op2, Op3 }; 6642 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6643 } 6644 6645 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6646 EVT VT, ArrayRef<SDValue> Ops) { 6647 SDVTList VTs = getVTList(VT); 6648 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6649 } 6650 6651 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6652 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6653 SDVTList VTs = getVTList(VT1, VT2); 6654 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6655 } 6656 6657 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6658 EVT VT1, EVT VT2) { 6659 SDVTList VTs = getVTList(VT1, VT2); 6660 return SelectNodeTo(N, MachineOpc, VTs, None); 6661 } 6662 6663 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6664 EVT VT1, EVT VT2, EVT VT3, 6665 ArrayRef<SDValue> Ops) { 6666 SDVTList VTs = getVTList(VT1, VT2, VT3); 6667 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6668 } 6669 6670 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6671 EVT VT1, EVT VT2, 6672 SDValue Op1, SDValue Op2) { 6673 SDVTList VTs = getVTList(VT1, VT2); 6674 SDValue Ops[] = { Op1, Op2 }; 6675 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6676 } 6677 6678 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6679 SDVTList VTs,ArrayRef<SDValue> Ops) { 6680 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6681 // Reset the NodeID to -1. 6682 New->setNodeId(-1); 6683 if (New != N) { 6684 ReplaceAllUsesWith(N, New); 6685 RemoveDeadNode(N); 6686 } 6687 return New; 6688 } 6689 6690 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6691 /// the line number information on the merged node since it is not possible to 6692 /// preserve the information that operation is associated with multiple lines. 6693 /// This will make the debugger working better at -O0, were there is a higher 6694 /// probability having other instructions associated with that line. 6695 /// 6696 /// For IROrder, we keep the smaller of the two 6697 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6698 DebugLoc NLoc = N->getDebugLoc(); 6699 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6700 N->setDebugLoc(DebugLoc()); 6701 } 6702 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6703 N->setIROrder(Order); 6704 return N; 6705 } 6706 6707 /// MorphNodeTo - This *mutates* the specified node to have the specified 6708 /// return type, opcode, and operands. 6709 /// 6710 /// Note that MorphNodeTo returns the resultant node. If there is already a 6711 /// node of the specified opcode and operands, it returns that node instead of 6712 /// the current one. Note that the SDLoc need not be the same. 6713 /// 6714 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6715 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6716 /// node, and because it doesn't require CSE recalculation for any of 6717 /// the node's users. 6718 /// 6719 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6720 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6721 /// the legalizer which maintain worklists that would need to be updated when 6722 /// deleting things. 6723 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6724 SDVTList VTs, ArrayRef<SDValue> Ops) { 6725 // If an identical node already exists, use it. 6726 void *IP = nullptr; 6727 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6728 FoldingSetNodeID ID; 6729 AddNodeIDNode(ID, Opc, VTs, Ops); 6730 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6731 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6732 } 6733 6734 if (!RemoveNodeFromCSEMaps(N)) 6735 IP = nullptr; 6736 6737 // Start the morphing. 6738 N->NodeType = Opc; 6739 N->ValueList = VTs.VTs; 6740 N->NumValues = VTs.NumVTs; 6741 6742 // Clear the operands list, updating used nodes to remove this from their 6743 // use list. Keep track of any operands that become dead as a result. 6744 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6745 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6746 SDUse &Use = *I++; 6747 SDNode *Used = Use.getNode(); 6748 Use.set(SDValue()); 6749 if (Used->use_empty()) 6750 DeadNodeSet.insert(Used); 6751 } 6752 6753 // For MachineNode, initialize the memory references information. 6754 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6755 MN->setMemRefs(nullptr, nullptr); 6756 6757 // Swap for an appropriately sized array from the recycler. 6758 removeOperands(N); 6759 createOperands(N, Ops); 6760 6761 // Delete any nodes that are still dead after adding the uses for the 6762 // new operands. 6763 if (!DeadNodeSet.empty()) { 6764 SmallVector<SDNode *, 16> DeadNodes; 6765 for (SDNode *N : DeadNodeSet) 6766 if (N->use_empty()) 6767 DeadNodes.push_back(N); 6768 RemoveDeadNodes(DeadNodes); 6769 } 6770 6771 if (IP) 6772 CSEMap.InsertNode(N, IP); // Memoize the new node. 6773 return N; 6774 } 6775 6776 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 6777 unsigned OrigOpc = Node->getOpcode(); 6778 unsigned NewOpc; 6779 bool IsUnary = false; 6780 bool IsTernary = false; 6781 switch (OrigOpc) { 6782 default: 6783 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 6784 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 6785 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 6786 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 6787 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 6788 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 6789 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; 6790 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 6791 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 6792 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 6793 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 6794 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 6795 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 6796 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 6797 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 6798 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 6799 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 6800 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 6801 case ISD::STRICT_FNEARBYINT: 6802 NewOpc = ISD::FNEARBYINT; 6803 IsUnary = true; 6804 break; 6805 } 6806 6807 // We're taking this node out of the chain, so we need to re-link things. 6808 SDValue InputChain = Node->getOperand(0); 6809 SDValue OutputChain = SDValue(Node, 1); 6810 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 6811 6812 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 6813 SDNode *Res = nullptr; 6814 if (IsUnary) 6815 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 6816 else if (IsTernary) 6817 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6818 Node->getOperand(2), 6819 Node->getOperand(3)}); 6820 else 6821 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6822 Node->getOperand(2) }); 6823 6824 // MorphNodeTo can operate in two ways: if an existing node with the 6825 // specified operands exists, it can just return it. Otherwise, it 6826 // updates the node in place to have the requested operands. 6827 if (Res == Node) { 6828 // If we updated the node in place, reset the node ID. To the isel, 6829 // this should be just like a newly allocated machine node. 6830 Res->setNodeId(-1); 6831 } else { 6832 ReplaceAllUsesWith(Node, Res); 6833 RemoveDeadNode(Node); 6834 } 6835 6836 return Res; 6837 } 6838 6839 /// getMachineNode - These are used for target selectors to create a new node 6840 /// with specified return type(s), MachineInstr opcode, and operands. 6841 /// 6842 /// Note that getMachineNode returns the resultant node. If there is already a 6843 /// node of the specified opcode and operands, it returns that node instead of 6844 /// the current one. 6845 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6846 EVT VT) { 6847 SDVTList VTs = getVTList(VT); 6848 return getMachineNode(Opcode, dl, VTs, None); 6849 } 6850 6851 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6852 EVT VT, SDValue Op1) { 6853 SDVTList VTs = getVTList(VT); 6854 SDValue Ops[] = { Op1 }; 6855 return getMachineNode(Opcode, dl, VTs, Ops); 6856 } 6857 6858 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6859 EVT VT, SDValue Op1, SDValue Op2) { 6860 SDVTList VTs = getVTList(VT); 6861 SDValue Ops[] = { Op1, Op2 }; 6862 return getMachineNode(Opcode, dl, VTs, Ops); 6863 } 6864 6865 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6866 EVT VT, SDValue Op1, SDValue Op2, 6867 SDValue Op3) { 6868 SDVTList VTs = getVTList(VT); 6869 SDValue Ops[] = { Op1, Op2, Op3 }; 6870 return getMachineNode(Opcode, dl, VTs, Ops); 6871 } 6872 6873 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6874 EVT VT, ArrayRef<SDValue> Ops) { 6875 SDVTList VTs = getVTList(VT); 6876 return getMachineNode(Opcode, dl, VTs, Ops); 6877 } 6878 6879 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6880 EVT VT1, EVT VT2, SDValue Op1, 6881 SDValue Op2) { 6882 SDVTList VTs = getVTList(VT1, VT2); 6883 SDValue Ops[] = { Op1, Op2 }; 6884 return getMachineNode(Opcode, dl, VTs, Ops); 6885 } 6886 6887 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6888 EVT VT1, EVT VT2, SDValue Op1, 6889 SDValue Op2, SDValue Op3) { 6890 SDVTList VTs = getVTList(VT1, VT2); 6891 SDValue Ops[] = { Op1, Op2, Op3 }; 6892 return getMachineNode(Opcode, dl, VTs, Ops); 6893 } 6894 6895 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6896 EVT VT1, EVT VT2, 6897 ArrayRef<SDValue> Ops) { 6898 SDVTList VTs = getVTList(VT1, VT2); 6899 return getMachineNode(Opcode, dl, VTs, Ops); 6900 } 6901 6902 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6903 EVT VT1, EVT VT2, EVT VT3, 6904 SDValue Op1, SDValue Op2) { 6905 SDVTList VTs = getVTList(VT1, VT2, VT3); 6906 SDValue Ops[] = { Op1, Op2 }; 6907 return getMachineNode(Opcode, dl, VTs, Ops); 6908 } 6909 6910 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6911 EVT VT1, EVT VT2, EVT VT3, 6912 SDValue Op1, SDValue Op2, 6913 SDValue Op3) { 6914 SDVTList VTs = getVTList(VT1, VT2, VT3); 6915 SDValue Ops[] = { Op1, Op2, Op3 }; 6916 return getMachineNode(Opcode, dl, VTs, Ops); 6917 } 6918 6919 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6920 EVT VT1, EVT VT2, EVT VT3, 6921 ArrayRef<SDValue> Ops) { 6922 SDVTList VTs = getVTList(VT1, VT2, VT3); 6923 return getMachineNode(Opcode, dl, VTs, Ops); 6924 } 6925 6926 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6927 ArrayRef<EVT> ResultTys, 6928 ArrayRef<SDValue> Ops) { 6929 SDVTList VTs = getVTList(ResultTys); 6930 return getMachineNode(Opcode, dl, VTs, Ops); 6931 } 6932 6933 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6934 SDVTList VTs, 6935 ArrayRef<SDValue> Ops) { 6936 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6937 MachineSDNode *N; 6938 void *IP = nullptr; 6939 6940 if (DoCSE) { 6941 FoldingSetNodeID ID; 6942 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6943 IP = nullptr; 6944 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6945 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 6946 } 6947 } 6948 6949 // Allocate a new MachineSDNode. 6950 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6951 createOperands(N, Ops); 6952 6953 if (DoCSE) 6954 CSEMap.InsertNode(N, IP); 6955 6956 InsertNode(N); 6957 return N; 6958 } 6959 6960 /// getTargetExtractSubreg - A convenience function for creating 6961 /// TargetOpcode::EXTRACT_SUBREG nodes. 6962 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6963 SDValue Operand) { 6964 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6965 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6966 VT, Operand, SRIdxVal); 6967 return SDValue(Subreg, 0); 6968 } 6969 6970 /// getTargetInsertSubreg - A convenience function for creating 6971 /// TargetOpcode::INSERT_SUBREG nodes. 6972 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6973 SDValue Operand, SDValue Subreg) { 6974 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6975 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6976 VT, Operand, Subreg, SRIdxVal); 6977 return SDValue(Result, 0); 6978 } 6979 6980 /// getNodeIfExists - Get the specified node if it's already available, or 6981 /// else return NULL. 6982 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6983 ArrayRef<SDValue> Ops, 6984 const SDNodeFlags Flags) { 6985 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6986 FoldingSetNodeID ID; 6987 AddNodeIDNode(ID, Opcode, VTList, Ops); 6988 void *IP = nullptr; 6989 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6990 E->intersectFlagsWith(Flags); 6991 return E; 6992 } 6993 } 6994 return nullptr; 6995 } 6996 6997 /// getDbgValue - Creates a SDDbgValue node. 6998 /// 6999 /// SDNode 7000 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7001 SDNode *N, unsigned R, bool IsIndirect, 7002 const DebugLoc &DL, unsigned O) { 7003 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7004 "Expected inlined-at fields to agree"); 7005 return new (DbgInfo->getAlloc()) 7006 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7007 } 7008 7009 /// Constant 7010 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7011 DIExpression *Expr, 7012 const Value *C, 7013 const DebugLoc &DL, unsigned O) { 7014 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7015 "Expected inlined-at fields to agree"); 7016 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7017 } 7018 7019 /// FrameIndex 7020 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7021 DIExpression *Expr, unsigned FI, 7022 const DebugLoc &DL, 7023 unsigned O) { 7024 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7025 "Expected inlined-at fields to agree"); 7026 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O); 7027 } 7028 7029 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 7030 unsigned OffsetInBits, 7031 unsigned SizeInBits) { 7032 SDNode *FromNode = From.getNode(); 7033 SDNode *ToNode = To.getNode(); 7034 assert(FromNode != ToNode); 7035 7036 SmallVector<SDDbgValue *, 2> ClonedDVs; 7037 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 7038 if (Dbg->getKind() != SDDbgValue::SDNODE) 7039 break; 7040 7041 DIVariable *Var = Dbg->getVariable(); 7042 auto *Expr = Dbg->getExpression(); 7043 // If a fragment is requested, update the expression. 7044 if (SizeInBits) { 7045 // When splitting a larger (e.g., sign-extended) value whose 7046 // lower bits are described with an SDDbgValue, do not attempt 7047 // to transfer the SDDbgValue to the upper bits. 7048 if (auto FI = Expr->getFragmentInfo()) 7049 if (OffsetInBits + SizeInBits > FI->SizeInBits) 7050 continue; 7051 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 7052 SizeInBits); 7053 if (!Fragment) 7054 continue; 7055 Expr = *Fragment; 7056 } 7057 // Clone the SDDbgValue and move it to To. 7058 SDDbgValue *Clone = 7059 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 7060 Dbg->getDebugLoc(), Dbg->getOrder()); 7061 ClonedDVs.push_back(Clone); 7062 Dbg->setIsInvalidated(); 7063 } 7064 7065 for (SDDbgValue *Dbg : ClonedDVs) 7066 AddDbgValue(Dbg, ToNode, false); 7067 } 7068 7069 void SelectionDAG::salvageDebugInfo(SDNode &N) { 7070 if (!N.getHasDebugValue()) 7071 return; 7072 for (auto DV : GetDbgValues(&N)) { 7073 if (DV->isInvalidated()) 7074 continue; 7075 switch (N.getOpcode()) { 7076 default: 7077 break; 7078 case ISD::ADD: 7079 SDValue N0 = N.getOperand(0); 7080 SDValue N1 = N.getOperand(1); 7081 if (!isConstantIntBuildVectorOrConstantInt(N0) && 7082 isConstantIntBuildVectorOrConstantInt(N1)) { 7083 uint64_t Offset = N.getConstantOperandVal(1); 7084 // Rewrite an ADD constant node into a DIExpression. Since we are 7085 // performing arithmetic to compute the variable's *value* in the 7086 // DIExpression, we need to mark the expression with a 7087 // DW_OP_stack_value. 7088 auto *DIExpr = DV->getExpression(); 7089 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 7090 DIExpression::WithStackValue); 7091 SDDbgValue *Clone = 7092 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 7093 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 7094 DV->setIsInvalidated(); 7095 AddDbgValue(Clone, N0.getNode(), false); 7096 DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this); 7097 dbgs() << " into " << *DIExpr << '\n'); 7098 } 7099 } 7100 } 7101 } 7102 7103 namespace { 7104 7105 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 7106 /// pointed to by a use iterator is deleted, increment the use iterator 7107 /// so that it doesn't dangle. 7108 /// 7109 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 7110 SDNode::use_iterator &UI; 7111 SDNode::use_iterator &UE; 7112 7113 void NodeDeleted(SDNode *N, SDNode *E) override { 7114 // Increment the iterator as needed. 7115 while (UI != UE && N == *UI) 7116 ++UI; 7117 } 7118 7119 public: 7120 RAUWUpdateListener(SelectionDAG &d, 7121 SDNode::use_iterator &ui, 7122 SDNode::use_iterator &ue) 7123 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 7124 }; 7125 7126 } // end anonymous namespace 7127 7128 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7129 /// This can cause recursive merging of nodes in the DAG. 7130 /// 7131 /// This version assumes From has a single result value. 7132 /// 7133 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 7134 SDNode *From = FromN.getNode(); 7135 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 7136 "Cannot replace with this method!"); 7137 assert(From != To.getNode() && "Cannot replace uses of with self"); 7138 7139 // Preserve Debug Values 7140 TransferDbgValues(FromN, To); 7141 7142 // Iterate over all the existing uses of From. New uses will be added 7143 // to the beginning of the use list, which we avoid visiting. 7144 // This specifically avoids visiting uses of From that arise while the 7145 // replacement is happening, because any such uses would be the result 7146 // of CSE: If an existing node looks like From after one of its operands 7147 // is replaced by To, we don't want to replace of all its users with To 7148 // too. See PR3018 for more info. 7149 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7150 RAUWUpdateListener Listener(*this, UI, UE); 7151 while (UI != UE) { 7152 SDNode *User = *UI; 7153 7154 // This node is about to morph, remove its old self from the CSE maps. 7155 RemoveNodeFromCSEMaps(User); 7156 7157 // A user can appear in a use list multiple times, and when this 7158 // happens the uses are usually next to each other in the list. 7159 // To help reduce the number of CSE recomputations, process all 7160 // the uses of this user that we can find this way. 7161 do { 7162 SDUse &Use = UI.getUse(); 7163 ++UI; 7164 Use.set(To); 7165 } while (UI != UE && *UI == User); 7166 7167 // Now that we have modified User, add it back to the CSE maps. If it 7168 // already exists there, recursively merge the results together. 7169 AddModifiedNodeToCSEMaps(User); 7170 } 7171 7172 // If we just RAUW'd the root, take note. 7173 if (FromN == getRoot()) 7174 setRoot(To); 7175 } 7176 7177 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7178 /// This can cause recursive merging of nodes in the DAG. 7179 /// 7180 /// This version assumes that for each value of From, there is a 7181 /// corresponding value in To in the same position with the same type. 7182 /// 7183 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 7184 #ifndef NDEBUG 7185 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7186 assert((!From->hasAnyUseOfValue(i) || 7187 From->getValueType(i) == To->getValueType(i)) && 7188 "Cannot use this version of ReplaceAllUsesWith!"); 7189 #endif 7190 7191 // Handle the trivial case. 7192 if (From == To) 7193 return; 7194 7195 // Preserve Debug Info. Only do this if there's a use. 7196 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7197 if (From->hasAnyUseOfValue(i)) { 7198 assert((i < To->getNumValues()) && "Invalid To location"); 7199 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 7200 } 7201 7202 // Iterate over just the existing users of From. See the comments in 7203 // the ReplaceAllUsesWith above. 7204 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7205 RAUWUpdateListener Listener(*this, UI, UE); 7206 while (UI != UE) { 7207 SDNode *User = *UI; 7208 7209 // This node is about to morph, remove its old self from the CSE maps. 7210 RemoveNodeFromCSEMaps(User); 7211 7212 // A user can appear in a use list multiple times, and when this 7213 // happens the uses are usually next to each other in the list. 7214 // To help reduce the number of CSE recomputations, process all 7215 // the uses of this user that we can find this way. 7216 do { 7217 SDUse &Use = UI.getUse(); 7218 ++UI; 7219 Use.setNode(To); 7220 } while (UI != UE && *UI == User); 7221 7222 // Now that we have modified User, add it back to the CSE maps. If it 7223 // already exists there, recursively merge the results together. 7224 AddModifiedNodeToCSEMaps(User); 7225 } 7226 7227 // If we just RAUW'd the root, take note. 7228 if (From == getRoot().getNode()) 7229 setRoot(SDValue(To, getRoot().getResNo())); 7230 } 7231 7232 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7233 /// This can cause recursive merging of nodes in the DAG. 7234 /// 7235 /// This version can replace From with any result values. To must match the 7236 /// number and types of values returned by From. 7237 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 7238 if (From->getNumValues() == 1) // Handle the simple case efficiently. 7239 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 7240 7241 // Preserve Debug Info. 7242 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7243 TransferDbgValues(SDValue(From, i), *To); 7244 7245 // Iterate over just the existing users of From. See the comments in 7246 // the ReplaceAllUsesWith above. 7247 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7248 RAUWUpdateListener Listener(*this, UI, UE); 7249 while (UI != UE) { 7250 SDNode *User = *UI; 7251 7252 // This node is about to morph, remove its old self from the CSE maps. 7253 RemoveNodeFromCSEMaps(User); 7254 7255 // A user can appear in a use list multiple times, and when this 7256 // happens the uses are usually next to each other in the list. 7257 // To help reduce the number of CSE recomputations, process all 7258 // the uses of this user that we can find this way. 7259 do { 7260 SDUse &Use = UI.getUse(); 7261 const SDValue &ToOp = To[Use.getResNo()]; 7262 ++UI; 7263 Use.set(ToOp); 7264 } while (UI != UE && *UI == User); 7265 7266 // Now that we have modified User, add it back to the CSE maps. If it 7267 // already exists there, recursively merge the results together. 7268 AddModifiedNodeToCSEMaps(User); 7269 } 7270 7271 // If we just RAUW'd the root, take note. 7272 if (From == getRoot().getNode()) 7273 setRoot(SDValue(To[getRoot().getResNo()])); 7274 } 7275 7276 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 7277 /// uses of other values produced by From.getNode() alone. The Deleted 7278 /// vector is handled the same way as for ReplaceAllUsesWith. 7279 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 7280 // Handle the really simple, really trivial case efficiently. 7281 if (From == To) return; 7282 7283 // Handle the simple, trivial, case efficiently. 7284 if (From.getNode()->getNumValues() == 1) { 7285 ReplaceAllUsesWith(From, To); 7286 return; 7287 } 7288 7289 // Preserve Debug Info. 7290 TransferDbgValues(From, To); 7291 7292 // Iterate over just the existing users of From. See the comments in 7293 // the ReplaceAllUsesWith above. 7294 SDNode::use_iterator UI = From.getNode()->use_begin(), 7295 UE = From.getNode()->use_end(); 7296 RAUWUpdateListener Listener(*this, UI, UE); 7297 while (UI != UE) { 7298 SDNode *User = *UI; 7299 bool UserRemovedFromCSEMaps = false; 7300 7301 // A user can appear in a use list multiple times, and when this 7302 // happens the uses are usually next to each other in the list. 7303 // To help reduce the number of CSE recomputations, process all 7304 // the uses of this user that we can find this way. 7305 do { 7306 SDUse &Use = UI.getUse(); 7307 7308 // Skip uses of different values from the same node. 7309 if (Use.getResNo() != From.getResNo()) { 7310 ++UI; 7311 continue; 7312 } 7313 7314 // If this node hasn't been modified yet, it's still in the CSE maps, 7315 // so remove its old self from the CSE maps. 7316 if (!UserRemovedFromCSEMaps) { 7317 RemoveNodeFromCSEMaps(User); 7318 UserRemovedFromCSEMaps = true; 7319 } 7320 7321 ++UI; 7322 Use.set(To); 7323 } while (UI != UE && *UI == User); 7324 7325 // We are iterating over all uses of the From node, so if a use 7326 // doesn't use the specific value, no changes are made. 7327 if (!UserRemovedFromCSEMaps) 7328 continue; 7329 7330 // Now that we have modified User, add it back to the CSE maps. If it 7331 // already exists there, recursively merge the results together. 7332 AddModifiedNodeToCSEMaps(User); 7333 } 7334 7335 // If we just RAUW'd the root, take note. 7336 if (From == getRoot()) 7337 setRoot(To); 7338 } 7339 7340 namespace { 7341 7342 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 7343 /// to record information about a use. 7344 struct UseMemo { 7345 SDNode *User; 7346 unsigned Index; 7347 SDUse *Use; 7348 }; 7349 7350 /// operator< - Sort Memos by User. 7351 bool operator<(const UseMemo &L, const UseMemo &R) { 7352 return (intptr_t)L.User < (intptr_t)R.User; 7353 } 7354 7355 } // end anonymous namespace 7356 7357 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 7358 /// uses of other values produced by From.getNode() alone. The same value 7359 /// may appear in both the From and To list. The Deleted vector is 7360 /// handled the same way as for ReplaceAllUsesWith. 7361 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 7362 const SDValue *To, 7363 unsigned Num){ 7364 // Handle the simple, trivial case efficiently. 7365 if (Num == 1) 7366 return ReplaceAllUsesOfValueWith(*From, *To); 7367 7368 TransferDbgValues(*From, *To); 7369 7370 // Read up all the uses and make records of them. This helps 7371 // processing new uses that are introduced during the 7372 // replacement process. 7373 SmallVector<UseMemo, 4> Uses; 7374 for (unsigned i = 0; i != Num; ++i) { 7375 unsigned FromResNo = From[i].getResNo(); 7376 SDNode *FromNode = From[i].getNode(); 7377 for (SDNode::use_iterator UI = FromNode->use_begin(), 7378 E = FromNode->use_end(); UI != E; ++UI) { 7379 SDUse &Use = UI.getUse(); 7380 if (Use.getResNo() == FromResNo) { 7381 UseMemo Memo = { *UI, i, &Use }; 7382 Uses.push_back(Memo); 7383 } 7384 } 7385 } 7386 7387 // Sort the uses, so that all the uses from a given User are together. 7388 std::sort(Uses.begin(), Uses.end()); 7389 7390 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 7391 UseIndex != UseIndexEnd; ) { 7392 // We know that this user uses some value of From. If it is the right 7393 // value, update it. 7394 SDNode *User = Uses[UseIndex].User; 7395 7396 // This node is about to morph, remove its old self from the CSE maps. 7397 RemoveNodeFromCSEMaps(User); 7398 7399 // The Uses array is sorted, so all the uses for a given User 7400 // are next to each other in the list. 7401 // To help reduce the number of CSE recomputations, process all 7402 // the uses of this user that we can find this way. 7403 do { 7404 unsigned i = Uses[UseIndex].Index; 7405 SDUse &Use = *Uses[UseIndex].Use; 7406 ++UseIndex; 7407 7408 Use.set(To[i]); 7409 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 7410 7411 // Now that we have modified User, add it back to the CSE maps. If it 7412 // already exists there, recursively merge the results together. 7413 AddModifiedNodeToCSEMaps(User); 7414 } 7415 } 7416 7417 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 7418 /// based on their topological order. It returns the maximum id and a vector 7419 /// of the SDNodes* in assigned order by reference. 7420 unsigned SelectionDAG::AssignTopologicalOrder() { 7421 unsigned DAGSize = 0; 7422 7423 // SortedPos tracks the progress of the algorithm. Nodes before it are 7424 // sorted, nodes after it are unsorted. When the algorithm completes 7425 // it is at the end of the list. 7426 allnodes_iterator SortedPos = allnodes_begin(); 7427 7428 // Visit all the nodes. Move nodes with no operands to the front of 7429 // the list immediately. Annotate nodes that do have operands with their 7430 // operand count. Before we do this, the Node Id fields of the nodes 7431 // may contain arbitrary values. After, the Node Id fields for nodes 7432 // before SortedPos will contain the topological sort index, and the 7433 // Node Id fields for nodes At SortedPos and after will contain the 7434 // count of outstanding operands. 7435 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 7436 SDNode *N = &*I++; 7437 checkForCycles(N, this); 7438 unsigned Degree = N->getNumOperands(); 7439 if (Degree == 0) { 7440 // A node with no uses, add it to the result array immediately. 7441 N->setNodeId(DAGSize++); 7442 allnodes_iterator Q(N); 7443 if (Q != SortedPos) 7444 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 7445 assert(SortedPos != AllNodes.end() && "Overran node list"); 7446 ++SortedPos; 7447 } else { 7448 // Temporarily use the Node Id as scratch space for the degree count. 7449 N->setNodeId(Degree); 7450 } 7451 } 7452 7453 // Visit all the nodes. As we iterate, move nodes into sorted order, 7454 // such that by the time the end is reached all nodes will be sorted. 7455 for (SDNode &Node : allnodes()) { 7456 SDNode *N = &Node; 7457 checkForCycles(N, this); 7458 // N is in sorted position, so all its uses have one less operand 7459 // that needs to be sorted. 7460 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 7461 UI != UE; ++UI) { 7462 SDNode *P = *UI; 7463 unsigned Degree = P->getNodeId(); 7464 assert(Degree != 0 && "Invalid node degree"); 7465 --Degree; 7466 if (Degree == 0) { 7467 // All of P's operands are sorted, so P may sorted now. 7468 P->setNodeId(DAGSize++); 7469 if (P->getIterator() != SortedPos) 7470 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 7471 assert(SortedPos != AllNodes.end() && "Overran node list"); 7472 ++SortedPos; 7473 } else { 7474 // Update P's outstanding operand count. 7475 P->setNodeId(Degree); 7476 } 7477 } 7478 if (Node.getIterator() == SortedPos) { 7479 #ifndef NDEBUG 7480 allnodes_iterator I(N); 7481 SDNode *S = &*++I; 7482 dbgs() << "Overran sorted position:\n"; 7483 S->dumprFull(this); dbgs() << "\n"; 7484 dbgs() << "Checking if this is due to cycles\n"; 7485 checkForCycles(this, true); 7486 #endif 7487 llvm_unreachable(nullptr); 7488 } 7489 } 7490 7491 assert(SortedPos == AllNodes.end() && 7492 "Topological sort incomplete!"); 7493 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 7494 "First node in topological sort is not the entry token!"); 7495 assert(AllNodes.front().getNodeId() == 0 && 7496 "First node in topological sort has non-zero id!"); 7497 assert(AllNodes.front().getNumOperands() == 0 && 7498 "First node in topological sort has operands!"); 7499 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 7500 "Last node in topologic sort has unexpected id!"); 7501 assert(AllNodes.back().use_empty() && 7502 "Last node in topologic sort has users!"); 7503 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 7504 return DAGSize; 7505 } 7506 7507 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 7508 /// value is produced by SD. 7509 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 7510 if (SD) { 7511 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 7512 SD->setHasDebugValue(true); 7513 } 7514 DbgInfo->add(DB, SD, isParameter); 7515 } 7516 7517 /// Transfer SDDbgValues. Called in replace nodes. 7518 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 7519 if (From == To || !From.getNode()->getHasDebugValue()) 7520 return; 7521 SDNode *FromNode = From.getNode(); 7522 SDNode *ToNode = To.getNode(); 7523 SmallVector<SDDbgValue *, 2> ClonedDVs; 7524 for (auto *Dbg : GetDbgValues(FromNode)) { 7525 // Only add Dbgvalues attached to same ResNo. 7526 if (Dbg->getKind() == SDDbgValue::SDNODE && 7527 Dbg->getSDNode() == From.getNode() && 7528 Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) { 7529 assert(FromNode != ToNode && 7530 "Should not transfer Debug Values intranode"); 7531 SDDbgValue *Clone = getDbgValue(Dbg->getVariable(), Dbg->getExpression(), 7532 ToNode, To.getResNo(), Dbg->isIndirect(), 7533 Dbg->getDebugLoc(), Dbg->getOrder()); 7534 ClonedDVs.push_back(Clone); 7535 Dbg->setIsInvalidated(); 7536 } 7537 } 7538 for (SDDbgValue *I : ClonedDVs) 7539 AddDbgValue(I, ToNode, false); 7540 } 7541 7542 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 7543 SDValue NewMemOp) { 7544 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 7545 // The new memory operation must have the same position as the old load in 7546 // terms of memory dependency. Create a TokenFactor for the old load and new 7547 // memory operation and update uses of the old load's output chain to use that 7548 // TokenFactor. 7549 SDValue OldChain = SDValue(OldLoad, 1); 7550 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 7551 if (!OldLoad->hasAnyUseOfValue(1)) 7552 return NewChain; 7553 7554 SDValue TokenFactor = 7555 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 7556 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 7557 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 7558 return TokenFactor; 7559 } 7560 7561 //===----------------------------------------------------------------------===// 7562 // SDNode Class 7563 //===----------------------------------------------------------------------===// 7564 7565 bool llvm::isNullConstant(SDValue V) { 7566 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7567 return Const != nullptr && Const->isNullValue(); 7568 } 7569 7570 bool llvm::isNullFPConstant(SDValue V) { 7571 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 7572 return Const != nullptr && Const->isZero() && !Const->isNegative(); 7573 } 7574 7575 bool llvm::isAllOnesConstant(SDValue V) { 7576 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7577 return Const != nullptr && Const->isAllOnesValue(); 7578 } 7579 7580 bool llvm::isOneConstant(SDValue V) { 7581 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7582 return Const != nullptr && Const->isOne(); 7583 } 7584 7585 bool llvm::isBitwiseNot(SDValue V) { 7586 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 7587 } 7588 7589 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 7590 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 7591 return CN; 7592 7593 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7594 BitVector UndefElements; 7595 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 7596 7597 // BuildVectors can truncate their operands. Ignore that case here. 7598 // FIXME: We blindly ignore splats which include undef which is overly 7599 // pessimistic. 7600 if (CN && UndefElements.none() && 7601 CN->getValueType(0) == N.getValueType().getScalarType()) 7602 return CN; 7603 } 7604 7605 return nullptr; 7606 } 7607 7608 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 7609 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 7610 return CN; 7611 7612 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7613 BitVector UndefElements; 7614 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 7615 7616 if (CN && UndefElements.none()) 7617 return CN; 7618 } 7619 7620 return nullptr; 7621 } 7622 7623 HandleSDNode::~HandleSDNode() { 7624 DropOperands(); 7625 } 7626 7627 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 7628 const DebugLoc &DL, 7629 const GlobalValue *GA, EVT VT, 7630 int64_t o, unsigned char TF) 7631 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 7632 TheGlobal = GA; 7633 } 7634 7635 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 7636 EVT VT, unsigned SrcAS, 7637 unsigned DestAS) 7638 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 7639 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 7640 7641 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 7642 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 7643 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 7644 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 7645 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 7646 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 7647 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 7648 7649 // We check here that the size of the memory operand fits within the size of 7650 // the MMO. This is because the MMO might indicate only a possible address 7651 // range instead of specifying the affected memory addresses precisely. 7652 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 7653 } 7654 7655 /// Profile - Gather unique data for the node. 7656 /// 7657 void SDNode::Profile(FoldingSetNodeID &ID) const { 7658 AddNodeIDNode(ID, this); 7659 } 7660 7661 namespace { 7662 7663 struct EVTArray { 7664 std::vector<EVT> VTs; 7665 7666 EVTArray() { 7667 VTs.reserve(MVT::LAST_VALUETYPE); 7668 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 7669 VTs.push_back(MVT((MVT::SimpleValueType)i)); 7670 } 7671 }; 7672 7673 } // end anonymous namespace 7674 7675 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 7676 static ManagedStatic<EVTArray> SimpleVTArray; 7677 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 7678 7679 /// getValueTypeList - Return a pointer to the specified value type. 7680 /// 7681 const EVT *SDNode::getValueTypeList(EVT VT) { 7682 if (VT.isExtended()) { 7683 sys::SmartScopedLock<true> Lock(*VTMutex); 7684 return &(*EVTs->insert(VT).first); 7685 } else { 7686 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 7687 "Value type out of range!"); 7688 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7689 } 7690 } 7691 7692 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7693 /// indicated value. This method ignores uses of other values defined by this 7694 /// operation. 7695 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7696 assert(Value < getNumValues() && "Bad value!"); 7697 7698 // TODO: Only iterate over uses of a given value of the node 7699 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7700 if (UI.getUse().getResNo() == Value) { 7701 if (NUses == 0) 7702 return false; 7703 --NUses; 7704 } 7705 } 7706 7707 // Found exactly the right number of uses? 7708 return NUses == 0; 7709 } 7710 7711 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7712 /// value. This method ignores uses of other values defined by this operation. 7713 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7714 assert(Value < getNumValues() && "Bad value!"); 7715 7716 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7717 if (UI.getUse().getResNo() == Value) 7718 return true; 7719 7720 return false; 7721 } 7722 7723 /// isOnlyUserOf - Return true if this node is the only use of N. 7724 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7725 bool Seen = false; 7726 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7727 SDNode *User = *I; 7728 if (User == this) 7729 Seen = true; 7730 else 7731 return false; 7732 } 7733 7734 return Seen; 7735 } 7736 7737 /// Return true if the only users of N are contained in Nodes. 7738 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 7739 bool Seen = false; 7740 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7741 SDNode *User = *I; 7742 if (llvm::any_of(Nodes, 7743 [&User](const SDNode *Node) { return User == Node; })) 7744 Seen = true; 7745 else 7746 return false; 7747 } 7748 7749 return Seen; 7750 } 7751 7752 /// isOperand - Return true if this node is an operand of N. 7753 bool SDValue::isOperandOf(const SDNode *N) const { 7754 for (const SDValue &Op : N->op_values()) 7755 if (*this == Op) 7756 return true; 7757 return false; 7758 } 7759 7760 bool SDNode::isOperandOf(const SDNode *N) const { 7761 for (const SDValue &Op : N->op_values()) 7762 if (this == Op.getNode()) 7763 return true; 7764 return false; 7765 } 7766 7767 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7768 /// be a chain) reaches the specified operand without crossing any 7769 /// side-effecting instructions on any chain path. In practice, this looks 7770 /// through token factors and non-volatile loads. In order to remain efficient, 7771 /// this only looks a couple of nodes in, it does not do an exhaustive search. 7772 /// 7773 /// Note that we only need to examine chains when we're searching for 7774 /// side-effects; SelectionDAG requires that all side-effects are represented 7775 /// by chains, even if another operand would force a specific ordering. This 7776 /// constraint is necessary to allow transformations like splitting loads. 7777 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 7778 unsigned Depth) const { 7779 if (*this == Dest) return true; 7780 7781 // Don't search too deeply, we just want to be able to see through 7782 // TokenFactor's etc. 7783 if (Depth == 0) return false; 7784 7785 // If this is a token factor, all inputs to the TF happen in parallel. 7786 if (getOpcode() == ISD::TokenFactor) { 7787 // First, try a shallow search. 7788 if (is_contained((*this)->ops(), Dest)) { 7789 // We found the chain we want as an operand of this TokenFactor. 7790 // Essentially, we reach the chain without side-effects if we could 7791 // serialize the TokenFactor into a simple chain of operations with 7792 // Dest as the last operation. This is automatically true if the 7793 // chain has one use: there are no other ordering constraints. 7794 // If the chain has more than one use, we give up: some other 7795 // use of Dest might force a side-effect between Dest and the current 7796 // node. 7797 if (Dest.hasOneUse()) 7798 return true; 7799 } 7800 // Next, try a deep search: check whether every operand of the TokenFactor 7801 // reaches Dest. 7802 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 7803 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 7804 }); 7805 } 7806 7807 // Loads don't have side effects, look through them. 7808 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 7809 if (!Ld->isVolatile()) 7810 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 7811 } 7812 return false; 7813 } 7814 7815 bool SDNode::hasPredecessor(const SDNode *N) const { 7816 SmallPtrSet<const SDNode *, 32> Visited; 7817 SmallVector<const SDNode *, 16> Worklist; 7818 Worklist.push_back(this); 7819 return hasPredecessorHelper(N, Visited, Worklist); 7820 } 7821 7822 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 7823 this->Flags.intersectWith(Flags); 7824 } 7825 7826 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 7827 assert(N->getNumValues() == 1 && 7828 "Can't unroll a vector with multiple results!"); 7829 7830 EVT VT = N->getValueType(0); 7831 unsigned NE = VT.getVectorNumElements(); 7832 EVT EltVT = VT.getVectorElementType(); 7833 SDLoc dl(N); 7834 7835 SmallVector<SDValue, 8> Scalars; 7836 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 7837 7838 // If ResNE is 0, fully unroll the vector op. 7839 if (ResNE == 0) 7840 ResNE = NE; 7841 else if (NE > ResNE) 7842 NE = ResNE; 7843 7844 unsigned i; 7845 for (i= 0; i != NE; ++i) { 7846 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7847 SDValue Operand = N->getOperand(j); 7848 EVT OperandVT = Operand.getValueType(); 7849 if (OperandVT.isVector()) { 7850 // A vector operand; extract a single element. 7851 EVT OperandEltVT = OperandVT.getVectorElementType(); 7852 Operands[j] = 7853 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7854 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7855 } else { 7856 // A scalar operand; just use it as is. 7857 Operands[j] = Operand; 7858 } 7859 } 7860 7861 switch (N->getOpcode()) { 7862 default: { 7863 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7864 N->getFlags())); 7865 break; 7866 } 7867 case ISD::VSELECT: 7868 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7869 break; 7870 case ISD::SHL: 7871 case ISD::SRA: 7872 case ISD::SRL: 7873 case ISD::ROTL: 7874 case ISD::ROTR: 7875 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7876 getShiftAmountOperand(Operands[0].getValueType(), 7877 Operands[1]))); 7878 break; 7879 case ISD::SIGN_EXTEND_INREG: 7880 case ISD::FP_ROUND_INREG: { 7881 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7882 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7883 Operands[0], 7884 getValueType(ExtVT))); 7885 } 7886 } 7887 } 7888 7889 for (; i < ResNE; ++i) 7890 Scalars.push_back(getUNDEF(EltVT)); 7891 7892 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 7893 return getBuildVector(VecVT, dl, Scalars); 7894 } 7895 7896 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7897 LoadSDNode *Base, 7898 unsigned Bytes, 7899 int Dist) const { 7900 if (LD->isVolatile() || Base->isVolatile()) 7901 return false; 7902 if (LD->isIndexed() || Base->isIndexed()) 7903 return false; 7904 if (LD->getChain() != Base->getChain()) 7905 return false; 7906 EVT VT = LD->getValueType(0); 7907 if (VT.getSizeInBits() / 8 != Bytes) 7908 return false; 7909 7910 SDValue Loc = LD->getOperand(1); 7911 SDValue BaseLoc = Base->getOperand(1); 7912 7913 auto BaseLocDecomp = BaseIndexOffset::match(BaseLoc, *this); 7914 auto LocDecomp = BaseIndexOffset::match(Loc, *this); 7915 7916 int64_t Offset = 0; 7917 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 7918 return (Dist * Bytes == Offset); 7919 return false; 7920 } 7921 7922 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7923 /// it cannot be inferred. 7924 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7925 // If this is a GlobalAddress + cst, return the alignment. 7926 const GlobalValue *GV; 7927 int64_t GVOffset = 0; 7928 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7929 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7930 KnownBits Known(PtrWidth); 7931 llvm::computeKnownBits(GV, Known, getDataLayout()); 7932 unsigned AlignBits = Known.countMinTrailingZeros(); 7933 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7934 if (Align) 7935 return MinAlign(Align, GVOffset); 7936 } 7937 7938 // If this is a direct reference to a stack slot, use information about the 7939 // stack slot's alignment. 7940 int FrameIdx = 1 << 31; 7941 int64_t FrameOffset = 0; 7942 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7943 FrameIdx = FI->getIndex(); 7944 } else if (isBaseWithConstantOffset(Ptr) && 7945 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7946 // Handle FI+Cst 7947 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7948 FrameOffset = Ptr.getConstantOperandVal(1); 7949 } 7950 7951 if (FrameIdx != (1 << 31)) { 7952 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7953 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7954 FrameOffset); 7955 return FIInfoAlign; 7956 } 7957 7958 return 0; 7959 } 7960 7961 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7962 /// which is split (or expanded) into two not necessarily identical pieces. 7963 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7964 // Currently all types are split in half. 7965 EVT LoVT, HiVT; 7966 if (!VT.isVector()) 7967 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7968 else 7969 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 7970 7971 return std::make_pair(LoVT, HiVT); 7972 } 7973 7974 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7975 /// low/high part. 7976 std::pair<SDValue, SDValue> 7977 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7978 const EVT &HiVT) { 7979 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7980 N.getValueType().getVectorNumElements() && 7981 "More vector elements requested than available!"); 7982 SDValue Lo, Hi; 7983 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7984 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7985 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7986 getConstant(LoVT.getVectorNumElements(), DL, 7987 TLI->getVectorIdxTy(getDataLayout()))); 7988 return std::make_pair(Lo, Hi); 7989 } 7990 7991 void SelectionDAG::ExtractVectorElements(SDValue Op, 7992 SmallVectorImpl<SDValue> &Args, 7993 unsigned Start, unsigned Count) { 7994 EVT VT = Op.getValueType(); 7995 if (Count == 0) 7996 Count = VT.getVectorNumElements(); 7997 7998 EVT EltVT = VT.getVectorElementType(); 7999 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 8000 SDLoc SL(Op); 8001 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 8002 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 8003 Op, getConstant(i, SL, IdxTy))); 8004 } 8005 } 8006 8007 // getAddressSpace - Return the address space this GlobalAddress belongs to. 8008 unsigned GlobalAddressSDNode::getAddressSpace() const { 8009 return getGlobal()->getType()->getAddressSpace(); 8010 } 8011 8012 Type *ConstantPoolSDNode::getType() const { 8013 if (isMachineConstantPoolEntry()) 8014 return Val.MachineCPVal->getType(); 8015 return Val.ConstVal->getType(); 8016 } 8017 8018 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 8019 unsigned &SplatBitSize, 8020 bool &HasAnyUndefs, 8021 unsigned MinSplatBits, 8022 bool IsBigEndian) const { 8023 EVT VT = getValueType(0); 8024 assert(VT.isVector() && "Expected a vector type"); 8025 unsigned VecWidth = VT.getSizeInBits(); 8026 if (MinSplatBits > VecWidth) 8027 return false; 8028 8029 // FIXME: The widths are based on this node's type, but build vectors can 8030 // truncate their operands. 8031 SplatValue = APInt(VecWidth, 0); 8032 SplatUndef = APInt(VecWidth, 0); 8033 8034 // Get the bits. Bits with undefined values (when the corresponding element 8035 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 8036 // in SplatValue. If any of the values are not constant, give up and return 8037 // false. 8038 unsigned int NumOps = getNumOperands(); 8039 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 8040 unsigned EltWidth = VT.getScalarSizeInBits(); 8041 8042 for (unsigned j = 0; j < NumOps; ++j) { 8043 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 8044 SDValue OpVal = getOperand(i); 8045 unsigned BitPos = j * EltWidth; 8046 8047 if (OpVal.isUndef()) 8048 SplatUndef.setBits(BitPos, BitPos + EltWidth); 8049 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 8050 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 8051 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 8052 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 8053 else 8054 return false; 8055 } 8056 8057 // The build_vector is all constants or undefs. Find the smallest element 8058 // size that splats the vector. 8059 HasAnyUndefs = (SplatUndef != 0); 8060 8061 // FIXME: This does not work for vectors with elements less than 8 bits. 8062 while (VecWidth > 8) { 8063 unsigned HalfSize = VecWidth / 2; 8064 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 8065 APInt LowValue = SplatValue.trunc(HalfSize); 8066 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 8067 APInt LowUndef = SplatUndef.trunc(HalfSize); 8068 8069 // If the two halves do not match (ignoring undef bits), stop here. 8070 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 8071 MinSplatBits > HalfSize) 8072 break; 8073 8074 SplatValue = HighValue | LowValue; 8075 SplatUndef = HighUndef & LowUndef; 8076 8077 VecWidth = HalfSize; 8078 } 8079 8080 SplatBitSize = VecWidth; 8081 return true; 8082 } 8083 8084 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 8085 if (UndefElements) { 8086 UndefElements->clear(); 8087 UndefElements->resize(getNumOperands()); 8088 } 8089 SDValue Splatted; 8090 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 8091 SDValue Op = getOperand(i); 8092 if (Op.isUndef()) { 8093 if (UndefElements) 8094 (*UndefElements)[i] = true; 8095 } else if (!Splatted) { 8096 Splatted = Op; 8097 } else if (Splatted != Op) { 8098 return SDValue(); 8099 } 8100 } 8101 8102 if (!Splatted) { 8103 assert(getOperand(0).isUndef() && 8104 "Can only have a splat without a constant for all undefs."); 8105 return getOperand(0); 8106 } 8107 8108 return Splatted; 8109 } 8110 8111 ConstantSDNode * 8112 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 8113 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 8114 } 8115 8116 ConstantFPSDNode * 8117 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 8118 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 8119 } 8120 8121 int32_t 8122 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 8123 uint32_t BitWidth) const { 8124 if (ConstantFPSDNode *CN = 8125 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 8126 bool IsExact; 8127 APSInt IntVal(BitWidth); 8128 const APFloat &APF = CN->getValueAPF(); 8129 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 8130 APFloat::opOK || 8131 !IsExact) 8132 return -1; 8133 8134 return IntVal.exactLogBase2(); 8135 } 8136 return -1; 8137 } 8138 8139 bool BuildVectorSDNode::isConstant() const { 8140 for (const SDValue &Op : op_values()) { 8141 unsigned Opc = Op.getOpcode(); 8142 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 8143 return false; 8144 } 8145 return true; 8146 } 8147 8148 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 8149 // Find the first non-undef value in the shuffle mask. 8150 unsigned i, e; 8151 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 8152 /* search */; 8153 8154 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 8155 8156 // Make sure all remaining elements are either undef or the same as the first 8157 // non-undef value. 8158 for (int Idx = Mask[i]; i != e; ++i) 8159 if (Mask[i] >= 0 && Mask[i] != Idx) 8160 return false; 8161 return true; 8162 } 8163 8164 // \brief Returns the SDNode if it is a constant integer BuildVector 8165 // or constant integer. 8166 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 8167 if (isa<ConstantSDNode>(N)) 8168 return N.getNode(); 8169 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 8170 return N.getNode(); 8171 // Treat a GlobalAddress supporting constant offset folding as a 8172 // constant integer. 8173 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 8174 if (GA->getOpcode() == ISD::GlobalAddress && 8175 TLI->isOffsetFoldingLegal(GA)) 8176 return GA; 8177 return nullptr; 8178 } 8179 8180 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 8181 if (isa<ConstantFPSDNode>(N)) 8182 return N.getNode(); 8183 8184 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 8185 return N.getNode(); 8186 8187 return nullptr; 8188 } 8189 8190 #ifndef NDEBUG 8191 static void checkForCyclesHelper(const SDNode *N, 8192 SmallPtrSetImpl<const SDNode*> &Visited, 8193 SmallPtrSetImpl<const SDNode*> &Checked, 8194 const llvm::SelectionDAG *DAG) { 8195 // If this node has already been checked, don't check it again. 8196 if (Checked.count(N)) 8197 return; 8198 8199 // If a node has already been visited on this depth-first walk, reject it as 8200 // a cycle. 8201 if (!Visited.insert(N).second) { 8202 errs() << "Detected cycle in SelectionDAG\n"; 8203 dbgs() << "Offending node:\n"; 8204 N->dumprFull(DAG); dbgs() << "\n"; 8205 abort(); 8206 } 8207 8208 for (const SDValue &Op : N->op_values()) 8209 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 8210 8211 Checked.insert(N); 8212 Visited.erase(N); 8213 } 8214 #endif 8215 8216 void llvm::checkForCycles(const llvm::SDNode *N, 8217 const llvm::SelectionDAG *DAG, 8218 bool force) { 8219 #ifndef NDEBUG 8220 bool check = force; 8221 #ifdef EXPENSIVE_CHECKS 8222 check = true; 8223 #endif // EXPENSIVE_CHECKS 8224 if (check) { 8225 assert(N && "Checking nonexistent SDNode"); 8226 SmallPtrSet<const SDNode*, 32> visited; 8227 SmallPtrSet<const SDNode*, 32> checked; 8228 checkForCyclesHelper(N, visited, checked, DAG); 8229 } 8230 #endif // !NDEBUG 8231 } 8232 8233 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 8234 checkForCycles(DAG->getRoot().getNode(), DAG, force); 8235 } 8236